
Classifying Bugs with Interpolants

Andreas Podelski1, Martin Schäf2, and Thomas Wies3

1 University of Freiburg
2 SRI International

3 New York University

Abstract. We present an approach to the classification of error mes-
sages in the context of static checking in the style of ESC/Java. The
idea is to compute a semantics-based signature for each error message
and then group together error messages with the same signature. The ap-
proach aims at exploiting modern verification techniques based on, e.g.,
Craig interpolation in order to generate small but significant signatures.
We have implemented the approach and applied it to three benchmark
sets (from Apache Ant, Apache Cassandra, and our own tool). Our ex-
periments indicate an interesting practical potential. More than half of
the considered error messages (for procedures with more than just one
error message) can be grouped together with another error message.

1 Introduction

The classification of error messages, bug reports, exception warnings, etc. is an
active research topic [1, 3, 5, 13, 16, 25, 30]. The underlying motivation is that
grouping related error messages together will help with their analysis. The prob-
lem of classification is to infer what error messages are related (and, in what
sense).

In this paper, we address the problem of classification in the context of
static checking of sequential procedural programs in the style of ESC/Java, as
in [4, 15, 21]. Although in this context error messages may refer to an error in
the specification rather than the code, the same motivation applies. The error
messages may come in batches of, say, thousands, and they have to be analyzed,
if only to debug the specification.

In the context of static checking, it seems natural to explore whether con-
cepts and techniques from semantics and verification can be put to use for the
classification of error messages.

In this paper, we present an approach to semantics-based classification of
error messages which come in the form of a sequence of statements along with a
witness; a witness here is an initial state from which the execution of the sequence
of statements leads to the violation of a specified assertion. As in verification,
semantics here is used to abstract away from syntactical details. For example,
we can abstract a statement (or a sequence of statements) by its summary in
the form of a pre- and postcondition pair.

The idea behind the approach is to compute a semantics-based signature
for each of the error messages and then group together error messages with

2 Andreas Podelski, Martin Schäf, and Thomas Wies

the same signature. More concretely, we associate each error message with a
new verification problem. We apply a verification engine to infer a proof in the
form of Hoare triples. We remove the invariant-type Hoare triples (of the form
{F} st {F}, expressing that an assertion F is invariant under a statement st).
We take the remaining change-type Hoare triples to construct the signature.

Intuitively, the larger the number of invariant-type Hoare triples (and the
smaller the number of change-type Hoare triples), the more error messages will
be grouped together under the resulting signature. The approach exploits the
fact that modern verification engines can often be geared to produce proofs
with a large number of invariant-type Hoare triples. (We here think of Craig
interpolation, constraint solving, and static analysis [9, 24,29].)

We have implemented the new approach to classification on top of our own
extended static checker for Java. We have applied it to three benchmark sets
(from Apache Ant, Apache Cassandra, and our own tool). Our experiments
indicate an interesting practical potential of the approach. More than half of
the considered error messages (for procedures with more than just one error
message) can be grouped together with another error message.

The technical contribution of this paper is to introduce the approach and
to present an experimental evaluation of its implementation. The conceptual
contribution is the formal foundation of the approach which associates each
error message with a verification problem and constructs a small but significant
signature from a correctness proof.

Roadmap. The next section illustrates the approach on an example. Section 3
fixes the notation and terminology of standard concepts. Section 4 introduces
the approach together with its formal foundation. Section 5 presents the exper-
imental evaluation and Section 6 discusses the related work.

2 Overview

We motivate our approach to classifying bugs using interpolation with the il-
lustrative example in Figure 1. For simplicity of exposition, the example is con-
structed to be of reasonable size. However, real Java programs such as the ones
used in our experiments show similar patterns in larger methods.

Figure 1 shows a method m that takes two objects a and b of type A, and
one integer x as input. We analyze this method with a static checker such as
ESC/Java [15] to obtain error messages that indicate uncaught exceptions4. In
this paper, we consider an error message to consist of a specific initial state and
an error trace whose execution from the initial state leads to a state that violates
an assertion guarding an uncaught run-time exception.

4 The fact that we use a static checker is not crucial for our discussion. The error
messages could also be generated using a bounded model checker such as [14,20], or
a testing tool such as Randoop [27]

Classifying Bugs with Interpolants 3

1 void m(A a, A b, int x) {

2 if (x>0) {

3 A obj = null;

4 try {

5 obj = b.clone();

6 } catch (Exception e) {

7 e.printStackTrace ();

8 }

9 obj.bar();

10 a.bar();

11 }

12 a.bar();

13 }

Fig. 1. Example procedure m.

For the method m, the error messages that are produced by the static checker
can be classified according to the line in the method where the run-time error
occurs as follows:

1. If x ≤ 0, and a is null the execution of m leads to a NullPointerException

on line 12.
2. If x > 0 and a==null, a NullPointerException is thrown on line 10.
3. If x > 0 and b==null, a NullPointerException is thrown on line 9

Figure 2 shows an example of an error message for each of these three types.
Each error message starts from a given initial state, which is followed by the
sequence of statements executed on the corresponding error traces, and ends in
the (implicit) assertion that is violated when starting execution from the initial
state. For convenience, the initial states of the error messages are described
symbolically by an assume statement at the beginning of each trace. Note that
if we used a random testing tool such as Randoop instead of a static checker,
then several error messages of each type may be reported. For example, a testing
tool might generate multiple test cases that invoke m with a==null and different
values for x that satisfy x > 0.

