
Distribution of Route-Impacting Control

Information in a Publish/Subscribe

System with Delivery Guarantees

by

Yuanyuan Zhao

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2006

Zvi M. Kedem

Daniel C. Sturman

c© Yuanyuan Zhao

All Rights Reserved, 2006

To my son, my husband and my parents.

For their love and support.

iii

Acknowledgment

This thesis tells the technical work I have done for my Ph.D. study. What it

does not tell is the journey behind, a journey that I search for the meaning of life

and work. The journey is still continuing but I have never been more determined

that I will travel down the road I have found and be confident of what I do.

This determination has gotten me through the most challenging times before the

completion of this thesis. In all these times, my family have been supporting me,

encouraging me and motivating me. They are the source of my strength.

I am extremely lucky that I have known two other people besides my family.

Professor Zvi Kedem, my advisor at NYU, has been very supportive and patient

in letting me find what I want to do and how I want to do it while making

sure I stay on course. He is a fatherly figure I respect and love and someone

who I enjoy receiving guidance from. Dr. Daniel Sturman, my advisor at IBM,

has practically directed me through every phase of the research. Dan has made

opportunities for me to work on interesting and challenging problems and has

trusted my capabilities and encouraged me. Even in his busiest times, Dan has

been available to me whenever it was needed. He is the reason that many good

things have happened to me. If I have become a better writer, it is because of

him. If I have known better how to achieve, it is because of him. He has shown

me by example.

A person I must mention is Dr. Alan Bivens. Except for the many ping pong

iv

games he has beaten me, Alan and I have been on friendly terms. Indeed, Alan

is a true friend, a trustworthy friend. I thank him greatly for his psycological

support through the hardest times. His friendship I will always value.

The members in the Gryphon team have also helped greatly. Dr. Sumeer

Bhola, with whom I have worked together on many interesting problems, has

taught me the meaning of technical maturity. His technical impact on me is

positive and long lasting. Michael Ward made it possible for me to complete the

bulk of the technical work. Dr. Rob Strom has infected me with his passion for

research and in many cases demonstrated an approach. I would like to thank Dr.

Tushar Chandra for opening many opportunities to me, and Dr. Marc Kaplan for

teaching me many skills to solve system problems. Dr. Mark Astley has always

been there whenever I needed his help. So have other members of the team.

IBM T. J. Watson Research, as a whole community, is a place I feel lucky to

be with. Dr. Guerney Hunt, although I do not have interactions with him on a

daily basis, is a person I really look up to. Jim Norris and Mike Frissora have

always been generous in offering me their help. Jim has maintained the platform

on which I conducted the experiments in this thesis as well as many others for my

work. The members of Watson Table Tennis Club continue to add a touch of fun

to my time in IBM.

I shall never forget that Dr. Yuanyuan Zhao is a product of New York Univer-

sity - a great school in a great city. Not only have many of the faculty members

taught and enlightened me, so have my peers. Dr. Fangzhe Chang, a long time

friend from the Capital of China to the Capital of the World, has always lent a

helping hand. So have Dr. Arash Baratloo, Chenlei Chang, Min Ding, Dr. Con-

gcun He, Dr. Ayal Itzkovitz, Dr. Hoger Karl, Dr. Bin Li, Hua Wang, Xin Zhang

and Tao Zhao. Many thanks to them for being part of my happy time at NYU.

Finally, I would like to thank Professor Arthur Goldberg and Ernest Davis, for

being on my committee.

v

Abstract

Event-driven middleware is a popular infrastructure for building large-scale

asynchronous distributed systems. Content-based publish/subscribe systems are

a type of event-driven middleware that provides service flexibility and specification

expressiveness, creating opportunities for improving reliability and efficiency of the

system.

The use of route-impacting control information, such as subscription filters and

access control rules, has the potential to enable efficient routing for applications

that require selective and regional distribution of events. Such applications range

from financial information systems to sensor networks to service-oriented archi-

tectures. However, it has been a great challenge to design correct and efficient

protocols for distributing control information and exploiting it to achieve efficient

and highly available message routing.

In this dissertation, we study the problem of distributing and utilizing route-

impacting control information. We present an abstract model of content-based

routing and reliable delivery in redundant broker networks. Based on this model,

we design a generic algorithm that propagates control information and performs

content-based routing and delivers events reliably. The algorithm is efficient and

light-weight in that it does not require heavy-weight consensus protocols between

redundant brokers. We extend this generic algorithm to support consolidation and

merging of control information. Existing protocols can be viewed as particular

encodings and optimizations of the generic algorithm. We show an encoding using

virtual time vectors that supports reliable delivery and deterministic dynamic

vi

access control in redundant broker networks. In our system, the semantics of

reliable delivery is clearly defined even if subscription information and access

control policy can dynamically change. That is, one or more subscribers of same

principal will receive exactly the same sequence of messages (modulo subscription

filter differences) regardless of where they are connected and the network latency

and failure conditions in their parts of the network.

We have implemented these protocols in a fully-functioning content-based pub-

lish/subscribe system - Gryphon. We evaluate its efficiency, scalability and high

availability.

vii

Contents

Dedication iii

Acknowledgment iv

Abstract vi

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Large-Scale Content-based Publish/Subscribe Systems 2

1.2 Application Scenarios . 3

1.2.1 Financial Information Systems 4

1.2.2 World-wide Sporting Event Systems 5

1.2.3 The Smart Energy Network 5

1.2.4 Service-Oriented Architecture 6

1.3 Problem Statement . 7

1.4 Contributions . 10

1.5 Dissertation Outline . 12

viii

2 Background and Related Work 14

2.1 Distributed Messaging Systems 14

2.1.1 Group Communication Systems 15

2.1.2 Group/Topic-based Publish/Subscribe Systems 17

2.1.3 Centralized Event-based Systems 20

2.1.4 Distributed Content-based Publish/Subscribe Systems . . 21

2.2 Peer-to-peer Systems . 23

2.2.1 Classification of Peer-to-Peer Systems 24

2.2.2 Publish/Subscribe over Peer-to-Peer Networks 25

2.2.3 Summary . 26

2.3 Access Control in Distributed Messaging Systems 26

3 A General Algorithmic Model 30

3.1 Topology, Content-based Routing and Reliable Delivery 30

3.1.1 Routing Topology . 30

3.1.2 Content-based Routing and Reliable Delivery 35

3.2 General Model for Subscription Propagation and Content-based

Routing . 37

3.2.1 Notation . 38

3.2.2 Consistency of Broker Subscription State 40

3.2.3 Content-based Routing Algorithm 41

3.2.4 Providing Reliable Delivery 44

3.2.5 Summary . 47

3.3 Generic Subscription Propagation Algorithm 48

3.3.1 Subscription Information Maintenance and Exchange . . . 49

ix

3.3.2 Computing Subscription Change for an Upstream Broker . 51

3.4 Subscription Propagation with Aggregation 52

3.4.1 Aggregating Conjunctions 53

3.4.2 Operation and Constraint Properties 56

3.5 Subscription Propagation with Filter/Conjunction Merge 59

3.5.1 Merging Brokers . 61

3.5.2 Algorithm Sketch . 61

3.6 Summary . 63

4 Subscription Propagation Using Virtual Time Vectors 64

4.1 Protocol Description . 65

4.1.1 Virtual Times . 65

4.1.2 The Conjunction DAG . 66

4.1.3 Handling New Subscriptions and Assigning Virtual Start

Times . 68

4.1.4 Handling Unsubscription 73

4.1.5 Computing an Incremental Subscription Change Message . 74

4.1.6 Propagating Subscription Changes at An Intermediate

Routing Broker . 75

4.1.7 Data Message Routing . 82

4.1.8 Detecting the Subscription Delivery Starting Point 85

4.2 Mapping the Generic Algorithm 86

4.2.1 Encoding the Subscription Sets S and Sm 86

4.2.2 Encoding the Constraints 88

4.2.3 Implementing the Sufficiency Test 89

x

4.3 Liveness and Failure Handling . 90

4.3.1 Recovery from Broker Crashes 91

4.3.2 Recovery from Subscription Message Losses 95

4.3.3 Recovery from Subscription Message Arriving Out-of-Order 97

4.3.4 Recovery from Subscription Message Duplication 98

4.4 Summary . 98

5 Dynamic Access Control 99

5.1 Deterministic Service Model . 100

5.1.1 System Entities & Content-based Rules 100

5.1.2 Clear Starting Points of Access Control Changes 103

5.1.3 Subscription Propagation, Content-based Routing and Re-

liable Delivery . 105

5.2 Protocol Description . 107

5.2.1 Protocol Overview . 107

5.2.2 Distributing Access Control Information 110

5.2.3 Handling Client Subscriptions 112

5.2.4 Propagating Restricted Client Subscriptions 114

5.2.5 Handling Dynamic Access Control Changes 115

5.2.6 Routing Data Messages . 117

5.2.7 Enforcing Access Control 118

5.2.8 Sunsetting of Access Control Rules/Versions 119

5.3 Summary . 120

6 Implementation and Evaluation 121

xi

6.1 Implementation . 121

6.1.1 Covering Test . 122

6.1.2 Multiple Publisher Hosting Brokers 124

6.1.3 Sufficiency Test Result Cache 125

6.1.4 Improving System Concurrency Level 130

6.2 Analytical Model and Results of System Scalability 131

6.2.1 Analytical Model . 132

6.2.2 Communication Overhead Scalability 133

6.2.3 Sufficiency Test Computation Scalability 134

6.2.4 Summary . 135

6.3 Experimental Results . 136

6.3.1 The Flooding Scheme . 136

6.3.2 Micro Benchmark: Content Matching Overhead 137

6.3.3 System Load Comparison in Selective Subscription Tests . 139

6.3.4 CPU Overhead with Access Control Enforcement 144

6.3.5 Latency Measurements . 145

6.3.6 Latency Measurement with Dynamic Access Control . . . 150

6.3.7 Scalability Measurements 154

6.3.8 Failure Test . 157

6.4 Summary . 160

7 Conclusions and Future Work 162

Bibliography 165

xii

List of Figures

1.1 Publish/Subscribe System . 3

3.1 Redundant Routing Networks . 33

3.2 Transforming a Physical Broker Network 34

3.3 Message Streams . 44

3.4 Binary Redundant Spanning Tree 48

3.5 Applying Incremental Changes ∆Λm in b2 54

3.6 Redundant Routing Network Supporting Subscription Merge . . . 62

4.1 A Redundant Broker Network . 69

4.2 State at Broker SB1 After Inserting Subscriptions s1 and s2 70

4.3 State at Broker SB2 after Inserting Subscription s4 71

4.4 State at Broker SB3 after Inserting Subscription s5 72

4.5 Broker B1 Subscription DAGs . 79

4.6 State of Broker B3 after Receiving Subscription Incremental

Change from SHB3 . 80

4.7 State of Broker PB1 after Receiving 3 Changes from N21 and 1

Change from N22 . 81

xiii

4.8 Binary Redundant Spanning Tree 88

5.1 Service Model of Dynamic Access Control 104

5.2 Redundant Routing Networks . 111

5.3 Retrieve Initial Access Control for a New Client/Principal 113

6.1 Matching Overhead on Subscriptions on Cached Attributes 139

6.2 Matching Overhead on Subscriptions on Non-Cached Attributes . 140

6.3 Network Topology for System Load (CPU) Comparisons 141

6.4 PHB System Load (CPU) Comparison 142

6.5 SHB System Load (CPU) Comparison 143

6.6 Topology Network for CPU Measurements of Access Control . . . 144

6.7 CPU Utilization at Brokers . 145

6.8 A Linear Topology Network for Latency Measurements 147

6.9 Delivery Start Latencies and Message Delivery Latency 148

6.10 Topology Network for Latency Metrics with Dynamic Access Control151

6.11 Latency Metrics with Dynamic Access Control 154

6.12 A Fan-out Topology Network for Scalability Measurements 155

6.13 Scalability: PHB CPU Utilization Comparison 156

6.14 Scalability: Intermediate Broker CPU Utilization Comparison . . 157

6.15 Scalability: SHB CPU Utilization Comparison 158

6.16 Topology Network for Fault Tolerance Test 159

6.17 Client Message Rate and Intermediate Broker CPU Utilization with

Crash Failure . 161

xiv

List of Tables

2.1 Features of Distributed Content-based Publish/Subscribe Systems 22

6.1 Sufficiency Test Cache . 130

xv

Chapter 1

Introduction

Event-driven middleware is a popular infrastructure for building large-scale asyn-

chronous distributed systems. The application domains include software systems

that are reactive in nature, such as security monitoring/alerting systems and in-

dustrial control systems. The paradigm also applies to systems that are not in-

herently reactive but nevertheless can benefit from the loosely-coupled nature of

the event-based communication. As a result, these systems are easier to extend,

more flexible to integrate, and of higher reliability.

Compared with traditional event-driven infrastructure such as group

communication and topic-based publish/subscribe systems, content-based pub-

lish/subscribe messaging offers the most flexibility and expressiveness, but also

presents the greatest challeges. Recent research development on stateful or

stream-based systems further generalize on the basis of content-based systems

to provide subscriptions that can capture even richer application semantics.

In these systems, the techniques in content-based systems are usually building

blocks and are often generalized to solve problems that are specific in the domain

1

of stateful systems. This thesis addresses problems arising in content-based pub-

lish/subscribe systems, such as scalability, performance, security and availability

that are often encountered in the wide-area deployment of large-scale distributed

systems. In particular, we examine how protocols using route-impacting control

information can enable the building of systems that can address these problems.

1.1 Large-Scale Content-based Publish/Subscribe Sys-

tems

A content-based publish/subscribe system (Figure 1.1) typically consists of pub-

lishers that produce messages and subscribers that register interest in receiving

messages. The interest is usually expressed through content filters in the form of

Boolean expressions. The system ensures timely delivery of published messages to

all interested subscribers, and typically contains routing brokers for this purpose.

Publishers and subscribers obtain service by connecting to brokers and are de-

coupled from each other, since publishers need not be aware of which subscribers

receive their messages, and subscribers need not be aware of the sources of the

messages they receive.

In a content-based publish/subscribe system, message routing and delivery are

usually regulated by control information. This control information includes

• Subscription: specifies the kind of data messages that are of interest to

certain subscribers in certain parts of the routing network.

• Advertisement: specifies the kind of data messages that will be published by

a certain publisher or publishers in certain parts of the routing network.

2

Figure 1.1: Publish/Subscribe System

• Access control: specifies the kind of data messages that are allowed to be

published or subscribed to by clients of certain principals.

In a content-based system, one or more types of control information are dis-

tributed and maintained in order to more efficiently route messages. However, the

way in which this control information is handled impacts the scale, performance

and even correctness of a system.

1.2 Application Scenarios

In order to understand the challenges in content-based publish/subscribe sys-

tems, it is necessary to consider the typical application scenarios where traditional

methods would be prohibitively expensive in terms of efficiency or usability. We

describe in this section several example applications that have motivated our re-

3

search.1 These applications typically require stringent service guarantees such as

reliable delivery, efficient and scalable message delivery through content-filtering,

security mechanisms to prevent unauthorized accesses and high availability toward

24-hour continuous operation while allowing dynamic administrative changes to

security policies. Traditional methods usually fail to meet one or more of these

requirements.

1.2.1 Financial Information Systems

The financial markets, such as the Chicago Mercantile Exchange (CME) and New

York Stock Exchange (NYSE), have experienced immense growth in electronic

trading over the last few years. The trend is toward 24 hour global electronic

trading in a converged marketplace, combining cash, futures and options markets,

driving demand for highly scalable and reliable electronic trading capabilities.

As a result, their current trading systems, based largely on proprietary technol-

ogy, are getting stressed. Several exchanges have been experimenting with open

systems based technologies and commodity processing platforms to build new

trading engines. The challenge is to show that these engines, far more adaptable

and flexible, are just as dependable as the proprietary ones.

The messaging engine, as part of the new enabling technology, is expected

1The financial information system example is derived from an internal IBM news report “IBM

Research wows the Chicago Mercantile Exchange” published on June 8, 2005. The world-wide sporting

event systems example comes from previous deployments of the Gryphon systems in four Grandslam

Tennis Tournament and 2000 Olympics in Sydney Australia etc. The smart energy network example

comes from related publications [45] at Climate Solutions by Patrick Mazza. Information on Service

Oriented Architectures (SOA) and Enterprise Service Bus (ESB) can be found online from IBM and

Microsoft etc.

4

to be able to handle high message rate, deliver messages reliably (in order and

without gaps), and provide high availability of close to zero percent of system

downtime. The messaging engine is also required to be able to enforce access

control with regard to who are allowed to publish information on trades and who

(such as paid investors) are allowed to receive financial news. It is also required

that the messaging engine support changes in access control policy and provide a

well-defined semantics of the change with regard to message delivery.

1.2.2 World-wide Sporting Event Systems

Messaging middleware has been used increasingly in major sporting events such

as the Olympics and the tennis opens for tasks such as web-based scoreboard and

news dissemination. Many of these sporting events are multi-game and are inter-

ested by audience from across the world. The amount of information generated in

this type of environment is typically great and requires the messaging engine to

support large numbers of users. In particular, some games are of regional interest

due to time or cultural differences. The messaging engine, as a result, is expected

to adapt by not flooding every piece of information to everywhere in the world.

In addition, security requires the messaging engine to fend off unauthorized

users from publishing bogus information or from receiving information without

paying the required subscription fees.

1.2.3 The Smart Energy Network

The recent emergence of cheap computing power and low-cost bandwidth is trans-

forming the traditional power grid into a smart energy network. In such a network,

smart appliances and sensors will enable precision power management that coor-

5

dinates electrical demand down to the residential level by communicating their

operating status, collecting information on grid conditions and responding in ways

that most benefit their owners and grid. The vast number of sensors and software

agents distributed in the field will enable the power grid to automatically check

failures and prevent them from cascading through the system. The direct result

is a sharp increase of energy efficiency, lower energy bills, fewer blackouts and

brownouts and greater resiliency against terrorist attack and natural disaster.

Communication and control is at the forefront of enabling smart energy net-

works. Distributed messaging middleware provides a promising method to enable

the vast amount of appliances, sensors, actuators and controllers to communicate

efficiently. The amount of information can be very large, hence in order to avoid

overwhelming the network, it is essential to direct information flow to only where

it is interested.

1.2.4 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an architectural style of integrating

loosely-coupled distributed applications. At the center of this architecture is a

collection of services. These services communicate with each other by sending

messages through an Enterprise Service Bus (ESB). The communication pattern

can be one request to exactly one service provider or one request to many service

providers. The one-to-many communication is especially useful in providing high

availability of services. The communication can be provided by point-to-point or

publish/subscribe messaging.

In an enterprise computing environment, reliability is often a key considera-

6

tion. The messaging layer of the integration service is usually expected to provide

reliable delivery so that service requesters and providers need not worry about the

loss of their communications.

Another characteristic of such an environment is the potential large number

of service requesters/clients and service providers. To ensure the efficiency of

enterprise systems, It is hence important to route the service requests only to the

relevant service providers.

1.3 Problem Statement

Various types of applications can benefit from the loosely coupled nature

of content-based publish/subscribe middleware and its expressiveness and

flexibility. In addition, some of these applications require the content-based

publish/subscribe middleware to provide more stringent service guarantees such

as reliable in-order gapless delivery of messages. Some require the middleware to

efficiently deliver among the large amount of message traffic, a selective set of

messages that match their interest. Some have very high availability requirement

such as 24-hour operation with nearly zero percent downtime. And some require

stringent access control. Furthermore, the access control policy should be allowed

to change (even though the changes are usually not frequent) without having to

disrupt system operation. As a result, the following requirements are usually

imposed on content-based publish/subscribe systems:

• Perform content-based filtering and routing throughout the network and as

close as possible to the publishers in order to utilize bandwidth efficiently.

Flooding, that is, sending every message everywhere, can be very inefficient

7

in certain environment such as sensor networks or in the case that a new

subscription or a disconnected subscription wants to receive message that

are published in the past.

• Provide strong service guarantees such as reliable gapless delivery.

• Provide high availability and good load balancing by utilizing redundant

routes and easy switching of routes if needed.

• Provide flexible and dynamic access control and message protection.

In order to satisfy these requirements, content-based publish/subscribe systems

need to distribute control information across the broker network. Such control in-

formation includes client subscription information, access control information and

message protection levels (such as message integrity and authenticity). Among

these, subscription and access control information can impact content-based fil-

tering and routing. For example, if a subscriber (or subnet of subscribers) has no

subscription that matches a message or the principal of a subscriber (or subnet of

subscribers) has no right to access the message, there is hence no need to route

the message to that subscriber (or subnet). As a result, the message is filtered.

The distribution of control information is essential for implementing content-

based routing. However, if this is not done properly, system performance and

correctness of reliability could be compromised.

First, in order to perform filtering and routing, a broker stores, for each of its

neighboring parts of the network, the information on what messages are needed

and can be accessed by subscribers from that part. When a new message is pub-

lished and routed, a broker filters out and does not send the message to parts of

8

the network where no subscriber is interested or no subscriber is authorized to

access. However, the amount of subscription and access control information could

get very large as it approaches the publishers. This is due to that a routing broker

is responsible for routing messages to all subscribers in its downstream (defined as

the direction away from a publisher). The amount of subscription and access con-

trol information maintained for this purpose increases as the number of subscribers

increases for brokers in upstream. As a result, a scalable publish/subscribe system

should aggregate and only maintain a subset of this information for each routing

direction of a broker as long as the subset of information is sufficient to match all

messages that are needed and can be accessed by subscribers from that routing

direction.

Second, the combination of content-based routing and reliable delivery pro-

vides some unique challenges. Unlike in topic or group-based publish/subscribe

systems, reliability cannot be based only on detecting gaps in publisher-assigned

sequence numbers as each content subscriber may request a completely unique set

of messages to be delivered. Reliable delivery protocols typically rely on brokers

on the routing path to assist on detecting gaps. A routing broker with incorrect

subscription and access control information may decide not to forward on a mes-

sage. Given that gaps cannot be detected by checking publisher-assigned sequence

numbers, an end subscriber may never discover that a message was missed.

Third, loss of connectivity is common in wide-area networks, due to hardware

and software failures and network misconfigurations. Hence, publish/subscribe

systems should be built on networks with redundant links. This further compli-

cates control information distribution as alternative routes with different subscrip-

9

tion and access control information may filter out messages matching subscriptions

that are unknown to a route.

Fourth, the control information itself can change dynamically as subscribers

come and go and administrators grant or revoke access control to/from clients. It

is not clear how the dynamics of control information should affect content delivery,

especically in the presence of reliable delivery. Due to the dynamic nature, it is

also not sufficient to only use access control to restrict client subscriptions upon

their entry into the system. Access control information hence should be treated

separately from subscription information even though a number of techniques in

the latter domain can be re-used and seamless integrated into a coherent solution.

As a result of these challenges, there had not been a solution that guarantees

the correctness of content-based routing and hence existing solutions were capable

of supporting reliable delivery in the presence of failures and redundant paths. To

address this issue, this thesis aims to improve the understanding of the fundamen-

tals of control information distribution (especially subscription propagation) and

content-based routing. We address the lack of a coherent theory of how subscrip-

tion propagation and access control information distribution and content-based

routing should work in general. As a result, designing these algorithms typically

became disconnected activities each dealing with different situations.

1.4 Contributions

This thesis investigates the problem of distributing control information that can

impact the routing of events in content-based publish/subscribe systems. In par-

ticular, distributing and maintaining this control information enables the pub-

10

lish/subscribe system to function more efficiently by withholding from sending

extra events to parts of the system where they are not needed. This efficiency is

provided in conjunction with reliable delivery and high availabilty through redun-

dant routing paths. Hence, it presents a very powerful infrastructure for building

commercial applications. The main contributions of this thesis are:

• The investigation of the fundamentals of subscription propagation, content-

based routing and reliable delivery. The result is a generic algorithmic model

and a super-asynchronous generic algorithm that can utilize redundant paths

to achieve high availability. This generic algorithm can serve as the basis to

understand existing algorithms and develop future new algorithms. Those

algorithms can be interpreted as different encodings and optimizations of the

generic algorithm under different circumstances.

• The design of a subscription propagation protocol that utilizes clever instru-

ments to efficiently represent subscription state and event routing require-

ments. We also provide an interpretation to map this protocol to the generic

algorithm and hence the correctnss of the protocol can be derived from the

generic algorithm.

• The development of a deterministic service model of dynamic access control

with regard to reliable delivery. This deterministic feature is independent

from issues like where clients are connected, the message latency and fail-

ures in the publish/subscribe system. Under this model, a publish/subscribe

system has precise control over event confidentiality: if information was com-

promised because of incorrect access control policies, the administrator can

revoke access to a principal and be sure about precisely what messages got

11

compromised. The semantics of reliable delivery under this deterministic

model is very clear. Concretely, when access control rules for the principal

are changed, two or more subscribers of the same principal will receive the

same set of messages regardless of which broker the subscribers are connected

to.

• The development of an efficient protocol that provides deterministic dy-

namic access control. Using this protocol, a publish/subscribe system does

not have to perform consensus operations across many brokers, which could

compromise efficiency of the system and timeliness of enacting the change.

In addition, the protocol enables the system to be highly available and fault

tolerant.

• The implementation of the above work in a fully-functioning content-based

publish/subscribe system - Gryphon. We evaluate its efficiency, scalability

and high availability analytically and experimentally.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows:

Chapter 2 provides background information on distributed communication

middleware, peer-to-peer systems and distributed access control. This informa-

tion is necessary to understand the differences among the various systems and

the distinct characteristics of content-based publish/subscribe systems and the

challenges we faced in our work.

Chapter 3 presents a general model that is the theoretical foundation of our

12

work. It first describes an abstract routing topology and the concept of content-

based routing and defines reliable delivery. It then presents the correctness cri-

teria of content-based routing and correctness of subscription propagation as an

optimization supporting content-based routing. Based on these correctness defini-

tions, we describe a generic subscription propagation algorithm and an extension

of the algorithm utilizing subscription aggregation. The last part of this chapter

describes how the algorithm can support subscription merging.

Chapter 4 describes a concrete subscription propagation protocol that can be

interpreted as a special encoding of the generic algorithm. It also presents a livenss

and failure handling mechanism. The protocol is implemented in the context of

the Gryphon system and the implementation is described in detail.

Chapter 5 describes the issue of dynamic access control in content-based pub-

lish/subscribe middleware supporting reliable delivery. This chapter includes a

model that defines dynamic access control and our deterministic service guarantee.

We then describe a protocol that can efficiently support this service guarantees

and in steady state, delivers no extra message than that is needed by the clients.

