
An Efficient and High-Order Accurate Boundary Integral Solver

for the Stokes Equations in Three Dimensional Complex

Geometries

by

Lexing Ying

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2004

Denis Zorin

c© Lexing Ying

All Rights Reserved, 2004

Acknowledgments

This dissertation would not have been possible without the help and support from

many people to whom I am greatly indebted.

First of all, I would like to thank my advisor Denis Zorin for his guidance, en-

couragement and collaboration. It is Denis who taught me how to do research and

his influence will be timeless. He has demonstrated great devotion to the sciences

and also great care for his students.

I am grateful to my collaborator George Biros for being a great teacher and a

constant supporter.

I would like to thank Leslie Greengard, Michael Shelley and Olof Widlund for

serving on my thesis committee and for providing valuable discussion and sugges-

tion.

I wish to thank the people I have worked with at MRL for making a wonderful

place to work. Special thanks to Henning Biermann, Eitan Grinspun, Aaron Hertz-

mann, Harper Langston, Jianbo Peng and Elif Tosun.

I would like to thank the faculty and staff of the computer science department for

providing a great environment for academic research.

I am greatly indebted to Yi Zhou for her care, support and encouragement. With-

out her, my days as a graduate student would have been colorless and boring.

iii

Finally, I want to thank my parents, Lizhen Ying and Lihua Wang, for their love,

care and encouragement. They provide me with the best education possible. Without

them, I would be nothing.

iv

Abstract

This dissertation presents an efficient and high-order boundary integral solver for the

Stokes equations in complex 3D geometries. The targeted applications of this solver

are the flow problems in domains involving moving boundaries. In such problems,

traditional finite element methods involving 3D unstructured mesh generation expe-

rience difficulties. Our solver uses the indirect boundary integral formulation and

discretizes the equation using the Nyström method.

Although our solver is designed for the Stokes equations, we show that it can be

generalized to other constant coefficient elliptic partial differential equations (PDEs)

with non-oscillatory kernels.

First, we present a new geometric representation of the domain boundary. This

scheme takes quadrilateral control meshes with arbitrary geometry and topology as

input, and produces smooth surfaces approximating the control meshes. Our surfaces

are parameterized over several overlapping charts through explicit nonsingular C∞

parameterizations, depend linearly on the control points, have fixed-size local support

for basis functions, and have good visual quality.

Second, we describe a kernel independent fast multipole method (FMM) and its

parallel implementation. The main feature of our algorithm is that it is based only

on kernel evaluation and does not require the multipole expansions of the underlying

v

kernel. We have tested our method on kernels from a wide range of elliptic PDEs.

Our numerical results indicate that our method is efficient and accurate. Other ad-

vantages include the simplicity of the implementation and its immediate extension to

other elliptic PDE kernels. We also present an MPI based parallel implementation

which scales well up to thousands of processors.

Third, we present several algorithms to evaluate the singular integrals in our

solver. A singular integral is decomposed into a smooth far field part and a local

part that contains the singularity. The smooth part of the integral is integrated us-

ing the trapezoidal rule over overlapping charts, and the singular part is integrated in

the polar coordinates which removes or decreases the order of singularity. We also

describe a new algorithm to integrate the nearly singular integrals coming from the

evaluation at points close to the boundary.

vi

Contents

Acknowledgments iii

Abstract v

List of Figures xi

List of Tables xiii

List of Appendices xv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Approach . 7

