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AN OVERLAPPING SCHWARZ ALGORITHM FOR ALMOST
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Abstract. Overlapping Schwarz methods are extended to mixed finite element approxima-
tions of linear elasticity which use discontinuous pressure spaces. The coarse component of the
preconditioner is based on a low-dimensional space previously developed for scalar elliptic prob-
lems and a domain decomposition method of iterative substructuring type, i.e., a method based on
nonoverlapping decompositions of the domain, while the local components of the preconditioner are
based on solvers on a set of overlapping subdomains. A bound is established for the condition number
of the algorithm which grows in proportion to the logarithm of the number of degrees of freedom
in individual subdomains and, essentially, to the third power of the relative overlap between the
overlapping subdomains, and which is independent of the Poisson ratio as well as jumps in the Lamé
parameters across the interface between the subdomains. A positive definite reformulation of the
discrete problem makes the use of the standard preconditioned conjugate gradient method straight-
forward. Numerical results, which include a comparison with problems of compressible elasticity,
illustrate the findings.
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1. Introduction. The subject of this paper is an overlapping Schwarz algo-
rithm for almost incompressible elasticity problems. Previous theory for overlapping
Schwarz methods has been restricted to compressible cases in which the Poisson ratio
ν is bounded away from its maximum possible value of 1/2; see [35, section 8]. Here
we remove this restriction and present a coarse space which effectively accommodates
all values of ν < 1/2. This coarse space is an extension of a component of an itera-
tive substructuring method developed over a decade ago for scalar elliptic problems;
see [18] and also [35, Algorithm 5.16]. Recent applications of such extended coarse
spaces to a variety of different problem types appear in [14]. We note that the coarse
space presented here has already been used successfully as part of a production-level
iterative solver in the parallel structural dynamics code Salinas [4].

An early application of overlapping Schwarz methods to mixed formulations of
linear elasticity and Stokes problems is given in Klawonn and Pavarino [24]. In that
work, the coarse spaces were based on the same mixed finite element methods on coarse
meshes and both continuous and discontinuous pressure spaces were considered. An
analysis of these methods was not provided, but their performance was shown to be
quite competitive with block diagonal and block triangular preconditioners; see [25].
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2898 CLARK R. DOHRMANN AND OLOF B. WIDLUND

Related iterative substructuring approaches for either incompressible or almost
incompressible problems appear in [17, 21, 30, 29]. For each of these methods, special
care is required to ensure that the coarse space is properly constructed. As a result,
standard coarse spaces for compressible problems must be modified and enriched
to accommodate incompressible or almost incompressible cases. The coarse space
presented in this paper can be applied without modification to both compressible and
almost incompressible cases. In addition, our approach does not require access to
individual subdomain matrices; i.e., we can work directly with a globally assembled
matrix. One disadvantage of the present algorithm, when compared with the iterative
substructuring methods cited above, is the appearance of a cubic factor of the relative
overlap between subdomains in the condition number estimate. Although this factor
can lead to much larger condition numbers if not controlled, we have not found it to
be a limitation in practice.

We restrict our attention in the present work to finite elements with discontinuous
pressure interpolation. By doing so, it is possible to eliminate the pressure unknowns
at the element level. An important consequence is that the same algorithm, as for
compressible elasticity, can be used for almost incompressible cases, since the assem-
bled matrix is symmetric and positive definite, and the method of preconditioned
conjugate gradients can be used as the iterative method. We also note that we can
use standard finite element methods in any subdomain that is compressible assuming,
as always, that the interface nodes match across the interface.

In addition to almost incompressible elasticity, we hope that our work will have
an impact on the development of penalty-based and augmented Lagrangian precon-
ditioners for saddle-point systems as in [2, 3, 12, 16]. In particular, we have found in
numerical experiments that the present work is relevant to the practical implementa-
tion of such preconditioners for incompressible Stokes and Navier–Stokes equations.
This is the case because the algorithm presented here effectively handles cases of ν
approaching 1/2, i.e., the incompressible limit.

An overview of mixed finite elements for elasticity is given in section 2. Section 3
is devoted to the development of Lemma 3.3, which is central to the proof of our main
result. This lemma, and properties of the chosen coarse space, allow us to apply some
existing theory for compressible problems to almost incompressible cases. The proof of
our main result, a condition number bound for the algorithm, is provided in section 5.
In section 6, we consider the extension of our results to subdomains with boundaries
which are not very regular, basing the discussion on our recent work [15, 26]. The
paper concludes with supporting numerical examples and a discussion in section 7.

2. Almost incompressible elasticity and mixed finite elements. Let Ω ⊂
R

n, n = 2, 3, be a domain with a Lipschitz boundary, and let ∂ΩD, be a nonempty
subset of its boundary ∂Ω, and introduce the Sobolev space V := {v ∈ H1(Ω) :
v|∂ΩD = 0}. Here H1(Ω) := H1(Ω)n. The linear elasticity problem consists in finding
the displacement u ∈ V of the domain Ω, fixed along ∂ΩD and subject to a surface
force of density g, along ∂ΩN = ∂Ω \ ∂ΩD, and a body force f :

(2.1) 2
∫

Ω

μ ε(u) : ε(v) dx +
∫

Ω

λ div u div v dx = 〈F,v〉 ∀v ∈ V.

Here λ(x) and μ(x) are the Lamé parameters, εij(u) = 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
) is the linearized

strain tensor, and two inner products are defined by

ε(u) : ε(v) =
n∑

i=1

n∑
j=1

εij(u)εij(v), 〈F,v〉 =
∫

Ω

n∑
i=1

fivi dx +
∫

∂ΩN

n∑
i=1

givi dA.
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The Lamé parameters can be expressed in terms of the Poisson ratio ν and Young’s
modulus E:

λ =
Eν

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
.

The domain Ω is partitioned into nonoverlapping subdomains Ωi. In section 6, we
will discuss the regularity required of their boundaries for our arguments to be valid.
We assume, for simplicity, that the Lamé parameters are constant in each subdomain.
Since much of our analysis will be carried out for one subdomain at a time, we can
then work with problems with constant coefficients. The bound for the condition
number of our algorithm will be independent of the values of all these parameters.

2.1. A saddle-point formulation. When the material becomes almost incom-
pressible, the Poisson ratio ν approaches the value 1/2 and λ/μ = 2ν/(1 − 2ν) ap-
proaches infinity. In such cases, finite element discretizations of this pure displacement
formulation will increasingly suffer from locking and very slow convergence of the finite
element solution.

A well-known remedy is based on introducing the new variable p = −λdiv u ∈
U ⊂ L2(Ω), which we will call pressure, and replacing the pure displacement problem
(2.1) with a mixed formulation: find (u, p) ∈ V × U such that

(2.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
∫

Ω

μ ε(u) : ε(v) dx −
∫

Ω

div v p dx = 〈F,v〉 ∀v ∈ V,

−
∫

Ω

div u q dx −
∫

Ω

1/λ pq dx = 0 ∀q ∈ U ;

see Brezzi and Fortin [9] or Brenner and Scott [8].
In the case of homogeneous Dirichlet boundary conditions for u on all of ∂Ω,

we will choose U := L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω

qdx = 0}, since it follows from
the divergence theorem that the pressure will have a zero mean value. For nonzero
Dirichlet boundary data, the same is true if the net flux satisfies

∫
∂Ω u · n ds = 0,

where n is the outward normal. If, on the other hand, the boundary conditions are
mixed (part essential and part natural), then there is always a unique solution with
a pressure component in U = L2(Ω). Rather than discussing two somewhat different
cases, we will, from now on, focus on the case with homogeneous Dirichlet boundary
conditions on all of ∂Ω.

The net fluxes
∫

∂Ω̃
u·n dA, across the boundary ∂Ω̃ of subsets Ω̃ of individual sub-

domains, will be important in our analysis. Only if they vanish are there divergence-
free extensions of the boundary values for which the bilinear form

∫
Ω̃

λ div u div v dx
will then vanish.

In our analysis, we will work only with the restrictions of (2.2) to individual
subdomains Ωi or subsets of such subdomains. In such cases, we can factor out the
constants μ and 1/λ, and we will use the notation ai(u,v), bi(v, p), and ci(p, q) for
the three resulting bilinear forms associated with the subdomain Ωi.

We note that

(div v, div v)L2(Ωi) ≤ n

∫
Ωi

ε(v) : ε(v) dx = n/2 ai(v,v), n = 2, 3.

Therefore,

(2.3) |bi(v, p)| =
∣∣∣∣− ∫

Ωi

div v p dx

∣∣∣∣ ≤√n/2ai(v,v)1/2ci(p, p)1/2.
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2900 CLARK R. DOHRMANN AND OLOF B. WIDLUND

In the absence of essential boundary conditions, the elasticity operator has zero
energy modes, which are the rigid body modes. There are three of them for n = 2
and six for n = 3; see further section 4.

