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Abstract. A domain decomposition algorithm, similar to classical iterative substructuring al-
gorithms, is presented for two-dimensional problems in the space H0(curl; Ω). It is defined in terms
of a coarse space and local subspaces associated with individual edges of the subdomains into which
the domain of the problem has been subdivided. The algorithm differs from others in three basic
respects. First, it can be implemented in an algebraic manner that does not require access to indi-
vidual subdomain matrices or a coarse discretization of the domain; this is in contrast to algorithms
of the BDDC, FETI–DP, and classical two-level overlapping Schwarz families. Second, favorable
condition number bounds can be established over a broader range of subdomain material properties
than in previous studies. Third, we are able to develop theory for quite irregular subdomains and
bounds for the condition number of our preconditioned conjugate gradient algorithm, which depend
only on a few geometric parameters. The coarse space for the algorithm is based on simple energy
minimization concepts, and its dimension equals the number of subdomain edges. Numerical results
are presented which confirm the theory and demonstrate the usefulness of the algorithm for a variety
of mesh decompositions and distributions of material properties.
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1. Introduction. In this paper, we introduce and analyze a domain decompo-
sition algorithm for two-dimensional (2D) problems in the space H0(curl; Ω). The
core issues of the present study concern an energy-minimizing coarse space in two
dimensions for edge finite element approximations of the variational problem: Find
u ∈ H0(curl; Ω) such that

aΩ(u,v) = (f ,v)Ω ∀v ∈ H0(curl; Ω),

where

aΩ(u,v) :=

∫
Ω

[(α∇× u · ∇ × v) + (Bu · v)] dx, (f ,v)Ω =

∫
Ω

f · v dx.

This variational problem originates, for example, from implicit time integration of the
eddy current model of Maxwell’s equations [3, Chapter 8], where α is the reciprocal of
the magnetic permeability and B is proportional to the electrical conductivity divided
by the time step; we note that this is the same problem considered in, e.g., [2, 11, 29].
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ITERATIVE SUBSTRUCTURING FOR H(curl) IN 2D 1005

The norm of u ∈ H(curl; Ω), for a domain with diameter 1, is given by aΩ(u,u)
1/2

with α = 1 and B = I; the elements ofH0(curl) have vanishing tangential components
on ∂Ω. We could equally well consider cases where this boundary condition is imposed
only on one or several subdomain edges, which form part of ∂Ω and which are defined
in the beginning of the next section. Generally, α ≥ 0 and B is a 2 × 2 positive
definite symmetric matrix. We will assume that α is a constant αi ≥ 0 in each of the
subdomains Ωi. Likewise, we replace B by the scalar constant βi > 0 for each of the
Ωi. Our results could be presented in a form which accommodates properties which
are not constant or isotropic in each subdomain, but we avoid this generalization for
clarity.

Many theoretical studies on domain decomposition methods are carried out in
the Schwarz framework; cf. [26, subsection 2.2]. Let κ denote the condition number
of the additive Schwarz operator for some selection of spaces that define a particular
Schwarz algorithm. For αi and βi constant in each subdomain Ωi, the estimate

(1.1) κ ≤ Cmax
i

(1 +H2
i βi/αi)(1 + log(Hi/hi))

2

is given in [25] for an iterative substructuring method in two dimensions with a coarse
space based on standard coarse triangular edge finite elements. Here, and in what
follows, C is a constant independent of the number of subdomains and the mesh size.
Closely related results appear in [27] for Neumann–Neumann methods, in [23] and
[21] for a one-level FETI method, and in [24] for a FETI-DP method. The estimate
in (1.1) is clearly unfavorable for large values of H2

i βi/αi; we will refer to this case as
mass-dominated, while in a curl-dominated case this factor is bounded from above. A
factor of H2

i βi/αi also appears in condition number estimates for more recent results
on a FETI-DP algorithm in three dimensions [29].

We avoid this factor in the present analysis by using a nonstandard coarse space
based on energy minimization concepts rather than one based on conventional edge
finite elements. We note that we have also studied energy-minimizing coarse spaces
recently for almost incompressible elasticity problems in [7, 8].

The estimate

κ ≤ C(1 + log(H/h))3

appears in [13] for a three-dimensional (3D) iterative substructuring method. The
authors were unable to conclude whether this condition number bound is independent
of jumps in coefficients between subdomains. In addition, the coarse space dimension
is relatively large, being proportional to the number of fine edges which comprise all
subdomain edges.

The estimate

(1.2) κ ≤ C(1 + (H/δ))2

is given in [28] for an overlapping Schwarz algorithm in three dimensions. In (1.2),
H/δ is the largest ratio of subdomain diameter to overlap length parameter for all
subdomains. The coarse space in [28] consists of standard edge finite element func-
tions for coarse tetrahedral elements. For purposes of analysis, the domain was
assumed convex and constant material properties were considered. In comparison,
our theory allows for a much broader range of material properties and subdomain
geometries.
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1006 CLARK R. DOHRMANN AND OLOF B. WIDLUND

We are unaware of any existing domain decomposition theory for problems, posed
in H(curl; Ω), in either two or three dimensions, that gives a favorable condition num-
ber bound independent of all possible jumps in material properties between subdo-
mains. Moreover, current domain decomposition theory for this class of problems is
restricted to regular-shaped subdomains. We address both these issues for 2D prob-
lems in this study. This work builds on earlier work for regular elliptic problems and
linear elasticity; see [6, 16, 7]. Our algorithms are well defined and straightforward to
implement in all cases and we are able to obtain results for quite general subdomains
which do not even need to be uniformly Lipschitz. Moreover, we have also observed
in numerical experiments that the performance of the algorithm is not diminished
significantly in many cases when mesh partitioning tools are used for the decomposi-
tion. Earlier numerical results for an overlapping Schwarz method based on a closely
related coarse space appear in [5]. See also [20, 17], two Ph.D. dissertations in which
similar algorithms are developed for Reissner–Mindlin plate models and for problems
in H(div).

The organization of the paper is as follows. To begin, the coarse space for our
algorithm and notation are introduced in section 2. Supporting technical tools for
the analysis are then provided in section 3; the long proof of Lemma 3.5 appears
in an appendix at the end of the paper. Analyses of the coarse interpolant and
local decomposition appear in sections 4 and 5. Our algorithm, its analysis, and
some implementation details are presented in section 6, while numerical results, which
confirm the theory and demonstrate the utility of the algorithm, are given in section 7.

2. A coarse space and notation. We assume that the domain Ω is decomposed
into N nonoverlapping subdomains Ω1, . . . ,ΩN , each the union of elements of the
triangulation of Ω. Each Ωi is simply connected and has a connected boundary ∂Ωi.
Then, the kernel of the curl operator in H0(curl,Ωi) is ∇H0(grad,Ωi) and that of
H(curl,Ωi) is ∇H(grad,Ωi), etc.; see, e.g., [12]. The subdomain boundaries can be
quite irregular; see Assumption 1 and Definition 3.1. We denote by Hi := diameter
(Ωi). The interface of the domain decomposition is given by

Γ :=

(
N⋃
i=1

∂Ωi

)
\∂Ω

and the contribution to Γ from ∂Ωi by Γi := ∂Ωi\∂Ω. These sets are unions of
subdomain edges and vertices. The subdomain edge E ij , common to Ωi and Ωj , is
typically defined as ∂Ωi ∩∂Ωj excluding the two subdomain vertices at its endpoints.
We note that the intersection of the two subdomain boundaries might have several
components. In such a case, each component will be regarded as an edge; this will
not cause any extra complications.

We assume a shape-regular triangulation Thi of each Ωi with nodes matching
across the interfaces. The smallest element diameter of Thi is denoted by hi and
the smallest angle in the triangulation Thi of Ωi is bounded from below by a mesh
independent constant.

Associated with the triangulation Thi are the two finite element spaces Whi

grad ⊂
H(grad,Ωi) and Whi

curl ⊂ H(curl,Ωi) based on continuous, piecewise linear, triangular
nodal elements and linear, triangular edge (Nédeléc) elements, respectively. We could
equally well develop our algorithm and theory for low order quadrilateral elements.