Grouping error messages syntactically based on the line in the program where
a run-time error occurs may seem appropriate at first. However, this strategy
does not yield a meaningful classification of bugs on its own. Two error messages
that fail at the same program location may do so for different reasons and should
therefore not be grouped together. Conversely, two error messages that fail at
different program locations may do so for the same reason and should therefore
be grouped together. Specifically, in our example the error messages of type 1 and
2 capture cases in which an error occurs because m has been called with the value
null passed to parameter a. That is, the parameter a will be dereferenced with
a NullPointerException regardless of the value of x. It therefore seems more
appropriate to take into account only the error-relevant condition a==null that

4 Andreas Podelski, Martin Schäf, and Thomas Wies

assume(a == null

&& b == null

&& x == 0);

assume(x <= 0);

assert(a!=null);

Type 1

assume(a == null

&& b == A@15ce

&& x == 1);

assume(x > 0);

A obj = null;

obj = b.clone();

obj.bar();

assert(a!=null);

Type 2

assume(a == null

&& b == null

&& x == 1);

assume(x > 0);

A obj = null;

e.printStackTrace ();

assert(obj!=null);

Type 3

Fig. 2. Different syntactic types of error messages for the method m in Figure 1

is common to the error messages of type 1 and 2 and group them together during
classification. On the other hand, type 3 error messages should still be grouped
separately. Our approach aims to infer such a semantics-based characterization
of what is essential for the reason why the assertion in an error message fails.

The approach groups error messages by computing an error signature for
each individual error message as follows. First, we replace the failing assert
statement at the end of the error message by an assume statement with the
same condition. The resulting trace will not have any feasible execution because
the final condition is always violated. That is, if τ is the trace resulting from
this transformation, then {>} τ {⊥} is a valid Hoare triple, where > stands for
the assertion true and ⊥ for false. We can thus use an interpolating theorem
prover to generate a Hoare proof for the validity of this triple. For instance, the
generated Hoare proof for the trace obtained from the error message of type 2
may look as follows:

{>}
assume(a == null && b == A@15ce && x == 1);

{a == null}
assume(x > 0);

{a == null}
obj = null;

{a == null}
obj = b.clone();

{a == null}
obj.bar();

{a == null}
assert(a != null);

{⊥}

Observe that the intermediate assertion a == null is maintained throughout
the trace after initialization. It captures the reason why the trace described by
the original error message fails.

The next step is to extract the sequence of intermediate assertions from the
Hoare proof and replace all consecutive occurrences of the same assertion by

Classifying Bugs with Interpolants 5

just one copy of that assertion. We refer to the resulting condensed sequence of
intermediate assertions as the error signature of the original error message. For
our error messages of type 2, the error signature computed from the given Hoare
proof only consists of the assertion a == null.

We group error messages that have identical error signatures together into
equivalence classes. We refer to these equivalence classes as buckets. For example,
the error signature for the error messages of type 1 is also a == null. Hence, all
type 1 and type 2 error messages will be grouped together in the same bucket.
On the other hand, the error signature of the type 3 error messages consists of
the two assertions >, obj == null. Type 3 error messages will therefore end up
in a separate bucket.

In general, an error signature consists of a non-trivial sequence of assertions
that captures how the error condition is propagated through the trace of the
error message. Intuitively, an error signature abstracts away from the specific
values of the initial state of an error message and the syntax of the statements
in its error trace, including the specific location of the failing assertion. Error
signatures only maintain the error-relevant semantic conditions that hold along
the trace of the error message. For example, an error message has the error sig-
nature >, obj == null if its initial state satisfies > (i.e., the initial state can
be arbitrary). Moreover, its error trace contains one statement that establishes
the postcondition obj == null from a state that satisfies >, and if it ends with
an assert statement whose execution fails if obj == null holds; it can contain
an arbitrary number of additional statements as long as they leave the corre-
sponding assertion (which is > or obj == null according to the position within
the error trace) invariant. That is, an error message with the error signature
>, obj ==null consists of:

– an initial state that satisfies >, which is the case for any initial state.
– a (possibly empty) sequence of statements st for which > is invariant, which

is the case for every statement st (the Hoare triple {>} st {>} holds triv-
ially),

– a statement st that establishes the postcondition obj == null (i.e., the
Hoare triple {>} st {obj == null} holds),

– a (possibly empty) sequence of statements st for which the assertion obj == null

is invariant (i.e., the Hoare triple {obj == null} st {obj == null} holds),
and finally

– an statement assert(F) that fails when executed in a state where the asser-
tion obj == null is true (i.e., the Hoare triple {obj == null} assume(F) {⊥}
holds).

Note that the first assertion of an error signature can generalize the initial state
of an error message. This is needed in order to group together error messages
with different initial states.