By letting λ/μ → ∞, we obtain the limiting problem for incompressible linear
elasticity and also a formulation of the Stokes system for incompressible fluids. A
penalty term, as in the compressible case, could also originate from stabilization
techniques or penalty formulations for Stokes problems.

A Korn inequality for the subspace orthogonal to the rigid body modes will es-
tablish an equivalence between the square of the H1(Ωi)-seminorm and the bilinear
form ai(·, ·); see section 5 and, in particular, Lemma 5.2. This will make it possible
to use many tools and results developed in studies of scalar elliptic problems.

2.2. Finite element methods with discontinuous pressures. We assume
that the domain Ω is decomposed into N nonoverlapping subdomains Ωi of diameter
Hi. The interface of this decomposition is given by

Γ =

(
N⋃

i=1

∂Ωi

)
\ ∂Ω.

To simplify our discussion, we will assume that, as in [35, Assumption 4.3], each
subdomain is the union of shape-regular triangular or tetrahedral elements of a global
conforming coarse mesh and that the number of such triangles or tetrahedra forming
any individual subdomain is uniformly bounded. In section 6, we will explore the
extent to which this assumption can be relaxed. Each subdomain is further partitioned
into many shape-regular elements. We will assume that the nodes match across the
interface between the subdomains.

In our experimental work, we have chosen to work with the Q2(h) − P1(h) finite
elements: the displacement space is Vh := (Q2(h))n, where Q2 is the space of contin-
uous, bi- or triquadratic, tensor product polynomials. The pressure space consists of
discontinuous, piecewise linear functions:

Uh := {q ∈ U : q|T ∈ P1(T ) ∀T ∈ τh} .

The two spaces are defined on the same quadrilateral or hexahedral mesh. This mixed
finite element method satisfies a uniform inf-sup condition:

(2.4) sup
v∈Vh

bi(v, q)
ai(v,v)1/2

≥ βci(q, q)1/2 ∀q ∈ Uh ∩ L2
0, β > 0.

For a proof of the inf-sup stability of this mixed finite element space, see Boffi and
Gastaldi [5] or Girault and Raviart [20, pp. 156–158]. The parameter β depends
on the domain, and, in particular, it varies inversely with the aspect ratio of the
domain; see section 5. There are optimal O(h2) error estimates for both displacements
and pressures for this mixed finite element method provided that unmapped linear
functions are used for the pressure space; see [5].

We note that while finite element methods based on hexahedra and quadrilaterals
enjoy popularity, our theory applies equally well to any stable mixed method, e.g.,
one based on tetrahedra or triangles as long as the pressure space is discontinuous.
We could also consider some more general saddle-point problems with penalty terms.

3. Analysis of saddle-point problems. Consider the linear system

(3.1)
[

μA BT

B (−1/λ)C

] [
u
p

]
=
[

f
0

]
,
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corresponding to a stable, mixed finite element formulation of the elasticity problem
on a subdomain Ωi; to simplify, we drop the index i in this section. Here u is the
vector of nodal values of the vector valued finite element function u(x), etc. From
(2.3) and with A the stiffness matrix corresponding to ai(·, ·), etc., we find

(3.2) (pT Bu)2 ≤ (n/2)(uT Au)(pT Cp).

Setting p = λC−1Bu in (3.2) then gives, after canceling a common factor,

(3.3) uT BT C−1Bu ≤ (n/2)uT Au.

We note that uT BT C−1Bu can also be written as
∫
Ωi

|div u|2 dx.

The energy of u is defined as uT Ãu, where

(3.4) Ã = μA + λBT C−1B,

a Schur complement obtained by eliminating the variable p; we will also work with
a bilinear form ãi(·, ·) which corresponds to this displacement-only formulation. We
next partition the displacement vector into

(3.5) u =
[

uI

uΓ

]
.

Here the subscripts I and Γ refer to internal and interface, respectively, and we see
that (3.1) can be expressed equivalently as

(3.6)

⎡⎣ μAII μAIΓ BT
I

μAΓI μAΓΓ BT
Γ

BI BΓ (−1/λ)C

⎤⎦⎡⎣ uI

uΓ

p

⎤⎦ =

⎡⎣ fI

fΓ

0

⎤⎦ .

For p ∈ L2
0, we obtain from (2.4), and a standard argument,

(3.7) pT BIA
−1
II BT

I p ≥ β2pT Cp,

where β is the discrete inf-sup constant.
From the divergence theorem, we have

(3.8)
∫

Ωi

div u dx =
∫

∂Ωi

(u · n) dS = gT uΓ,

where n is the unit outward normal for ∂Ωi and g is a constant vector associated
with the net flux of u across ∂Ωi. We will use a vector valued function of constant
divergence defined by

(3.9) v(x) =
gT uΓ

n|Ωi|
n∑

j=1

xjej ,

where xj and ej are the coordinate and unit vector, respectively, for direction j. The
corresponding vector of nodal values will be denoted by v.

We find that

(3.10)
∫

Ωi

div v dx =
∫

Ωi

div u dx.
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Consequently, since div v is a constant,

(3.11) (λ/|Ωi|)vT
Γ ggT vΓ = λ

∫
Ωi

|div v|2 dx ≤ λ

∫
Ωi

|div u|2 dx

and

(3.12) gT vΓ =
∫

∂Ωi

(v · n) dS =
∫

∂Ωi

(u · n) dS = gT uΓ.

Furthermore, by (3.3) and (3.9),

uT (A/2)u =
∫

Ωi

ε(u) : ε(u) dx ≥ (1/n)
∫

Ωi

|div u|2 dx

≥ (1/n)
∫

Ωi

|div v|2 dx

=
∫

Ωi

ε(v) : ε(v) dx,(3.13)

and we obtain

(3.14) vT Av ≤ uT Au

and

(3.15) vT Ãv =
λ + 2μ/n

|Ωi| uT
ΓggT uΓ ≤ uT Ãu.

Now let

(3.16) wΓ = uΓ − vΓ;

it follows that gT wΓ = 0; i.e., the net flux across ∂Ωi of w is zero.
We return to (3.6) for (w, q) and consider the case with fI = 0 and wΓ given. We

then obtain

(3.17)
[

μAII BT
I

BI (−1/λ)C

] [
wI

q

]
=
[ −μAIΓwΓ

−BΓwΓ

]
.

In addition, the mean value
∫
Ωi

qdx/|Ωi| of q is zero as a consequence of gT wΓ = 0
and the divergence theorem. Therefore, although BI is rank deficient with a null space
of dimension 1, the linear system in (3.17) is consistent even for 1/λ = 0. Elimination
of wI gives

(3.18) ((μ/λ)C + BIA
−1
II BT

I )q = μ(BΓ − BIA
−1
II AIΓ)wΓ,

and it then follows from (3.17) and (3.18) that

(3.19) wT Ãw = μwT
Γ SΓΓwΓ + μwT

Γ B̃T
Γ S−1

μ,λB̃ΓwΓ,

where

(3.20) SΓΓ = AΓΓ − AΓIA
−1
II AIΓ, B̃Γ = BΓ − BIA

−1
II AIΓ,
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and

(3.21) Sμ,λ = (μ/λ)C + BIA
−1
II BT

I .

We will use minimal energy extensions with respect to Ã and A.
Definition 3.1. The discrete saddle-point harmonic function for boundary data

wΓ has the vector representation

wsh =
[

wI

wΓ

]
,

where wI is given by the solution of (3.17).
Definition 3.2. The discrete harmonic function for boundary data wΓ has the

vector representation

ŵ =
[ −A−1

II AIΓ

I

]
wΓ.

We can then rewrite (3.19) as

(3.22) wT Ãw = μŵT Aŵ + μŵT BT S−1
μ,λBŵ.

It then follows from (3.3), (3.7), and the definition of Sμ,λ that

(3.23) wT Ãw ≤
(

1 +
n/2

μ/λ + β2

)
μŵT Aŵ.

Therefore, the energy of the discrete saddle-point harmonic function for the boundary
data wΓ is bounded by a constant times that of the discrete harmonic function with
respect to the μA norm. This result will allow us to work with the benign μA norm,
even as λ approaches infinity, for displacement fields which satisfy a zero net flux
condition. For general displacement fields, we have the following.

Lemma 3.3. Let ush denote the discrete saddle-point harmonic function with the
same boundary data uΓ as u. Then,

(3.24) uT
shÃush ≤ 4

(
1 +

n/2
μ/λ + β2

)
μuT Au +

2(λ + 2μ/n)
|Ωi| uT

ΓggT uΓ.