The energy of a vector function u ∈ H(curl,Ωi) for subdomain Ωi is defined as

(2.1) Ei(u) := αi(∇× u,∇× u)Ωi + βi(u,u)Ωi ,
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ITERATIVE SUBSTRUCTURING FOR H(curl) IN 2D 1007

where αi and βi are assumed constant in Ωi. The unit tangent vector for Γi, directed
in a counterclockwise sense, is denoted by ti and we define the tangential component
of u on ∂Ωi as

ut := u · ti.

We will often consider elements in Whi

curl which are the minimal energy extension for
boundary data of this kind.

Let dE denote a unit vector in the direction from one endpoint of a subdomain
edge E to the other with the same sense of direction as ti. The distance between these
two endpoints is denoted by dE . Thus, dEdE is the vector from one endpoint to the
other.

The set SE of all subdomain edges is defined as

SE := {E ij : i < j and E ij 	= ∅}.

The set SEi is the subset of subdomain edges, which belong to Γi. When there is
a need to uniquely define the tangential direction, e.g., in the definition of the coarse
basis functions cE , we will select the direction given for the relevant subdomain with
the smaller index.

The coarse basis function cE for E ∈ SE is defined such that its tangential com-
ponent vanishes on Γ∪ ∂Ω except on E , where cE · ti = dE · ti. We note that if E is a
straight edge, then dE = ti, so that cE ·ti = 1. The coarse basis function cE is obtained
by the energy minimizing extension of the tangential data cE · ti into the interior of
the two subdomains sharing E . Thus, the construction of a coarse basis function
requires the solution of a Dirichlet problem with inhomogeneous boundary data for
each of the two subdomains that share the edge. We note that if all the subdomains
are triangular, then the coarse basis functions could be the standard Nédeléc basis
functions for the coarse triangulation. However, to succeed in the mass-dominated
case, we should instead use functions that provide minimum energy extensions of the
values on the interface.

Our coarse interpolant of u for our iterative substructuring algorithm (as well as
for an overlapping Schwarz algorithm) can be defined as

(2.2) u0 :=
∑
E∈SE

ūEcE , where ūE := (1/dE)
∫
E
ut ds.

LetNhi
e ∈ Whi

curl and thi
e denote the finite element shape function and unit tangent

vector, respectively, for an edge e of the finite element mesh Thi . We assume that
Nhi

e is scaled such that Nhi
e · thi

e = 1 along e. The edge finite element interpolant of
a sufficiently smooth vector function u ∈ H(curl,Ωi) is then defined as

(2.3) Πhi(u) :=
∑

e∈Mhi

uhi
e Nhi

e , uhi
e := (1/|e|)

∫
e

u · thi
e ds,

where Mhi is the set of edges of Ω̄i, the closure of Ωi, and |e| is the length of e.
The nodal finite element interpolant of a sufficiently smooth p ∈ H(grad,Ωi) is

defined as

(2.4) Ihi(p) :=
∑

v∈Nhi

p(v)φv,
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1008 CLARK R. DOHRMANN AND OLOF B. WIDLUND

where N hi is the set of nodes of Thi , p(v) is the value of p at node v, and φv ∈ Whi

grad

is the shape function for node v. A coarse interpolant of p will be introduced in
Definition 3.7 and further considered in Lemma 3.8.

3. Technical tools. The auxiliary results presented in this section will be used
in the proof of our main result, Theorem 6.1.

3.1. Uniform subdomains. Our results apply to subdomains that are uniform.
According to Jones [14], these domains form the largest family for which a bounded
extension of H(grad,Ωi) to H(grad,R2) is possible; we note that they are also known
as (ε, δ)-domains. We also note that a uniform domain need not have a uniformly
Lipschitz continuous boundary. Thus, snowflake domains, as in [6, Figures 5.1 and
5.3] and [16, Figures 5.3 and 5.4], with fractal boundaries are in this class.

Definition 3.1 (uniform domain). A bounded domain Ω ⊂ R
n is uniform if

there exists a constant CU (Ω) > 0 such that for any pair x, y of points in the closure
of Ω, there is a curve γ(t) : [0, 
] → Ω, parametrized by arc length, such that γ(0) = x,
γ(
) = y,


 ≤ CU (Ω)|x− y|, and(3.1)

min(|γ(t)− x|, |γ(t)− y|) ≤ CU (Ω) · dist(γ(t), ∂Ω).(3.2)

Remark 1. There are several alternative and equivalent definitions. Thus, the
left-hand side of (3.2) can be replaced by

min
t
(t, 
− t) or by

|γ(t)− x||γ(t)− y|
|x− y| .

Remark 2. For a rectangular domain of width L1 and height L2, one can show
that CU is no less than L1/L2. Thus, the constants in our estimates can be large
when one or more of the subdomains has a large aspect ratio.

Any good result on the convergence of a domain decomposition algorithm with
two or more levels requires the use of the following.

Lemma 3.2 (Poincaré’s inequality). Consider a domain Ω ⊂ R
2. Then,

‖u− ūΩ‖2L2(Ω) ≤ (γ(Ω, 2))2|Ω|‖∇u‖2L2(Ω) ∀u ∈ H(grad,Ω).

This is [6, Lemma 2.2]. Here ūΩ is the average of the scalar function u over Ω, and
γ(Ω, 2) a parameter in an isoperimetric inequality as in [18]; cf. also [6, Lemma 2.1],
a paper with further references to the literature. Since any simply connected uniform
domain is a John domain and according to [4] any John domain in the plane has a
finite γ(Ω, 2), we can use Poincaré’s inequality for any uniform domain.

Assumption 1. The subdomains Ωi are all uniform domains and their uniformity
constants CU (Ωi) are uniformly bounded from above by a mesh independent constant
CU .

Definition 3.3. Let a and b denote the two endpoints of an edge E = E ij ∈ SEi .
The region RE is defined as the open set with boundary

∂RE = γab ∪ E ,

where γab is the curve γ in Definition 3.1 for Ωi with x = a and y = b.
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ITERATIVE SUBSTRUCTURING FOR H(curl) IN 2D 1009

a b

E

γab

γ̃ab

Ωi

Ωj

Fig. 3.1. Figure showing geometry of an edge E = Eij . The distance between the edge endpoints
a and b is denoted by dE .

Lemma 3.4. For the region RE in Definition 3.3, it holds that

|RE | ≤ (C2
U/π)d

2
E ,(3.3)

diam(RE) ≤ (2CU − 1)dE ,(3.4)

where |RE | is the area of RE and dE is the distance between the endpoints a and b of
the edge E .

Proof. Let γ̃ab denote the curve γ of Definition 3.1 for Ωj , the other subdomain
which has the edge E in common with Ωi, with x = a and y = b. Since both Ωi and
Ωj are uniform domains, the arc lengths of γab and γ̃ab are bounded by CUdE .

With reference to Figure 3.1, we now define the region R̃E as the open set with
boundary

∂R̃E = γab ∪ γ̃ab

and note that the length of the perimeter of R̃E does not exceed 2CUdE . Since a
circle maximizes area for a given perimeter, it follows that |R̃E | ≤ C2

Ud
2
E/π. The

bound in (3.3) then follows directly since RE ⊂ R̃E . The bound in (3.4) also follows
from simple geometrical considerations since RE can always be circumscribed by a
circle of diameter no greater than (2CU − 1)dE .

The proof of the next lemma is quite long and we have therefore chosen to move
it to an appendix at the end of this paper.

Lemma 3.5. Given a uniform subdomain Ωi and a connected subset E ⊂ ∂Ωi,
there exists a uniform domain R̂E , which is a union of finite elements of Ωi, such that
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1010 CLARK R. DOHRMANN AND OLOF B. WIDLUND

RE ⊂ R̂E , ∂R̂E ∩ ∂Ωi = E , and

|R̂E | ≤ Cd2E ,(3.5)

diam(R̂E) ≤ CdE .(3.6)

3.2. Estimates for coarse space functions. We note that estimates closely
related to those of the next lemma are presented in [6] and, in particular, in [16,
Lemma 4.4] for the more general class of John domains. The motivation for consider-
ing uniform domains rather than John domains in this paper stems from the need to
have a factor of d2E rather than H2

i in (3.8) in an estimate of the L2-norm of certain
edge functions. This is motivated by the need to prove the existence of low energy
coarse interpolants for mass-dominated cases. The new proof is quite different and,
we believe, of independent interest. We will now rely on the fact that the curve γab
satisfies the conditions of Definition 3.1.

