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Abstract. We present an abstraction refinement technique for the ver-
ification of universally quantified array assertions such as “all elements

in the array are sorted”. Our technique can be seamlessly combined with
existing software model checking algorithms. We implemented our tech-
nique in the ACSAR software model checker and successfully verified
quantified array assertions for both text book examples and real-life ex-
amples taken from the Linux operating system kernel.

1 Introduction

Among the most promising approaches to the verification of software systems
is the combination of predicate abstraction [10] with automated abstraction re-
finement [6]. This approach is commonly referred to as software model checking.
Software model checking offers a high degree of automation and has been suc-
cessfully applied to non-trivial programs such as device drivers. Existing software
model checkers (e.g., SLAM [2], BLAST [13], MAGIC [5], and ARMC [21])
have shown to be suitable for the verification of control-oriented properties, but
they are limited when it comes to richer properties that involve data structures.
A prominent class of such properties are universally quantified assertions over
arrays (e.g., sortedness). We show that careful adaptation of existing software
model checking techniques is sufficient to verify many interesting programs over
arrays.

In order to verify quantified assertions, a program analysis needs to infer
inductive invariants that are itself quantified. This contradicts the basic idea
of predicate abstraction which is to construct an invariant from small pieces,
since quantified assertions cannot be easily split into simpler predicates. In other
words, finding the right predicates for verifying quantified assertions becomes as
difficult as finding an inductive invariant. Recently, various techniques have been
developed that either generalize or extend existing abstract domains (including
the predicate abstraction domain) to abstract domains that can express quanti-
fied properties [3,11,17,22,25]. However, none of these approaches can be easily
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integrated into existing software model checkers without major changes to the
underlying implementation or making the analysis less scalable.

A simpler approach towards verification of quantified assertions is due to
Flanagan and Qadeer [8] and based on ghost variables. A ghost variable is an
auxiliary program variable that is never modified by the program. It is only
used for the purpose of verification. The idea in [8] is to replace each quantified
variable in an assertion by a ghost variable. Thus, the ghost variables fix one
instantiation for each quantified variable throughout the whole execution of the
program. The transformed program can be analyzed using standard predicate
abstraction and the inferred inductive invariant is implicitly universally quanti-
fied. While this approach is strictly weaker than an approach based on quantified
abstract domains, it has shown to be suitable for verifying quantified array as-
sertions with vanilla predicate abstraction, i.e., where all predicates have been
provided by the user [8].

Problems arise when this approach is used together with automated abstrac-
tion refinement. Standard techniques for extracting predicates from spurious
counterexamples such as (weakest) preconditions [1, 6] and interpolants [12] are
insufficient. The reason is that these techniques do not infer predicates that allow
the analysis to perform the necessary widening, i.e., to compute an invariant that
states properties of unbounded intervals in the array. Therefore, the refinement
loop often diverges, establishing the invariant, one by one, for all the individual
entries in the unbounded intervals.

We adapt an existing abstraction refinement method to handle universally
quantified assertions over arrays. Our technique is based on the idea of using
ghost variables to eliminate universal quantifiers in assertions, but overcomes
the limitation of standard abstraction refinement techniques described above.
The technique is tailored towards assertions that quantify over index variables
of arrays. It uses a theorem prover to derive consequences from spurious error
paths. These consequences determine entries in the array that violate the target
property. From these consequences our technique derives predicates that describe
unbounded intervals in the array. These predicates enable the analysis to perform
the necessary widening that results in a sufficiently strong inductive invariant.

Despite its simplicity our technique is surprisingly effective. We have imple-
mented our technique in the ACSAR software model checker [24]. Using our
implementation we successfully verified quantified array assertions for both text
book examples such as sorting algorithms and real-life examples taken from the
Linux operating system kernel and the Xen hypervisor.

2 Related Work

There have been various attempts to account for the verification of quantified
properties including approaches based on predicate abstraction [8, 14, 17], first-
order theorem provers [15,20], templates [3,11,25], and shape analysis [9,22]. Our
approach is able to handle all array related examples that have been analyzed
in [3, 8, 9, 11, 14, 17, 20]. Some of the examples in [15, 25] involve properties with



alternating universal and existential quantifiers such as permutation of arrays.
These properties are outside the scope of our approach. In the following, we
make a more detailed comparison.