Using this protocol, the system provides light failover without compromising the

deterministic service guarantee.

Chapter 6 describes the implementation of this work in a fully-functioning

publish/subscribe system Gryphon. We describe some of the system challenges

we encountered and the solutions we applied. We then present both analytical

and experimental evaluation of the system.

Chapter 7 summarizes the work described in this thesis and outlines future

directions of research.

13

Chapter 2

Background and Related Work

In this chapter, we present background information on event-based infrastructure.

In particular, we describe the different types of event communication systems and

their evolution. Presenting background information on these systems is necessary

for understanding their characteristics and the challenges one faces in implement-

ing such systems. The overview of peer-to-peer systems describes recent trends

and development in network organization and adaptation in case of failures, which

is an essential layer for building any distributed system with components commu-

nicating with each other.

2.1 Distributed Messaging Systems

The evolution of event-based systems has gone from group communication systems

to topic-based systems, and then to content-based publish/subscribe systems.

14

2.1.1 Group Communication Systems

Group communication systems are the earliest application-level multicast systems.

The model of Virtual Synchrony [16] was implemented in ISIS [15], and later in

Horus [74]. Other examples of such software systems include Totem [47] and Tran-

sis [25]. These systems typically provide a rich set of reliable delivery primitives

such as atomic delivery, causal order [40] or total order.

The core concept in group communication systems is the group of processes.

In human society, groups have been used as a convenient means for referring to or

addressing some part of the population as if it were a single entity. Computation

groups were first introduced (in V Kernel [20]) as a syntactic convenience to

express one-to-many communication structures and have subsequently been seen

as a convenient addressing mechanism. Such facilities are offered in many local-

area networks such as IP multicasting and Internet news groups or mailing lists.

However, to support mission-critical tasks, further requirements must be satisfied

such as the quality of message delivery, and the full benefits of the group concept

can be reaped only if we know how to set up and coordinate groups of processes

that work together to fulfill a common purpose. Subsequently, the group concept

has been extended to include strong guarantees in the presence of failures.

Under the group communication framework, a member in a process group can

send a message to the group, and processes interested in certain type of messages

can join the corresponding group. The group communication primitives guarantee

the delivery of the messages to group members in accordance with the quality of

service levels required, for example, causal order or total order.

One essential task of the group communication systems is to maintain group

15

memberships, that is, maintain the list of processes that are currently in the group.

This approach is different from today’s publish/subscribe systems as publishers

and subscribers are usually maintained anonymously.

Group communication systems are suitable for supporting applications (such

as replica maintainence) that require strong consistency guarantees at a small scale

(tens to hundreds of members). Group communication systems usually provide

a rich set of reliability guarantees such as atomic delivery, causal order and total

order. This is different from the application scenarios which publish/subscribe

systems aim to support. In these scenarios, the challenge is to efficiently transmit

large numbers of messages to as many subscribers as possible and the requirement

for consistency is usually weaker. The group communication primitives that pro-

vide stringent consistency guarantees would be an overkill and incur unnecessary

overhead.

The reliability support in group communication systems is provided to a known

group of processes. This group of processes, however, is adjustable should a

process fail or the network become partitioned. On the other hand, one kind of

reliability in publish/subscribe systems guarantees eventual delivery for a client

even if the client has temporarily failed or the network become partitioned but

the client is not unsubscribed. Messages published while a client is disconnected

or failed must be delivered to the client after it reconnects.

Furthermore, the scale of deployment of group communication systems is small

compared with that of the publish/subscribe systems, which can be in the range

of tens of thousands of clients or even more. The group communication systems

thus have limitations in serving the needs of distributed applications in wide area

16

networks with large number of clients and high rate of generated events. In partic-

ular, although hierachies of groups can be used, the group communication systems

do not scale to large groups. In addition, messages published are distributed to

either all members of the group or none (modulo failure scenarios). This lack

of expressiveness and coarse grain specification has caused large overhead in the

system as very often, clients are interested in multiple groups and only subsets of

messages sent to each group. In this case, additional filtering must be done at the

application level in the client side.

2.1.2 Group/Topic-based Publish/Subscribe Systems

Early publish/subscribe systems are greatly influenced by group communications.

These kinds of systems allow one to many communications and anonymity between

communication parties. Topic-based publish/subscribe systems use topics to iden-

tify virtual groups and further allow a hierachy of topics and/or regular expressions

in topic specifications. Examples of such systems include NDDS(Network Data

Delivery Service) [31] from Real-Time Innovations, Inc., TIBCO Enterprise Mes-

sage Service and Tibco Rendezvous [33], and Scribe [61] as well as standardization

activities such as WS-Notification [69, 70, 71] and WS-Eventing [43].

NDDS NDDS is a commercial product for distributed, real-time application de-

velopment that uses the real-time publish/subscribe model. It provides real-time

message delivery service by allowing applications to specify how long a message

should stay valid, how important a message is with regard to messages from other

publishers of the same topic and how long a subscriber is willing to wait for the

next published message. It provides reliable delivery within real-time constraints.

17

SCRIBE Scribe [61] is a large-scale and fully decentralized event notification sys-

tem built on top of Pastry - a peer-to-peer object location and routing substrate

overlayed on the Internet. It leverages the scalability, locality, fault-resilience and

self-organization properties of Pastry. However, Scribe does not support content-

based routing and wild card topic subscriptions, as the creation and subscription

of a topic are explicitly associated with a rendezvous point - a special node with

a nodeId numerically closest to the topicId of the topic. The system builds sep-

arate multicast trees for individual topics using a scheme similar to reverse path

forwarding and inverts the subscription message path for later event distribution.

This makes it impossible to add a node to the multicast tree for load sharing.

The system recovers from multicast node failures by building new trees. It does

not support reliable delivery, and unsubscription has to be delayed until the first

event is received.

TIBCO Rendezvous & Enterprise Message Service TIBCO Rendezvous [33]

is a topic-based publish/subscribe system that utilizes the multicasting capability

of the underlying infrastructure. TIBCO Enterprise Message Service [33] employes

a store-and-forward architecture and supports publish/subscribe messaging as well

as queue-based messaging. It provides scalability and fault-tolerance via server-

clustering and routing.

WS-Notification & WS-Eventing WS-Notification [70, 71] and WS-

Eventing [43] are standardization activities on topic-based publish/subscribe

messaging systems. Their goal is to standardize the roles, terminology, concepts,

message exchanges and the Web Services Description Language (WSDL) [26]

18

needed to express the notification pattern, and to provide a language to describe

Topics. Through standardization, topic-based publish/subscribe systems can

achieve

• interoperation between NotificationProducers and NotificationConsumers;

• interoperation between middleware providers;

• standardized mechanism to develop Topic taxonomies;

• standarized concepts and terminology.

As standardization activities, WS-Notification and WS-Eventing address gen-

eral issues related to interoperability of publish/subscribe systems without getting

into details of specific system implementation details.

CORBA Event Service The standard CORBA operation invocation model sup-

ports two way, one way and deferred synchronous interactions between clients

and servers. To facilitate asynchronous message exchange, CORBA [1] designed

its Event Service [30]. The Event Service defines supplier and consumer partic-

ipants, and allows asynchronous event delivery from suppliers to consumers in a

many-to-many fashion. In addition, CORBA also defines event channels which

mediate the delivery of events from suppliers to consumers without requiring them

to explicitly know each other. There are two models of supplier-consumer collab-

oration through the event channel, push and pull, in which the supplier and the

consumer take the active role respectively. The push model is more commonly

used because of its efficient and predictable execution of operations.

The CORBA Event Service can also be extended to support fault tolerant

computing by allowing replication of suppliers or consumers and distributed group

19

communication [44]. This is largely simplified by the fact that the Event Channel

decouples the suppliers from the consumers so that the adding or removing of a

supplier/consumer does not concern the other side.

Summary In summary, group/topic-based publish/subscribe systems have lim-

ited expressiveness in subscription description, even though many such systems

enable wild cards and more complicated patterns in topic specification in subscrip-

tions, message selectivity is restricted to the level of topics. A published message

is always sent to all members of the topic specified in the message even though

only a subset of the members are interested in the message. This can result in

scalability and performance issues. As with group communication systems, the

coarse grain specification often requires additional filtering at the application level

in the client side. In addition, some systems do not provide reliability guarantees.

2.1.3 Centralized Event-based Systems

Elvin [63] and Yeast [37] are the representatives of centralized event-based systems.

Yeast is an event-action system. It allows clients to define an event-pattern

and actions to perform when the pattern is matched. It defines a rich language

that allows detailed event patterns, including temporal expressions. The action

is specified in any language the centralized server can execute. Although the

language is rich, the system does not address how to efficiently find matched

event patterns.

Elvin is mainly designed around a single server that filters and forwards pro-

ducer messages directly to consumers. It supports a quenching functionality where

if there is no subscriber interested in messages published by a specific publisher,

20

publication at the publisher is supressed by sending a quenching request to the

publisher. Functionality-wise, this is analogous to pushing subscription informa-

tion and content-based filtering and routing beyond the edge brokers and all the

way to the publishers.

Centralized infrastructure has major drawbacks in that it cannot offer a scal-

able solution for large deployments and the centralized server is often a bottleneck

and a single point of failure.

2.1.4 Distributed Content-based Publish/Subscribe Systems

Distributed publish/subscribe systems usually consist of a network of brokers. In

these systems, publishers and subscribers connect to a broker of choice to receive

service and messages are delivered by transmitting through one or more brokers.

Examples in this category include Siena [17], XNet [18], REBECA [48, 49] and

Hermes [53].

In order to perform content-based filtering in a distributed environment, these

systems usually propagate subscription information throughout the brokers. To

achieve scalability, subscription aggregation has been used such as in [17], [18], [49].

Some systems also utilize topologies with redundant routes between servers to pro-

vide better availability such as Siena [17], XNet [18], SonicMQ [32]. Reliability is

sometimes provided in these system as well such as in JEDI [23] and SonicMQ [32].

Table 2.1 summarizes the features of these systems.

There are some recent works on utilizing the subscription pattern locality to

improve system performance. Wang et al [77] have proposed an approach to

partitioning existing subscriptions and routing new subscriptions among multiple

21

Table 2.1: Features of Distributed Content-based Publish/Subscribe Systems

Systems Reliable delivery Redundant Path Subscription Propagation

Siena No No Yes

XNet No No Yes

Rebeca No No Yes

JEDI Yes No No

SonicMQ Yes Yes No

Snoeren et al. No Yes Yes

servers to optimize various performance metrics including total network traffic,

load balancing, and system throughput. They propose two approaches, one based

on partitioning the event space and the other based on partitioning the sub-

scription set. However, their work is in a static environment where subscription

patterns and distributions are known in advance. In addition, they do not take

into account the effect of event rate distribution. That is, different events may

happen at different rate. This has limited the scope of their work.

Virgillito [75] described an approach to dynamically reconfigure a pub-

lish/subscribe broker network according to the similiarity of subscriptions they

host. However, they did not address how similarity is monitored and captured in

a distributed and dynamic environment. Their reconfiguration algorithm is also

limited in that they do not consider network resource restrictions.

Summary Existing content-based publish/subscribe systems either do not ad-

dress the issues of subscription propagation and organization, or do not operate

22

in networks with redundant links. Our work in this area complements their works

and can be applied in these systems.

2.2 Peer-to-peer Systems

Like many other distributed systems, content-based publish/subscribe are built on

a network substrate. The network layer provides routing and connectivity support

and may be self-adapting and self-organizing. Content-based publish/subscribe

utilizes the abstraction provided by the network layer. Optionally, the network

layer can provide call-back support so that upper layers can get notified in case

a topology changes. We introduce here a brief discussion of a recent trend of

application-level network - peer-to-peer networks.

Contrary to the traditional client-server architecture, a peer-to-peer (P2P)

computer network is a network that relies on the computing power and bandwidth

of the participants in the network rather than concentrating it on a relatively few

servers. P2P networks are typically used for connecting nodes via largely ad

hoc connections. Such networks are useful for many purposes such as sharing

content, sharing storage [39] and sharing computing resources to solve large-scale

computation problems [64].

In the center of P2P systems is the concept of equal peers self-organized into

network topologies. Every node in the system is a client and at the same time,

a server. They consume as well as contribute resources of/to the system. The

peers/nodes in P2P systems must be able to deal with instability, transient pop-

ulations, fault tolerance and self adaptation. There is sometimes a claim that

since there is no distinguished node in P2P systems, these systems are intrinsi-

23

cally highly fault tolerant and possess good performance and scaling properties.

This has some truth to it, although there are a lot of P2P systems with more

distinguished nodes (super-nodes) than others and fault tolerance and scalability

do not come without significant effort [22].

Even though the concept of peers can be traced back to an earlier time in

distributed computing and networking, such as NetNews NNTP protocol and IP

protocol, the new wave of P2P systems are built on the application layer over-

lay networks. Some of these overlay networks provide fault tolerance by routing

around the faulty nodes [5].

2.2.1 Classification of Peer-to-Peer Systems

Androutsellis-Theotokis and Spinellis [6] classify P2P systems in terms of their

centralization and structure.

• Purely Decentralized Architectures, in which all nodes perform exactly the

same tasks, acting both as servers and clients, and there is no central coor-

dination of their activities.

• Partially Decentralized Architectures, in which some nodes are designated

as super-nodes, serving central indexes for files shared by local peers. This

designation is dynamic and super-nodes can be easily replaced if they fail.

• Hybrid Decentralized Architectures, in which there is a central server facili-

tating the interaction between peers by maintaining directories of metadata,

describing the shared files stored by the peer nodes. End-to-end interaction

usually occurs directly between peer nodes, without the intermediation of

the central server.

24

• Unstructured network, in which the placement of content is completely un-

related to the overlay topology.

• Structured network, in which the overlay topology is tightly controlled and

files are placed at precisely specified locations.

• Loosely-structured networks. A network sits in between of structured and

unstructured networks.

Napster is an unstructured network using a centralized directory service to

facilitate information lookup. The peers then establish direct connections without

centralized server involvement. The central directory server is hence a reliability

and performance bottleneck. It is also a single point for security, political, legal

and economic attacks.

Gnutella [60] and Freenet [21] are decentralized unstructured systems.

Gnutella dispensed with the central directory and replaced it with a flood based

search. To mitigate the bad network load effect, systems like Freenet cache the

lookup results and route similar future requests according to the cache.

Pastry [62], Chord [66], CAN [57] and Tapestry [81] are structured decen-

tralized systems that use Distributed Hashtable (DHT) to store the directory.

They are capable of dealing with the poor resilience and network load caused by

super-nodes and flooding.

2.2.2 Publish/Subscribe over Peer-to-Peer Networks

Peer-to-peer systems have been used as routing substrates for building application-

level multicast systems [58, 9, 59], publish/subscribe systems such as Scribe [61],

25

Hermes [54], and works described in [50, 68, 24, 72, 79, 80] and information re-

trieval systems [73, 42].

Most of these systems are group/topic-based (such as Scribe [61]) with

groups/topics mapped to rendevous nodes in the underlying peer-to-peer sys-

tems. Some (such as [68]) support content-based routing by creating indices

along the most popular attributes and simulate content-based routing through

groups on value of index digests. Information dissemination/retrieval in these

systems is thus transformed into straightforward peer-to-peer routing with

reverse-path forwarding or building of multicast trees.

2.2.3 Summary

Peer-to-peer systems provide mechanisms for robust and adaptive routing. Sys-

tems built on top of peer-to-peer networks can leverage the fault tolerance and self-

organization properties of the routing substrate. Content-based publish/subscribe

systems are a higher-level abstraction that can be built on peer-to-peer networks.

As will be presented later in this thesis, our work on control information dissem-

ination with support of reliable delivery is described on an abstract routing layer

whose topology can change due to failures or system load changes. The organi-

zation and adaptation of our routing layer can be provided by either peer-to-peer

networks or any other methods.

2.3 Access Control in Distributed Messaging Systems

Security is indispensible in the wide deployment of applications built on dis-

tributed messaging infrastructure. It is vital to protect the system from various

26

attacks such as malicious publishers flooding the infrastructure with bogus events

(Denial-of-Service attack), malicious subscribers inserting very general subscrip-

tions to cause large amount of events being transmitted through the network but

only to be discarded (also Denial-of-Service attack) and various man-in-the-middle

attacks (event confidentiality, authenticity and integrity).

The greatest volume of work on security issues in distributed messaging sys-

tems is in the secure group communication area [35, 38]). In secure group commu-

nication systems, access control is usually provided by using a shared key among

group members. To deal with group member joining and leaving, and to protect

information from the leaving members, keys must be changed. The focus of the

works in this area is on group key management ([56]), such as utilizing hierarchical

groups [14, 67]).

As pointed out by Opyrchal et al. [52], the dynamic nature of a content-based

system makes the secure group communication approach infeasible for enforcing

access control in a content-based system. That is, when there are n subscribers,

events in a content-based system can potentially go to 2n different groups. Man-

aging keys for these 2n groups is expensive. In addition, the matching groups

can change for each event, constantly changing encryption keys significantly slows

down the throughput of common encryption algorithms such as DES [55]. Instead,

Opyrchal et al. tackles the problem as a group communication problem with very

dynamic groups and utilizes group clustering and key caching to achieve better

encryption throughput from brokers to subscribers.

Wang et al. [76] analyze security issues and requirements in Internet-scale pub-

lish/subscribe systems and presents directions to possible solutions to the various

27

problems. They presented novel security problems of information and subscrip-

tion confidentiality in an untrusted publish/subscribe system and pointed out that

methods on computing with encrypted data [3] and secure circuit evaluation [2] can

be adapted to solve these problems. In their work, there is no discussion on how

access to particular events can be controlled and enforced.

Belokosztolszki [11] presented a role-based model for access control [27] in

content-based publish/subscribe systems. They integrate the OASIS [8] role-based

access control system into the Hermes publish/subscribe middleware framework

and point out that access control can be enforced as restrictions on the subscription

filters. By leveraging the existing publish/subscribe platform, access control rules

can dynamically change and be distributed to brokers that host clients. Bacon [7]

extends the work to multiple trusted domains.

Miklos [46] devotes significant attention to specifying maximum and minimum

security restrictions by ways of covering relations between filters, advertisement

and events. The intuition is to use maximum security to restrict clients from

accessing events they are not authorized and use minimum security to limit the

overhead of doing too much content matching against too specific subscriptions.

Srivatsa and Liu [65] propose using keys, signatures and security guards to pro-

vide information confidentiality, integrity and authenticity and to fend off denial-

of-service attacks.

Yan et al. [78] proposes a security framework for distributed brokering systems.

The framework provides secure communications over insecure links, and ensure

that only authorized entities are allowed to view entity interactions. They also

presented details of their prototype implementation.

28

Summary Existing work on access control in distributed messaging systems has

focused on secure distribution of events. There has not been work on the semantics

of dynamic access control with regard to reliable delivery. Our work in this area

addresses this issue. Existing work on the secure distribution of events according

to their access control rules are complementary to our work.

29

Chapter 3

A General Algorithmic Model

In this chapter, we describe the theoretical foundation of our work. This includes

an abstract routing topology model; a general model of subscription propagation,

content-based routing and their correctness in terms of supporting reliable deliv-

ery; and a generic algorithm of propagating subscription information to be used

by content-based routing.

3.1 Topology, Content-based Routing and Reliable Deliv-

ery

We first describe a topology model of redundant routing networks and content-

based routing and reliable delivery in such networks.

3.1.1 Routing Topology

The architecture and organization of the underlying network on which a pub-

lish/subscribe system is deployed affects the correctness, high availability and

30

effectiveness of message delivery of the system. For example, it is common for

the network to contain more than one route between any two communication end

points. As a result, the system can switch from one route to another in case one

route fails or becomes overloaded. However, complex network topology presents

great challenges to routing such as how to avoid infinite loops and which link to

use for sending a message and whether the link choice will not break the cor-

rectness of reliable delivery. It is hence very important to provide an abstract

topology model that preserves the redundant routes and at the same time enables

simple routing choices.

A typical physical publish/subscribe network contains one or more intercon-

nected software processes called brokers. The brokers cooperate in relaying the

messages through the network. In a network configured for high availability, it

is common to have more than one route between two brokers and the physical

network can be an arbitrary graph.

We adopt an abstract topology model of spanning trees of nodes where each

node may include multiple brokers that are highly connected.1 By highly con-

nected, we refer to the existence of many intra-node broker-to-broker links such

that intra-node communication can be done cheaply and easily. Hence, the brokers

in the same node may be considered redundant and can work interchangeably. A

local area network of brokers is such an example of a highly connected tree node

of brokers.

In this topology, any pair of virtual brokers each from an adjacent tree node

are connected. Furthermore, the clients may only connect at the leaf nodes and

a broker may either accept clients or route broker-to-broker traffic. Each leaf

1A tree node is a concept same as the cellules [36] in the Gryphon routing topology.

31

node may contain only one broker. As a result, we use the term broker and node

interchangeably when we discuss an edge broker and node.

By abstracting a complex network topology into a simpler noncyclic structure

like a tree, loop-free routing can be easily achieved by considering only the tree

nodes and edges. At the same time, by allowing multiple redundant brokers in

each tree node, the abstract topology preserves the high availability feature of the

original routing network.

The mapping from a complex physical routing network to this abstract re-

dundant tree is assisted by the concept of virtual brokers. A virtual broker is

a physical broker’s presence in a tree node in the abstract routing model. If a

physical broker appears in a tree node, the physical broker is said to be imple-

menting a virtual broker in that tree node. In particular, if a physical broker

both accepts clients and routes traffic to another physical broker, without loss of

generality, the physical broker can be represented by two virtual brokers, one in

a client-connecting leaf node and one in a non-leaf node.

The use of virtual broker allows the same physical broker to appear in more

than one tree node while preserving an efficient routing implementation. For

example, if a physical broker b appears in two adjacent tree nodes p(arent) and

c(hild), routing a message from p to c is immediate without the need to send the

message through a physical link if the message is in the virtual broker of b in node

p.

The decisions of what nodes a tree should contain, how the nodes are con-

nected, and which physical brokers belong to each tree node are typically made

in an administrative process. The set of virtual brokers of each tree node can be

32

(a)
(b)

Figure 3.1: Redundant Routing Networks

computed using this administrative information. An algorithm performing this

computation is shown in [36].

For the purpose of our thesis, it is sufficient to show that our abstract topology

model can accomodate a large set of physical broker networks and thus is of

practical use. For example, one can transform a graph (e.g., Figure 3.1(a)) with

redundant paths into a topology (Figure 3.1(b)) under this model by grouping

collections of highly-connected brokers into nodes and inter-broker links into edges

between the nodes the brokers reside. A spanning tree can then be defined on such

a graph of fat nodes and edges. Figure 3.2 describes another example where each

physical broker s1, s2, s3, s4 appears in two tree nodes and hence is represented

by two virtual brokers in the transformed abstract topology.2

As a result of the foregoing discussion, for the rest of this thesis, we will only

2This example is per courtesy of Marc A. Kaplan

33

(a)

(b)

Figure 3.2: Transforming a Physical Broker Network

use network topologies under this abstract model without distinguishing virtual

from physical. Content-based routing thus only need to be executed at the tree

node level so to make decisions on whether a message should be forwarded to a

“next hop” tree node. We assume the existence of a routing substrate that finds

34

for the next hop tree node a virtual broker and its physical implementing broker

as the destination. As the next hop tree node may contain more than one broker

and its incoming edge may contain more than one link leading to these brokers,

high availability can be provided by allowing the routing substrate to choose any

of these virtual brokers.

We refer to a virtual broker where publishers connect as a publisher hosting

broker (PHB) and a virtual broker where subscribers connect as a subscriber

hosting broker (SHB). A publishing client may connect at any of the leaf brokers.

However, for simplicity, we discuss our work from the standpoint of one PHB.

As a result, we can assume, without loss of generality, that SHBs reside in the

leaf nodes of the tree; and there is only one PHB and the node it resides in is

designated as the root of the tree. We refer to where the PHB resides as upstream

and direct the edges to point from upstream to downstream. We also use the term

edges of a broker to refer to the edges of its residing tree node.

3.1.2 Content-based Routing and Reliable Delivery

A valid implementation of content-based subscription can be one in which the PHB

and intermediate brokers forward all published messages to the SHBs, and only the

SHBs apply filtering. Such a solution will be a perfectly correct implementation,

but it may waste considerable bandwidth sending messages that will be later

discarded. Subscription propagation is an optimization which may result in fewer

wasted messages being sent to the SHBs in exchange for requiring the PHB and

the intermediate brokers to perform filtering and to acquire knowledge about

subscription predicates. Since subscription propagation is an optimization, it

35

should preserve the correctness properties of the original specification of content-

based routing.

In our topology mode, data messages enter a publish/subscribe system through

the PHB at the root of the redundant routing tree. The PHB maintains a stream

for data messages published by a publisher. The messages enter the stream in the

order they are published. A data message flows downstream toward the SHBs in

the leaf nodes. When the message arrives at a broker, the broker performs content

matching for each of its outgoing edges. If the data message does not match any

subscription in the downstream of the edge, the data message can be filtered out

for the downstream of the edge. Otherwise, the broker sends the data message to

a broker in the child node on the other end of the edge. As previously mentioned,

this step is assisted by asking the routing substrate to choose a broker from the

redundant peers in the child node. When the data message arrives at a SHB,

the SHB finds the matching subscriptions and delivers the data message to the

corresponding subscribers.

The data messages routed by a publish/subscribe system may be subject to

various levels of service guarantees such as best effort or reliable delivery. In

this thesis, we define reliable delivery as a service level that guarantees for a

subscription s and a published message stream PubStr, the publish/subscribe

system finds a starting message and an ending message (upon the unsubscription

request of s), and delivers all messages in the range of [starting point, ending point]

that match s in an order conforming to the original stream PubStr. We require

that the starting point be chosen within a finite amount of time if the system

has bounded latency and runs without failure for sufficient amount of time. This

36

excludes trivial algorithms such as one that delays choosing the starting point

until it sees the unsubscription request, and delivers no message.

Providing reliable delivery is a challenging task in a content-based system

deployed over a network with redundant paths. Due to content-based routing,

gaps can not be detected by traditional methods such as using publisher-assigned

sequence numbers because each subscriber may have a subscription filter requiring

a completely unique sequence of messages to be delivered. Reliability in a content-

based system hence requires brokers on the routing path to assist in gap detection

([12]).

Multiple paths, communication asynchrony and failures complicate subscrip-

tion propagation as redundant brokers on alternative routes may have subscription

information that is different from each other’s. If messages from the same pub-

lished stream are routed through those brokers, they are matched to different

sets of subscriptions and gaps can appear in the message sequences delivered to

subscribers.