1.4 Neumann Boundary Condition and Other PDEs 8

1.5 Contributions and Thesis Organization 10

1.6 Background . 11

1.6.1 Discretization Methods . 12

1.6.2 Techniques for Fast Solvers 14

vii

2 High-order Surface Representation Scheme 16

2.1 Introduction . 16

2.2 Related Work . 18

2.3 Construction . 19

2.3.1 Manifold Structure . 19

2.3.2 Overview of the Construction 21

2.3.3 Charts and Transition Maps 22

2.3.4 Partition of Unity . 24

2.3.5 Defining geometry. 26

2.3.6 Alternatives . 27

2.4 Results . 28

2.5 Summary . 33

3 Kernel Independent Fast Multipole Method 34

3.1 Introduction . 34

3.2 Review of the Fast Multipole Method 40

3.3 The New Algorithm . 45

3.3.1 Density Translations . 45

3.3.2 Discretization . 51

3.3.3 The Complete Algorithm 55

3.3.4 Implementation Issues . 59

3.3.5 Complexity . 63

3.4 Error Analysis . 64

3.4.1 FMM Factorization . 65

3.4.2 Discretization Error . 68

viii

3.4.3 Single Step Error . 73

3.4.4 Total Discretization Error 75

3.5 Numerical Results . 77

3.5.1 Accuracy on the Equivalent Density Approximation 77

3.5.2 Overall Approximation Error 81

3.6 Summary . 91

4 Parallel Implementation of Kernel Independent FMM 93

4.1 Introduction . 94

4.2 The Parallel Algorithm . 96

4.2.1 Data Partitioning and Tree Generation 96

4.2.2 Interaction Calculation . 98

4.3 Scalability Results . 100

4.4 Summary . 111

5 Nyström Integration 113

5.1 Introduction . 113

5.2 Discretization and Singular Integral Evaluation for Velocity 114

5.3 Error Analysis . 119

5.4 Efficient Implementation . 125

5.5 Singular Integration for Pressure and Stress 128

5.6 Evaluation of Nearly Singular Integrals 134

5.7 Singular and Nearly Singular Integral Evaluation for Other Equations 139

5.8 Summary . 141

6 Results and Applications 142

ix

6.1 Results . 142

6.2 Applications . 149

7 Conclusion 152

7.1 Summary . 152

7.2 Future Work . 154

Appendices 158

Bibliography 165

x

List of Figures

2.1 Basic definitions of manifold. 20

2.2 Construction of the charts. 23

2.3 Map ci on each wedge. 23

2.4 The function η(t) used to construct the partition of unity. 25

2.5 Comparison with Catmull-Clark surfaces. 30

2.6 Magnitude of derivatives. 30

2.7 Curvature plots. 31

2.8 Several examples of surfaces produced with our method. 32

3.1 M2M, M2L and L2L translations of FMM. 44

3.2 The equivalent/check surfaces in 2D. 48

3.3 Three translations in 2D. 49

3.4 The equivalent/check surfaces in 3D. 54

3.5 Three translations in 3D. 54

3.6 Lists LB
U , LB

V , LB
W and LB

X of box B. 56

3.7 Kernel independent FMM algorithm, adaptive case. 58

3.8 Operators used in the error analysis. 66

3.9 The domains used in the proof of Lemma 3.1. 71

3.10 Results of the equivalent density approximation in 2D. 79

xi

3.11 Results of the equivalent density approximation in 3D. 80

3.12 Three data sets in 3D. 81

4.1 Gather/Scatter procedure. 99

4.2 Fixed-size scalability results. 105

4.3 Isogranular scalability results. 109

5.1 Parameterization of boundary. 114

5.2 Integration points in Cartesian and polar coordinates. 117

5.3 Singular integral for velocity. 126

5.4 Singular integration for the pressure. 133

5.5 Evaluation of nearly singular integrals. 135

5.6 Nearly singular integration for velocity. 138

6.1 Domains. 145

6.2 Results of Example 1. 146

6.3 Results of Example 2. 147

6.4 Results of Example 3. 148

6.5 Domains in the embedded boundary integral solver. 150

6.6 Interaction between viscous fluid and rigid body objects. 151

xii

List of Tables

3.1 FMM related notations. 46

3.2 Complexity comparison of our method and analytic FMM. 63

3.3 Performance for particles interacting via the single-layer Laplacian

in 2D. 84

3.4 Performance for particles interacting via the single layer Laplacian

in 3D. 85

3.5 Performance of our method for particles interacting via the modified

single layer Laplacian in 3D. 87

3.6 Performance of our method for particles interacting via the modified

double layer Stokes kernel in 3D. 88

3.7 Performance of our method for particles interacting via the single

layer Navier kernel in 3D. 89

3.8 Performance of our method for the 2D single layer Laplacian. . . . 90

3.9 Performance of our method for the 3D single layer Laplacian. . . . 90

4.1 Fixed size scalability. 104

4.2 Isogranular scalability results. 108

4.3 Results from 3000 processor runs. 110

xiii

6.1 Results of Example 1. 146

6.2 Results of Example 2. 147

6.3 Results of Example 3. 148

xiv

List of Appendices

Appendix A

Kernels Tested with FMM

158

Appendix B

Jumps and Integrals

162

xv

Chapter 1

Introduction

1.1 Motivation

The development of fast and robust numerical solvers for the boundary value prob-

lems of the elliptic partial differential equations (PDEs) on complex three dimen-

sional domains has been one of the most important tasks in computational science

and applied mathematics. The applications of such solvers can be found in almost

every corner of the engineering sciences. One of the most important equations is the

Stokes equation:

−µ∆u + ∇p = 0

div u = 0

which governs the behavior of a incompressible viscous fluid with velocity u and

pressure p.