We have found that error signatures provide a useful classification mechanism
in the context of static checking of Java programs if the classification is restricted
to the error messages that belong to the same method, i.e., if it is combined with
a coarse syntactic classification mechanism based on method affiliation.

6 Andreas Podelski, Martin Schäf, and Thomas Wies

3 Preliminaries

The purpose of this section is to fix the notation and terminology for existing,
standard concepts.

We assume a simple imperative language whose basic statements st consist
of assignments as well as assume and assert statements:

x ∈ X program variables

e ∈ E expressions

F ∈ F formulas

st ::= assume(F) | assert(F) | x := e (basic) statements

We do not define the syntax of expressions e ∈ E and formulas F ∈ F . We only
require that they fall into quantifier-free first-order logic for a signature that is
defined by a suitable theory T (e.g., linear integer arithmetic). Moreover, we
require that the variables appearing in e and F are drawn from the set X . We
assume standard syntax and semantics of first-order logic and use > and ⊥ to
denote the Boolean constants for true and false, respectively.

A state s = (M,β) consists of a model M of the theory T and an assignment
β of the variables in X to values drawn from the universe of M . The model M
may be fixed for all states if M is the canonical model of the theory T (e.g., the
integer numbers in the case of linear integer arithmetic). For an expression e,
we denote by s(e) the value obtained by interpreting e in s and we use similar
notation for formulas. We write s |= F to say that s satisfies F , i.e., s(F) = >.
A formula is valid if s |= F for all states s and it is called unsatisfiable if ¬F is
valid.

Following the presentation in [11, 26], we define the semantics of statements
using the weakest precondition transformer wp, which maps a pair of a statement
st and a formula F to another formula:

wp(assume(G), F) = G⇒ F

wp(assert(G), F) = G ∧ F
wp(x := e, F) = F [e/x]

The Hoare triple {F} st {F ′} stands for the formula F ⇒ wp(st , F ′).
For example, the Hoare triple {x = 0} assume(x 6= 0) {⊥} is valid, whereas

the Hoare triple {x = 0} assert(x 6= 0) {⊥} is not valid.
A trace τ is a finite sequence of basic statements τ = st1; . . . ; stn. We extend

both wp and Hoare triples from statements st to traces τ in the expected way.
A sequence of formulas and statements F1, st1, F2, . . . , stn, Fn+1 is called a

Hoare sequence if for all i ∈ [1, n], {Fi} st i {Fi+1} is valid. Intuitively, the Hoare
sequence corresponds to an annotation or proof outline to prove the Hoare triple
{F1} τ {Fn+1} for the trace τ = st1, . . . , stn.

A trace τ is called infeasible if {>} τ {⊥} is valid. Intuitively, the execution
of the sequence of statements of an infeasible trace always (i.e., for every starting
state) blocks on some assume statement in the sequence.

Classifying Bugs with Interpolants 7

4 Classifying Error Traces through Error Signatures

The purpose of this section is to introduce the formal foundation for an ap-
proach to the classification of error traces based on concepts and techniques
from verification.

Definition 1. A trace τ is called error trace if ¬({>} τ {>}) is satisfiable. An
error message is a pair ε = (τ, s0) of an error trace τ and a state s0 such that
s0 |= ¬({>} τ {>}).

Intuitively, an error trace has at least one execution that violates an assert
statement in the trace. Every state s0 such that s0 |= ¬({>} τ {>}) is the initial
state s0 of such a faulty execution of τ . The initial state s0 may be obtained
from the satisfiable formula ¬({>} τ {>}) by using a model-generating theorem
prover. It could also be obtained directly (together with τ) from a failed test or
a bug report.

An error trace has at least one execution that does not block on any assume
statement (namely, the faulty execution). This fact may help to avoid the con-
fusion with the terminology of error trace in software model checking as in [17].

The definition implies that an error trace must contain at least one assert
statement. To simplify the discussion, we will restrict ourselves to error traces
that contain exactly one assert statement and assume that this statement is the
last statement in the trace.

4.1 From Error Messages to Proofs

The notion of error trace is not directly amenable to the use of verification
technology and to the concept of proof. Recall that an error trace has some
execution that violates an assert statement, which also means that it may still
have normally terminating executions. The notion of an error trace is thus in-
compatible with the notion of an infeasible trace. We know that the infeasiblity
of a trace can be tied to a proof. In order to make the connection from error
traces to proofs, we transform error traces to infeasible traces. Intuitively, the
transformation of an error trace eliminates all normally terminating executions
from them. Given an error message (τ, s0), the first step of the transformation
is to encode the given initial state s0 of a faulty execution of τ into an assume
statement that is prepended to τ . The resulting trace is still feasible.5 In fact,
the trace has exactly one execution. The execution must start in the state s0
(otherwise the newly added assume statement would immediately block the ex-
ecution). The execution fails the assert statement in the trace. The second step
of the transformation is to replace the assert statement in the trace is by an
assume statement. The resulting trace is infeasible.

Notation τ : For a trace τ , we denote by τ the trace obtained from τ by
replacing every assert statement of the form assert(F) in τ by assume(F).