Range predicates [14] describe properties of unbounded array segments which
enables the verification of universally quantified array assertions using predicate
abstraction with abstraction refinement. In the refinement phase, an axiom-
based algorithm is applied to infer new range predicates as Craig interpolants
for the spurious counterexample. Range predicates refer to an implicitly quan-
tified variable that ranges over array indices. However, this approach does not
handle properties that require quantification over more than one variable, such
as properties of multidimensional arrays. Our approach does not have these re-
strictions.

Lahiri and Bryant proposed an extension of predicate abstraction to infer uni-
versally quantified invariants [17]. Their technique is based on index predicates
which are predicates that contain free index variables. These index variables are
implicitly universally quantified at each program location. Heuristics for infer-
ring index predicates based on counterexample-guided abstraction refinement
are described in [18]. This approach is more general than an approach based on
ghost variables because the index variables occuring in the computed invariant
are quantified per program location rather than globally for the entire program.
However, the computation of abstract transformers is more involved than in
classical predicate abstraction and requires theorem provers that can effectively
deal with quantified formulas.

Several template-based techniques for generation of quantified invariants have
been developed recently [3, 11, 25]. The common idea behind these approaches
is that the user provides templates that fix the structure of potential invariants.
The analysis then searches for an invariant that instantiates the template param-
eters. These techniques can handle more complex properties than our approach.
In particular, Srivastava and Gulwani [25] have used their approach to verify
properties of arrays with alternating quantifiers. On the other hand, techniques
that can effectively compute these templates and thus provide the same degree
of automation as predicate abstraction refinement have not yet been developed.

Another interesting direction is the recent deployment of resolution-based
first-order theorem provers for inferring quantified invariants over arrays. Ex-
isting approaches include [20] and [15]. McMillan’s approach is based on the
computation of quantified interpolants. The idea in [15] is to generate a set of
clauses from quantified formulas that encode changes to arrays in the analyzed
program, saturate the set under resolution, and then mine the saturated set for
interesting quantified invariants. Currently these approaches are still limited due
to the missing inbuilt support for arithmetic theories in the underlying theorem
provers.

Abstract domains that are used in shape analyses such as in three-valued
shape analysis [23] and Boolean heaps [22] can express quantified properties
of unbounded data structures (namely, shape analysis constraints [16,26] in the
case of [23] and their universal fragment in the case of [22]). In particular, Gopan



et al. [9] have used three-valued shape analysis to verify properties of arrays.
However, the abstract domains in these shape analyses are exponentially more
succinct than the one used in predicate abstraction [19]. While this additional
precision is needed for the analysis of programs manipulating linked data struc-
tures, our experience shows that it is not necessarily required for the verification
of array related properties.

3 Experimental Results

Our work gives a positive answer to the question whether existing software model
checking technology can be adapted to effectively verify quantified assertions over
arrays and whether such an approach works well in practice. The most important
contribution of our work are the experimental results confirming this answer. We
start by presenting these results.

Implementation. We integrated our technique into the ACSAR software model
checker [24]. The system implements a backward reachability analysis based on
predicate abstraction refinement with lazy abstraction [13]. The implementa-
tion is done in C++. We performed tests using an X41 Thinkpad laptop with
1 GB of RAM and a 1.6 GHz CPU, running Linux. ACSAR uses the Yices
theorem prover [7] for computing the abstraction and analyzing spurious coun-
terexamples. The communication with Yices is performed through its API Lite.
The input to ACSAR is a C program annotated with assertions to be verified.
The output is either an invariant that implies the correctness of the annotated
assertions or a counterexample trace.

Experiments. The results of our experiments are illustrated in Table 1. The
column “Property” contains an informal description of the universally quantified
assertion that we verified. Column “Iter” refers to the number of refinement steps
performed until a safe invariant is computed. Finally, column “Pred” refers to
the number of inferred predicates. Our tool is based on lazy abstraction [13], we
therefore provide the average number of predicates per location instead of the
total number of predicates. The size of examples varies from 10 to 200 lines of
code. Although scalability is an important issue, the decisive factor here is the
complexity of the property of interest.