The most popular methods for such problems use finite element discretization on

unstructured meshes. Multigrid methods [15, 86] and domain decomposition meth-

1

ods [17, 18, 82] are often used to precondition the linear system resulting from the fi-

nite element discretization. Nevertheless, applications of these methods to problems

with complex geometry have two major difficulties: the generation of the unstruc-

tured mesh and the construction of efficient preconditioners.

First, 3D unstructured mesh generation is algorithmically difficult and compu-

tationally intensive. Although a lot of great work has been done in this direction

[48, 74, 79], it still remains an area of active and ongoing research. For large-scale

problems, parallel computing is often required in order to obtain sufficient accu-

racy within reasonable time period, therefore the unstructured mesh generation often

needs to be done in parallel as well. This poses an even more challenging problem.

Second, most preconditioners, such as multigrid methods and domain decom-

position methods, are multilevel techniques which necessitates construction of one

or more progressively coarser versions of the finest unstructured mesh used in the

computation. However, the difficulty in automatic generation of such unstructured

mesh hierarchies greatly restricts us from applying these efficient preconditioners to

general problems.

Along with the increase in computational power, researchers have begun to study

time-dependent multi-physics problems with deforming or moving boundaries, such

as the fluid-fluid interaction [78] and fluid-structure interaction [29] problems. At

every time step, usually one or more elliptic PDE boundary value problems need to

be solved on the updated domain. The finite element based algorithms are not optimal

for these problems, since they often require unstructured mesh generation whenever

the existing unstructured mesh becomes distorted.

Another class of methods use boundary integral equation formulations, in which,

the boundary value problem is written as an integral equation form, involving only the

2

quantities defined on the boundary. Compared to the finite element method, the major

advantage of this approach is that there is no need for unstructured volume mesh

generation. The discretization of the integral equations also result in a much smaller

number of unknowns. Moreover, the resulting linear system often has much nicer

spectral properties, which enable the algorithms based on the integral formulation

to demonstrate optimal complexity. These properties make the boundary integral

formulation an attractive and promising approach to model problems with complex

or deforming boundaries.

The boundary integral formulations have three major disadvantages. First, the

linear system resulting from discretization is always dense, which makes it compu-

tationally expensive to perform matrix vector multiplication. Second, the integrals

in these formulations are often singular, which makes it difficult to evaluate these

integrals accurately. Third, the integrals involved are different for various elliptic

PDEs, which often require different implementations for the singular integration of

each equation.

This thesis presents an efficient and high-order boundary integral equation solver

for the Stokes equations. It solves the dense linear system efficiently and integrates

the singular integrals with high-order accuracy. In addition, the algorithmic compo-

nents of this solver have been extended to other constant coefficient elliptic PDEs

with minimal modification.

1.2 Problem Statement

The goal of this thesis is to develop an efficient and highly accurate solver for the

boundary integral equation of the Stokes equation with complex geometry.

3

The problems with non-smooth boundaries are more complicated and not ad-

dressed in this thesis, although the techniques and algorithms we developed can be

extended to address the non-smooth case. We explain our solver for the Stokes

Dirichlet problem. The boundary integral formulation for the Neumann boundary

condition is similar and we comment on their differences in Section 1.4.

The Stokes equations for a Dirichlet boundary value problem can be stated as

follows:

−µ∆u + ∇p = 0 in Ω,

div u = 0 in Γ, (1.1)

u = f on Γ,

where Ω is the 3D fluid domain, Γ the domain boundary, u the velocity field, p the

pressure, and f the Dirichlet boundary condition defined on Γ.