Proof. With u = v + w, we find, by using (3.23), (3.16), (3.14), and (3.15), that

uT Ãu ≤ 2(vT Ãv + wT Ãw)

≤ 2(vT Ãv + (1 + (n/2)/(μ/λ + β2))μŵT Aŵ)

≤ 2(vT Ãv + 2(1 + (n/2)/(μ/λ + β2))μ(vT Av + uT Au))
≤ 4(1 + (n/2)/(μ/λ + β2))μuT Au + 2(λ + 2μ/n)/|Ωi|uT

ΓggT uΓ.(3.25)

The lemma then follows from observing that uT
shÃush ≤ uT Ãu, since ush minimizes

the energy with respect to Ã for the boundary data uΓ.

4. The algorithm and the main result. We will describe and analyze our al-
gorithm as a two-level Schwarz method, as in [35, Chapters 2 and 3], defined in terms
of a set of subspaces. To simplify the discussion, we will consider only the case when
exact solvers are used for both the coarse problem and the local problems. We will
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work with the displacement variables only and with the positive definite formulation
obtained after all pressure degrees of freedom have been eliminated. We will use a
coarse space V0 and a number of local spaces V′

i associated with an overlapping cover-
ing {Ω′

i} of Ω. We will assume that each Ω′
i is constructed by adding layers of elements

to a subdomain Ωi. While other recipes have been considered, this is the most popular
approach. We also assume that all finite element nodes for the displacement, which
belong to an element with at least one node on an edge of a subdomain Ωi, belong to
Ω′

i; in case we have nodes interior to the elements and nodes in the interior to the sub-
domain faces, e.g., as for the Q2 elements, we can relax this condition and require only
that we have at least one additional layer of elements in the extended subdomain Ω′

i.
The overlap between the subdomains is characterized by parameters δi, somewhat

differently from [35, Assumption 3.1]: δi is the minimal distance from any face F i� ⊂
∂Ωi, common to Ωi and a neighboring subdomain Ω�, to ∂Ω′

�.
The coarse component space of our preconditioner is adapted from an earlier

iterative substructuring algorithm [35, Algorithm 5.16] first developed for scalar el-
liptic problems in [18]. Because of the larger null space of the elasticity operator, we
need to enrich that coarse space to make it work for elasticity. This is related to the
well-known null space property, which is necessary to obtain scalability, i.e., a bound
on the convergence, which does not depend on the number of subdomains; see the
discussion in [31] or [33]. We build the local components of our preconditioner by
restricting the original problem to the overlapping subdomains Ω′

i.
To introduce the coarse space V0, we first decompose the interface Γ. For problems

in the plane, the interface is the union of edges and vertices. An edge E ij is an open
subset of Γi := ∂Ωi ∩ Γ, which contains all nodes which are shared by the boundaries
of only a pair of subdomains Ωi and Ωj . The subdomain vertices V i� are endpoints of
edges and typically are shared by more than two subdomains.

In three dimensions, Γi is the union of faces F ij , edges E ik, and vertices V i�. A
node on a face is common to two subdomains Ωi and Ωj , while those on an edge
typically are common to more than two. We will call the union of the edges and
vertices of a subdomain Ωi its wire basket.

We can think of each of these sets in terms of an equivalence class of finite element
nodes. The class of a node x ∈ Γ is determined by the set of subdomains with x in
their closures. We note that, for subdomains obtained from a mesh partitioner, the
situation can be complicated and greater care with the definitions may be required;
see, e.g., [28, section 3] and [27].

All elements of the coarse space are discrete saddle-point harmonic functions, in
the sense of Definition 3.1, and are therefore determined solely by their values on the
interface and are of minimal elastic energy.

In the plane, we introduce an edge cutoff function θEij for each edge. It is a
finite element function which equals 1 at all nodes of E ij and vanishes at all other
interface nodes. They are complemented by vertex cutoff functions θVi� which equal
1 at the vertex and vanish at all other interface nodes. Together these functions form
a partition of unity. For n = 2, we then obtain all the elements in our coarse space
by using these functions and the rigid body modes

r1 :=
[

1
0

]
, r2 :=

[
0
1

]
, r3 :=

1
Hi

[ −x2 + x̂2

x1 − x̂1

]
.

Here x̂ is a suitable shift, e.g., to the middle of the edge, to make this basis well
conditioned. The scaling 1/Hi ensures that the norms of the three functions are
comparable.

D
ow

nl
oa

de
d 

07
/3

1/
13

 to
 1

28
.1

22
.2

53
.2

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON ALMOST INCOMPRESSIBLE ELASTICITY 2905

The basis functions of our coarse space are obtained by multiplying these vector
valued functions by θEij and bringing them into the finite element space by interpo-
lating using the values at the nodes on the interface. We can obtain the same basis
elements by restricting the three rigid body modes to the nodes of the edge and set-
ting the values at all other interface nodes to zero. For each edge, we thus obtain
three basis functions. In addition, we have two degrees of freedom for each vertex V i�

representing its displacement.
A similar construction is used for the three-dimensional case. The rigid body

modes are now three translations

(4.1) r1 :=

⎡⎣ 1
0
0

⎤⎦ , r2 :=

⎡⎣ 0
1
0

⎤⎦ , r3 :=

⎡⎣ 0
0
1

⎤⎦
and three rotations

(4.2) r4 :=
1

Hi

⎡⎣ 0
−x3 + x̂3

x2 − x̂2

⎤⎦ , r5 :=
1
Hi

⎡⎣ x3 − x̂3

0
−x1 + x̂1

⎤⎦ , r6 :=
1

Hi

⎡⎣ −x2 + x̂2

x1 − x̂1

0

⎤⎦ ,

where x̂ ∈ Ωi can be chosen as a midpoint of an edge or face. The shift of the origin
makes this basis for the space of rigid body modes well conditioned, and the scaling
and shift make these six functions scale similarly with Hi.

For each face, we can use the products of a cutoff function θFij with the rigid
body modes or we can obtain six linearly independent basis functions by restricting
the rigid body modes to the nodes of F ij and setting the values at all other interface
nodes to zero. For a straight edge, on the other hand, we obtain only five, since, as it
is easy to see, a rigid body mode representing a rotation with the edge as its axis is
invisible on the edge; for a detailed discussion of the case of curved edges, see [27] and
also section 6. For each vertex, finally, we have three degrees of freedom representing
the displacement at that point.

It is clear from our construction that when restricted to an interior subdomain,
this coarse space will contain all the rigid body modes. As previously noted, this is a
requirement for obtaining a scalable algorithm; see also [35, section 8.2].

As previously indicated, the local components of the preconditioner are based on
a set of overlapping subdomains {Ω′

i}. Each of them is associated with a bilinear form
ã′

i(·, ·) obtained by integrating only over Ω′
i in (2.2) and then eliminating the pressure

variables; i.e., this bilinear form corresponds to the displacement-only formulation.
For the local problems, we use zero Dirichlet data on ∂Ω′

i. Thus, our local spaces
V′

i, i = 1, . . . , N, are defined as

(4.3) V′
i = Vh(Ω′

i) ∩ H1
0(Ω

′
i).

This is the standard choice as in [35, Chapter 3].
All that is now required for the analysis of our algorithm is an estimate of a

parameter in a stable decomposition of any element in the finite element space; see
[35, Assumption 2.2 and Lemma 2.5]. We need to estimate C2

0 in

(4.4) ã(u0,u0) +
N∑

i=1

ã′
i(ui,ui) ≤ C2

0 ã(u,u) ∀u ∈ Vh
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2906 CLARK R. DOHRMANN AND OLOF B. WIDLUND

for some choice of {ui}N
0 such that

(4.5) u =
N∑

i=0

RT
i ui, ui ∈ V′

i.

Here ã(·, ·) is the displacement-only bilinear form for the entire domain Ω. For i ≥ 1,
we use the extension operators RT

i : V′
i −→ Vh. Similarly, RT

0 imbeds V0 into Vh.
Associated with the coarse space is a projection P0 : Vh −→ V0; it is orthogonal

with respect to the ã(·, ·)−inner product. For each local space V′
i, there is a projection

Pi defined by

Pi = RT
i P̃i with P̃i defined by ã′

i(P̃iu,v) = ã(u, RT
i v) ∀v ∈ V′

i.

The additive Schwarz operator, the preconditioned operator used in our iteration,
is given by

Pad =
N∑

i=0

Pi.

By using [35, Lemmas 2.5 and 2.10], we find that the condition number κ(Pad)
can be bounded by (NC + 1)C2

0 , where NC is the minimal number of colors required
to color the subdomains Ω′

i such that no pair of intersecting subdomains have the
same color.

Our main result is as follows.
Theorem 4.1 (condition number estimate). The condition number of our do-

main decomposition algorithm satisfies

κ(Pad) ≤ C(H/δ)3(1 + log(H/δ))(1 + log(H/h)),

where C is a constant, independent of the number of subdomains and their diameters
and the mesh size and which depends only on the number of colors required for the
overlapping subdomains and the shape regularity of the elements and the subdomains.