Lemma 3.6. Let E ∈ SEi with endpoints a and b. There exists an edge function
ϑE ∈ Whi

grad equal to 1 at all nodes of E and vanishing at all other nodes on ∂Ωi such
that

(∇ϑE ,∇ϑE )Ωi ≤ C(1 + log(dE/hi)),(3.7)

(ϑE , ϑE)Ωi ≤ Cd2E .(3.8)

Proof. We first rename the edge E =: E1 and introduce the additional notation
E2 := γab := ∂RE \ E . We next define for x ∈ RE

(3.9) ϑ̃E(x) :=
1/d1(x)

1/d1(x) + 1/d2(x)
,

where di(x) is the distance of x to the edge Ei, i = 1, 2. We then extend ϑ̃E by 0 for
x ∈ Ωi \RE .

This formula provides the correct boundary values at all interior nodes of E1 and
at all interior points of E2. At the endpoints of the edges, i.e., at a and b, where ϑ̃E
is not well defined by (3.9), we set the value of this function to 0 at those two points.
We note that the contribution of any element, with a or b as a vertex, to the energy of
the finite element interpolant ϑE := Ihi (ϑ̃E) will be bounded since all its nodal values
are between 0 and 1. Its gradient can therefore be bounded by the inverse of the local
mesh size.

We note that in our final estimate, we can use an estimate of the maximum of
|∇ϑ̃E | over individual elements since the same estimate also holds for its piecewise
linear interpolant ϑE .

We now focus on the contributions of all the elements of the domain, which are
not next to the two subdomain vertices and thus are at a distance exceeding chi, c > 0,
from a and b. We denote this domain by R′

E .
We easily find that

∇ϑ̃E(x) =
−d2(x)∇d1(x) + d1(x)∇d2(x)

(d1(x) + d2(x))2
.

Since |∇di(x)| ≤ 1, we obtain

|∇ϑ̃E (x)| ≤
1

d1(x) + d2(x)
.
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ITERATIVE SUBSTRUCTURING FOR H(curl) IN 2D 1011

Since the domain is uniform, we can bound d1(x)+ d2(x) from below by cr(x), where
r(x) is the minimal distance of x to a and b and c > 0 a constant. We can prove
this by considering x1 ∈ E1 and x2 ∈ E2, points that are closest to x ∈ RE in the
respective sets. Let us assume without loss of generality that x2 is closer to a than to
b. We also have |x1 −x| = d1(x) and |x2 −x| = d2(x) and, by the triangle inequality,
|x1−x2| ≤ d1(x)+d2(x). Therefore, dist(x2, E1) ≤ |x1−x2| ≤ d1(x)+d2(x). We can
now obtain a lower bound of dist(x2, E1) in terms of |x2 −a| by using (3.2). By using
the triangle inequality, we find that CUdist(x2, E1) ≥ |x− a| − d2(x) and therefore

r(x) := |x− a| ≤ CU (d1(x) + d2(x)) + d2(x) ≤ (CU + 1)(d1(x) + d2(x)).

The same type of bounds can also be derived for points x2 closer to b than to a; then
r(x) := |x− b|, etc. Thus, we find∫

Ωi

|∇ϑ̃E |2 ≤ C + (CU + 1)2
∫
R′

E

dx

r(x)2
.

The bound (3.7) then follows easily by using polar coordinates centered at a and b.
Finally, the bound (3.8) follows easily from Lemma 3.4 and the fact that 0 ≤

ϑE ≤ 1 and that this function vanishes in all elements that are entirely outside of
RE .

We note that we can obtain the same result for the domain R̂E as for RE , since
RE ⊂ R̂E , by simply extending ϑE by zero in R̂E \ RE .

We next introduce a coarse linear interpolant f� of an arbitrary element f ∈ Whi

grad;

we note that while f� will not belong to Whi

curl, its gradient will and its tangential
derivative on the interface will therefore equal the trace of an element in Whi

curl. In
fact, this trace will equal that of an element of our coarse space introduced in section 2.
We note that this linear interpolant is only a theoretical tool and is never calculated.

Definition 3.7 (linear interpolant). Given f ∈ Whi

grad and a subdomain edge
E ∈ SEi , we define the linear function

(3.10) fE� := f(a) +
f(b)− f(a)

dE
(x− a) · dE .

We note that fE� equals f at the two endpoints of E and varies linearly in the
direction dE .

Lemma 3.8. Let R̂E be the uniform domain of Lemma 3.5. For any f ∈ Whi

grad,

there exists a function fEΔ ∈ Whi

grad such that fEΔ = f − fE� along E . This function

vanishes along both ∂R̂E \ E and ∂Ωi \ E and satisfies

(3.11) |fEΔ|2H(grad,Ωi)
≤ C(1 + log(dE/hi))

2|f |2
H(grad, ̂RE )

.

Proof. We first note that since by Lemma 3.5 |x− a| ≤ CdE ∀x ∈ R̂E ,

(3.12) ‖fE� − f(a)‖L∞( ̂RE) ≤ C|f(b)− f(a)|.

To estimate the maximum difference of f at any two points in R̂E , we use a well-known
finite element Sobolev inequality

‖fmax − fmin‖2L∞( ̂RE )
≤ C(1 + log(dE/hi))|f |2H(grad, ̂RE)

,(3.13)
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1012 CLARK R. DOHRMANN AND OLOF B. WIDLUND

which has been established for John domains in [6, Lemma 3.2] and thus also holds
for uniform domains. Since f − fE� = (f − f(a))− (fE� − f(a)), we have

‖f − fE�‖2
L∞( ̂RE)

≤ C(1 + log(dE/hi))|f |2H(grad, ̂RE)
,

|fE�|2
H(grad, ̂RE)

≤ C(1 + log(dE/hi))|f |2H(grad, ̂RE)
.

From the previous two estimates, Lemma 3.6, and

∇(ϑE (f − fE�)) = ∇ϑE (f − fE�) +∇(f − fE�)ϑE ,

we find that

|ϑE(f − fE�)|2H(grad,Ωi)
≤ C(1 + log(dE/hi)

2|f |2
H(grad, ̂RE)

since |ϑE | ≤ 1 and ϑE vanishes in Ωi \R̂E . The lemma now follows from the definition
fEΔ := Ihi(ϑE(f − fE�)) and [26, Lemma 4.31]; that lemma shows that we can bound
the norm of the piecewise linear interpolant of the product of two piecewise linear
functions by the norm of their product.

Later in the analysis, we will need a bound on the average tangential component
of the gradient of a function f ∈ Whi

grad along an edge E ∈ SEi . Consider an element
with an edge e ⊂ E ⊂ ∂Ωi. For linear finite elements, ∇f · ti is constant on e, and
the difference in nodal values along this edge is |e|∇f · ti, where |e| is the length of
the edge. Summing these differences over all elements along E , we find that∫

E
∇f · ti ds = f(b)− f(a).

The inequalities of the following lemma are 2D counterparts of 3D estimates
appearing in [19] in Corollary 1 and the proof of Theorem 2. They can be derived by
arguments for individual elements.

Lemma 3.9. Let K ∈ Thi . For u ∈ (Whi

grad)
2, it holds that

∇×Πhi(u) = ∇× u,(3.14)

‖Πhi(u)‖2L2(K) ≤ C‖u‖2L2(K).(3.15)

The next three lemmas and their proofs also hold for connected subsets Ek ⊂ E .
Lemma 3.10. Given u ∈ Whi

curl and a subdomain edge E ∈ SEi , it holds that

|ūE |2 ≤ C(‖u‖2L∞(RE ) + ‖∇ × u‖2L2(RE)).

Here, ūE is defined as in (2.2).
Proof. We first note that the direct use of the Cauchy–Schwarz inequality to

estimate ūE leads to a difficulty since the length of the edge E cannot be bounded
uniformly in terms of dE , the distance between the endpoints of the edge. However,
we have a uniform bound for the length of the curve γab of Definition 3.1, which
completes the boundary of the domain RE . By using the Stokes theorem, we find that∫

E
u · ti ds =

∫
RE

∇× u dx−
∫
∂RE\E

u · ti ds.