A boundary integral formulation writes the velocity u in Ω as

u(x) =

∫
Γ

D(x, y)ϕ(y) ds(y) (1.2)

[69, 70]. Here ϕ is a function defined on Γ and called the double layer density. D is

the double layer kernel for velocity and defined by

D(x, y) = − 6

8π

(r ⊗ r)(r · n(y))

|r|5 ,

where x ∈ Ω is the observation point, y ∈ Γ is the source point, r = x − y and n(y)

is the outward normal direction of the boundary surface at point y. By introducing

the following operator notation

(Cϕ)(x) :=

∫
Γ

C(x, y)ϕ(y) ds(y),

4

we can write the integral representation as

u(x) = (Dϕ)(x).

As x′ ∈ Ω approaches a boundary point x ∈ Γ, the limit of u(x′), which is usually

denoted as u+(x), is given by:

u+(x) = lim
x′→x

(Dϕ)(x′) =
1

2
ϕ(x) + (Dϕ)(x). (1.3)

Here ϕ(x) is also equal to the jump at x: [[u]](x) = u+(x)−u−(x) where u−(x) is the

limit of (1.2) at x from the exterior of the domain. Given the boundary condition f on

Γ, we obtain the double layer boundary integral equation for the Dirichlet problem

of the Stokes equation [69, 70]:

1

2
ϕ(x) + (Dϕ)(x) = f(x). (1.4)

A boundary integral equation accomplishes two tasks. First, it solves for ϕ using

(1.4). Second, it evaluates u(x) and other related quantities (such as pressure and

stress) at an arbitrary point x in Ω or Γ. For u we can use (1.2) or (1.3) depending on

whether x is in Ω or on Γ. For pressure p and stress s = −pI + µ(∇u + ∇ut), the

equation for x in Ω is given by:

p(x) = (Kϕ)(x) =

∫
Γ

K(x, y)ϕ(y) ds(y),

and

s(x) = (Tϕ)(x) =

∫
Γ

T (x, y)ϕ(y) ds(y),

where the pressure kernel K and the stress T are given in the appendix. For a point

x on Γ, the equations are correspondingly

p(x) =
1

2
[[p]](x) + (Kϕ)(x),

5

and

s(x) =
1

2
[[s]](x) + (Tϕ)(x),

where [[p]] and [[s]] are the jumps for the pressure and stress. It is important to point

out that, in the equations for x on Γ, both integrals have an 1
|r|3 singularity and are to

be understood in the Hadamard sense [39].

There are several advantages of using the integral formulation instead of the dif-

ferential formulation in the numerical computation. First, as we mentioned, both the

constraints and the unknowns are restricted to the boundary Γ. Therefore, there is no

need for unstructured mesh generation, and the number of unknowns to be solved is

much smaller than the number for a finite element solver. Second, (1.4) is an inte-

gral operator of the second kind. The Fredholm alternative states that the spectrum of

such operators are nicely bounded. Therefore, the algebraic system resulting from the

discretization of such equations can be solved using an iterative solver like GMRES

with only a few iterations.

However, boundary integral equations also pose several new challenges as we

pointed out in the previous section. First, D(x, y) is non-zero for all pairs of x

and y, which means that the linear system to be solved is a dense matrix, and each

matrix-vector multiplication in the iterative solver can be costly. Second, the oper-

ators (Dϕ)(x) and (Kϕ)(x) in (1.4) are either weakly-singular or singular integrals

since x belongs to Γ. Our numerical scheme should be able to integrate these sin-

gular integrals with high accuracy. Third, for x ∈ Ω the operator (Dϕ)(x) for the

evaluation of u(x) can have arbitrary sharp peaks as x approaches the boundary Γ.

Developing a scheme to integrate such integrals, independent of the distance between

x and Γ, is far from trivial.

6

1.3 Approach

The approach taken in this thesis is as follows. First, the possibility of a high-order

solver hinges on a high-order smooth surface representation for the domain bound-

ary [16, 34]. Most of the available boundary integral solvers use piecewise linear or

piecewise quadratic representation for the boundary, which is acceptable if the solver

itself is only first or second order accurate. To get high-order accuracy, the bound-

ary representation needs to have at least the same order of accuracy as the targeted

order of accuracy of the boundary integral solver. Moreover, in order to represent

deforming objects, the surface representation should also be free-form and able to

model boundaries with complex topology and geometry. This thesis first presents

a free-form parametric surface representation for modeling smooth manifolds with

arbitrary geometry and topology. We generate the surface based on a set of control

points. The resulting surface is Ck continuous with explicit Ck parameterizations

(k ≥ 2 or k = ∞) over a set of bounded open domains in R2, and has an explicitly

constructed C∞ smooth partition of unity.