As in many domain decomposition results, H/h is shorthand for maxi(Hi/hi),
where hi is the smallest diameter of the elements of Ωi. Similarly, H/δ is the largest
ratio of Hi and δi. In our proof, we will assume that δi/hi ≤ C(Hi/δi).

By using [35, Theorem 2.9], we can obtain a similar result for multiplicative
Schwarz methods.

We note that the analysis of the compressible case would require only the use of
older techniques as in [15]. The condition number can then be improved to

C(H/δ)(1 + log(H/h)).

See also [35, Chapter 8] for a survey of older results on domain decomposition algo-
rithms for compressible elasticity.

5. Proof of main result. Our proof, which we now outline, is in three parts.
As just indicated, we need to estimate the parameter C2

0 of (4.4). To do so, we
first design a coarse component u0 and provide a bound on ã(u0,u0) by estimating
ãi(u− u0,u− u0). The coarse interpolant u0 will be chosen so that we can estimate
ãi(u−u0,u−u0) in terms of ai(u−u0,u−u0), by using Lemma 3.3, with a constant
that does not grow with the parameter λi. In subsection 5.3, we will similarly design
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and estimate the local components ui of a partition of u as in (4.5), and we will again
obtain a result which holds uniformly with respect to λi.

We can rely on some standard technical tools collected in [35, section 4.6] and
[28, section 7]; they were developed for scalar elliptic problems and compressible
elasticity, respectively. Thus, we can obtain estimates, in the norm defined by ai(·, ·)
in section 2 and by the matrix A of section 3, by using estimates in the H1(Ωi)-norm
and the elementary inequality

(5.1) ai(v,v) = 2
∫

Ωi

ε(v) : ε(v)dx ≤ 2|v|2H1(Ωi)
.

We can then return to the norm defined by ai(·, ·) by using the second Korn inequality.
Lemma 5.1 (Korn’s second inequality). Let Ωi be a Lipschitz domain of diameter

Hi. Then, there exists a constant C = C(Ωi) such that

‖v‖2
H1(Ωi)

≤ C

(
ai(v,v) +

1
H2

i

‖v‖2
L2(Ωi)

)
.

The norm of the left-hand side is the scaled H1-norm:

‖v‖2
H1(Ωi)

:= |v|2H1(Ωi)
+

1
H2

i

‖v‖2
L2(Ωi)

.

We note that the constant C in Lemma 5.1 depends on the shape regularity of
the subdomain but that we will only need this result for the subdomains Ωi, which,
by assumption, are shape regular. In subsections 5.2 and 5.3, we will face other issues
concerning domains with poor aspect ratios when we consider the inf-sup parameter,
and other bounds which also depend on the aspect ratio will be part of the proof of
our main result. We also note that inf-sup stability and Korn’s second inequality are
closely related; see, e.g., Bramble [7] in which new proofs of both results are given for
general Lipschitz domains.

By using Lemma 5.1 and a Poincaré inequality, we obtain the following.
Lemma 5.2. Let Ωi be a Lipschitz domain of diameter Hi. Then, there exists a

constant C = C(Ωi) such that

inf
r∈RB

‖v − r‖2
H1(Ωi)

≤ Cai(v,v).

Here RB is the space of rigid body modes.
A detailed discussion of variants of this result is given in [28, section 6]; in par-

ticular, Lemma 5.2 is closely related to [28, Lemma 6.4].
In a final, elementary step of our proof, we will use that μiai(v,v) ≤ ãi(v,v).
We recall that u0 and indeed all elements of the coarse space are discrete saddle-

point harmonic functions. Therefore, ã(u0,u0) ≤ ã(v,v) for any v which equals u0

on the interface Γ. Therefore, in the different steps of our proof, we can work with
any extension into the interior of the subdomains which is convenient for us. We will
focus on the more difficult case of n = 3 since no additional ideas are required for the
case of n = 2.

5.1. The coarse component of the decomposition. As in the theory for
iterative substructuring algorithms (see [35, Chapters 4, 5, and 6]), the analysis can
be carried out for one subdomain Ωi at a time and variations in the values of the
Lamé parameters between subdomains will therefore not enter our bounds.
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We recall that the coarse space, restricted to an individual subdomain that does
not touch ∂Ω, will contain all rigid body modes and that we have constructed a basis
for the coarse space in terms of these modes and cutoff functions associated with the
faces, edges, and vertices of the subdomain Ωi. When constructing the coarse space
component u0, by a specific interpolation procedure, we will make sure that all rigid
body modes are reproduced and also that the remainder w = u−u0 will have a zero
net flux across all the faces of the interface. Our construction and estimates can be
used both for interior subdomains and for those with a boundary that intersects ∂Ω
since our interpolation procedure will reproduce zero Dirichlet boundary conditions
on ∂Ωi ∩ ∂Ω.

The construction of u0 begins by setting u0(V i�) = u(V i�) at all vertices of the
subdomain.

Next, for each edge Ej� ⊂ ∂Ωi, common to two faces F ij and F i�, we select the
coefficients for the edge basis elements to minimize the L2(Ej�)-norm of u − u0. We
note that since an edge component is obtained by restricting rigid body modes to the
nodes of the edge and u − u0 vanishes at the subdomain vertices, we can find this
component of u0 by solving

(5.2) inf
r∈RB

‖Ih(θEj�(u− r))‖L2(Ej�).

Here Ih is the interpolation operator that maps any continuous function into the finite
element space Vh. Thus,

(5.3) ‖Ih(θEj�(u − u0))‖L2(Ej�) ≤ ‖Ih(θEj�(u− r))‖L2(Ej�) ∀r ∈ RB.

We can estimate the H1(Ωi)-seminorm of this edge contribution by its L2(Ej�)-norm
by using [35, Lemma 4.19]

|Ih(θEj�u)|2H1(Ωi)
≤ C‖u‖2

L2(Ej�).

The proof of this result uses the trivial extension of the values on the edge to the
nodes interior to Ωi. The square of this L2(Ej�)-norm can, at the expense of a factor
C(1 + log(Hi/hi)), be estimated by the square of the H1(Ωi)-norm of u by using [35,
Lemma 4.16]

‖u‖2
L2(Ej�) ≤ C(1 + log(Hi/hi))‖u‖2

H1(Ωi)
.

These two results are combined in [35, Corollary 4.20], which we will use several times.
Using these results, we then find that

|Ih(θEj�(u − u0))|2H1(Ωi)
≤ inf

r∈RB
C‖Ih(θEj�(u − r))‖2

L2(Ej�)(5.4)

≤ inf
r∈RB

C‖u− r‖2
L2(Ej�) ≤ C(1 + log(H/h)) inf

r∈RB
‖u− r‖2

H1(Ωi)
.

Finally, for each face F ij ⊂ ∂Ωi we determine the coefficients for the face basis
functions by solving a constrained minimization problem with a single linear con-
straint. We recall that the restriction of u0 to a face is of the form Ih(θFij r), where
r is a linear combination of the six rigid body modes. We find this r by solving

(5.5) inf
r∈RB

‖Ih(θFij (u − r))‖2
L2(Fij) subject to

∫
Fij

(u − u0) · n dA = 0.
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This gives rise to a well conditioned linear system of algebraic equations. All the
matrix elements of the leading minor of order 6 are of order H2

i ; they are inner
products in L2(F ij) of rigid body modes which, by construction, are of order 1.
The remaining column and row of the matrix, which expresses the constraint, also
have elements of order H2

i . Simple estimates of the elements of the right-hand side
of the linear system, using Cauchy–Schwarz’s inequality, and a simple computation
show that each coefficient for the face basis functions for u0 can be estimated by
(C/Hi)‖u‖L2(Fij).

By a small modification of the proof of [35, Lemma 4.25], using the fact that the
rigid body modes rk, defined in (4.1) and (4.2), have components which are linear
functions which are uniformly bounded with gradients bounded by C/Hi, we have

(5.6) |Ih(θFijrk)|2H1(Ωi)
≤ C(1 + log(Hi/hi))Hi, k = 1, . . . , 6.

Therefore, for the solution r of the constrained minimization problem (5.5), we have

(5.7) |Ih(θFijr)|2H1(Ωi)
≤ C/Hi(1 + log(Hi/hi))‖u‖2

L2(Fij).

By using an elementary trace theorem (see [32, Theorem 1.2] or [35, Lemma 4.17]),
combining the estimates for the edge and face terms, and using the fact that u − u0

vanishes at the subdomain vertices, we can conclude that

(5.8) |u− u0|2H1(Ωi)
≤ C(1 + log(Hi/hi))‖u‖2

H1(Ωi)
.