Out of all examples, only find, cyber init, perfect copy info, do enoprof op and
selection sort take more than 4 seconds verification time. The time includes all
verification phases (parsing, theorem prover requests, etc.). The checked asser-
tion for cyber init is a conjunction of four assertions. The average time for check-
ing each individual assertion is less than 4 seconds.

We divide our tests into two classes. The first class concerns academic exam-
ples taken from literature, their names appear without superscript. The example
find was proposed by Qadeer and Flanagan [8]. Our tool automatically proves
the postcondition specified in their paper. The example array init is a simple
array initialization program which is considered in most papers on array verifi-
cation [3, 11, 14]. Programs num index and part init were proposed by Gopan et



al. [9]. The first one illustrates numeric constraints on the value of array ele-
ments. The second one aims to show the handling of multiple arrays as well as
partial array initialization. Finally, partition was proposed by Henzinger et al [4].
It partitions a given array into two arrays a and b by copying the positive array
entries into a and negative ones into b.

The second class of examples covers typical uses of arrays in real world system
code. The programs are code fragments taken from the Linux kernel and driver
code as well as the Xen hypervisor3 code.

Selection sort. The most challenging benchmark that we considered is the
selection sort example. We refer to Section 4.2, for the source code and a detailed
description of this example. We verified that upon termination the array a is
sorted in ascending order. The sortedness property was stated in the form

∀x, y ∈ [0, n− 1]. x < y ⇒ a[x] ≤ a[y]

ACSAR successfully verifies this property. The verification time is significantly
larger than in our remaining benchmarks (∼7 minutes). Inspection of the gen-
erated predicates revealed that the refinement loop generates many redundant
predicates. We therefore believe that the verification time can be significantly
reduced by implementing certain redundancy checks.

4 Examples

We now explain our approach and discuss two of the examples from the previous
section in more detail: array initialization and selection sort. The first example
illustrates the basic idea of our approach. The second example shows that it also
works for challenging examples.

4.1 Array Initialization

Our first example is the simple procedure array init shown in Figure 1. The
procedure takes two arguments, an integer array a and an integer n denoting the
length of a. The procedure initializes all entries of a to 0. We prove the assertion
stating that after termination of the loop all array entries are indeed properly
initialized. We use standard notation and formally represent programs in terms
of transition constraints over primed and unprimed program variables. Figure 2
shows the corresponding transition constraints for procedure array init. The
program counter is modeled explicitly using the variable pc that ranges over
control locations (ℓ0 stands for the initial location and ℓE for the error loca-
tion). Array a is represented by an uninterpreted function symbol. The notation
a[x := e] stands for a function update. The set of initial states of the program is
described by the formula pc = ℓ0 and the set of error locations by the formula
pc = ℓE.

3 A hypervisor is a software that permits hardware virtualization. It allows multiple
operating systems to run in parallel on a computer. The Xen hypervisor is available
at http://www.xen.org/



Program Property Iter. Pred. Time (s)

string copy 0 terminal string s1 2 4 0.63
is copied to s2

scan array entries before 3 3 0.54
actual entry are not null

array init array entries are initialized 3 6 0.83

loop1 each array entry is 3 5 0.71
initialized with its index

copy1 array a is copied to array b 2 6 0.84

partition array a contains positive entries and 8 7 1.94
array b contains negative ones

num index for every array entry i of array a 2 6 0.89
we have a[i] = 2 ∗ i+ 3

part init all array entries are initialized 5 9 3.17
to values between 0 and n− 1

find every array entry whose index is less 8 13 8.81
than the returned value contains false

insertion sort entry a[j] is less or equal than 2 14 2.45
(inner loop) all entries of the segment a[j . . . i]

selection sort array is sorted 3 39 409.87

cyber init∗ for every i, if i modulo 4 is equal to 8 13 10.36
0, 1, 2 or 3 then a[i] is initialized

to v0, v1, v2 or v3 respectively

i2o device parse lct∗ entries preceding the actual entry 5 4 1.64
are different from a given value