3.2 General Model for Subscription Propagation and

Content-based Routing

In this section, we introduce a general model for subscription propagation and

content-based routing. We present the correctness criteria of subscription prop-

agation and a set of sufficient conditions for correct content-based routing and

reliable delivery.

37

3.2.1 Notation

In a publish/subscribe system, the brokers route messages for subscriptions that

are submitted by subscribers at the leaf nodes and can stop routing messages for

subscriptions that are unsubscribed. Hence, there are two sets of subscriptions

in the systems: the set of subscriptions that have been subscribed, denoted as S,

and the set of subscriptions that have been unsubscribed, denoted as S. These

two sets of subscriptions represent the global state in the whole system and are

always monotonically increasing as time passes. As is common in asynchronous

distributed systems, this global state is distributed among the leaf node brokers

and the whole state can only be known to an oracle. We introduce these concepts

for correctness reasoning. They are not maintained by brokers.

We assume a subscription has a unique identity and a filter in the form of a

disjunction/set of conjunctions. This does not limit the power of our model as

every Boolean expression can be transformed into disjunctive normal form (DNF).

We use the mathematical symbol λ to denote an individual conjunction and Λ to

denote a conjunction set. We use operator conj(s) to denote the conjunction set

of a subscription s. Even though multiple subscriptions can have the same set of

conjunctions, the identities are different.

As previously discussed (Section 3.1.1), without loss of generality, we can

assume that a subscription only enters the system through a leaf node in the

spanning tree. In addition, there is exactly one such leaf node for any given

subscription. This assumption is made so that in our system, there is always a

deterministic answer to where the home/hosting broker of a subscription is. If

it is decided that a message matches this subscription, there is a deterministic

38

answer as to where the message should be routed to.

An implication of this assumption is that if a subscription moves from one

broker/leaf node to another, it is deemed as two different subscriptions. Mobility

of subscriptions is supported by letting the second subscription have a delivery

starting point that is exactly where the first subscription has left. This can be

achieved cooperatively by the messaging system and the application. For example,

the JMS specification provides message delivery and acknowledgement modes that

allow the applications to receive messages with one or more duplicates in case of a

failure or subscriber disconnects or reconnects. This can be extended to have an

extra layer that checks (for example, by timestamps) and filters out the duplicate

messages and thus guarantees a second subscription receives messages from exactly

where the first subscription has left. Furthermore, higher level service can hide

the details of this technique of two subscriptions and provide to the application

the abstraction of a single but mobile subscription.

We have pointed out that sets S and S represent global state in an asynchronous

distributed system, hence, the brokers can only maintain local and partial knowl-

edge of S and S. These are maintained in the form of subscription identities.

In addition, the brokers maintain a set of conjunctions for purpose of content

matching and routing for these subscriptions. This local knowledge is accumu-

lated as subscription changes are propagated. In an asynchronous system, this

local knowledge usually lags behind the real global values to various degrees in

different brokers. As S and S are monotonically increasing, these local sets are

subsets of S and S, respectively. We define these local sets in the following.

Definition 3.1. For broker b and one of its outgoing edges e, b’s matching set

39

of subscriptions at e, denoted as S(e), represents its knowledge of the set of

client subscriptions that are downstream of edge e. Similarly, b’s matching set

of unsubscriptions at e, denoted as S(e), represents its knowledge of the set of

client unsubscriptions in the downstream of e.

Definition 3.2. For broker b and one of its outgoing edges e, b’s matching set

of conjunctions at e, denoted as Λ(e), are the set of conjunctions b maintains

to match and route data messages to the downstream of e.

Although S(e) and S(e) are maintained as the list of unique identities of the

subscriptions, as shown in Chapter 4, a system may choose a concise representa-

tion versus enumerating every subscription.

3.2.2 Consistency of Broker Subscription State

Intuitively, a broker’s state is consistent if the set of conjunctions (i.e., Λ(e)) it uses

for matching and routing is “sufficient” for the set of subscriptions (i.e., S(e) −
S(e)) it routes message for. We now formally define this sufficiency requirement

after introducing the concepts of covering of conjunctions, conjunction sets and

subscription sets.

Definition 3.3. Conjunction λ2 covers λ1, denoted as λ2ºc λ1, if and only if

M(λ2) ⊇ M(λ1), where M(λ) is the set of all messages matching λ. Conversely,

λ1 is covered by λ2, denoted as λ1¹c λ2.

Definition 3.4. Conjunction set Λ2 covers Λ1, denoted as Λ2wc Λ1, if and only

if
⋃

λ2∈Λ2
M(λ2) ⊇ ⋃

λ1∈Λ1
M(λ1)

We define the covering relationship between a conjunction set Λ and a sub-

scription set S in terms of the covering relationship between Λ and the set of

40

conjunctions of all subscriptions in S. We use the same operator wc as the con-

junction set covering relation for this covering relationship between a conjunction

set and a subscription set.

Definition 3.5. Conjunction set Λ covers subscription set S, denoted as Λwc S,

if and only if Λwc

⋃
si∈S conj(si).

The consistency of a broker’s subscription state is hereby defined as an invari-

ant each broker should maintain.

Invariant 1. For every broker b and its outgoing edge e, the Λ(e) set of b covers

S(e)− S(e), that is, Λ(e)wc S(e)− S(e). We call this the S-Λ invariant.

Intuitively, this invariant requires that if a broker claims to route messages for

a set of subscriptions, the filters (conjunction set) it uses must be sufficient to

match all the messages for the subscriptions.

3.2.3 Content-based Routing Algorithm

We describe in this section a content-based routing algorithm under the framework

we have setup earlier in this chapter.

In the abstract topology model, each broker network is a redundant routing

tree. A data message m flows from the root to the leaves in the tree through the

connecting edges. The data message carries a subscription header that is initially

set by the PHB to be equal to S(ei) the PHB maintains for each outgoing edge ei

of its residing node. This header identifies the set of subscriptions the message is

required to be matched against. We call this the matching set of subscriptions of

m, denoted as S(m). The value of S(m) does not have to stay the same through

41

the whole routing process. A broker b on the routing path of m can modify S(m)

by adding subscriptions (in b’s matching set of subscriptions) to S(m). Adding a

subscription s to S(m) is subject to the constraint that conj(s) must be covered

by the conjunctions of subscriptions in the original S(m).

The data message is routed by travelling from one node to its child nodes

through the connecting edges. For simplicity of discussion, we assign a pseudo

incoming edge to a root node where the PHB resides. The messages enter the

broker network through this pseudo edge. Thus, each tree node has one incoming

edge e, and one or more outgoing edges ei. When a broker b within a node receives

m through its incoming edge e, it separates out the subscriptions in S(m) that

are relevant to each of its outgoing edges. This can be achieved by associating

each subscription entity with information on where it subscribes. We call this a

projection of the S(m) set on the outgoing edge, and denote it as S(m, ei), where

ei is an outgoing edge.

The broker then checks whether it has knowledge of all the active subscriptions

in S(m, ei). An active subscription is one that has not unsubscribed, i.e., not in

S. Hence a sufficiency test is performed for S(m, ei)− S.

Definition 3.6. A broker b is sufficient for message m on outgoing edge ei if

S(m, ei)− S ⊆ S(ei)− S(ei).

As mentioned before, S may only be known to an oracle. However, since S(ei)

is always a subset of S, S(m, ei)− S ⊆ S(m, ei)− S(ei). The sufficiency test can

be replaced by a stricter test at broker b: S(m, ei)− S(ei) ⊆ S(ei)− S(ei).

If there is a subscription s such that s ∈ S(m, ei) but s /∈ S(ei) and s /∈ S(ei),

the sufficiency test fails for edge ei. This indicates that broker b lacks information

42

on s. In this case, as a conservation approach, b may forward m to a broker at

the other end of edge ei.

If the sufficiency test passes for edge ei, broker b matches m against Λ(ei).

If there is a match, m is forwarded to a broker at the other end of ei. If there

is no match, b may filter m out. As we mentioned before, providing reliable

delivery in a content-based system requires brokers on the routing path to assist

in gap detection, hence broker b needs to forward information on data message

m to indicate that the message is filtered out to distinguish it from a gap caused

by message reordering or losses. We refer to a filtered out message as a silence

message. For the purpose of the relevant downstream, this silence due to filtering

is the same as a silence resulted from the elapse of time between two consecutively

published messages. A silence message usually incurs less communication overhead

than the original data message m and may be combined with adjacent silence or

data messages such as described in [12]. However, for the purpose of this thesis,

we do not discuss such optimizations.

We conclude that a correct content-based routing algorithm is one where each

broker only filters out a message for an outgoing edge if the sufficiency test passes

and there is no match. In support of reliable delivery, such a content-based routing

algorithm forwards a silence message in place of a filtered message. We call such

an algorithm sufficiency-directed content-based routing.

43

Figure 3.3: Message Streams

3.2.4 Providing Reliable Delivery

Message Streams

As previously mentioned, data messages enter a publish/subscribe system through

the PHB at the root of the redundant routing tree. The PHB maintains a stream

for data messages published by a publisher. These data messages are assigned

monotonically increasing timestamps and occupy the message stream in increasing

timestamp order.

In gapless delivery, in order to deliver a new data message at an SHB, a no-gap

notification must be provided to the SHB that indicates no information is missing

between the last delivered data message and the new message. Such a no-gap may

result from no publication activity (that is, the elapse of time between publishing

two consecutive messages) or a data message being filtered. In our system, we

model the no-gap notifications as silence messages. Thus on the conceptual level,

a message stream has the following structure:

The conceptual message stream at the PHB contains information for every

value of timestamp: a data tick if there is a data message assigned with the

44

timestamp, a silence tick if there is not a data message with the timestamp, or an

unknown tick if the timestamp is in the future.

The routing brokers for the message stream maintain a message stream which

mirrors the one at the PHB. However, the silence tick may result from a data

tick being filtered out and the unknown tick may be intertwined with other ticks

due to message loss and delay of asynchronous communication and due to the

fact that there are multiple brokers in a logical node and message traffic is shared

among them.

Requirement on Content-based Routing

There are two issues in providing support for reliable delivery: First, choose a de-

livery starting and ending point for a subscription s; and second, deliver matching

messages without a gap between the starting and ending points. We first address

the issue of selecting delivery starting/ending points of a subscription s.

Let b be the SHB of s. We define the delivery starting point of s as the first

message m1 that b receives such that s ∈ S(m1). We define the delivery ending

point of s as the last message mn with s ∈ S(mn) that b receives before it receives

the unsubscription request of s.

Due to PHB failures, a message m (or a silence for m if filtered) after m1 may

be forwarded with S(m) such that s /∈ S(m). This can also occur if a broker

on the routing path fails or a message takes a different routing path as a routing

broker can change S(m) (Section 3.2.3). In this case, b discards m (or the silence)

and waits for a retransmission of the message with the right S(m).

We hence define the eventual monotonicity on S(m) of messages.

45

Definition 3.7. The S(m) set of messages of a published stream in range [m1,m2]

is eventually monotonic with regard to subscription s if the SHB of s eventually

receives those messages (or corresponding silences) with S(m) such that s ∈ S(m).

We then present a theorem of sufficient conditions for correct reliable delivery

and an informal reasoning of the theorem.

Theorem 3.1. Reliable delivery of a subscription s can be guaranteed if the fol-

lowing conditions are satisfied:

1. (Correctness of subscription propagation) Every broker in the publish/subscribe

system maintains S-Λ invariant.

2. (Correctness of content-based routing) Routing brokers use sufficiency-directed

content-based routing.

3. If there is a sufficiently long period of time for which the system runs without

failure, newly published messages (or silences) start to arrive at the SHB of s with

S(m) such that s ∈ S(m) unless the system fails again. Delivery starting and

ending points of s can be chosen in the aforementioned way.

4. The system guarantees eventual monotonicity of S(m) for messages in [starting

point, ending point] and the SHB only accepts the transmission of messages with

monotonic S(m).

Proof. Condition 1 guarantees that if a message matches a subscription in S(e)−
S(e) of a broker, then the broker will not filter out this message because it main-

tains conjunctions that covers the conjunctions in S(e)− S(e).

Condition 2 guarantees that if s has not been unsubscribed and a message m

has S(m, e) such that s ∈ S(m, e), then m will not be filtered out by a broker

for an outgoing edge e if m ∈ M(conj(s)). This is because sufficiency-directed

46

content-based routing will only filter out a message if the sufficiency test passes,

that is, S(m, e) − S(e) ⊂ S(e) − S(e). Because Λ(e)wc S(e) − S(e), we have

Λ(e)wc S(m, e)− S(e). Because s ∈ S(m, e), then Λ(e)wc conj(s). By definition

of wc, M(conj(s)) ⊆ M(Λ(e)). Hence, if m ∈ M(conj(s)), m ∈ M(Λ(e)), that is,

m will not be filtered out.

Condition 3 guarantees that if the system runs sufficiently long without fail-

ures, eventually some data message will arrive with S(m) such that s ∈ S(m).

This way we can pick a delivery starting point.

Condition 4 guarantees that all messages (or their corresponding silences if

filtered) after the delivery starting point of s arrives at the SHB of s with s ∈ S(m).

Combined with Condition 2, those data messages matching s will not be filtered

out because they have the right S(m). In addition, the SHB guarantees that

the unsubscription of s will not be propagated and as a result, s will not be

included in the S(e) set of any upstream broker b until after the delivery ending

point. Thus, the system guarantees a gapless sequence of messages for s after its

delivery starting point.

3.2.5 Summary

In summary, we have addressed the issues of what is correct content-based routing

and how to select delivery starting/ending points of a subscription. We also note

here that eventual monotonicity can be guaranteed using a liveness scheme such

as negative acknowledgement (indicating a subscription s is needed to be in S(m))

and retransmission. In next two sections, we discuss the issue of maintaining S-Λ

47

Figure 3.4: Binary Redundant Spanning Tree

invariant in the routing brokers.

3.3 Generic Subscription Propagation Algorithm

Publish/subscribe systems are usually dynamic with subscriptions entering and

leaving. As a result, the members in the S(e), S(e) and Λ(e) sets change. In this

section, we describe a generic subscription propagation algorithm. We focus on

the safety aspect, that is, the maintainence of S-Λ invariant in such a dynamic

environment.

We first describe the information brokers maintain and exchange during the

subscription propagation process and then discuss how this information is com-

puted.

Without loss of generality, we consider a directed redundant spanning tree

where every non-leaf node has exactly two children. Figure 3.4 shows a partial

topology that is of interest for examining broker b2, which resides in node n2 with

a redundant peer b′2. Node n2 is connected to two of its children through edge e4

and e5 and parent node n1 through edge e2.

48

3.3.1 Subscription Information Maintenance and Exchange

For broker b2 to route messages to subscribers that are downstream of edge e4 and

e5, b2 maintains the following information:

• Set of conjunctions Λ(e4) and Λ(e5) for matching messages before sending

on edges e4 and e5;

• Set of subscriptions S(e4) and S(e5);

• Set of unsubscriptions S(e4) and S(e5).

• Presumed knowledge of the state for edge e2 maintained by a broker (e.g.,

b1) in b2’s upstream node n1. This includes the presumed conjunction set,

Λ(e2)(b2), the presumed subscription and unsubscription sets S(e2)(b2) and

S(e2)(b2). Note that we have included (b2) in the suffix to distinguish the

presumed state from the actual state.

In an asynchronous distributed system, there is no guarantee that the real

state in b1 is exactly as b2 presumes. This state is computed at b2 as follows:

S(e2)(b2) = S(e4) ∪ S(e5) (3.3.1)

S2(e)(b2) = S(e4) ∪ S(e5) (3.3.2)

Λ(e2)(b2) = Λ(e4) ∪ Λ(e5) (3.3.3)

When subscription changes happen, the SHB generates information about the

change (described in Section 3.3.2). This information propagates upstream and

enters broker b2 through the reverse direction of its outgoing edges e4 and e5. The

propagation message, e.g. on edge e4, includes the following items

49

• ∆S(e4) represents the new subscriptions;

• ∆S(e4) represents the subscriptions that have been unsubscribed;

• ∆Λ(e4) represents the conjunctions that should be added or removed if

∆S(e4) and ∆S(e4) are to be applied. The elements of ∆Λ(e4) take the

form of “+λ” or “-λ”;

• constraint set C(e4) of Boolean expressions represents the conditions on S(e4)

and S(e4) at b2 in order for it to apply the aforementioned changes.

Incremental Change Application Constraints An example of the aforemen-

tioned constraint is the existence of a particular subscription s in an upstream

broker. That is, the upstream broker has received information about s and has

not learned of an unsubscription of s. This constraint could result from that the

current broker has aggregated away some conjunctions of the new subscription

due to those conjunctions being covered by subscription s’s conjunctions. Thus,

in order for the upstream broker to accept the incremental change generated by

this broker, it needs to have a subscription like s that covers the conjunctions in

the incremental change that are aggregated away.

We note that the constraints specify a set of sufficient conditions. The up-

stream broker can contain no subscription s but other subscriptions that cover

the aggregated-away conjunctions. The constraint is choosing in a way based on

a principle of locality. That is, since the current broker contains a subscription s,

it is highly likely that the upstream broker also does.

We give examples of constraints later in Section 3.4 in this Chapter and in

Chapter 4, where we show examples of constraints both at the abstract level and

50

with specific encodings.

When b2 receives the propagation message, it evaluates C(e4). If C(e4) is not

satisfied, it ignores the message. 3 If C(e4) is satisfied, b2 applies the ∆’s to S(e4),

S(e4) and Λ(e4). Applying ∆S(e4) and ∆S(e4) is to take the set union with S(e4)

and S(e4) respectively. Applying ∆Λ(e4) means adding a conjunction “+λ” or

removing a conjunction “-λ” if it is in Λ(e4).

After applying the ∆’s, broker b2 computes subscription changes for brokers

in its upstream node n1. The items include ∆S(e2), ∆S(e2), ∆Λ(e2) and C(e2)

and are computed from the changes to the presumed state S(e2)(b2),S(e2)(b2)

and ∆Λ(e2)(b2). If ∆Λ(e2) = ∅, broker b2 has the option not to propagate the

subscription further. Otherwise, b2 sends the subscription message to b1 through

the reverse direction of its incoming edge e2. The subscription message may also

be routed to other brokers (if any) in n1 following any path provided by the

underlying routing topology. For instance, if b1 has a redundant peer connected,

it may receive the subscription message from b1. However, our algorithm does not

rely on any synchrony between the brokers in a node.

3.3.2 Computing Subscription Change for an Upstream Broker

This section describes the computation of incremental subscription changes at

broker b2 for brokers in its upstream node n1.

3As we focus on the safety aspect of the algorithm in this chapter, we do not discuss liveness issue

here. In a working system such as the one shown in Chapter 4, a liveness mechanism will ensure that

every broker eventually receives up-to-date subscription information, regardless of incremental change

messages ignored due to unsatisfied constraints.

51

Computing ∆S(e2) and ∆S(e2) Since each subscription and its corresponding

unsubscription enter the spanning tree at only one point, S(e4) ∩ S(e5) = ∅ and

S(e4) ∩ S(e5) = ∅. Using Formula 3.3.1 and 3.3.2, we have ∆S(e2) = ∆S(e4) and

∆S(e2) = ∆S(e4).

Computing ∆Λ(e2) and C(e2) Broker b2 computes incremental change ∆Λ(e2)

from ∆Λ(e4) and b2’s current presumed state of an upstream broker - Λ(e2)(b2).

Depending on the aggregation scheme used, this may generate one or more con-

straints. Constraint C(e2) includes these new constraints and the constraints

in C(e4). We do not restrict the generic algorithm to any specific aggregation

scheme. Instead, we only require that the aggregation scheme computes constraint

set C(e2) and ∆Λ(e2) such that if a broker initially satisfies the S-Λ invariant and

applies ∆Λ(e2) only when the constraints are satisfied, the broker maintains the

S-Λ invariant.

An aggregation scheme can be one that does not aggregate the conjunctions.

The constraint set is always ∅. In such a system, the subscription changes re-

ceived at SHBs are flooded to all brokers without change and brokers maintain all

subscription conjunctions. We describe a more sophisticated aggregation scheme

in the following section.

3.4 Subscription Propagation with Aggregation

The aggregation of Λ(e4), Λ(e5) and ∆Λ(e4) at broker b2 produces the conjunction

changes ∆Λ(e2) and constraints C(e2) that are part of the incremental subscription

change the broker sends upstream. In this section, we describe an abstract scheme

52

for aggregating these conjunctions based on their covering relationships. Our

purpose is to provide a foundation for analyzing the family of covering-based

aggregation schemes.

3.4.1 Aggregating Conjunctions

The fact that covering conjunctions matches all messages of their covered con-

junctions allows a broker to withhold from propagating changes of conjunctions

that are covered by one or more conjunctions that the broker has already propa-

gated and still guarantees correct content filtering. That is, ∆Λ(e) (for any edge

e) needs to include only conjunctions that are not covered. For the same reason,

a broker only needs to maintain the non-covered conjunctions in its conjunction

set Λ(e).

As previously described, broker b2 applies ∆Λ(e4) to obtain a new state of

Λ(e2)(b2) and ∆Λ(e2) is computed as the conjunction change in Λ(e2)(b2). We

organize the conjunctions in Λ(e2)(b2) into a DAG for easy representation of the

covering relationships. The DAG nodes are conjunctions with edges drawn from

a covering conjunction (a parent) to each of its covered conjunction (a child).

The roots of the DAG are the set of conjunctions that are not covered and hence

should be propagated. We examine the changes in the DAG resulted from applying

∆Λ(e4). Incremental change ∆Λ(e2) and C(e2) thus represent the change to the

root set and the conditions under which it happened. The initial value of ∆Λ(e2)

is an empty set ∅, whereas the initial value of C(e2) is set to C(e4) because the

computation is based on b2 satisfying constraints C(e4).

We first introduce a notation of sub(λ) as the set of subscriptions in S(e)−S(e)

53

(a) (b)

(c)

Figure 3.5: Applying Incremental Changes ∆Λm in b2

over all edges at a broker such that λ ∈ conj(s) for each s in this set.

Adding a Root Conjunction Figure 3.5(a) illustrates the case of adding a

conjunction λ that will be a root in the new conjunction DAG of Λ(e2)(b2).

The new root conjunction λ may cover zero or more conjunctions. As a newly

created root in the DAG of Λ(e2)(b2), “+λ” should be propagated and thus belongs

to ∆Λ(e2). Since λ is propagated, no new constraint is created.

Adding or Removing a Non-Root Conjunction Figure 3.5(b) describes the

cases when a non-root conjunction lambda is added or removed while it is covered

by existing conjunctions λ1, . . . , λn that will continue to exist in the new DAG of

Λ(e2)(b2). Since λ is not a root conjunction, it does not need to be propagated

and thus this results in no change to ∆Λ(e2).

On the other hand, the removal of λ from the incremental change is based on

the existence of at least one of its covering conjunctions. Since the constraints

represent a requirement on an upstream broker’s matching sets of subscriptions

54

and unsubscription, this is to require the existence of at least one subscription in

⋃n
i=1 sub(λi). As a result, the following constraint is added to C(e2)

∨
s∈

⋃n

i=1
sub(λi)

s ∈ S(e2)− S(e2) (I)

Removing a Root Conjunction Figure 3.5(c) describes the case when an

existing root conjunction λ is removed and λ is not covered by any new conjunction

that is added to the DAG. Conjunction λ1, λ2, . . . , λn−1 represent the set of

conjunctions that are directly covered by λ. Conjunction λ1, λ2, . . . , λm−1 (m ≤
n) represents those conjunctions in λ1, . . . , λn−1 that are also covered by other

existing conjunctions. For example, λ1 is covered by λ1
1. For simplicity, we only

show one covering conjunction for each of λ1, . . . , λm−1. Conjunction λn, . . . , λp

represent newly added conjunctions that are covered by λ.

As a removed root, λ does not belong to the new DAG of Λ(e2)(b2) and “−λ”

should be added to ∆Λ(e2). Because λm, . . . , λn−1 become new root conjunctions,

we add “+λm, . . . , λn−1” to ∆Λ(e2). Note that newly added root conjunction

λn, . . . , λp will be handled as described in “Adding a Root Conjunction”. To

summarize, ∆Λ(e2) is updated as follows:

∆Λ(e2) ← ∆Λ(e2) ∪ {−λ} ∪ ⋃n−1
i=m{+λi}

Due to an upstream broker b1 not maintaining covered conjunctions, all con-

junctions of subscriptions in b1 that were covered by λ should be restored if they

are not covered by other conjunctions in Λ(e2). Adding “+λmn−1” to ∆Λ(e2)

partly satisfies this requirement. However, if there is a subscription s in b1 that is

unknown to b2 such that one or more conjunctions of s are covered by λ, then the

upstream broker may violate the S-Λ invariant. To guarantee that such a case

does not happen, we make sure there is no subscription in b1 that is unknown to

55

b2 through the following constraint

S(e2)− S(e2) ⊆ S(e2)(b2)− S(e2)(b2) (II)

The withholding of λ1, . . . , λm−1 in Figure 3.5(c) is based on the existence

of at least one of their covering conjunctions (represented by variable λt in the

following formula) in broker b1. This is represented by the following constraint for

each λi where i = 1, . . . , m− 1:

∨
s∈

⋃
(λt ºc λi)

sub(λt) s ∈ S(e2)− S(e2) (III)

This type (III) of constraints are the same as type I. They are only caused

by different situations.

As we describe in Section 3.4.2, constraints of type I II and III are sufficient to

guarantee the S-Λ invariant. For efficiency of content-based routing, it is essential

to guarantee that if a broker b1 passes the sufficiency test against a message m

for an outgoing edge e2, b1 will filter m if m does not match any subscription in

S(e2) − S(e2). That is, subscription propagation needs to prevent from adding

conjunctions that do not belong to any subscription in S(e2) − S(e2). This is

represented by the following constraints for each λi in λm, . . . , λn−1 that is added

to ∆Λ(e2):

∨
s∈sub(λi) s ∈ S(e2)− S(e2) (IV)

3.4.2 Operation and Constraint Properties

If a publish/subscribe system only uses the aforementioned operations and con-

straints, every broker will maintain the S-Λ invariant. The following theorem is

a formal statement of this property.

Theorem 3.2. For any broker b and an outgoing edge e in a redundant spanning

56

tree, if the S(e), S(e) and Λ(e) sets of b initially satisfy the S-Λ invariant and

are only modified by the operations and constraint type I, II and III described in

Section 3.3.2, the broker maintains S-Λ invariant.