We discretize the boundary integral equation using the Nyström method and use a

GMRES solver to solve the resulting linear algebraic system. In a Nyström method,

the integral operator is approximated by a quadrature formula, and the solution of

the integral equation is approximated by the solution of matching constraints at the

quadrature points [2, 47]. Since the essential step of the GMRES solver is the ma-

trix vector multiplication (in our case, the evaluation of the boundary integral at the

Nyström points using the double layer density at the same points), the success of

this approach depends on the ability to integrate the singular kernel accurately. To

construct an efficient and high-order accurate integrators, we face two challenges:

7

evaluating smooth non-adjacent interactions efficiently and evaluating singular adja-

cent interactions accurately. This thesis overcomes the first challenge by developing

a kernel-independent fast multipole method (FMM). In attempting to handle the sec-

ond problem, we develop a method which is similar to, but more general than [16].

The Ck parameterizations and the smooth partition of unity of the boundary surface

are essential to the accurate and efficient integration of our Nyström method.

Finally, we develop a scheme to evaluate the solution at points in the domain or

on the boundary. For points on the boundary, we use the same integrator we used

in the Nyström solver to evaluate the singular integral. We also derive the formulas

for the jumps and use fast Fourier transform (FFT) to evaluate them. To evaluate

the solution everywhere in the domain, we partition the points in the domain into

different regions depending on their distance to the boundary. For points which are

adequately separated from the boundary, we evaluate the solution with an integrator

using a trapezoidal quadrature rule and FMM acceleration. For points which are very

close to the boundary, we compute the integral by first evaluating the field in several

nearby points and then interpolating the solution at the target point.

1.4 Neumann Boundary Condition and Other PDEs

We briefly sketch the boundary integral representation for the Neumann problem

here and comment on how the approach described in the previous section can be

used. The Neumann boundary condition specified in terms of the stress tensor s =

−pI + µ(∇u + ∇ut) is

s · n = g on Γ,

8

where g is a smooth function defined on Γ. In the Neumann case, the velocity field u

is represented using the single layer formulation by

u(x) = (Sϕ)(x) =

∫
Γ

S(x, y)ϕ(y) ds(y),

where ϕ is the single layer density and S the singular layer kernel

S(x, y) =
1

8πµ
(

1

|r|I +
r ⊗ r

|r|3),

where again r = x − y. The integral equation is given in terms of the singular layer

density ϕ and the boundary condition g by:

g(x) =
1

2
ϕ(x) +

∫
Γ

∂S(x, y)

∂n(x)
ϕ(y) ds(y)

=
1

2
ϕ(x) +

∫
Γ

(
− 6

8π

(r ⊗ r)(r · n(x))

|r|5
)

ϕ(y) ds(y).

The singularity of this kernel is of the same type as the one for D. As in the case

of D, this equation is again of the second kind. Therefore, the same approach we

discussed in Section 1.3 can be used to solve this integral equation.

We can extend our approach to several other elliptic PDEs, including the Laplace

equation, the Navier equation and all their modified versions. For all of these equa-

tions, the boundary integral equation formulation takes the same form as (1.4), only

with different double layer kernels D(x, y). The kernels are given in the appendix.

However, for the Navier equation and its modified version, the equations are no

longer integral equations of the second kind anymore, due to the fact that the double

layer kernel D for the Navier equation is singular (instead of just weakly singular

in the case of the Stokes equation). The operator D needs to be interpreted in the

Cauchy sense and is not a compact operator anymore, which means that we cannot

directly apply the Fredholm alternative on such integral equation. However, a similar

9

version of the Fredholm alternative can be applied [63] and the same numerical al-

gorithm adopted in this thesis for the Stokes equations can be utilized on the Navier

equation.

