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1. Abstract 

 With the recent proliferation of large, unlabeled data sets, a particular subclass of 

semisupervised learning problems has become more prevalent. Known as positive-unlabeled 

learning (PU learning), this scenario provides only positive labeled examples, usually just a 

small fraction of the entire dataset, with the remaining examples unknown and thus potentially 

belonging to either the positive or negative class. Since the vast majority of traditional machine 

learning classifiers require both positive and negative examples in the training set, a new class of 

algorithms has been developed to deal with PU learning problems. 

A canonical example of this scenario is topic labeling of a large corpus of documents. 

Once the size of a corpus reaches into the thousands, it becomes largely infeasible to have a 

curator read even a sizable fraction of the documents, and annotate them with topics. In addition, 

the entire set of topics may not be known, or may change over time, making it impossible for a 

curator to annotate which documents are NOT about certain topics. Thus a machine learning 

algorithm needs to be able to learn from a small set of positive examples, without knowledge of 

the negative class, and knowing that the unlabeled training examples may contain an arbitrary 

number of additional but as yet unknown positive examples. 

Another example of a PU learning scenario recently garnering attention is the protein 

function prediction problem (PFP problem). While the number of organisms with fully 

sequenced genomes continues to grow, the progress of annotating those sequences with the 

biological functions that they perform lags far behind. Machine learning methods have already 
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been successfully applied to this problem, but with many organisms having a small number of 

positive annotated training examples, and the lack of availability of almost any labeled negative 

examples, PU learning algorithms can make large gains in predictive performance. 

The first part of this dissertation motivates the protein function prediction problem, 

explores previous work, and introduces novel methods that improve upon previously reported 

benchmarks for a particular type of learning algorithm, known as Gaussian Random Field Label 

Propagation (GRFLP). In addition, we present improvements to the computational efficiency of 

the GRFLP algorithm, and a modification to the traditional structure of the PFP learning problem 

that allows for simultaneous prediction across multiple species. 

The second part of the dissertation focuses specifically on the positive-unlabeled aspects 

of the PFP problem. Two novel algorithms are presented, and rigorously compared to existing 

PU learning techniques in the context of protein function prediction. Additionally, we take a step 

back and examine some of the theoretical considerations of the PU scenario in general, and 

provide an additional novel algorithm applicable in any PU context. This algorithm is tailored for 

situations in which the labeled positive examples are a small fraction of the set of true positive 

examples, and where the labeling process may be subject to some type of bias rather than being a 

random selection of true positives (arguably some of the most difficult PU learning scenarios). 

The third and fourth sections return to the PFP problem, examining the power of tertiary 

structure as a predictor of protein function, as well as presenting two case studies of function 

prediction performance on novel benchmarks. Lastly, we conclude with several promising 
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avenues of future research into both PU learning in general, and the protein function prediction 

problem specifically. 

 
 

 
Figure 1.1 

A graphical depiction of the label propagation function prediction process.  Different datatypes 

are processed as similarity matrices, and combined utilizing existing Gene Ontology (GO) 

annotations, as well as negative examples obtained via Positive-Unlabeled (PU) learning. This 

combined affinity matrix represents a network, different for each function being predicted, where 

positive and negative labels, as well as prior biases for unlabeled nodes, are again derived from 
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the GO database and PU-learning. Label information is then propagated throughout the network, 

and predictions are made based on the resulting positivity and negativity of each node.   
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2. Protein Function Prediction 

2.1 Motivation 

 The rate of new protein discovery has, in recent years, outpaced our ability to annotate 

and characterize new proteins and proteomes. In order to combat this functional annotation 

deficit, many groups have successfully turned to computational techniques, attempting to predict 

the function of proteins to guide experimental verification. Specifically, there has been a surge of 

interest in applying machine learning methods to the problem of protein function prediction (FP), 

in order to take advantage of the wealth of biological data available for each protein beyond its 

sequence, such as computationally-predicted tertiary structure which has already been shown to 

aid FP (Drew et al., 2011). While traditional approaches to FP mainly involved either homology 

(with limitations of accuracy) or manual curation (dependent on rare expertise), these new 

methods present new evaluation and comparative challenges. The MouseFunc competition 

(Pena-Castillo et al., 2008) was organized to test the ability of machine learning methods to take 

advantage of large integrated data-sets and provide useful predictions of gene function. 

 The validity of integrative approaches to function prediction was first demonstrated by 

the works of Marcotte et al. (1999) and Troyanskaya et al. (2003), which respectively used 

linkage graphs and a Bayesian network to predict function. By the time of the MouseFunc 

competition, FP methods had become quite diverse, including: Support Vector Machines, 
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Random Forests, Decision Trees, and several composite methods (Guan et al.,  2008; Lee et al.,  

2006; Obozinski et al.,  2008; Tasan et al.,  2008), but a recurring theme was to use protein-

protein networks of various types to determine function based on guilt-by-association (Kim et 

al., 2008; Leone et al.,  2005; Qi et al., 2008; Zhang et al., 2008). In such a method, genes are 

represented by nodes in a network, with weighted edges defined by a similarity metric obtained 

from raw data (often the Pearson Correlation Coefficient of feature vectors). Predictions are then 

formed by propagating information from genes known to have a function, through the network to 

unlabeled genes. 

 While providing unprecedented accuracy, the methods of the MouseFunc competition 

exposed several general challenges still remaining for the FP problem: 1) choosing a set of high-

confidence negative examples, 2) utilizing available data to form prior beliefs about the 

biological functions of a gene, and 3) effectively combining disparate data sources. As no 

comprehensive database of functional negative examples currently exists, and nearly all major 

machine learning methods require a negative class for the training of a classifier, the selection of 

high-confidence negative examples is especially important for the FP problem. 

 In this work, we begin to address these challenges by presenting a parameterizable 

Bayesian technique for computing prior functional biases for each gene, and a novel method for 

selecting negative examples using these biases. To apply our method, we utilize the framework 

of the GeneMANIA algorithm (Mostafavi et al., 2008), one of the highest-performing 

competitors in MouseFunc. In addition to our new priors and negative examples, we present a 

framework for tuning our Bayesian parameters and other parameters in the original GeneMANIA 
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algorithm. To facilitate this parameter tuning, we incorporate new optimization techniques that 

take advantage of the structure of the optimization problem. We also integrate our novel negative 

examples into the GeneMANIA network combination algorithm that synthesizes heterogeneous 

data into one affinity network. 

 While well-established procedures exist for the comparison of machine learning methods, 

recent work (Greene and Troyanskaya, 2012; Pavlidis and Gillis, 2012) has exposed and 

discussed problems that can be introduced into these comparisons by the nature of biological 

data. In order to mitigate these biases, we heed the suggestions of Greene and Troyanskaya 

(2012), and focus on evaluation with a temporal hold out (an evaluation set of annotations 

obtained at a later point in time than the training data, referred to in this paper and in the 

MouseFunc competition as the "novel evaluation setting"). We also include one of the few 

available gold standard evaluation sets (an exhaustive experimental evaluation of the presence of 

a particular protein function across an entire genome), obtained from Huttenhower et al. (2009). 

Our goal is to demonstrate the performance improvements of our new algorithm over the existing 

state-of-the-art in a fair (apples-to-apples) comparison across several datasets. We expect that 

these comparative results will generalize to other datasets as they become available. 

 

2.2 Previous Work 

 We present our novel methods using the framework of the GeneMANIA function 

prediction algorithm of Mostafavi et al. (2008), which incorporates prior beliefs and an 
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intelligent network combination algorithm into its guilt-by-association framework. GeneMANIA 

is a form of Gaussian Random Field (GRF) label propagation, a semi-supervised technique 

pioneered by Zhou et al. (2004); Zhu et al. (2003), and provides predictions for genes one 

function at a time. Given a set of nodes (genes) in a network whose edges define pairwise 

similarity, and a vector 𝑦 of prior label biases for the nodes given the current function being 

examined, the GRF algorithm assigns a discriminant value 𝑓! to each node, which can be ranked 

to produce predictions. The label biases 𝑦! take values in [-1,1], with -1 representing known 

negative labels, 1 representing known positive labels, and values in between reflecting prior 

belief about the likelihood of a gene having the function in question. The final discriminant 

vector 𝑓 is obtained by solving the optimization problem: 

(Equation 2.1) 

min
!

𝑓! − 𝑦! ! + W𝒊𝒋 𝑓! − 𝑓!
!
 

This equation has an analytical solution in the form of a linear system: A𝑥 = 𝑏, and also 

guarantees that the discriminant values 𝑓! will lie in the range [-1,1], with larger values indicating 

greater likelihood of an unlabeled node being a positive example of the function in question. 

 The analytical solution for the discriminant vector 𝑓  mentioned above takes the following 

form:  

I+ L 𝑓 = 𝑦 

With L = D−W, where I is the identity matrix, 𝑦 is the vector of prior beliefs, W the pairwise 

similarity matrix obtained by integrating multiple data types, and D is a diagonal matrix with 
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D𝒊𝒊 = W𝒊𝒋𝒋  This solution clearly only requires solving a linear system of the form A𝑥 = 𝑏, and 

with proper normalization of W, A, is guaranteed to be symmetric positive-definite. Thus the 

conjugate gradient algorithm can speedily and reliably solve for the discriminant vector 𝑓. 

 Intuitively, this algorithm allows prior information to flow through the network until 

equilibrium is reached. The objective function propagates known labels through the similarity 

network via the second ``smoothness'' term in Equation 2.1, weighted by the strength of 

similarity between nodes as specified by the network, and also enforces adherence to the prior 

bias through the first ``consistency'' term in Equation 2.1. Thus the label biases, both the positive 

and negative examples as well as biases used for unlabeled nodes, play a very important role in 

the algorithm. Mostafavi and Morris (2009) explore variations on techniques to choose the label 

bias vector, but we expand upon this work to improve accuracy in our algorithm by utilizing 

more of the information contained in current functional annotations to determine functional 

biases and negative examples (see section 2.3.1). 

 The other key component of the GRF algorithm is the composite network defining 

similarity between all pairs of genes. Mostafavi et al. (2008) proposed a method to combine 

disparate data sources, each represented as an affinity matrix, into one composite matrix, based 

on the work of Tsuda et al. (2005). This algorithm, for each Gene Ontology (GO) functional 

terms of interest, maximizes the similarity between pairs of positively labeled genes and 

minimizes the similarity between genes of opposite labels. This is accomplished by calculating 

the final network W• as the weighted sum of each individual network Wi, with the vector of 

weights, 𝛼• chosen to solve: 
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(Equation 2.2) 

𝛼∗ = min
!
( 𝛀𝛼 − 𝑡 ⊺ 𝛀𝛼 − 𝑡 ) 

If there are n nodes, pl positively labeled nodes, nl negatively labeled nodes, and h different data 

types, then 𝛀 is a 𝑝!! + 𝑝!𝑛!   ×  ℎ matrix, where each column contains all of the entries in Wi 

corresponding to the positive-positive and positive-negative label pairs. The target vector 𝑡 

contains the values: 𝑛!
!

𝑛! for positive-positive pairs and −𝑛!𝑝! 𝑛! for positive-negative pairs, 

in order to deal with class imbalance in the labeled data. The resulting vector 𝛼∗ will have length 

equal to the number of different data-types (possibly with some zero entries to signify data that 

was not discriminative) and contain the relative importance of each data-type determined by the 

algorithm. 

 This network combination algorithm is prone to over-fitting in cases with few positive 

examples. The original GeneMANIA algorithm addressed this problem by introducing a 

regularization term, but later work (Mostafavi and Morris, 2010) instead attempts to fit the 

composite data network for multiple Gene Ontology (GO) terms simultaneously. Our algorithm 

expands upon this second approach by directly incorporating our negative examples (see section 

2.3.3). 

 

2.3 Novel Methods 

 We propose novel techniques focusing on several key aspects of protein function 
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prediction: choosing negative examples, forming label biases for unlabeled genes with some 

known annotations, and an issue specific to GRF-based methods, namely combining 

heterogeneous data-types into one affinity network. In addition we suggest a new optimization 

algorithm tailored to our techniques, and provide a framework for tuning parameters using the 

training data. 

 

 

 

Figure 2.1 a) A subsection of the association network before the algorithm is run, showing prior 

beliefs for genes for the function: GO:0008194, UDP-glycotransferase activity, focusing on gene 

"Ogt". The shading of the nodes represents the degree of positivity compared to the mean of all 

prior biases, with blue indicating greater likelihood of possessing the function in question, red 

lesser likelihood, and white representing genes that had no GO term annotations to use for a 

prior. Square nodes represent validated true positives (including the training positive example 

"Wdfy3"). (b) The same subsection of the association network as (a), but after label propagation, 
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showing the final discriminant values of the genes. (c) The GO terms that are most predictive of 

the functional term GO:0008194, with darker shades of blue representing stronger predictors. 

 

2.3.1 Label Biases 

 Mostafavi and Morris (2009) showed that significant performance gain could be achieved 

by allowing existing GO annotations to inform the priors applied to genes in GRF function 

prediction, using a technique called Hierarchical Label Bias (HLBias). This idea is supported by 

the work of King et al. (2003), which showed that patterns of GO annotations alone provided 

enough signal to predict future annotations. HLBias specified that genes which possessed 

annotations for functions ancestral to the function of interest received a prior bias equal to the 

proportion of genes with the ancestral function that also are known to have the function in 

question. 

 However, due to the difficulty of defining a functional hierarchy, the structure of the GO 

tree is often altered by its curators, with terms being moved to different parents, virtually 

guaranteeing that there exist functional relationships that are non-ancestral. When considering 

the complexity of functional interactions, it would seem likely that the presence of some 

functions might influence the likelihood of a gene possessing other functions, regardless of 

whether or not the relationship between the two is ancestral. This is especially true when 

considering annotations in all three branches of the GO hierarchy simultaneously. Accordingly, 

we extend HLBias to include the likelihood of a given function co-occurring with all other 
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existing annotations (across all three branches of the GO Tree: Biological Process, Molecular 

Function, and Cellular Component), in the following manner: 

 Let 𝑝(𝑐|𝑚) denote the empirical conditional probability of seeing annotation c given the 

presence of annotation m:  

(Equation 2.3) 

𝑝 𝑐 𝑚 = 𝑛!"!
𝑛!!

 

Where 𝑛!"!  is the number of gene products where both m and c appear and 𝑛!!  is the number of 

gene products that have annotation m For a protein i, let Di be the set of all GO terms annotated 

to i. For a given functional term c, we approximate the conditional prior probability of gene i 

having function c by the score: 

(Equation 2.4) 

𝑝𝑟𝑖𝑜𝑟! =
1
𝐷!

𝑝 𝑐 𝑚
!  ∈!!

 

The label biases are then scaled to the range [-1,1] :  𝑦! = 2𝑝𝑟𝑖𝑜𝑟! − 1 

 Due to the hierarchical nature of GO terms, some of the conditional probabilities in this 

calculation will contain redundant information, and so when considering a protein with 

annotations Di, we remove from Di all GO terms which have a child in Di leaving a set of only 

the most specific annotations of protein i to use in calculating the bias. 

 Figure 2.1.c provides an example of the most predictive GO terms for the GO functional 

term UDP-glycotransferase activity (UDPGA), which include many terms which have no 
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ancestral relationship to UDPGA. Examining a specific prediction example, we find that the 

annotations informing the prior bias for gene Ogt (pictured in Figure 2.1.a), are all non-ancestral 

terms, and contribute to the algorithm making a correct positive prediction (Figure 2.1.b). 

 Lastly, we observe a large bias introduced by terms with small sample size, where one 

term appears to be a perfect predictor of another. In order to reduce the potential for overfitting 

stemming from this phenomenon, we introduce a weighted pseudocount into the calculation of 

the empirical conditional probability, whereby equation 2.3 is replaced by: 

(Equation 2.5) 

𝑝 𝑐 𝑚 =
𝑛!"!

𝑛!! + 𝛾𝑒!!!
!  

This idea is motivated by the hypotheses that no two GO terms 'c1' and 'c2' should both appear in 

every protein where one appears, unless 'c1' and 'c2' have an ancestral relationship, and also that 

the number of undiscovered occurrences of a function is related to the number of currently 

known occurrences. This equation (via the two parameters 𝛾 and 𝜆) allows us to smoothly 

transition between two extreme assumptions about how missing and currently known annotations 

are distributed: 1) the number of observations in the data is a proxy for how well a function has 

been studied, and so the number of missing counts in the data should be inversely proportional to 

the number already seen, and 2) the number of currently known occurrences is in fact a better 

representation of the specificity of a function, and so the undiscovered occurrences should be 

directly proportional to the number already seen. 

 In order to allow the data itself to choose one of these hypotheses, we sample from a 
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range of combinations of parameters, including the potential for no pseudocounting:  

𝛾 ∈    [0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512]  

𝜆 ∈  [-0.05, -0.025,  -0.0125, -0.00625, -0.003125, 0, 0.003125, 0.00625, 0.0125, 0.025, 0.05] 

Where 𝛾 and 𝜆 define our label bias pseudocount in equation 2.5. Including 𝜆 = 0 in the range 

allows for the potential for a constant pseudocount (or no pseudocount at all if 𝛾 = 0). 

 The final value of the parameters is chosen by tuning with cross-validation over the 

training set, as described in section 2.3.5. 

 For genes with no previous annotations in GO, we follow Mostafavi et al. (2008) and set 

the label bias to the mean of all the label biases calculated for genes with GO annotations, 

including the positive and negative example genes with values of {1,-1} respectively. We refer 

to our label bias algorithm hereafter as ALBias. 

 

2.3.2 Negative Examples 

 The choice of negative training examples for use in supervised machine learning 

algorithms is a recurring problem for FP methods. While the GO database does include negative 

annotations, the number of such annotations is currently small. Thus it is necessary to infer 

negative examples for each function (typically using a heuristic). Past heuristics include (i) 

designating all genes that don't have a particular label as being negative for that label (Guan et 

al., 2008), (ii) randomly sampling genes and assuming the probability of getting a false negative 

is low (often done when predicting protein-protein interactions, as in Gomez et al., 2003), and 

(iii) using genes with annotations in sibling terms of the term of interest as negative examples 
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(Mostafavi and Morris, 2009). Mostafavi and Morris (2009) note in discussion that this last 

technique may often break down as some genes are annotated to more than one sibling term, and 

many genes have few siblings to use. 

 We present a new technique for choosing negative examples based upon the label biases 

calculated for each function. Namely, all genes with an annotation in the same branch of GO as 

the term being predicted, and which have a priori score of 0 for the function in question (with the 

prior score computed across all three branches of GO), are treated as negative examples for that 

function. Intuitively, this amounts to treating a gene 'g' as a negative for annotation 'c' if no 

annotation 's' among the most specific annotations of 'g', ever appeared alongside annotation 'c' in 

any other gene. (Note that the choice of pseudocounting parameters does not impact the negative 

examples, as only the magnitude of the label bias will be affected and not whether a bias is non-

zero.)  

 Restricting the negative examples to having an annotation in the same branch as the GO 

term being predicted, rather than simply having an annotation in any branch, does decrease the 

number of negative examples, but also more significantly decreases the number of validated true 

positives that were misclassified as negatives. The number of negatives in mouse decreased by 

14.9% due to this restriction, while the number of verifiable misclassified negatives dropped by 

22.5%, and in yeast the number of negative examples decreased by 23.2% while the verifiable 

misclassified negatives dropped by 91.5%. 

 

 



17	  

2.3.3 Network Weighting 

 As mentioned in our description of previous work, one essential component of the GRF 

algorithm is synthesizing heterogeneous data sources into one pairwise affinity matrix. Mostafavi 

and Morris (2010) found that fitting this matrix for multiple GO terms simultaneously 

significantly decreased overfitting, especially in low-annotation terms. The authors simplified the 

calculation of this simultaneous fit by considering negative-negative pairs of labels as well as the 

positive-positive and positive-negative pairs utilized by the original network-weighting 

algorithm of Mostafavi et al. (2008). This simplification also requires the treatment of all non-

positive genes as negative genes for each GO. 

 As described in Mostafavi and Morris (2010), the Simultaneous Weights (SW) algorithm, 

which fits network weights to multiple GO terms at the same time, operates by solving the 

equation: 

(Equation 2.6) 

𝛼∗ = min
!
(−2𝛼⊺𝛀𝑡⊺ +−2𝛼⊺𝛀⊺𝛀𝛼) 

with 𝛼! ≥ 0, and 𝑡 = 𝑡!!
!!!  where each c  is a different GO term in the same branch of the 

hierarchy. This equation is a simplification of the formulation: 

(Equation 2.7) 

𝛼∗ = min
!
( 𝛀𝒄𝛼 − 𝑡! ⊺ 𝛀𝒄𝛼 − 𝑡! )
!

!!!

) 

This simplification is made possible by considering negative-negative pairs of labels as well as 
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the positive-positive and positive-negative pairs, and by treating all non-positive nodes as 

negative nodes, which causes all Ω! to be identical, and all 𝑡! vectors to be the same length.  

 Mostafavi and Morris (2010) showed that these simplifications do not hamper 

performance, and also found that fitting the combined network to all GO terms in a particular 

branch (GO-BP, GO-CC, or GO-MF) worked better than any other subset or grouping of 

functions. We concur that fitting to all terms performs better than any of the subsets we 

attempted, but propose that the apparent indifference of this algorithm to the assumption that all 

non-positive nodes are negative was most likely due to a lack of any satisfactory alternative for 

choosing negative examples. 

 We return to the unsimplified version of the simultaneous fit proposed by Mostafavi and 

Morris (2010), and utilize our more-specific negative examples that are unique to each GO term. 

Our modification to the network combination algorithm relies on returning to the formulation of 

2.7 but also maintains the unique Ω! matrices dependent upon both the positive labels and the 

specific negative examples chosen for term c. Such a formulation still has an analytical solution:  

(Equation 2.8) 

 

Ω!⊺
!

𝑡! = (Ω!⊺
!

Ω!)𝛼∗ 

which can be efficiently solved with a Cholesky decomposition, as (Ω!⊺! Ω!) is positive definite 

and is only ℎ×ℎ in dimension, with h being the number of data sets to be combined. We refer to 

our network algorithm as Simultaneous Weights with Specific Negatives (SWSN), and note that 
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while the SW algorithm is run on all terms with less than 300 annotations, we fit our SWSN 

algorithm only to the set of terms where function prediction is to be performed (between 400-500 

terms for each benchmark). Our experiments indicate that this reduction in the number of terms 

fit has a negligible impact on any of the performance metrics. 

 

2.3.4 Successive Block Conjugate Gradient Optimization 

 The network-weighting scheme defined above creates a single combined matrix W for all 

functional terms within the same GO branch. Thus the coefficient matrix is identical for the 

optimization problem that is solved for each function, and so we are faced only with the issue of 

a different right-hand-side (RHS) per function. In such cases, computational costs can be 

decreased by methods that solve all of the problems simultaneously, rather than iteratively 

solving each problem without using any of the information obtained by other solutions. We 

propose a modified version of the Successive Block Conjugate Gradient algorithm (SBCG) of 

Suarjana and Law (1994).  

 In this algorithm, the search direction is obtained simultaneously for all of the distinct 

RHS vectors in the problem. If at any point the search direction matrix becomes rank-deficient, 

dependent RHS vectors are moved to a secondary system, but are still updated with steps 

obtained from the search direction in the primary system, and so still proceed towards 

convergence. The speed of this secondary convergence is dependent on the angle between the 

vectors in the primary system and secondary system. 

 Our algorithm differs from the original proposed by Suarjana and Law (1994) in several 
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ways. Firstly, not all solutions converge to the desired tolerance in the same number of iterations, 

and so we save computation by removing already-converged RHS vectors from the block 

calculation rather than updating the entire system until all RHS vectors converge. Secondly, 

when the RHS vectors in the secondary system are nearly orthogonal to those in the primary 

system, waiting for secondary convergence can require a large number of iterations. Instead, 

once all primary system RHS vectors are converged, we restart the algorithm in a second phase 

with the secondary system as the primary system, but using the latest residuals as our starting 

point. Lastly, empirical observation has shown some low condition numbers can occur in the 

secondary phase when the number of dependent RHS vectors is large. We find that splitting up 

the total number of RHS vectors into a few smaller blocks alleviates this problem without 

significantly increasing computational cost. For the problem at hand, we chose to divide the 

function prediction problems into subproblems with a maximum of 500 RHS vectors. 