By Lemma 3.5, the area of RE is of order d2E and the length of γab = ∂RE \ E is of
order dE . The lemma then follows by using the Cauchy–Schwarz inequality and an
elementary argument.
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ITERATIVE SUBSTRUCTURING FOR H(curl) IN 2D 1013

We next consider coarse space functions. Such a function coincides with an ele-
ment in our coarse space on the interface, but it is not necessarily of minimal energy.

Lemma 3.11. Given E ∈ SEi , there exists a coarse space function NE ∈ Whi

curl

with NE · ti = dE · ti along E and NE · ti = 0 elsewhere on ∂Ωi such that

‖NE‖2L2(Ωi)
≤ Cd2E ,(3.16)

‖∇×NE‖2L2(Ωi)
≤ C(1 + log(dE/hi)),(3.17)

where dE is the distance between the endpoints of E. Further, NE(x) = 0, x ∈ Ωi\R̂E ,
where R̂E is the domain of Lemma 3.5.

Proof. Let ea and eb denote the two finite element edges at the ends of E and
define

NE := Πhi(ϑEdE) + bE/2,

where ϑE is the edge cutoff function of Lemma 3.6 and

bE := (dE · thi
ea)Nea + (dE · thi

eb )Neb .

Since ϑE = 1 along all edges of E except for ea and eb, we see from (2.3) that
Πhi(ϑEdE)·ti = dE ·ti along these interior edges. We also have Πhi(ϑEdE)·ti = dE ·ti/2
along ea and eb since ϑE varies linearly from 1 to 0 along these two edges. For these
two edges, we also have bE ·ti = dE ·ti so that NE has the correct, specified tangential
data along E . In addition, the tangential data of NE also vanishes along ∂Ωi \ E .

Since ϑEdE ∈ (Whi

grad)
2 and dE is a unit vector, it follows from Lemma 3.6 and

(3.15) that

‖Πhi(ϑEdE)‖2L2(Ωi)
≤ Cd2E .

Again, since dE is a unit vector, we have that ‖∇ × ϑEdE‖L2(Ωi) ≤ ‖∇ϑE‖L2(Ωi). It
then follows from Lemma 3.6 and (3.14), that

‖∇×Πhi(ϑEdE)‖2L2(Ωi)
≤ C(1 + log(dE/hi)).

The coefficients of Nhi
ea and Nhi

eb
in the definition of bE have absolute values bounded

by 1. It then follows from elementary finite element estimates that ‖bE‖2L2(Ωi)
≤ Ch2

i

and ‖∇ × bE‖2L2(Ωi)
≤ C. The lemma now follows directly from the estimates for

Πhi(ϑEdE) and bE .
The next lemma is a counterpart of Lemma 3.8 for functions in Whi

curl.

Lemma 3.12. Given v ∈ Whi

curl and E ∈ SEi , there exists a function vE ∈ Whi

curl

such that vE · ti = v · ti along E with vanishing tangential data vE · ti along both
∂R̂E \ E and ∂Ωi \ E. Further,

‖vE‖2L2(Ωi)
≤ Cd2E‖v‖2L∞( ̂RE )

,(3.18)

‖∇× vE‖2L2(Ωi)
≤ C

(
‖∇× v‖2

L2( ̂RE)
+ (1 + log(dE/hi))‖v‖2L∞( ̂RE)

)
.(3.19)

Proof. Referring to (2.3), we have

v =
∑

e∈Mhi

veNe.
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1014 CLARK R. DOHRMANN AND OLOF B. WIDLUND

As in Lemma 3.11, let ea and eb denote the edges at the ends of E . Similar to what
was done in the proof of that lemma, we define

vE :=
∑

e∈Mhi

ϑe
EveNe + (veaNea + vebNeb)/2,

where ϑe
E is the value of ϑE at the center of edge e. We can confirm that vE · ti = v · ti

along E and that vE · ti vanishes along ∂R̂E \ E and ∂Ωi \ E . Since |ϑE | ≤ 1, we find
by using the product rule of differentiation and elementary estimates that for any
element K ∈ Thi∥∥∥∥∥ ∑

e∈SK

ϑe
EveNe

∥∥∥∥∥
2

L2(K)

≤ C‖v‖2L2(K),

∥∥∥∥∥ ∑
e∈SK

∇× ϑe
EveNe

∥∥∥∥∥
2

L2(K)

≤ C(‖∇ × v‖2L2(K) + ‖v‖2
L∞( ̂RE)

‖∇ϑE‖2L2(K)).

Estimates for the remaining two terms are easily obtained and are given by

‖veaNea + vebNeb‖2L2(Ωi)
≤ Ch2

i ‖v‖2L∞( ̂RE)
,

‖∇× (veaNea + veaNeb)‖2L2(Ωi)
≤ C‖v‖2

L∞( ̂RE)
.

The proof is completed by assembling the estimates for the terms that define vE and
by using (3.7).

In preparation for Lemma 3.13, we consider the number χE(d)(dE/d) of closed
circular disks of diameter d that are required to cover a subdomain edge E ; we note
that χE(d) equals 1 if the edge is straight. This is closely related to the Hausdorff
dimension of the edge; see, e.g., [9]. We note that χE(d) increases monotonically when
d decreases. By examining the standard computation of the Hausdorff dimension of a
Koch snowflake curve, we can, e.g., show that a prefractal Koch snowflake curve, which
is a polygon with side length hi and diameter Hi, will satisfy χE(d) ≤ (4/3)log(Hi/hi).
This is not a large factor, being less than 4 log(Hi/hi) even in the very extreme case
of Hi/hi = 106.

Remark 3. We note that a factor of χE(δj) was left out of an argument on p. 2161
of [6] and in the bound for the condition number given in Theorem 3.1 of that paper.
This main result is therefore incorrect. However, we can expect that additional factor
to be quite modest in realistic cases.

Lemma 3.13. Given E ∈ SEi and hi ≤ d < dE , there exists a coarse space function
NEd ∈ Whi

curl with NEd · ti = dE · ti along E and NEd · ti = 0 elsewhere on ∂Ωi such
that

‖NEd‖2L2(Ωi)
≤ CχE(d)dEd,(3.20)

‖∇ ×NEd‖2L2(Ωi)
≤ CχE(d)(dE/d)(1 + log(d/hi)).(3.21)

Proof. Let a and b denote the two endpoints of E . Starting at a and moving
along this curve toward b, we pick p1 := a and then p2 ∈ E as a node nearest the last
point of exit of E from the circular disk B(p1, d) of radius d centered at p1. Likewise,
p3 ∈ E is chosen as a node nearest the last point of exit of E from B(p2, d). This
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ITERATIVE SUBSTRUCTURING FOR H(curl) IN 2D 1015

process is repeated until |pM − b| is no larger than 2d, and we then set pM+1 = b.
We denote the segment of E between pk and pk+1 by Ek.

From Lemma 3.5, we know that there exists a uniform domain R̂Ek
⊂ Ωi with

∂R̂Ek
∩ ∂Ωi = Ek. For each, we construct a function NEk

as in Lemma 3.11. We
may then use Lemma 3.11 for each Ek. By using arguments similar to those of the
proof of Lemma 3.5, we find that the support of any of these functions will intersect
only a fixed number of the supports of other elements in this set of functions. Defin-
ing NEd :=

∑M
k=1 NEk

, with M of order χE(d)(dE/d), the lemma then follows from
Lemma 3.11.

3.3. A Helmholtz decomposition. The following Helmholtz-type decompo-
sition and estimates allow us to make use of and build on existing tools for scalar
functions in H(grad,D). See Lemma 5.1 of [11] for the case of polyhedral subdo-
mains; this important paper was preceded by [10], which concerns other applications
of the same decomposition.

Lemma 3.14. Given a uniform domain D of diameter d and uh ∈ Whi

curl, there

exists ph ∈ Whi

grad and rh ∈ Whi

curl such that

uh = ∇ph + rh,(3.22)

‖∇ph‖2L2(D) ≤ C
(
‖uh‖2L2(D) + d2‖∇× uh‖2L2(D)

)
,(3.23)

‖rh‖2L∞(D) ≤ C(1 + log(d/hi))‖∇ × uh‖2L2(D).(3.24)

Proof. We can follow [11] quite closely and note that the following result is
established in Lemma 5.1 of that paper: For any uh ∈ Whi

curl, there exist Ψh ∈
(Whi

grad)
2, ph ∈ Whi

grad, and qh ∈ Whi

curl such that

uh = qh +Πhi(Ψh) +∇ph,(3.25)

‖∇ph‖2L2(D) ≤ C
(
‖uh‖L2(D) + d2‖∇× uh‖2L2(D)

)
,(3.26)

‖h−1qh‖2L2(D) + ‖Ψh‖2H(grad,D) ≤ C‖∇× uh‖2L2(D).(3.27)

Here, h is a piecewise constant function on the mesh Thi and is defined by the diameter
of the individual elements.