The use of type IV constraints guarantees that the broker does not maintain

extra conjunctions other than those needed for performing content matching for

the subscriptions it maintains. The following theorem is a formal statement of

this property.

Theorem 3.3. We consider broker b and its outgoing edge e in a network us-

ing operation and all types of constraints described described above. For every

conjunction λ ∈ Λ(e), there exists a subscription s such that λ ∈ conj(s) and

s ∈ S(e)− S(e).

Proof. We prove by induction on the number of incremental updates broker b

processes.

1. Base case. Broker b has processed 0 incremental updates.

Initially, S(e) = S(e) = Λ(e) = ∅, so this satisfies the theorem.

2. Induction assumption

Suppose the theorem holds for broker b before processing an incremental

update (∆S(e), ∆S(e), ∆Λ(e) and C) from its downstream.

3. Induction rule

We prove for every conjunction λ ∈ Λ(e)+∆Λ(e), there exists a subscription

s, such that λ ∈ conj(s) and s ∈ S(e) ∪∆S(e)− S(e)−∆S(e).

There are two types of events to consider:

57

(a) “+λ”∈ ∆Λ(e) - because this may result in (new) conjunctions that do

not have a subscription in S(e)−S(e) sets. This can occur in two cases:

i. λ belongs to a new subscription s. In this case, s ∈ ∆S(e) and

s /∈ ∆S(e).

Because ∆S(e) stays the same throughout the propagation pro-

cess 3.3.2, it is exactly the same as the value that is initially com-

puted at the SHB. Because the members in S(e) and S(e) are orig-

inated at SHBs and each subscription only connects from one SHB,

∆S(e) ∩ S(e) = ∅. We thus have s /∈ S(e). Therefore

s ∈ S(e) ∪∆S(e)− S(e)−∆S(e)

The theorem holds.

ii. λ is generated in the case of “Removing a Root Conjunction” de-

scribed in Page 55. From constraint IV, we have ∃s ∈ sub(λ) such

that s ∈ S(e) − S(e). Because there is a “+λ” but not “−λ” in

∆Λ(e), s /∈ ∆S(e). Thus

s ∈ S(e) ∪∆S(e)− S(e)−∆S(e)

The theorem holds.

(b) s ∈ ∆S(e) - because this may result in b not removing conjunctions

whose subscription are removed. Initially, every s ∈ ∆S(e) will have a

“−λ” in ∆Λ. Two cases could happen to this “−λ” when a downstream

broker, e.g., b1 computes the ∆Λ for subscription aggregation. We ex-

amine the activities happening in b1 and prove that if “−λ” is removed

by b1 from the ∆Λ(e) it sends upstream, an upstream broker will not

have λ in its Λ(e) DAG either.

58

i. “−λ” stays in ∆Λ(e). This can only happen in the case of “Remove

a Root Conjunction”. The theorem holds in this case.

ii. “−λ” is removed. This can only happen in the case of “Removing

a non-Root Conjunctions” described in Section 3.4.1. In this case,

a type I constraint is generated.

Thus there exists s′ and λ′ ∈ conj(s′) such that s′ ∈ S(e) − S(e)

and λ′ºc λ. Because s′.λ′ exists in downstream broker b1’s DAG, it

is not being removed. Hence s′ /∈ ∆S. Thus we have

s′ ∈ S(e) ∪∆S(e)− S(e)−∆S.

From theorem 3.2, either s′.λ′ ∈ Λ(e) + ∆Λ(e), or s′.λ′ is covered

by a conjunction in it. In both cases, because s′.λ′ºc λ, λ will be

removed by the minimization, and thus the theorem holds.

3.5 Subscription Propagation with Filter/Conjunction

Merge

As previously mentioned, subscription propagation is an optimization that may

provide better system performance. It is a technique that trade off computation

overhead of performing content matching versus communication overhead that is

incurred in transmitting extra messages in the system that may be discarded later.

Opyrchal et al. ([51]) observed that under some range of conditions, a simple

flooding algorithm is viable; and under conditions of high selectivity and high

regionalism of subscriptions, content-based routing performs significantly better;

59

however, the specific algorithm to use depends upon the economics of deployment.

Mühl et al. ([49]) argued that as the number of subscriptions increases, the

overhead on performing content matching is likely to increase while the selectiv-

ity of subscriptions decreases. As a result, it is viable to use fewer but simpler

subscription filters even though this may result in a few extra messages being

transmitted in the system.

The flooding algorithm and the previously described subscription propagation/content-

based routing algorithm are the two extremes of the spectrum where the maximum

simplicity of routing and efficiency of communication are achieved, respectively.

Mühl et al. ([49]) have also argued the usefulness of what they call imperfect

filter merging. That is, in some cases, it is desirable to achieve a middle ground

where the simplicity of content matching and efficiency of communications are

traded-off. This usually refers to a technique known as subscription merging by

which a broker or brokers in a content-based publish/subscribe system substitute

and propagate a small number of coarser subscription filters instead of a large

number of finer subscription filters that are largely overlapping.

We think that subscription merging can be a very useful mechanism in terms of

improving system performance under certain circumstances. Hence, it is necessary

to explore how such a mechanism can be accommodated in our framework.

It is obvious that whether and what coarse filters to use for substitution should

be an adaptive decision based on the distribution of the original subscription

filters and the distribution of the message patterns in terms of matching those

subscriptions. With this decision, a mechanism is required to enable this merging

of finer subscriptions. We discuss in this section such an enabling mechanism that

60

supports reliable delivery in our redundant routing networks. The whole system

that is capable of performing adaptive subscription merging is beyond the scope

of this thesis and may be explored in the future.

3.5.1 Merging Brokers

In a system that is capable of applying subscription merging, merging subscrip-

tions are generated by the system to replace the original subscriptions from the

downstream of a broker.

Our system can be extended to support subscription merging by using a spe-

cial merging broker for hosting these merging subscriptions at each broker that

performs merging. Specifically, for each broker b in a non-leaf and non-root node

n in the redundant routing tree, we create a special broker bm and its residing leaf

node as a child of n. This is possible because all brokers in our system are virtual

and a physical broker can implement one or more virtual brokers. Thus, we can

create the merging broker bm by letting the physical broker of b to implement an

additional virtual broker.

We further make sure that one can distinguish a merging subscription from

other subscriptions from downstream. This can be done through encoding the

identity of the tree node n in the subscription’s identification.

The broker network shown in Figure 3.1 is translated into a network in Fig-

ure 3.6 with merging brokers b2
m in node n2

m and b2
′m in node n2

′m.

3.5.2 Algorithm Sketch

A publish/subscribe system with subscription merging usually operates in two

ways: merge a number of subscriptions by supplying a few covering (or merging)

61

Figure 3.6: Redundant Routing Network Supporting Subscription Merge

subscriptions and replace the merging subscriptions with the original subscriptions

in the reverse direction.

Subscription merging can be performed at any broker other than the PHB

as the PHB has no further upstream broker to propagate subscriptions. The

decision on whether and what merging subscriptions to use can be made locally

at each broker through an algorithm. A such typical algorithm should take into

consideration the histories of the communication overhead of wasted messages and

the computation overhead of matching the large number of original subscriptions.

The algorithm then should make decisions based on its prediction of these tradeoff

overheads. This aspect is a future extension of our work and is outside the scope

of this thesis.

62

The mechanism for enacting this changes works natually by adapting the

generic algorithm previously described in this chapter with the subscriptions from

the merging broker. Thus, the system propagates merging or original subscription

filters with the constraint conditions. Upon restart from a merging broker crash,

a special unsubscription of all the merging subscriptions will be issued and the

broker can then begin using new merging subscriptions.

3.6 Summary

In this chapter, we have discussed a general algorithmic model for subscription

propagation, content-based routing and reliable delivery in a redundant broker

network. We have also shown how a mechanism that allows adaptive subscription

merging can be accommodated in this framework through the use of special virtual

merging brokers.

63

Chapter 4

Subscription Propagation Using

Virtual Time Vectors

We have discussed a generic subscription propagation and sufficiency-directed

content-based routing algorithm in Chapter 3. The generic algorithm uses ab-

stract concepts of subscription sets and leaves each concrete protocol with an

option to pick its own representation of these sets.

In this chapter, we present a working subscription propagation protocol that

utilizes virtual time vectors as an instrument for representing subscription sets.

We show how this protocol can be interpreted as an encoding of the generic

algorithm and hence its correctness can be derived from the correctness of the

generic algorithm. We then discuss the liveness and failure handling features of

the protocol.

64

4.1 Protocol Description

The centerpiece of this protocol is the use of subscription virtual start and end

times as an encoding method of the generic algorithm.

4.1.1 Virtual Times

Perhaps one of the most important concepts in distributed computing is virtual

time ([34]) or logical clocks ([40]). These concepts reflect people’s intuition that

some numerical instrument may be a useful abstraction of the state of a distributed

system and can reflect the dependency/ordering of events.

We use virtual times as an abstraction of the state of subscriptions at a SHB.

That is, instead of saying currently subscription s2 and s3 are connected at the

SHB, and subscription s1 has just disconnected, a more concise representation is

the SHB is at virtual time 4 (due to the arrival of subscription s1, s2, s3 and the

subsequent departure of s1).

In this protocol, a SHB/leaf broker maintains a virtual time clock. The leaf

broker ensures the monotonicity of its virtual clock, despite crash recovery. For

the discussions in this chapter except Section 4.3, we assume the virtual clock is

an integer counter. The virtual clock starts at one when the SHB starts.

The events that advance the virtual clock are client subscriptions and unsub-

scriptions at the SHB. Whenever a SHB’s aggregated subscriptions change and the

SHB decides to propagate the change to its upstream brokers, the SHB advances

its virtual time clock by 1.

A client subscription/unsubscription may or may not change the aggregated

subscriptions of its SHB, depending on whether existing/remaining subscriptions

65

cover the client’s subscription or not. As described in Chapter 3, the aggregated

subscriptions are the subscriptions a broker presents to its upstream brokers in

order to receive messages matching its own subscriptions.

The SHB assigns virtual start times to its hosted subscriptions, a.k.a. subscrip-

tions connected at this SHB. All new subscriptions are assigned a virtual start

time that is at most the value of the virtual clock’s current time. The SHB also

assigns virtual end times to the subscriptions that are departing using the current

clock value. This virtual end time, even though does not need to be maintained

in our system, defines the life span of a subscription together with its virtual start

time.

Next, we discuss how virtual start/end times are assigned. As described in

Section 3.2.1, we assume that a client subscription is in the form of a set of Boolean

conjunctions. The assignment of virtual times to a client subscription is calculated

based on the covering relationship of the existing subscription conjunctions and

the conjunctions of the client’s subscription.

4.1.2 The Conjunction DAG

At a SHB, the assignment of virtual start times to new subscriptions and the

computation of aggregated subscriptions to its upstream brokers are based on the

covering relationship of subscription conjunctions. We use a directed acyclic graph

(DAG) to facilitate the representation and discovery of the covering relationship.

The DAG is constructed by modelling conjunctions as nodes and drawing a di-

rected edge from a covering conjunction to a covered conjunction. As the covering

relationship is transitive, we omit the transitive edges. Initially, broker conjunc-

66

tion DAGs are empty until client subscriptions are connected.

Several examples of conjunction DAGs are shown in Figure 4.2 in Page 70.

Each conjunction is represented as a rectangle with a virtual start time, and

an oval representing the list (called subscriber list) of subscribers or downstream

routing tree nodes whose subscriptions contain the conjunction.

Given a conjunction c, operations such as searching for the covering conjunc-

tions of c, inserting c and removing c are simplified and expedited by the DAG.

The broker can conduct a breadth-first search for conjunctions that immediately

covers c or is immediately covered by c. By “a conjunction c′ immediately covers

c”, we mean that there are no other conjunctions in the DAG that are covered by

c′ and themselves cover c. Inserting conjunction c into the DAG involves putting

c between its immediate covering and covered conjunctions and removing the old

edge between any pair of its immediate covering and covered conjunctions. Vice

versa, removing a conjunction c involves removing c and adding an edge between

any pair of its immediate covering and covered conjunctions. The DAG, as a

result, maintains the following properties

• Completeness: to the extent of the capability of the covering test algorithm

used, every covering relationship is represented in that there is a path be-

tween every pair of conjunctions that have a covering relationship detected

by the covering test algorithm;

• Minimality: there is no transitive edge;

• Monotonicity: every node has a higher virtual start time than any of its

descedents. We defer the discussion of this property to next section.

67

4.1.3 Handling New Subscriptions and Assigning Virtual Start Times

To calculate the virtual start time of a new subscription, we first calculate a virtual

start time for each of its conjunctions. We ignore the trivial case that there is an

existing conjunction in the DAG that is the same as the new conjunction.

For each conjunction c of the new subscription, the broker inserts c into the

DAG and set c’s virtual start time to the minimum of the virtual start times

of its immediate covering conjunctions. If no such covering conjunction exists,

c becomes a new root node, and its virtual start time is set to the current time

of the broker’s virtual clock. As the broker’s virtual clock only monotonically

increasing, this operation ensures the monotonicity of virtual start times from a

node to any of its descedent nodes.

The above process is repeated for every conjunction of the new subscription.

Their virtual start times are used to calculate the virtual start time of the new

subscription. As we know, to ensure reliable delivery, message delivery for a new

subscription can not start until matching messages for all its conjunctions start

to arrive. Hence, we set the virtual start time of the new subscription to the

maximum of the virtual start times of its conjunctions’.

We use examples below to further illustrate this process.

Figure 4.1 shows a broker network with three levels of nodes: top level root

node N31 where the publisher hosting broker PB1 resides; middle level node N21

and N22 where the intermediate routing nodes B1, B2 and B3, B4 reside respec-

tively; and leaf level nodes N11, N12 and N13 where the subscriber hosting broker

SB1, SB2 and SB3 reside respectively. A publisher p connects at PB1 and sub-

scribers s1, s2, s3, s4 and s5 connect at SB1, SB2 and SB3, respectively. We now

68

Figure 4.1: A Redundant Broker Network

examine the changes at subscriber hosting broker SB1, SB2 and SB3 when they

process client subscriptions.

Example 4.1. Initially, there is no subscription at any of the brokers in the

system. Hence, the brokers have an empty conjunction DAG and a virtual clock

time of 1. When subscriber s1 at SB1 submits the following subscription:

stock = ‘nyse/ibm′

the only conjunction of this subscription is inserted into the conjunction DAG.

If broker SB1 decides to propagate all pending subscription changes since the last

time it has done so, it increments its virtual clock time by 1 and this conjunction

69

(a) Conjunction DAG after inserting s1

(b) Conjunction DAG after inserting s1 and s2

Figure 4.2: State at Broker SB1 After Inserting Subscriptions s1 and s2

becomes the only conjunction with virtual start time of 1. The conjunction DAG

and virtual clock time are shown in Figure 4.2(a).

In the above example and the following ones, we use a notation to repre-

sent topic hierarchies. Topic hierarchy is a concept supported in many pub-

lish/subscribe systems. In ‘nyse/ibm′, ‘/′ is the hierarchy separator that rep-

resents the sub-topic ‘ibm′ under ‘nyse′. As we will see from later examples,

70

Figure 4.3: State at Broker SB2 after Inserting Subscription s4

wildcards such as ‘∗′ are used to represent any topic under a hierarchy.

Example 4.2 is a similar example showing the change at broker SB2 when

subscriber s4 submits the first subscription at SB2.

Example 4.2. Initially, broker SB2 has an empty conjunction DAG and sub-

scriber s4 submits the following subscription:

stock = ‘nyse/∗′

When SB2 propagates this latest change, its virtual clock advances to 2. Figure 4.3

shows the state of SB2 after processing and propagating subscriber s4’s subscrip-

tion.

Now both broker SB1 and SB2 have non-empty conjunction DAG and have

propagated subscriptions to upstreams at this point. We delay the discussion of

the propagation process until Section 4.1.5 and continue to examine broker SB3

and SB1 when more subscriptions are submitted.

Example 4.3. When subscriber s5 at broker SB3 submits it subscription

stock = ‘nasdaq/goog′

71

Figure 4.4: State at Broker SB3 after Inserting Subscription s5

broker SB3’s adds the conjunction to its empty DAG and advances its virtual clock

to 2. The state of SB3 is shown in Figure 4.4.

Example 4.4. Suppose subscriber s2 at broker SB1 submits the following sub-

scription where attribute p represents the price of the stock:

stock = ‘nyse/ibm′∧p > 90∨stock = ‘nyse/t′∧p > 19∨stock = ‘nasdaq : msft′

This subscription contains three conjunctions: the first one is covered by an ex-

isting conjunction in SB1’s DAG and hence assigned the same virtual start time

of 1, and the other two are new conjunctions and hence assigned a virtual start

time of 2, which is the broker’s current clock value. As a result, there are changes

to the aggregated subscriptions at broker SB1 and needs to be propagated. When

broker SB1 propagates this change, the virtual clock is advanced to 3. The state

of SB1 after propagating this change is shown in Figure 4.2(b).

We note that the nodes in the conjunction DAG are assigned non-increasing

virtual start time as one travels from a root node to the covered nodes. Thus

computing virtual start time of a new conjunction only takes into consideration

72

the immediate covering nodes. As a reminder, transitive arcs are omitted from

the conjunction DAG.

4.1.4 Handling Unsubscription

When a subscriber unsubscribes a subscription, the broker first locates in the DAG

the conjunctions of the subscription. For every conjunction of the subscription,

the subscriber is removed from the subscriber list of the conjunction node. If a

conjunction node does not have any subscriber in its list, the conjunction node

may be removed from the DAG.

The removed subscription is assigned a virtual end time using the broker’s

current virtual clock time. This virtual end time represents the end of life span of

the subscription, and from this point, message routing and delivery in the system

do not concern this subscription.

At the end of the client subscribing/unsubscribing process, if any roots are

added or removed, the SHB’s aggregated subscriptions change and the SHB needs

to propagate the change to its upstream brokers. When this happens, the SHB

advances its virtual clock by one. In addition, an incremental update is generated

and propagated to upstream brokers in the redundant routing tree.

We note that although we have discussed the subscribing and unsubscribing

process as if there is only one request at a time, the algorithm actually processes

requests in batches. The size of the batch is a tuning parameter and may be

administratively configured. The broker only advances its virtual clock at the end

of the batch process if the set of root nodes is changed.

We also note that once a subscription is removed, there is no need to store

73

information for it. The virtual end time of the subscription is not really assigned

and is never maintained in the system. It is a conceptual value we use to describe

the mapping of the protocol from the generic algorithm.

4.1.5 Computing an Incremental Subscription Change Message

As previously described, if a client subscription/unsubscription results in changes

in the set of root nodes of a conjunction DAG, the leaf broker/SHB computes and

propagates incremental changes about the aggregated subscriptions.

An incremental change contains

• the name of the originating leaf broker, e.g. SB1;

• the virtual time v1 of SB1 when the change occurred;

• a list of additive/subtractive conjunctions {+c1, +c2, . . . ,−ci,−ci+1, . . .};

• the subscribing tree node; and

• a constraint vector on receiving broker’s V b virtual time vector.

where c1 and c2 are the newly-added root DAG nodes, ci and ci+1 are the old

roots that were just removed from the DAG.

The constraint vector is initially set to (SB1, v1 − 1) at the SHB. That is, in

order to apply this incremental update to change its state of subscriptions, the

receiving broker should have received information of all subscriptions connected at

leaf broker SB1 with virtual start time < v1. As we will see later in Section 4.1.6,

this constraint requires the receiving broker to have a virtual time vector of v1−1

for this SHB.

74

Our examples in Section 4.1.3 produce the following incremental subscription

changes:

1. SB1 generates: “SB1, 1, {+(stock = ‘nyse/ibm′)}, N11, cons = (SB1 : 0)”

2. SB2 generates: “SB2, 1, {+(stock = ‘nyse/∗′)}, N12, cons = (SB2 : 0)”

3. SB3 generates: “SB3, 1, {+(stock = ‘nasdaq/goog′)}, N13, cons = (SB3 :

0)”

4. SB1 generates: “SB1, 2, {+(stock = ‘nyse/ibm′ ∧ p > 90), +(stock =

‘nyse/t′ ∧ p > 19), +(stock = ‘nasdaq/msft′)}, N11, cons = (SB1 : 1)”

The leaf broker sends the incremental change to a broker in its parent node.

For example, SHB SB1 and SB2 may send its incremental changes to broker B1

in N21 in Figure 4.1, and SHB SB3 may send its incremental change to broker B3

in node N22. As brokers in the same tree node are usually fully connected, B1

and B3 forward the incremental change to other brokers (B2 and B4) in the same

node (N21 and N22).

4.1.6 Propagating Subscription Changes at An Intermediate Routing

Broker

In the previous sections, we have discussed how SHBs handle client subscrip-

tions, assign them virtual start times, generate and propagate the incremental

subscription change messages. We describe here the processing of the incremental

subscription changes at the intermediate routing brokers.

A broker at an intermediate node maintains a state that consists of a conjunc-

tion DAG and a virtual time vector. The virtual time vector contains one element

75

for each SHB that is in the downstream of the broker’s residing node. We denote

this virtual time vector as V b. Each element in the V b vector has an initial value

of 0.

Upon receiving an incremental change, a broker checks whether its V b vector

satisfies the constraint specified in the incremental change. That is, for each SHB

appearing in the constraint, the broker checks the corresponding element in its

V b vector. If those elements have the same values as specified in the constraint,

the broker satisfies the constraint and can apply the incremental change.

If the constraint is not satisfied, the broker cannot apply the incremental

change. Furthermore, if some elements of the broker’s V b vector are smaller

than those of the constraint vector’s, the broker detects its subscription informa-

tion is lagging behind, and initiates liveness mechanism to get up-to-date. We

defer further discussion of the issues concerning an unsatisfied constraint until

Section 4.3.

To apply the incremental subscription change, the broker first applies the ad-

ditive and subtractive conjunctions carried in the incremental change. For an

additive conjunction, if a node with the same conjunction already exists in the

DAG, the broker adds the tree node specified in the incremental change to the

subscriber list of the existing node. If such a node does not exist, the broker

inserts a new node for the additive conjunction. The tree node becomes the only

subscribers in the subscriber list of the new conjuntion node.

Vice versa, the subtractive conjunctions are applied by removing the tree node

from the subscribers lists of the existing conjunction nodes in the DAG. If the

subscriber lists of a conjunction node becomes empty, the conjunction node is

76

removed from the DAG.

A non-leaf node broker’s conjunction DAG (e.g., Figure 4.5(a) and (b)) is

similar to that of a leaf node broker’s, except that we do not record virtual start

time vectors for conjunctions as the intermediate broker does not need to assign

virtual start times to subscriptions.

After applying all the additive/subtractive conjunctions, the broker updates

its V b vector by setting the element of the SHB to the value specified in the

incremental change. The broker has thus completed applying an incremental sub-

scription change message and can compute a new incremental change for sending

to its upstream brokers.

As we have discussed, there could be more than one peer broker in the same

upstream routing tree node and we pick any broker among these peers to send

an incremental subscription change. This broker then forwards the incremen-

tal subscription message to its peers, utilizing possibly higher quality intra-node

broker-broker physical links. We further delegate to this original receiving broker

the task for computing and sending a new incremental subscription change to

further upstream nodes.

The chosen broker thus computes all five elements of an incremental subscrip-

tion change in the following way as we describe:

• the name of the originating leaf broker/SHB. This is the same as in the

incremental change this broker received.

• the virtual time at the SHB. This is the same as in the incremental change

this broker received.

• the additive/subtractive conjunctions in the new incremental change are

77

computed as a result of the root node changes in the DAG.

• the subscribing tree node. This is set to the tree node where the current

broker resides.

• the new constraint vector. If the incremental change is a pure additive change

and no aggregation happened in the current broker, the constraint vector of

the new change is unchanged. Otherwise, the constraint vector is set to the

old value of V b vector of the broker prior to its change.

The original receiving broker of the incremental change then forwards the new

incremental change to a broker in its parent tree node.

We further illustrate the above process through several examples. For ease of

description, we first repeat the incremental subscription change messages gener-

ated by the SHBs, which is first described in Section 4.1.5 in Page 75.

1. SB1 generated: “SB1, 1, {+(stock = ‘nyse/ibm′)}, N11, cons = (SB1 : 0)”

2. SB2 generated: “SB2, 1, {+(stock = ‘nyse/∗′)}, N12, cons = (SB2 : 0)”

3. SB3 generated: “SB3, 1, {+(stock = ‘nasdaq/goog′)}, N13, cons = (SB3 :

0)”

4. SB1 generated: “SB1, 2, {+(stock = ‘nyse/ibm′ ∧ p > 90), +(stock =

‘nyse/t′ ∧ p > 19), +(stock = ‘nasdaq/msft′)}, N11, cons = (SB1 : 1)”

Example 4.5. In the broker network shown in Figure 4.1, broker B1 has initial

V b vector of all 0’s. Hence, when it receives the first incremental changes from

SB1 and SB2, the contraints are satisfied and B1 applies the incremental changes.

78

(a) State of Broker B1 after Receiving one Incremental Update from each of SB1 and SB2.

(b) State of Broker B1 after Receiving an Additional Incremental Update from SB1.

Figure 4.5: Broker B1 Subscription DAGs

Its conjunction DAG contains conjunction “stock = ‘nyse/ibm′” from SB1 (a.k.a.

N11 since SB1 is the only residing broker) and conjunction “stock = ‘nyse/∗′”
from SB2 (a.k.a. N12). The V b vector of B1 becomes (SB1 : 1, SB2 : 1) after

applying the incremental changes.

The state of B1 at this stage is shown in Figure 4.5(a).

Broker B1 also computes two new incremental subscription changes as a result

of the above two messages. These messages are:

79

Figure 4.6: State of Broker B3 after Receiving Subscription Incremental Change from

SHB3

SB1, 1, {+(stock = ‘nyse/ibm′)}, N21, cons = (SB1 : 0)

and

SB2, 1, {+(stock = ‘nyse/∗′)}, N21, cons = (SB2 : 0).

The following example shows the state at broker B3 after receiving the first

subscription change message from SHB3.

Example 4.6. Figure 4.6 in Page 80 shows the state of broker B3 after receiving

the first subscription change message from SHB3:

SB3, 1, {+(stock = ‘nasdaq/goog′)}, N13, cons = (SB3 : 0)

As a result, broker B3 generates and sends to broker PB1 an incremental subscrip-

tion change:

SB3, 1, {+(stock = ‘nasdaq/goog′)}, N22,cons = (SB3 : 1).