 Pseudocode for our adaptation of SBCG is found in algorithm SA1. 
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N. Youngs et al

This simplification is made possible by considering negative-
negative pairs of labels as well as the positive-positive and positive-
negative pairs, and by treating all non-positive nodes as negative
nodes, which causes all ⌦c to be identical, and all ~tc vectors to be
the same length.

As mentioned in the main text, Mostafavi and Morris (2010)
showed these simplifications do not hamper performance, and also
showed a better fit to all GO categories in a particular branch (GO-
BP, GO-CC, or GO-MF) than any other subset or grouping of GO
categories.

Our modification to the network combination algorithm relies
on returning to the formulation of Equation (7) but also maintains
the unique ⌦c matrices dependent upon both the positive labels
and the specific negative examples chosen for category c. Such
a formulation still has an analytical solution:

P
c ⌦

|
c
~

tc =
(
P

c ⌦
|
c⌦c) ~↵⇤, which can be efficiently solved with a Cholesky

decomposition, as (
P

c ⌦
|
c⌦c) is positive definite and is only h

by h in dimension, with h being the number of data sets to be
combined. We refer to our network algorithm as Simultaneous
Weights with Specific Negatives (SWSN), and note that while the
SW algorithm is run on all categories with less than 300 annotations,
we fit our SWSN algorithm only to the set of categories where
function prediction is to be performed (between 400-500 categories
for each benchmark). Our experiments indicate that this reduction
in the number of categories fit has a negligible impact on any of the
performance metrics.

Successive Block Conjugate Gradient Algorithm
After observing the repetitive nature of the optimization problems
required to solve Equation (1) in the main text, which must be solved
for each function, we propose the use of a new class of optimization
technique which deals with sets of linear equations with differing
right-hand-sides.

The Successive Block Conjugate Gradient (SBCG) algorithm,
originally proposed by Surajana and Law (1994), solves a set of
optimization problems of the form Aix = bi, were all Ai are
identical and only the bi differ. This situation arises in GRF protein
function prediction, as for each function we solve:

(I + L)~f = ~y (8)

With L=D�W , where I is the identity matrix, W the pairwise
similarity matrix obtained by integrating multiple data types, and
D is a diagonal matrix with Dii =

P
j wij . Since we compute W

from all function categories at once, it is identical accross functions,
and thus only the ~y vector differs, creating a situation suited to the
SBCG algorithm.

The algorithm proceeds by computing a block search direction
for all the residual vectors simultaneously. If at any point
this search matrix becomes rank deficient, dependent residual
vectors are moved to a secondary system, but still updated with
information from the primary system, and thus continue to proceed
to convergence. Accordingly, for each step of the algorithm
computation is saved by sharing information across all of the right-
hand -side problems.

Pseudocode for our adaptation of SBCG (adaptations described
in section 3.4 of the main text) is found in algorithm SA1.

Algorithm SA1 SBCG Algorithm, solving AX = B
R represents the matrix of residuals, while the m, s and c

superscripts denote the primary, secondary, and converged set of
residual vectors

Initialize: k = 0; R0 = B�AX0

Let Rm = R0, Rs = {}, Rc = {}
Let Xm = X0, Xs = {}, Xc = {}
Let col{X} = the number of columns in X
while col{Rc} < col{B} do

while col{Rm} > 0 do
k = k + 1

% Update search direction

if k = 1 then
P1 = R0

else
Solve: (Rm

k�2)
|Rm

k�2� = (Rm
k�1)

|Rm
k�1

Pk = Rk�1 +Pk�1�

end if
Orthonormalize Pk, identify dependent indices d

% Move dependent vectors to secondary system

Rm = Rm\d, Rs = Rs[d

Xm = Xm\d, Xs = Xs[d

% Solve for search direction and steplength

Uk = APk

Solve: P|
kUk[↵

m
k ,↵

s
k] = [(Rm

k�1)
|Rm

k�1, (R
s
k�1)

|Rm
k�1]

% Update iterates

[Xm
k ,Xs

k] = [Xm
k�1,X

s
k�1] +Pk[↵

m
k ,↵

s
k]

[Rm
k ,Rs

k] = [Rm
k�1,R

s
k�1]�Uk[↵

m
k ,↵

s
k]

% Remove converged columns

for all i 2 m [ s do
if k(Rm

k )ik< ✏ then
if i 2 m then

Rm = Rm\i, Rc = Rc[i

Xm = Xm\i, Xc = Xc[i

else
Rs = Rs\i, Rc = Rc[i

Xs = Xs\i, Xc = Xc[i

end if
end if

end for
end while

% If we have unconverged secondary columns, restart

R0 = Rs, X0 = Xs, k = 0
Rm = R0, Rs = {}
Xm = X0, Xs = {}

end while

Parameter Tuning
In order to tune the various parameters for our algorithm, we must
create a subset within the training data in order to measure the
performance of different parameter combinations (see section 3.5
of the main text). We begin by subdivide the training data into a
tuning subset and a validation subset, with sizes of 3/4 and 1/4 of
the training data respectively. We also ensure that the proportion
of genes with any GO annotations to those that are completely
unannotated are the same in each subset, to preserve the similarity
of the training environments. Next, we must adjust the tuning subset

2
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 2.3.5 Parameter Tuning 

The multiple RHS framework described in 2.3.4 lends itself well to parameter tuning, as the 

different combinations of the parameters 𝜆 and 𝛾 described in 2.3.1 simply yield more RHS label 

bias vectors to solve for with the same coefficient matrix.  

 The original formulation of the GRF objective function in Zhou et al. (2004) included the 

parameter 𝜇, which describes the relative weight to be placed on each component of the 

objective function, which we formulate as: 

(Equation 2.9) 

min
!

𝑓! − 𝑦! ! + (1− 𝜇) W𝒊𝒋 𝑓! − 𝑓!
!
 

This parameter was ignored by the GeneMANIA algorithm, but we reintroduce it here, and test 

its impact on function prediction by adding it to our tuning methodology. We test values of 𝜇 ∈

      [.05, .1, .15, ...., .9, .95]. 

 In order to choose performance-maximizing parameters, we create a synthetic learning 

problem from the training data, which is characteristically similar to the original learning 

problem, and choose parameters that yield the best performance on this subproblem.  

 In order to tune the various parameters for our algorithm, we must create a subset within 

the training data to measure the performance of different parameter combinations. We begin by 

subdividing the training data into a tuning subset and a validation subset, with sizes of 3/4 and 

1/4 of the training data respectively. We also ensure that the proportion of genes with any GO 

annotations to those that are completely unannotated are the same in each subset, to preserve the 
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similarity of the training environments. Next, we must adjust the tuning subset to be 

representative of the original learning scenario. 

 For the test scenario, such a task is trivial, as all annotations are removed for validation 

genes that are unlabeled. For the novel scenario, however, the task is more difficult, as the novel 

scenario in general involves predicting functions for genes which may already have some 

annotations. We address this issue with the following algorithm: 

 After splitting out training data into a training and validation subset, we create a novel-

like tuning environment by removing a random subset of annotations from a smaller subset of 

genes in the validation subset, as well as completely removing annotations for some of the 

validation genes, to simulate a non-systematic addition of partial annotations. The eliminated 

annotations are then used to evaluate the performance of the algorithm on the training subset of 

the training data. Any terms where no annotations were removed from the validation subset are 

deleted from the list of terms to be predicted. The final result is a set of training and validation 

data derived entirely from the original training data,  

which are similar to the final learning problem for the novel mouse and novel yeast evaluation 

scenarios. Pseudocode for this procedure is presented in Algorithm SA2. 
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 It is often the case that different combinations of parameters will perform better when 

evaluated by some metrics, and worse when evaluated by others. Combining evaluation metrics 

into one score proves difficult, as the same magnitudes of difference between the scores of 

different combinations of parameters does not have the same meaning in different metrics (for 

example a move in AUCROC from .97 to .98 is far more significant than a move in AUCPR from 

.10 to .11, or even a move in AUC_ROC from .50 to .51), and a normalization scheme would 

create dependency on which sets of parameters were selected to evaluate. We choose to define 

Parametric Bayesian Priors and Better Choice of Negative Examples

to be representative of the original learning scenario. For the test
scenario, such a task is trivial, as all annotations are removed for
validation unlabeled genes. For the novel scenario, however, the task
is more difficult, as the novel scenario in general involves predicting
functions for genes which may already have some annotations. We
address this issue with the following algorithm:

After splitting out training data into a training and validation
subset, we create a novel-like tuning environment by removing a
random subset of annotations from a smaller subset of genes in
the validation subset, as well as completely removing annotations
for some of the validation genes, to simulate a non-systematic
addition of partial annotations. The eliminated annotations are then
used to evaluate the performance of the algorithm on the training
subset of the training data. Any categories where no annotations
were removed from the validation subset are deleted from the list
of categories to be predicted. The final result is a set of training
and validation data derived entirely from the original training data,
which are similar to the final learning problem for the novel mouse
and novel yeast evaluation scenarios. Pseudocode for this procedure
is presented in Algorithm SA2.

It is often the case that different combinations of parameters
will perform better when evaluated by some metrics, and worse
when evaluated by others. Combining evaluation metrics into one
score proves difficult, as the same magnitudes of difference between
the scores of different combinations of parameters does not have
the same meaning in different metrics (for example a move in
AUCROC from .97 to .98 is far more significant than a move in
AUCPR from .10 to .11, or even a move in AUCROC from .50
to .51), and a normalization scheme would create dependency on
which sets of parameters were selected to evaluate. We choose to
define our parameter score as the average of the TopScore metrics
(see section 4.4 of the main text), and choose the combination of
parameters that maximizes this score. We find that this choice of
parameter score improves performance across other metrics as well.

When applying the SBCG algorithm, described in section 3.4 of
the main text, to the parameter tuning problem, we find a large
amount of rank deficiency among the label biases from the different
combinations of parameters in our candidate value sets. Therefore
we prefer to apply SBCG longitudinally, solving for all functions at
once with a particular set of parameters, rather than solving for all
combinations of parameters for a particular function. The greatest
performance gain would undoubtedly stem from a framework where
all blocks are solved simultaneously in one large system, but we did
not explore this option.

Evaluation biases
Pena-Castillo et al. (2008) remarks that there appears to be a
qualitative difference between the two types of evaluations used
in MouseFunc: the test set (a manually selected leave-out set of
genes where all known GO annotations are removed), and the novel
set (a set of genes that have acquired new GO annotations at a
later time period than the training data). We find that indeed the
performance of all algorithms is markedly higher on the test set than
on the novel set (see section 5.1 of the main text). This dichotomy
in performance is mirrored in later work by Mostafavi and Morris
(2009), which uses the same evaluation setup on more recent GO
data. We hypothesize two different factors underlying the relative
strength of test performance compared to novel performance:

Algorithm SA2 Synthetic Novel Set Generation

Separate training data into two sets: ⌥ and  
Let � be a set with the same genes as  , but with no annotations
Define !, ⌫ 2 {0,1}

% First remove all annotations from a subset of genes

for i = 1 ! ! ⇤ | | do
Set the annotations for gene �i equal to all annotations for  i

Remove all annotations for gene  i

end for
% Now remove partial annotations from a subset of genes

for all GO terms g present in  do
Let n = the count of term g in both � and  
Let l = n*⌫ - (count of term g in  )

for i = 1 ! l do
Choose random j s.t. gene  j has annotation g

Let set c contain g and all children of g annotated to  j

Add annotations c to �j

Remove annotations c from  j

end for
end for

% Now run predictions on sets ⌥ and  
% Validate with annotations present in �

The first is the fluidity of the GO ontology itself. Annotations
are not set in stone, and can be added and deleted depending upon
further review of the evidence. The structure of the hierarchy is also
mutable, with further annotation changes caused by re-structuring as
annotations from old ancestors are deleted and new ancestors added
in order to ensure the true-path rule is honored. In summary, GO
annotations change significantly over time, causing performance
degradation in predictions that span a large temporal gap, such as
in the MouseFunc novel evaluation scenario.

The second possible factor lies in the interdependence of both
the data and the annotations on sequence-similarity-based methods.
Several of the included data-types: Pfam, Interpro, OMIM, etc. use
strong sequence similarity to propagate data amongst proteins. The
same is true of GO annotations, where computational predictions
can be assigned based on homologues after manual review. Thus
even if the annotations are entirely removed for the test set, the
sequence-similarity links underlying those annotations are still
present in the data and thus make the annotations more easily
recoverable. This interdependence would be less true in the novel
scenario, as one would expect that most of the homologues known
at the time that the training data was gathered would have already
been annotated in GO as well, and so the majority of the novel
annotations likely come from experimental evidence or from newer
sequence-similarity searches that are not reflected in the training
data.

Evaluation Metrics
The two traditional measures of classifier performance are the
ROC curve, which plots (true positives)

(true positives + false negatives) as a function
of (false positives)

(false positives + true negatives) , and the PR curve, which plots
(true positives)

(true positives + false positives) as a function of (true positives)
(true positives + false negatives) .

Authors often present ROC performance in terms of the Area Under
the Curve (AUC), and usually select a few fixed recall values for

3
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our parameter score as the average of the TopScore metrics (see section 2.4.4), and choose the 

combination of parameters that maximizes this score. We find that this choice of parameter score 

improves performance across other metrics as well. 

 When applying the SBCG algorithm, described in section 2.3.4, to the parameter tuning 

problem, we find a large amount of rank deficiency among the label biases from the different 

combinations of parameters in our candidate value sets. Therefore we prefer to apply SBCG 

longitudinally, solving for all functions at once with a particular set of parameters, rather than 

solving for all combinations of parameters for a particular function. The greatest performance 

gain would undoubtedly stem from a framework where all blocks are solved simultaneously in 

one large system, but we did not explore this option. 

 

2.4 Methods 

2.4.1 Evaluation Datasets 

 We evaluate our algorithm on three datasets: the MouseFunc benchmark, yeast data, and 

a gold standard data set in yeast. With regard to MouseFunc data, we focus on the Molecular 

Function branch of the Gene Ontology (GO) hierarchy. For fair comparison to prior work, we 

use only data available to participants at the time of the MouseFunc exercise: these data include 

10 networks (Interpro data, PFAM data, 3 Gene Expression networks, PPI data, Phenotype, 2 

Conservation Profile networks, Disease Association data), 1874 molecular function terms, and 

21603 mouse genes, with all data gathered in 2006 (see Pena-Castillo et al., 2008). Predictions 
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are made, as in MouseFunc, only for functional terms with between 3 and 300 annotations in the 

genome, but all functional terms are used in the bias calculation and negative example choice 

described in sections 2.3.1 and 2.3.2. 

 For our performance evaluation in yeast we focus on the Biological Process branch of the 

GO tree, using data obtained from Mostafavi and Morris (2010), which includes 44 networks of 

data obtained from BIOGRID (Stark et al., 2006), covering 3904 genes with 1188 biological 

process terms (terms with between 3 and 300 annotations). We augment this yeast data with 

experimentally confirmed gold standard annotations in the BP term of GO:0007005, 

mitochondrion organization and biogenesis (MOB), obtained from Huttenhower et al. (2009) 

(see section 2.4.3). 

 

2.4.2 Functional Association Data 

 Association networks were created from feature-based data types using the Pearson 

Correlation Coefficient, after a frequency transform as described in Mostafavi et al. (2008). Only 

the top 100 interactions are used for each gene in the training set to keep the networks sparse, 

and a normalization scheme of 𝑊!
! = 𝐷!

!
!𝑊!𝐷!

!
! is applied to each network and to the final 

combined network, where 𝐷! is again the diagonal matrix containing the row sums of 𝑊!. 

 

2.4.3 Evaluation Frameworks 

We categorize protein function through Gene Ontology annotations, observing the common 
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convention of excluding ‘Inferred From Electronic Annotation’ (IEA) annotations. 

 As in the MouseFunc competition, performance is evaluated in two different scenarios: 1) 

a test set where all GO annotations are removed from a subset of data (1718 genes in mouse) and 

then predictions are made from the remaining training data, and 2) a novel set where predictions 

are made for proteins that have received new annotations at a later date in time. The member 

genes of this second set consist of the intersection of all proteins that have received at least one 

new annotation in any of the GO terms for which we are attempting predictions (1954 genes in 

mouse, 362 genes in yeast), and so include many proteins that already had some annotations in 

the training set, as well as proteins with no annotations in the training set.  

 We treat the novel scenario as the more important evaluation scheme for this work, 

because we believe it better reflects the true task facing computational biologists, and is less 

prone to evaluation biases (Greene and Troyanskaya, 2012). The test set approach suffers from 

biases stemming from the underlying use of sequence-similarity methods in both input data and 

GO labeling, which likely explains the better performance of all algorithms in the test scenario 

vs. the novel scenario.  

 Pena-Castillo et al. (2008) remarks that there appears to be a qualitative difference 

between the two types of evaluations used in MouseFunc: the test set (a manually selected leave-

out set of genes where all known GO annotations are removed), and the novel set (a set of genes 

that have acquired new GO annotations at a later time period than the training data). We find that 

indeed the performance of all algorithms is markedly higher on the test set than on the novel set 

(see section 5.1 of the main text). This dichotomy in performance is mirrored in later work by 
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Mostafavi and Morris (2009), which uses the same evaluation setup on more recent GO data. We 

hypothesize two different factors underlying the relative strength of test performance compared 

to novel performance:  

 The first is the fluidity of the Gene Ontology itself. Annotations are not set in stone, and 

can be added and deleted depending upon further review of the evidence. The structure of the 

hierarchy is also mutable, with further annotation changes caused by re-structuring as 

annotations from old ancestors are deleted and new ancestors added to ensure the true-path rule 

is honored. In summary, GO annotations change significantly over time, causing performance 

degradation in predictions that span a large temporal gap, such as in the MouseFunc novel 

evaluation scenario.  

 The second possible factor lies in the interdependence of both the data and the 

annotations on sequence-similarity-based methods. Several of the included data-types: Pfam, 

Interpro, OMIM, etc. use strong sequence similarity to propagate data amongst proteins. The 

same is true of GO annotations, where computational predictions can be assigned based on 

homologues after manual review. Thus even if the annotations are entirely removed for the test 

set, the sequence-similarity links underlying those annotations are still present in the data and 

thus make the annotations more easily recoverable. This interdependence would be less true in 

the novel scenario, as one would expect that most of the homologues known at the time that the 

training data was gathered would have already been annotated in GO as well, and so the majority 

of the novel annotations likely come from experimental evidence or from newer sequence-

similarity searches that are not reflected in the training data. 
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 Despite the biases mentioned above, error results are presented for the test scenario as 

well, to facilitate comparison with MouseFunc algorithms. For both the novel and test 

MouseFunc evaluations, predictions are made for the same set of GO Molecular Function terms 

as the original competition: 488 and 442 terms respectively. For yeast, we show results only in 

the novel scenario, with data from June 2007, one year after the training data, which includes 

511 GO BP terms with at least one new annotation.  

 Any comparison of computational methods using GO annotations as the ground truth 

suffers from the lack of delineation between negative and absent annotation. This drawback is 

discussed at length in Huttenhower et al. (2009), and can create significant difficulty in 

evaluating computational prediction methods, as observed false positive predictions may simply 

be a function of a lack of study rather than incorrect prediction. It is for this reason that 

performance evaluation in the novel scenario ignores any false positives for genes outside the 

novel set, as it likely that these genes were not studied at all in the time interval between the 

annotation date for training and for testing. In order to further alleviate some of the uncertainty 

caused by incomplete annotation, we present performance evaluation metrics on a ``gold 

standard'' benchmark of yeast genes experimentally verified by Huttenhower et al. 2009 for 

GO:0007005 mitochondrial organization and biogenesis (MOB). These gold standard 

annotations include 148 additional positive annotations that match genes in our yeast gene set, 

and are also added to the novel set used for the general yeast benchmark. Lastly, when 

calculating performance statistics on the MOB gold standard, we add an additional 2473 genes to 

the 342 comprising the yeast novel set. These additional genes are the negative examples from 
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Huttenhower et al. (2009) that are present in our gene set. 

 

2.4.4 Evaluation Metrics: PR vs. ROC, TopScore 

 The performance of discriminant-based classification algorithms is most often 

represented by two plots: The Receiver-Operator Characteristic (ROC) curve, and the Precision-

Recall (PR) curve, each of which can be summarized by their AUC, the area that the curve 

encompasses. While both performance measures attempt to describe how well the ordering of 

discriminant values captures the true positive and negative labels, each has different strengths 

and weaknesses. Precision tends to be more easily interpretable for an experimentalist, but 

averaging AUCPR numbers over many classifiers can be misleading due to the nonlinear nature of 

precision scores (See Figure 2.2).  

 

 

Figure 2.2 (a) AUCPR and AUCROC scores for an excellent/poor and a mediocre/mediocre 

ranking of two true positives amidst 1,998 true negatives. (b) High AUCROC  score of a poor 

ranking of one true positive amidst 9,999 true negatives. (c) Average AUCPR and TopScore 
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values for an excellent classifier of 2 true positives amongst 5,998 true negatives, and and a poor 

classifier of 3 true positives amongst 5,997 trues negatives. (d) Average AUCPR and TopScore 

values for an excellent classifier of 2 true positives amongst 5,998 true negatives, and a mediocre 

classifier of 3 true positives amongst 5,997 true negatives. 

 

Conversely AUCROC provides a better global view of the rankings, but lacks a meaningful 

interpretation for experimentalists and its magnitude depends on the skew of the dataset. See the 

Supplementary Materials for a more detailed description of the pitfalls of each metric. 

 When presented with computational predictions, experimentalists must determine the 

number of predictions to assay, as well as which functions to focus on... a task made more 

difficult by complicated performance metrics. In order to create a metric more robust to 

averaging than PR, but which still enjoys easy interpretability for experimentalists, we propose 

TopScorec defined as: #of  true  positives  !  rank  !
min(!,  positive  label  count)

. This score represents the fraction of a fixed number 

of experiments expected to yield a positive result, normalized by the maximum number of 

positive results possible. In this paper we present results for TopScore10, TopScore100, and 

TopScore1000 for mouse, and TopScore10, TopScore50, and TopScore200 for yeast, providing insight 

into the usefulness of computational predictions at three different scales of experimental testing.  

 It is also important to note that the choice of c requires a certain amount of domain 

knowledge. For example, if there are only two true positives in the data, a TopScore100 will show 

as 100% for many orderings of the first 100 examples, some of which are clearly preferable to 

others. If the number of true positives is entirely unknown, several values of c with different 
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magnitudes should be chosen, as we have done for mouse and for yeast. 

 Many authors prefer the AUCROC measure when comparing algorithms, as it provides a 

global view of the rankings of all labels. For the protein function prediction problem, however, 

the skew of the dataset is generally large, and so the AUCROC score loses objective value. As seen 

in figure 2.2.b, a relatively poor-performing classifier can receive a very high AUCROC  score, 

simply because the large number of true negatives implies that the algorithm “could have been 

much worse”. In such a case, the AUCPR score can be more informative for an experimentalist, as 

it describes, given a goal of discovering a certain percentage of the genes that truly have a given 

function, what percentage of experiments will be wasted.  

 AUCPR is not without faults, however, as the non-linearity of score can cause confusion 

when averaging the performance of a classifier over several different functional terms. Figure 

2.2.c and 2.2.d illustrates such a case, where large improvement in one poor classifier is drowned 

out by a small decrease in performance of an excellent classifier. 

 Our TopScore metric preserves the interpretability of precision while alleviating some of 

the complications arising when averaging AUCPR over multiple functions. Figure 2.2.c and 2.2.d 

illustrate the differences in TopScore alongside the average AUCPR, showing that TopScore 

correctly captures the average improvement in classification. 

 

2.4.5 Algorithm Component Exploration 

 Uncovering which component of our algorithm is responsible for which performance 

changes is a challenging undertaking, as many of our algorithmic changes are interlinked. For 
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example, our choice of negative examples affects both the bias value of selected genes, but also 

the network combination algorithm. Additionally our bias calculation can also produce genes 

with a prior of -1, but which were not chosen as negative examples for the purposes of network 

combination (due to our restriction that a gene must have annotations in the branch of interest to 

be declared an official negative). We have performed additional experiments to isolate the 

performance contributions of each of our algorithm subcomponents, presented in sections 2.5.1, 

2.5.2, and 2.5.3 of the results. 