This result, in turn, is based on a stable decomposition of any u ∈ H(curl,D)
into a sum of two terms Ψ +∇p with Ψ ∈ H(grad,D)2 and p ∈ H(grad,D) and on
the finite element interpolation procedure of [22].

Such a decomposition can be derived for any John domain, and therefore also
for any uniform domain, by using the main result of [1] and a simple rotation of the
coordinate system, which turns the divergence operator into the curl operator.

Returning to (3.25) and defining rh := qh + Πhi(Ψh), the first estimate of the
lemma follows directly from (3.26). The second estimate follows from elementary
finite element estimates for qh, a simple variant of the discrete Sobolev inequality in
(3.13) for Ψh, and (3.27).

4. Coarse space analysis. We define d̂i := max(hi,
√
αi/βi) and consider the

two cases dE ≤ d̂i (curl-dominated) and dE > d̂i (mass-dominated). Accordingly, we
partition the set of subdomain edges for Ωi as

SEi = Sc
Ei

∪ Sm
Ei
,

where for all the edges in Sc
Ei

we have dE ≤ d̂i and those in Sm
Ei

we have dE > d̂i.
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1016 CLARK R. DOHRMANN AND OLOF B. WIDLUND

We know from Lemma 3.5 that there exists a uniform domain R̂E with ∂R̂E ∩
∂Ωi = E for each E ∈ SEi . We may thus apply Lemma 3.14 for R̂E and let ∇ph + rh
denote the decomposition of u for R̂E . We set d = d̂i in Lemma 3.13 for the mass-
dominated case and recall from the proof of Lemma 3.13 that each edge E ∈ Sm

Ei
may

be expressed as the union of segments E1, . . . , EM(E,d̂i)
. We note by construction that

d̂i ≤ dEk
≤ 2d̂i. Recalling the function fEΔ ∈ Whi

grad of Lemma 3.8 and vE ∈ Whi

curl of
Lemma 3.12, we define

(4.1) g := u−
∑

E∈SEi

wE ,

where

wE :=

{
∇pEΔh + rE

h − r̄hENE if E ∈ Sc
Ei
,∑M(E,d̂i)

k=1 uEk − ūENE d̂i
if E ∈ Sm

Ei
.

For each E ∈ Sc
Ei
, we have

g · ti = (u−∇ph − rh) · ti +
(
ph(b)− ph(a)

dE
+ r̄hE

)
dE · ti,

where a and b are the endpoints of E . The first term vanishes, while the second equals
ūEdE · ti. Thus, g · ti = u0 · ti along E and the tangential data of g matches that of
the coarse interpolant along E ∈ Sc

Ei
.

For each E ∈ Sm
Ei
, we have

g · ti =

⎛⎝u−
M(E,d̂i)∑

k=1

uEk

⎞⎠ · ti + ūEdE · ti.

Again, the first term vanishes and g · ti = u0 · ti along E . In summary, we find
that the tangential data of g along ∂Ωi is identical to that of the coarse interpolant
u0. Accordingly, we may establish energy estimates for u0 from those for g since u0

minimizes energy for the specified boundary data.

Since dE ≤ d̂i ∀E ∈ Sc
Ei
, we find from Lemmas 3.8 and 3.14 that

Ei(∇pEΔh ) ≤ C(1 + log(dE/hi))
2E

̂RE (u),

where

E
̂RE (u) := αi‖∇ × u‖2

L2( ̂RE)
+ βi‖u‖2L2( ̂RE)

.

Similarly, from Lemmas 3.12 and 3.14, we find

Ei(r
E
h) ≤ C(1 + log(dE/hi))

2E
̂RE (u).

Next, from Lemmas 3.10, 3.14, and 3.11, we also find

Ei(r̄hENE) ≤ C(1 + log(dE/hi))
2E

̂RE (u).

In summary, we have from the previous three estimates that

(4.2) Ei(w
E ) ≤ C(1 + log(dE/hi))

2E
̂RE (u) for E ∈ Sc

Ei
.
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ITERATIVE SUBSTRUCTURING FOR H(curl) IN 2D 1017

Turning to the mass-dominated case, we have from Lemma 3.14∣∣∣∣∫Ek

u · ti dx
∣∣∣∣2 ≤ 2

∣∣∣∣∫Ek

∇ph · ti dx
∣∣∣∣2 + 2

∣∣∣∣∫Ek

rh · ti dx
∣∣∣∣2(4.3)

Letting a and b denote the endpoints of Ek, we find from the finite element Sobolev
inequality (3.13), Lemma 3.14, and dEk

≤ 2d̂i that∣∣∣∣∫Ek

∇ph · ti dx
∣∣∣∣2 = |ph(b)− ph(a)|2 ≤ C(1 + log(d̂i/hi))|ph|2H1( ̂REk

)

≤ C(1 + log(d̂i/hi))
(
‖u‖2

L2( ̂REk
)
+ d̂2i ‖∇× u‖2

L2( ̂REk
)

)
≤ (C/βi)(1 + log(d̂i/hi))E ̂REk

(u).(4.4)

Similarly, from Lemmas 3.10 and 3.14, we find∣∣∣∣∫Ek

rh · ti dx
∣∣∣∣2 ≤ C(1 + log(d̂i/hi))d̂

2
i ‖∇× u‖2

L2( ̂REk
)

≤ (C/βi)(1 + log(d̂i/hi))E ̂REk
(u),(4.5)

and, since M(E , d̂i) is of order χE(d̂i)(dE/d̂i), it then follows from the previous three
estimates and the definition of ūE that

(4.6) ū2
E ≤ C/(βid̂idE)χE(d̂i)(1 + log(d̂i/hi))E ˜REk

(u),

where R̃E = ∪kR̂Ei . It now follows from Lemma 3.13 and the definition of d̂i that

(4.7) Ei(ūENE d̂i
) ≤ Cχ2

E(d̂i)(1 + log(d̂i/hi))
2E

˜REk
(u).

Similarly, it follows from Lemmas 3.12 and 3.14 that

Ei(u
Ek) ≤ C(1 + log(d̂i/hi))

2EREk
(u).

Since each R̂Ek
only intersects a bounded number of other such regions, it follows

from the previous two estimates that

(4.8) Ei(w
E) ≤ Cχ2

E(d̂i)(1 + log(d̂i/dE))2E ˜RE (u) for E ∈ Sm
Ei
.

Since each R̂E and R̃E intersects only a bounded number of other such regions, it
follows from (4.2) and (4.8) that

(4.9) Ei(u0) ≤ Ei(g) ≤ Cχ2
i (1 + log(Hi/hi))

2Ei(u),

where χi := maxE∈Sm
Ei
χE(d̂i).

5. Local decomposition. In this section, we establish estimates for an edge
decomposition of the remainder obtained from subtracting the coarse interpolant u0

from u. We find from (4.1) that

w := u− u0 = (g − u0) + (u− g),

= wir +
∑

E∈SEi

wE ,D
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1018 CLARK R. DOHRMANN AND OLOF B. WIDLUND

where wir := g − u0 and wir · ti vanishes on ∂Ωi. From (4.9) we have

(5.1) Ei(wir) ≤ Cχ2
i (1 + log(Hi/hi))

2Ei(u).

We have also established estimates for the energy of wE in (4.2) and (4.8). We note
that wE · ti vanishes everywhere on ∂Ωi except along E .

6. Algorithm and Schwarz analysis. Before providing some implementation
details of the algorithm, we show how our iterative substructuring algorithm can be
defined in terms of its local and global spaces. With reference to (2.3), we define local
spaces Xi and XE as

Xi :=

{
x : x =

∑
e∈Mhi

I

aeN
hi
e

}
,

XE :=

{
x : x =

∑
e∈ME

aeN
hi
e

}
,

where Mhi

I is the set of edges in the interior of Ωi and ME is the set of edges of E
together with those in the interiors of the two subdomains having E in common. With
reference to (2.2), we also define the coarse space X0 as

X0 :=

{
x : x =

∑
E∈SE

aEcE

}
.