Example 4.7. In the previous Example 4.4, broker SB1 sends the second incre-

mental change when it receives subscription s2. This incremental change contains

80

Figure 4.7: State of Broker PB1 after Receiving 3 Changes from N21 and 1 Change from

N22

two additive conjunctions stock = ‘nyse/t′ ∧ p > 19 and stock = ‘nasdaq/msft′.

The constraint vector is (SB1 : 1).

When broker B1 receives this incremental change, its V b vector satisfies the

constraint vector and hence can apply the change by adding the two conjunctions

into its DAG. In addition, broker B1 sets its V b vector to (SB1 : 2, SB2 : 1). The

state of B1 is shown in Figure 4.5(b).

Broker B1 also computes a new incremental change for sending to its upstream

node N31. As conjunction stock = ‘nyse/t′ ∧ p > 19 is covered by an existing

conjunction stock = ‘nyse/∗′, it is aggregated away. Hence the new incremental

change is:

SB1, 2, {+(stock = ‘nasdaq/msft′)}, N21, cons = (SB1 : 1, SB2 : 1).

Similar processing happens at PHB PB1 in the root node of the routing tree.

After receiving the first two incremental changes from broker B1 in node N21 (Ex-

ample 4.5) and one incremental change from broker B3 in node N22 (Example 4.7),

broker PB1’s V b vector changes to (SB1 : 1, SB2 : 1, SB3 : 1).

81

After PB1 receives the third incremental change from broker B1 in node N21

(Example 4.6), broker PB1 has a V b vector value of (SB1 : 2, SB2 : 1, SB3 : 1) and

a conjunction DAG as shown in Figure 4.7.

4.1.7 Data Message Routing

Prior to this section, we have discussed how subscriptions are propagated from

SHBs to intermediate brokers to the PHB in the root node. We have illustrated

how the brokers maintain their state of V b vectors and conjunction DAGs accord-

ing to the subscription changes. In this section, we discuss how this information

is used to route data messages.

Data messages are published through the root broker (e.g., PB1) of the routing

tree. Before sending a newly published message, PB1 assigns to it a V m vector. A

PHB keeps a persistent record of the highest V m vector it has ever assigned and

ensures that new messages are assigned monotonically non-decreasing V m’s. This

highest V m vector value is restored every time the PHB recovers from a crash

failure and is used for assigning to data messages. The PHB’s V b vector can lag

behind its V m vector because unlike the V m vector, V b vector (as long as the

state conjunction DAG it represents) is not stored persistently. When the PHB

recovers after a crash, V b vector is initialized to all zeros. The recovered broker

executes a protocol to retrieve the latest subscription information and updates its

V b vector. Details of this issue is discussed later in Section 4.3.

The advancement of the PHB’s V b vector may change its V m vector. The V m

vector starts to advance when one or more elements of the PHB’s V b vector are

greater than the corresponding elements of the V m vector. In summary, a PHB’s

82

V m vector only changes monotonically while a PHB’s V b vector may retrogress

and lag behind of its V m vector.

Other than assigning the V m vector to messages, the PHB performs routing

in the same way as an intermediate routing broker. The following discussion on

routing applies to both the PHB and the intermediate routing brokers.

For an incoming message, a broker performs matching to decide to which

downstream routing tree nodes it should send the message. There have been a

lot of previous research in matching algorithms, including the one studied in the

Gryphon system. We do not research content matching algorithms in this thesis.

Furthermore, the broker compares its V b vector with the V m vector of the

message for each downstream child node. It does so by slicing both vectors with

only the elements for the SHB’s in the subtree rooted at the child node. By slicing,

we refer to the operation that extracts only the elements in a virtual time vector

that are relevant for a set of SHB’s.

For the slice of each downstream child node, if the V b vector is element-wise

no less than the V m, the broker sends the message according to the result of the

matching algorithm. That is, the broker send a message to the child node if and

only if the matching results show a match for the downstream network rooted at

the child node. Otherwise, if one or more element in the V b vector slice is smaller

than that of the V m vector, the broker conservatively sends the message to the

child node, regardless of the matching result. This slicing and test of V b and V m

for each child node is the sufficiency test we have discussed in Chapter 3.

When a broker sends a message to its child node, the broker can pick any

broker in the child node, without worrying about the subscription state of that

83

broker. This property of our protocol allows the routing layer to make decisions

based on system conditions such network utilization and availability, other than

the state of subscription information at a downstream broker. It is a unique

feature provided by our protocol/algorithm.

As we can see, it is possible for the broker to send down messages that do not

match any subscription. This only happens at non-leaf brokers. In the leaf broker,

as it always has the latest subscription information, its V b vector (containing only

one element for itself) always satisfies the sufficiency test and only the matching

messages will be delivered to subscribers.

Example 4.8. Consider broker PB1 in the network in Figure 4.1, Page 69. PB1’s

V b vector is (SB1 : 1, SB2 : 1, SB3 : 1) before it receives the incremental update

triggered by subscription s2 at SB1. Suppose the current highest V m vector has the

same value and is assigned to data message m1(nyse/ibm, 95) and m2(nyse/t, 20).

PB1 routes these two messages to each downstream node, N21 and N22. When

routing to N21, PB1 chooses broker B1 to send message m1 and broker B2 for

message m2. Broker B1 has a V b vector of (SB1 : 2, SB2 : 1) and broker B2 has a

V b vector of (SB1 : 1, SB2 : 1) due to the delay of the second incremental update

originated at SB1 and forwarded by B1. Both broker B1 and B2 will route their

data messages to SB1 as the sufficiency tests are satisfied for SB1 and there is a

match from node N11 at both brokers.

Example 4.9. We consider a case in Example 4.7 where broker B1 forwards the

same incremental change to its peer broker B2 and sends PB1 a newly computed

incremental change. Broker B2 does not receive the incremental change forwarded

84

by B1 or the message carrying the change is delayed. PB1 receives and processes

the new incremental change computed and sent by broker B1. Broker PB1 advances

its V b vector to (SB1 : 2, SB2 : 1, SB3 : 1) while broker B2’s V b vector stays at

(SB1 : 1, SB2 : 1).

PB1 assigns V m vector (SB1 : 2, SB2 : 1, SB3 : 1) to m3(nyse/ibm, 98) and

m4(nyse/t, 22) and sends m3 to B1 and m4 to B2 when it routes messages to node

N21. At node N21, both broker B1 and B2 send their messages to SB1 because B1

finds a matching subscription from SB1/N11 and broker B2, even though without

a match for N11, detects its sufficiency test fails.

In Chapter 4.2, we will prove the correctness of this protocol by mapping it to

the generic algorithm. We first give here the intuition of the correctness.

The sufficiency test is satisfied when a broker’s V b vector is equal to or greater

than V m with regard to the relevant leaf brokers. When it is greater, the broker

can have wider (matching more messages) conjunctions as new subscriptions may

have happened. It can also have narrower conjunctions as unsubscriptions may

have happened. When the conjunctions are wider, the broker obviously passes

all messages matching the subscriptions required by the V m vectors plus more

that match the new subscriptions. In the narrower case, a broker drops messages

matching only unsubscribed subscriptions at a leaf broker.

4.1.8 Detecting the Subscription Delivery Starting Point

For a new subscription s, its SHB must decide a safe point from which the system

can deliver a gapless, in-order stream of published messages. As described in

85

Section 3.2.4, this is to look for a point (message) in a message stream and for every

message after this point in the stream, their Sm sets contain the new subscription.

In this protocol, this is accomplished by comparing a message’s V m vector

element for this SHB with the virtual start time of the subscription s. As soon as

the SHB sees a message whose V m element for the SHB is greater than or equal

to the s’s virtual start time, the SHB starts to deliver matching messages for s.

Example 4.10. Broker SB1 receives m1. Even if m1 matches subscription s2, this

is not a delivery starting point for s2 as m1’s V m vector element for SB1 equals to

1 and is less than s2’s virtual start time which is 2. This is correct because there

is no guarantee a later message (e.g., (nyse/t, 20)) will not be filtered out if it had

been routed through broker B2. Broker SB1, instead, starts delivery for s2 from

message m3.

4.2 Mapping the Generic Algorithm

We have described a virtual time vector based protocol in the previous section.

This protocol is a concretization of our generic algorithm (described in Chapter 3)

by providing both an encoding of the subscription sets (S and Sm) and constraints,

and an implementation of the sufficiency test. We describe in this section this

encoding and implementation, and how they are mapped into the concepts in the

generic algorithm.

4.2.1 Encoding the Subscription Sets S and Sm

As described in the previous section, every new subscription is assigned a virtual

start time by its SHB. We denote this virtual start time as vs. Conceptually,

86

a departing subscription is assigned a virtual end time using the SHB’s current

clock when unsubscription is requested. We denote this virtual end time as ve.

For subscriptions that are not yet unsubscribed, their ve’s are undefined.

Every routing broker b, including the PHB, maintains a virtual time vector V b,

with one element for each SHB in its downstream. The default element value is 0.

This virtual time vector is updated when b processes the subscription information.

We now examine the encoding of the subscription set S maintained by a broker

b.

At any given point of time in the system, consider broker b with virtual time

vector Vb = [(shb1, v1), · · · , (shbz, vz)], where the SHBs in this vector are in the

downstream of b. We denote subscriptions entered/unsubscribed at shbj up to

this time as shbj.S and shbj.S.

For each outgoing edge ei of broker b, S(ei) is defined as

S(ei) = {s | (s ∈ shbj.S) ∧ (s.vs ≤ vj)};
and S(ei) is defined as

S(ei) = {s | (s ∈ shbj.S) ∧ (s.ve ≤ vj)}.
where shbj (j ∈ [1..z]) is a SHB in the downstream of an outgoing edge ei.

Thus, broker b’s V b vector is a concise representation of S(ei) − S(ei). It

denotes that b’s conjunction DAG contains the same or covering conjunctions for

every active/unsubscribed subscription s at shbj with s.vs ≤ vj and s.ve > vj.

This is due to that the incremental update originated from shbj at virtual time vj

always carries a covering conjunction for a conjunction c of the new subscription

that has entered at time vj or the constraint ensures that broker b contains a

covering subscription for c.

87

Figure 4.8: Binary Redundant Spanning Tree

The encoding of Sm set of a data message is through its V m vector. Assume

a data message m carries a virtual time vector m.vv = [(shb1, v
′
1), · · · , (shbz, v

′
z)].

The S(m) set of data message m is defined as

S(m) = {s | (s ∈ shbj.S) ∧ (s.vs ≤ v′j)}.
that is, the subscriptions entered at shbj with virtual start time no later than

v′j.

We examine how this algorithm embodies the constraints and sufficiency test.

4.2.2 Encoding the Constraints

In this virtual time vector based algorithm, constraints are embodied by requiring

that two brokers on each end of an edge e have the same V b vector values for

SHBs that are in the downstream of e.

We use broker b1 and b2 in Figure 4.8 to describe this constraint encoding.

Figure 4.8 is the same as the previous Figure 3.4 shown in Chapter 3. In the

topology shown, broker b1 and b2 are the brokers each in a parent-child node n1

and n2. An edge e2 connects these two nodes.

88

We declare that this V b vector value equivalency implies the satisfaction of

all constraints computed at broker b2 when b2 applies the incremental change it

receives for computing a new incremental change sent to b1.

First, from the definition of the subscription sets, b2 and b1 having the same

vector values for SHBs in the downstream of e2 means that

S(e2) = S(e2)(b2) = S(e4) ∪ S(e5) (4.2.1)

S(e2) = S(e2)(b2) = S(e4) ∪ S(e5) (4.2.2)

We have S(e2)− S(e2) = S(e2)(b2)− S(e2)(b2), constraint II is satisfied.

Type I, III and IV require in broker B1 the existence of some subscriptions

that also exist in broker B2. They are always satisfiable if B1 and B2 have the

same set of subscriptions.

4.2.3 Implementing the Sufficiency Test

The virtual time vector based algorithm embodies the sufficiency test by requiring

the brokers to have V b vector elements that are greater than or equal to the

corresponding elements in the message’s V m vector for SHBs in the downstream

of e.

Consider broker b2 in Figure 4.8 and a data message m received through its

incoming edge e2. We prove below that b2 is sufficient for m on an outgoing edge

(e.g., e4) if its vector elements are sufficiently large for the relevant SHBs. From

the definition of sufficient (Definition 3.6), we need to show that S(m, e4)−S(e4) ⊆
S(e4)−S(e4). This is satisfied if for every s ∈ S(m, e4)−S(e4), s ∈ S(e4)−S(e4).

We prove this property below.

89

For every s ∈ S(m, e4) − S(e4), s ∈ S(m, e4) and s /∈ S(e4). From the afore-

mentioned mapping of S(m, e4), we have s.vs ≤ m.vv(s.shb), where s.shb denotes

the SHB at which s subscribes. Because the algorithm requires sufficiency test of

b2.vv(s.shb) ≥ m.vv(s.shb), we have s.vs ≤ b2.vv(s.shb). Hence, from the map-

ping of S(e4), we have s ∈ S(e4). Because s /∈ S(e4), s ∈ S(e4) − S(e4). The

sufficiency test is satisfied.

4.3 Liveness and Failure Handling

We have discussed in this chapter a subscription propagation protocol based on

virtual start times and virtual time vectors. We discussed how the protocol op-

erates in the failure-free scenarios. In this section, we discuss how our system

detects and handles failures.

The failure-resistant feature of our work comes from two capabilities:

1. That our system is capable of continuing data message routing even in the

presence of failures and resulting asynchronous progress in subscription state

among peer brokers;

2. That our system is capable of recovering from failures and operating in a

more efficient mode.

The first is a direct result of using sufficiency-directed content-based routing.

Under this scheme, even if the subscription information on a route is out-of-

date, our system can still utilize the route to share the load of message traffic.

This allows our system to tolerate failures such as link delay and the loss of

subscription change messages. It also allows a broker that has just recovered from

90

a crash failure to participate in message routing without having to wait to get the

most recent subscription state. Furthermore, it allows our system to accept new

subscriptions and start message delivery for them even though all but one path

among a set of redundant paths have failed.

On the other hand, our system functions more efficiently when the subscription

information on a routing path is up-to-date or sufficient for the data messages.

This avoids the need to conservatively send a message to a broker in the down-

stream node regardless of whether the broker has found a matching subscription

from the downstream. This conservatively-always-send feature is a possible cause

of extra messages that may only be discarded later at the SHBs, resulting in

wasted network bandwidth.

Our system contains a mechanism for coping with failures and keeping the

subscription information on routing paths up to date. As a result, we can recover

from failures such as broker crashes, message losses, message arriving out-of-order

and message duplication.

We discuss below this mechanism for various failure types.

4.3.1 Recovery from Broker Crashes

There are three types of brokers in our network: PHB’s, SHB’s and intermediate

routing brokers. Each type of broker may crash and then recover later. We discuss

in this section how these brokers recover from crash. As mentioned in Section 3.1.1

in Chapter 3, a physical broker may assume more than one role, that is, a physical

broker may be a PHB, a SHB and an intermediate routing broker. In this case,

it performs recovery for each of its roles.

91

Persistent State on Brokers

Brokers may contain some persistent state. There can be two types of SHBs in

our system. One type has access to persistent storage and can thus host durable

subscriptions. Another type does not have access to persistent storage and thus

can only host non-durable subscriptions.

Up to this point, we have discussed subscriptions that will receive gapless, in

order delivery of events only when they are connected to the system. A durable

subscription is a type of subscription that will receive such reliable delivery of

events even when they are intermittently connected to the system and even when

the SHB can crash and recover.

Even though our work has been implemented with support for durable sub-

scriptions, the details of supporting durable subscriptions [13] add little innovation

to this work. We hence do not discuss durable subscriptions in full detail. We

only discuss here the issues relevant to recovering durable subscriptions from a

SHB crash.

For a SHB that hosts durable subscriptions, it stores in persistent storage in-

formation on durable subscriptions that have been subscribed through this SHB.

Such information includes the content filters and virtual start times of the durable

subscriptions as well as what messages have been acknowledged by the subscrip-

tions. Our work only concerns about the content filters and virtual start times.

For a SHB that does not host durable subscriptions, it does not keep a persis-

tent state.

Intermediate routing brokers do not keep any persistent state.

A PHB keeps in persistent storage the highest V m vector it has assigned to

92

data messages in order to assign monotonically non-decreasing V m vectors to data

messages even across several crash failures.

Virtual Start Times Revisited

In Section 4.1.1, we discussed why the virtual clocks at SHBs should only increase

monotonically. To simplify the discussion in the failure-free scenario, we discussed

virtual clocks as integer counters. We discuss here the actual virtual clock data

structure we used in our work. This virtual clock generates monotonic times even

across broker crash failures.

There are many possible techniques to implement a monotonic virtual clock,

such as persistently storing an upper bound of the highest clock value. This is not

feasible at a SHB that does not have persistent storage and only hosts non-durable

subscriptions. We adopt an approach that makes use of a monotonic system clock.

The virtual time thus contains a pair of {current life, integer count}. The current

life element is the more significant part of the virtual time and is taken as a snap

shot of the SHB’s system clock when the SHB starts or restarts after a crash.

Thus, no persistent storage is needed. The integer counter takes an initial value

of 1 every time the broker starts and only increments when needed. As a result,

the virtual times generated are guaranteed to monotonically increase.

We further assume that system clock time never overflows. This assumption

is practical as modern systems use 64-bit clocks such as the Java Platform.

Crash Recovery at a SHB

The recovery at a SHB includes restoring the persistently stored information about

durable subscriptions. The content filters and the virtual start times of the durable

93

subscriptions are used to populate the initial state of the conjunction DAG. At

a SHB that does not host durable subscriptions, this is not needed and the SHB

starts with an empty conjunction DAG.

The SHB initializes the virtual clock by taking a snap shot of the system clock

and setting the integer counter to 1. The SHB then sends the first incremental

subscription change message to its upstream brokers. This message represents all

the durable subscriptions. This message is still an incremental change message

even though this first initial incremental change contains the whole state of the

SHB. The incremental subscription change contains the additive conjunctions of

the root nodes of the DAG, and a virtual time of {current life, 1}. The SHB then

advances its virtual clock to {current life, 2}. The SHB is thus fully recovered

from the crash.

Crash Recovery at an Intermediate Broker

The intermediate routing brokers maintains no persistent state. Upon recovery

from a crash, an intermediate broker initializes its V b vector to all 0’s. The

conjunction DAG at the intermediate broker is empty. The broker’s subscription

state (conjunction DAG and the V b vector) obviously still lags behind the system

and will need to catch up. We discuss this issue in the next section on liveness.

Crash Recovery at a PHB

Other than assigning V m vectors to data messages, a PHB performs the same

way as an intermediate routing broker. The crash recovery process in the PHB

thus includes the steps performed at an intermediate routing broker. In addition,

the PHB recovers from persistent storage the highest V m vector it has assigned

94

to data messages. This V m vector will not advance until one or more elements

of the PHB’s V b vector exceeds the corresponding element on the V m vector.

As a result, no write to persistent storage is needed if the V m vector does not

change. The V m vector takes the maximum of the V m and V b elements. As we

will discuss later in this section, the liveness mechanism will eventually bring the

PHB’s subscription state up-to-date. As a result, the PHB’s V b vector is typically

greater than its V m vector.

4.3.2 Recovery from Subscription Message Losses

Subscription change messages may get lost during transmission. As a result, one

or more elements of a broker’s V b vector may lag behind the SHB’s virtual clock

by more than 1. As discussed in the previous section, this can also happen in a

PHB or an intermediate routing broker that has just recovered from crash.

In this section, we discuss how the out-of-date V b vectors in brokers are dis-

covered and the liveness mechanism our system uses to bring these brokers to

up-to-date.

Out-of-date V b vector (and hence the broker’s subscription state) can be de-

tected through several means:

• A SHB receives a data message with a V m vector in which the element for

this SHB is smaller than the SHB’s virtual clock time − 1. This indicates

that the PHB of the data message has a lower V m vector element and hence

a lower V b vector element.

• A PHB or an intermediate routing broker receives a data message with a

V m vector in which some elements have greater values than the broker’s V b

95

vector.

• A PHB or an intermediate broker receives a subscription change with a con-

straint vector in which some elements have greater values than the broker’s

V b vector.

Accordingly, our liveness mechanism can be driven by either SHB or a non-

SHB.

Leaf Broker/SHB Driven Liveness

As the sources of subscription changes and virtual times, leaf brokers ensure all

publisher connecting brokers receive up-to-date subscription information and as-

sign latest V m vectors to data messages. For subscription/unsubscription received

during virtual time vs and propagated, a leaf broker SB maintains an expected

starting time from which data messages should have V m vector whose element vs′

for SB is greater than vs. This expected time can be dynamically adjusted through

similar techniques that estimates TCP round trip delays. Messages received after

the elapsed time with vs′ < vs trigger a full subscription state update with SB’s

latest propagated virtual clock time. Alternatively, SB can repeat the incremen-

tal updates sent from vs′ to vs. This requires a cache for the latest incremental

updates at SB.

Non-Leaf Broker Driven Liveness

As described above, a PHB or an intermediate routing broker b can detect it has

an out-of-date V b vector by receiving a data message with some higher V m vector

elements or a constraint vector with some higher elements.

96

The broker b uses negative acknowledgements. It initiates a negative acknowl-

edgment message toward the leaf broker SB for whom b’s V b vector is lagging

behind. Such negative acknowledgment may be satisfied by SB or a broker on the

route from b to SB with the required subscription information.

4.3.3 Recovery from Subscription Message Arriving Out-of-Order

Because a subscription change message contains a virtual time from the originating

SHB, subscription change messages arriving out-of-order can be easily detected by

comparing the integer counter part of the virtual time. The current life element

of the virtual time should be the same as the latest the broker has received except

for the first subscription change message with an integer counter of 1. Thus, a

broker can always accept a subscription change message with a virtual time that

has a higher current life element than the broker’s current V b vector element.

The broker can also accept a subscription change message if the message’s virtual

time value has the same current life element and the integer counter value is

1 greater than the broker’s V b vector element. In other case, the subscription

change message is arriving out-of-date.

If the out-of-order message is in the future with a higher virtual time, the mes-

sage may be buffered and processed later after the messages with smaller virtual

times have arrived and been processed. The liveness mechanisms described above

will ensure that the missing messages with smaller virtual times will eventually

arrive. If the out-of-order message is out-of-date, it can simply be discarded.

97

4.3.4 Recovery from Subscription Message Duplication

Similar, duplicate subscription messages can be easily detected by examining their

virtual times. They do not need to be processed and can be discarded.

4.4 Summary

In this section, we have discussed a working subscription propagation and content-

based routing protocol based on subscription virtual times and virtual time vec-

tors. We have explained how this protocol can be mapped to the generic al-

gorithm. We have also discussed its fault tolerance characteristics and failure

handling mechanism. We will present the implementation details and evaluation

of this protocol in Chapter 6.

98

Chapter 5

Dynamic Access Control

In the previous chapters, we have discussed client subscription information as a

type of control information that can affect message routing in a publish/subscribe

system. By propagating and maintaining subscription information to/at routing

brokers, the system can optimize message routing and thus send fewer wasted

messages as compared to the flooding scheme. Similar to subscription information,

subscribing client access control is another type of control information that can

affect message delivery. By propagating subscriber access control information to

routing brokers, further savings in communication cost may be achieved.

In this chapter, we discuss the issue of client access control in content-based

publish/subscribe systems. We will define what dynamic access control means and

its implication for reliable delivery. We first present a service model of dynamic

access control that provides deterministic service guarantee of message delivery.

We then present an algorithm that implements this model.

99

5.1 Deterministic Service Model

We present in this section a deterministic service model of dynamic access control.

We describe the various entities involved in dynamic access control and their roles,

a content-based form for specifying access control rules and the clear starting

points of access control changes.

5.1.1 System Entities & Content-based Rules

In our service model, there are two types of entity that are involved in access

control.

Security administrator The security administrator is the ultimate authority of

access control in the system. The security administrator decides (based on exter-

nal factors such as client service contracts) the access rights for client principals

(defined below) and/or whether there should be any change to their existing ac-

cess rights. The security administrator instructs the system of his/her decisions

through an administrative interface.

In a large system, there may be multiple security administrators. As the

changes made by each administrator may affect overlapping sets of clients, the

system should accept the changes in a transactional and serializable manner. For

the purpose of this thesis and simplicity of discussion, we consider the security

administrators as an abstract single entity that initiates a single sequence of policy

changes.

Client principals Clients in our system have associated principals which is de-

cided/verified by the system through authentication when clients connect. A client

100

can connect to the system, publish messages or subscribe and receive messages.

The client’s capability to connect, publish and/or subscribe/receive messages is

regulated by the access rights of its principal. For example, if a client is interested

in receiving stock quotes, financial news and reports of IBM Corp but its principal

has only access rights to stock quotes, the client will not receive any news and

reports even though it requests them.

The access control rules in our system are associated with principals. Mul-

tiple publishing/subscribing clients running on behalf of the same principal can

connect at different places in the system. There are two types of principals in

our system, group and individual. A group principal is a collection of individuals

or recursively, other group principals. Access rights granted to a group principal

are automatically granted to all members of the group, and recursively to the

members of a member group.

Content-based form of Access Rights The access rights of a principal include

the right to connect, the right to publish and the right to subscribe to and receive

messages. We adopt a content-based form for specifying access control rules of

these three rights. An access control rule takes the following form of a tuple of

three elements:

[Principal, Access type, Content filter]

A rule of such form specifies that a principal has the right to connect to the

system, publish or subscribe to messages matching a content filter. While publish

and subscribe rules can take a non-trivial filter, connect rules are specified with

true or false to indicate the right to connect or not. For example, the rules that

101

allow a principal John Doe to connect and subscribe to stock quotes are specified

as follows:

[John Doe, Connect, True]

[John Doe, Subscribe, type=’quote’]

The access control rules are maintained internally in positive forms in that all

rules specify what a principal is allowed to do. Negative forms specifying what a

principal is not allowed to do are provided as a convenience to security adminis-

trators and are converted internally to positive forms by taking the negation of

the content filters.

A publishing/subscribing client on behalf of a principal is allowed to publish

messages that match the publishing rules of its principal and is allowed to receive

messages that match BOTH its subscription filters and the subscribing rules of

its principal. This allows the system to provide 1) information authenticity by

allowing only authorized sources to publish messages; 2) information confiden-

tiality by only distributing messages to authorized subscribers; 3) protection

against denial-of-service (DoS) attacks initiated by malicious subscribers

who request a large number of messages that are only going to be discarded. This

large number of messages can result in congestion in the network and impair the

system’s capability to serve other clients.