5 Note that we use weakest preconditions, as opposed to weakest liberal preconditions;
see Section 4. For example, the trace assume(x = 0); assert(x 6= 0) is not infeasible
since wp(assume(x = 0); assert(x 6= 0),⊥) = (x = 0⇒ (x 6= 0 ∧ ⊥)) = (x 6= 0).

8 Andreas Podelski, Martin Schäf, and Thomas Wies

Definition 2 (Infeasible Extension of Error Messages). Let ε = (τ, s0) be
an error message and let {x1, . . . , xk} be the (finite) set of variables occuring in
the statements of τ . Let further e1, . . . , ek be expressions that define the values
of x1, . . . , xk in the state s0.6 Then the trace τ ′ of the form

τ ′ = assume(x1 = e1 ∧ · · · ∧ xk = ek); τ

is the infeasible extension of the error message ε.

Remark 3 (Infeasibility of infeasible extension of error message). If ε is an error
message and τ ′ its infeasible extension, then τ ′ is infeasible.

Note that, in the formal setting as introduced in Section 3, all three kinds of
statements are deterministic. In the presence of a non-deterministic statement
such as havoc(x), we would need to add an assume statement to encode the non-
deterministically chosen value for x in the faulty execution of an error trace τ .
Definition 2 would accommodate this in the setting where each non-deterministic
assignment statement in a trace is of the form x := x(i) with each x(i) a fresh
renaming of x.

4.2 Error Signatures

Let ε be an error message and τ its infeasible extension. An error signature σ
for ε is a sequence of formulas that can be extended to form a Hoare sequence
with τ by allowing each formula in σ to be repeated for some (possibly empty)
subtrace of τ . That is, each formula in σ is invariant for some subtrace of τ
and each consecutive pair of formulas in σ is inductive for some statement in
τ that connects the respective invariant subtraces. The intuition behind this
definition is that the error signature abstracts the irrelevant statements in the
trace (those contained in the invariant subtraces) while keeping the statements
that are relevant for understanding the error (those connecting the invariant
subtraces). The following definition makes this notion formally precise.

Definition 4 (Error Signatures). Let τ = st1; . . . ; stn be an infeasible ex-
tension of an error message ε. A sequence of formulas σ = F1, . . . , Fm−1 with
m ≤ n is an error signature of ε if there exists a strictly monotone function
h : [1,m]→ [1, n] such that:

– the sequence

>, sth(1), F1, sth(2), F2, . . . , sth(m−1), Fm−1sth(m),⊥

is a Hoare sequence,

6 In the general case, we may not be able to describe s0 using simple equalities and
instead must consider its diagram [6]. For the sake of the clarity of presentation, we
skim over these technicalities.

Classifying Bugs with Interpolants 9

– every Fi is invariant on the subtrace from sth(i) to the last statement before
sth(i+1), i.e., for every i ∈ [1,m− 1], the sequence

Fi, sth(i), Fi, sth(i)+1, Fi, . . . , sth(i+1)−1, Fi

is a Hoare sequence.

We call the trace sth(1), . . . , sth(m) the abstract slice of ε induced by σ and h.

Remark 5. Let ε = (τ, s0) be an error message and σ an error signature of ε.
Then the formulas in σ are all different from ⊥. This means that σ corresponds
to a proof that the execution of τ that starts in s0 is non-blocking and fails the
final assert statement in τ .

Note that error signatures always exist. In particular, for the infeasible ex-
tension τ = st1; . . . ; stn of an error message ε, the sequence of formulas

σ = wp(st2; . . . ; stn,⊥), . . . ,wp(stn,⊥)

is an error signature of ε. Evidently this error signature is not very informative,
as the abstract slice of ε induced by σ is identical to τ . We will discuss below
how to compute error signatures that yield proper abstract slices.

4.3 Classifying Error Messages

In the following, let sig be a function that maps error messages to error signa-
tures. Then sig defines an equivalence relation =sig on error messages. Two error
messages ε1 and ε2 are equivalent with respect to sig if sig maps them to the
same error signature:

ε1 =sig ε2 ⇔ sig(ε1) = sig(ε2).

Definition 6 (Buckets). Given a set of error message E and a function sig
mapping the elements of E to error signatures, we refer to the equivalence classes
in the quotient E/ =sig as buckets.

We now have everything in place to give the classification algorithm, which
is shown in Algorithm 1. The algorithm takes as input a set E of error mes-
sages. The output of the algorithm is the map Buckets whose domain is a set
of error signatures (such that every error message in E is covered by some error
signature in the domain). Each error signature σ in the domain is mapped to
the corresponding bucket, i.e., a set of error messages which all have the error
signature σ.

The algorithm computes a function sig mapping error messages to error sig-
natures, as follows. For every error message ε = (τ, s0) in E, we first compute
its infeasible extension τ ′ using the helper function InfeasibleExtension. Sup-
pose τ ′ is of length n. Then we compute the formulas F0, . . . , Fn+1 for a Hoare
sequence of τ ′ by applying an interpolating theorem prover to the path formula

10 Andreas Podelski, Martin Schäf, and Thomas Wies

Algorithm 1: Classification of error messages.