ixj pad fsk∗ after the execution of 2 loops 6 7 1.53
entries in a given range are initialized

ixj daa cid read∗ all entries with odd index are equal to v1 5 14 3.81
all entries with even index are equal to v2

snd atiixp mixer new∗ entries having property p 3 4 1.25
in their pre-state are set to NULL

dvb net feed stop∗ entries different from 0 in 3 7 3.41
their pre-state are set to 0

perfc copy info∗∗ for each entry i of array a 4 12 10.57
if a[i] has some property

then b[i] and c[i] should be equal

do enoprof op∗∗ if variable op has value v1 26 3 34.17
and variable s has value v2

then array a is copied to array b

Table 1. Experimental results for academic and industrial examples. The upper half
of the table refers to examples taken from literature. The lower half refers to examples
taken from system code. Examples marked with superscript ∗ are from the Linux kernel
and driver code. Examples marked with ∗∗ are taken from the Xen hypervisor code.



void array init (int a[], int n)
{
int i;

ℓ0:
ℓ1: for(i = 0; i < n; ++i)

{
a[i] = 0;

}

ℓ2: assert(∀ x. x ≥ 0 ∧ x < n ⇒ a[x] = 0);
}

Fig. 1. Array initialization

τ0 : pc = ℓ0 ∧ pc
′ = ℓ1 ∧ a

′ = a ∧ i′ = 0 ∧ k′ = k

τ1 : pc = ℓ1 ∧ i < n ∧ pc
′ = ℓ1 ∧ a

′ = a[i := 0] ∧ i′ = i+ 1 ∧ k′ = k

τ2 : pc = ℓ1 ∧ i ≥ n ∧ pc
′ = ℓ2 ∧ a

′ = a ∧ i′ = i ∧ k′ = k

τ3 : pc = ℓ2 ∧ 0 ≤ k ∧ k < n ∧ a(k) 6= 0 ∧ pc
′ = ℓE ∧ a′ = a ∧ i′ = i ∧ k′ = k

Fig. 2. Transition constraints for array initialization

Transition τ0 models the initialization of the loop counter in the for loop of
procedure array init, transition τ1 models the loop body, and τ2 the loop exit.
The assert statement is reflected by transition τ3 that goes from the loop exit
location ℓ2 to the error location ℓE . We use the idea from [8] and replace the
quantified variable x in the original assertion by a ghost variable k. Our goal is
to prove that the program represented by the transition constraints is safe, i.e.,
that no error state is reachable from an initial state by consecutive execution
of the transitions represented by the transition constraints. If no error state is
reachable then the assertion in procedure array init is never violated.

Our algorithm performs a backward reachability analysis starting from the
error states and computes an inductive backward invariant, i.e., an overapprox-
imation of the set of states that are backward-reachable from an error state. If
the computed invariant is disjoint from the initial states then the program is
safe. An inductive backward invariant for the array initialization program that
is disjoint from the initial states is given by the following formula ϕ:

ϕ
def

= pc 6= ℓ0 ∧ (pc = ℓ1 ⇒ 0 ≤ k ∧ k < n ∧ a(k) 6= 0 ∧ k < i)

Note that due to the fact that ϕ is a backward invariant the ghost variable k is
implicitly existentially quantified. Our analysis is based on predicate abstraction
with counterexample guided abstraction refinement. Thus, if the refinement loop
is able to infer predicates whose Boolean combination can express ϕ then the
backward analysis will construct a sufficiently strong invariant.



The basis of our refinement procedure is a predicate extraction function that
syntactically extracts predicates from preconditions that are computed from spu-
rious error paths. For instance, if we start with an empty set of predicates
then the first iteration of the refinement process that goes through the pro-
gram loop produces the spurious error path τ0; τ1; τ2; τ3. It then extracts all
atomic subformulas from the precondition of the feasible part of the error path:
pre(τ1; τ2; τ3, pc = ℓE). This formula is given by

pc = ℓ1 ∧ 0 ≤ k ∧ k < n ∧ a[i := 0](k) 6= 0 ∧ i < n ∧ i+ 1 ≥ n (1)

Note that function updates such as a[x := 0] can be eliminated via case splits. If
we only extracted atomic formulas from preconditions then the analysis would
unroll the loop in procedure array init and enumerate all predicates that occur
in preconditions of the form

pre((τ1)
+; τ2; τ3, pc = ℓE)

but never infer the predicate k < i. The refinement would fail to perform the
necessary widening that ensures termination of the analysis. We developed a
simple technique that realizes this kind of widening.