1.5 Contributions and Thesis Organization

This thesis develops an efficient and high-order boundary integral solver for the

Stokes equation with complex geometries. The main contributions of this thesis are:

• A free-form method to model high-order smooth surfaces with arbitrary com-

plex geometry and topology. Surfaces constructed by this method have an

explicit smooth parameterization. They linearly depend on the control points,

have fixed-size support for basis functions, and demonstrate good visual qual-

ity.

• A kernel-independent adaptive fast multipole method in 2D and 3D. This

method is adaptive and uses only kernel evaluation. It exhibits good accu-

racy and efficiency, and has proved error bounds. We also develop a parallel

version of this algorithm which demonstrates good scalability.

• General schemes to evaluate singular integrals and nearly singular integrals.

The scheme for singular integral integration improves upon previous research.

These schemes are independent of the specific kernel, efficient and high-order

accurate.

• All the algorithmic components are kernel-independent and the boundary in-

tegral solvers for other equations can be constructed from them in a blackbox

fashion.

10

This thesis is organized as follows. Chapter 2 describes the new high-order sur-

face representation. Chapters 3 and 4 present the kernel-independent fast multipole

method and its parallel implementation. Chapter 5 describes the Nyström discretiza-

tion based on our surface representation and the general schemes for evaluating sin-

gular integrals and nearly singular integrals. Chapter 6 presents the numerical results

and applications.

1.6 Background

Boundary integral formulation has been used to investigate a lot of physics problems

involving second order elliptic partial differential equations.

For the fluid problems, the boundary integral formulation in prime variables for

the Stokes equations can be found in [46, 69, 70]. In [31, 51, 68], the homogeneous

Stokes problem is solved using a boundary integral representation combined with

multipole-like far-field expansions to accelerate the matrix-vector multiplications.

The Stokes equation can also be posed as a biharmonic problem. Related formula-

tions can be found in [53, 54]. In [34] the homogeneous Stokes problem is solved for

both interior and exterior problems using this formulation. In [42, 78], the velocity

potential formulation is used to solve intefacial flow problems.

The boundary integral formulation has also been used widely to solve physics

problems in electrostatics [44, 45], electromagnetics [16, 55], elastics [63] and scat-

tering theory [11, 16, 83].

In the rest of this section, we review the related research on the numerical solu-

tions of the boundary integral formulation of the second kind for elliptic PDEs. The

11

general form of the equation is:

1

2
ϕ(x) +

∫
Γ

D(x, y)ϕ(y) ds(y) = f(x) or
1

2
ϕ + Dϕ = f. (1.5)

1.6.1 Discretization Methods

The general theory on the integral equations of the second kind has been developed in

the early 20th century. Some good references are [39, 47, 53, 54]. Most of the numer-

ical methods fall into two categories: projection methods and quadrature (Nyström)

methods. The projection methods solve the integral equation by choosing a finite di-

mensional space Φ of functions defined on Γ which is constructed to contain a good

approximation ϕ̄ to the true solution ϕ, and solving for ϕ̄ by satisfying (1.5) in an

approximate sense. The finite dimensional function space Φ is a linear span of a set

of basis functions {ϕ1, · · · , ϕn}. The basis functions are usually locally supported,

in which cases the numerical methods are generally called boundary element meth-

ods. Sometimes, the basis functions are globally supported, such as polynomials,

spherical polynomials and trigonometric polynomials, and these type of methods are

called spectral element methods. We can write ϕ̄ as

ϕ̄ =
n∑

i=1

ciϕi,

and solving the integral equation numerically is equivalent to finding the coefficients

ci.

Depending on the sense in which (1.5) is approximated, the projection methods

can be further classified into collocation methods and Galerkin methods. In the col-

location methods, the residual

r = f − (
1

2
ϕ̄ + Dϕ̄)

12

is required to vanish at a set of points {xi, i = 1, · · · , n} on Γ. This leads to the

linear system:
n∑

j=1

cj

(
1

2
ϕj(xi) +

∫
Γ

D(xi, y)ϕj(y) ds(y)

)
= f(xi), i = 1, 2, · · · , n.

In the Galerkin methods, the residual r is required to be orthogonal to a finite dimen-

sional space Ψ of functions with bases {ψ1, · · · , ψn}. This new space is often chosen

to be the same as Φ. This leads to the following linear system:
n∑

j=1

cj

(
1

2
(ψi, ϕj) + (ψi, Dϕj)

)
= (ψi, f), i = 1, 2, · · · , n.