Our recipe for u0 will clearly reproduce any rigid body mode. We can therefore
replace ‖u‖2

H1(Ωi)
on the right-hand side of (5.8) by infr∈RB ‖u− r‖2

H1(Ωi)
and then

use Lemma 5.2 and replace the square of that seminorm by ai(u,u).
We now consider ãi(u − u0,u − u0). Since, by construction, the net flux across

∂Ωi of u− u0 vanishes, we can use Lemma 3.3 and estimate this energy by

4
(

1 +
n/2

μi/λi + β2

)
μiai(u − u0,u− u0).

This expression, in turn, can, by using (5.1), be estimated by

8
(

1 +
n/2

μi/λi + β2

)
μi|u − u0|2H1(Ωi)

and therefore, by using (5.8) and the argument that follows, also by

C(1 + log(Hi/hi))μiai(u,u).

We can then return to the ãi-norm by using the elementary inequality μiai(u,u) ≤
ãi(u,u).

A bound

ã(u0,u0) ≤ C(1 + log(H/h))ã(u,u)

now results by adding the contributions from all the subdomains.
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5.2. The influence of aspect ratios on certain bounds. Before we turn to
the analysis of the local terms, we will formulate a result on the effect of the aspect
ratios of domains on the inf-sup parameter. We also give bounds for certain modified
face cutoff functions ϑδ

Fij which are supported in the closure of the set

(5.9) Ξij := (Ωi ∪ F ij ∪ Ωj) ∩ (Ω′
i ∩ Ω′

j).

In addition, for each edge Ej� ⊂ ∂Ωi, common to two faces F ij and F i� of Ωi, we will
consider a modified edge cutoff function ϑδ

Ej� . It is supported in the closure of the set

(5.10) Ψj� :=
⋂

m∈Ij�

Ω′
m,

which is the intersection of the extensions Ω′
m of all subdomains Ωm, which have the

edge Ej� in common with Ωi. Here the set of subdomain indices, denoted by Ij�, also
includes i.

Bounds over these two sets of domains, which have aspect ratios of order Hi/δi,
will affect the estimates of the ui ∈ V′

i, i ≥ 1, in the decomposition which results
in our estimate of C2

0 , the parameter in (4.4). In contrast, as previously noted, these
aspect ratios do not enter the bound of the coarse space component u0 since all
estimates required in subsection 5.1 are for entire subdomains which, by assumption,
are shape regular.

We first consider the inf-sup parameter. The effect of the aspect ratio has been
considered in the literature, in particular, by Dobrowolski [13]. As in that paper,
which concerns the continuous problem, we consider a domain Ω and an α ∈ R

n with

1 = α1 ≤ αi ≤ αn, 1 ≤ i ≤ n.

A stretched domain is then defined by

Ωα = {y ∈ R
n : (y1/α1, . . . , yn/αn) ∈ Ω}.

Additional geometric parameters di, the diameters of Ω with respect to the coordinate
directions, are defined by

di = sup{h : x, x + hei ∈ Ω}, 1 ≤ i ≤ n.

For our application, the lower bound of the following result will provide a bound on
β, which decreases no faster than linearly in δ/H for the domains defined by (5.9)
and (5.10).

Lemma 5.3 (Dobrowolski). The inf-sup parameter β(Ωα) of the stretched domain
satisfies

β(Ω)
αn

≤ β(Ωα) ≤ C

αn
,

where C2 = d3
1d2 . . . dn/dn+2 and d is the length of the side of the largest n-cube that

is contained in Ω.
To obtain the same result as in Lemma 5.3, for the discrete case, we combine this

lemma with techniques developed in Stenberg [34]. We note that his arguments are
in terms of macroelements; i.e., local arguments are sufficient. Therefore, the aspect
ratio of the domain enters only through the inf-sup parameter for the continuous
problem.

D
ow

nl
oa

de
d 

07
/3

1/
13

 to
 1

28
.1

22
.2

53
.2

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON ALMOST INCOMPRESSIBLE ELASTICITY 2911

A standard tool in the theory for iterative substructuring problems is provided
by [35, Lemma 4.24]

(5.11) |Ih(ϑFiju)|2H1(Ωi)
≤ C(1 + log(Hi/hi))2‖u‖2

H1(Ωi)
.

Here ϑFij is an explicitly constructed function, which has the same boundary values
as θFij on Γ. We also have the bound

(5.12) |ϑFij |2H1(Ωi)
≤ C(1 + log(Hi/hi))Hi;

see [35, Lemma 4.25].
In our analysis of the local terms, we need similar bounds but for the intersection

of Ωi with Ω′
j , the extension of the other subdomain Ωj , which has a face F ij in

common with Ωi. We will use a face cutoff function ϑδ
Fij which is different from

ϑFij in two respects. Instead of having the value 1 at all nodes of F ij , it will equal
dist(x, ∂F ij)/δi, at any node x ∈ F ij within a distance δi of the boundary of the face;
at all other nodes on F ij the nodal values remain 1. We note that this function thus
resembles a regular face cutoff function on a coarser mesh with elements of size δi. In
addition, we will restrict the support of this cutoff function to the closure of Ξij . The
bound on the right-hand side of (5.11) must then be multiplied by a factor Hi/δi. On
the other hand, one of the factors (1+log(Hi/hi)) can be replaced by (1+log(Hi/δi)).

Lemma 5.4. There exists a face cutoff function ϑδ
Fij , with values at the nodes of

F ij as just specified, which vanishes at all the nodes on the rest of the boundary of
Ωi ∩ Ω′

j and which satisfies

(5.13) |Ih(ϑδ
Fiju)|2H1(Ωi∩Ω′

j)
≤ C(Hi/δi)(1 + log(Hi/δi))(1 + log(Hi/hi))‖u‖2

H1(Ωi)

and for all the rk, the basis elements of the space RB,

(5.14) |Ih(ϑδ
Fijrk)|2H1(Ωi∩Ω′

j)
≤ C(Hi/δi)(1 + log(Hi/δi))Hi.

We will prove this result for a square face and for a cube compressed in the
direction normal to F ij , i.e., a domain which has dimensions Hi × Hi × δi. We note
that the result also holds for any domain which contains this compressed cube and
shares the face F ij with it. Therefore, the boundary of the extended subdomains
Ω′

j can be quite irregular; we simply extend ϑδ
Fij by zero into the rest of Ωi. The

proof can also easily be modified to hold for other geometric configurations such as
a neighborhood, of minimal thickness δi, of a face of a tetrahedron. As we will see,
we need only a positive lower bound for the angles between the faces of Ωi that meet
at the edges of the face F ij . We will begin our proof by considering functions ϑH

Fij

defined in the entire cube prior to its compression.
Proof. We first note that the presence of the interpolation operator Ih in our

formulas present no difficulties; see [35, Lemma 4.31]. To establish (5.13), we need to
examine and modify the proofs of [35, Lemmas 4.23, 4.24, and 4.25]. Those proofs
concern four functions ϑFij , one for each face of a shape regular tetrahedron of diam-
eter H .

An analogous construction for a cube is worked out in the doctoral thesis of
Casarin [11, subsection 3.3.2] and will now be outlined. While, in the proof of [35,
Lemma 4.23], the tetrahedral subdomain is divided into four tetrahedra by connecting
its vertices to its centroid, the cube is divided into six pyramids each with a face of
the cube as its base. Similar to the tetrahedral case, these pyramids are each divided
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2912 CLARK R. DOHRMANN AND OLOF B. WIDLUND

into four tetrahedra each with an edge selected from among the edges of the cube and
another edge connecting the centroid of the cube with the centroid of a face of the
cube that is adjacent to the first edge. The construction given below will show that
a function ϑH

Fij can be constructed such that

(5.15) |∇ϑH
Fij (x)| ≤ C/r for r ≥ δi, and |∇ϑH

Fij (x)| ≤ C/δi for r ≤ δi.

Here C is a constant and r the minimum distance of x to the wire basket of the cube.
Before we consider the effects of compressing the cube, we will provide some

further details on the construction. For the cube, ϑH
Fij(x) is defined as follows: its

values on the line segment between the centroid of the cube and the centroid of the
face F ij vary linearly from 1/6 to 1. Similarly, the restriction of ϑH

Fij to the line
segments between the centroid of the cube and the centroids of the other faces drops
linearly from 1/6 to 0. The value elsewhere in each of the 24 tetrahedra is given, for
all points at a distance larger than δi from the wire basket, by a constant value on
any plane through the edge of the cube, which intersects one of the line segments just
introduced, with its value determined by that on the line segment. For the part on
any such plane, which is within δi of the wire basket, we will let the function decrease
linearly to zero as a function of the distance to the wire basket. The bounds on the
gradient of the resulting function, as in (5.15), then follow easily. We also note that
these modified face functions will give us a partition of unity for the whole cube with
the exception of a δi-neighborhood of the wire basket. Clearly, this will no longer be
true after we compress the support of the individual face functions.