Input: E: set of error messages
Output: Buckets: map from error signatures to buckets of error messages from E

1 begin
2 for ε ∈ E do
3 (τ, s0)← ε ;
4 τ ′ ← InfeasibleExtension(τ, s0) ;
5 F0, . . . , Fn+1 ← Interpolate(τ ′) ;
6 // remove successive duplicates in F1, . . . , Fn ;
7 curr ← 1 ;
8 σ ← F1 ;
9 for i from 1 to n do

10 if Fi 6= Fcurr then
11 σ ← σ, Fi ;
12 curr ← i ;

13 end if

14 end for
15 if σ 6∈ dom(Buckets) then
16 Buckets[σ]← ∅;
17 end if
18 Buckets[σ]← Buckets[σ] ∪ {ε};
19 end for

20 end

constructed from τ ′. This step is implemented by the function Interpolate.
Note that the resulting interpolant sequence always satisfies F0 = > and Fn+1 =
⊥. Moreover, the subsequence F1, . . . , Fn is guaranteed to be an error signa-
ture for ε. However, it is not yet abstracting any statements in τ ′. To obtain
a proper error signature, we exploit the observation that interpolating theorem
provers often produce interpolant sequences that consecutively repeat the same
interpolant. Thus, we simply iterate over the formulas F1, . . . , Fn and remove
consecutive duplicates of formulas Fi to obtain the actual error signature σ for
ε. The obtained error signature is then used to insert the current error message
into its bucket.

5 Evaluation

Our approach to categorize error messages is embodied in a tool called Bucketeer.
More precisely, the tool implements Algorithm 1 where the helper procedure
Interpolate is implemented using the interpolation procedure of Princess [28].
The tool is available online, together with the benchmarks discussed in this
paper.7

We have implemented the tool on top of a (prototype of a) static checker for
Java [2]. The static checker is similar to OpenJML [8]. It uses Princess [28] to test

7 http://www.csl.sri.com/~schaef/experiments.zip

http://www.csl.sri.com/~schaef/experiments.zip

Classifying Bugs with Interpolants 11

Benchmarks Ant Cassandra Bucketeer

Lines of code 271k 299k 15k
of methods 7847 9373 331

Time for static checking (min) 87.35 55.65 6.00
of methods with error traces 2470 2190 203
of methods with multiple error traces 820 937 102
Sum of error traces in methods with multiple traces 2715 3243 376

Time for categorization (min) 25.23 54.78 6.06
Number of Buckets 1595 2041 258

Table 1. Raw data of the experimental evaluation.

an SMT formula for satisfiability and to compute a model if possible. It checks
for null pointer dereferences, out-of-bound access to arrays, and division by zero
errors. The checks are realized by inserting assertions into the code. Assertion
violations are detected by translating the transition relation of each method into
an SMT formula; a model of the SMT formula corresponds to an execution that
violates an assertion (during the construction of the SMT formula, the checker
unwinds loops (twice), and it replaces method calls by the specified (possibly
trivial) contracts). The corresponding error message, i.e., the error trace for
the failing execution together with the computed model, is fed to Bucketeer.
For performance reasons, the static checker ensures that no two error messages
share the same sequence of statements in the error trace (otherwise, we might
find an infinite number of error messages). Bucketeer, however, does not require
that error messages exercise different paths. Bucketeer categories error messages
which belong to the same method (which makes sense only if more than one
error message belongs to the method).

For the test of equality between formulas used in Line 10 of Algorithm 1
(“Fi 6= Fcurr”), we use syntactic equality. In our experiments, using the more
costly test of logical equivalence instead of syntactic equality does not change
the outcome of the tests. The reason lies in the fact that the generation of the
formulas by the interpolation procedure is optimized towards using the same
formula whenever possible. This means in particular that the generation of a
syntactically new but logically equivalent formula is unlikely.

Experimental Setup. To evaluate our approach we conducted two experimental
analyses: a quantitative analysis to evaluate if the number of buckets that have
to be investigated by the user is significantly lower than the number of original
error traces, and a qualitative analysis where we analyze the buckets for one
application in-depth to assess if the error traces that are grouped in one bucket
actually share properties that make it easier to fix them together.

For the quantitative analysis, we evaluate Bucketeer approach on three open-
source Java applications: the build system Apache Ant, the database Cassandra,
and on our own tool, Bucketeer. Table 1 shows an overview of the benchmarks
and a summary of some of the raw data of our evaluation.

12 Andreas Podelski, Martin Schäf, and Thomas Wies

Applied to Ant, the static checker finds 2470 methods with error traces, out
of which 820 methods have more than one error trace. Bucketeer is applied to the
in total 2715 error traces of those 820 methods. Applied to Cassandra, the static
checker finds 2190 methods with error traces, out of which 937 methods have
more than one error trace. Bucketeer is applied to the in total 3243 error traces
of those 937 methods. Applied to Bucketeer itself, the static checker finds 203
methods with error traces, out of which 102 methods have more than one error
trace. Bucketeer is applied to the in total 376 error traces of those 102 methods.
Summarizing over all three benchmark sets, Bucketeer is applied to 6333 error
traces of 1859 methods.