 

2.5 Results and Discussion 

 We present results for our proposed techniques based on the evaluation metrics and 

datasets described in section 2.4, along with analysis of the different components of our 

algorithm: negative example choice, network combination, and parameter tuning.  

 Our tuned ALBias algorithm shows clear advantages over the current GeneMANIA 

methods in the vast majority of evaluations, with these differences being especially striking in 

the novel evaluation scenarios, where prior biases play a more important role in the algorithm 

than in the test scenario. In the yeast proteome, our algorithm achieved a performance increase of 

11-26 percentage points in every metric in the novel scenario, while in the mouse proteome we 

improved all evaluation scores by 2-6 percentage points in the novel scenario. 
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2.5.1 Negative Example Choice 

 In order to investigate the impact of our novel negative example choice, we evaluate the 

SW network combination algorithm with no label bias method, using three different negative 

example methods: the sibling negative examples, setting all non-positive genes with Gene 

Ontology (GO) annotations to negative examples, and our new negative example approach. As 

shown in Table 2.1, our negative example choice outperforms previous choices in all three full-

organism evaluations, sometimes even approaching the performance of our full SWSN with 

ALBias and tuned parameters algorithm, indicating that our choice of negative examples is 

responsible for a significant part of our algorithm's final performance.  

 On the yeast gold standard, even though our algorithm decreases the number of validated 

true positives that are misclassified as negatives from 110 to 6, our negative example choice 

results in lower evaluation metrics than the AllNeg selection. We attribute the counterintuitive 

decrease in predictive performance when using ALBNeg in this setting, to the fact that the 

particular term MOB is specific enough to have small prevalence in the genome (only 5.3% of 

yeast genes possess this function), yet it is common enough that many genes have shared an 

annotation with it, resulting in our algorithm only selecting 691 negative examples. Thus AllNeg 

yields high precision by virtue of having so many more negative examples, whereby it avoids 

false positives, while the rarity of the term means that there are not many true positives, and thus 

the mislabeling of true positives is outweighed by the decrease in predicted false positives. 

 Despite the success of our method in increasing performance in most evaluations, and 

reducing the instances of mislabeling validated true positives as negatives, in some GO terms 
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this mislabeling still occurs. Accordingly, we believe there is more potential for refined methods 

that correctly define high-confidence negative examples, and that these methods will have 

significant impact in the performance of machine learning algorithms. Indeed, we hypothesize 

that part of the performance gain demonstrated by the earlier HLBias algorithm, was due to the 

fact that the authors adjusted the labels for all non-positive genes, effectively turning any gene 

without a label in an ancestral term of the function in question into a negative example.  

 

Table 2.1 Performance metrics for different negative example choices: sibling negatives 

(SibNeg) as in Mostafavi et al. (2008), using all non-positive genes with GO annotations as 

N. Youngs et al

potential for refined methods that correctly define high-confidence
negative examples, and that these methods will have significant
impact in the performance of machine learning algorithms. Indeed,
we hypothesize that part of the performance gain demonstrated by
the earlier HLBias algorithm, was due to the fact that the authors
adjusted the labels for all non-positive genes, effectively turning
any gene without a label in an ancestral category of the function
in question into a negative example.

Table 1. Performance metrics for different negative example choices: sibling
negatives (SibNeg) as in Mostafavi et al. (2008), using all non-positive genes
with GO annotations as negative (AllNeg), and negative examples based
on our ALBias method (ALBNeg). All algorithms were run using the SW
network combination method, and the GRF label propagation algorithm of
Mostafavi et al. (2008).

Algorithm AUCROC AUCPR TS10 TS⇤
100 TS⇤

1000

Mouse Novel
SibNeg 0.7347 0.3236 0.4103 0.5342 0.7411

AllNeg 0.8155 0.3420 0.4318 0.5783 0.8354

ALBNeg 0.8366 0.3447 0.4314 0.5793 0.8705

Mouse Test
SibNeg 0.8573 0.5019 0.6136 0.7622 0.8725

AllNeg 0.9232 0.5168 0.6207 0.7994 0.9530

ALBNeg 0.9330 0.5171 0.6160 0.8014 0.9745

Yeast Novel
SibNeg 0.7566 0.3090 0.3674 0.6014 0.8094

AllNeg 0.7563 0.2865 0.3299 0.5284 0.8405

ALBNeg 0.8711 0.3387 0.4133 0.7127 0.9633

Yeast Gold Standard
SibNeg 0.7936 0.3729 0.8 0.54 0.5068

AllNeg 0.8679 0.4685 1 0.74 0.4932

ALBNeg 0.8413 0.3896 0.7 0.6 0.4865

*For the yeast scenarios, TopScore100 and TopScore1000 are replaced by TopScore50
and TopScore200

5.2 Network Combination Algorithm SWSN
To examine the effect of our network combination algorithm,
SWSN, we performed a comparison with the SW network weight
algorithm, using no label biases and our negative examples, yielding
mixed results across evaluation scenarios and metrics. SWSN
slightly outperforms SW on the mouse novel set, the two algorithms
are virtually tied on the mouse test set, and SW outperforms SWSN
on the yeast novel and gold standard evaluations. Yet we believe that
further refinement of negative example choice will show SWSN to
be a more successful method. In order to demonstrate this, we add
to the comparison of the two algorithms in Table 2, a third algorithm
(SWSNOracle) in which our negative examples are granted access
to a negative oracle, namely the validation annotations, to ensure we
do not select any negative examples that are demonstrated positives
(there are almost certainly others amongst our negative examples
that are true positives but not yet studied at the time of the collection
of validation data). This results in stronger performance on the

mouse novel set and yeast gold standard, but makes no difference
on the mouse test or yeast novel sets, as there were no instances of
negative examples that were demonstrated positives in the mouse
test and only 11 in the yeast novel benchmark.

We believe this result indicates the promise of our SWSN
algorithm, despite the fact that it was likely not a significant factor
in the current performance increase of our algorithm as a whole.
Therefore we submit SWSN as a logical extension of SW, as it
utilizes the more accurate and specific negative example information
now available. We hypothesize the likelihood of future performance
gain from using SWSN, once even better negative example methods
are uncovered.

Table 2. Performance metrics for network combination algorithms:
Simultaneous weights (SW) from Mostafavi and Morris (2010), our own
SWSN algorithm, and SWSN with a negtive oracle (SWSNOracle). All
algorithms were run using the GRF label propagation method of Mostafavi
et al. (2008).

Algorithm AUCROC AUCPR TS10 TS⇤
100 TS⇤

1000

Mouse Novel
SW 0.8366 0.3447 0.4315 0.5793 0.8705

SWSN 0.8376 0.3460 0.4396 0.5878 0.8755

SWSNOracle 0.8775 0.3491 0.4433 0.6027 0.9366

Mouse Test
SW 0.9330 0.5171 0.6160 0.8014 0.9745

SWSN 0.9315 0.5177 0.6211 0.8041 0.9684

SWSNOracle 0.9315 0.5177 0.6211 0.8041 0.9684

Yeast Novel
SW 0.8711 0.3387 0.4133 0.7127 0.9633

SWSN 0.8632 0.3139 0.3796 0.6294 0.9649

SWSNOracle 0.8636 0.3139 0.3796 0.6294 0.9656

Yeast Gold Standard
SW 0.8413 0.3896 0.7 0.6 0.4865

SWSN 0.8315 0.3729 0.7 0.52 0.5135

SWSNOracle 0.8569 0.3871 0.7 0.54 0.5270

*For the yeast scenarios, TopScore100 and TopScore1000 are replaced by TopScore50
and TopScore200

5.3 Parameter Tuning Results
From the performance measurements presented in section 5.1, we
see that while the tuned parameters performed significantly better
than the null parameters in the mouse novel and yeast MOB
benchmarks, their performance was on par with, or occasionally
worse than the null guess in the mouse test and yeast novel
benchmarks. We attribute the decrease in performance, primarily
in the yeast novel set, to the inherent difference between the state of
annotation in yeast and mouse. Our parameter-tuning algorithm was
designed to re-create a learning problem where annotations are only
partially known, yet in yeast, a well-studied organism, this type of
learning problem was most likely not as representative of the true
learning problem as it was in mouse, a less-studied organism.

6
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negative (AllNeg), and negative examples based on our ALBias method (ALBNeg). All 

algorithms were run using the SW network combination method, and the GRF label propagation 

algorithm of Mostafavi et al. (2008). 

 

2.5.2 Network Combination Algorithm SWSN 

 To examine the effect of our network combination algorithm, SWSN, we performed a 

comparison with the SW network weight algorithm, using no label biases and our negative 

examples, yielding mixed results across evaluation scenarios and metrics. SWSN slightly 

outperforms SW on the mouse novel set, the two algorithms are virtually tied on the mouse test 

set, and SW outperforms SWSN on the yeast novel and gold standard evaluations. Yet we 

believe that further refinement of negative example choice will show SWSN to be a more 

successful method. In order to demonstrate this, we add to the comparison of the two algorithms 

in Table 2.2, a third algorithm (SWSNOracle) in which our negative examples are granted access 

to a negative oracle, namely the validation annotations, to ensure we do not select any negative 

examples that are demonstrated positives (there are almost certainly others amongst our negative 

examples that are true positives but not yet studied at the time of the collection of validation 

data). This results in stronger performance on the mouse novel set and yeast gold standard, but 

makes no difference on the mouse test or yeast novel sets, as there were no instances of negative 

examples that were demonstrated positives in the mouse test and only 11 in the yeast novel 

benchmark. 

 We believe this result indicates the promise of our SWSN algorithm, despite the fact that 
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it was likely not a significant factor in the current performance increase of our algorithm as a 

whole. Therefore we submit SWSN as a logical extension of SW, as it utilizes the more accurate 

and specific negative example information now available. We hypothesize the likelihood of 

future performance gain from using SWSN, once even better negative example methods are 

uncovered. 

 

Table 2.2. Performance metrics for network combination algorithms: Simultaneous weights 

(SW) from Mostafavi and Morris (2010), our own SWSN algorithm, and SWSN with a negtive 

N. Youngs et al

potential for refined methods that correctly define high-confidence
negative examples, and that these methods will have significant
impact in the performance of machine learning algorithms. Indeed,
we hypothesize that part of the performance gain demonstrated by
the earlier HLBias algorithm, was due to the fact that the authors
adjusted the labels for all non-positive genes, effectively turning
any gene without a label in an ancestral category of the function
in question into a negative example.

Table 1. Performance metrics for different negative example choices: sibling
negatives (SibNeg) as in Mostafavi et al. (2008), using all non-positive genes
with GO annotations as negative (AllNeg), and negative examples based
on our ALBias method (ALBNeg). All algorithms were run using the SW
network combination method, and the GRF label propagation algorithm of
Mostafavi et al. (2008).

Algorithm AUCROC AUCPR TS10 TS⇤
100 TS⇤

1000

Mouse Novel
SibNeg 0.7347 0.3236 0.4103 0.5342 0.7411

AllNeg 0.8155 0.3420 0.4318 0.5783 0.8354

ALBNeg 0.8366 0.3447 0.4314 0.5793 0.8705

Mouse Test
SibNeg 0.8573 0.5019 0.6136 0.7622 0.8725

AllNeg 0.9232 0.5168 0.6207 0.7994 0.9530

ALBNeg 0.9330 0.5171 0.6160 0.8014 0.9745

Yeast Novel
SibNeg 0.7566 0.3090 0.3674 0.6014 0.8094

AllNeg 0.7563 0.2865 0.3299 0.5284 0.8405

ALBNeg 0.8711 0.3387 0.4133 0.7127 0.9633

Yeast Gold Standard
SibNeg 0.7936 0.3729 0.8 0.54 0.5068

AllNeg 0.8679 0.4685 1 0.74 0.4932

ALBNeg 0.8413 0.3896 0.7 0.6 0.4865

*For the yeast scenarios, TopScore100 and TopScore1000 are replaced by TopScore50
and TopScore200

5.2 Network Combination Algorithm SWSN
To examine the effect of our network combination algorithm,
SWSN, we performed a comparison with the SW network weight
algorithm, using no label biases and our negative examples, yielding
mixed results across evaluation scenarios and metrics. SWSN
slightly outperforms SW on the mouse novel set, the two algorithms
are virtually tied on the mouse test set, and SW outperforms SWSN
on the yeast novel and gold standard evaluations. Yet we believe that
further refinement of negative example choice will show SWSN to
be a more successful method. In order to demonstrate this, we add
to the comparison of the two algorithms in Table 2, a third algorithm
(SWSNOracle) in which our negative examples are granted access
to a negative oracle, namely the validation annotations, to ensure we
do not select any negative examples that are demonstrated positives
(there are almost certainly others amongst our negative examples
that are true positives but not yet studied at the time of the collection
of validation data). This results in stronger performance on the

mouse novel set and yeast gold standard, but makes no difference
on the mouse test or yeast novel sets, as there were no instances of
negative examples that were demonstrated positives in the mouse
test and only 11 in the yeast novel benchmark.

We believe this result indicates the promise of our SWSN
algorithm, despite the fact that it was likely not a significant factor
in the current performance increase of our algorithm as a whole.
Therefore we submit SWSN as a logical extension of SW, as it
utilizes the more accurate and specific negative example information
now available. We hypothesize the likelihood of future performance
gain from using SWSN, once even better negative example methods
are uncovered.

Table 2. Performance metrics for network combination algorithms:
Simultaneous weights (SW) from Mostafavi and Morris (2010), our own
SWSN algorithm, and SWSN with a negtive oracle (SWSNOracle). All
algorithms were run using the GRF label propagation method of Mostafavi
et al. (2008).

Algorithm AUCROC AUCPR TS10 TS⇤
100 TS⇤

1000

Mouse Novel
SW 0.8366 0.3447 0.4315 0.5793 0.8705

SWSN 0.8376 0.3460 0.4396 0.5878 0.8755

SWSNOracle 0.8775 0.3491 0.4433 0.6027 0.9366

Mouse Test
SW 0.9330 0.5171 0.6160 0.8014 0.9745

SWSN 0.9315 0.5177 0.6211 0.8041 0.9684

SWSNOracle 0.9315 0.5177 0.6211 0.8041 0.9684

Yeast Novel
SW 0.8711 0.3387 0.4133 0.7127 0.9633

SWSN 0.8632 0.3139 0.3796 0.6294 0.9649

SWSNOracle 0.8636 0.3139 0.3796 0.6294 0.9656

Yeast Gold Standard
SW 0.8413 0.3896 0.7 0.6 0.4865

SWSN 0.8315 0.3729 0.7 0.52 0.5135

SWSNOracle 0.8569 0.3871 0.7 0.54 0.5270

*For the yeast scenarios, TopScore100 and TopScore1000 are replaced by TopScore50
and TopScore200

5.3 Parameter Tuning Results
From the performance measurements presented in section 5.1, we
see that while the tuned parameters performed significantly better
than the null parameters in the mouse novel and yeast MOB
benchmarks, their performance was on par with, or occasionally
worse than the null guess in the mouse test and yeast novel
benchmarks. We attribute the decrease in performance, primarily
in the yeast novel set, to the inherent difference between the state of
annotation in yeast and mouse. Our parameter-tuning algorithm was
designed to re-create a learning problem where annotations are only
partially known, yet in yeast, a well-studied organism, this type of
learning problem was most likely not as representative of the true
learning problem as it was in mouse, a less-studied organism.

6
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oracle (SWSNOracle). All algorithms were run using the GRF label propagation method of 

Mostafavi et al. (2008).  

 

2.5.3 Parameter Tuning Results 

 From the performance measurements presented in section 2.5.1, we see that while the 

tuned parameters performed significantly better than the null parameters in the mouse novel and 

yeast MOB benchmarks, their performance was on par with, or occasionally worse than the null 

guess in the mouse test and yeast novel benchmarks. We attribute the decrease in performance, 

primarily in the yeast novel set, to the inherent difference between the state of annotation in yeast 

and mouse. Our parameter-tuning algorithm was designed to re-create a learning problem where 

annotations are only partially known, yet in yeast, a well-studied organism, this type of learning 

problem was most likely not as representative of the true learning problem as it was in mouse, a 

less-studied organism. 

 In general, adapting the tuning process to be representative of the original learning 

problem is a more intricate problem than first anticipated, and requires further exploration. In 

general, the scores from several different combinations of parameters were quite similar, 

indicating possible fluctuation in parameter choice dependent upon the randomization in the 

creation of the synthetic novel tuning set.  

 The best parameters resulting from the tuning process in each scenario are listed in table 

Table 2.3, and the positive values for 𝛾 in the novel scenarios are evidence for the 2nd 

hypothesis put forth in section 2.3.1 of the main text, that the undiscovered occurrences of a 
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function are dependent on its specificity and so are positively correlated with the number of 

annotations already observed. We also note that the 𝜇 parameter had a significant impact in all 

scenarios, indicating the information contained in the association network was more important 

than restricting genes to their prior biases. 

 

 

Table 2.3 Tuned parameters for each evaluation benchmark. 

 

  Further investigation shows that an observation-based guess of the parameters (𝜆 = 16, 

𝛾 = −0.0125, 𝛼 = 0.4) performs competitively with the tuned parameters. In table 2.4, the 

results are shown for our ALBias algorithm with naive parameters (𝜆 = 0, 𝛾 = 0, 𝛼 = 0.5), 

tuned parameters (values dependent on the evaluation scenario), and the set of guessed 

parameters described above. The guessed parameters perform as well or better than the tuned 

parameters on many evaluation metrics, indicating that further work is required on the parameter 

tuning process. The difference in performance appears mostly separable by evaluation scenario, 

where it seems the tuning process works very well on the mouse novel set, but is less competitive 

on the mouse test and yeast novel evaluations.  

N. Youngs et al

which to present precision statistics (although the AUC is also a
valuable summary of the PR curve). For ROC, the AUC area has
a nice interpretation: the probability that a randomly chosen true
positive will be ranked higher by the classifier than a randomly
chosen true negative. For PR, no such neat interpretation exists, but
the area does represent how close the classifier is to a perfect oracle,
which would predict no false positives and have an AUC of 1.

While both performance measures attempt to describe how well
the ordering of discriminant values captures the true positive and
negative labels, each tends to reward slightly different behavior.
AUCPR has the largest marginal difference at the top of the ranking
range, where a move from rank 1 to rank 2, for example, causes a
drop of 50% in precision, while the relative impact of a downward
move in rank decreases exponentially farther lower on the list.
Conversely, AUCROC moves linearly with list ordering, and so in
data sets with large skew, differences between the highest orderings
are quite small. As a result, AUCPR will reward a combination of
excellent and poor ranking, while AUCROC would prefer mediocre
ranking across all labels, as shown in figure S1.a.

Many authors prefer the AUCROC measure when comparing
algorithms, as it provides a global view of the rankings of all labels.
For the protein function prediction problem, however, the skew of
the dataset is generally large, and so the AUCROC score loses
objective value. As seen in figure S1.b, a relatively poor-performing
classifier can receive a very high AUCROC score, simply because
the large number of true negatives implies that the algorithm could
have been much worse. In such a case, the AUCPR score can be
more informative for an experimentalist, as it describes, given a goal
of discovering a certain percentage of the genes that truly have a
given function, what percentage of experiments will be wasted.
AUCPR is not without faults, however, as the non-linearity of

score can cause confusion when averaging the performance of a
classifier over several different functional categories. Figure S1.c
and S1.d illustrates such a case, where large improvement in one
poor classifier is drowned out by a small decrease in performance of
an excellent classifier.

Our TopScore metric (described in section 4.4 of the main
text) preserves the interpretability of precision while alleviating
some of the complications arising when averaging AUCPR over
multiple functions. Figure S1.c and S1.d illustrate the differences in
TopScore alongside the average AUCPR, showing that TopScore
correctly captures the average improvement in classification.

Parameter Tuning Results
As described in section 3.5 of the main text, the parameters are
chosen via a tuning process on the training data that computes a
combined score for all combinations of candidate parameters �, �,
and µ. In general, the scores from several different combinations
of parameters were quite similar, indicating possible fluctuation in
parameter choice dependent upon the randomization in the creation
of the synthetic novel tuning set.

The best parameters resulting from the tuning process in each
scenario are listed in table Table 1, and the positive values for �

in the novel scenarios are evidence for the 2nd hypothesis put forth
in section 3.1 of the main text, that the undiscovered occurrences
of a function are dependent on its specificity and so are positively
correlated with the number of annotations already observed. We also
note that the µ parameter had a significant impact in all scenarios,

Table 1. Tuned parameters for each evaluation benchmark
(see Equations 3 and 4 in the main text for parameter
definition)

Evaluation Scenario � � µ

Mouse Novel 64 0.0125 0.15
Mouse Test 2 0.025 0.1
Yeast Novel (and Gold Standard) 32 0.0125 0.35

indicating the information contained in the association network was
more important than restricting genes to their prior biases.

Further investigation shows that an observation-based guess of
the parameters (�=16, �=-0.0125, ↵=0.4) performs competitively
with the tuned parameters. Table 2, the results are shown for our
ALBias algorithm with naive parameters (�=0, �=0, ↵=0.5), tuned
parameters (values dependent on the evaluation scenario), and a
set of guessed parameters (�=16, �=-0.0125, ↵=0.4). The guessed
parameters perform as well or better than the tuned parameters on
many evaluation metrics, indicating that further work is required
on the parameter tuning process. The difference in performance
appears mostly separable by evaluation scenario, where it seems
the tuning process works very well on the mouse novel set, but
is less competitive on the mouse test and yeast novel evaluations.
As mentioned in the main text, the performance difference in yeast
in particular is likely due to the fact that the novel tuning process
attempts to recreate a situation of partial annotation, which is truer
of a less-studied organism (mouse) than of a more studied organism
(yeast).

In order to guarantee that the parameter tuning process provides
optimal results for all evaluation settings, our synthetic novel
tuning set must be more representative of the true learning task at
hand. One possible solution to this problem would be to tune the
parameters with a third set of actual GO annotations further back in
time, so parameters would be tuned with data from year X on year
X+1, then predictions made from year X+1 and evaluated with year
X+2. Another possible approach would be to tailor the creation of
the synthetic novel set more specifically to the proteome in question,
by examining the fraction of unannotated genes, average number of
annotations per gene, and other descriptive statistics.

Whatever the solution, we believe the performance gain in
the mouse novel and yeast gold standard evaluation settings
indicates the usefulness of the pseudocounting parameters, and that
performance will increase once a more broadly applicable tuning
algorithm is developed.

Evaluation Results
Figure S2 presents the same results as Figure 2 in the main text,
but breaks down the results by the specificity of the function.
The algorithms compared are the original MouseFunc GeneMania
algorithm, the SW GeneMania algorithm presented in Mostafavi
and Morris (2010) using sibling negative examples, the SW
algorithm combined with the HLBias algorithm of Mostafavi and
Morris (2009), and two versions of our algorithm, SWSN with
ALBias and naive parameters (�=0, �=0, ↵=0.5), and SWSN with
ALBias and tuned parameters. The performance evaluations are
averaged over functions within the same specificity buckets used

4
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 In order to guarantee that the parameter tuning process provides optimal results for all 

evaluation settings, our synthetic novel tuning set must be more representative of the true 

learning task at hand. One possible solution to this problem would be to tune the parameters with 

a third set of actual GO annotations further back in time, so parameters would be tuned with data 

from year X on year X+1, then predictions made from year X+1 and evaluated with year X+2. 

Another possible approach would be to tailor the creation of the synthetic novel set more 

specifically to the proteome in question, by examining the fraction of unannotated genes, average 

number of annotations per gene, and other descriptive statistics. 

 Whatever the solution, we believe the performance gain in the mouse novel and yeast 

gold standard evaluation settings indicates the usefulness of the pseudocounting parameters, and 

that performance will increase once a more broadly applicable tuning algorithm is developed. 
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Table 2.4. Performance metrics for Naive Parameters (NP), Guessed Parameters (GP) and Tuned 

Parameters (TP). 