We now examine the effect of compressing the cube in the direction normal to
the face F ij which results in the function ϑδ

Fij . With the new dimensions Hi ×Hi× δi

the gradient of ϑδ
Fij can be estimated by CHi/rδi in the interior of this domain and

by CHi/δ2
i in the image, under the compression, of the δi-neighborhood of the wire

basket. These bounds are best possible for the four tetrahedra adjacent to the face
F ij and reflect the fact that the angle between two faces, of any subtetrahedron,
which has an edge of the cube in common with and is adjacent to F ij , shrinks by
a factor arctan(δi/Hi). On the other hand, for the other tetrahedra adjacent to the
edges of the face F ij , the angle in fact increases and the gradient decreases. In still
others, the angles are also decreased, but there are no additional difficulties treating
the neighborhood of the edges of the face opposite to F ij .

We also recall that the estimates of the energy of Ih(ϑFiju), in the proof of [35,
Lemma 4.24], involve the introduction of cylindrical coordinates with individual edges
of ∂F ij as z-axes and integrating over individual subtetrahedra. In fact, we integrate
over the images of the δi-neighborhoods of the edges and the remaining parts of the
subtetrahedra separately; the latter will contribute a log(Hi/δi) factor. The linear
factor Hi/δi in (5.13) results from the fact that while the square of the gradient of
ϑδ
Fij (x) grows quadratically in Hi/δi in the tetrahedra next to the face, the angle over

which we integrate shrinks in proportion to δi/Hi. The bounds for the contributions
to the norm by the other twenty subtetrahedra pose no additional difficulties.

As in [35, Proof of Lemma 4.24], we also use a bound on the L2-norm of finite
element functions over intervals of length Hi, which are parallel to edges of the cube;
see [35, Corollary 4.20]. We can use that result without any concern for the aspect
ratios of our regions after noting that the finite element function u is defined in all of
Ωi and writing our bound, as in the right-hand side of (5.13), in terms of the norm
over the entire subdomain.
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The arguments given above can easily be modified to establish the bound in
(5.14).

The modified edge function ϑδ
Ej� is supported in the closure of a δi-neighborhood

of the wire basket of Ωi and in the closure of Ψj�. We no longer have to work with
the compressed cube. The ϑδ

Ej� of all the edges of Ωi, the ϑδ
Fj� of all the faces of the

subdomain, and the standard nodal basis functions of the subdomain vertices should
form a partition of unity when restricted to ∂Ωi. It is straightforward to construct
such an edge function which satisfies |∇ϑδ

Ej� | ≤ C/δi except in the elements next to
the subdomain vertices; the effect of the resulting large gradients in these few elements
will cause no difficulties. By introducing cylindrical coordinates, with the edge as the
z-axis, and again using [35, Corollary 4.20], we can prove the following.

Lemma 5.5. There exists an edge cutoff function ϑδ
Ej� supported in the closure of

Ψj�, which, together with the face cutoff function ϑδ
Fik and the standard nodal basis

functions of the subdomain vertices, forms a partition of unity on ∂Ωi and which
satisfies

(5.16) |Ih(ϑδ
Ej�u)|2H1(Ψj�)

≤ C(1 + log(Hi/hi))‖u‖2
H1(Ωi)

and for all the rk, the basis functions of the space RB,

(5.17) |Ih(ϑδ
Ej�rk)|2H1(Ψj�)

≤ CHi.

In the next subsection, we will find that our bounds will be proportional to (H/δ)3

with two of the factors originating from the inf-sup parameter and Lemmas 3.3 and
5.3 and one from the bounds in (5.13) and (5.14).

5.3. The local components of the partitioning. The standard way of con-
structing and estimating the local components ui ∈ V′

i, as in (4.4), involves a partition
of unity for all x ∈ Ω; see [35, sections 3.2 and 3.6]. Here we adopt a different strategy.
We will again consider only the three-dimensional case.

We first remove the interior components of w = u−u0 for each subdomain; they
vanish on the interface and are made ãi-orthogonal to the space of the discrete saddle-
point harmonic functions defined in (3.17). Therefore, each of these interior functions
can be bounded directly by the energy of w contributed by an individual subdomain,
and they therefore contribute to the individual components ui in a harmless way. To
simplify our notation, we will now denote by w what remains after this correction.

We will now explore how the restriction wi of w to Ωi can be partitioned. For each
face F ij , we will have contributions to ui and uj , and for each edge Ej�, there will be
contributions to um ∀m ∈ Ij�; cf. (5.10). In all that follows, we will look exclusively at
the contributions from Ωi. We also have to make sure that our constructions lead to
terms which are continuous functions across the interface Γ between the subdomains.

We first decompose the restriction of wi to Γi into face and edge terms by using the
cutoff functions ϑδ

Fij and ϑδ
Ei� . We estimate the energy of Ih(ϑδ

Fij u) and Ih(ϑδ
Fiju0)

separately. For the first term, we can use (5.13) directly. To get a bound of the same
quality for the second term, we return to the arguments that led to (5.7). We use the
same bound for the coefficient of the coarse face basis functions of the solution of the
constrained minimization problem (C/Hi)‖u‖L2(Fij) and replace (5.6) by (5.14). We
find that

|Ih(ϑδ
Fijwi)|2H1(Ωi∩Ω′

j)
≤ C(Hi/δi)(1 + log(Hi/δi))(1 + log(Hi/hi))‖u‖2

H1(Ωi)
.

We can replace ‖u‖2
H1(Ωi)

by infr∈RB ‖u − r‖2
H1(Ωi)

by using that the interpolant,
which gives us u0, reproduces any rigid body mode.

D
ow

nl
oa

de
d 

07
/3

1/
13

 to
 1

28
.1

22
.2

53
.2

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2914 CLARK R. DOHRMANN AND OLOF B. WIDLUND

Similarly, we can use Lemma 5.5 to estimate the norm of Ih(ϑδ
Ej�u). To estimate

the norm of Ih(ϑδ
Ej�u0), we partition u0 by using θFij , θFi� , and θEj� . The first term

Ih(θFij ϑδ
Ej�u0) can be estimated by again examining the arguments that led to (5.7)

now using (5.17) instead of (5.6). The second face term can be estimated in exactly
the same way. As for the contribution from the values on the edge Ej�, we can estimate
Ih(θEj�ϑδ

Ej�wi) directly by using (5.4). This is possible since, on ∂Ωi, θEj�ϑδ
Ej� vanishes

except at the nodes of the edge, and we can use a trivial extension to the interior of
Ωi in our estimate. Thus, we obtain

|Ih(ϑδ
Ej�w)|2H1(Ωi)

≤ C(1 + log(Hi/hi)) inf
r∈RB

‖u− r‖2
H1(Ωi)

.

We recall that, by construction, the net flux of w = u−u0, across each face of the
subdomain, vanishes. However, this will generally no longer be true for Ih(ϑδ

Fijwi)
and Ih(ϑδ

Ej�wi). We will therefore modify these face and edge contributions to ensure
that the net fluxes of the modified face and edge functions will vanish separately. This
then makes it possible to use Lemma 3.3.

For each face F ij and for each edge Ej� of that face, we select a subset F̂ ij�, of
the face F ij , which belongs to the intersection Ξij ∩Ψj� and which does not intersect
the sets Ψkm which are neighborhoods of the other edges of Ωi. This subset should
have an area on the order of Hiδi, and we should be able to cover it by on the order
of Hi/δi square patches with side δi. We will find, and later estimate, a parameter
dij� so that

(5.18) Ih(ϑδ
Ej�wi) − dij�ϑF̂ij�nij

has a zero net flux across the face F ij . Here ϑF̂ij� is a sum of on the order of Hi/δi

face functions for cubes of side δi, and nij is the normal to the face F ij .
The face contributions are then modified by adding these correction terms, one

for each of the edges of the face, resulting in a face function wFij with a zero net flux
across F ij . The modified face contribution is defined by

(5.19) wFij := Ih(ϑδ
Fijwi) +

∑
k

dijkϑF̂ijknij .

Similarly, the modified edge contribution for Ej� is defined by

(5.20) wEj� := Ih(ϑδ
Ej�w) − dij�ϑF̂ij�nij − di�jϑF̂i�jni�.

We note that the third term represents a displacement in the direction normal to the
second face F i� of Ωi, which is also adjacent to the edge Ej�, and that the second
coefficient di�j is chosen so that there is a zero net flux across that face.

It remains to find bounds for the individual face corrections. We need to estimate
the energy of ϑF̂ij� as well as the parameter dij�. Since ϑF̂ij� is a sum of on the order of
Hi/δi face functions for cubes of side δi, we can use the estimate (5.12) after replacing
Hi by δi. Therefore,

|ϑF̂ij� |2H1(Ωi∩Ω′
j)

≤ C(Hi/δi)(1 + log(δi/hi))δi.