First, our technique extracts all ghost variables and index expressions that
occur as indices of arrays in the precondition (1) of the counterexample path.
Then it determines all disjunctions of inequalities si 6= ti over pairs (si, ti) of
index expressions that are consequences of the formula (1). The individual dis-
juncts si 6= ti of such consequences are then split into inequalities si < ti, si > ti
and added as additional abstraction predicates. The intuition behind this tech-
nique is that the considered disequalities determine the boundaries of intervals in
the array that violate the target property. Splitting the disequality into inequal-
ities allows the analysis to perform the necessary widening to infer a sufficiently
strong invariant.

In our example the only candidate disequality is given by k 6= i which is
indeed a consequence of the formula (1). We therefore add the inequalities k < i
and k > i to the set of abstraction predicates which ensures that the refinement
loop terminates.

4.2 Selection Sort

Our second example is the procedure selection sort shown in Figure 3. This
example is more challenging because it has the so-called write-many property,
i.e., an array entry can be updated more than once. We show that upon termi-
nation of the outer loop, all elements of array a are sorted in ascending order.

The set of transition constraints encoding procedure selection sort is given
in Figure 4. Constraints τ0 models the initialization of the outer for loop, τ1
models the statement before location ℓ2 and the initialization of the inner for
loop, τ2 and τ3 model the body of the inner loop, τ4 the exit of the inner loop and
the remaining body of the outer loop, and τ5 the exit of the outer loop. The assert
statement checking the sortedness property in the original program is model by



void selection sort (int a[], int n)
{
int i, j, s;

ℓ0:
ℓ1: for(i = 0; i < n; ++i)

{
s = i;

ℓ2: for(j = i+1; j < n; ++j)
{

if(a[j] < a[s])
{

s = j;
}

}
t = a[i];
a[i] = a[s];
a[s] = t;

}

ℓ3: assert(∀ x y. 0 ≤ x < n ∧ 0 ≤ y < n ∧ x < y ⇒ a[x] ≤ a[y]);
}

Fig. 3. Selection sort

τ0 : pc = ℓ0 ∧ pc
′ = ℓ1 ∧ i

′ = 0 ∧ j′ = j ∧ s′ = s ∧ k′ = k

τ1 : pc = ℓ1 ∧ i < n ∧ pc
′ = ℓ2 ∧ s

′ = i ∧ j′ = i+ 1 ∧ i′ = i ∧ k′ = k

τ2 : pc = ℓ2 ∧ j < n ∧ a(j) ≥ a(s) ∧ pc
′ = ℓ2 ∧ a′ = a ∧ i′ = i ∧ j′ = j + 1 ∧ s′ = s ∧ k′ = k

τ3 : pc = ℓ2 ∧ j < n ∧ a(j) < a(s) ∧ pc
′ = ℓ2 ∧ a′ = a ∧ i′ = i ∧ j′ = j + 1 ∧ s′ = j ∧ k′ = k

τ4 : pc = ℓ2 ∧ j ≥ n ∧ pc
′ = ℓ1 ∧ a′ = a[i := a(s), s := a(i)] ∧ i′ = i+ 1 ∧ k′ = k

τ5 : pc = ℓ1 ∧ i ≥ n ∧ pc
′ = ℓ3 ∧ a

′ = a ∧ k′ = k

τ6 : pc = ℓ3 ∧ 0 ≤ k < n ∧ 0 ≤ l < n ∧ l < k ∧ a(k) < a(l) ∧ pc
′ = ℓE ∧ a′ = a ∧ k′ = k