We discuss the results of the quantitative analysis in Section 5.1. For the
qualitative analysis, which we discuss in Section 5.2, we manually inspected all
buckets produced by running Bucketeer on its own source code.

The experiments were run on a 2.7GHz i7 machine with 16GB memory and
an initial size of 4GB for the Java virtual machine. We used an analysis timeout
of 30 seconds per method. We experimented with larger timeouts up to five
minutes per method but it had no significant effect on the number of methods
that could be analyzed.

The time for the static checking and the time for categorization given in
Table 1 does not account for the time spent on methods that time out or where
the interpolant generation crashes.

Due to the timeout we were not able to analyze 1053 methods in Ant, 346
methods in Cassandra, and 132 methods in Bucketeer. These methods are not
included in the numbers reported above.

The interpolating prover crashed for all methods where interpolation involved
reasoning about the sub-typing relation used in our encoding of Java programs.
We excluded these methods from our evaluation (1012 methods for Ant, 896
methods for Cassandra, and 80 methods for Bucketeer). These methods are not
included in the numbers reported above.

5.1 Quantitative Analysis

(a) Ant (b) Cassandra (c) Bucketeer

Fig. 3. Number of methods (on y-axis) with n error traces (x-axis).

Classifying Bugs with Interpolants 13

The distribution of the numbers n of error traces across the methods of a
benchmark program is needed in order to interpret the performance of a clas-
sification tool on the benchmark program (in principle, the lower the number
of error traces, the lower are the chances that some of them can be grouped
together). Figure 3 shows, for n = 2, 3, . . ., how many methods contain n error
traces (the number of methods with n = 1 error traces (which is available in
Table 1) is not present here because the classification tool is not applied to such
methods). As expected, the number of methods decreases with increasing n.

We observe that the number of methods containing four or more error traces
almost adds up to the number of methods containing only two error traces. This
indicates that a user of a static checker will encounter methods with more than
four error traces relatively frequently.

We can see that the distribution of error traces across methods is similar
for Ant and Cassandra, while for Bucketeer there are more methods with three
or more error traces. The difference may stem from the fact that the code of
Bucketeer implements more involved algorithms.

As shown in Table 1, the overall time cost may almost double when one
adds classification to static checking. The cost for classification lies in the in-
terpolant generation, which is a relatively new technique in SMT solving, with
a high potential for optimization. In any case, the cost for classification seems
acceptable.

We next evaluate how many error traces can be categorized in buckets of a
given size. For Ant, 1595 buckets are generated, which means that, on average,
each bucket contains 1.7 error traces. For Cassandra, 2041 buckets are generated,
which means an average of 1.6 error traces per bucket. For Bucketeer, 258 buckets
are generated, which means an average of 1.45 error traces per bucket.

(a) Ant (b) Cassandra (c) Bucketeer

Fig. 4. Percentage of trace (y-axis) grouped in a bucket of size n (x-axis).

One way to evaluate the effectiveness of our tool for classification is to mea-
sure its behavior in view of the two extreme cases of unsatisfactory behavior.
The two extreme cases are the scenario (a) where each trace ends up in a sep-
arate bucket (no trace is grouped together with another one), and the scenario
(b) where all traces of a method are grouped together into one single bucket. To
compare against scenario (a), we count how many traces are grouped in buckets

14 Andreas Podelski, Martin Schäf, and Thomas Wies

of a given size n, for n = 1, 2, Figure 4 shows the percentage of error traces
that are grouped in buckets of size n. More than half of the error traces (from
50% to 65%) are categorized in a bucket of size n ≥ 2, i.e., more than half of
the error traces are grouped together with at least one other error trace. This
means that we are rather far away from the scenario (a).

(a) Ant (b) Cassandra (c) Bucketeer

Fig. 5. Number of methods that (y-axis) contain n buckets (x-axis).

To compare against the scenario (b), we count the number of methods con-
taining n buckets, for n = 1, 2, Figure 5 shows that a very large portion of
the methods have two or more buckets. In other words, we are rather far away
from the scenario (b).

5.2 Qualitative Analysis

The goal of our qualitative analysis was to evaluate if the error messages grouped
in one bucket have a common root cause and, thus, the grouping helps to reduce
redundant work for the user. To this end, we manually investigated the buckets
that Bucketeer produced when we applied it to its own source code. Evaluating
the tool on the code written by us introduces some confirmation bias. On the
other hand, since we are familiar with the code it also increases our confidence
in judging if error messages in a bucket have a common root cause.

We inspected all 65 buckets generated for Bucketeer that contained at least
two error messages. These buckets can be grouped into two categories. The first
category consists of buckets that contain error messages that fail because the
initial state of the method sets one of the method parameters to null which is
dereferenced later in the method body. 73% of the buckets in Bucketeer are of
that form. These buckets contain between two and seven error messages (the av-
erage is 3 error messages per bucket). All these error messages have in common
that the initial state sets a particular method parameter to null, which triggers
a run-time exception somewhere in the method body. Often the actual run-time
error occurs at different points in the method body. However, the important
observation is that these error messages share the initialization statement of the
specific input parameter and they all can be fixed by enforcing that this param-
eter is not null. That is, instead of inspecting each error message in the bucket,

Classifying Bugs with Interpolants 15

a user of Bucketeer can pick any error message in one of these buckets, fix it by
adding an adequate precondition, and thus eliminate all other error messages in
the bucket without further inspection. The grouping of error messages provided
by our approach can therefore reduce the user’s workload substantially for these
types of buckets.