 

2.5.4 Prediction Evaluations 

 We present the performance, evaluated by AUCROC, AUCPR, and TopScore (TS) metrics, 

of five algorithms: the original MouseFunc GeneMANIA algorithm, the SW GeneMANIA 

algorithm presented in Mostafavi and Morris (2010) using sibling negative examples, the SW 

algorithm combined with the HLBias algorithm of Mostafavi and Morris (2009), and two 

versions of our algorithm, SWSN with ALBias and naive parameters (𝜆 = 0, 𝛾 = 0, 𝛼 = 0.5), 

and SWSN with ALBias and tuned parameters. Results are averaged over all terms, with an 

Parametric Bayesian Priors and Better Choice of Negative Examples

Figure S1 (a) AUCPR and AUCROC scores for an excellent/poor and a mediocre/mediocre ranking of two true positives amidst 1,998 true
negatives. (b) High AUCROC score of a poor ranking of one true positive amidst 9,999 true negatives. (c) Average AUCPR and TopScore
values for an excellent classifier of 2 true positives amongst 5,998 true negatives, and and a poor classifier of 3 true positives amongst 5,997
trues negatives. (d) Average AUCPR and TopScore values for an excellent classifier of 2 true positives amongst 5,998 true negatives, and
and a mediocre classifier of 3 true positives amongst 5,997 true negatives.

Table 2. Performance metrics for Naive Parameters (NP), Guessed Parameters (GP)
and Tuned Parameters (TP)

Algorithm AUCROC AUCPR TS10 TS⇤
100 TS⇤

1000

Mouse Novel
NP (�=0, �=0, ↵=0.5) 0.8577 0.2773 0.3852 0.6435 0.8839

GP (�=16, �=-0.0125, ↵=0.4) 0.8604 0.3224 0.4343 0.6425 0.8887

TP (�=64, �=0.0125, ↵=0.15) 0.8616 0.3463 0.4696 0.6438 0.8956

Mouse Test
NP (�=0, �=0, ↵=0.5) 0.9352 0.5200 0.6318 0.8157 0.9605

GP (�=16, �=-0.0125, ↵=0.4) 0.9352 0.5184 0.6377 0.8129 0.9604

TP (�=2, �=0.025, ↵=0.1) 0.9389 0.5023 0.6269 0.8222 0.9723

Yeast Novel
NP (�=0, �=0, ↵=0.5) 0.9102 0.4917 0.6066 0.8536 0.9425

GP (�=16, �=-0.0125, ↵=0.4) 0.9122 0.4897 0.6452 0.8512 0.9432

TP (�=32, �=0.0125, ↵=0.35) 0.9000 0.4714 0.6232 0.8126 0.9405

*For the yeast novel scenario, TopScore100 and TopScore1000 are replaced by TopScore50 and
TopScore200

in the MouseFunc competition.
We see a strong performance increase for our SWSN, ALBias

algorithm in the mouse novel evaluation setting, evenly spread
across both specific and non-specific GO terms, as can been seen
in Figure S2.a. For the mouse test set, performance was strongest
for the most specific categories, but suffered somewhat in more
general categories when compared to the current GeneMANIA
algorithm (Figure S2.b). In the yeast novel setting (Figure S2.c),
there was an interesting correlation between the specificity of the
function, and the performance discrepancy between the tuned and
untuned versions of our algorithm. As the specificity increased, the
performance of the untuned parameters widened the gap, whereas
for the most general GO terms, the tuned parameters actually
performed better in nearly every metric, despite performing worse
in the all-term averages presented in the main text.

Yeast Performance Improvement Examples
Examination of the GO terms for which our algorithm exhibited the
greatest improvement in the yeast novel evaluation scenario, showed
many occurrences of the label biases of validation true positives
being improved by the use of GO annotations from branches other
than Biological Process (the branch of the GO terms targeted for
prediction). While it is likely that other changes in our algorithm
contributed to the performance increase as well, the only observed
systematic change in the predictions with most-improved metrics
was the aforementioned bias improvement. One example of non-BP
terms aiding in the prediction task was discussed in the main text,
but we have included several more below to further demonstrate this
occurrence.

Another example comes from term ”cell cycle checkpoint” where
our algorithm increased AUCROC from 0.363 to 0.974 and AUCPR
from 0.001 to 0.140, stemming from the improvement in rankings
of two genes that had no BP data and weak affinity to positive
examples in the data, but possessed useful annotations in other
branches of GO. Gene YCL024W moved from a ranking of 361st to
15th, owing to its Cellular Component annotation of ”cellular bud”,
and its Molecular Function annotations of ”protein kinase activity”,
and ”phosphotransferase activity, alcohol group as acceptor”, while
gene YCL060C moved from rank 101 to rank 7, thanks to CC
annotations of ”replication fork”, ”nuclear chromosome”, and
”chromosomal part”.

A third example is the term ”monosaccharide metabolic process”,
which showed improvement in AUCROC from 0.713 to 1.0 and
AUCPR from 0.514 to 1.0 from the application of our algorithm.
Gene YCL040W moved from rank 256 to rank 1, owing to the label
bias generated by the MF term ”carbohydrate kinase activity”. This
term also improved the label bias for gene YCR036W, elevating it
from a ranking of 54th to 3rd.

A final example lies in the term ”M phase” (proteins involved
in nuclear division and cytokinesis), where our algorithm increased
AUCROC from 0.769 to 0.892 and AUCPR from 0.408 to 0.603.

5
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analysis of results broken down by function specificity available in Figure 2.4.a. 

 In the novel scenario for MouseFunc, our algorithms show a strong increase in 

performance across all metrics, especially our version with tuned parameters, as seen in Figure 

2.3.a. We see here a large difference in performance between ALBias with tuned parameters and 

ALBias with naive parameters, indicating that some of our algorithmic performance increase in 

mouse is due to the ability of our parametric pseudocounting procedure to prevent undue bias 

influence from understudied GO terms in mouse. 

 

 

Figure 2.3 Performance metrics in (a) the novel scenario in mouse (488 functions, 1954 genes), 

(b) the test scenario in mouse (442 functions, 1718 genes), and (c) the novel scenario in yeast 

(511 functions, 342 genes). Metrics are averaged over all GO functions (each with between 3 and 

300 counts per genome), and error bars are one standard deviation of the error in the  
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  For the mouse test set, the difference in performance is much smaller, because the test 

set is stripped of all labels, thus negating a key advantage of ALBias (see Figure 2.3.b for mouse 

test results). Yet we still see a performance increase from our algorithm across most metrics, due 

to better biases for genes sharing edges with test genes. 

 In the yeast novel set we compare all algorithms except the original MouseFunc 

GeneMANIA algorithm, and observe a striking performance advantage of our algorithms across 

all evaluation metrics (See Figure 2.3.c). Further analysis indicates that much of this 

performance gain is due to our algorithm's incorporation of information from all branches of GO 

into the label bias calculation. Examining an example GO term, "DNA packaging", where our 

algorithm boosted performance in AUCROC from 0.722 to 0.989 and AUCPR from 0.467 to 0.803, 

we find the primary cause to be the improvement in rankings of two true-positive genes with 

useful Cellular Component annotations. YBR090C-A moved from rank 102 to rank 5, due to the 

Cellular Component term "nuclear chromatin", which has a high joint probability with "DNA 

packaging", and YCL060C moved from rank 298 to 18, due to the terms "nuclear chromosome", 

and "chromosomal part". Further examples are provided in the Supplementary Materials.  

 Another example comes from term "cell cycle checkpoint" where our algorithm increased  

AUCROC from 0.363 to 0.974 and AUCPR from 0.001 to 0.140, stemming from the improvement 

in rankings of two genes that had no BP data and weak affinity to positive examples in the data, 

but possessed useful annotations in other branches of GO. Gene YCL024W moved from a 

ranking of 361st to 15th, owing to its Cellular Component annotation of "cellular bud", and its 

Molecular Function annotations of "protein kinase activity", and "phosphotransferase activity, 
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alcohol group as acceptor", while gene YCL060C moved from rank 101 to rank 7, thanks to CC 

annotations of "replication fork", "nuclear chromosome", and "chromosomal part". 

 A third example is the term "monosaccharide metabolic process", which showed 

improvement in AUCROC from 0.713 to 1.0 and AUCPR from 0.514 to 1.0 from the application of 

our algorithm. Gene YCL040W moved from rank 256 to rank 1, owing to the label bias 

generated by the MF term "carbohydrate kinase activity". This term also improved the label bias 

for gene YCR036W, elevating it from a ranking of 54th to 3rd. 

 A final example lies in the term "M phase" (proteins involved in nuclear division and 

cytokinesis), where our algorithm increased AUCROC from 0.769 to 0.892 and AUCPR from 

0.408 to 0.603. We find the primary cause to be the true positive gene YHR079C-B, which 

moved from a ranking of 75th to 1st, despite having no Biological Process annotations in the 

data, thanks to its Cellular Component annotation of "condensed nuclear chromosome", which 

has a high joint probability with "M phase". 

 Many more examples exist of the contribution, primarily from Cellular Component 

terms, of annotations from other branches of the Gene Ontology improving the biases of genes in 

the prediction tasks where our algorithm improved performance the most. It is not immediately 

apparent why this effect was so pronounced in yeast, while other algorithmic changes seemed to 

be more useful in mouse, but it is clear that there is useful information to be gleaned across the 

different branches of the GO hierarchy when computing prior biases for function prediction. 

 Lastly on the yeast MOB gold standard (results in Table 2.5), we see strong performance 

from our tuned SWSN ALBias algorithm, which achieved significantly higher AUCROC and 
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TopScore200 scores, but also from the SW, HLBias algorithm, which achieved the highest 

TopScore10 and TopScore50 scores, as well as a marginally higher AUCPR  score. Thus our 

algorithm provided a better global ranking of true positives, while the current GeneMANIA 

algorithm ranked the top true predictions more highly. 

 

 

Table 2.5. Performance metrics on the yeast gold standard (GO:0007005) with experimental data 

from Huttenhower et al. (2009), comprised of 148 positive examples in 2815 genes. For both 

algorithms utilizing the SW network combination algorithm, negative examples were chosen 

according to the sibling technique discussed in section 2.3.2  

 

 Figure 2.4 presents the same results as Figure 2.3, but breaks down the results by the 

specificity of the function, using the same specificity buckets as the MouseFunc competition. 

 We see a strong performance increase for our SWSN, ALBias algorithm in the mouse 

novel evaluation setting, evenly spread across both specific and non-specific GO terms, as can 

been seen in Figure 2.4.a. For the mouse test set, performance was strongest for the most specific 

terms, but suffered somewhat in more general terms when compared to the current GeneMANIA 

Parametric Bayesian Priors and Better Choice of Negative Examples

In general, adapting the tuning process to be representative of
the original learning problem is a more intricate problem than first
anticipated, and requires further exploration. For detailed analysis of
the parameter tuning results, and future avenues of approach, please
refer to the Supplementary Materials.

5.4 Prediction Evaluations
We present the performance, evaluated by AUCROC , AUCPR, and
TopScore (TS) metrics, of five algorithms: the original MouseFunc
GeneMANIA algorithm, the SW GeneMANIA algorithm presented
in Mostafavi and Morris (2010) using sibling negative examples, the
SW algorithm combined with the HLBias algorithm of Mostafavi
and Morris (2009), and two versions of our algorithm, SWSN
with ALBias and naive parameters (�=0, �=0, ↵=0.5), and SWSN
with ALBias and tuned parameters. Results are averaged over all
categories, with an analysis of results broken down by function
specificity available in Figure S2.a in the Supplementary Materials.

In the novel scenario for MouseFunc, our algorithms show a
strong increase in performance across all metrics, especially our
version with tuned parameters, as seen in Figure 2.a. We see
here a large difference in performance between ALBias with tuned
parameters and ALBias with naive parameters, indicating that
some of our algorithmic performance increase in mouse is due to
the ability of our parametric pseudocounting procedure to prevent
undue bias influence from understudied GO categories in mouse.

For the mouse test set, the difference in performance is much
smaller, because the test set is stripped of all labels, thus negating a
key advantage of ALBias (see Figure 2.b for mouse test results). Yet
we still see a performance increase from our algorithm across most
metrics, due to better biases for genes sharing edges with test genes.

In the yeast novel set we compare all algorithms except the
original MouseFunc GeneMANIA algorithm, and observe a striking
performance advantage of our algorithms across all evaluation
metrics (See Figure 2.c). Further analysis indicates that much of
this performance gain is due to our algorithm’s incorporation of
information from all branches of GO into the label bias calculation.
Examining an example GO term, ”DNA packaging”, where our
algorithm boosted performance in AUCROC from 0.722 to 0.989
and AUCPR from 0.467 to 0.803, we find the primary cause
to be the improvement in rankings of two true-positive genes
with useful Cellular Component annotations. YBR090C-A moved
from rank 102 to rank 5, due to the Cellular Component term
”nuclear chromatin”, which has a high joint probability with ”DNA
packaging”, and YCL060C moved from rank 298 to 18, due to
the terms ”nuclear chromosome”, and ”chromosomal part”. Further
examples are provided in the Supplementary Materials.

Lastly on the yeast MOB gold standard (results in Table 3), we
see strong performance from our tuned SWSN ALBias algorithm,
which achieved significantly higher AUCROC and TopScore200
scores, but also from the SW, HLBias algorithm, which achieved the
highest TopScore10 and TopScore50 scores, as well as a marginally
higher AUCPR score. Thus our algorithm provided a better global
ranking of true positives, while the current GeneMANIA algorithm
ranked the top true predictions more highly.

5.5 Computational Cost
A theoretical complexity analysis of the SBCG algorithm is not
possible (see Supplementary Materials), but empirical testing shows

Table 3. Performance metrics on the yeast gold standard (GO:0007005)
with experimental data from Huttenhower et al. (2009), comprised of
148 positive examples in 2815 genes. For both algorithms utilizing the
SW network combination algorithm, negative examples were chosen
according to the sibling technique discussed in section 3.2

Algorithm AUCROC AUCPR TS10 TS50 TS200

SW, HLBias 0.8679 0.4685 1.0 0.74 0.4932
SW, No Bias 0.7908 0.3729 0.8 0.54 0.5068
SWSN, Naive Params 0.8842 0.4076 0.8 0.56 0.5068
SWSN, Tuned Params 0.9032 0.4634 0.7 0.70 0.5608

a 30% reduction in the number of flops required for the prediction
task on original MouseFunc data, with SBCG converging to a
solution with smaller residuals as well. On the yeast benchmark,
the reduction in flops was less, at 22%, due to the fact that the ratio
between the number of genes and the number of functions to predict
is much smaller (see Table 3 in the Supplementary Materials). As
expected, there is an observable increase in computation saved as
the number of categories increases, but this is bounded by the fact
that our algorithm splits the categories into subsets with a maximum
size of 500. This suggests that further computation could be saved
by devising a suitable strategy to deal with low condition numbers
for larger sets of right-hand-side vectors. Suarjana and Law (1994)
suggests that a pre-conditioner applied to the data might help reduce
the number of iterations required as well.

6 CONCLUSION
We have addressed several of the key problems facing protein
function prediction efforts by proposing novel algorithms, including
a method of choosing negative examples, and a parameterized
Bayesian methodology for computing prior functional biases
from existing annotation data. These methods, applied using the
framework of the GeneMANIA function prediction algorithm, have
resulted in a significant performance increases across three large
benchmarks. We also introduced a new optimization methodology,
which significantly decreased computational costs.

We devised a framework for tuning parameters in a synthetic
novel set which added further performance gain in the novel
scenario in mouse, but requires additional work to be more broadly
applicable to other evaluation scenarios. Our new SWSN network
combination algorithm shows even more promise in settings
with more extensive negative example information. Finally, we
presented a new evaluation metric designed to be easily interpretable
by experimentalists, even when averaged over many function
categories.

When comparing performance statistics of different algorithms,
a difference of a few percentage points can mean hundreds of new
true annotations when applied across all functions. For example, a
1% increase in TopScore10 would result in 187 new true annotations
were an experimentalist to use that metric to guide experiments over
the 1,874 GO MF categories in the mouse genome (at the time of
MouseFunc publication). Thus we believe the algorithms presented
here have the potential to guide experimentalists to a large number
of fruitful assays, and are in general aligned with current biological
understanding of how genes are functionally related to each other

7
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algorithm (Figure 2.4.b). In the yeast novel setting (Figure 2.4.c), there was an interesting 

correlation between the specificity of the function, and the performance discrepancy between the 

tuned and untuned versions of our algorithm. As the specificity increased, the performance of the 

untuned parameters widened the gap, whereas for the most general GO terms, the tuned 

parameters actually performed better in nearly every metric, despite performing worse in the all-

term averages. 

 

 



47	  

Figure 2.4 Performance metrics in (a) the novel scenario in mouse (488 functions, 1954 genes), 

(b) the test scenario in mouse (442 functions, 1718 genes), and (c) the novel scenario in yeast 

(511 functions, 342 genes). Metrics are presented for several buckets of specificity based on the 

number of observed occurrences in the genome in question: [3-10], [11-30], [31-100], and [101-

300]. Error bars are one standard deviation of the error in the mean. 

 

2.5.5 Computational Cost 

 A theoretical complexity analysis of the SBCG algorithm is not possible, but empirical 

testing shows a 30% reduction in the number of floating point operations (flops) required for the 

prediction task on original MouseFunc data, with SBCG converging to a solution with smaller 

residuals as well. On the yeast benchmark, the reduction in flops (where a single flop is one 

addition or one multiplication operation) was less, at 22%, due to the fact that the ratio between 

the number of genes and the number of functions to predict is much smaller (see Table 2.6). As 

expected, there is an observable increase in computation saved as the number of terms increases, 

but this is bounded by the fact that our algorithm splits the terms into subsets with a maximum 

size of 500. This suggests that further computation could be saved by devising a suitable strategy 

to deal with low condition numbers for larger sets of right-hand-side vectors. Suarjana and Law 

(1994) suggests that a pre-conditioner applied to the data might help reduce the number of 

iterations required as well. 

 As we have proposed a new optimization technique for computing our functional 

predictions, we analyze the computation cost of our algorithm compared with that employed by 
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the original GeneMania formulation (see section 2.3.4). The computational complexity of the 

conjugate gradient algorithm used to solve the GRF problem in GeneMania is O(𝑛!) per 

iteration. As the algorithm must be applied to all functions, this yields a complexity of O(𝑑𝑛!) 

per iteration where d is the total number of GO terms to be predicted. The per-iteration cost of 

our Successive Block Conjugate Gradient Variant is O(𝑑𝑛!   +   𝑑!𝑛  +   𝑑!). It is hard to imagine 

a case where d > n, and in fact most often n >> d, as in the original MouseFunc competition 

where n = 21,603 genes and d = 488 terms for the novel evaluation. In such cases the complexity 

of SBCG reduces to O(𝑑𝑛!) as well. 

 Although the per-iteration complexity of both algorithms is similar, the number of 

iterations required is not identical, nor are the constants applied to each. Since the exact 

complexity of SBCGV is conditional on the size of the dependent system, and whether or not a 

secondary phase is required, we turn to an empirical evaluation of flops to measure algorithmic 

performance. Table 2.6 shows the comparison of the flops required to solve the GRF problem for 

each function individually with the conjugate gradient algorithm, and the flops required by the 

simultaneous SBCG algorithm, for different numbers of terms, as well as the final norm of the 

residual matrix: norm(Ax-b). 
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Table 2.6. Floating point operations (flops) and error (norm of the residual) results for the SBCG 

algorithm, and Conjugate Gradient (CG) algorithm applied sequentially. 

 

2.6 Multi-Species Prediction 

 While the modifications mentioned above improve the accuracy of function prediction, 

all still operate within the same functional paradigm: predicting one function at a time, one 

species at a time. Since many proteins exist in very similar forms across different species 

(proteins that are essentially identical but separated by a speciation even are known as 

orthologs), it is reasonable to assume that there might be useful data contained across species 

lines. For example, if a protein has a known function in M. musculus, and that protein also has a 

known ortholog in R. norvegicus, it is extremely likely that one can correctly transfer the 

functional annotation. In addition to increasing the number of positive training examples, cross-

species prediction also allows for the prediction of functional terms for which there are no 

Parametric Bayesian Priors and Better Choice of Negative Examples

Table 3. Flops and error (norm of the residual) results for the SCBG algorithm, and Conjugate Gradient
(CG) algorithm applied sequentially

Evaluation Scenario # of RHS Sequential CG SBCG

Flops Error Flops Error

Mouse Example 10 1.8206e+11 1.4869e-08 1.5343e+11 1.1381e-08

Mouse Param. Tuning 342 5.8418e+12 6.1187e-08 4.0961e+12 5.8895e-08

Mouse Param. Tuning 1420† 2.4178e+13 1.1884e-07 1.6844e+13 9.1782e-08

Yeast Param. Tuning 426 1.9368e+11 3.3293e-08 1.5216e+11 3.7322e-08

Yeast Param. Tuning 1704‡ 7.9071e+11 8.8582e-08 6.1603e+11 5.5898e-08

† split into subsets of 474, 474, and 472. ‡ split into 4 subsets of 426.
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currently known annotations in a target genome, as long as there are some annotations in a 

related species. This becomes especially important for annotation bacterial and archaea genomes, 

as the majority of these are currently sparsely annotated, and thus without cross-species 

prediction, only a limited number of functional terms can be predicted.  

 In order to achieve cross-species prediction, we first group organisms into families with 

likely orthologues. For the CAFA prediction challenge (described in section 5.2), we used the 

following species groupings: 

 

Plants 

Arabidopsis thaliana 

Dictyostelium discoideum 

Saccharomyces cerevisiae 

Mammals 

Homo sapiens 

Mus musculus 

 Rattus norvegicus 

Other Animals 

Mus musculus 

Xenopus laevis 

Danio rerio  

Drosophila melanogaster 

Yeasts 

Saccharomyces cerevisiea 

Schizosaccharomyces pombe 
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Archaea 
Halobacterium salinarum R1 

Haloferax volcanii DS2 

 Ignicoccus hospitalis KIN4/I 

Methanocaldococcus jannaschii DSM 2661 

Pyrococcus furiosus, Sulfolobus solfataricus P2 

Nitrosopumilus maritimus strain SCM1 

Bacteria 

Bacillus subtilis subsp. subtilis 168 

E. coli K12, Helicobacter pylori ATCC 700392 

Mycoplasma genitalium ATCC 33530 

Pseudomonas aeruginosa PA01 

Pseudomonas putida KT2440 

Pseudomonas syringae pv. tomato str. DC3000 

Salmonella enterica subsp. enterica serovar Choleraesuis strain SC-B67 

Salmonella typhimurium 

Streptococcus pneumoniae TIGR4 

 

Table 2.7 Species groupings for multi-species function prediction. 

 

Note that some well-studied organisms (M. musculus, S. cerevisea) are included in multiple 

groups, in order that their annotations might help predictive accuracy in some of the less studied 

species. We then utilized the InParanoid tool (Ostlund et al., 2010) to generate a homology score 

for all pairs of proteins within all species in the group (excluding pairs of proteins in the same 

species). As with our other data input types, we maintain sparsity by only using the 100 highest 
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scores for each protein, and treating the rest as 0. Function prediction proceeds as normal, but 

where the W matrix before represented edges between the n proteins in a species, it now 

represents edges between the (n1 + n2 + … + nh) proteins in all species in the group. The 

structure of this resulting matrix is depicted in figure 2.5. 

 The block diagonal components of W come from the original network combination 

algorithm as applied to each species individually, while the off-diagonal components are all 

generated from the highest InParanoid scores as described above. Once the final association 

matrix is constructed, symmetry is enforced, and the usual normalization procedure is applied. 

 In the CAFA function prediction challenge (see section 5.2) more than half of the 27 

target species came from the Archea and Bacteria domains, which besides being often sparsely 

annotated share a large number of homologous proteins. Utilizing our cross-species 

methodology, we were able to predict annotations in over 73 functional terms (across all 

branches of the Gene Ontology) which would have been impossible to predict in single-species 

prediction paradigms for the majority of the target organisms. For full CAFA results, see section 

5.2. 
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Figure 2.5 Sample block association matrix for multi-species learning with 3 species. 