Fig. 4. Transition constraints for selection sort

τ6. We introduce the two ghost variables k and l for the universally quantified
variables x and y in the original assertion. The following formula shows one of
the disjuncts of a safe inductive backward invariant. The shown disjunct covers
all backward-reachable states at program location ℓ1, i.e., the loop cut point of
the outer loop in procedure selection sort:

pc = ℓ1 ∧ 0 ≤ l ∧ l < i ∧ l < k ∧ k < n ∧ a(k) < a(l)



We sketch how the analysis infers the predicate l < i. After several iterations
our analysis returns the spurious counterexample τ0;π where

π
def

= τ1; τ2; τ4; τ1; τ4; τ5; τ6

Again we extract atomic predicates from the preconditions of the error path
and infer additional predicates by checking disequalities that are implied by
preconditions of the feasible part of the counterexample. For instance, consider
the precondition pre(π, pc = ℓE) which is given by

0 ≤ k < n ∧ 0 ≤ l < n ∧ l < k ∧ i+ 1 < n ∧ a(i) ≤ a(i+ 1) ∧
n ≤ i+ 2 ∧ a[i := a(i), i := a(i)](k) < a[i := a(i), i := a(i)](l)

(2)

Note that the updated function a[i := a(i), i := a(i)] is equal to a. Furthermore,
it is easy to see that the implication

k = i+ 1 ∧ l = i ⇒ a(i) > a(i+ 1) ∨ a(k) ≥ a(l)

is valid. Thus, by contraposition (2) implies the disjunction of inequalities

k 6= i+ 1 ∨ l 6= i

From this disjunction we extract the predicates

l < i, l > i, i+ 1 > k, and i+ 1 < k .

5 Predicate Abstraction Refinement

In this section, we describe the by now classical setting of predicate abstraction
refinement. The method is parameterized by the procedure extract that takes
a formula and returns a set of predicates. We use a minimal notational setting
(following, e.g., [1]) and ignore details (in particular, the concrete programming
language and the use of concrete counterexamples for refinement). These details
are irrelevant for our main purpose, which is to introduce the specific procedure
extract used in our analysis of array programs (in the next section). Everything
in this setting is standard up to the syntax of the formulas that we use to denote
sets of states, in the concrete as well as in the abstract domain.

Concrete domain of formulas. We assume a (generally infinite) set of quanti-
fier-free formulas which we call base formulas. We represent an (in general infi-
nite) set of states by a first-order formula ϕ built up from such base formulas.
In our setting, ϕ is of the form

ϕ ≡
∨

i∈I

∧

j∈Ji

ϕij (3)

where the ϕij ’s are base formulas.
We assume a partial order on formulas ϕ′ ≤ ϕ. The partial order is usually

a sound but possibly incomplete implementation (by a theorem prover) of the
test of validity of implication.



Pre. A program is a set P of statements st. For the purpose of the formal
presentation, we assume that a statement comes as a transition constraint

st ≡ ψ ∧ x′1 = e1 ∧ . . . ∧ x
′
m = em

where x1, x2, . . . , xm are variables (including a program counter pc); as usual,
the variable x′ stands for the value of x in the successor state. The guard ψ
is a conjunction of base formulas. The update formula comes as a conjunction
of logical equalities between primed variables and expressions over unprimed
variables.

For a statement st, the application of the operator prest on a formula ϕ
returns a formula representing the set of all predecessor states of ϕ under the
statement st. The definition extends canonically to a sequence of statements.
For a statement st as above, the application of the operator prest to the formula
ϕ is implemented by the projection (on unprimed variables) of the conjunction
the transition constraint with the renaming of ϕ (from unprimed to primed
variables). The operator pre for a program (a set of statements) is simply the
disjunction of the prest over all statements.

prest(ϕ) ≡ ∃x′1 . . . ∃x
′
m(ϕ[x′1/x1, . . . , x

′
m/xm] ∧ ψ ∧ x′1 = e1 ∧ . . . ∧ x

′
m = em)

pre(ϕ) ≡
∨

st∈P prec(ϕ)

Invariants. In order to specify correctness, we fix formulas nonInit and unsafe

denoting the complement of the set of initial and safe states, respectively. We
define the given program to be correct if no unsafe state is reachable from an
initial state. In our setting, nonInit is quantifier-free (but unsafe is not).