For u0 ∈ X0, wE ∈ XE , and wir ∈ Xi, we have

u = u0 +
∑
E∈SE

wE +

N∑
i=1

wir.

Since each subdomain edge is common to only two subdomains and each of the regions
R̃E and R̂E intersects only a bounded number of other such regions, we find from (4.2),
(4.8), and (4.9) that

N∑
i=1

Ei(u0) ≤ Cω2
N∑
i=1

Ei(u),

N∑
i=1

∑
E∈SEi

Ei(w
E ) ≤ Cω2

N∑
i=1

Ei(u),

N∑
i=1

N∑
j=1

Ei(wjr) ≤ Cω2
N∑
i=1

Ei(u),

where

ω := max
i

χi(1 + log(Hi/hi)).

We have thus shown

C2
0 ≤ Cω2,
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ITERATIVE SUBSTRUCTURING FOR H(curl) IN 2D 1019

where C0 is the constant for the stable decomposition of u in [26, Assumption 2.2].
We note that C does not depend on possible jumps in coefficients between subdomains
nor on the maximum number of edges for any subdomain. In addition, the maximum
ratio of edge lengths for any subdomain may grow with mesh refinement without
increasing C. From Lemma 2.5 of [26] we find that the smallest eigenvalue of the
Schwarz operator Pad is bounded below by C−2

0 . Thus,

(6.1) 1/λmin(Pad) ≤ Cω2.

Since our algorithm uses exact local solvers, we find from Lemmas 2.6 and 2.10 of [26]
that

(6.2) λmax(Pad) ≤ N c + 1,

where N c is the minimum number of colors needed to color the subdomains associated
with the local subproblems such that no such subdomains of the same color intersect;
see [26, section 3.6]. Since the local space for each subdomain edge extends into the
interiors of both subdomains sharing the edge, no two edges can have the same color
if they are part of the same subdomain. This implies the bound for λmax(Pad) grows
linearly with the maximum number of edges for any subdomain. This observation is
confirmed numerically in the final example of the next section.

Our main result now follows from the estimates in (6.1) and (6.2).
Theorem 6.1. The condition number κ(Pad) of the Schwarz operator for our

iterative substructuring algorithm is bounded above by the estimate

κ(Pad) := λmax(Pad)/λmin(Pad) ≤ C(1 +N c)ω2.

Comparing the estimate in Theorem 6.1 with (1.1), we see that the factor of
maxiH

2
i βi/αi is no longer present. In addition, the estimate applies to a much broader

class of subdomain shapes.

6.1. Implementation details. When solving a linear system Kx = f for the
discretized problem, we must apply a preconditioner M−1 to the current residual
vector r in each conjugate gradient iteration. In this subsection, we provide some
details on calculating M−1r for both the iterative substructuring algorithm of this
study and for an overlapping Schwarz approach which uses the same coarse space.

Let the Boolean matrices RI and RΓ select the rows of x corresponding to edges in
subdomain interiors and on the interface Γ, respectively. For iterative substructuring
methods, the conjugate gradient algorithm is used to solve the interface problem
SxΓ = g, where S = KΓΓ −KΓIK

−1
II KIΓ, xΓ = RΓx, g = fΓ −KΓIK

−1
II fI ,

fI = RIf, fΓ = RΓf, KII = RIKRT
I , KIΓ = RIKRT

Γ , etc.

We note that the Schur complement matrix S need not be formed explicitly in order to
calculate products of the form SxΓ required by the conjugate gradient algorithm. We
also note that once xΓ is obtained, xI can be recovered from xI = K−1

II (fI −KIΓxΓ).
Each column m of the coarse matrix ΦΓ is associated with a specific subdomain

edge Em. Let tek denote the unit tangent vector for the edge associated with row k of
xΓ. The entry in row k and column m of ΦΓ is given by δkmtek ·dEm , where δkm = 1 if
ek ⊂ Em and δkm = 0 otherwise. The coarse matrix for the problem is then given by

Kc = ΦT
ΓSΦΓ.

We next introduce three more Boolean matrices for bookkeeping purposes. Let R1E
select the rows of x corresponding to edges in the interior of the two subdomains
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1020 CLARK R. DOHRMANN AND OLOF B. WIDLUND

sharing E together with those for E itself. Next, let R2E select the rows of R1Ex
corresponding to the edges of E . Finally, let R3E select the rows of xΓ corresponding
to edges of E . We note that R2ER1Ex = R3ExΓ.

Given a residual vector r, the preconditioned residual for the two-level additive
Schwarz algorithm is given by

M−1r = ΦΓK
−1
c ΦT

Γr +
∑
E∈SE

RT
3ER2E(R1EKRT

1E)
−1RT

2ER3Er.

Other variants of the preconditioner such as with a multiplicative coarse space cor-
rection are also possible; cf. [26, section 2.5.2].

For the overlapping Schwarz algorithm, letRi select the rows of x corresponding to
an overlapping subdomain Ω′

i. Typically, Ω
′
i is obtained by extending Ωi by an integer

number of layers of elements. The preconditioned residual in this case is given by

M−1r = ΦK−1
c ΦT r +

N∑
i=1

RT
i (RiKRT

i )
−1Rir,

where

Φ = RT
ΓΦΓ −RT

I K
−1
II KIΓΦΓ.

We note that in a parallel computing setting, the construction of Φ along with the
local contributions to the preconditioned residual can be calculated concurrently. The
coarse corrections in either algorithm, however, cannot in general be done in parallel.
Finally, we note if the coarse matrix Kc becomes too large to factor with a direct
method, then it is possible to obtain an approximate coarse solution by applying the
iterative substructuring or overlapping Schwarz preconditioner to the coarse problem
itself.

7. Numerical examples. Numerical examples are presented in this section to
confirm the theory for both regular and irregularly shaped subdomains. For the first
three examples, we consider three different types of subdomains. Type 1 subdomains
have a square geometry and consist of square edge elements. Type 2 subdomains
also consist of square edge elements, but the subdomain edges have ragged shapes
which are not uniformly Lipschitz continuous. Finally, Type 3 subdomains contain
equilateral triangular edge elements and have subdomain edges with both straight-line
and prefractal segments. A more detailed description of these three subdomain types
along with accompanying pictures can be found in [6].

In addition to the classical iterative substructuring (CIS) algorithm analyzed here,
we also present numerical results for an overlapping Schwarz (OS) algorithm which
uses the same coarse space. This is done for purposes of comparison; the analysis of
an OS algorithm will appear in a forthcoming study for 3D problems. The method
of preconditioned conjugate gradients is used to solve linear systems with random
right-hand sides to a relative residual tolerance of 10−8. The numbers of iterations
and condition number estimates (in parenthesis) of the conjugate gradient iterations
are reported in each of the tables. The dimensionless parameter H/δ denotes the
relative overlap for the OS algorithm; cf. [6].

7.1. Example 1. This example is used to confirm that the condition number
estimate for the Schwarz operator is independent of the number of subdomains. The
scalability of both CIS and OS algorithms is evident in Table 7.1.
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Table 7.1

Results for unit square domain decomposed into N subdomains, each with H/h = 4. Numbers
of iterations and condition number estimates (in parenthesis) are reported for a relative residual
tolerance of 10−8. Subdomain material properties are given by αi = 1 and βi = β.