  

2.7 Conclusion 

We have addressed several of the key problems facing protein function prediction efforts by 

proposing novel algorithms, including a method of choosing negative examples, and a 

parameterized Bayesian methodology for computing prior functional biases from existing 

annotation data. These methods, applied using the framework of the GeneMANIA function 

prediction algorithm, have resulted in a significant performance increases across three large 

benchmarks. We also introduced a new optimization methodology, which significantly decreased 

computational costs. 
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 We devised a framework for tuning parameters in a synthetic novel set which added 

further performance gain in the novel scenario in mouse, but requires additional work to be more 

broadly applicable to other evaluation scenarios. Our new SWSN network combination 

algorithm shows even more promise in settings with more extensive negative example 

information. Finally, we presented a new evaluation metric designed to be easily interpretable by 

experimentalists, even when averaged over many function terms. 

 When comparing performance statistics of different algorithms, a difference of a few 

percentage points can mean hundreds of new true annotations when applied across all functions. 

For example, a 1% increase in TopScore10 would result in 187 new true annotations were an 

experimentalist to use that metric to guide experiments over the 1,874 GO MF terms in the 

mouse genome (at the time of MouseFunc publication). Thus we believe the algorithms 

presented here have the potential to guide experimentalists to a large number of fruitful assays, 

and are in general aligned with current biological understanding of how genes are functionally 

related to each other through different data types. 

 We have shown that our algorithm can perform function prediction through data 

integration and guilt-by-association with substantially more accuracy and efficiency than 

previously published algorithms, and provided insight into some of the inherent difficulties still 

facing the development and evaluation of protein function prediction algorithms. 
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3. Positive-Unlabeled Learning 

 

3.1 Introduction 

 Despite the recent outpouring of machine learning algorithms applied to function 

prediction, there has been relatively little study devoted to the issue of class imbalance in 

function labels. This imbalance stems from the fact that the current standard set of labels for 

protein functions, the Gene Ontology (GO) database (Ashburner et al., 2000), rarely stores which 

proteins do not possess a function. If no annotation is present for a given gene to a particular GO 

term, it does not mean that such a gene is a negative example for that term, but rather that it is 

either a negative example or a positive example that has yet to be annotated. This situation arises 

due to experimental constraints: function assays are typically applied to single proteins and that 

protein function can be context dependent, making negative statements/labels quite uncertain, 

and leading to very few (or for most protein functions, not any) verified negative examples. This 

imbalance presents an obvious problem for the vast majority of machine learning techniques, 

which require enough examples of both the positive and negative class to train an accurate 

predictor. Without these labeled negative examples, authors often resort to heuristics to define 

the non-positive class; but mistakes stemming from these heuristics can lead to false negatives in 

the training set, and are detrimental to classifier performance.  
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 The situation described above, in which the only known labels are of the positive class, is 

not unique to the protein function prediction (PFP) problem, but also occurs in several other 

domains. It has been given the name Positive-Unlabeled (PU) learning, and there has been a 

surge of interest lately in this particular subset of semi-supervised machine learning problems. 

One branch of PU algorithms attempts to learn in a one-class scenario, as has been applied to 

biology, specifically mRNA detection (Yousef et al. 2008). As the authors point out, however, 2-

class machine algorithms often perform better when the negative class can be well defined. In 

another 1-step algorithm (Elkan and Noto, 2008), the authors demonstrate that if certain 

conditions hold, learning without explicitly knowing negative examples is possible and even 

more accurate then existing methods. Unfortunately, this assumption requires the probability of a 

true positive example being labeled to be independent of the example itself (the set of observed 

positive labels should be selected at random from the total set of true positives). Since GO terms 

are often propagated via homology methods, there is a high degree of correlation between many 

of the labeled positive examples, and so this assumption does not hold in our domain. Thus we 

focus on the majority of PU algorithms, which proceed by first predicting a set of reliable 

negative examples before applying a traditional machine learning classifier to the enriched data 

as usual. These 2-step algorithms take many forms (see Liu et el., 2003, for review of these 

methods), but in this work we will refer to two main subcategories: passive 2-step PU 

algorithms, which learn the negative examples through a separate mechanism from the 

classifying algorithm, and active 2-step PU algorithms, which work in conjunction with the 

classifier to learn the negative examples. 
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 The main focus of PU-learning literature has been to improve text classification (Liu et 

el., 2003), a problem in which labeling a document’s topics is time-intensive, and it is not 

practical to label all the topics a document does not contain. Yet the analogies to protein function 

are clear: proteins are rarely labeled with the functions they do NOT possess, and proteins are 

nearly always multi-topic, in that the annotation of a protein to a particular GO-term does not 

exclude the potential for several other functional classifications (we use the word “function” 

synonymously with “GO term”, regardless of which branch of GO that term occurs in). 

Therefore PU algorithms are applicable to the function prediction problem, and hold great 

potential for improvements in machine learning algorithms applied in this context. For example, 

we have previously shown that more-reliable negative examples boost the predictive power of 

protein function prediction algorithms (Youngs et al., 2013).  

 We proceed by focusing directly on the first step of the PU learning task, namely 

generating a reliable set of negative examples for protein function and directly evaluating the 

quality of our negative examples, rather than their indirect effect on classifier performance. 

While PU learning has been applied to the biological domain before (Yousef et al., 2008; 

Bhardwaj et al., 2010; Zhao et al., 2008) to the best of our knowledge no study has focused on 

evaluating the quality of negative examples for GO functions. We examine many of the 

heuristics used for protein function negative examples in the past, including: designating all 

genes that don’t have a particular label as being negative for that label (Guan et al., 2008), 

randomly sampling genes and assuming the probability of getting a false negative is low (often 

done when predicting protein-protein interactions, as in Gomez et al., 2003), and using genes 
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with annotations in sibling terms of the term of interest as negative examples (Mostafavi and 

Morris, 2009; Cesa-Bianchi and Valentini, 2010). To these heuristics we add two common PU 

algorithms used in text classification but here adapted to PFP, the Rocchio algorithm (Rocchio 

1971), and the “1-DNF” algorithm (Yu and Chang, 2002), as well as our ALBNeg algorithm 

(Youngs et al., 2013), and one of the few previously-published protein-negative-example-

selection algorithms, the AGPS algorithm (Zhao et al., 2008). In addition, we present two new 

techniques: the first, Selection of Negatives through Observed Bias (SNOB), is an extension of 

our ALBNeg algorithm (which can itself be viewed as a generalization of the “1-DNF” PU 

algorithm), while the second, Negative Examples from Topic Likelihood (NETL), is based on a 

Latent Dirichlet Topic model of GO data. 

 Our algorithms, as well as competing algorithms borrowed from text classification, 

require only existing GO annotations to predict negative examples. As new annotations are 

continuously added to GO this allows testing via training on archived GO data, and examining 

the number of incorrectly predicted negative examples using current GO data to identify true 

positives that were predicted to be negative. The AGPS method utilizes additional feature data, 

such as Gene Expression, Protein-Protein-Interaction, etc., but can still be evaluated in the same 

manner as the other algorithms. We provide a case study to show how these examples can 

benefit the performance of other algorithms, specifically a function prediction method tested in 

A. thaliana	  (Puelma	  et	  al.,	  2012). Additionally, we demonstrate increases in function prediction 

accuracy when our negative examples are used, testing on human, mouse, and yeast proteins, 

using our earlier-published function prediction algorithm (Youngs et al., 2013). Lastly, we 
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provide a resource, NoGO, which contains lists of high-quality negative examples for GO terms 

in a variety of well-studied organisms (Human, Mouse, Worm, Yeast, Rice, and Arabidopsis).  

 

3.2 Results 

3.2.1 Evaluation of Negative Example Quality 

 Function prediction results are biased negatively (estimations of function prediction 

accuracy are typically lower limits) by the fact that a positive prediction without a corresponding 

validation annotation might simply indicate lack of study of the gene rather than an incorrect 

prediction. It therefore follows that negative example validations are biased by the same effect, 

but positively (estimated error rates are lower bounds). Just because a gene is not annotated with 

the function in the validation data doesn't guarantee that it was correctly identified as a negative 

example. In order to attempt to rigorously evaluate potential negative example selection 

algorithms, we utilize the average number of false negative predictions over terms in each of the 

three branches of the Gene Ontology (GO).  

 We determine false negatives through a temporal holdout to mitigate bias (Greene and 

Troyanskaya, 2012), running all of our algorithms on data from the human genome obtained in 

Oct. 2010, and then validating with data obtained in Oct. 2012. This process involves restricting 

the training phase of all algorithms to data available in Oct. 2010, removing the potential for test 

and training data correlation that can happen during cross-validation. Any gene that was 

predicted as a negative example from 2010 data, which received a positive annotation in the 
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2012 data, is considered an error in prediction (a false negative example). For extra stringency, 

we consider an “Inferred by Electronic Annotation” (IEA) evidence code annotation as an 

indication of false negativity (even though these types of annotations are traditionally considered 

less reliable). For completeness, we also include an evaluation without considering IEA 

annotations, presented in Figures 3.9 and 3.10. 

Prediction errors are calculated separately for each GO term, and then averaged together 

within each branch of GO. Only terms that have between 3 and 300 annotations are evaluated, so 

as to consider only terms specific enough to be interesting but not so specific as to have little 

chance of being validated, since prediction errors can be observed only if new annotations appear 

for the term in question in the Oct 2012 data that were not present in the Oct 2010 data.  

Additionally we focus on a specific GO term in human (RNA Binding), augmenting the 

temporal validation with annotations from a recent high throughput screen for RNA binding 

proteins (Baltz et al., 2012). Lastly, we evaluate using a gold-standard set for a single GO term in 

the yeast genome (Huttenhower et al., 2009). 

 As the trivial solution (predicting no negative examples) would obviously have the lowest 

number of false negatives, we present results in two dimensions, where the vertical axis is 

average number of false negatives, and the horizontal axis is number of negative examples 

predicted (in this setup, the origin represents the trivial solution, while the upper right corner of 

the plot represents choosing all non-positive genes as negatives). Algorithms that do not have the 

capability to vary the number of negative examples that they predict appear as points on the 

performance graph, instead of lines. Because prediction errors can be evaluated only if new 
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annotations appear during the course of the temporal holdout time period, the error rate 

calculated is an observed error rate, rather than the true error rate. This observed rate will vary in 

magnitude from GO term to GO term, as it is bounded from above by the number of new 

annotations. Since the magnitude of the number of false negatives in each branch is dependent on 

the total number of new annotations added in that branch between 2010 and 2012, the numbers 

cannot be compared across branches. In order to provide a reference point that is comparable 

across each branch, we treat the performance of random selection of negative examples as a 

baseline. Thus while the magnitude of the observed error rate cannot be compared across 

branches, the difference between an algorithm and the random baseline is comparable, both 

across branches and between GO-terms of differing specificity. 

 

3.2.2 SNOB and NETL, Two New Novel Negative Selection Algorithms 

 Our first novel negative example selection algorithm, Selection of Negatives through 

Observed Bias (SNOB), is an extension of our previously published ALBNeg algorithm (Youngs 

et al., 2013), which selected negative examples for a function based on whether or not a gene's 

most specific functional annotations had ever appeared alongside that function. ALBNeg in turn 

can be viewed as a generalization of a popular passive 2-step PU-learning algorithm known as 

“1-DNF” negative example selection. This algorithm works in the context of text classification 

by identifying words that are enriched among the positive class, and using as negatives all 

unlabeled documents that do not contain any of these positive “indicator” words (Liu et al., 

2003). We consider each GO term annotation as a “word” in the “document” of a protein, then 



62	  

apply the “1-DNF” technique to choose negative examples for a protein function by excluding 

proteins with GO terms that are enriched among proteins containing the function of interest. 

 In ALBNeg, we generalized the idea of “enrichment”, by computing the empirical 

conditional probability of the GO function of interest, denoted f, given the presence of each other 

GO function in all three branches (Youngs et al., 2013). Proteins whose most specific 

annotations had non-zero conditional probabilities of appearing in a gene alongside f were ruled 

out from the potential negative set for f, effectively using the conditional probability as an 

indicator of potential positivity in the same way that the “1-DNF” algorithm uses enriched terms. 

 In our new algorithm (SNOB), presented here, we follow the same approach as ALBNeg, 

and for each GO function term f, compute the pairwise empirical conditional probability of 

seeing f given the presence of each other GO term. We further develop ALBNeg, i) by including 

IEA annotations in our calculations as well. We then obtain a score for each protein for each GO 

function term f, by averaging the conditional probabilities of all GO terms (including IEA 

annotations) annotated to that protein, ii) by including all GO terms in the average, not just the 

most specific terms, and iii) instead of choosing all proteins with a score of 0 as negatives for the 

function f, we allow the user to set a desired number n of negative examples, and choose the n 

proteins with the lowest scores as our negatives for f. See the Methods section for details of this 

calculation. 

 Our second novel algorithm, Negative Examples from Topic Likelihood (NETL), again 

treats proteins analogously to “documents”, with the GO terms annotated to each protein serving 

analogously to a document’s “words”, but now we consider the proteins to have latent “topics” 
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as well. These hidden topics represent the “true” function of the protein, both accounting for new 

functions (functions not annotated because they have to be verified/tested) as well as errors and 

missannotations (having a GO annotation does not guarantee that a protein actually performs the 

function in question due to potential errors in annotation, especially with IEA annotations). We 

can then apply a multi-topic inference algorithm, specifically Latent Dirichlet Allocation (Blei 

and Jordan, 2003), to learn the distribution of these latent topics, or “true” functions, and also 

learn the conditional distribution of the “words” or annotated GO terms based on those topics. 

Once these distributions are known, NETL selects as negatives the proteins whose latent topic 

distributions are as dissimilar from the positive class as possible, allowing the user to specify 

how many negative examples are desired.  

Ideally each latent topic would represent a single GO term, but since the size of the 

vocabulary in our corpus is also equal to the number of GO terms, this is not feasible. Instead, 

we utilize the GO hierarchy to select fewer but more general topics, while ensuring coverage of 

the entire GO tree. Such a setup does not guarantee an intuitively interpretable relation between 

the latent topics and specific GO terms: topic x does not directly correlate to any one GO term, 

but rather is likely a combination of GO terms. Thus the calculation of the likelihood of a 

particular protein being a negative example for a particular GO term is infeasible, and must 

instead be inferred through a similarity metric (see section 3.5). 
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3.2.3 Previous Methods for Negative Example Prediction 

 In order to provide a reference for the quality of our algorithm's negative examples, we 

include past heuristics used for negative example selection, as well as the popular passive 2-step 

PU algorithms, “1-DNF” and “Rocchio”, which we have adapted to the PFP context through the 

GO term “word” and protein “document” mechanism described above. In the case of the 

Rocchio algorithm, we made an additional adjustment allowing the number of negative examples 

to be varied (See Methods for details). We have chosen to focus on passive 2-step PU algorithms 

as the performance of active 2-step methods is intertwined with the performance of the 

underlying classification algorithm, as well as the input feature data. A stronger classifier will 

produce better negative examples, as will a classifier that can use more discriminative data. This 

increases the difficulty of judging the relative performance of active 2-step PU algorithms, as 

different classifiers utilize different mechanisms and datasets. These underlying differences 

make it difficult to correctly attribute relative performance of negative example selection to the 

2-step algorithm itself, as opposed to the quality of the classifier or underlying data. 

Additionally, 2-step algorithms are self-reinforcing, in that the classifier identifies as negatives 

those proteins which are most different from the positive class by whatever mechanism that 

classifier is using, which only reinforces that particular kind of discrimination when the classifier 

is run again with the negative examples in the second step. In general, a classifier is better served 

with negative examples that are actually more similar under the classifying mechanism, in order 

to force the classifier to be more discriminative. Lastly, the passive 2-step algorithms presented 

here function solely with GO data input, allowing for very rapid calculations and avoiding the 
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need to gather large amounts of feature data, which can quickly become difficult for less-studied 

organisms. 

The exception to our focus on passive 2-step algorithms is the AGPS algorithm, which is 

an active 2-step PU algorithm with which we make a comparison. We have included this 

algorithm, as it is one of the few explicit negative example selection algorithms in the protein 

function prediction (PFP) literature. 

 

 

Figure	  3.1	  Performance	  measures	  for	  negative	  example	  prediction	  on	  the	  human	  genome.	  	  

The	  number	  of	  erroneous	  negative	  example	  predictions	  is	  plotted	  as	  a	  function	  of	  the	  

number	  of	  negative	  examples	  chosen,	  for	  each	  of	  the	  three	  branches	  of	  GO.	  The	  Rocchio,	  

NETL,	  and	  SNOB	  algorithms	  show	  consistently	  strong	  performance,	  with	  SNOB	  achieving	  
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the	  lowest	  error	  rate	  in	  each	  branch.	  The	  “Sibling”	  and	  “All	  non-‐positive	  as	  negative”	  

heuristics	  have	  also	  been	  omitted,	  as	  their	  poor	  performance	  dramatically	  skewed	  the	  scale	  

of	  the	  images. 

 

3.2.4 Performance of Negative Example Methods in Homo sapiens 

  Results for the methods tested on the human proteome are presented in Figure 3.1. 

Among the methods tested, all algorithms performed better than the random baseline, with the 

exception of the sibling algorithm, whose weakness is also confirmed in (Mostafavi and Morris, 

2009). The heuristic of choosing all non-positive genes as negative also does not perform better 

then the baseline, as it is itself a special case of the baseline where the number of negative 

examples is allowed to be the size of the genome (minus the number of positive examples). The 

best performance was achieved by the SNOB algorithm, which achieved an equal or lower 

average number of false negatives than all other algorithms, heuristics, and the baseline, across 

all three branches. The NETL algorithm, as well as our adaptation of the Rocchio algorithm to 

PFP, also exhibited strong performance compared with other algorithms. 

 Driving the performance of SNOB was its ability to achieve significantly fewer false 

negative predictions for more general GO terms (terms with more annotations in the human 

genome). Figure 3.2 shows false negative rates broken down by the specificity of the function, 

demonstrating that while the Rocchio algorithm can compete with or even outperform our SNOB 

algorithm on the most specific terms, it is eclipsed by SNOB in the more general ones. This 

discrepancy among terms is most likely driven by the fact that the SNOB algorithm directly 
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utilizes the co-occurrence of functions (See the Methods section), and thus has less information 

to work with for the most specific functional terms. 

 While not performing as well as SNOB, our previously published ALBNeg algorithm 

still achieves comparable or better performance than the AGPS algorithm. This comes as 

somewhat of a surprise, as AGPS has the benefit of access to a wealth of biological data beyond 

the GO information utilized by our algorithms, and much of that data post-dates the training GO 

annotations, providing unfair bias due to the correlation of many data types with GO annotations. 

However, with that additional data comes additional noise, and we recognize that the AGPS 

algorithm might be able to improve upon its performance with additional parameter tuning and 

feature selection among the data inputs. 
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Figure	  3.2	  Specificity-‐segmented	  performance.	  Performance	  of	  negative	  example	  selection	  

algorithms	  broken	  down	  by	  specificity	  for	  a.	  Biological	  process,	  b.	  Molecular	  Function	  and	  

c.	  Cellular	  component.	  Specificity	  is	  defined	  by	  the	  number	  of	  annotations	  present	  for	  a	  GO	  

term	  in	  the	  human	  genome	  training	  data,	  split	  into	  buckets	  of	  size:	  101-‐300,	  31-‐100,	  11-‐30,	  

and	  3-‐10.	  

 

 The results presented in Figure 3.1 represent the average of a large number of individual 

evaluations, each with an error rate whose magnitude can vary largely depending upon the 

specificity of the term. We encourage the reader to examine Figure 3.2, which presents the same 

results but broken down by specificity, reducing the information lost by averaging. These results 

agree with those in 3.1. To further substantiate our evaluation, we focused on one particular 

molecular function term: GO:0003723 RNA Binding, presented in 3.3. We augmented the 

temporal holdout validation data with additional annotation not yet present in GO, but which 

have been experimentally verified in (Baltz et al., 2012) via a large-scale genomics experiment 

designed to detect mRNA binding proteins genome-wide. These additional annotations 

significantly increase the number of potential false negative examples, allowing for greater 

discrimination between algorithms. Continuing in the same patterns as the entire human genome 

evaluation, the NETL, SNOB, and Rocchio algorithms perform similarly, and significantly better 

than the random baseline, with SNOB edging out the other two algorithms for larger numbers of 

negative predictions. Both NETL and Rocchio, however, maintain a zero false negative rate for a 

larger number of predicted negative examples than SNOB. AGPS and ALBNeg do well, but only 
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provide a small number of negative examples, and both predict one false negative while NETL 

and Rocchio achieve zero errors at the same number of negative examples. The “1-DNF” 

algorithm performs very poorly on this term. 

 

 

Figure	  3.3	  Performance	  measures	  for	  RNA	  Binding.	  Performance	  of	  the	  competing	  algorithms	  on	  

a	  specific	  GO	  term:	  GO:0003723	  RNA	  binding,	  with	  validation	  data	  augmented	  by	  annotations	  

taken	  from	  (Baltz	  et	  al.,	  2012).	  The	  left	  panel	  shows	  the	  complete	  results,	  while	  the	  right	  is	  a	  

scaled	  to	  see	  the	  differences	  between	  algorithms	  near	  the	  origin.	  The	  SNOB	  algorithm	  achieves	  the	  

fewest	  false	  negatives	  for	  large	  numbers	  of	  negative	  examples,	  while	  the	  Rocchio	  and	  NETL	  

algorithms	  maintain	  a	  zero	  false	  negative	  rate	  for	  a	  greater	  number	  of	  negative	  examples.	  

 

3.2.5 Golden Set Evaluation in S. cerevisiae: Mitochondrial Organisation 

 In order to further explore the potential biases in the evaluation of negative example 

selection methods, we include evaluation on a gold-standard set of annotations in yeast, obtained 
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from (Huttenhower et al., 2009). This golden set, for the biological process term GO:0007005 

Mitochondrial Organization, represents an exhaustively verified set of annotations, such that all 

positive and negative occurrences of this GO term are known across the entire yeast genome. 

Because the number of true positives and negatives is known, this GO term in yeast allows us to 

utilize cross-validation on the data to calculate a Receiver-Operator Characteristic (ROC) curve 

or point for each algorithm. While cross-validation is problematic in the evaluation of function-

prediction in general, due to the interconnectedness of GO and many types of feature data which 

introduces large positive bias into the evaluation, here we are examining and holding out only 

GO terms, and so such bias is mitigated.  

 In the yeast golden set, we see similar results (presented in Figure 3.4) as in our 

evaluation with human data: The SNOB algorithm is the strongest performer, followed closely 

by the Rocchio and NETL algorithms. The ALBNeg algorithm also preforms well, achieving 

zero false assertions of negative functionality with a large number of predicted negative 

examples (473.2 on average). The 1-DNF algorithm also achieves zero false assertions of 

negative functionality, but with fewer predicted negative examples (only 76.6 on average), and 

the AGPS method predicts fewer negative examples than ALBNeg, with a much higher number 

of false negatives (2.6 on average). It is also worth noting that 59 of the 4625 negative examples 

in the golden set had received positive annotations for GO:0007005 in the years since the golden 

set was formed (the annotations set is updated accordingly here). 
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Figure	  3.4	  Performance	  measures	  for	  Mitochondrian	  Organization.	  ROC	  curves	  are	  depicted	  for	  

each	  algorithm	  on	  the	  golden	  set	  of	  annotations	  for	  GO:0007005	  in	  yeast,	  calculated	  through	  

cross-‐validation.	  SNOB	  shows	  the	  highest	  area	  under	  the	  curve	  (AUC),	  followed	  by	  NETL	  and	  

Rocchio,	  which	  have	  approximately	  equal	  AUCs.	  

 

 

3.2.6 Case Study: Improving function prediction in Human, Mouse, and Yeast 

 In order to demonstrate the importance of high quality negative examples, we use our 

previously published algorithm (Youngs et al., 2013) to predict functions across all three 

branches of GO, for human, mouse, and yeast proteins. We validate these predictions with a 
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temporal holdout (see methods), which enables us to compute the area under the curve (AUC) 

for the Receiver-Operator-Characteristic (ROC) plot. We repeat this process using negative 

examples selected by each of the best-performing negative-example-selection methods, as well 

as with random negative examples to serve as a baseline. Results are presented in Figure 3.5. 

 

 

Figure	  3.5	  Performance	  measures	  for	  function	  prediction.	  	  

AUC_ROC	  measures	  for	  function	  prediction	  using	  the	  best-‐performing	  negative	  example	  

selection	  methods,	  with	  the	  random	  negative	  example	  selector	  included	  for	  comparison.	  