The parameter di� is determined by the zero net flux condition for the modified
edge term (5.18). By using Cauchy–Schwarz’s inequality, we find that

|dij�|2 ≤ C/(Hiδi)‖wi‖2
L2(F̂ij�)

.
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By using a trace theorem, essentially as in the proof of (5.8), and that same inequality,
we can estimate this face correction term by

C(Hi/δi)(1 + log(δi/hi))‖wi‖2
H1(Ωi)

≤
C(Hi/δi)(1 + log(δi/hi)) inf

r∈RB
‖u− r‖2

H1(Ωi)
.

These bounds are all consistent with Theorem 4.1.
We now show how to divide wFij , given in (5.19), into contributions to ui and uj ,

which are the contributions of V′
i and V′

j , respectively, to the decomposition (4.5).
We allocate (1/2)wFij to uj , and, to start constructing ui, we subtract the same
function from wi. With the same recipe used for Ωj , the subdomain across the face
F ij , we see that these contributions to ui and uj will be continuous. Each of them
also has a zero net flux across ∂Ωi.

We then partition the edge function wEj� given in (5.20). If p subdomains share
the edge, we then divide this function by p and add it to the contributions from the
faces to um, m �= i, m ∈ Ii�. To obtain ui, we subtract these p− 1 contributions from
the function previously obtained from wi by subtracting (1/2)wFij for each face of
Ωi. We note that all the resulting um will, by construction, satisfy the no net flux
condition and that we maintain continuity across the interface.

By using the no net flux condition, Lemmas 5.3 and 3.3, and that the aspect
ratios of Ωi ∩ Ω′

k are on the order of Hi/δi, we find that

ãi(um,um) ≤ C(Hi/δi)2μiai(um,um).

Therefore, any of the contributions to um from an edge of Ωi can be estimated by

C(Hi/δi)3(1 + log(δi/hi))(1 + log(Hi/hi))ãi(u,u).

Similarly, each of the face contributions can be estimated with a factor

C(Hi/δi)3(1 + log(Hi/δi))(1 + log(Hi/hi)).

This completes the proof of Theorem 4.1.

6. The effect of irregular subdomain boundaries. As we have seen, the as-
sumption that the subdomains are quite regular (cf. subsection 2.2) makes it possible
to use many technical tools, which have been used previously in many studies. This
represented the state of the art of domain decomposition theory as of a couple of years
ago. Thus, the same [35, Assumption 4.3] was used when obtaining many results on
iterative substructuring algorithms given in Chapters 4–6 in that monograph. How-
ever, subdomains are often generated by mesh partitioners such as METIS [23], and,
in practice, there is no guarantee that the subdomains are even uniformly Lipschitz
continuous. We also note that if we change the mesh size of our problem and use the
mesh partitioner again, we must expect that the new subdomains will not be related
in any meaningful way to those obtained for the previous mesh; e.g., their number
may very well have changed.

Recently, there has been considerable progress in developing new techniques,
which require very limited regularity of the subdomain boundaries and with bounds
which depend only on a few geometric parameters, which are easy to understand; see
[15, 26]. These papers concern problems in the plane. We will find that our results in
this paper can be extended to the same more general class of subdomains for the case
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of two dimensions. We will also explore the three-dimensional case. We note that the
regularity of ∂Ω, the boundary of the given domain, will play no role.

The minimal assumption used in our recent papers is that the subdomains are
John domains.

Definition 6.1 (John domain). A domain Ω ⊂ R
n—an open, bounded, and

connected set—is a John domain if there exist a constant CJ ≥ 1 and a distinguished
central point x0 ∈ Ω such that each x ∈ Ω can be joined to it by a rectifiable curve
γ : [0, 1] → Ω with γ(0) = x0, γ(1) = x, and |x − γ(t)| ≤ CJ · distance(γ(t), ∂Ω) for
all t ∈ [0, 1].

This condition can be viewed as a twisted cone condition. We note that certain
Koch snowflake curves with fractal boundaries are John domains. We note that the
parameter CJ will depend on the aspect ratio as well as the boundary of the domain.

In many domain decomposition studies, an extension theorem is also required;
see, e.g., [26]. An important extension theorem was established in [22] for all uniform
domains. A uniform domain satisfies the John condition and can also have quite an
irregular boundary such as that of a Koch snowflake.

An important tool in the theory on domain decomposition algorithms is Poincaré’s
inequality; see [15].

Lemma 6.2 (Poincaré’s inequality). Let Ω be a John domain. Then, with ūΩ the
average of u over Ω,

‖u − ūΩ‖2
L2(Ω) ≤ (γ(Ω, n))2|Ω|2/n‖∇u‖2

L2(Ω) ∀u ∈ H1(Ω).

Here the parameter γ(Ω, n) is the best parameter in an isoperimetric inequality

(6.1) [min(|A|, |B|)]1−1/n ≤ γ(Ω, n)|∂A ∩ ∂B|.
Here A ⊂ Ω is an arbitrary open set B = Ω \ Ā and |A| is the measure of the set A,
etc.

We note that it is known that any simply connected plane domain, with a finite
parameter γ(Ω, 2), is a John domain; see [10]. It is also known (see [6]) that any John
domain has a bounded parameter γ(Ω, n).

In the present paper, the role of the Poincaré inequality is played by Lemma 5.2.
This result has been established for uniform domains in [19], and a closely related
result is given in [1] for John domains. Following [8, Lemma 11.2.3], we note that the
inf-sup constant β, for the continuous problem, is the best constant in the estimate

β‖u‖H1(Ω) ≤ ‖p‖L2(Ω),

where u is a solution of div u = p in H1
0(Ω). This inequality has been established for

John domains in [1]. The parameter β depends only on the John parameter CJ .
A bound similar to (5.8) can be established for John domains in two dimensions.

The factor of (1 + log(H/h)), which will weaken our main result, should replace
(1+ log(H/δ)). This is similar to what happens in the proof of [15, Theorem 3.1], and
for the same reason—a standard trace theorem is missing for general John domains
and in our proof—a bound on the L∞-norm of finite element functions is used; see
[15, Lemma 3.2] for a proof for two-dimensional John domains. Estimates for edge
cutoff functions, very similar to those for faces in this paper, are also known; see [26,
Lemma 4.4]. By examining the rest of our proof in section 5, we find that the slightly
weaker form of the main result of this paper will hold for the case of John subdomains
in two dimensions.
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For problems in three dimensions, the set of tools is still much less complete.
One reason is that the John and uniform conditions then do not rule out that part
of a middle of a face is very close to another face. This is unlikely to be a real issue
in our application since, in subsections 5.2 and 5.3, we work with domains which, by
assumption, have a minimal thickness δi. Currently, a main open problem is to extend
the bound in (5.11) under some appropriate geometric assumptions, which would be
realistic for subdomains such as those generated by mesh partitioners.

7. Numerical examples. Numerical examples are presented in this section for
unit square domains in two dimensions and unit cube domains in three dimensions.
Homogeneous Dirichlet conditions are applied to the entire boundary in both cases.
We consider both structured and unstructured mesh decompositions. For the struc-
tured decompositions, the subdomains are squares in two dimensions and cubes in
three dimensions. For the unstructured decompositions, the graph partitioning soft-
ware METIS [23] was used to decompose the mesh into N subdomains. Two examples
of unstructured mesh decompositions are shown in Figure 7.1. All the examples used
preconditioned conjugate gradients to solve the preconditioned linear system corre-
sponding to the Schwarz operator Pad to a relative residual tolerance of 10−8 for ran-
dom right-hand sides. Numbers of iterations (iter) and condition number estimates
(cond), from the conjugate gradient iterations, are reported in each of the following
tables.

7.1. Two dimensions. Results for fixed values of H/h = 8 and H/δ = 4 are
shown in Table 7.1 for increasing numbers of subdomains N and three different values
of Poisson ratio ν. As expected, condition number estimates appear to be bounded
independently of both N and ν in the case of structured decompositions. We note
that the same number of layers of additional elements were used for the overlapping
subdomains for both types of mesh decompositions. Good scalability is also evident
for unstructured decompositions, but there is more variability in the results. We
note in the final row of Table 7.1 that the mesh was originally decomposed into 256
subdomains, but two of these subdomains had disconnected components which led to
a total of 258 subdomains. Ideally, each subdomain would have 64 elements, but one

16 Subdomains 100 Subdomains

Fig. 7.1. Examples of unstructured mesh decompositions used in numerical examples.
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Table 7.1

Two-dimensional results for H/h = 8, H/δ = 4, and increasing numbers of subdomains N .