Group Access Control Group and individual principals share the same form

of connect, publish and subscribe access rights. In addition, a new type of rule,

member list, exists for group principals. For example, a premium subscribers group

that includes Jane Smith and James Brown and has subscribing rights to all stock

102

quotes, news and reports has the following access control rules:

[Premium group, Member list, {Jane Smith, James Brown}]
[Premium group, Subscribe, type=’quote’ ∨ type=’news’ ∨ type=’report’]

All members in a group are automatically granted the access rights of the

group. Thus, the access rights of an individual principal are the union of the

individual’s rights and the rights of all group principals it belongs to. Hence, Jane

Smith and James Brown will have access to all stock quotes, news and reports in

addition to other access rights they are granted.

5.1.2 Clear Starting Points of Access Control Changes

We present in this section our deterministic service model that provides clear start-

ing points for access control changes. In this model, access control rules/changes

are initiated by the security administrator at the administrative console and stored

into a persistent storage called ACL DB. At any time, the security administrator

may specify a number of changes pertaining to one or more principals. All these

changes are considered as a batch that must be enforced atomically. After the

security administrator confirms each batch of changes, the changes are propagated

throughout the broker network.

A broker can host one or more message streams. The publishers can connect to

any PHB in the system and are assigned to any stream by the PHB. Each stream

contains in-order the messages published by one or more publishers. For each of

these streams, the broker picks a starting point to enact the new access control

rules. The starting point is chosen in a way such that: 1) successive batches of

changes get later starting points; and 2) the starting point is late enough so that

103

Figure 5.1: Service Model of Dynamic Access Control

no message after the starting point could have been delivered according to the old

rules. This constraint can be easily achieved by designating a newly published

message on the stream as the starting point. The starting point information is

sent back to the security administrator for future inquiries and references. The

new rules are enforced uniformly throughout the system on all messages after the

starting points, no matter where the publishing/subscribing clients on behalf of

the affected principal(s) connect.

We illustrate the effect of an access control policy change using an example in

which a principal John Doe’s subscribing rights went through 3 phases of changes:

104

1. John Doe became a member of the promotional group which had subscribing

access only to stock quotes; 2. John Doe became a premium subscriber and

subsequently gained subscribing access to all three types of financial information;

3. John Doe’s premium subscription expired and as a result he lost subscribing

rights to financial news and reports.

Shown in Figure 5.1, a subscriber on behalf of principal John Doe connected

to the system and requested a subscription of issue=‘ibm’. Under the service

model, every time the access rights of John Doe changes, the system provides a

clear starting point in each message stream such that 1) a message before the

starting point is delivered to the client if and only if the message satisfies both

the subscription filter and access right filter before the change; and 2) a message

after the starting point is delivered to the client if and only if it satisfies both the

subscription filter and access right filter after the change. In the message stream

shown in Figure 5.1, if the starting points chosen are message 100 for the first

access change, message 103 for the second access change and message 106 for the

third change, the messages delivered to the client will be 100, 103, 104, 107, 109.

Notice that non-quotes are only delivered in the range [103, 105]. In a system that

has more than one message stream, this activity happens to all streams, each with

its individual start points.

5.1.3 Subscription Propagation, Content-based Routing and Reliable

Delivery

A valid implementation of access control can be one in which the PHB and inter-

mediate brokers forward all published messages that match client subscriptions

105

to SHBs, and SHBs enforce access control by delivering messages that match not

only a client’s subscription but also its access rights. Such a solution will be a per-

fectly correct implementation, but it may waste considerable bandwidth sending

messages that will be later discarded.

As described in the previous chapters, subscription propagation is an optimiza-

tion which may result in fewer wasted messages being sent to SHBs in exchange for

requiring the PHB and intermediate brokers to acquire knowledge about subscrip-

tion predicates and perform filtering. By propagating clients’ access rights along

with their subscriptions, further savings in communication cost may be achieved.

In Chapter 3 and 4, we described protocols for subscription propagation. These

protocols preserve reliable delivery and enable free routing choices on any of the

redundant paths for system availability and load sharing. Furthermore, we point

out that for a subscription, its reliable delivery starting point on a published

message stream can be chosen as any point in the stream provided that none of

the messages after the starting point has been acknowledged so that the system

may have reclaimed the persistent storage occupied by the message.

In the next section, we use the reliable delivery and subscription propaga-

tion protocols as building blocks for constructing an efficient and highly available

distributed protocol that enforces the deterministic semantics of dynamic access

control to publishing/subscribing clients. We adopt a domain-based trust model.

All brokers within the same domains trust each other. Brokers that do not trust

each other should be put into different domains and cross-domain communication

is regulated by assigning access control rules according to their trust levels. For

simplicity, we discuss the protocols under one trusted domain. This is of practical

106

use as in a lot of commercial cases, publish/subscribe systems are deployed in a

managed environment under the complete control of an administrator. The work

can be extended to multiple trusted domains by treating a domain as a special

publishing/subsubscribing client and assigning a principal to the domain. The

clients connected to the system through an un-trusted domain can only access

messages that satisfy both the domain’s right and their own access right.

5.2 Protocol Description

Our protocol provides the deterministic service guarantee of message delivery

through 1) distributing access control information to brokers that host relevant

principals; 2) restricting publishing activities by accepting only messages satisfying

the publisher’s publishing rights; 3) restricting client subscriptions using their

subscribing rights; 4) propagating restricted subscriptions and hence enforcing

access control in the routing brokers by performing content filtering on both the

clients’ subscriptions and access rights; 5) final enforcement of access control at

the SHB. We describe each of these aspects.

5.2.1 Protocol Overview

As mentioned in Section 5.1.2, each batch of access control changes made by

the security administrator is stored into a persistent storage called ACL DB and

enforced atomically. The ACL DB assigns a control version to identify an atomic

batch of changes and therein a new state of access control rules resulted. The

control version is an integer that is incremented for each batch. The ACL DB

distributes each control version of changes along with the version number.

107

The access control changes may be specified in the form of incremental changes

to avoid sending the full state of access control rules at each version. In addition,

there is no need for a PHB or SHB to receive an access control change if principals

connected at it are not affected by the change. As a result, the distribution of

access control changes is provided by reliable delivery and optimized by letting

PHB/SHB establish a subscription to access control of each connected principal.

The edge brokers (PHB/SHB) maintain in a cache the access control rules for

all principals that are currently connected. Upon the connection of a client on

behalf of a new principal, the edge broker performs a request/reply protocol to

retrieve an initial version of access control rules for the principal. The broker also

establishes a subscription to receive future access control changes concerning the

principal. The subscription is established in a way that the broker will receive

every access control version change after the initial version. Our subscription

propagation protocol can guarantee this property.

Upon receiving a new version of access control changes, a broker updates its

cache by applying the changes to the rules of the affected principals. In addition,

each broker hosting a message stream picks a position in the stream as the starting

point of the new control version and notifies the security administrator of the

starting point. There is one such starting point for each message stream. The

starting points can be stored into the ACL DB to provide answers to future

inquiries.

For every message received from a publisher, the PHB first checks whether

the message matches the publishing rights of the principal and rejects any illegal

publications. For every legitimate message after the starting point of a new control

108

version, the PHB sends the message together with the new control version. As

existing messages on the stream may have already been sent with old access control

versions and delivered according to the old access control rules, the starting point

is chosen as the position immediately after the latest message in the stream.

At each SHB, the original client subscriptions are intersected with the ap-

propriate subscribing rights of the principal. Instead of propagating the original

subscription filters, the SHB propagates this restricted subscription filters and the

version of the subscribing right applied. As a result, the intermediate broker does

not need to maintain any access control rules but still participates in content fil-

tering to avoid sending messages to where there is no legitimate subscribers. The

intermediate broker does maintain a vector of access control versions aside from

the restricted subscription filters, with one element for each downstream SHB. An

access control version in the vector identifies the most recent version of access con-

trol rules from which the restricted subscription filters were created. This vector of

access control versions are compared to the control version of a message at content

filtering and routing time. If every element of the vector is no less than the control

version of the message, the intermediate broker routes the message the same way

as before (i.e., according to content matching and subscription sufficiency test as

described in Chapter4). Otherwise, as a conservative measure, the broker sends

the message toward the SHB for which the intermediate broker does not have a

sufficient access control version in the vector. That is, the enforcement of access

control is delayed to the downstream brokers. If a message with a higher access

control version arrives at a SHB, the SHB delays the processing of the message

until it receives the access control information that matches the message’s.

109

In the rest of this section, we describe the protocol in details through an illus-

tration. We use examples of subscribing rights as it presents the most challenges.

5.2.2 Distributing Access Control Information

As previously mentioned, access control information may take the form of incre-

mental changes and as a result, should be delivered in order and without gaps.

The distribution of access control information leverages the reliable delivery

service provided by the underlying publish/subscribe system. The access control

messages are published into a reliable message stream. There are two access

control messages for each version of change: one on the rule changes and one on

the access control version change.

For example, the first access control change in Figure 5.1 grants subscribing

right to messages matching type=’quote’ to clients of principal John Doe. If this

change increments the latest access control version from 10 to 11, the following

two messages will be published by the ACL DB:

Type: ACL Change

Principal list: {John Doe}
Version: 11

ACL changes: {John Doe, subscribe, +, type=‘quote’}

and

Type: ACL Version Update

Version: 11

110

(a)
(b)

Figure 5.2: Redundant Routing Networks

To receive the updates from the ACL DB, an edge broker establishes a sub-

scription to receive access control version update and for each principal whose

clients are currently connected at the broker, a subscription to the incremental

access control changes concerning the principal. For example, if a subscriber of

John Doe connects at broker b5 in Figure 5.2, the subscriptions for access control

information at b5 are

type=‘ACL Version Update’

and

type=‘ACL Change’ ∧ Principal list contains ‘John Doe’

These two subscriptions are submitted with reliable delivery requirements and

once established in the system, guarantee that b5 receives every version update

and every access control change for each connected principal.

111

5.2.3 Handling Client Subscriptions

A precondition of any security mechanism is the authentication process. Through

authentication, a client establishes an identity with the system and security mech-

anisms operate in terms of the identity. Authentication is an essential part of

system security and can be achieve through various ways such as use of a digital

certificate. The details of authentication is beyond the scope of this work. Our so-

lution to providing the deterministic service model of dynamic access control can

use any authentication mechanism. The end result of the authentication process

is to associate a principal with a connecting client.

Upon receiving a client connection with principal p1, the edge broker (e.g.

b5) searches for the access control information for p1 in its local cache. If there

are other connected clients of p1, access control information for p1 is already

maintained by this broker. If no such client exists, b5 executes a protocol to

retrieve an initial version of access control rules for the principal. This initial

state retrieval is performed through a two-step message exchange:

1. Broker b5 publishes a message requesting an initial access control state of

principal p1. The ACL DB is a subscriber to this initial state request and as

a result, receives b5’s request.

2. the ACL DB replies with all the access rights of p1 and all the groups p1

belongs to as of the latest control version v1. b5 submits subscriptions for

receiving the access control changes of p1 and of the groups p1 is a member.

Broker b5 designates an explicit delivery starting point to be the first message

after the access control change of version v1.

112

Figure 5.3: Retrieve Initial Access Control for a New Client/Principal

The designated delivery starting point of b5’s subscriptions guarantees that

even in the presence of communication delays, b5 receives all the access control

changes of p1 and its belonging groups after the initial start version v1. The

subscription propagation and reliable delivery described in Chapter 3 guarantees

the validity of the starting point.

Figure 5.3 depicts the steps of this process.

After establishing an initial version of access control for a client, the edge

broker can process its subscriptions and published messages. Every published

message is matched against the client’s most recent publishing rights and is only

accepted if the message matches the filter of the publishing right. The accepted

113

message is entered into the message stream and assigned an access control version

number using the latest version the broker maintains.

For each subscriptions received from the client, the edge broker computes a

restricted filter by intersecting the subscription filter with the filters of the prin-

cipal’s subscribing rights. For example, the client in Figure 5.3 has subscribing

right of type=‘quote’ at access control version 10 and submits a subscription is-

sue=’ibm’. The restricted subscription is type=‘quote’ ∧ issue=‘ibm’ and is as-

signed control version 10. The edge broker maintains the restricted subscription

in its conjunction DAG and performs subscription propagation using the restricted

subscriptions.

5.2.4 Propagating Restricted Client Subscriptions

As the access control changes, the system may be routing messages with mul-

tiple control versions. The SHBs thus may maintain multiple restricted client

subscriptions, one for each of these control versions.

The brokers (PHB/SHB) only need to maintain the latest access control rules.

This is because a PHB only appends messages at the end of a message stream and

thus uses the latest publishing rights and control version and at a SHB, the delivery

for a new subscription only starts with messages of the latest control version. As

a result, a SHB propagates a restricted subscription of the latest subscribing

rights. When the SHB propagates the restricted subscriptions, the propagation

message includes an access control version from which the restricted subscription

is computed, as well as the subscription. As the SHB only uses the latest control

version, the control version information in the subscription propagation message

114

is monotonically non-decreasing.

Assume the example in Figure 5.3 where the subscriber of John Doe connects

at broker b5 in the topology shown in Figure 5.2. The subscription message broker

b5 propagates includes control version 10 and a filter type=‘quote’ ∧ issue=‘ibm’.

The intermediate brokers maintain a vector of access control versions. The

vector contains one element for each SHB that is in the downstream of the inter-

mediate broker. This vector is updated when the broker receives a subscription

propagation message with access control versions that are greater than the ele-

ments in the vector. Since the access control versions of the messages are mono-

tonically non-descreasing, this vector of access control versions at an intermediate

broker is also monotonically non-descreasing. The intermediate broker applies

the information in the subscription message to update the conjunction DAG and

propagates the subscription changes to further upstream.

Continue with our example, broker b2 and b′2 may maintain a control version

vector of {b4 : 9, b5 : 10} when they have received from b5 the restricted subscrip-

tions of control version 5 but b4 may still lag behind at control version 9.

5.2.5 Handling Dynamic Access Control Changes

As described in Section 5.2.2, each access contorl change is distributed through

two messages: a message for the rule change and a message for updating the

latest access control versions of the receiving brokers. We discuss in this section

the processing at a broker upon receiving these two types of messages.

As describe earlier in this chapter, an access control rule change is only dis-

tributed to brokers at which there are clients on behalf of principals that are

115

affected by the change. The access control rule change carries a version number

v. Upon receiving such a message, a SHB applies the change to obtain the access

control rules of the connected principals at version v. If the access control change

removes a connected principal from a group g, the SHB removes the subscription

to the access control of g if there is no other connected principal that is a mem-

ber of g. If the access control change adds a connected principal to g, the SHB

retrieves access rules of the group at version v if no information is maintained for

g. Such an inquiry of the access control rules of a principal at a certain version

is sent to the ACL DB which maintains the access control rules of each version.

In this case, the new subscribing filter of an affected member includes the group’s

subscribing filter.

For every principal that is affected by the access control change, the SHB

recomputes restricted subscriptions using the access control rules at version v.

These restricted subscriptions are assigned the latest received access control ver-

sion v. The restricted subscriptions are then entered into the broker’s conjunction

DAG as a single atomic batch to ensure the atomicity of the enforcement of the

new version of access control rules. Any changes to the root nodes of the conjunc-

tion DAG is propagated further upstream with the control version v through the

subscription propagation mechanism.

In our example, when broker b5 receives access control change 11 that admits

John Doe into the premium group, b5 retrieves the premium group’s access control

rules at version 11 and recomputes the restricted subscriptions. As a result, sub-

scription ((type=‘quote’ ∨ type=‘news’ ∨ type=‘report’) ∧ issue=‘ibm’) at version

11 is entered into conjunction DAG and exists along with the former subscription

116

of (type=‘quote’ ∧ issue=‘ibm’) at version 10. This subscription is propagated

further upstream and updates the data structure at broker b2 and b′2 with the new

subscription and control version vector {b4 : 9, b5 : 11}.
Different from access control changes that are only distributed to SHBs with

affected principals, access control version update is delivered to every SHB. A

SHB with affected principals ignore this message because its control version and

subscription change is already updated and propagated as previously discussed. A

SHB without affected principals assumes an emtpy set of restricted subscriptions

for the new version of access control and propagates a subscription change message

to update the access control version vector of the upstream routing brokers’.

5.2.6 Routing Data Messages

As described in Chapter 3 and 4, data message routing decisions are computed

based on content matching and broker subscription information. To provide the

deterministic service guarantees for dynamically changing access control rules, the

data messages are assigned monotonically non-decreasing access control versions

at the PHB. This access control version is compared with the version numbers

on a routing broker’s access control version vector. If the vector elements for

some SHBs are less than the message’s control version, indicating the broker does

not have sufficient restricted subscriptions from the access control rules required

by the message’s contrl version, as a conservative measure, the broker sends the

message toward those SHBs regardless of the result of content matching. That is,

the enforcement of access control is defered to downstream brokers. Otherwise,

routing decisions are made based on the result of content matching (and broker

117

subscription information).

If broker b2 in Figure 5.2 receives data message 100 of (lu, n6) with control

version 11, b2 does not need to send this message to b5 as there is clearly no client

at b5 that has subscribed to this message AND has access to it. However, b2 sends

this message to broker b4 regardless because its control version vector has 9 for

b4 which is less than 11. This feature of only using content-based routing when

there is sufficient information is what enables the high availability of the system as

messages can be routed through any broker regardless of its state of subscription

information.

5.2.7 Enforcing Access Control

The enforcement of access control is distributed throughout the broker network

by propagating restricted subscriptions that are intersections of the original client

subscriptions and a version of access control rules. The routing brokers (other

than SHBs) may enforce access control rules by filtering out messages that do

not match any restricted subscriptions. The routing brokers may also defer the

enforcement by sending the messages in the case it does not have a sufficient large

access control version vector for the message. It is up to the SHBs to perform the

ultimate enforcement of access controls.

A SHB, upon receiving a data message, compares its latest access control

version with that of the message’s. If the SHB access control version is smaller,

the SHB must delay further distribution of the data message until an access control

change with a sufficiently large version has been received. As the access control

changes are distributed using reliable delivery, those messages are guaranteed to

118

arrive and the SHB will then be able to continue processing of the message.

The SHB first performs matching of the data message. This produces a list of

restricted subscriptions that match the data message. For each restricted subscrip-

tion, if its access control version is exactly the same as that of the data message’s,

the SHB delivers the message to the client whose original subscription produced

the restricted subscription. Otherwise, the data message is not delivered.

In the example in Figure 5.1, even though broker b5 (where the client of John

Doe connects) may receive message 108 with control version 12, the message will

not be delivered because the matching restricted subscription has a different con-

trol version 11.

5.2.8 Sunsetting of Access Control Rules/Versions

As described earlier in this chapter, for each client subscription, a SHB may main-

tain multiple restricted subscriptions, one for each access control version for which

the system is currently routing a data message. The SHB may decide when it is

safe to remove a restricted subscription based on what messages the SHB has

delivered to the subscribers connected at it. This decision can be made totally

locally as the SHB can check the control versions of the latest data messages on

each message stream it has delivered to the subscribers. Restricted subscriptions

with control versions less than the minimum of the control versions of these data

messages can be discarded. The SHB modifies its conjunction DAG by removing

the conjunctions of these restricted subscriptions. If the root nodes of the con-

junction DAG is changed, the SHB will propagate the subscription change to its

upstream brokers.

119

5.3 Summary

In this chapter, we have described the problems of enforcing dynamic access con-

trol in a content-based publish/subscribe system. We described a deterministic

service model of dynamic access control with regard to reliable delivery. We then

presented an algorithm that implements this service model using the existing sub-

scription propagation and relible delivery service.

In the next chapter, we present the implementation and evaluation of this

protocol along with that of the subscription propagation protocol described in

Chapter 4.

120

Chapter 6

Implementation and Evaluation

In Chapters 4 and 5, we described protocols that support subscription propaga-

tion, content-based routing, reliable delivery and dynamic access control with de-

terministic service guarantee in a publish/subscribe system with redundant paths.

Using these protocols, our system tolerates failures by allowing redundant brokers

to work interexchangeably and yet does not need to reach consensus among these

brokers in the system.

In this chapter, we discuss the most important implementation issues. These

issues range from the kind of covering test we use to the mechanisms that optimize

system performance. We then present both analytical and experimental evaluation

of our subscriptioin propagation and dynamic access control protocol.

6.1 Implementation

We have implemented our work in the Gryphon system [10, 4]. The Gryphon

system is a pure Java implementation of a content-based publish/subscribe system

121

with native I/O libraries for optimized I/O performance. In this high performance

multi-threaded environment, we have encountered and addressed issues including

performance bottlenecks and hot lock contention points. In this section, we discuss

these problems and our solutions after a description of the covering test algorithm

we used.

6.1.1 Covering Test

In our work, subscription aggregation is based on covering relationships between

conjunctions. There are algorithms for implementing covering relationships such

as described in [41] and [19]. It is an open issue as to how efficiently and completely

covering tests can be performed.

Our work can use any algorithm that tests the covering relationship between

a pair of conjunctions. For our implementation, the requirement on the covering

test is safety rather than completeness. That is, if a covering test algorithm

states the existence of covering relationship between a pair of conjunctions, such

a relationship must exist. On the other hand, if a covering test algorithm does

not find the existence of covering relationship between a pair of conjunctions, such

a covering relationship may in fact exist. This property of our protocol offers the

flexibility to choose a wide range of covering test algorithms.

The completeness of the covering test algorithm affects the number of con-

junctions a broker maintains for performing content matching on data messages.

It does not change the number of data messages that a broker will route because

a covered conjunction, although propagated, is totally redundant. For example,

if a covering test algorithm can not discover that conjunction stock = ‘nyse/∗′

122

covers conjunction stock = ‘nyse/ibm′, both conjunctions will be propagated to

and maintained by upstream routing brokers instead of just stock = ‘nyse/∗′.
However, this does not change the fact that a broker with these two different

sets of conjunctions will route a data message of (stock : ‘nyse/t′, p : 19) but

not (stock : ‘nasdaq/msft′, p : 25). As we will see in Section 6.3, the matching

algorithm performs very efficiently even when the number of subscriptions is fairly

large (e.g., 105 subscriptions).

In our implementation, we use a covering test algorithm that is based on the

equality of conjunctions. That is, we test the equality of the stringified representa-

tions of two conjunctions after performing syntax normalization. The syntax nor-

malization of conjunctions refers to the analysis and transformation that disregard

the syntax differences such as the difference between stock = ‘nyse/ibm′ ∧ p > 90

and p > 90 ∧ stock = ‘nyse/ibm′.

Designing a sophisticated covering test algorithm is a challenge that is outside

the scope of this work. However, because we only assume safety of the covering test

output, our implementation provides a good test-bed for making new incremental

changes to existing covering test algorithms. For example, one may extend our

equality-based covering test algorithm to include regular expression matching of a

string pattern that can identify the covering relationship between stock = ‘nyse/∗′

and stock = ‘nyse/t′.

The research leading to more sophisticated covering test algorithm is a future

direction of this work. In the performance evaluation, we used subscriptions that

only covers each other when they are exactly the same. As a result, the covering

test algorithm we used is as good as any sophisticated algorithm for purposes of

123

our experimental analysis.

6.1.2 Multiple Publisher Hosting Brokers

For simplicity, we have described our protocol from the standpoint of a single

PHB. The routing tree has a single root and all the subscribers are connected at

SHBs that are only located at the leaf nodes of the tree. The subscriptions are

propagated from the leaf nodes toward one single direction – the root of the tree.

This is our conceptual model. In reality, our system allows publishers and

subscribers to connect at any leaf broker. As a result, any edge (non-internal)

broker can be the destination of subscription propagation (PHB) and any edge

broker can be a SHB. Thus, subscriptions originated at a SHB are flooded toward

each edge broker, a.k.a. a potential PHB. In addition, the aggregation is performed

for every outgoing edge. For example, if a broker b resides in a routing tree node

n that has three edges e1, e2 and e3, subscription information entering b from edge

e1 of b’s residing tree node will be aggregated with subscription information from

edges e2 and e3 and the results of the aggregation will be sent through edges e3

and e2, respectively. The same is true for subscriptions from edges e2 and e3.

Another overhead incurred in the support of multiple PHBs is at the interme-

diate routing brokers. Unlike in a routing tree with a single PHB, an intermediate

routing broker needs to maintain subscription information for every edge of its

residing tree node instead of just a downstream defined on the tree rooted at the

single PHB. The subscription state maintained at an intermediate routing broker

thus includes aggregated subscriptions for every part of the routing network. In

addition, the V b vector of the intermediate routing broker contains elements for

124

every SHB in the network. Nevertheless, for any data message, there is a single

source - its originating PHB. Thus, there is no confusion at an intermediate rout-

ing broker as to where the downstream brokers are and what are the SHBs in the

downstream network. As a result, there is no confusion as to how the slicing of

V b and V m vectors for the downstream SHBs should be done.

We envision that the aforementioned overhead typically would not be a per-

formance problem as the subscription changes are not frequent compared with

the rate at which data messages are published and matching algorithms can be

very efficient even in the presence of large number of subscriptions. There are

additional techniques such as publication advertisement that can further reduce

this overhead. Publication advertisement is a mechanism that allows publishers to

declare the kind of data message they are going to publish. Using advertisements,

subscription information can be directed only to where the relevant advertisements

are declared. It can be viewed as a subscription to subscription information. We

do not discuss advertisement in further detail in this work.

6.1.3 Sufficiency Test Result Cache

The cost of performing sufficiency test and the cost of transferring a data message

carrying a V m vector is a potential overhead in our system compared to a system

that does not support our propagation protocol. As previously discussed, the

sufficiency test is the test that compares the broker’s V b vector with the V m

vector the data message carries. The V b and V m vectors have one element for

each SHB in the system. The test is performed by doing an element-by-element

comparison of the vectors. As a result, the number of SHBs/leaf brokers affects

125

system performance and scalability.

The communication cost is also affected by the number of SHBs in the sys-

tem as the length of the V m vector carried by a data message is proportional

to the number of SHBs. We address these two issues using a V m vector digest

mechanism and a cache of previously computed sufficiency test results. The per-

formance cost of this mechanism is measured both analytically and experimentally

in Section 6.2.3 and Section 6.3.7.

V m Vector Digest

Instead of using full V m vectors in data messages, we use fixed-length vector

digests. A vector digest is a unique, short representation of a V m vector. We use

a digest that is 64-bit.

When a new V m vector is first assigned to a message at a PHB, the PHB

assigns a digest to V m by taking a snapshot of a monotonically increasing value.

We use the machines’s system clock value as the digest value. As the PHB assigns

monotonically non-decreasing V m vectors and digests are also monotonic, the

system satisfies the following monotonicity - if Vm < V ′
m then d < d′, with regard

to the same PHB. In the above formula, d and d′ are the digests for V m and V ′
m

respectively.