Performance	  measures	  are	  broken	  up	  by	  ontology	  branch,	  and	  represent	  the	  average	  

AUC_ROC	  for	  all	  GO	  terms	  predicted	  in	  that	  branch. 

  

Comparing the average AUC_ROC values of function prediction with the negative 

examples selected by each method, we see relative performance very similar to our earlier 

evaluation of negative example quality. All three of the negative-example-selection algorithms 

yield much stronger function prediction performance than when negative examples are selected 

randomly from proteins lacking the positive example. Between the three algorithms, 



74	  

performance is fairly similar, with function prediction utilizing the SNOB negative examples 

slightly outperforming the other methods. 

 

3.2.7 Case Study: Improving function prediction in Arabidopsis Thaliana 

 We apply our SNOB algorithm to the work of Puelma et al. (Puelma et al., 2012), which 

employs discriminative local subspaces in gene expression networks to predict function in 

Arabidopsis Thaliana. We choose this work as a case study because the authors specifically 

mention the importance of negative examples in their work, and devise an algorithmic approach 

for selecting high-confidence negative examples for the 101 biological process terms they used 

to test their PFP method. We use their provided data to select negative examples with SNOB, 

generating the same number of negative examples per functional term as the author's original 

algorithm (a total of 313592 across all terms). Table 3.1 shows the results of our case study, 

demonstrating that even though our algorithm only had access to 1/3 of the data it usually 

requires (here the authors provided only Biological Process data, and no data from the other two 

branches of GO), SNOB produces significantly fewer false negatives, negative examples with 

greater specificity, and performs better when evaluated by the metric chosen by the authors. It is 

also interesting to note that even though the rate of false negatives is very small (originally only 

0.6%), further reduction still produces performance gains in downstream function prediction. 

 

 



75	  

Algorithm False Negatives Negative Frequency Avg Enrichment P-Value 
Puelma Neg 1806 71.88 39.00% 

SNOB 1241 29.05 36.26% 
 

Table 3.1 Results	  of	  our	  SNOB	  algorithm	  vs.	  the	  algorithm	  published	  in	  (Puelma	  et	  al.,	  

2012).	  The	  “False	  Negatives”	  column	  shows	  the	  total	  number	  of	  false	  negatives	  produces	  by	  

each	  algorithm	  across	  all	  101	  BP	  terms	  examined	  in	  the	  paper,	  as	  determined	  by	  BP	  data	  

collected	  by	  the	  authors	  two	  years	  after	  the	  training	  data.	  The	  “Negative	  Frequency”	  

column	  shows	  the	  average	  number	  of	  times	  any	  gene	  was	  selected	  as	  a	  negative	  example	  

for	  different	  function	  terms,	  if	  it	  was	  selected	  at	  all	  (a	  higher	  number	  means	  the	  same	  

proteins	  are	  showing	  up	  as	  negative	  examples	  across	  more	  terms).	  The	  “Avg	  Enrichment	  P-‐

Value”	  column	  is	  the	  metric	  the	  authors	  used	  to	  evaluate	  their	  function	  predictions,	  with	  a	  

lower	  value	  indicating	  better	  performance	  (see	  Puelma	  et	  al.,	  2012	  for	  details).	  

 

3.2.8 Negative GO (NoGO) Database 

  We have collected negative example predictions from the SNOB, NETL, and Rocchio 

algorithms in an online database for use by other researchers. The database contains negative 

examples for Arabidopsis, Yeast, Mouse, Human, Rice, and Worm. While the NoGO database 

uses the most current annotations for its ranking of negative examples, we have also included 

false negative rates for each species in the database, obtained from temporal holdouts on older 

data, to allow researchers to have a reference for the quality of negative examples in that 
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organism. We describe the quality by the area under the false negative curve, as a percentage of 

the area under the random baseline curve, allowing the number of negative examples to range up 

to 20% of the size of the genome of that organism. Results are presented in Figure 3.6. 

 

 

Figure	  3.6	  NoGO	  database	  performance	  statistics.	  Performance	  metrics	  for	  each	  algorithm	  

in	  the	  NoGO	  database,	  averaged	  across	  all	  species,	  separated	  by	  branch	  of	  the	  GO	  ontology.	  

A)	  The	  average	  area	  under	  the	  false	  negative	  curve,	  as	  a	  percentage	  of	  the	  area	  under	  the	  

random	  baseline	  curve,	  weighted	  by	  the	  number	  of	  annotations	  in	  each	  GO	  term.	  B)	  The	  

same	  values	  re-‐calculated	  so	  that	  each	  GO	  term	  contributes	  equally	  to	  the	  average,	  

regardless	  of	  specificity	  (depicted	  without	  the	  random	  baseline	  as	  that	  is	  still	  1.0	  for	  every	  

term	  but	  skews	  the	  scale	  of	  the	  plot).	  C)	  The	  false	  negative	  rate	  for	  each	  algorithm	  when	  

predicting	  the	  same	  number	  of	  negative	  examples	  as	  the	  number	  of	  positive	  annotations	  

for	  each	  GO	  term.	  Here	  lower	  numbers	  represent	  fewer	  errors.	  
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SNOB and Rocchio achieve the lowest overall errors, with the performance gap between 

Rocchio and NETL larger than in our other evaluations (see figure 3.7 for performance broken 

down by organism). The reduction of the performance gap between NETL and Rocchio in Figure 

3.6b as compared to Figure 3.6a, indicates that while Rocchio performs better on more general 

terms, NETL’s performance is on par with or better than Rocchio for the more specific GO terms 

(and thus a greater number of GO terms). It is also interesting to note that across all organisms, 

SNOB and Rocchio perform similarly on cellular component terms, SNOB has stronger 

performance on molecular function terms, and Rocchio performs better on biological process 

terms, suggesting systematic differences in the way that GO annotations relate to each other 

within each of the three branches. 

Our Web interface to the NoGO database provides a plot for each GO function that shows 

the number of false negative predictions as a function of the number of negative examples 

chosen (Figure 3.3 is an example of such a plot, for GO:0003723). This allows researchers to 

make an informed decision about which algorithm to use for their specific organism, GO terms, 

and task. These plots also allow researchers to determine how many negative examples to use for 

each term (see section 3.5). 
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Figure	  3.7.	  Performance	  metrics	  broken	  down	  by	  organism.	  Organism	  plots	  for	  a)	  

Arabidopsis,	  b)	  Yeast,	  c)	  Mouse,	  d)	  Human,	  e)	  Rice,	  and	  f)	  Worm.	  The	  leftmost	  graph	  for	  

each	  organism	  represents	  the	  average	  area	  under	  the	  false	  negative	  curve,	  as	  a	  percentage	  

of	  the	  area	  under	  the	  random	  baseline	  curve,	  weighted	  by	  the	  number	  of	  annotations	  in	  

each	  GO	  term.	  The	  central	  graph	  is	  the	  same	  set	  of	  values	  re-‐calculated	  so	  that	  each	  GO	  

term	  contributes	  equally	  to	  the	  average,	  regardless	  of	  specificity.	  The	  rightmost	  graph	  

depicts	  the	  false	  negative	  rate	  for	  each	  algorithm	  when	  predicting	  the	  same	  number	  of	  

negative	  examples	  as	  the	  number	  of	  positive	  annotations	  for	  each	  GO	  term.	  

 

3.3 Discussion 

 We have demonstrated (using the human, yeast, and A. Thaliana proteomes) that the 

SNOB algorithm achieves significantly lower prediction errors when predicting negative 

examples than several previously described alternative approaches (including heuristics, 

techniques borrowed from PU-learning in text classification, and other negative-example 

prediction algorithms). These results, supported by additional literature that has explored the 

inter-relationships between Gene Ontology (GO) terms (Pandey et al., 2009), (King et al., 2003), 

indicate that despite lacking a significant number of negative annotations, the GO database 

encodes implicit information about likely negative examples via its positive annotations. 

Additionally, these pairwise term implications span all three branches of GO (cellular 

component, biological processes and molecular function).  
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 Despite the success of our approach, there will inevitably be cases where the information 

from GO alone is not enough to predict a good set of negative examples. So-called 

“moonlighting” proteins, for example, can have unique combinations of functions that defy 

conventional annotation patterns. Additionally, approaches that rely on existing GO annotations 

are limited to proteins that have already been studied to some extent, which in many organisms 

can be a relatively small proportion of the genome. For these reasons, our group is considering 

active methods that can incorporate additional data types (such as gene expression, protein-

protein interaction, domain structure, etc.). 

 The algorithms presented here represent a significant improvement over the active 2-step 

AGPS method that has access to data outside of GO. Our SNOB algorithm achieved a lower 

false negative rate than any other comparison algorithm tested, significantly lower than the “1-

DNF” algorithm that served as its conceptual basis. Through our case study in Arabidopsis, 

SNOB also demonstrated its ability to improve existing function prediction algorithms. Youngs 

et al. 2013 showed that even a moderate increase in the quality of negative examples has the 

power to improve function prediction in general, and those results are replicated here by our case 

study in human, mouse, and yeast. We have shown the ability of high quality negative examples 

to improve function prediction accuracy, again with the SNOB algorithm achieving the best 

results. Additionally, this case study represents a very basic use of these negative example 

methods, and we believe even further accuracy can be gained by more careful selection of the 

number of negative examples chosen for each prediction task. 
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 Further work includes the incorporation of additional data types, and potentially the use 

of active 2-step PU methods. Another potentially fruitful avenue is the explicit incorporation of 

the GO hierarchy in a negative example method. While GO annotations obey the “true path 

rule”, meaning that every protein with an annotation a also implicitly has all annotations which 

are ancestors of a, negative annotations follow the inverse of this rule: a protein p that is a 

negative for g is also implicitly a negative for all descendants of a. This rule holds for the 

molecular function branch of GO, but is more complex in the biological process and cellular 

component branches, as there is more than one type of ancestry (terms may be direct descents, or 

connected by a “part-of” link, for example). These differences most likely account for some of 

the systematic performance differences of different algorithms on each branch of GO across all 

the organisms in the NoGO database.  

These systematic performance differences across branches, combined with the fact that 

our GO-term specificity effects algorithms’ relative performance, suggest the potential utility of 

ensemble methods (a combination of methods that use one of multiple algorithms depending on a 

GO term's specificity, placement in the tree, and desired size of the negative class). It is quite 

natural to think that the optimal algorithm will be quite different for predicting rare functions 

(functions that with only a handful of examples of per genome) and common functions (like 

information processing proteins that have hundreds of paralogous examples per genome). Further 

exploring the differences between the performance of NETL and SNOB for rare and common 

functions separately is likely to result in improved performance via hybrid methodologies. 



82	  

 In conclusion, we have presented a significant step forward in the calculation of negative 

examples for protein function prediction. Following the example set for negative protein-protein 

interactions by the Negetome database (Smialowski et al., 2010), we have made our predictions 

readily available for a variety of organisms. Our NoGO database also includes useful statistics to 

allow researchers to choose the number of desired negative examples and the likely false 

negative rate of those examples when used in their own experiments and algorithms.  

 

3.4 Methods 

3.4.1 Data Processing 

Data for the human genome was obtained from the Gene Ontology (GO) database 

archive, with training annotations obtained from October 2010 and validation annotations from 

October 2012. The set of genes was obtained from HUGO by selecting all protein-coding gene 

symbols, resulting 19060 genes. GO terms for these genes were gathered by querying all official 

symbols for all annotations that have at least one annotated protein in the human genome, 

resulting in 7432 biological process terms, 2681 molecular function terms, and 997 cellular 

component terms. GO terms are fully propagated according to the “True Path Rule”, meaning 

that an annotation of a protein to a particular term also implies annotations too all ancestral 

terms. 

 For the RNA Binding term example, there were 686 positive annotations (including 

annotations ‘Inferred from Electronic Annotations’) in our training data, and with an additional 
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157 annotations added in temporal holdout validation data. To these 157 new annotations, we 

added an additional 381 annotations, which were obtained from (Baltz et al., 2012), but are not 

yet present in GO. This raised the total of potential false negatives to 538. 

 For the case study in Arabidopsis Thaliana, all data was obtained from the supplementary 

materials provided by Puelma et al., 2012. 

 Annotation data for the GO:0007005 golden set in yeast was obtained from (Huttenhower 

et al., 2009), with training GO annotations obtained from the GO ontology in April 2013. The 

yeast annotations were taken for the same set of genes as the original positive and negative 

classes defined in (Huttenhower et al., 2009), comprised of 4966 unique yeast gene symbols, 

with annotations in 4226 biological process terms, 2231 molecular function terms, and 820 

cellular component terms. 

 Data for the NoGO database was obtained from GO for each organism, with training data 

for the negative examples collected in April 2013, and training data for the validation plots 

collected in October 2011 and validated with the April 2013 data. The gene sets for each 

organism were also obtained from GO, by extracting all unique official gene symbols within that 

organism which had at least one annotation in any branch of GO. Table 3.2 lists the number of 

genes and GO terms for each organism, as well as the NCBI Taxa ID for each specific species 

used. 
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Organism	   NCBI	  Taxa	  
ID	  

Genes	   BP	  Terms	   MF	  Terms	   CC	  Terms	  

Arabidopsis	   3702	   30266	   3074	   2338	   577	  
Yeast	   4932	   6380	   3533	   2091	   756	  
Mouse	   10090	   25488	   9340	   3284	   1127	  
Human	   9606	   18851	   9885	   3732	   1238	  
Rice	   39947	   58747	   3115	   1988	   534	  
Worm	   6239	   16154	   3074	   1476	   596	  
Table	  3.2:	  Gene	  counts,	  Gene	  Ontology	  term	  counts,	  and	  NCBI_Taxa	  IDs	  for	  each	  of	  the	  
organisms	  in	  the	  NoGO	  database.	  
 

 

3.4.2 Validation Plot Generation 

In order to generate the validation plots in Figure 3.1 and Figure 3.2, we plot the average 

number of false negatives as a function of the number of negative examples. For algorithms that 

allow the specification of the size of the negative class, we sample the number of false negatives 

at 100, 200, 500, 1000, 2000, and 3000 negative examples. The average number of false 

negatives is determined using the temporal holdout, by seeing how many proteins that were 

designated as negative received an annotation in the function in question (including an IEA 

annotation). Functional terms that received no new annotations during the temporal holdout are 

not evaluated, nor are terms with fewer than 3 or more than 300 annotations. Plots are broken 

down by branch of the GO hierarchy, with each plot showing an average of the results for 

functions in that branch that meet the specified criteria. The plot for Figure 3.3 is identical in 

construction, but for one specific GO term, rather than an average over GO terms. 
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 The plots in Figure 3.6 and Figure 3.7 are three representations of algorithmic 

performance on all organisms in the NoGO database, and each organism, respectively. The 

leftmost graph was generated by sampling the number of false negatives at negative class sizes 

equal to 0.1%, 0.5%, 1%, 2.5%, 5%, 10%, 15% and 20% of the size of the genome of the 

organism in question. This value is then turned into a single number by computing the area under 

the sample curve for each algorithm, and for the random baseline. These numbers are summed 

over all functional terms in the organism (or in the case of Figure 3.6 across all terms in all 

organisms), and then divided by the number obtained from the random baseline. The central 

graph is calculated identically, except here the area under the curve for each algorithm is divided 

by the random baseline area before being summed over all terms, meaning that each GO term 

contributes equally to the score, regardless of the number of annotations for that term. The 

rightmost graph represents the total false negative rate, over all GO terms in each branch, when 

predicting a number of negative examples equal to the number of positive annotations for that 

GO term. All false negative statics are obtained via a temporal holdout. 

 Note that in the plots for performance in the NoGO database, it is possible for algorithms 

to appear worse than the random baseline. This is due to the fact that the random baseline 

chooses from all possible unlabeled proteins, whereas the algorithms are constrained to only 

those proteins with GO annotations. Since it can often be the case that new annotations in the 

temporal holdout set are concentrated among proteins that are already partially annotated, the 

GO-restricted algorithms are penalized over the random baseline. 
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3.4.3 Selection of Negatives through Observed Bias (SNOB) Implementation 

The Selection of Negatives through Observed Bias algorithm takes as its basis the 

pairwise conditional probability calculation of seeing annotation a given the presence of 

annotation m, which is specified for the ALBias algorithm in Youngs et al., 2013:  

p̂(a |m) = n
+
ma
nm
+ , where nma

+  is the number of genes that m appears alongside g in the dataset, 

and nm
+ is the total number of genes annotated with m in the dataset. As mentioned in the results, 

SNOB removes the restriction that the score is calculated from leaf annotations only, or that a 

protein must have an annotation in the same branch as the GO term in question to be chosen as a 

negative. In addition, all annotations are utilized, including IEA annotations. The score vector 

σ a , which holds the scores for all genes as potential negative examples for a given GO function 

a, is calculated as the average of the conditional probabilities of all other annotations in each 

gene, which is efficiently calculable as: 

σ a =W

−1AP , where A is the annotation matrix of the 

dataset, with each row representing a gene and each column a GO term, W is the diagonal matrix 

with Wii equal to the total number of annotations for protein i, and P is the conditional 

probability matrix with P(m,a) = p̂(a |m) . These scores are then ranked to produce a list of 

negative examples, with the lower scores indicating higher probability that a particular protein is 

a negative example for the GO term in question. 
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3.4.4 Negative Examples from Topic Likelihood (NETL) Implementation 

For the Negative Example from Topic Likelihood algorithm, we again formulate a 

protein as a document, with GO annotations (including IEA annotations) from all three branches 

as the words in that document. We then run Latent Dirichlet Allocation (Code obtained from 

David Blei’s “lda-c” package) on the document corpus to identify the parameters of the Dirichlet 

topic distribution, and perform inference on each document to obtain the posterior topic 

distribution given the GO terms present in that protein (See (Blei and Jordan, 2003) for the 

details of LDA). Ideally, we would set the number of latent topics t equal to the number of GO 

terms m, but this choice yields infinite perplexity in the corpus, as the number of unique words w 

=m as well. In order to achieve w >> t, to increase the quality of the learned topics, yet also to 

preserve coverage of all GO terms, we set the number of topics for each organism equal to the 

total number of annotated direct descendants of the root ontology terms. For example, in our 

Human validation data, the biological process node has 27 direct descendants with annotations in 

the data, the molecular function node has 14 direct descendants, and the cellular component node 

has 10, for a total of 51 latent topics. By invoking the inverse of the true path rule, whereby 

negative examples are propagated downwards through the GO graph, this approach guarantees 

coverage of all GO terms for the purposes of negative example selection. 

 Since LDA discovers latent topics, which are not predefined before the algorithm is run, 

it is not immediately obvious which learned topic corresponds to which GO term. Indeed despite 

our efforts to ensure coverage of every GO term directly descended from a root node, it is not 

necessarily the case that the correspondence between the topics and the selected GO terms are 1-
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1. Instead it is possible, even likely, that some combinations of topics/GO terms relate to each 

other, making exact inference of the probability that a given protein possesses a given GO term 

difficult under the LDA model. To overcome this problem, we chose to represent the positive 

class with the average of the Dirichlet posterior vectors for all proteins annotated to the function 

in question (including IEA annotations). Then for each unlabeled protein u, we calculate a 

Distributional-Overlap Score (DOS) representing the similarity of topics distributions between u 

and the positive class average topic distribution. This score can be viewed as a symmetric 

simplification of the Kullback-Leibler Divergence metric, and is calculated simply as 

DOS( i

α, j

α) = min

t
∑ ( iαt, jαt ) , where iα  and iα  are two Dirichlet posterior parameter vectors 

(since each posterior vector sums to 1, the DOS score is also bounded by [0,1]). The unlabeled 

proteins are then ranked according to this score, with the lowest DOS values indicating the most 

likely negative proteins, as these are proteins which are least likely to share topics with the 

positive class of proteins. 

 

3.4.5 Random Baseline Implementation 

In order to calculate the random baseline, we consider the positive class to be all proteins 

with an annotation in the function of interest (including an IEA annotation), and all other 

proteins to be the unlabeled class. We sample uniformly at random without replacement from 

those unlabeled proteins to pick negative examples, allowing the user to specify the desired size 

of the negative class. In order to reduce noise from this stochastic operation, we calculate the 
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baseline 100 times for each branch of GO, and then display the average of those 100 

calculations. 

 

3.4.6 Rocchio Implementation 

In order to adapt the Rocchio algorithm to protein function, we follow the pseudocode in 

(Rocchio, 1971), treating the set of GO terms across all three branches as our lexicography, each 

protein as a document, and the annotations of that protein as a word. This formulation allows the 

computation of the tf-idf vectors required by the algorithm, and for each function we treat the 

positive class as all proteins with an annotation in that function (including IEA annotations), and 

the rest of the proteins as the unlabeled class. The algorithm then builds a representative vector 

for the positive and unlabeled class, and computes the cosine similarity of the tf-idf vector for 

each unlabeled protein with each of the representative vectors. Where the traditional algorithm 

would assign as negative examples all proteins whose similarity to the unlabeled class vector is 

greater than to the positive class vector, we assign a score to each protein, defined as: 

UnlabeledSimilarity – PositiveSimilarity. This allows us to rank the proteins in terms of 

confidence of their negativity, with the highest-scoring proteins as the most likely to be negative 

examples. 
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3.4.7 1-DNF Implementation 

For the 1-DNF algorithm, we again formulate proteins as documents and GO terms 

across all three branches as words. We proceed according to the pseudocode laid out in (Liu et 

al., 2003), utilizing as the positive class all proteins with an annotation in the function of interest 

(including IEA annotations). Other GO terms that appear more frequently in the positive set than 

the unlabeled set are considered our “enriched” words, and negative examples are all proteins 

that are not in the positive class and do not contain any of these enriched words. As there is no 

immediately obvious way to translate this decision into a score, we only implemented this 

algorithm for one choice of the number of negative examples, rather than thresholding it to allow 

the user to specify the desired size of the negative class. 

 

3.4.8 AGPS Implementation 

Code for the AGPS algorithm was generously provided by the authors of (Zhao et al., 

2008). AGPS requires features to operate, which we obtained through the similarity networks 

provided by the Genemania server (Wade-Farely et al., 2010). Each of these networks (235 

networks for human, 297 for yeast) represents similarity between pairs of genes according to a 

particular datatype. For human data it was necessary to translate the networks from being 

specified by ENSEMBL ids to gene symbols by using the HUGO lookup for gene symbol and 

ENSEMBL pairs. For both yeast and human, we performed a simple linear combination of all of 

the networks, where each component network and the final network was normalized according to 
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the scheme: N ' = D
−
1
2ND

−
1
2 , where D is the diagonal row sum matrix of W. Once the final 

network was obtained (a 19060x19060 matrix for human, 4966x4966 for yeast), we applied 

Principal Component Analysis to reduce the feature size to a 19060x200 matrix and a 4966x200 

matrix, which were the input feature sets for AGPS for each organism, respectively. We ran the 

algorithm provided by the authors using all of the default constants provided, but as described in 

the author's text, ran cross-validation for each term and only used negative examples that were 

chosen in the majority of the cross validation runs. We choose to segment data into 5 cross-

validation segments. 

 AGPS was only validated on functional terms with at least 85 annotations (the reliance of 

the method on cross-validation increases the number of necessary positive examples for a 

meaningful result). The lengthy runtime of the algorithm also restricted our application of the 

method to function terms with more than 85 annotations. To allow for a fair comparison to other 

methods we utilized the inverse of the true path rule, and for GO functions with fewer than 85 

annotations in the human genome, we set the negative examples as the union of all of the 

negative examples of all parent terms of that GO term. 

 

3.4.9 Sibling Heuristic Implementation 

For the heuristic that chooses siblings as negatives for a function, we follow the 

specification laid out in (Cesa-Bianchi and Valentini, 2010), whereby a protein is a negative for a 

function if it is annotated to the parent of that function, but not to the function itself. This 
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includes proteins annotated to sibling terms, as well as those annotated to the parent but to none 

of the children of that parent. Because some function terms will have no proteins that satisfy 

these requirements, we revert in this case to the strategy of choosing all non-positive proteins as 

negative, where the positive class is all proteins with an annotation in the function in question 

(not including annotations that were ‘Inferred from Electronic Annotation’). As Mostafavi 2009 

points out, the sibling approach is problematic in that many sibling terms are not mutually 

exclusive, but we present the technique here for completeness. Since the heuristic will produce 

different numbers of negative examples for different function terms, the point on the validation 

plot corresponding to this algorithm represents an average over different sizes of the negative 

class. 
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Figure	  3.8	  Performance	  measures	  including	  the	  sibling	  method.	  These	  plots	  are	  duplicates	  

of	  the	  performance	  plots	  in	  Figure	  3.1,	  but	  including	  the	  Sibling	  Negatives	  heuristic,	  to	  

illustrate	  the	  poor	  performance	  of	  that	  heuristic.	  