The correctness can be proven by showing the condition below. Here, lfp(pre, ϕ)
stands for the least fixpoint of the operator pre above ϕ.

lfp(pre, unsafe) ≤ nonInit

A backward invariant is an invariant that is inductive under pre and implies
nonInit, i.e. a formula ψ such that

– unsafe ≤ ψ,
– pre(ψ) ≤ ψ,
– ψ ≤ nonInit.

Predicate abstraction. A possible approach to establish correctness is to find
an upper abstraction pre# of the operator pre (i.e. where pre(ϕ) ≤ pre#(ϕ)
holds for all formulas ϕ) such that lfp(pre#, unsafe), the least fixpoint of pre#

above unsafe, can be computed and is contained in nonInit. Then, lfp(pre#, unsafe)
is a backward invariant because of the simple fact that pre#(ϕ) ≤ ϕ entails
pre(ϕ) ≤ ϕ. We use predicate abstraction with abstraction refinement to find
such an upper abstraction pre#.

The method generates a sequence of finite sets Pn of predicates over states
(for n = 0, 1, . . .). Since we identify a predicate with the base formula ϕ defining
it, we have that Pn is a finite subset of the given set of base formulas.



ϕ0 := unsafe

n := 0
loop

Pn := extract(ϕn)

construct abstract operator pre#
n

defined by Pn

ψ := lfp(pre#
n
, unsafe)

if (ψ ≤ nonInit) then

STOP with “Success”
ϕn+1 := ϕn ∨ pre(ϕn)
n := n+1

endloop

Fig. 5. Abstract fixpoint checking with iterative abstraction refinement, where extract

is a parameterized procedure that infers a finite set of predicates from a formula and
pre#

n
is a predicate abstraction of pre for the set of predicates Pn.

We write L(Pn) for the (finite!) sublattice of L that is generated by the set
of predicates Pn. We sometimes refer to conjunctions of predicates as ”abstract
states” (thus, abstract states are exactly the symbolic states in L(Pn)). We have
that L(Pn) contains unsafe, but generally L(Pn) is not closed with respect to
the operator pre. We define the operator pre#

n over L(Pn) as an abstraction of
pre.

The ‘best’ abstraction pre#
n of pre with respect to Pn is defined in terms of a

Galois connection,
pre#

n ≡ αn ◦ pre ◦ γ

where the composition f ◦ g of two functions f and g is defined from right to
left: f ◦ g(x) = f(g(x)). The abstraction function αn maps a formula ϕ to the
smallest formula ϕ′ in L(Pn) that is larger (wrt. “≤”) than ϕ, formally

αn(ϕ) ≡ µϕ′ ∈ L(Pn)⊑. ϕ ≤ ϕ′.

The meaning function γ is the identity.
The construction of the best abstraction is not practical. Hence, one uses a

weaker abstraction of pre and one defines pre#
n not as the function above but,

instead, as follows.

pre#
n (

∨

i∈I

∧

j∈Ji

ϕij) =
∨

i∈I

pre#
n (

∧

j∈Ji

ϕij)

and
pre#

n (
∧

j∈Ji

ϕij) =
∧

{p ∈ Pn | pre(
∧

j∈Ji

ϕij) ≤ p}.

Thus, the image of an abstract state (i.e., a conjunction of predicates) under
pre#

n yields the smallest abstract state above its image under pre.



We will have that P0 ⊂ P1 ⊂ . . . and hence L(P0) ⊂ L(P1) ⊂ . . . which
means an increasing precision of the abstraction αn for increasing n.

The iterative abstraction refinement method. The method in Figure 5 is
parameterized by the refinement procedure extract which takes a formula and
returns a finite set of base formulas (”the new predicates”). In each iteration,
the method

– constructs the abstract operator pre#
n defined by Pn,

– computes the abstract fixpoint lfp(pre#
n , start),

– generates a new set of predicates Pn+1

until the abstract proof succeeds, i.e., lfp(pre#
n , unsafe) ≤ nonInit for some n.

If the method terminates for some n, then lfp(pre#
n , unsafe) is a backward

invariant computed over a finite lattice.