Unlike the V m vectors, a PHB does not store the highest digest assigned in

persistent storage. As a result, the PHB may assign two different digests to the

current highest V m vector if it crashes and recovers. Thus d′ > d ⇒ V ′
m ≥ Vm.

This means that if we receive a message with a digest d′ that is greater than

an earlier digest d, the V ′
m vector represented by d′ is at least as large as V m

represented by d. As a result, one can safely reuse the sufficiency test results

126

based on the values of V m and d. As described later in this section, this property

is used in the sufficiency test result caching mechanism.

We describe below the mechanism that uses fixed-length V m digests instead of

the original V m vectors in data messages. The sufficiency test a broker performs

is still based on the V m vectors of the data messages. However, our mechanism

allows the digest to convey the right V m vector to a downstream routing broker.

Hence, sufficient test can still be performed as usual.

In this V m vector digest mechanism, a routing broker maintains information on

whether any data message with a new V m has been sent through each physical link

that connects this broker to a broker in its downstream routing tree node. Such

information is purged when the physical link fails and recovers. For each physical

link, the first data message with the new V m vector going down the link carries the

original V m AND its digest. This conveys to the downstream broker the mapping

between a digest and its corresponding V m vector. Later messages only need to

carry the digest until the V m vector changes or the link fails and recovers. Hence,

most messages have a fixed length payload incurred by subscription propagation.

This addresses the scalability of communication overhead with regard to the large

number of SHBs in the system.

In the Gryphon system, broker to broker links are implemented as TCP connec-

tions and thus are FIFO (First-In-First-Out). As a result, the first data message

that carries a new V m vector and its digest is guaranteed to arrive before any

data message with only the digest arrives. This property ensures that a broker

can always know the V m vector of a data message from its digest. However, as we

will discuss below, the correctness of the system does not depend on this. Indeed,

127

our mechanism may improve performance even if the links are only approximately

FIFO. That is, the links will deliver most even if not all messages in order.

When this FIFO property is violated (e.g. due to broker or link failures),

some data messages with only a digest may arrive before the message carrying

the mapping. In such cases, the sufficiency test can not be performed. These

out-of-order data messages can be conservatively sent to all downstream brokers,

just as if the sufficiency tests had failed. When the links are nearly FIFO, most

messages with a digest will arrive after the message carrying both the original

V m vector and the digest, and thus saving the cost of communication while not

imposing a significant impact on content-based routing.

The FIFO link property may also be violated at a SHB. Similarly, the SHB may

receive a data message with only a digest before it receives the message carrying

the mapping. In this case, the SHB cannot pick this message as a delivery starting

point for a new subscription. Such a new subscription typically has a virtual start

time that is greater than the virtual start times of all existing subscriptions whose

delivery starting points are before this current data message in the message stream.

If a new subscription has a virtual start time that is less than or equals to some of

the existing subscriptions, the current message with only a digest can still serve

as the delivery starting point. On the other hand, message delivery for existing

subscriptions are never affected by a data message with only a digest due to that

data messages in the same stream are assigned monotonically non-descreasing V m

vectors.

In a system that does not use FIFO links, negative acknowledgements can be

used to retrieve the mapping between a digest and the V m vector it represents.

128

If a broker receives a data message with only a digest whose corresponding V m

is not known, the broker can delay the processing of the data message until it

retrieves the mapping of the original V m vector and the digest through negative

acknowledgements. This eliminates some of the conservative flooding, but at a

cost of incurring processing delays. As this is not the case with the Gryphon

system, this mechanism is not needed in our work.

Sufficiency Test Cache

As mentioned earlier in this section, another cost incurred by our protocol is the

computation overhead of the sufficiency test. To deal with this issue, we use a

cache of previously computed sufficiency test results.

In the vast majority of application scenarios, subscription change rate is much

slower than the data message rate in the system. Our capability to batch sub-

scription changes further exaggerates this trend. The result of this factor is the

same V m vector or digest being assigned to a large number of data messages.

This assignment of same V m vector or digest to large numbers of data messages

enables us to do further optimization. The broker in our system can reuse the

sufficiency test result computed for a data message for all later data messages with

the same V m or digest. As a result, this sufficiency test needs only be performed

on the first data message carrying a V m vector until either the message’s V m

vector changes or the broker’s V b vector changes.

In our system, each broker maintains a cache of the sufficiency test results.

This cache is indexed by the digest and the assigning PHB. Table 6.1 shows the

structure and content of a sufficiency test cache at a routing broker.

As we can always be conservative and flood a message until it reaches a SHB,

129

Table 6.1: Sufficiency Test Cache

PHB Digest V m vector Sufficient

PB1 74848251409924096 {SB1:(1142093150284,110),...} false

PB2 74848250754236416 {SB1:(1142093150284,109),...} true

...

the sufficiency test cache only needs to maintain one entry for each PHB. That is,

the highest digest it has seen from the PHB. This is because usually the highest

digest is the current one in use. In addition, since the digest is monotonic with

the original V m vector, any message originated from the same broker with a digest

no greater than the cache entry can reuse the cache result. Otherwise, the broker

conservatively computes false as the sufficiency test result for the message. The

broker updates its cache entry for a PHB when it receives a message with a higher

V m vector and digest from the PHB. When the broker advances its V b vector

due to receiving new subscription changes, the cache entry for PHBs with a false

sufficiency results is invalidated and recomputed lazily when a data message from

the PHB arrives.

6.1.4 Improving System Concurrency Level

In order to achieve high throughput, the Gryphon system uses a pool of threads to

process incoming messages and quickly switch them through to the next hop. This

parallelism greatly improves system throughput. In addition, processing delay is

also reduced because a message can be processed whenever there is a thread

available without having to wait for the completion of processing of all messages

130

arriving in front of it. Like in many systems, this level of concurrency is subject to

synchronization for accessing shared variabls. Achieving highly concurrent access

to shared variables is thus critical for the system performance.

In our protocol, a PHB needs to assign V m vectors to data messages. The

value of current V m vector in use is stored in a shared variable. Multiple threads

need to access this shared variable when they are processing incoming messages

from publishers. As we have discussed in Section 4.3.1, the PHB’s Vm vector

takes the maximum of the V m and its V b vector elements. As a result, when the

PHB receives subscription propagation messages that advance its V b vector, this

shared variable may need to be updated. Hence, this shared variable is a potential

hotspot for lock contention.

We analyzed the access pattern of the shared variable, and identified that

most accesses are read-only with occasional writes due to the low frequency of

subscription changes compared with the data message rate in the system. Hence,

we developed a re-entrant multi-reader-single-writer lock that increases the level of

concurrency of read operations. We have experienced a performance improvement

through the use of this mechanism.

6.2 Analytical Model and Results of System Scalability

In this section, we analyze the asymptotic cost of the sufficiency test computation

and data message communication due to the use of virtual time vectors V m and V b.

We perform this analysis because this computation and communication overhead

is the single most significant overhead introduced by our protocol. In Section 6.3,

we will provide experimental results on the overhead of the sufficiency test as well.

131

6.2.1 Analytical Model

As described in our protocol, the data message routing is computed by performing

matching on the message content and performing sufficiency test on the message’s

V m vector and the broker’s V b vector. The data message may carry a V m vector

digest d as well as the original V m vector if the message is the first message

assigned the V m vector going down a FIFO link. As the first data messages

carrying new V m vectors arriving at a broker contain an V m vector element for

each downstream SHB, the communication overhead on these first messages are

affected by the number of SHBs in the system. Later messages only carrying

digests are not affected.

As described in Section 6.1.3, we have implemented a caching mechanism that

re-uses the previously computed sufficiency test results. For any given PHB and

a V m vector, the cached result only needs to be computed the first time a data

message carrying a new V m vector arrives or the broker’s V b vector changes. The

V m and V b vectors have sizes that are proportional to the number of SHBs in the

system. As a result, the computation overhead of the sufficiency test on the first

data message with a V m vector is affected by the number of SHBs. We analyze

the scalability of our protocol with regard to the number of SHBs in the system

under our mechanism using a sufficiency test result cache.

We describe in the rest of this section a number of varibles that capture the

system’s characteristic that are relevant to the scenario described above. These

variables affect both communication overhead and sufficiency test computation

overhead. We delay the variables that affect only communication overhead or

sufficiency test computation overhead to their own sections, respectively.

132

For simplicity, we assume a ratio r between data message publishing rate and

subscription change rate (PHB virtual time vector change rate) in the system. We

only examine the case where r is a large value because:

• The system has the capability to batch subscription changes and hence can

control the subscription change rate to be a small value;

• Efficiency is an issue under heavy-load situation. In light load situation, the

system has extra resource to spare. Hence, the data message publishing rate

is a big value in our model.

We assume a selectivity ratio p where (0 < p ≤ 1) for each level of tree nodes.

That is, at any tree node, a message passes the content filter from any of its child

node with uniform probability p. We further assume that each tree node has w

child nodes and each non-leaf non-root node in the routing tree of the broker

network has two redundant virtual brokers.

We define a node’s level as the number of tree edges from the PHB to the

node. Thus, the PHB resides in a level 0 node.

We further define variable SHB as the number of SHBs in the whole broker

network. For convenience, we re-use the same notation of SHB in our work.

6.2.2 Communication Overhead Scalability

We describe in this section the asymptotic overhead of transmitting data messages

in the system. As described in the previous section, this overhead includes the

overhead of transmitting the first data message carrying a new V m vector and

later data messages carrying only a fixed-length digest. The overall communication

overhead is the weighted average of these two overheads.

133

For a broker at a tree node at level l (l > 0), it receives one data message with

a new V m filter every plr/2 messages. The divisor of 2 is due to the existence of

2 peer brokers in the same node, as a result, they share the data mesage traffic.

This one message with the V m vector requires an extra communication cost due

to the V m vector. We denote this cost as c1 × SHB/(wl), where c1 is a constant

of transmitting one element of the V m vector, and SHB/(wl) is the number of

SHBs in the downstream of this broker in the system. The rest plr/2−1 messages

requires a constant overhead of c2 on communication. Note that as we assume r

is a big value, plr/2− 1 > 0. Hence the average communication overhead is:

(c1 × SHB/wl + c2(p
lr/2− 1))/(plr/2) (6.2.1)

that is

c2 − 2c2/p
lr + SHB × 2c1/((wp)lr) (6.2.2)

The upper bound of the cost is

c2 + SHB × 2c1/((wp)lr) (6.2.3)

When r is a big value and the selectivity ratio p ≥ 1/w, the dominant factor

is the constant c2. This result means that the communication overhead grows

VERY slowly with the number of SHBs in the system. In practice, this is typically

negligible.

6.2.3 Sufficiency Test Computation Scalability

Similarly, we can compute the cost of computing the sufficiency test. As each

subscription change may trigger a new V m vector assignment and a change on the

134

broker’s V b vector, the cache entry may be updated at most twice due to each of

these factors. This cache entry update requires a re-computation of the sufficiency

test and the cost is proportional to the number of SHBs in the downstream.

Assume the cost of such a sufficiency test computation is c3 × SHB/wl, where

c3 is a constant, and the cost of each cache entry look up is a constant c4, the

average cost is

(2c3 × SHB/wl + c4(p
lr/2− 1))/(plr/2) (6.2.4)

where the first item is the cost of the two sufficiency test computation and

cache update and the second item is the cost of constant cache lookup for the rest

of plr/2− 1 messages that the broker routes after the cache entry update.

An upper bound of the above equation is

c5 + SHB × (4c3)/((wp)lr) (6.2.5)

when r is a big value and p ≥ 1/w, the dominant factor is the constant c5. This

result means that the overhead of computing sufficiency test grows VERY slowly

with the number of SHBs in the system. In practice, this is typically negligible.

6.2.4 Summary

We have shown in this section the asympototic results of the data message com-

munication and sufficiency test computation scalability with regard to the number

of SHBs. As we can see, the effect of the number of SHBs on the computation and

communication overhead is offset by a very small factor. In practice, we believe

this effect will be dominated by the constant factor imposed by the large number

of messages that carry a V m digest.

We show in the next section the experimental results of our work.

135

6.3 Experimental Results

The testbed for our experiments is a set of IBM RS6000 F80 machines with six

500MHz processors and 3G RAM. Each machine has dual network interfaces and

is connected through a 100Mbps Ethernet network and a gigabit switch to other

machines.

We focus primarily on metrics that are impacted by the specifics of our solution.

These include the processing overhead incurred by our protocol as described above

and the high availability feature of our protocol even in the presence of all but

one broker crash in a redundant routing tree node.

6.3.1 The Flooding Scheme

In a system without subscription propagation, the routing brokers flood the mes-

sages to a broker in every downstream routing tree node. Filtering is only per-

formed at the SHBs.

The flooding scheme, although enabless simple content-based routing in the

middle of the network, wastes considerable network bandwidth when the subscrip-

tions are regional and selective.

In our experiments, we have used the flooding scheme as a baseline to show the

efficiency of subscription propagation in various cases. Some of these cases require

regional selective delivery of messages. Some do not require selective delivery and

thus are adverse scenarios to the subscription propagation scheme. We present

the latter as a worst case scenario to show that subscription propagation can be

done efficiently without much added overhead.

To understand the trade-offs between flooding and content-based routing with

136

subscription propagation, we present below a micro benchmark that studies the

overhead of content-based matching.

6.3.2 Micro Benchmark: Content Matching Overhead

Our purpose in studying the overhead of content-based matching is to provide

some quantitative guidance to help estimate how much cost message filtering will

save and/or incur. This estimation, however, should be based on the usage pattern

of each individual scenario. As subscription propagation provides an opportunity

to trade off computation overhead on content-based matching with communication

overhead saved by filtering messages, we present some results from the literature

on the communication overhead in wide-area networks.

Network Latency

Subscription propagation is an optimization that trades computation cost of per-

forming content matching with communication cost saved from filtering messages.

The communication cost typically includes a latency of ten to several hundred mil-

liseconds. For example, US cross country links typically have a minimum round

trip time of 70 milliseconds [28]. About 40% of this overhead is due to network

router processing [29]. That is, the routers have added 28 milliseconds processing

delay.

The above measurement was reported annually by the International Commit-

tee for Future Accelerators (ICFA), Standing Committee on Inter-Regional Con-

nectivity (SCIC). The measurement is performed using a tool that uses ICMP

Ping packets. These Ping packets incur very light overhead. A message broker

typically use TCP or UDP packets. The processing delay at each broker and net-

137

work routers will be even higher due to the added overhead of TCP protocol at

brokers and IP routing at network routers.

Benchmark Results

We use the content matching engine in the Gryphon system to study the over-

head of content-based routing. The Gryphon matching engine identifies a special

attribute that is most frequently used in subscription filters and messages. This

is a valid assumption that has been tested in many usage scenarios. The Gryphon

matching engine caches the matching results on the special attribute. We study

the matching overhead in both cases where subscription filters only contain this

special attribute and where subscription filters contain other attributes as well. In

both studies, the match engine was pre-loaded with 105 random equality subscrip-

tions on the special attribute. The data messages carry a random value selected

from the range of 104 values for the special attribute.

Figure 6.1 shows the overhead of performing content matching on the special

attribute the system optimizes. In each test, the messaging engine performs 1 to

108 matching operations. The reported results show the average costs of a single

matching operation in each of these tests.

As shown in the figure, the overhead drops sharply when the number of match-

ing operations increases. That is, each of the first several matching operations are

likely to incur high overhead. As the number of matching operations the system

performs exceeds a threshold at about 106, the overhead of each matching op-

eration becomes a constant of about 35 microseconds. This is due to that the

Gryphon matching engine caches matching results on each distinct value of the

special attribute. As the system performs content matching, the cache is pop-

138

Figure 6.1: Matching Overhead on Subscriptions on Cached Attributes

ulated with each value of the special attribute. When the number of matching

operations exceeds a threshold, the cache is almost fully populated with previ-

ous results and matching becomes an efficient cache retrieval operation that is of

constant cost.

Figure 6.2 shows the overhead of performing content matching on other at-

tributes which the system does not treat specially. As shown in the system, the

overhead is around 50 microseconds, which is still inexpensive compared to the

per-hop network latencies.

6.3.3 System Load Comparison in Selective Subscription Tests

This test compares the system overhead of using subscription propagation with

that of using flooding when client subscriptions are selective. The workload is

motivated by sensor networks where there are many publishers collecting and

publishing various kinds of data and relatively few subscribers that selectively

139

Figure 6.2: Matching Overhead on Subscriptions on Non-Cached Attributes

subscribe to data of interest.

The setup of this test is shown in Figure 6.3. In the network, there are 4

physical publisher hosting brokers pb1, pb2, pb3, and pb4 and 1 physical subscriber

hosting broker sb. Each of these brokers implements a virtual broker in its own

tree node. In addition, these brokers also reside in an intermediate tree node N5.

Four redundant routing trees can be defined by taking each of pb1, pb2, pb3, and

pb4 as root node.

This network models a high-fan-in-low-fan-out network that is typical in some

application scenarios like the sensor networks. In this kind of applications, a large

amount of data is generated by large numbers of data sources. However, the

subscribers are only interested in some of the data. In addition, there may not be

many subscribers.

140

Figure 6.3: Network Topology for System Load (CPU) Comparisons

We fix the number of subscriptions at 2000 and vary the number of pub-

lishers from 2000 to 1.2× 104. The message rate per publisher is fixed at 2 mes-

sages/second. Thus, the total incoming message rate ranges from 4000 to 2.4×104

messages/second. Each subscription is distinct and selects exactly the messages

published by 1 publisher. Hence, the total receiving message rate of subscribers is

4000 messages/second throughout the test. The publishers are evenly distributed

among pb1, pb2, pb3, and pb4.

Figure 6.4 and Figure 6.5 show the CPU utilization at the PHBs pb1, pb2, pb3,

and pb4 and the SHB sb under both the flooding scheme and the subscription

propagation scheme. The figures are plotted using mathematical means of more

than 400 data samples collected over a long running period. The error bars show

the standard deviation of the collected data. We examine Figure 6.4 and Figure 6.5

in detail below.

141

Figure 6.4: PHB System Load (CPU) Comparison

In the case of 2000 publishers and 4000 messages/second incoming message

rate, all published messages are subscribed by the 2000 subscribers. This case is

NOT favorable to subscription propagation. However, we do not observe a large

increase of CPU utilization at sb in the subscription propagation scheme. Indeed,

the experiment shows that the subscription propagation scheme performed slightly

better. This is within the error tolerances.

When the number of publishers (and hence incoming message rate) increases,

the CPU utilization at the SHB sb stays constant in the subscription propagation

scheme because the numbers of messages subscribed to and hence need to be

routed are constant. However, the CPU utilization at sb in the flooding scheme

increases linearly even though the number of useful messages does not change.

As shown in Figure 6.4, in both schemes, CPU utilization at pb1-pb4 increases

linearly with the number of publishers. However, the flooding scheme shows a

much steeper slope because each of the PHBs pb1, pb2, pb3, and pb4 not only ac-

142

Figure 6.5: SHB System Load (CPU) Comparison

cepts messages from publishers but also sends these messages to other PHBs and

receives all messages published through other PHBs. In contrast, in the subscrip-

tion propagation scheme, each PHB only needs to route part of the messages to

the SHB sb. Although the brokers need to perform content matching in the sub-

scription propagation scheme, as our micro benchmark in Section 6.3.2 shows, we

expect this overhead to be quite small compared with the communication cost. As

a result, in the flooding scheme, CPU utilization at PHB pb1-pb4 reaches > 90%

with only 103 publishers compared to 31% with 1.2 × 104 publishers with sub-

scription propagation. we were unable to scale to 1.2 × 104 publishers in this

configuration with the flooding scheme.

143

Figure 6.6: Topology Network for CPU Measurements of Access Control

6.3.4 CPU Overhead with Access Control Enforcement

This test compares the system performance of enforcing access control for sub-

scribers when their subscribing rights do not change. We use a setup in which

a publisher hosting broker pb is connected to an intermediate broker ib, which

in turn connects to a subscriber hosting broker sb. The steady access control

policy in this test permits the subscribers to receive all messages they subscribe

to. Therefore, the broker network routes and delivers the same amount of mes-

sages as in the system when there is no support for dynamic access control. We

examine the CPU overhead at each broker and compare it with our baseline re-

sults, i.e., results obtained in the Gryphon system with no dynamic access control

support. This comparison represents the overhead incurred at brokers playing dif-

ferent roles in the protocol - access control version setter (pb), in-network access

control enforcer(pb&ib) and end-point ultimate access control enforcer (sb).

Messages are injected into the system through pb at a rate of 2000 messages

per second. We evaluate both the cases when the Gryphon special reliable delivery

144

Figure 6.7: CPU Utilization at Brokers

protocol is turned on or bypassed. To eliminate the impact of different file systems

used for PHB persistent message streams, we perform Gryphon message logging

but do not sync to the disk. The output message rate at the SHB is 20000 messages

per second to 10000 subscribers. Figure 6.7 shows the CPU utilization at each of

the brokers. This test shows that the CPU overhead increase at pb and ib are very

small as the overhead is mostly for assigning and/or comparing control versions.

The CPU increase at sb is higher due to the final access control enforcement that

is performed against every matching subscriber for every message.

6.3.5 Latency Measurements

Local and Remote Delivery Start Latency

In the flooding scheme, since all messages are flooded to the SHBs and only filtered

at the SHBs, there was no delay of starting message delivery to a new subscrip-

145

tion other than the time lapse between two consecutively published messages that

match the subscription. If two consecutive messages matching the new subscrip-

tion are published with an interval of t, the delay of starting message delivery to

this subscription is on average t/2.

In our system, if the new subscription is covered by an existing subscription,

the delay of starting message delivery to the new subscription is the same as in

the flooding scheme. Since the new subscription never goes out of the SHB, we

call the delivery start latency of this kind of new subscriptions local delivery start

lantency.

On the other hand, if the new subscription is not covered by any existing

subscription, the new subscription will be assigned a virtual start time whose

value has never been propagated out of the SHB. The SHB must advance its

virtual clock and propagate the subscription along with its virtual start time.

The PHB will assign data messages V m vectors whose element for the SHB is

greater than the virtual start time of the new subscription. The SHB can only

start delivery for the new subscription when it sees the first such data messages.

Hence, the delivery start latency for this kind of new subscriptions requires at

least a round trip to and from the PHB. As a result, we call this remote delivery

start latency.

Measurement

We examine three types of latency metrics: local delivery start latency, remote

delivery start latency and message delivery latency. Specifically, we examine their

trends with regard to the number of hops between their SHBs and a PHB.

We measure the message delivery latency as the time taken for the system to

146

Figure 6.8: A Linear Topology Network for Latency Measurements

deliver a message from a publisher to an existing subscription. The message deliv-

ery start latencies are measured as the time elapsed from when a new subscription

is submitted to the time when the first message is delivered to the subscription.

In order to examine the trends of the latency metrics with regard to the number

of hops between their SHBs and a PHB, we use a linear topology network as shown

in Figure 6.8. This network consists of a PHB pb and a SHB sb in its own routing

tree node. Intermediate routing broker IB1 to IBn connect pb and sb through 1

to n hops. Each of these intermediate routing brokers is also in its own routing

tree node.

The message delivery latency is measured by a latency sampler that publishes

messages through pb and subscribes to its own messages through sb. The latency

sampler records in each message the time at which the message is published and

checks the difference at the time when it receives the message.

147

Figure 6.9: Delivery Start Latencies and Message Delivery Latency

The delivery start latency for a new subscription is measured at the subscriber

by taking the difference between the time of subscription and the time of the first

message delivery. As shown in Figure 6.8, there are three groups of subscribers:

a group of existing subscribers s1 to sn, a group of new subscribers sn+1 to s2n

that subscribe to the same set of messages as the existing subscribers group, and

a group of new subscribers s2n+1 to s3n that subscribe to totally distinct set of

messages from the other two groups. As a result, the first group of new subscribers

measure the local delivery start latency and the second group of new subscribers

measure the remote delivery start latency.

Remote start delivery latency is the sum of the following items:

1. time taken to send subscription to the SHB sb;

2. processing time at sb;

3. processing time at the intermediate routing brokers and the PHB pb;

148

4. network delays(bi-directional) at each hop;

5. expected interval till next message published that matches the subscription.

If messages that match the subscription are published at a steady rate every

t milliseconds (ms), this time is t/2 on average;

6. time taken to send the message from sb to the subscriber.

We expect the most significant latency impact to come from item 2 and 3. The

impact of item 1 is reduced by deploying the network on a high-speed LAN with

low latencies. This also reduces the impact of items 4 and 6. To reduce the impact

of item 5, we use a high message publishing rate at which each subscription would

receive messages at the rate of 200 messages/second. The delay caused by item 5

is thus 1000 × (1/200)/2 = 2.5 milliseconds. The total incoming message rate is

3200 messages/second.

Similarly, local delivery start latency is the sum of the following items:

1. time taken to send subscription to the SHB sb;

2. processing time at sb;

3. expected interval till next message published that matches the subscription.

4. time taken to send the message from sb to the subscriber.

Results

We show our measurement results in Figure 6.9.

Figure 6.9 shows the various latencies with regard to the number of hops in the

network. The latencies shown are taken as the mean of approximately 600− 1000

149

data samples. The error bars show the standard deviation of the data samples.

Since the tests are long running, several Java garbage collections have happened

and resulted in a few samples that are about 40 to a couple of hundred times

higher than the median. We took out these outliers in our calculation of the

mean and standard deviation. The percentage of outliers are in the range of 1− 2

percent.

Our test results (Figure 6.9) show that message delivery latency increases lin-

early from 3.29 to 6.27 to 9.21 ms with the number of hops. Local delivery start

latency for covered subscriptions - stays roughly constant at around 19ms. The

local delivery start latency also represents the subscription propagation overhead

in the flooding scheme. Remote delivery start latency increases linearly from

28.56ms to 38.46ms to 48.57ms. The differences of the remote and local deliv-

ery start latency shows the network latency and intermediate routing broker and

the PHB processing overhead. This is the overhead incurred by the subscrip-

tion propagation protocol. This overhead increases from 9.56ms to 23.46ms to

29.57ms for 1, 4 and 7 hops. This shows the linearly scalability of remote de-

livery start latencies with the number of hops from the SHB to the PHB. The

overhead of subscription processing delay per network hop is also small, at about

3.3 millisecond per increased hop.