The remaining 27% of the buckets that we inspected contained error messages
where the initial state assumes a field to be null which is dereferenced later on
the trace. Again, each bucket contains between two and seven error messages
with an average of 3 error messages per bucket. The error messages in each
bucket share that the initial state sets a field of an object to null which is
dereferenced later in the method body. All error messages in one bucket share
the initial state that sets the field to null. Some error messages also share the
statement that raises the run-time exception (but take different paths to get
there). Others raise run-time exceptions at different statements but because of
the same field. That is, all error messages in one bucket can be fixed by adding
a precondition that ensures that the given field is not null (or, alternatively,
by guarding all dereferencing expressions with an appropriate check if such a
precondition cannot be established). Again, the grouping of the error messages
helps the user of Bucketeer by reducing the number of error messages that she
has to inspect.

Thus, for all the buckets that we inspected, the contained error messages had
a common root cause that could be fixed after inspecting only one error message
in the bucket. In summary, the qualitative analysis shows that the grouping of
error error messages done by Bucketeer is useful.

6 Related Work

The classification and bucketing of error messages is an active research topic. We
will discuss what seems the most relevant work in our context. In summary, no
existing approach to classification and bucketing addresses the question whether
the comparison between error messages can be based on criteria other than
syntactic or statistical criteria (as opposed to criteria based on the semantics of
statements as in our work).

The original motivation for our work stems from the work in [3] which ad-
dresses the error traces generated by a software model checker (somewhat con-
fusingly, the existing notions of error trace are subtly but substantially different
from each other). The classification of error traces in [3] is based on common
statements that have been identified as a possible root cause. The software model
checker then only reports one error trace per root cause. The identification of
the root cause works by comparing error traces to non-error traces which are
obtained from correct executions of the program (in this it is similar to dynamic
fault localization techniques such as delta debugging [31]). Our approach does
not require any successful executions of a program to compare against.

A static approach to cluster static analysis errors is presented in [23]. They
introduce the notion of sound dependency of alarms which is based on the trace

16 Andreas Podelski, Martin Schäf, and Thomas Wies

partitioning abstract domain. An alarm depends on another alarm if it spuri-
ousness implies the spuriousness of the other alarm. This is different from our
error signatures which can, in general, group arbitrary traces, even if they do
not share control locations.

Other approaches, such as [19] or [22] cluster static analysis alarms (not nec-
essarily only error traces) using unsound techniques. That is, their approaches
may suppress alarms related to genuine errors, or highlight alarms that are actu-
ally false positives. Our approach just groups error traces. It does not suppress
or highlight particular error traces, and genuine errors and false alarms may be
grouped in the same bucket if they share the same error signature.

Most industrial static analyzers such as Coverity, HP Fortify, Facebook In-
fer, or Red Lizards Goanna have complex systems to categorize error messages,
group them into buckets, and eliminate potential false alarms. These approaches
usually combine statistical analysis, feasibility checks, and data-flow analysis
and are heavily customized. While our approach is similar in spirit, we try to
obtain a more semantic categorization of error traces with our error signatures.
Existing approaches tend to group traces that violate the same property, while
the error signatures capture that traces perform similar computations. That is,
using error signatures is conceptually different from existing approaches.

A related problem to classification of error messages is duplicate analysis of
bug reports in bug tracking systems [1, 30]. Existing techniques for automating
the analysis of bug reports focus on the verbal description of the bug that is
provided by the bug reporter. The information in the bug report that describes
the actual error trace is typically incomplete and not amenable to automated
analysis. For example, in a bug report for a program crash, one will at most find
a stack trace of the program state when the crash occurred but no further in-
formation about the actual execution leading to that state. Recently, techniques
have been explored to automatically reconstruct the actual error trace from a
field failure by using symbolic execution [18].

The focus of our classification approach is on error traces of sequential pro-
grams. This is different in the work on the classification of concurrency bugs
to identify the type of concurrency violation (out of order violation, atomicity
violation, deadlocks, etc.); see, e.g., [5,16]. The approach in [16] is related to our
tool in that it also uses an SMT solver to perform this type of classification.

The notion of error signature that we introduce in this paper is somewhat
related to the notion of error invariants and abstract slices explored in [7,13,25].
There, the goal is to obtain an explanation of a bug in an individual error trace.
In contrast, the work of this paper is about the classification of a set of error
traces.

The work on tools to infer preconditions such as [10] and [12] is related to our
work in the sense that it may be conceivable to classify error messages according
to the same precondition. In comparison, error signatures are strictly more fine
grained (i.e., error messages with different error signatures may still share the
same precondition; e.g., the precondition can always be > if the initial state is
irrelevant for reaching the error).