 

3.4.10 Function Prediction Implementation 

For function prediction, we used our previously published algorithm (Youngs et al., 

2013). Training GO annotations were obtained from the GO archive in April 2013, with 

validation annotations obtained in December 2013. Input data included protein-protein 

interaction, Interpro database data (Jones et al., 2014), gene expression data, sequence similarity, 

and phylogenetic profiles. Predictions were made for all terms in all three branches, regardless of 

specificity, but validations were calculated only for those terms that received new annotations 

during the temporal holdout period.  

 For each term predicted, the number of negative examples was selected to be the 

maximum of the number of positive examples of that term, or 20% of the size of the genome. A 

further restriction capped the number of negative examples at 50% of the number of non-positive 

genes for the function in question. The area under the curve of the Receiver Operator 

Characteristic plot was calculated using the methodology presented in (Youngs et al., 2013). 
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3.4.11 Data Access 

Negative examples are available in the NoGO database, located at: 

bonneaulab.bio.nyu.edu/nogo.html. Negative examples are currently available for the following 

species: Human, Mouse, Yeast, Rice, Arabidopsis and Worm. For each function in each 

organism, a ranked list of genes shows the most to least likely negative examples, available for 

the SNOB, NETL, and Rocchio algorithms described here. All negative examples were 

computed using GO data from April 2013. 

Accompanying each list is a validation plot (See Figure 3.3 for a sample, GO:0003723 in 

Homo Sapiens), which shows the performance of SNOB against a random baseline, trained on 

GO data obtained from October 2012 and validated with data from April 2013. This plot gives a 

researcher an idea of the relative performance of the SNOB algorithm against the random 

reference, in order to give confidence as to the likelihood of false negatives, and also allows a 

researcher insight into how many negative examples to choose based on the false negative rate 

presented in the graph. 

MATLAB code for generating negative examples from custom data will also be available 

from the downloads section of the NoGO database, as well as directly from: 

http://markula.bio.nyu.edu:8080/downloads. 
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Figure	  3.9	  Performance	  measures	  evaluated	  without	  annotations	  ‘Inferred	  by	  Electronic	  

Annotation’	  (IEA).	  Performance	  measures	  for	  negative	  example	  prediction	  on	  the	  human	  

genome,	  in	  each	  of	  the	  three	  branches	  of	  GO.	  These	  results	  are	  the	  similar	  as	  those	  

presented	  in	  Figure	  3.1,	  with	  the	  difference	  being	  that	  here	  error	  rates	  are	  calculated	  using	  

only	  curated	  GO	  annotations,	  and	  ignoring	  IEA	  annotations.	  
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Figure	  3.10.	  Specificity-‐segmented	  performance	  evaluated	  without	  annotations	  ‘Inferred	  

from	  Electronic	  Annotation’	  (IEA).	  Performance	  of	  negative	  example	  selection	  algorithms	  

broken	  down	  by	  specificity	  for	  a.	  Biological	  process,	  b.	  Molecular	  Function	  and	  c.	  Cellular	  

component.	  Specificity	  is	  defined	  by	  the	  number	  of	  annotations	  present	  for	  a	  GO	  term	  in	  the	  

human	  genome	  training	  data,	  split	  into	  buckets	  of	  size:	  101-‐300,	  31-‐100,	  11-‐30,	  and	  3-‐10.	  

These	  results	  are	  similar	  to	  those	  presented	  in	  Figure	  3.2,	  with	  the	  difference	  being	  that	  

here	  error	  rates	  are	  calculated	  using	  only	  curated	  GO	  annotations,	  and	  ignoring	  IEA	  

annotations.	  

 

3.5 Theoretical Concerns 

3.5.1 Optimal Learning Under a Key Assumption 

 Taking a step back from the specific application of protein function prediction, we now 

examine some theoretical implications for PU-learning in general. An important work by Elkan 

and Noto (2008) explores a different approach to PU-learning than those described above. 

Namely, they show that the decision boundary of a classifier trained to differentiate between 

positive and unlabeled examples (rather than guessing negative examples from the set of 

unlabeled examples, and then training a classifier to discriminate between positive and negative) 

will produce predictions that obey the same rank-ordering as a “traditional” classifier that 

attempts to discriminate between positive and negative examples. This is an important result, as 

it provides a mechanism to train a model without the need to guess negative examples, which 
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will have the same ROC_AUC value as a model trained on the positive and negative examples. 

Additionally, Elkan and Noto show that one can also adjust the decision threshold of their “non-

traditional” classifier, such that it’s accuracy is also in-line with a “traditional” classifier. The 

authors prove the theoretical principles behind their results, and then offer two methodologies 

that take advantage of those principles, demonstrating superior performance on a real-world PU-

learning problem, over some other PU-learning algorithms. 

 Elkan and Noto, however, note that their work relies on one crucial assumption: that the 

set of labeled positive examples is chosen uniformly at random from the set of all positive 

examples. While this assumption might appear innocuous, in many real-world PU applications, it 

is certainly violated. In protein function prediction, for example, annotations are very often 

propagated via homology to known sequences,  meaning that the labeled positives of a function 

are not selected at random from all proteins with that function, but rather according to a bias 

based on sequence similarity to the first proteins for which that function was annotated. It is not 

difficult to imagine other problem scenarios, such as text classification, where documents are 

given to curators based on search queries, and thus the set of labeled positive examples are again 

biased rather than random. 

 We examine the effects that the violation of this selected-at-random assumption has on 

the algorithms of Elkan and Noto, both on a highly controlled synthetic dataset, as well as some 

real-world text classification problems. In addition, the test case provided by Elkan and Noto is 

one where the number of  labeled positive examples far exceeds the number of remaining 

unlabeled positive examples, a situation which may not always appear in practice. We examine 
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the case where the opposite is true: the number of remaining positives is much larger than the 

number of labeled positives, and see what effect this has on the algorithms presented in Elkan 

and Noto as well. We also present novel algorithms based upon our previous work with NETL 

and SNOB, and compare their performance in these scenarios. 

 

3.5.2 Theoretical Framework 

 We adopt the theoretical framework used in Elkan and Noto (2008). Let x be an example 

with a binary label y ∈ {0,1}. Let s be a second binary label for x, which indicates whether the 

value of y is known. Thus y is an indicator of whether or not the example is “positive” or 

“negative”, to use traditional nomenclature, while s is an indicator as to whether x is “labeled” or 

“unlabeled”. Since only positive examples are labeled in a PU scenario, we have the following 

axioms: 

𝑠 = 1 → 𝑦 = 1 

𝑠 = 0 → 𝑦 = 1  𝑜𝑟  𝑦 = 0 

𝑝 𝑠 = 1 𝑥,𝑦 = 0 =   0 

The assumption stated above, that the labeled examples are chosen uniformly at random from the 

set of positive examples, can be expressed by the following: 

𝑝 𝑠 = 1 𝑥,𝑦 = 1 = 𝑝 𝑠 = 1 𝑦 = 1 = 𝑐 

So the probability that any given positive example is labeled is a constant. 

 Within this formalism, it would be the goal of a “traditional” machine learning classifier 

to classify the probability of a given example being positive. If we call such a classifier f(x), then 
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we have: 

𝑓 𝑥 = 𝑝 𝑦 = 1 𝑥  

Since we do not know all the values of y, training such a classifier is difficult, but Elkan and 

Noto instead propose to train a classifier, g(x), which instead determines the probability that an 

example will be labeled: 

𝑔 𝑥 = 𝑝 𝑠 = 1 𝑥  

Given the assumption above, Elkan and Noto show that these two classifiers can be related to 

each other: 

                 𝑝 𝑠 = 1 𝑥 = 𝑝 𝑦 = 1 ∧ 𝑠 = 1 𝑥   

                                                                                    = 𝑝 𝑦 = 1 𝑥 𝑝 𝑠 = 1 𝑦 = 1, 𝑥 +   𝑝 𝑦 = 0 𝑥 𝑝 𝑠 = 1 𝑦 = 0, 𝑥   

                                                                                    = 𝑝 𝑦 = 1 𝑥 𝑝 𝑠 = 1 𝑦 = 1, 𝑥   

                                                                                    =  p 𝑦 = 1 𝑥 𝑝 𝑠 = 1 𝑦 = 1   

                                                                                    =  p(y=1|x)c  

                                                                𝑔 𝑥 =   𝑐𝑓(𝑥)  

Where the third line follows since 𝑝 𝑠 = 1 𝑥,𝑦 = 0 =   0, and the fourth line follows from the 

“selected at random” assumption. This result shows that f(x) is an increasing function of g(x), 

meaning that examples ranked by their g(x) score will have the same ordering as examples 

ranked by the “traditional” classifier f(x). Additionally, exact values for f(x) are obtainable from 

values of g(x), so long as a good estimate of c is attainable, which the others demonstrate is 

indeed the case. 
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3.5.3 Biased Labeling 

 When the process for labeling a new positive example is at all dependent on the set of 

currently labeled examples (such as in protein function prediction, where new positives are often 

identified via homology to existing positives), the “selected at random” assumption is no longer 

valid. The probability of a positive example being labeled is now some function of that example 

itself, say h(x): 

ℎ 𝑥 = 𝑝(𝑠 = 1|𝑦 = 1, 𝑥) 

The result of Elkan and Noto, (2008) now becomes: 

(Equation 3.1) 

𝑔 𝑥 = ℎ 𝑥 𝑓 𝑥  

𝑓 𝑥 =
𝑔(𝑥)
ℎ(𝑥) 

This new relation between f(x) and g(x) now relies on the ability to estimate h(x) to transform the 

values of the learnable “nontraditional” classifier into those of the in-estimable “traditional” 

classifier. Additionally, the ranking assumption no longer holds, unless there are specific 

conditions placed upon h(x). Namely: 

𝑓 𝑥! ≥ 𝑓 𝑥! ≥ 𝑓 𝑥!   ↔     𝑔 𝑥! ≥ 𝑔 𝑥! ≥ 𝑔 𝑥!  

i.f.f.  

ℎ(𝑥!) ≥ ℎ(𝑥!) ≥ ℎ(𝑥!) 

 Proof: 
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𝑙𝑒𝑡        𝑓 𝑥! ≥ 𝑓 𝑥! ≥ 𝑓 𝑥!  

𝑔 𝑥!
ℎ(𝑥!)

≥
𝑔 𝑥!
ℎ(𝑥!)

≥
𝑔 𝑥!
ℎ(𝑥!)

 

𝑔 𝑥! ≥   
ℎ 𝑥!
ℎ 𝑥!

𝑔 𝑥!       𝑎𝑛𝑑          𝑔 𝑥! ≥   
ℎ 𝑥!
ℎ 𝑥!

𝑔 𝑥!  

𝑔 𝑥! ≥ 𝑔 𝑥! ≥ 𝑔 𝑥!         𝑖𝑠  𝑔𝑎𝑢𝑟𝑎𝑛𝑡𝑒𝑒𝑑  𝑜𝑛𝑙𝑦  𝑖𝑓      
ℎ 𝑥!
ℎ 𝑥!

  ≥ 1    𝑎𝑛𝑑    
ℎ 𝑥!
ℎ 𝑥!

  ≥ 1 

𝑤ℎ𝑖𝑐ℎ  𝑖𝑠  𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡  𝑡𝑜:         

ℎ(𝑥!) ≥ ℎ(𝑥!) ≥ ℎ(𝑥!) 

This result states that the ranking assumption only holds if the labeling bias is identically ranked, 

i.e. if example i is more likely to be positive than example j then i is also more likely to be 

labeled than j. This is not a prohibitive restriction, as it is not difficult to imagine a scenario in 

which new examples are labeled according to their similarity to existing examples, but the 

restriction is worth noting. 

 

3.5.4 A Novel PU-Learning Method: SNOBProb 

 We introduce a new PU-Learning method based upon our previous work with the SNOB 

algorithm for function prediction (see section 3.5.3). We generalize this algorithm into 

SNOBProb, which is applicable to any type of feature data (both discrete features, like protein 

function labels, and continuous features). In addition, SNOBProb provides calibrated 

probabilities of a particular example being positive or negative, allowing for a weighted training 

paradigm like that suggested in Elkan and Noto, (2008). In this paradigm, a duplicate example is 
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introduced to the training set for each training example of unknown label, and a PU-algorithm is 

utilized to calculate the probability that a given unlabeled example might be positive or negative, 

with that probability then used to weight each example and its duplicate, one with a positive 

label and the other with a negative. 

 Formally, for each example x in the training set, we desire a function D, such that:  

(Equation 3.2) 

𝐷: 𝑥 → ℜ!            𝑠. 𝑡. 
𝐷 𝑥!   ~  N(𝜇!,𝜎!)          𝑎𝑛𝑑          𝐷 𝑥!   ~  N(𝜇!,𝜎!)           

 

The first condition allows us to estimate 𝜇!  and  𝜎!, since we have a set of labeled positive 

examples in the training data, but the values for 𝜇!  and  𝜎! are not, as all we have is a set of 

examples drawn from the distribution: N(𝜇!,𝜎!)     = N(𝜇!,𝜎!)+ N(𝜇! ,𝜎!). That is to say, we 

can estimate the parameters of the distribution on the unlabeled training examples, but the results  

will be a mixture of Gaussians, with greater bias away from   N(𝜇!,𝜎!) the more true positives 

are included in the unlabeled set (the greater the size of q). 

 Once a function D is chosen, estimates are obtained for parameters of the positive and 

unlabeled distributions. For each example, the probability is computed of that example belonging 

to p, or to our proxy for n (which is trained on n + q). This calculation can be achieved either via 

a closed-form solution, or by Monte Carlo sampling (depending upon the number of dimensions 

in D). In the one dimensional example, a Monte Carlo estimate can be obtained for example x by 

generating n points from the distribution N(𝜇!,𝜎!), and n points from the distribution N(𝜇!,𝜎!). 
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Then an estimate for the probability that x is in the positive class, is given by: 

𝑝 𝑦 = 1 𝑥 ~
ℐ(𝑘!; 𝑥)!

!!!

ℐ!
!!! (𝑘!; 𝑥)+ 𝒥(𝑙!; 𝑥)!

!!!
 

Where ki is the ith Monte Carlo point generated from N(𝜇!,𝜎!), li is the ith Monte Carlo point 

generated from N(𝜇!,𝜎!), and ℐ(𝑚; 𝑥) and 𝒥(𝑚; 𝑥) are indicator functions such that: 

ℐ 𝑚; 𝑥 = 1  𝑖𝑓  𝑚 < 𝐷(𝑥)
0  𝑖𝑓  𝑚   ≥ 𝐷(𝑥) 

𝒥 𝑚; 𝑥 = 1  𝑖𝑓  𝑚 > 𝐷(𝑥)
0  𝑖𝑓  𝑚   ≤ 𝐷(𝑥) 

This equations assumes 𝜇! > 𝜇!, but in the case that the opposite is true, an equation for  

𝑝 𝑦 = 1 𝑥  follows in the same manner. Intuitively, if D(x) were so large that it was greater than 

all Monte Carlo points generated from both N(𝜇!,𝜎!) and N(𝜇!,𝜎!) the approximate probability 

of x coming from the positive class would be: 𝑝 𝑦 = 1 𝑥 =   𝑛 (𝑛 + 0) = 1. Conversely, if 

D(x) were so small that it was less than all Monte Carlo points generated from both N(𝜇!,𝜎!) 

and N(𝜇!,𝜎!) the approximate probability of x coming from the positive class would be: 

𝑝 𝑦 = 1 𝑥 =   0 (0+ 𝑛) = 0. Finally, if D(x) were larger than half of the Monte Carlo points 

generated from both N(𝜇!,𝜎!), but also smaller than half of the Monte Carlo points generated 

from both N(𝜇!,𝜎!), then the approximate probability of x coming from the positive class would 

be: 𝑝 𝑦 = 1 𝑥 =   𝑛 2
(𝑛 2+ 𝑛 2) = 0.5. 

 Once the probabilities have been approximated, they can be used in the methodology 

described at the beginning of this subsection,, where unlabeled training examples are duplicated, 
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with one half being given positive labels and weight = 𝑝 𝑦 = 1 𝑥 , and the other half negative 

labels with the weight = 𝑝 𝑦 = 0 𝑥 = 1− 𝑝(𝑦 = 1|𝑥). Additionally, we explore another 

method whereby unlabeled examples are not duplicated, but rather all treated as negative 

examples, but with weight = 𝑝 𝑦 = 0 𝑥 . We refer to the former approach as SNOBProbElkNot , 

and the latter approach as SNOBProbNeg.  

 Lastly, we implement one additional method, which we refer to as SNOBraw, that 

bypasses the Monte Carlo probability estimation, and simply uses the raw SNOB score (the 

value of D(x)) as a weight on the unlabeled examples, which are then given negative labels. In 

order to adjust the raw SNOB score into a probabilistically interpretable score, we scale by the 

maximum value of raw SNOB scores for the known positive examples. This yields weights in 

[0,1], with all positive examples given a weight of 1, unknown examples with no available data 

from which to compute a score given a weight of 0.5, and unknown examples with raw SNOB 

scores given the scaled weights mentioned above.  

 

3.5.5 Synthetic Data Generation 

 In order to test the effect of bias on the PU learning scenario, we create 2-dimensional 

synthetic data from two Gaussian distributions. We generate positive examples from a 

distribution with mean: (5,10), and standard deviation: 1 0.5
0.5 2 , and negative examples from a 

distribution with mean: (1,5), and standard deviation: 1.5 0.5
0.5 2.5 . We explore scenarios with 

different numbers of labeled positive examples, p, unlabeled positive examples, q, and unlabeled 
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negative examples, n. Additionally, when selecting the labeled positive examples from the set of 

all true positives, we either select uniformly at random, or according to a bias function: 

𝑏𝑖𝑎𝑠(𝑥) = 𝑥!! + 𝑥!!. Thus examples which are farther away from the origin are selected first, 

and since this direction is roughly perpendicular to the decision boundary between positive and 

negative values, creates a difficult learning problem. In order to explore the effect of differing 

amount of bias, we choose some labeled examples at random, and others according to the bias 

function. For example, if p = 100, and we set the bias amount to 40%, then 60 of the labeled 

positive examples will be chosen uniformly at random from the set of all true positives, while the 

remaining 40 will be chosen according to the bias function described above. Figure 3.x shows 

one example of synthetic data, along with scenarios with 0% and 100% bias. 

 We compare the results of 7 algorithms on this synthetic data: 1) The optimal classifier, 

trained on the true positives and true negatives (this provides an upper bound on performance on 

the generated data), 2) The scaled SVM proposed by Elkan and Noto, (2008), 3) The Double-

Weighted Algorithm proposed by Elkan and Noto, (2008), 4) The biased SVM method proposed 

by Liu et al. (2003), 5) Our SNOBProbElkNot algorithm, 6) our SNOBProbNeg algorithm, and 

lastly 7) our SNOBProbraw algorithm. In all cases, results are presented after performing 10-fold 

cross validation, with the same training-test splits used for all 7 algorithms on each fold. In 

addition, each 10-fold cross validation experiment is performed 5 times, with different random 

cross-validation splits, with the results averaged together. This is done to ensure that no 

algorithm gains an unexpected advantage via some unknown characteristic of a particular 10-fold 

cross-validation split. 
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Figure 3.11 Sample synthetic data (a.), generated from two Gaussian distributions. The bias of 
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the labeled positives can be varied from selected uniformly at random (b.), or according to a bias 

function that systematically labels only positive examples that are as far away as possible from 

the decision boundary between true positives and negatives. 

 

3.5.6 Synthetic Data Results 

 We compare the 7 algorithms described in section 3.6.4 on 3 different scenarios using 

synthetic data. Each scenario has a different cardinality for p, the number of labeled positive 

examples, q the number of unlabeled positive examples, and n, the number of unlabeled negative 

examples. 

 In the first scenario (results presented in figure 3.12), we set p = 400, q = 100, and n = 

400. Thus we have a scenario in which the majority of true positives are already known, but 

algorithms must seek to discover the remaining positives from amidst the unlabeled negatives. 

All algorithms performed well in this scenario, but with the performance of the two algorithms 

laid out in Elkan and Noto 2008 degrading as the percentage of labeled positive examples chosen 

via the bias function described in section 3.6.4 approached 100%. Our own SNOBPROB-Neg 

algorithm performs better at low biases, but also suffers from degradation as the bias approaches 

100%. The baseline BiasSVM method of Liu et al. (2003) exhibits performance stronger still, yet 

again suffers degradation at the highest bias thresholds. Lastly, our SNOBPROB-raw method 

does not perform as well with low bias percentages, but does achieve the highest performance at 

the highest biases. We do not show the results of the area under the receiver-operator 

characteristic curve (AUC_ROC) for this scenario, as the differences in values between 



109	  

algorithms were negligible. 

 In the second scenario, we set with p = 250, q = 250, and n =500, creating a scenario 

where there are just as many unlabeled positive examples as labeled. As shown in figure 3.13, 

the results once again show accuracy degradation correlated with the bias percentage, with the 

method of Elkan and Noto (2008) and Liu et al. (2003) affected more strongly than our proposed 

methods (other than SNOBPROB-Neg, which also suffers from bias degredation). In particular, 

our SNOBPROB-Raw algorithm maintains near-optimal accuracy up until 100% bias, where 

accuracy drops but still remains higher than the other algorithms. In terms of AUC_ROC, most 

of the algorithms performed near-optimally for the entire bias range. 

 The third and final scenario sets p = 100, q = 400, and n =500, and is arguably the most 

“difficult” scenario, as there is the least amount of labeled information. Figure 3.14 depicts the 

results, showing that once again, our SNOBPROB-Raw algorithm achieves near optimal 

accuracy results up until 100% bias, where it still performs the best. The AUC_ROC results are 

less conclusive, with many algorithms again achieving near-optimal results. Specifically, the 

BiasSVM method shows the strongest performance, followed by our SNOBPROB-Raw and 

SNOBPROB-Neg algorithms. 
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Figure 3.12 Accuracy results on a synthetic dataset with p = 400, q =100, and n =500, with a 

sliding scale of bias in the method in which the labeled examples were picked from all true 

positives (see section 3.6.4 for a description of synthetic data generation). 
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Figure 3.13 Results similar to figure 3.12, but with both accuracy and area under the Receiver-

Operator Characteristic curve, for synthetic data with p = 250, q = 250, and n =500. 
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Figure 3.14 Results similar to figure 3.13, but with p = 100, q = 400, and n  = 500. 
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3.5.7 TCDB Data Results 

 We also present results on real-world data, obtained from Elkan and Noto (2008). This 

data, comprised of SWISS-PROT records from the TCDB database (Saier et al., 2006), which 

contains 2453 labeled positive examples, 348 unlabeled positive examples, and 4558 unlabeled 

negative examples. We test the same 7 algorithms as in 3.6.5, first on the original dataset (which 

we call ElkNoto), then on the dataset with P and Q reversed, so that now only 348 examples are 

labeled, and the other 2453 are unlabeled (we refer to this scenario as ElkNotoRev). Additionally 

we create a scenario where the original P and Q are shuffled together, and then P’ is chosen as 

10% of the true positive examples, with Q’ comprised of the remaining 90% (we refer to this 

scenario as ElkNotoShuffle10Perc). Finally, we test on two scenarios in which a random positive 

record is chosen, and the rest of the labeled positive examples are chosen with bias, such that 

records whose correlation between their tf-idf vector representation, and that of the randomly 

selected record, is highest. In this two biased scenarios, we maintain the relative sizes of P and Q 

as the original TCDB data. 