6.3.6 Latency Measurement with Dynamic Access Control

We examine three latency metrics: 1) The latency of message delivery during

steady state when there are no access control changes. 2) The latency of start-

ing delivering messages to a newly connected subscriber when there are already

150

Figure 6.10: Topology Network for Latency Metrics with Dynamic Access Control

connected subscribers at the SHB on behalf of the same principal p1 and the new

subscriber uses the same subscription as an existing subscriber. We call this the

local delivery start latency. 3) The latency of starting delivering messages to a

newly connected subscriber on behalf of a new principal p2, however the new sub-

scriber uses the same subscription as some of the existing subscribers at its SHB.

As a result, the SHB does not have access control rules for the new subscriber

cached and must retrieve initial access control rules. However, the SHB can pro-

cess the new subscription locally without having to propagate the subscription

outside to other brokers. We refer to this metric as the new principal local de-

livery start latency. 4) The latency of starting delivering messages for a newly

connected subscriber on behalf of a new principal p3 AND the new subscriber uses

151

a new subscription that is not used by any other subscribers at the SHB. We call

this the new principal remote delivery start latency as the SHB needs to propagate

the subscription remotely to the PHB in addition to retrieving the initial access

control rules.

We use a linear topology consisting of a PHB pb and a SHB sb that are con-

nected through one or more hops of intermediate brokers ib1, . . . , ibn. Unlike in

the other experiments, the brokers are connected through a gigabit switch, the

same network that the subscribers and publishers are connected to the brokers.

This is due to a network reconfiguration and the unavailability of a reasonable

network performance of the 100Mbps network. However, the scalability aspect is

not affected.

In this experiment, we colocate the ACL DB with pb. Thus, in order to receive

initial access control rules for a new principal, sb has to communicate a round trip

to where pb resides. However, this communication is through cheaper best-effort

message delivery with timeout and retries.

We measure message delivery latency using a latency sampler that publishes

messages through pb and subscribes to its own messages at sb. Delivery start

latencies are measured as the time between a subscriber submits its subscription

and when it receives the first message.

To measure delivery start latencies, we set up a first group of subscribers that

stay constantly connected to sb. This group connect to the system using principal

p1 and subscribe to all published messages. We use a second group of subscribers

with the same principal p1 to measure the local delivery start latency. This local

delivery start latency includes the time taken to send the subscription to sb, the

152

time taken to retrieve the subscribing rights for p1 in local cache of sb, the time

taken to compute the restricted subscription, and the delivery latency of the first

message for the subscription. As the first group of subscribers subscribed to all

published message, messages matching the second group of subscriber are already

in transmission even when the subscriptions are being processed. To measure the

remote delivery start latency, we use a single subscriber which connects to the

system using a different principal p2. The remote delivery start latency thus in-

cludes the time taken to establish a subscription to the access control information

of p2 and the time taken to retrieve an initial state of access control rules for p2

in addition to the local delivery start latency.

We inject messages into the system at a rate so that each subscriber should

receive 200 messages per second. Thus the measurement of local delivery start la-

tency is swayed by an average of (1/200)/2 = 2.5 milliseconds because a matching

message may be already in transit.

Figure 6.11 shows the latency results with their standard deviations shown in

error bars when there are 1, 4 and 7 hops from pb to sb. In this test, the message

delivery latency and the remote delivery start latency for new principals increase

linearly as the hop count increases. The local delivery start latency does not in-

crease with the hop counts. The new principal local delivery start latency does

not increase until 7 hops, because the initial acl retrieval is done at subscriber

connection time and thus runs in parallel with the subscriber submitting its sub-

scription. In the case of 1 and 4 hops, the initial acl retrieval is able to complete

before the subscriber submits its subscription.

153

Figure 6.11: Latency Metrics with Dynamic Access Control

6.3.7 Scalability Measurements

In Section 6.1.3, we have discussed the scalability issues of the system with regard

to the number of SHBs. We presented an optimization using a sufficient test

result cache. We have also provided an asympototic analysis of the scalability in

Section 6.2.3. In this section, we examine experimentally the system scalability

with and without this cache mechanism. We further compare them with the

experimental results obtained in the flooding scheme by using test setups that are

un-favorable to subscription propagation.

Measurement

Figure 6.12 shows the network topology of our scalability experiments. The net-

work contains a PHB pb, an intermediate routing broker ib and a number of SHBs

sb1, sb2, . . . , sbn. PHB pb connects to intermediate routing broker ib which in

154

Figure 6.12: A Fan-out Topology Network for Scalability Measurements

turn connects to each of the SHBs. Each of these brokers is in a separate routing

tree node. We vary the number n of SHBs.

Messages are published through pb at a fixed rate of 2000 messages/second

throughout the test. At each SHB, there are two groups of 50 subscribers. Each

group receives messages at the rate of 1000 messages/second. One group is steady

in that they stay constantly connected. The second group is unsteady in that they

periodically un-subscribe and then re-subscribe. Since the subscribers present

distinct subscriptions, each un-subscribe and re-subscribe action will cause the

SHB’s virtual clock to advance by 2. We setup the un-subscribe/re-subscribe

action to occur at 2 seconds interval on average. Thus, each SHB’s virtual time

clock advances by 1 every second. In situations where un-subscribe/re-subscribe

155

Figure 6.13: Scalability: PHB CPU Utilization Comparison

actions occur more frequently, they could be batched to reduce the rate at which

the SHBs virtual clocks advance.

Results

Figure 6.13, 6.14 and 6.15 show the average CPU utilization at pb, ib and sb1,

. . . , sbn, each in the three schemes of flooding, subscription propagation without

sufficiency test caching and subscription propagation with sufficiency test caching.

The error bars show the standard deviation of the data samples.

In both the flooding scheme and the subscription propagation scheme with

sufficiency result caching (Figure 6.13 and 6.15), CPU utilization at pb and sb1,

. . . , sbn stays constant with n changing from 1 to 7. The CPU differences at ib

(Figure 6.14) and sb (Figure 6.15) between the two schemes are also very small.

At broker pb, the CPU utilization in the subscription propagation scheme with

156

Figure 6.14: Scalability: Intermediate Broker CPU Utilization Comparison

caching is slightly higher (Figure 6.13). This is due to the sophisticated message

encoding used in Gryphon. As pb assigns V m digest to a message, the message has

to be re-encoded and this is not needed with flooding in Gryphon. Such difference

can be eliminated by encoding optimizations.

The brokers’ CPU utilization in the subscription propagation scheme without

caching show an observable linear increase with the number of SHBs at all PHB

(Figure 6.13), intermediate routing broker (Figure 6.14) and SHBs (Figure 6.15).

These overheads are successfully eliminated by the caching mechanism. This

confirms to our analytical result presented in Section 6.2.3.

6.3.8 Failure Test

A property of our subscription propagation protocol is the lightweight failover

characteristics of our approach. Even in the absence of a majority of brokers in a

157

Figure 6.15: Scalability: SHB CPU Utilization Comparison

tree node, our system is able to accept new subscriptions and deliver messages for

them. When a path fails, the system switches to the remaining available paths

and provides continuing service.

Figure 6.16 shows the network topology of our test setup. The network is a

redundant routing tree of 4 nodes and 6 brokers: broker PB for publishers and

SB1,2 for subscribers, each in its own separate node and three intermediate routing

broker IB1, IB2 and IB3 that reside in the same tree node NIB. We do not show

the tree node of a broker if that broker is the only broker in the node. Broker PB

is connected to each of the intermediate routing broker IB1, IB2, IB3 in node

NIB, which further connects to broker SB1 and SB2.

In this test, traffic from PB to SB1,2 is shared among intermediate broker

IB1, IB2, IB3. Messages are published through PB at a rate of 2000 messages

per second. Initially, there are 2 groups of clients connected to broker SB1 and 1

158

Figure 6.16: Topology Network for Fault Tolerance Test

group to broker SB2, each group with 250 subscribers each getting 20 messages

per second. Thus, the aggregated message rate per group is 5000. These 3 groups

of 250 subscribers subscribe to half of the data messages that are published.

A second group of 100 clients connect to broker SB2 at a later time, each

getting 20 messages per second. These 100 new clients subscribe to the second

half of all the data messages that are published. The aggregated message rate for

this group is 2000 messages per second. Figure 6.17(a) shows the message rates

for one of the first 3 groups and the fourth group. Figure 6.17(b) shows the CPU

utilization at IB1, IB2, IB3.

At time 400, only the first half of published messages are subscribed to, the

159

messages are routed through IB1 and IB2. Broker IB3 is not used because of

the simple hashing scheme used for load balancing. At time 475, IB1 crashes,

the system fails over to IB3, and CPU utilization at IB3 increases to 4% to the

same as IB2. About 30 seconds later, at time 505, IB2 crashes, and all messages

on the first 50 topics are routed through IB3. CPU utilization at IB3 doubles

to 8%. During these routing changes the client message rate is not affected. At

time 565, a new group of 100 subscribers starts to connect. These new subscribers

subscribe to the second half of published data messages. Even though only IB3 is

available, our approach is able to make progress and starts to deliver messages for

the new clients. When IB1 and IB2 recover about 130 and 160 seconds later at

time 691 and 731, traffic is once again shared among the available paths. During

this process, service to clients is not affected as their message rate stays constant,

as shown in Figure 6.17(b).

6.4 Summary

In this chapter, we discussed several implementation issues that range from how

to build a practical system with multiple PHBs to how to improve system per-

formance through identifying the hot contention point and by mechanisms like

sufficiency test result caching and multi-reader-single-writer locks for the hot con-

tention point.

We have also presented both analytical and experimental evaluation of our

system. Our results demonstrate that the system is efficient, scalable and provides

light-weight failover.

160

(a) subscriber message rate

(b) CPU utilization at ib1, ib2, ib3

Figure 6.17: Client Message Rate and Intermediate Broker CPU Utilization with Crash

Failure

161

Chapter 7

Conclusions and Future Work

In this dissertation, we have studied the problem of subscription propagation,

content-based routing and reliable delivery in content-based publish/subscribe

systems deployed over networks with redundant paths. In particular, we pre-

sented a general model of subscription propagation, content-based routing and

reliable delivery. Based on this model, we designed a generic algorithm that is

capable of performing subscription propagation in a redundant broker network

without requiring agreement between the redundant peer brokers. Coupled with

a sufficiency-directed content-based routing algorithm, this protocol can support

reliable delivery even in the presence of redundant paths, communication asyn-

chrony, link failures and broker crashes.

We have implemented a subscription propagation protocol using a special en-

coding of virtual start times of subscriptions and virtual time vectors. We further

extended our work to support the dissemination of access control information to

content-based publish/subscribe systems. We developed a content-based access

control and deterministic service model of dynamic access control changes. We

162

evaluated the performance of the protocol both analytically and empirically.

Our results demonstrated the viability of using control information to improve

messaging service performance through content-based routing. We demonstrated

that this can be achieved in systems that require reliable delivery and high avail-

ability through redundant routing brokers and paths. We have shown that control

information propagation and content-based routing can be implemented efficiently

through the use of distributed protocols that are asynchronous and light weight.

There is no need to achieve concensus among the redundant brokers/paths. Cou-

pled with proper system implementation and optimization techniques, a content-

based publish/subscribe system can achieve efficiency through the use of control

information to suit the needs of applications that require selective, regional, reli-

able and highly available distribution of messages.

This work can be further extended in the following ways:

• Research and design algorithms for conducting covering test that are sound,

efficient and more complete in that if there is a covering relationship, it can

usually finds it, i.e., not too conservative.

• Research and design algorithm and mechanism that adaptively conducting

different degrees of subscription merging in stable system operations, rang-

ing from the finest degree of matching exactly what is subscribed to the

coarsest of matching all messages. The adaptive decision should be based on

the application scenarios, subscription patterns, message patterns and their

temporal distributions. The algorithm should make a sound decision in trad-

ing off matching time versus communication cost. The mechanism should be

efficient in carrying out the decisions, reporting of system conditions such as

163

traffic load.

In addition, event processing systems have evolved from traditional systems

that focus on efficient event filtering and routing to systems that aim at providing

rich support in event patern detection and business decision making. This new

type of systems are typically built on top of the event delivery service of an ex-

isting messaging system. We anticipate that future directions of research in these

systems will be on the timeliness of service on the low layer of message delivery

to the richness as well as timeliness of support in the upper layer. The solutions

will innovatively combine technologies from various fields including distributed

systems, database systems, data mining and artificial intelligence.

164

Bibliography

[1] Corba Fundamentals and Programming. John Wiley & Sons Inc (Computers),

1996.

[2] M. Abadi and J. Feigenbaum. Secure circuit evaluation. Journal of Cryptol-

ogy, 2(1), 1990.

[3] M. Abadi, J. Feigenbaum, and J Kilian. On hiding information from an

oracle. Journal of Computer & System Sciences, 39(1), 1989.

[4] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra.

Matching events in a content-based subscription system. In Proceedings of

the Principles of Distributed Computing, 1999, 1999.

[5] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris.

Resilient overlay networks. SIGOPS Operating Systtem Review, 35(5), 2001.

[6] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-

to-peer content distribution technologies. ACM Computing Survey, 36(4),

2004.

[7] Jean Bacon, David Eyers, Ken Moody, and Lauri Pesonen. Secur-

165

ing publish/subscribe for multi-domain systems. In Proceedings of the

ACM/IFIP/USENIX 6th International Middleware Conference, 2005.

[8] Jean Bacon, Ken Moody, and Walt Yao. A model of Oasis role-based access

control and its support for active security. ACM Transactions on Information

and System Security, 5(4), 2002.

[9] Sebastien Baehni, Patrick Th. Eugster, and Rachid Guerraoui. Data-aware

multicast. In Proceedings of the 2004 International Conference on Dependable

Systems and Networks (DSN’04), 2004.

[10] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and

D. C. Sturman. An efficient multicast protocol for content-based publish-

subscribe systems. In Proceedings of the 19th IEEE International Conference

on Distributed Computing Systems, 1999, 1999.

[11] Andras Belokosztolszki, David M. Eyers, Peter Pietzuch, Jean Bacon, and

Ken Moody. Role-based access control for publish/subscribe middleware ar-

chitectures. In Proceedings of the International Workshop on Distributed

Event-Based Systems, 2003.

[12] Sumeer Bhola, Robert Strom, Saurabh Bagchi, Yuanyuan Zhao, and Joshua

Auerbach. Exactly-once delivery in a content-based publish-subscribe system.

In Proceedings of the International Conference on Dependable Systems and

Networks (DSN’2002), 2002.

[13] Sumeer Bhola, Yuanyuan Zhao, and Joshua Auerbach. Scalably supporting

durable subscriptions in a publish/subscribe system. In Proceedings of the

166

International Conference on Dependable Systems and Networks (DSN’2003),

2003.

[14] Jean-Camille Birget, Xukai Zou, Guevara Noubir, and Byrav Ramamurthy.

Hierarchy-based access control in distributed environments. In Proceedings

of the IEEE International Conference on Communication, 2001.

[15] Kenneth Birman. The process group approach to reliable distributed com-

puting. Communications of the ACM, 36(12), 1993.

[16] Kenneth Birman and Thomas Joseph. Exploiting virtual synchrony in dis-

tributed systems. In Proceedings of the 11th ACM Symposium on Operating

Systems Principles, 1987.

[17] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evaluation of a

wide-area event notification service. ACM Transactions on Computer Sys-

tems, 19(3), August 2001.

[18] R. Chand and P.A. Felber. A scalable protocol for content-based routing

in overlay networks. In Proceedings of the IEEE International Symposium

on Network Computing and Applications (NCA’03), Cambridge, MA, April

2003.

[19] Raphael Chand and Pascal Felber.

[20] David Cheriton and Willy Zwaenepoel. Distributed process groups in the v

kernel. ACM Transactions on Computer Systems (TOCS), 3(2), 1985.

[21] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.

167

Freenet: a distributed anonymous information storage and retrieval system.

In International workshop on Designing privacy enhancing technologies, 2001.

[22] Jon Crowcroft and Ian Pratt. Peer to peer: peering into the future. Advanced

lectures on networking, 2497, 2002.

[23] G. Cugola, E. Di Nitto, and A. Fuggetta. The jedi event-based infrastructure

and its application to the development of the opss wfms. IEEE Transactions

on Software Engineering, 27(9), September 2001.

[24] A.K. Datta, M. Gradinariu, M. Raynal, and G. Simon. Anonymous pub-

lish/subscribe in p2p networks. In Proceedings of International Parallel and

Distibuted Processing Symposium, 2003.

[25] Danny Dolev and Dalia Malki. The transis approach to high availability

cluster communication. Communications of the ACM, 39(4), 1996.

[26] Miscrosoft Erik Christensen, IBM Research Francisco Curbera, Microsoft

Greg Meredith, and IBM Research Sanjiva Weerawarana. Web services de-

scription language (wsdl) 1.1.

[27] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-NCSC

National Computer Security Conference, 1992.

[28] International Committee for Future Accelerators (ICFA). Standing Commit-

tee on Inter-Regional Connectivity (SCIC). Icfa scic network monitoring

report, 2006.

[29] International Committee for Future Accelerators (ICFA). Standing Commit-

168

tee on Inter-Regional Connectivity (SCIC). Icfa scic network monitoring

report, 2003.

[30] Object Management Group. Corbaservices: Common object services specifi-

cation. 1998.

[31] RTI Inc. Ndds: The real-time publish/subscribe middleware.

[32] SONIC Software Inc. http://www.sonicsoftware.com/index.ssp.

[33] TIBCO Software Inc. http://www.tibco.com.

[34] David Jefferson. Virtual time. ACM Transactions on Programming Languages

and Systems, 7(3), 1985.

[35] Paul Judge and Mostafa Ammar. Security issues and solutions in multicast

content distribution: A survey. IEEE Network Magazine, Januaray/February

2003.

[36] Marc Kaplan. Methods for efficient multicast message distribution in a highly

scalable and available network messaging service. us patent pending:yor8-

1999-0920, 1999.

[37] Balachander Krishnamurthy and David Rosenblum. Yeast: A general purpose

event-action system. IEEE Transactions on Software Engineering, 21(10),

1995.

[38] Peter S. Kruus. A survey of multicast security issues and architectures. In

Proceedings of the 21st National Information Systems Security Conference,

1998.

169

[39] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick

Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-

erspoon, Chris Wells, and Ben Zhao. Oceanstore: an architecture for global-

scale persistent storage. SIGOPS Operating System Review, 34(5), 2000.

[40] Leslie Lamport. Time, clock, and the ordering of events in a distributed

system. Communications of the ACM, 21, 1978.

[41] Guoli Li, Shuang Hou, and Hans-Arno Jacobsen. A unified approach to

routing, covering and merging in publish/subscribe systems based on modified

binary decision diagrams. In ICDCS, 2005.

[42] Jie Lu and Jamie Callan. Content-based retrieval in hybrid peer-to-peer net-

works. In Proceedings of the twelfth international conference on Information

and knowledge management, 2003.

[43] Microsoft Luis Felipe Cabrera, Microsoft Craig Critchley, Microsoft

Gopal Kakivaya, Microsoft Brad Lovering, BEA Systems Matt Mihic,

BEA Systems David Orchard, TIBCO Software Shivajee Samdarshi, Mi-

crosoft Jeffrey Schlimmer (Editor), Microsoft John Shewchuk, and Microsoft

David Wortendyke. Web services eventing.

[44] Silvano Maffeis. Adding group communication and fault-tolerance to corba.

In Proceedings of the USENIX Conference on Object-Oriented Technologies,

1995.

[45] Patrick Mazza. Powering up the smart grid. In

http://www.climatesolutions.org/pubs/pdfs/PoweringtheSmartGrid.pdf.

Climate Solutions, 2005.

170

[46] Zoltan Miklos. Towards an access control mechanism for wide-area pub-

lish/subscribe systems. In Proceedings of International Workshop on Dis-

tributed Event-Based Systems, 2002.

[47] Louise E. Moser, P. M. Melliar-Smith, Deborah A. Agarwal, Ravi K. Budhia,

and Colleen A. Lingley-Papadopoulos. Totem: A fault-tolerant multicast

group communication system. Communications of the ACM, 39(4), 1996.

[48] Gero Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD

thesis, Darmstadt University of Technology, September 2002.

[49] Gero Mühl, Ludger Fiege, and Alejandro P. Buchmann. Filter similarities

in content-based publish/subscribe systems. In Proceedings of International

Conference on Architecture of Computing Systems (ARCS’02), 2002.

[50] Vinod Muthusamy and Hans-Arno Jacobsen. Small-scale peer-to-peer pub-

lish/subscribe. In P2P Workshop MobiQuitous 2004, 2004.

[51] Lukasz Opyrchal, Mark Astley, Joshua Auerbach, Guruduth Banavar, Rob

Strom, and Daniel Sturman. Exploiting ip multicast in content-based publish-

subscribe systems. In Proceedings of Middleware, Springer LNCS 1795, 2000.

[52] Lukasz Opyrchal and Atul Prakash. Secure distribution of events in content-

based publish subscribe systems. In Proceedings of the 10th USENIX Security

Symposium, 2001.

[53] Peter R. Pietzuch. Hermes: A Scalable Event-based Middleware. PhD thesis,

University of Cambridge, 2004.

171

[54] Peter R. Pietzuch and Jean Bacon. Peer-to-peer overlay broker networks in

an event-based middleware. In 2nd International Workshop on Distributed

Event-Based Systems (DEBS’03), 2003.

[55] Federal Information Processing Standards Publication. Data encryption stan-

dard, 1977.

[56] Sandro Rafaeli and David Hutchison. A survey of key management for secure

group communication. ACM Computing Surveys, 35(3), 2003.

[57] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Schenker. A scalable content-addressable network. SIGCOMM Computer

Communication Review, 31(4), 2001.

[58] Sylvia Ratnasamy, Mark Handley, Richard M. Karp, and Scott Shenker.

Application-level multicast using content-addressable networks. In Proceed-

ings of the Third International COST264 Workshop on Networked Group

Communication, 2001.

[59] Robbert Van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe:

A robust and scalable technology for distributed system monitoring, man-

agement, and data mining. ACM Transactions on Computer Systems, 21(2),

2003.

[60] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network. In

Proceedings of the First International Conference on Peer-to-Peer Computing

(P2P’01), 2001.

[61] A. Rowstron, A. Kermarrec, M. Castro, and P. Druschel. Scribe: The design

172

of a large-scale event notification infrastructure. In Proceedings of 3rd Inter-

national Workshop on Networked Group Communication (NGC 2001), UCL,

London, UK, November 2001.

[62] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized

object location, and routing for large-scale peer-to-peer systems. In Pro-

ceedings of the IFIP/ACM International Conference on Distributed Systems

Platforms Heidelberg (Middleware’01), 2001.

[63] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content based

routing with elvin4. In Proceedings of AUUG2K, Canberra, Australia, April

2000.

[64] David Spence and Tim Harris. Xenosearch: Distributed resource discovery in

the xenoserver open platform. In Proceedings of the 12th IEEE International

Symposium on High Performance Distributed Computing (HPDC’03), 2003.

[65] Mudhakar Srivatsa and Ling Liu. Securing publish-subscribe overlay services

with eventguard. In Proceedings of the 12th ACM Conference on Computer

and Communication Security, 2005.

[66] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans

Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-

peer lookup protocol for internet applications. IEEE/ACM Transactions on

Networking, 11(1), 2003.

[67] Yan Sun and K. J. Ray Liu. Scalable hierarchical access control in secure

group communications. In Proceedings of the 23rd Conference of the IEEE

Communications Society, 2004.

173

[68] David Tam, Reza Azimi, and Hans-Arno Jacobsen. Building content-based

publish/subscribe systems with distributed hash tables. In Proceedings of 1st

International Workshop on Databases, Information Systems and Peer-to-Peer

Computing, 2003.

[69] Akamai Technologies, Computer Associates International, Fujitsu Labora-

tories of Europe, Globus, Hewlett-Packard, IBM, SAP AG, Sonic Software,

and TIBCO Software. Publish-subscribe notification for web services (verison

1.0).

[70] Akamai Technologies, Computer Associates International, Fujitsu Laborato-

ries of Europe, Globus, Hewlett-Packard, IBM, SAP AG, Sonic Software, and

TIBCO Software. Ws-base notification.

[71] Akamai Technologies, Computer Associates International, Fujitsu Laborato-

ries of Europe, Globus, Hewlett-Packard, IBM, SAP AG, Sonic Software, and

TIBCO Software. Ws-brokered notification.

[72] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and

Alejandro P. Buchmann. A peer-to-peer approach to content-based pub-

lish/subscribe. In Proceedings of the 2nd international workshop on Dis-

tributed event-based systems, 2003.

[73] Christos Tryfonopoulos, Stratos Idreos, and Manolis Koubarakis. Pub-

lish/subscribe functionality in ir environments using structured overlay net-

works. In Proceedings of 28th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, 2005.

174

[74] Robbert van Renesse, Kenneth Birman, and Silvano Maffeis. Horus: a flexible

group communication system. Communications of the ACM, 39(4), April

1996.

[75] Antonino Virgillito. Publish/Subscribe Communication Systems: from Models

to Applications. PhD thesis, Universita degli Studi di Roma ”La Sapienza”,

November 2003.

[76] Chenxi Wang, Antonio Carzaniga, David Evans, and Alexander Wolf. Secu-

rity issues and requirements for internet-scale publish-subscribe systems. In

Proceedings of the 35th Annual Hawaii International Conference on System

Sciences (HICSS’02)-Volume 9, 2002.

[77] Yi-Min Wang, Lili Qiu, Dimitris Achlioptas, Gautam Das, Paul Larson, and

Helen Wang. Subscription partitioning and routing in content-based pub-

lish/subscribe systems. In Proceedings of 16th International Symposium on

Distributed Computing(DISC’02), 2002.

[78] Yan Yan, Yi Huang, Geoffrey Fox, Shrideep Pallickara, Marlon E. Pierce,

Ali Kaplan, and Ahmet E. Topcu. Implementing a prototype of the security

framework for distributed brokering systems. In Proceedings of the Interna-

tional Conference on Security and Management, 2003.

[79] Eiko Yoneki and Jean Bacon. An adaptive approach to content-based sub-

scription in mobile ad hoc networks. In Proceedings of 2nd IEEE Annual Con-

ference on Pervasive Computing and Communications, Workshop on Mobile

Peer-to-Peer Computing, 2004.

175

[80] Eiko Yoneki and Jean Bacon. Content-based routing with on-demand mul-

ticast. In Proceedings of the 24th International Conference on Distributed

Computing Systems Workshops, 2004.

[81] B. Zhao, L. Huang, A. Joseph, and J. Kubiatowicz. Exploiting routing re-

dundancy using a wide-area overlay. Technical Report UCB/CSD-02-1215,

University of California, Berkeley, 2002.

176