Classical iterative substructuring Overlapping Schwarz (H/δ = 4)

Type N β = 10−3 β = 1 β = 103 β = 10−3 β = 1 β = 103

1 16 18(16.7) 15(16.3) 8(3.8) 14(5.1) 12(5.0) 8(4.6)
64 25(18.6) 21(18.3) 10(6.1) 13(5.2) 12(5.2) 9(4.5)
144 28(19.1) 22(18.9) 12(8.1) 13(5.1) 12(5.1) 10(4.6)
256 30(19.4) 23(19.0) 14(9.9) 12(5.1) 12(5.1) 10(4.7)
400 30(19.5) 25(19.3) 15(11.6) 12(5.0) 12(5.0) 10(4.7)
576 30(19.5) 25(19.3) 16(12.7) 12(5.0) 12(5.0) 11(4.8)
784 30(19.5) 25(19.3) 16(13.7) 12(5.0) 12(5.0) 11(4.8)
1024 30(19.5) 25(19.3) 17(14.5) 12(5.0) 12(5.0) 11(4.8)

2 16 26(30.0) 20(28.5) 8(3.7) 14(5.0) 12(4.8) 8(4.6)
64 36(33.6) 29(33.0) 11(6.8) 17(6.9) 14(7.0) 9(4.5)
144 40(34.2) 31(33.8) 14(10.0) 19(7.6) 15(7.6) 10(4.5)
256 42(34.5) 33(34.1) 17(13.1) 19(7.5) 15(7.5) 10(4.5)
400 43(34.6) 34(34.3) 18(15.8) 20(8.0) 16(7.9) 10(4.5)
576 43(34.7) 34(34.3) 20(18.5) 20(8.0) 16(8.0) 11(4.6)
784 44(34.8) 35(34.6) 21(20.8) 20(7.9) 16(7.9) 11(4.6)
1024 44(34.8) 36(34.6) 22(22.6) 20(8.1) 17(8.2) 11(5.0)

Table 7.2

Results for unit square domain decomposed into 16 subdomains; the domain is triangular for
Type 3 subdomains. Subdomain material properties given by αi = 1 and βi = β.

Classical iterative substructuring Overlapping Schwarz (H/δ = 4)

Type H/h β = 10−3 β = 1 β = 103 β = 10−3 β = 1 β = 103

1 4 18(16.7) 15(16.3) 8(3.8) 14(5.1) 12(5.0) 8(4.6)
8 20(23.7) 17(23.3) 9(5.8) 12(5.1) 12(5.1) 8(4.6)
16 23(32.1) 18(31.4) 10(8.5) 13(5.1) 12(4.9) 9(4.5)
32 26(42.0) 19(41.0) 11(12.4) 13(5.0) 12(4.8) 9(4.5)

2 4 26(30.0) 20(28.5) 8(3.7) 14(5.0) 12(4.8) 8(4.6)
8 27(39.3) 21(37.8) 10(6.2) 14(4.5) 11(4.4) 9(4.5)
16 24(49.8) 19(48.3) 11(11.0) 13(4.6) 11(4.3) 9(4.5)
32 26(60.6) 22(59.0) 14(18.0) 13(4.8) 12(4.6) 9(4.5)

3 15 20(44.8) 19(44.5) 13(13.2) 17(8.3) 15(8.2) 11(6.3)
45 24(71.0) 21(70.5) 12(25.3) 17(7.9) 15(7.9) 12(6.3)
135 29(104) 26(103) 17(42.7) 17(8.1) 16(8.1) 13(6.3)

7.2. Example 2. This example is used to confirm the polylogarithmic condition
number estimate in Theorem 6.1. The results in Table 7.2 for the CIS algorithm are
plotted in Figure 7.1 for β = 10−3 and are consistent with theory. In addition to being
noticeably smaller, the condition number estimates in Table 7.2 for the OS algorithm
are much less sensitive to the mesh parameter H/h.

7.3. Example 3. This example is used to confirm that the estimate in The-
orem 6.1 is independent of the material property values in each subdomain. In-
sensitivity to jumps in material properties is evident in Table 7.3 for both domain
decomposition algorithms.

7.4. Example 4. This example is used to demonstrate that the performance
of the CIS and OS algorithms need not be diminished significantly when a mesh
partitioner is used to decompose the mesh. Example mesh decompositions for N = 16
and N = 64, shown in Figure 7.2, were obtained using the graph partitioning software

D
ow

nl
oa

de
d 

07
/3

1/
13

 to
 2

16
.1

65
.9

5.
75

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1022 CLARK R. DOHRMANN AND OLOF B. WIDLUND

5 10 15 20 25 30 35
10

20

30

40

50

60

70

80

90

100

110

(1+log(H/h))2

co
nd

iti
on

 n
um

be
r

 

 

Type 1

Type 2

Type 3

Fig. 7.1. Plot of classical iterative substructuring data in Table 7.2 confirming the theoretical
estimate in Theorem 6.1.

Table 7.3

CIS and OS results for unit square domain decomposed into 64 subdomains, each with H/h = 8
and H/δ = 4 for OS. The eight subdomains along the diagonal from (0, 0) to (1, 1) have αi = α and
βi = β, while the remaining subdomains have αi = 1 and βi = 1.

Type 1 Type 2
α β CIS OS CIS OS

10−3 10−3 25(26.2) 14(5.7) 35(46.7) 15(6.6)
10−3 1 24(26.0) 13(5.1) 34(43.8) 13(5.4)
10−3 103 21(25.1) 13(5.5) 33(43.2) 15(9.8)

1 10−3 26(26.3) 13(6.5) 36(46.7) 15(8.0)
1 1 24(26.3) 12(5.1) 32(44.5) 13(5.4)
1 103 24(24.7) 12(5.2) 32(41.9) 13(5.6)

103 10−3 31(27.3) 13(6.4) 40(48.7) 15(7.9)
103 1 25(27.2) 12(5.1) 34(46.2) 13(5.4)
103 103 26(26.8) 14(6.4) 34(47.2) 15(6.8)

Metis [15] as described in [6]. The results in Table 7.4 show that iteration counts and
condition number estimates do not grow dramatically when switching from square
subdomains to ones obtained from the mesh partitioner.

7.5. Example 5. This example is used to confirm that our condition number
estimate does not require all subdomain edges to be of comparable length. Here,
the smaller square subdomains shown in Figure 7.3 always have four elements, while
the mesh parameter H/h is increased for the larger surrounding subdomains. The
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Fig. 7.2. Example decompositions (N = 16 and N = 64) used in Example 7.4.

Table 7.4

Results for unit square domain decomposed into N subdomains. There are 64 elements per
subdomain for the Type 1 (square) subdomains and approximately 64 elements per subdomain for
subdomains obtained from the mesh partitioner. Material properties are homogeneous with αi = 1
and βi = β.

Classical iterative substructuring Overlapping Schwarz (H/δ = 4)

Type N β = 10−3 β = 1 β = 103 β = 10−3 β = 1 β = 103

1 16 20(23.7) 17(23.3) 9(5.8) 12(5.1) 12(5.1) 8(4.6)
64 29(26.6) 24(26.3) 12(9.2) 12(5.1) 12(5.1) 10(4.5)
144 31(27.1) 25(26.8) 14(12.2) 12(5.1) 12(5.1) 10(4.5)
256 34(27.4) 26(27.1) 16(14.7) 12(5.1) 11(5.0) 11(4.7)
400 35(27.6) 26(27.3) 17(16.6) 11(5.0) 11(5.0) 11(4.7)

Metis 16 30(27.8) 23(25.4) 10(5.2) 13(6.5) 13(6.5) 9(5.0)
64 40(33.7) 30(32.2) 13(8.8) 13(5.5) 12(5.4) 11(4.8)
144 42(37.4) 33(36.2) 15(11.9) 18(8.0) 16(7.9) 12(5.9)
257 45(38.6) 35(36.8) 17(13.3) 16(7.2) 16(17.1) 13(6.3)
400 46(41.9) 36(40.8) 17(13.7) 16(7.1) 15(6.9) 13(6.1)

Fig. 7.3. Example decompositions (H/h = 8 and H/h = 16) used in Example 7.5.
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Table 7.5

Results for Example 7.5 (see also Figure 7.3). Material properties are homogeneous with αi = 1
and βi = β.

Classical iterative substructuring Overlapping Schwarz (H/δ = 4)

H/h β = 10−3 β = 1 β = 103 β = 10−3 β = 1 β = 103

4 23(15.3) 18(14.7) 8(3.4) 15(5.1) 12(4.9) 8(4.2)
8 25(16.5) 19(16.0) 10(5.0) 16(6.5) 13(6.3) 9(5.2)
12 25(19.2) 20(18.8) 10(6.8) 16(6.2) 14(6.1) 10(5.8)
16 27(21.4) 21(20.9) 11(8.4) 15(6.4) 14(5.9) 10(5.9)
20 28(23.1) 22(22.5) 12(9.7) 15(6.4) 14(5.9) 10(5.9)

Fig. 7.4. Example decompositions (H/h = 8 and H/h = 16) used in Example 7.6.