 In terms of accuracy, the strongest algorithms are the BiasedSVM algorithm, as well as 

our SNOBPROB-ElkNot algorithm, with our algorithm performing best on the ElkNotoRev and 

ElkNotoShuffle10Perc scenarios (see figure 3.15). This suggests that our algorithm achieves 

greater accuracy when the cardinality of P is much smaller than that of Q… i.e. there are many 

more unlabeled positive examples than labeled ones. This corroborates the findings of section 

3.6.5. In terms of AUC_ROC, however, the BiasedSVM algorithm seems to perform the best 

across the board, even in the biased scenarios, which is less congruous with the results of 3.6.5. 
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Our SNOBPROB-Neg and SNOBPROB-Raw algorithms are competitive with, or perform better 

than the methods proposed in Elkan and Noto (2008), in terms of the AUC_ROC metric. 

 

 

 

Figure 3.15 Results on different scenarios based on the TCDB database data (see section 3.6.6). 
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4. Tertiary Structure as a Predictor of Function 

 

4.1 Motivation 

 It has been well-documented that the shape (also called the fold) of a protein often 

determines many of the functions that the protein will perform (Bonneau et al., 2004; Malmstrom 

et al., 2007; Zhang et al., 2009). Yet despite the fact that we have fully sequenced the genomes 

of many organisms, our knowledge of protein folds is still relatively sparse. Even though the 

underlying physical properties and interactions of proteins at the atomic level are well-

understood, the sheer number of atoms involved, as well as the fact that is impossible to know a 

priori whether pairs of atoms far away from each other in sequence space may end up near each 

other in physical space, makes the protein-folding problem quite difficult. In fact, the 

computational costs of the protein-folding problem are just as great, if not greater, than the 

function prediction problem.  

 That being said, there does exists a collection of known folds of proteins, many of which 

have been assigned functions (Berman et al., 2000), as well as tools for computationally 

estimating the fold of proteins based on their sequence (Rohl et al., 2004). The last necessary 

component is an efficient algorithm to compute the similarity of two protein structures, for which 

we use MAMMOTH (Ortiz et al., 2002). With these tools, we can incorporate structural data as a 

valuable input feature for our function prediction algorithm.   
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4.2 HPF pipeline 

 The Human Proteome Folding pipeline is a procedure that matches sequences to known 

structures in the Protein Data Bank (Berman et al., 2000), or attempts de novo predictions of un-

matched sequences via Rosetta (Rohl et al., 2004). The pipeline, developed by Drew et al. (2011) 

begins by cutting the query sequence into predicted domains, via the Ginzu algorithm (Chivian et 

al., 2003). The domains are then run through multiple algorithms and heuristics (see Drew et. al 

2011) to match domains to known sequences. If no such match can be found, and the domain is 

of an appropriate size, a de novo structure is generated for that domain utilizing Rosetta on the 

IBM World Community Grid (www.wcgrid.org). The number of de novo structures, known as 

decoys, that are generated for each domain range between 25,000 and 100,000, depending on the 

available computing resources on the IBM WCG. The resulting decoys are then clustered, and 

the top five most populous clusters are stored for use in creating the structural similarity data (see 

section 4.3). 

 

4.3 Turning structure into functional similarity 

We begin by precomputing the pairwise similarity scores of all structures in the Astral 

database (Chandonia et al., 2004), which is a subset of the Protein Data Bank whose structures 

have been mapped to specific domains rather than simply whole proteins. Then, to calculate the 

structural similarity of the human proteins represented by astral structures from the PFP, we 

simply lookup the previously calculated pairwise similarity scores (MAMMOTH z-scores). The 
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structural similarity of two humans proteins is defined as the sum of the maximum pairwise 

similarity score between the structures representing each protein averaged over the total number 

of structures representing both proteins, as described by the following equation: 

 

where P1 and P2 are the sets of all astral structures representing two proteins, p1 and p2, 

respectively, and structSim(i, j) is a function returning the structural similarity score 

(MAMMOTH z-score) of two astral structures i and j.  

 For proteins that do not match to a known structure in the pdb, but have de novo structure 

predictions, the situation becomes slightly more complex. Each de novo prediction is actually a 

multitude of predictions, known as “decoys”, which are then clustered to provide more predictive 

stability. We utilize the top 5 decoys for each domain with a de novo prediction, taking the 

maximum Z-score for any of the member decoys. Thus if a de novo domain is being compared to 

an astral-matched domain, then the structSim(i, j) function will be the maximum of 5 

MAMMOTH z-scores, while if both domains are de novo structures, then structSim(i, j) will be 

the maximum of 25 MAMMOTH z-scores. 
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5. Case Studies 

 

5.1 RNA-Binding case study 

5.1.1 Function Prediction 

Predictions for the Gene Ontology (GO) Molecular Function term RNA binding, along 

with first-generation child terms of RNA binding, were calculated and compared to a set of 

experimentally verified but as-yet unannotated RNA binding proteins discovered by Baltz et al., 

2012. For this work we combined several network types to make function predictions including: 

i) a network of GO-process and localization similarities, ii-iv) similarities in InterPro and Pfam 

domain content, v) protein-protein interactions, vi) co-expression relationships, and vii) 

structural similarity derived from the Proteome Folding database (Drew et al., 2011). Each node 

of the graph is a gene which may be previously known to have the function in question, known 

to not possess that function, or may be unlabeled (here we focus on RNA-binding, its child GO-

functions, and DNA-binding). Once labels have been propagated on this composite network, 

discriminant thresholds are chosen to assign predictions to unlabeled sequences. 
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5.1.2 Data Sets used for function prediction and network figure generation 

Our function prediction algorithm makes use of three categorical data types (InterPro 

family, Pfam family, and GO Biological Process and Cellular Component annotation), a protein-

protein interaction network, a co-expression network, and a structure-similarity network for a 

total of 6 raw data-types. Only the top 100 similarity scores were kept for each sequence and in 

each data-type, in order to keep the networks sparse, but in the case of PPI data, the sparsity was 

much greater as the average number of interactions for a sequence that had any know 

interactions was only 18. 

 

Categorical Data 

For each categorical data-type, we create a binary feature vector whose length is the total 

number of unique categories that appeared in any of the sequences. As in (Mostafavi et al., 

2008), we transform this binary vector by turning all 1’s into –log(B), and all 0’s into log(1-B), 

where B is the proportion of sequences that have the given feature, thus allowing rarer features to 

contribute more in the similarity calculation. The network is then constructed from this 

transformed feature matrix by taking the pairwise Pearson Correlation Coefficients. InterPro and 

Pfam results were obtained by querying the 49,518 non-redundant sequences against the InterPro 

database, Release 34.0, (Hunter et al., 2011). GO annotations were obtained from querying the 

known GI numbers of the sequences against the AgBase GO Retriever (McCarthy et al., 2006). 
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Gene Expression Data 

Gene expression data was obtained from two assays: HG-U133_Plus_2, and 

U133AAofAv2, which combined have a total of 368 cell types/conditions. The data for each 

assay was normalized individually using the Affy library in R, and the resulting two expression 

vectors for each gene were concatenated into one vector. Since expression data is collected at the 

gene-level, we had to map our sequences to gene names that appeared in the two assays. The 

network was then created as the pairwise PCC of expression vectors. 

 

Protein-Protein Interaction Data  

Protein-protein interaction data was collected from the BioNetBuilder project (Avila-

Campillo et al., 2007). The network was left as a binary network, with a 1 if two proteins 

interacted and a 0 otherwise. 

 

Structure Similarity Data 

To measure the structural similarity of the 49,519 human protein sequences, including 

novel RNA-binding protein sequences, we chose to represent each protein by a collection of 

astral structures (Brenner et al., 2000). As a first step, we computed the pairwise structural 

similarity of all astral structures using the MAMMOTH comparison method described in (Ortiz 

et al., 2002). After having chosen the astral structures that represented each human protein, we 

then calculated the structural similarity between two human proteins by combining the 

similarities of their component representative structures. 
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 To represent each human protein with a set of astral structures, we queried them against 

the Protein Folding Project (PFP) database, which contains protein sequences previously 

annotated with structure (Drew et al., 2011). We did this by blasting the set of 49,519 human and 

RNA-binding proteins against a PFP database comprised of the proteomes of six organisms: 

human, mouse, Caenorhabditis elegans, Escherichia coli, Saccharomyces cerevisiae, and 

Arabidopsis thaliana. For each human protein sequence, the best 250 blast results were retained 

and then further filtered to keep only those matching sequences with at least 50% identity over 

80% sequence length. We then considered the structural annotations of each protein sequence in 

the filtered blast results, and chose to represent the query human sequence with the astral 

structures from the best blast match with the most complete structural annotation. In this way, 

each of the 49,519 human proteins (including novel RNA-binding proteins) was represented by a 

collection of astral structures. 

 Roughly 23,000 human proteins remained after this conservative filtering while the 

remaining 26,000 did not match confidently to structurally annotated sequences in the PFP. 

Structures for matching proteins were utilized to calculate pairwise similarity scores (as 

described in section 4.3). If the structural similarity score of a source and target human protein 

was in the best 100 scores for that source protein, the score for the pair was added to the structure 

all-vs.-all matrix. In this way we calculated the all-v-all structural similarity matrix representing 

the set of human and RNA-binding proteins. 
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5.1.3 Association Network Combination Nuances:  

 In this particular case study, each node in the network represents a sequence, and as some 

data-types contain information at the sequence level, and others at the gene level, the coverage of 

each data-type is not consistent. Additionally some data-types are simply more comprehensive, 

such as InterPro, which returned results for 38,396 sequences, compared to Pfam, which only 

returned hits for 35,082. Because the objective function rewards low similarity for negative 

example pairs, a data-type with less coverage and therefore more sparsity can  produce an unfair 

weight boost in the final network as it avoids edges between positive-negative pairs in the 

Omega matrix. To remedy this problem, in this case study we only construct Omega from pairs 

of omni-reachable sequences, where a sequence is defined as omni-reachable if it is in a row that 

contains at least one non-zero entry from each data-type. If a data-type is dropped by the 

algorithm due to a negative weight assignment, the set of omni-reachable sequences is re-

calculated given the remaining subset of data types (and can only grow larger by doing so). 

 

5.1.4 Predictive Power of Each Data Type 

Without the normalization step (described above) the relative magnitude of the weights 

assigned during the network combination phase of the algorithm could be used as a proxy for 

relative contribution of each data type to the prediction for each function label. However, the 

sparsity of different data types plays a major role in the normalization, as the magnitude of the 

row and column sums will be smaller for sparser data. This complicates the interpretation of the 

weights as a measure of particular data’s predictive power since the average magnitude of edges 
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in each data type differs even before the weights are applied. Therefore in order to access the 

contributions of each data type in a meaningful manner, we multiply the weights produced by the 

algorithm (at the network combination stage) by the average non-zero affinity for each data-type, 

shown below: 

 

Interpro 

Domains 

Pfam 

Domains 

GO Process and 

Localization 

Gene 

Expression 

PPI Structure 

0.0057 0.0055 0.0050 0.0054 0.0427 0.0056 

Table 5.1 Relative contribution of each component data type to the final affinity network.  

 

This product yields the average non-zero contribution of each data type to the final affinity 

matrix used in the label-propagation step (which is itself also normalized). These relative 

contributions can be seen in table 5.1 for all of the GO function terms predicted.  

 

5.1.5 Discriminant Thresholds through Cross Validation 

Once the discriminant vector is calculated, a threshold is required in to make predictions. 

Threshold values for the discriminant were obtained through k-fold cross-validation. For each of 

the k calculations, the known labels are dropped on a random leave-out set of size 49,518/k, 

which contains the same proportion of positive, negative, and unlabeled sequences as the entire 

set. The discriminant threshold is then varied until the desired precision level is met on the leave-

out set, and the recall value for the discriminant threshold is noted. If the desired precision level 
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is unattainable for any discriminant threshold value, then that particular cross-validation run is 

not counted in the final totals. 

Once cross validation is complete, the discriminant threshold value for a given precision 

is calculated as the average of values for all of the cross-validation tests. We chose to predict 

functions at precision levels of 80%, 50% and 20%, and set k=10 for the functions of RNA 

binding and DNA binding, but k=5 for the children of RNA binding to allow for enough positive 

labels in each of the leave-out sets. Table S2A shows the recall values at each precision for the 

different function labels. 

 

5.2 CAFA Challenge 

5.2.1 CAFA Challenge Description 

 The Critical Assessment of Functional Annotation (CAFA) challenge is a bi-annual 

curated competition, whose goal is to evaluate the computational methods of participating groups 

on several benchmarks and scenarios. All evaluation is done via temporal holdouts, which is 

recognized as the best available method to combat evaluation issues arising from the PU learning 

scenario (see section 2.4.3). In the first CAFA challenge, in 2012, 54 methods were evaluated, 

many showing strong performance on a benchmark of 866 proteins in 11 different organisms, 

although certainly with room left for improvement (Radivojac, et al., 2013). 

 In the 2nd CAFA challenge, target sequences for prediction were provided in 27 

organisms, spanning the three domains of biological classification, totaling more than 100,000 
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sequences. The entry submission deadline was closed in January, 2014, with evaluations 

beginning in July, 2014, utilizing the annotations that had been added to any of the target 

sequences in the time period after submissions were closed. 

 Predictive methods were scored according to two metrics. The first is the F-measure, 

which is a standard metric for machine learning algorithms (Powers, 2011). The harmonic mean 

of precision and recall, the F-measure captures some of the information contained in each, with 

the final score being the maximum F-measure achieved along the precision-recall curve. The 

second measure comes from Information Theory, and is known as the minimum semantic 

distance (Rada et al., 1989). This measure takes into account the hierarchical structure of the 

Gene Ontology (GO) tree, and thus the fact that some functional predictions are more specific 

than others.  

 Both metrics were applied in two modes: mode 1 only evaluates sequence targets which 

are completely unannotated in every branch of GO, while mode 2 allows sequences to have 

existing annotations, so long as they are in a branch other than the branch which is being 

evaluated. Sequences that had any annotation in the branch being evaluated, even if that 

annotation was extremely general, were not considered in any of the assessments. In addition, 

benchmarks were broken down by the source of the annotations into three groups: those coming 

from the SWISS-PROT database (Bairoch and Apweiler, 1997) , those from the EBI database 

(Guenter et al., 1997), and those coming from all databases (SWISS-PROT, EBI, UNIPROT-

GOA (Dimmer et al., 2012), and GO (Ashburner et al., 2000)). 
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5.2.2 CAFA Challenge Results 

 At the time of this publication, only preliminary results were available from the CAFA 2 

challenge. These results were based on annotations added to the Gene Ontology between the 

submission close and the evaluation date, with the number of newly annotated proteins in each 

benchmark and mode (see section 5.2.1 for a description of evaluation modes) presented in table 

5.2. In addition, evaluations were performed for all organisms together, and for just the subset of 

Eukaryotes as well. 

 

Benchmark Branch Mode 1 Mode 2 

 

SWISS-PROT 

Molecular Function 232 285 

Biological Process 410 582 

Cellular Component 608 393 

 

EBI 

Molecular Function 238 239 

Biological Process 281 157 

Cellular Component 560 306 

 

SWISS-PROT + EBI + 
UNIPROT-GOA + GO 

Molecular Function 656 667 

Biological Process 773 751 

Cellular Component 991 637 

Table 5.2  

Number of sequences used in each benchmark, for each mode and branch of GO. 
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 Out of the roughly 50 competing algorithms (not every team submitted an entry that 

could be evaluated on all benchmarks), we placed in the top 10 scores on several, but not all 

benchmarks and modes. Specifically, on the EBI benchmark, we placed 6th in Molecular 

Function, 2nd in Biological Process, and 8th in Cellular Component, while on the SWISS-PROT 

benchmark, we placed 9th in Cellular Component (see figure 5.1). 

 In figure 5.2, we see a comparison of the two modes of evaluation (see section 5.2.1) on 

the Biological Process EBI benchmark. Our submission performed better in mode 2, which is not 

surprising, as the presence of existing annotations in other branches of GO helps to inform the 

prior biases we use for label propagation (see section 2.3.1). This also suggests that our method 

would do well in a scenario in which annotations in the branch being predicted were also 

permitted, but more specific predictions were sought. 

 While further evaluation results are pending from the CAFA assessors, it appears that our 

methods are highly competitive with the current state of the art protein function prediction 

algorithms employed by many research teams. In addition, we believe our methods would 

perform even more strongly in a scenario not considered in CAFA: that of predicting more 

specific or complete annotations for partially annotated proteins. 
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Figure 5.1 Precision-Recall curves for the top 10 methods on several different CAFA2 

benchmarks. Methods are ranked by F-measure (shown in the legend), and also compared to 3 

baseline methods: Blast2011, Blast 2014, and a Naïve prediction method based on choosing 

nodes with the most existing annotations. 

 
Figure 5.2  Differences in F-measure for the top 5 performing methods in Biological Process on 
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the EBI benchmark of CAFA2. The F-measures of mode 1 and mode 2 are compared (see 

section 5.2.1 for a description of the modes). 
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6. Future Work 

 

 While the work here represents several steps forward in the application of positive-

unlabeled learning to the protein function problem, there is still much more to be done. 

 

6.1 Protein Function Prediction 

 The advancements in protein function prediction scope and accuracy presented in this 

work thus far open the door for additional avenues of exploration. Some of these avenues pertain 

to additional data types that show promise for inclusion in the feature set, while others focus 

more on the framework of the learning problem. As the percentage of annotated proteins across 

all sequenced genomes is still extremely low, further research into function-prediction 

improvement has the potential to greatly advance the field. 

 

6.1.1 Prediction reconciliation 

 In the current paradigm, the protein function prediction problem is treated as a series of 

binary classification problems, learning one function, for one species, at a time. While our work 

has already begun to address the potential for multi-species prediction (see section 2.7), we have 

not yet touched upon one of the obvious problems with single-function learning: namely that the 

binary classification problems are not independent. Since functional terms are described by the 
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Gene Ontology (GO), which is organized as a tree, predictions for certain GO terms 

automatically imply predictions for other GO terms at the same confidence level (namely, all 

ancestral terms). 

 Previous work has looked into several possibilities regarding multi-function learning. 

Mostafavi and Morris (2009), experiments both with a framework for learning all functions 

within a branch of GO simultaneously, as well as reconciling predictions after the fact with 

Isotonic Regression, and also predicting sequentially from most general to most specific 

functional terms, or vice-versa, and using the results of predictions for ancestral or child terms as 

priors for the next round of predictions. Unfortunately, Mostafavi and Morris (2009) found little 

benefit in any of these approaches, and most machine learning methods for function prediction 

still proceed under the binary paradigm. 

 We believe that one potentially fruitful avenue of research for this problem, is the 

utilization of a Bayesian Network to reconcile predictions. This approach has been attempted 

before for the PFP problem itself (Leone and Pagnani, 2005; King et al., 2003), but to our 

knowledge has never been applied to the reconciliation of predictions made by another method. 

One potential embodiment would proceed gene by gene, with each node in the Bayes Net 

representing a GO term that that gene received a non-negligible discriminant score for. Edges in 

the network would mirror the edges in the GO tree, with the conditional probabilities dependent 

upon the discriminant values for each GO term calculated for that gene during the course of 

binary function prediction. The maximum a posteriori probability estimate for this network 

would then represent the most probable assignment of function terms, according to the original 
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binary discriminant values, but which still obey the hierarchy of the Gene Ontology. 

 

6.1.2 More function-specific data combination 

 A key component of the function prediction methodology described in this work, is the 

network combination step, by which heterogeneous networks obtained from different data types 

are combined into one functional similarity network (See section 2.3.3). In Mostafavi and Morris 

(2010), as well as Youngs et al. (2013), various methods were explored to reduce the potential 

for over-fitting this combination to one specific function, while still maintaining some type of 

specificity. In both works, experiments indicated that training the network combination 

algorithm on all functions in a given branch of GO simultaneously provided the best results. 

 It is quite intuitive, however, to imagine that different types of functions would be better 

observed through different types of data. While Gene Expression may be more revealing about 

the presence of function a, for example, function b might be more dependent on protein-protein 

interaction, and therefore PPI data should play a greater role in the final association network. We 

believe greater exploration into learning the association network based upon subsets of functions 

is warranted, making use of the GO structure to train on enough simultaneous functions to avoid 

over-fitting while still preserving some of the data-type specificity inherent in different 

functions. 

 An additional aspect of the function-specific data combination is the tertiary structure 

data (see section 4.3). While the tertiary structure of a protein represents a huge amount of 

information, it is distilled down into a single number per pair of proteins. Even in the simplest 
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case: a single-domain protein, this similarity number might be skewed by discrepancies in a part 

of the protein that is not functionally relevant. In multi-domain proteins, it is certainly the case 

that structure-similarity information is being diluted, as many functions can be associated with 

just a single domain. One potential approach to preserve more of the information inherent in 

tertiary structure is to predict functions at the domain, rather than the protein level (see section 

6.1.3). Another, however, is to apply a similar algorithm to the network combination algorithm, 

specifically to the generation of the structural-similarity association network. By utilizing known 

annotations for a function, or more likely a subset of ancestral functions in a branch, different 

structural-similarity feature matrices would be created that utilized only the structural similarity 

information from domains identified as associated with those functions. 

   

6.1.3 Domain-centric efforts 

 As mentioned in section 6.1.2, many functions can be characterized at the domain level, 

rather than the protein level. It would therefore be logical to choose the granularity of the 

function prediction network such that each node was a domain, rather than a protein. 

Unfortunately, not all data is available at the domain granularity (Protein-Protein Interaction 

data, for example). Additionally, the training labels (existing GO annotations) also exist only at 

the protein/gene granularity, and not at the domain specificity. The second issue has begun to be 

addressed in the literature (Fang and Gough, 2013), but the first presents some interesting 

opportunities for our function prediction framework. 

 When predicting at the domain specificity, it becomes necessary to distribute similarity 
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edges from protein-granular data types across all of the domain nodes within that protein. The 

weight of the data cannot simply be assigned to each node (as then proteins with more domains 

would exert undue influence), but must rather be divided amongst the domain nodes. This allows 

for the potential to incorporate the uncertainty inherent in methods that attempt to assign labels 

or data to specific domains, by allowing the distribution of the weight to be reflective of the 

confidence of the domain assignment within that protein. 

 

6.1.4 Phylogenetic Tree incorporation 

 Many computational function-prediction methods utilize phylogeny as an input (Eisen, 

1998; Englehardt et al., 2005; Gaudet et al., 2011). As these methods demonstrate, the 

evolutionary process captured in a phylogenetic tree can be quite informative about protein 

function. While we do include phylogeny as an input feature for our function prediction 

methodology, we do so only in a limited fashion: namely using phylogenetic profiles. These are 

simply binary vectors indicating whether or not the protein in question has a homolog in each of 

a set of reference species, which is far less informative than a full phylogenetic tree. 

 In order to create a phylogenetic-tree-based input data type, an accurate computational 

phylogenetic tree generation tool is needed, whose complexity is not prohibitive (Engelhardt et 

al., 2005). Once trees are generated, protein-protein similarity scores must be generated. The 

similarity of trees is a concept already explored in the literature, mostly in the context of text-

classification. Some potential algorithms for transforming the phylogenetic trees into an input 

association matrix include those presented in Culik and Wood (1982), and Xue et al., (2008).  
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6.2 PU-Learning in Biased Scenarios 

 As discussed in section 3.6, a common situation in PU learning is one in which the set of 

labeled positive examples are chosen from the complete set of positive examples according to 

some bias function, rather than uniformly at random. We have presented novel algorithms that 

perform well in this scenario, but an interesting avenue of future exploration is one in which the 

nature of the bias itself is incorporated. In certain examples, such as protein function prediction, 

the nature of the labeling bias is understood. If that bias could be estimated with accuracy, then 

equation 3.1 provides a methodology for learning in this scenario. 

 Lastly, the performance results presented in sections 3.6.5 and 3.6.6 indicate that 

different algorithms might prove more or less appropriate depending upon characteristics of the 

learning scenario. Namely, on the fraction of true positives that are labeled, as opposed to 

unlabeled. Elkan and Noto (2008) provide a methodology to estimate this number in the case that 

labels are chosen uniformly at random, but in the case that labels are chosen with bias, no such 

method exists. Even so, it may often be that case that domain experts can provide an educated 

guess in different scenarios, as to the percentage of true positives that remain to be labeled. Thus 

we believe future work into the nuances of why different algorithms exhibit differing 

performance on these scenarios is warranted.  
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