N structured decomposition unstructured decomposition
ν = 0.3 ν = 0.4999 ν = 0.49999 ν = 0.3 ν = 0.4999 ν = 0.49999

iter cond iter cond iter cond iter cond iter cond iter cond
16 25 8.1 31 10.6 33 10.6 28 8.0 34 12.2 36 12.3
36 27 8.6 32 11.0 33 11.0 34 11.6 41 18.8 42 18.7
64 29 8.9 32 11.2 34 11.2 34 11.0 42 18.9 43 19.0
100 30 9.2 32 11.2 35 11.2 34 10.9 39 16.7 40 16.7
256� 32 9.7 34 11.6 35 11.7 38 12.6 44 23.1 45 23.1

Table 7.2

Two-dimensional results for N = 16, H/δ = 4, and increasing values of H/h.

H/h structured decomposition unstructured decomposition
ν = 0.3 ν = 0.4999 ν = 0.49999 ν = 0.3 ν = 0.4999 ν = 0.49999

iter cond iter cond iter cond iter cond iter cond iter cond
8 25 8.05 31 10.6 33 10.6 29 8.71 34 14.3 34 14.3
16 27 8.89 33 12.3 34 12.3 33 11.4 40 18.1 41 18.2
32 28 9.67 35 14.1 36 14.1 29 8.18 34 12.8 34 12.8
64 30 10.4 36 15.8 38 15.8 33 9.89 38 16.0 40 16.1
128 31 11.0 38 17.4 40 17.4 33 9.76 40 18.1 41 18.1

of the subdomains had only 5 elements. Fortunately, the numerical results do not
appear to be greatly sensitive to such imbalances.
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Fig. 7.2. Two-dimensional results from Table 7.2.

The next example investigates the effect of increasing H/h while fixing N = 16
and H/δ = 4. The results on the left side of Table 7.2 are also plotted in Figure 7.2.
Notice that condition number estimates appear to be bounded by a constant times
1 + log(H/h) for all values of ν. This bound is the same as the one for compressible
elasticity (ν not too close to 0.5).

The next example investigates the effect of increasing H/δ while fixing N = 16 and
H/h = 120. The results on the left half of Table 7.3 are also plotted in Figure 7.3.
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Table 7.3

Two-dimensional results for N = 16, H/h = 120, and increasing values of H/δ.

H/δ structured decomposition unstructured decomposition
ν = 0.3 ν = 0.4999 ν = 0.3 ν = 0.4999

iter cond iter cond iter cond iter cond
4 31 11.0 37 17.2 33 9.61 38 16.2
5 33 11.9 39 19.3 35 10.5 40 19.0
6 34 12.6 42 21.0 36 11.4 43 21.3
10 39 14.9 50 32.4 41 14.4 52 33.8
12 41 16.3 57 42.9 43 15.8 59 45.5
15 44 18.4 70 69.3 45 19.1 71 71.9
20 48 21.8 98 142 49 20.8 90 121
30 56 31.9 163 424 56 28.5 144 317
40 63 42.1 > 200 945 64 37.3 > 200 673
60 75 62.4 > 200 2.83e3 78 55.1 > 200 2.02e3
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2
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Poisson ratio = 0.3

Poisson ratio = 0.4999

Fig. 7.3. Two-dimensional results from Table 7.3.

Notice that the results are fundamentally different for the compressible (ν = 0.3)
and almost incompressible cases. For compressible materials, condition number esti-
mates appear to be proportional to H/δ, whereas for almost incompressible materials
the growth is much larger and closer to the estimate of (H/δ)3(1 + log(H/δ)) in
Theorem 4.1.

Another difference for compressible and almost incompressible materials is shown
in Table 7.4. Here we see for a minimal overlap (δ/H = 0) that the condition number
estimates for almost incompressible materials grow without bound as the Poisson ratio
approaches 0.5. Thus, for such materials, one should use an overlap no smaller than
the element length h.

The next example is for a problem with discontinuous material properties. In
a centered square region of length 1/2, the elastic modulus E = σ and the Poisson
ratio ν = 0.3. For the remaining part of the domain, E = 1 and ν = 0.49999. For
values of σ � 1, this can be viewed as a model of a steel component embedded in a
softer, but almost incompressible, material such as rubber. Because the subdomain
boundaries are aligned with material boundaries for the structured decomposition,
condition number estimates in Table 7.5 are bounded independently of σ as the theory
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Table 7.4

Two-dimensional results for a structured decomposition of 16 subdomains with H/h = 8.

ν δ/H = 1/4 δ/H = 1/8 δ/H = 0
iter cond iter cond iter cond

0.3 25 8.05 29 10.0 36 19.4
0.4 27 8.21 31 11.4 42 23.9

0.49 29 10.0 36 16.3 70 66.8
0.499 30 10.5 37 17.4 108 142

0.4999 31 10.6 39 17.6 > 200 526
0.49999 33 10.6 40 17.6 > 200 4.12e3

Table 7.5

Two-dimensional results for a problem with discontinuous material properties. Fixed values of
N = 16, H/h = 16, and H/δ = 4 are used.

σ structured decomposition unstructured decomposition
iter cond iter cond

10−4 35 10.3 36 11.0
102 34 10.3 34 10.7
1 36 11.7 35 11.9

102 34 14.7 40 25.4
104 32 14.9 43 149

Table 7.6

Three-dimensional results for H/h = 8, H/δ = 4, and increasing numbers of subdomains N .
The number of unknowns for the example with 216 subdomains exceeds 2.5 million.

N structured decomposition unstructured decomposition
ν = 0.3 ν = 0.4999 ν = 0.49999 ν = 0.3 ν = 0.4999 ν = 0.49999

iter cond iter cond iter cond iter cond iter cond iter cond
27 33 15.4 44 25.0 44 25.0 36 12.9 44 23.1 46 23.2
64 36 17.7 48 27.3 49 27.4 39 15.5 47 25.3 50 25.3
125 39 19.3 50 28.9 53 29.0 43 17.8 50 27.9 51 27.9
216 41 20.5 52 31.1 55 31.3 47 21.2 53 32.7 54 32.7

Table 7.7

Three-dimensional results for N = 27, H/δ = 4, and increasing values of H/h.

H/h structured decomposition unstructured decomposition
ν = 0.3 ν = 0.4999 ν = 0.49999 ν = 0.3 ν = 0.4999 ν = 0.49999

iter cond iter cond iter cond iter cond iter cond iter cond
4 32 13.7 40 19.7 40 19.7 35 12.9 43 21.7 44 21.7
8 33 15.4 44 25.0 44 25.0 35 12.8 43 23.5 44 23.5
12 35 16.3 44 28.1 46 28.1 38 14.7 50 29.0 51 29.0

implies. In contrast, some of the unstructured subdomains contain two different
materials, and condition number estimates continue to grow with increasing values
of σ.

7.2. Three dimensions. The numerical examples in this section mirror
their two-dimensional counterparts of the previous section. Compared to two-
dimensional cases, the subdomain matrix factorizations in three dimensions
may require significantly more computational resources. Thus, attention is re-
stricted to problems in which the ratio H/h is no larger than 12. The po-
tentially large computational requirements of direct solvers in three dimensions
highlights the need for algorithms which use inexact solutions of the local
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Table 7.8

Three-dimensional results for N = 27, H/h = 12, and increasing values of H/δ.

H/δ structured decomposition unstructured decomposition
ν = 0.3 ν = 0.4999 ν = 0.3 ν = 0.4999

iter cond iter cond iter cond iter cond
4 35 16.3 44 28.1 35 12.9 43 21.7
6 38 20.8 51 34.8 41 16.4 51 31.1
12 51 30.7 86 123 47 21.5 74 71.2

Table 7.9

Three-dimensional results for a problem with discontinuous material properties. In a centered
cube region of dimension 1/3, the elastic modulus equals σ and the Poisson ratio is 0.3. For the
remainder of the region, the elastic modulus is unity and the Poisson ratio is 0.49999. Fixed values
of N = 27, H/h = 8, and H/δ = 4 are used.

σ structured decomposition unstructured decomposition
iter cond iter cond

10−4 44 22.0 45 21.3
102 43 22.0 44 21.3
1 45 23.8 45 22.6

102 47 27.5 63 55.7
104 46 27.7 83 201

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
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Fig. 7.4. Three-dimensional results from Table 7.7.

subdomain problems and quite possibly the global coarse problem as well. Such
inexact methods will be the topic of a future investigation.

Results shown in Tables 7.6–7.9 and Figure 7.4 exhibit the same trends that
were observed for the two-dimensional examples. Compared with the two-dimensional
examples, we were not able to generate numerical results for as large of values of
H/h. Nevertheless, results in Figure 7.4 are consistent with a condition number
bound proportional to 1 + log(H/h) for fixed values of H/δ, as was the case in two
dimensions. As before, a much stronger dependence on the ratio H/δ is evident in
Table 7.8 for almost incompressible materials.
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