Classifying Bugs with Interpolants 17

7 Conclusion

We have presented an approach that uses concepts and techniques from seman-
tics and verification in order to classify error messages in the context of static
checking. We have presented the formal foundation that allows us to associate
each error message with a verification problem whose solution (i.e., the proof
of validity of a certain correctness property for a program derived from the er-
ror message) can be used to construct a small but significant error signature
(on which the classification is based). We have implemented the approach and
applied it to three benchmark sets. Our experiments indicate an interesting prac-
tical potential.

While our motivation stems from the context of extended static checking,
it may be interesting to explore how the approach can be used to complement
existing approaches to classification in other contexts (abstract interpretation,
bounded model checking, testing, . . .).

A more fundamental question for future research concerns the existence of a
metric for error signatures in order to define a distance between error messages.

Acknowledgement This work is funded in parts by AFRL contract No. FA8750-
15-C-0010 and the National Science Foundation under grant CCF-1350574.

References

1. J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In ICSE, pages
361–370. ACM, 2006.

2. S. Arlt, C. Rubio-González, P. Rümmer, M. Schäf, and N. Shankar. The gradual
verifier. In NASA Formal Methods, pages 313–327. Springer, 2014.

3. T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: localizing errors
in counterexample traces. SIGPLAN Not., pages 97–105, 2003.

4. M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Venter.
Specification and verification: the Spec# experience. Commun. ACM, 54(6):81–91,
2011.

5. M. T. Befrouei, C. Wang, and G. Weissenbacher. Abstraction and mining of traces
to explain concurrency bugs. In RV, pages 162–177. Springer, 2014.

6. C. Chang and H. J. Keisler. Model theory. Studies in Logic and the Foundations
of Mathematics. Elsevier Science, 1990.

7. J. Christ, E. Ermis, M. Schaef, and T. Wies. Flow-sensitive fault localization. In
VMCAI, 2013.

8. D. R. Cok. OpenJML: JML for Java 7 by extending OpenJDK. In NASA Formal
Methods, pages 472–479. Springer, 2011.

9. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL, pages 269–282. ACM, 1979.

10. P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo. Automatic inference of
necessary preconditions. In VMCAI, pages 128–148, 2013.

11. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
12. I. Dillig, T. Dillig, and A. Aiken. Automated error diagnosis using abductive

inference. In PLDI, pages 181–192, 2012.

http://www.nsf.gov/

18 Andreas Podelski, Martin Schäf, and Thomas Wies

13. E. Ermis, M. Schäf, and T. Wies. Error Invariants. In FM, LNCS, pages 338–353,
Berlin, Heidelberg, 2012. Springer.

14. S. Falke, F. Merz, and C. Sinz. LLBMC: improved bounded model checking of C
programs using LLVM - (competition contribution). In TACAS, pages 623–626.
Springer, 2013.

15. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. SIGPLAN Not., pages 234–245, 2002.

16. A. Gupta, T. A. Henzinger, A. Radhakrishna, R. Samanta, and T. Tarrach. Suc-
cinct representation of concurrent trace sets. In POPL, pages 433–444. ACM,
2015.

17. M. Heizmann, J. Hoenicke, and A. Podelski. Software model checking for people
who love automata. In CAV, pages 36–52. Springer, 2013.

18. W. Jin and A. Orso. Bugredux: Reproducing field failures for in-house debugging.
In ICSE, pages 474–484. IEEE, 2012.

19. T. Kremenek and D. Engler. Z-ranking: Using statistical analysis to counter the
impact of static analysis approximations. In SAS, pages 295–315, 2003.

20. D. Kroening and M. Tautschnig. CBMC - C bounded model checker - (competition
contribution). In TACAS, pages 389–391, 2014.

21. A. Lal and S. Qadeer. Powering the static driver verifier using corral. In FSE,
pages 202–212. ACM, 2014.

22. W. Le and M. L. Soffa. Path-based fault correlations. In FSE, pages 307–316,
2010.

23. W. Lee, W. Lee, and K. Yi. Sound non-statistical clustering of static analysis
alarms. In VMCAI, pages 299–314, 2012.

24. K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci., pages
101–121, 2005.

25. V. Murali, N. Sinha, E. Torlak, and S. Chandra. A hybrid algorithm for error trace
explanation. In VSTTE, 2014.

26. G. Nelson. A generalization of Dijkstra’s calculus. ACM Trans. Program. Lang.
Syst., 11(4):517–561, 1989.

27. C. Pacheco and M. D. Ernst. Randoop: Feedback-directed random testing for
java. In Companion to the 22Nd ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications Companion, OOPSLA ’07, pages 815–816,
New York, NY, USA, 2007. ACM.

28. P. Rümmer. A constraint sequent calculus for first-order logic with linear integer
arithmetic. In LPAR, 2008.

29. S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-linear loop invariant genera-
tion using Gröbner bases. In POPL, pages 318–329. ACM, 2004.

30. X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to detecting
duplicate bug reports using natural language and execution information. In ICSE,
pages 461–470. ACM, 2008.

31. A. Zeller. Isolating cause-effect chains from computer programs. In SIGSOFT
FSE, pages 1–10, 2002.

	*-1cm Classifying Bugs with Interpolants