6 Refinement for Arrays

The refinement scheme defined in Figure 5 is parameterized by the procedure
extract. This procedure takes a conjunction ϕ of base formulas and returns a set
of base formulas (which are then used to define a set of new predicates). In its
most basic version, the procedure extract0 returns the set of conjuncts.

extract0(ϕ1 ∧ . . . ∧ ϕn) = {ϕ1, . . . , ϕn}

The rationale for our extension of the procedure extract0 stems from a result
in [1]. This result formally evaluates the power of the refinement scheme with
the procedure extract0 above (the power as a proof method for program correct-
ness). The evaluation uses an idealized oracle-based proof method for compar-
ison. This method works by backward iteration of the (concrete) pre operator;
i.e., it starts with the formula unsafe and iteratively applies the operator pre. In
order to accelerate the convergence towards a fixpoint, it judiciously applies a
syntactic widening on the formula obtained. The syntactic widening applied to
a conjunction ϕ drops one or more of its conjuncts in ϕ (for example, applied
to the interval constraint 0 < x ∧ x < 1 it may result in 0 < x). It is the oracle
which judiciously chooses what conjuncts to drop and what conjuncts to keep.
The result in [1] states that the (realistic) refinement scheme with the proce-
dure extract0 achieves the same power as the idealized oracle-based method with
syntactic widening.

In our setting, with programs over arrays, the backward invariants used in
correctness proofs contain conjuncts that not syntactically appear in the iterates
of the backward iteration procedure. This means that the syntactic widening is
not sufficient (even in the idealized proof method above); we need to combine
it with a semantic analysis in order to obtain a greater choice for the possible
widening results. The semantic widening applied to a conjunction ϕ first satu-

rates the conjunction, i.e., adds redundant conjuncts (logical consequences of a



certain form), and then applies the syntactic widening to the resulting conjunc-
tion.

The saturation consists of adding each disjunction of strict inequalities be-
tween index variables xi and yi that is entailed (in the theory of linear arithmetic
with uninterpreted function symbols) by ϕ.

saturate(ϕ) = ϕ ∧
∧

{
∨

i∈I

xi < yi | ϕ |=
∨

i∈I

xi < yi}

If a disjunction of disequalities
∨

i∈I xi 6= yi is entailed by ϕ, as, for example, in

a[x] > a[y] ∧ a[z] > a[t] |= (x 6= y) ∨ (z 6= t) ∨ (x 6= t) ∨ (z 6= y)

then one obtains the corresponding entailed disjunction of inequalities by re-
placing each of the disequalities by the disjunction of the two corresponding
inequalities.

This leads us to define the predicate extraction procedure extract1 as the
composition of the saturation with the syntactic widening.

extract1(ϕ) = extract0(saturate(ϕ))

Our proof method is the instantiation of the refinement scheme of Figure 5
with the predicate extraction procedure extract1. By the above-mentioned result
in [1], this proof method has the same power as the idealized oracle-based method
with semantic widening. I.e., if the unrealistic oracle-based method succeeds in
proving a program correct, then so does our method.

Practical optimizations. A naive implementation of the procedure saturate,
which consists of enumerating all possible disjunctions of inequalities over all in-
dex expressions, requires exponentially many (in the number of occuring index
expressions) theorem prover queries. In practice we can impose a polynomial
bound by considering only disjunctions up to a fixed length. For further opti-
mization, we only consider inequalities between index expressions associated to
the same array (not blindly any pair of index expressions). In addition, we con-
struct the checked disjunctions incrementally starting from disjunctions of length
one and if a disjunction is entailed, do not consider any longer disjunction that
includes it.

7 Conclusion

We presented an abstraction refinement technique for verifying quantified as-
sertions over arrays that can be easily integrated into existing software model
checkers. Using this technique we were able to verify almost all array related
examples in the literature that have been verified using quantified abstract do-
mains. Furthermore, we were able to verify various real-life examples taken from
system code. Our results indicate that, at least for quantified assertions over
arrays, the use of sophisticated techniques for dealing with quantified asser-
tions can often be avoided if one instead carefully adapts existing techniques for
quantifier-free assertions by using domain specific knowledge.
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