Table 7.6

Results for Example 7.6 (see also Figure 7.4). Material properties are homogeneous with αi = 1
and βi = 10−3. The OS results are for H/δ = 4.

Classical iterative substructuring Overlapping Schwarz
H/h κ(Pad) λmin(Pad) λmax(Pad) κ(Pad)
4 13.7 0.227 3.12 4.1
8 22.3 0.227 5.09 4.1
12 31.0 0.227 7.07 5.0
16 39.7 0.227 9.05 5.9
20 48.4 0.227 11.0 6.0

condition number estimates shown in Table 7.5 for the CIS algorithm are consistent
with our theory.

7.6. Example 6. The final example is used to confirm the estimates in (6.1)
and (6.2). Here we have two large subdomains and smaller square subdomains with
centers along x = 1/2 and whose number grows with mesh refinement (see Figure 7.4).
Thus, the number of subdomain edges for the two larger subdomains grows linearly
with H/h. The results in Table 7.6 are consistent with the theoretical estimates. We
also note that the results for the OS algorithm are much less sensitive to increasing
numbers of subdomain edges; this can easily be established by a coloring argument.
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a b

x0

B0

E

Fig. 7.5. Figure illustrating some of the constructions and notation used in the proof of
Lemma 3.5.

Appendix. Proof of Lemma 3.5. In our construction and proof, we will again
use the set RE and the curve γab; the latter forms the boundary of RE together with
the subdomain edge E . We extend this domain to

R̂E := RE ∪ Cab,

where Cab is the union of two sets of open circular disks {Bk}∞0 and {B′
k}∞0 . These

disks are all centered on γab as in [6, proof of Lemma 4.4]. At the end of the proof,

we will include all the elements which intersect Cab in part into R̂E , thereby making it
the union of elements as required; the modifications required of our constructions and
proofs are relatively minor. Figure 7.5 shows some of the constructions and notation
used in our proof.

We note that the uniformity constants of R̂E can exceed that of Ωi. With consid-
erable effort, we could estimate the new uniformity constant in terms of that of Ωi;
however, we will not undertake that exercise here.

The disk Bk is centered at xk ∈ γab and has a radius rk := |a − xk|/(4CU )
for k ≥ 1. The first of the centers, x0, is located in the middle of the curve γab,
i.e., it is equidistant to a and b. The first circular disk B0 = B′

0 has a radius r0 :=
dist(x0, ∂Ωi)/4. We define the other xk recursively as the last point of exit of γab
from Bk−1 when moving toward a. Indeed, we can establish that xk → a as k → ∞.
Similarly, we construct the second set of circular disks {B′

k}, starting at x′
0 = x0,

but with centers x′
k located between x0 and b and where x′

k → b as k → ∞. We

note that bounds on the diameter and area of the domain R̂E now follow easily from
Lemma 3.4 and elementary considerations.

We now modify the curve γab, as in our previous paper [6], replacing it by a
continuous, piecewise linear curve γ̂ab connecting the consecutive centers xk and x′

k,
of the two sets of circular disks. We note that the new curve will be shorter than the
one it replaces and is generally more regular.

This curve and these disks are considered in some detail in [6], where it is estab-
lished that no point in Ωi belongs to more than a fixed number M(CU ) of disks and
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1026 CLARK R. DOHRMANN AND OLOF B. WIDLUND

that intersecting disks have comparable radii. From this fact, we can establish that
the arc length along γ̂ab cannot grow faster than a constant times the distance from
the nearest endpoint of the edge E ; the arc length will of course also be bounded from
below by that distance. We note that consecutive disks overlap, creating a neighbor-
hood of the curve γ̂ab, which at any point on the curve has a width uniformly bounded
from below in terms of the radii of the local circular disks. This follows from the fact
that the radii of intersecting disks are comparable and that xk, by construction, lies
on the boundary of Bk−1.

We now consider an arbitrary pair of points c and d in R̂E . Given that they both
belong to Ωi and that Ωi is uniform, there is a curve γcd in the subdomain which
connects them and which satisfies the two conditions of Definition 3.1. We replace
this curve by γ̂cd constructed in the same way as γ̂ab and denote by Ccd the union of
the circular disks involved in the construction of that curve. If this set is contained
in R̂E , we can accept the curve γ̂cd for this pair of points.

In our discussion below, we will modify the construction of these circular disks,
making them smaller by using a constant factor λ larger than 4 in the definition of
their radii. The estimate of CU for R̂E then needs to be increased.

There are several cases to consider. We first assume that both c and d lie between
E and γ̂ab. Let y� be one of the centers of the circles of Ccd, which is closer to c than
to d, and let its radius be defined by r� := |c − y�|/(λCU ). Since a ∈ ∂Ωi, we have
|y�−a| ≥ λr�; we assume without loss of generality that a is the endpoint of E closest
to y�.

We now assume that the circle centered at y� and with radius r� intersects a
circle of Cab centered at xk and with radius rk = |a − xk|/(4CU ). We then have
|y� − xk| ≤ rk + r� and

4CUrk = |a− xk| ≥ |y� − a| − |y� − xk| ≥ (λ− 1)r� − rk.

By selecting λ(CU ) sufficiently large and using the fact that the width of the set Cab
can be bounded locally from below in terms of rk, we find that we can guarantee
that the circle centered at y� is contained in R̂E if y� lies between E and γ̂ab. We can
therefore change our focus to cases when the two curves γ̂ab and γ̂cd intersect since
we have shown that otherwise both requirements of Definition 3.1 can be satisfied.

If γ̂cd intersects γ̂ab, it must do so at least twice given that c and d, by assumption,
lie on the same side of γ̂ab. Denote the first and last such intersection by xc and xd,
respectively. We then replace the part of γ̂cd between xc and xd by that of γ̂ab creating
a modified curve still denoted by γ̂cd.

We need to verify that the two conditions of Definition 3.1 can be satisfied after
possibly increasing the parameter CU .

We first consider the length. The length of the parts of the original γ̂cd that are
retained can clearly be estimated by CU |c − d|. We can estimate |xc − xd| similarly.
As indicated above, the arc length of the part of γ̂ab which is incorporated into γ̂cd
can then also be estimated by a multiple of |xc − xd|. We note that we again might
have to increase the value of CU .

We next show that the circular disks of Cab centered on γ̂ab are large enough to
accommodate the circular disks centered on γ̂cd after a possible increase of the CU

parameter necessary for γ̂cd. This can fail only if |c − x| with x ∈ γ̂cd cannot be
bounded in terms of |a − x|. This cannot happen since the arc length between a
and xc can be bounded from below by the radii of the circles centered close to xc.
That radius in turn provides a bound on the arc length between c and xc. We note
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that along the common part of γ̂cd and γ̂ab the arc lengths of γ̂ab and γ̂cd increase at
exactly the same rate. This ultimately provides a bound on |c−x| in terms of |a−x|
for any point x on the common part of the two curves; this will guarantee that Cab is
wide enough.

To make the argument complete, we must also consider possible points on the
common part of the curve beyond x0, where the width of Cab can begin to shrink. We
can then work from the other endpoint of γ̂cd, i.e., start from d.

There are other cases to consider. Thus, if both c and d belong to Cab, we can
use the fact that this set is uniform in itself. There are two cases. In the first case, we
can construct γ̂cd by connecting c and d by straight line segments to the points on γ̂ab
that are closest and the part of that curve in between. We note that the distances of
those two points to that curve provide lower bounds on the radii of the circles of Cab
to which they belong. However, this can lead to a curve that is too long in comparison
with |c − d| if the distance of c or d to γ̂ab far exceeds |c − d|. But in such a case c
and d must belong to the same circular disk or to two consecutive disks in the sets
of circles and it is then easy to construct a satisfactory curve γ̂cd taking advantage of
the simple geometry.

Finally, let c and d lie on opposite sides of γ̂ab and let c ∈ RE \ Cab. We then find
the first intersection of γ̂cd and γ̂ab when moving from c along γ̂cd. We connect d by
a straight line segment to the point on γ̂ab that is closest and then build the modified
curve from the resulting three parts. We note that in this case, we will not have a
problem with c and d being too close.

To complete the proof, we add all the parts of any elements that intersect R̂E to
the set; effectively this will increase the set Cab. Should c or d or both belong to this
new part, we can connect these points to points just inside Cab and construct γ̂cd by
using the same ideas as previously.
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