There have been numerous algorithms and implementations of collocation and Galerkin

methods for integral equations in both 2D and 3D. We refer to [2, 3, 39, 47, 54, 81]

for general descriptions of the collocation and Galerkin methods. For applications of

boundary element methods in 3D case, good references include [14, 19, 39, 92]. Ex-

amples of using spectral element methods in 3D applications can be found in [2, 21].

The quadrature or Nyström methods approximate the integral operator in (1.5)

by numerical integration. Given a quadrature rule with points x1, · · · , xn on Γ and

weights α1, · · · , αn, we approximate the integral Dϕ(x) with

D̄ϕ(x) =
n∑

j=1

αj(x)D(x, xj)ϕ(xj),

where αi(x) can be functions of x though they are mostly constants. The solution of

(1.5) is approximated by the solution of the following operator equation

1

2
ϕ̄ + D̄ϕ̄ = f.

Writing the equation at every quadrature point xi leads to a finite dimensional linear

system
1

2
ϕ̄i +

n∑
j=1

αijD(xi, xj)ϕ̄j = f(xi),

13

where αij = αj(xi) and ϕ̄i = ϕ̄(xi). Nyström methods are widely used for 2D

problems, in which case the integral in (1.5) is on a 1D periodic domain. High-

order integrators with exponentially accurate trapezoidal rule and other high-order

quadrature rules are the optimal tools to treat these boundary integrals. Detailed

treatments can be found in [2, 3, 39, 47]. The situation changes drastically if we

move to 3D problems, in which case there are no straightforward quadrature rules

available for the integrals in (1.5). There are two difficulties: First, the integrand

is always singular. Second, even for smooth functions, trapezoidal rules cannot be

used, and the development of other high-order quadrature rules is non-trivial. Only

recently, [16] presents an algorithm to solve the 3D acoustic scattering problem.

1.6.2 Techniques for Fast Solvers

The discretization of the boundary integral equations always leads to dense matrices.

The matrix-vector multiplication, if carried out in the direct way, requires O(N2)

operations, where N is the number of unknowns. In this case, even the iterative

solvers, such as GMRES, can be quite expensive for real applications. For large-

scale problems, we need to develop efficient schemes to perform the matrix vector

multiplication. The basic idea is to exploit the fact that the kernel D(x, y) is very

smooth when x and y are well separated. Most of the methods fall into three classes.

The first class is based on the fast Fourier transform (FFT). These methods embed

the boundary into a Cartesian grid. The sources at the discretization nodes (usually

the basis function in projection methods or the Nyström points in Nyström methods)

are transfered onto the Cartesian grid in a way that the potentials produced by the

original sources and the ones on Cartesian grids are sufficiently close for the region

far away from the sources. Then the far interaction by the grid sources is naturally

14

formulated as a 3D convolution and FFT is used to compute this convolution effi-

ciently. These methods are easy to implement and work for different PDEs without

much modification. The major disadvantage of this method is that it is not adaptive

due to the use of the Cartesian grid. Examples of this class include [16, 55].

The second class of methods [6, 22] is based on wavelet decomposition. The idea

is to use a redundant wavelet representation which automatically zeros out the far

field interaction. These methods are adaptive and have optimal complexity. However,

the difficulty with these methods is the construction of appropriate wavelet bases on

the boundaries of the complex domains. Moreover, the application of these methods

is usually restricted only to Galerkin methods.

The third class of methods is based on the fast multipole method (FMM) [20,

35, 36]. The idea is to construct efficient representations for the potential generated

by a cluster of sources and also efficient translations between these representations.

Moreover, this is done in a hierarchical fashion so that the algorithm has optimal

complexity O(N). This algorithm is fully adaptive and highly accurate. The disad-

vantage is that it requires different implementations for different equations. Chapter

3 of this thesis addresses this issue. Related research about the FMM is reviewed in

that chapter.

15

Chapter 2

High-order Surface Representation

Scheme

This chapter describes a high-order surface representation scheme which is used to

model the boundaries of the computational domains. These boundaries are required

to have high-order smooth parameterizations in order to make it possible for the

solver to achieve high-order accuracy.

2.1 Introduction

Much of the work on smooth surface representations, excluding variational surfaces,

is based on the paradigm of stitching polynomial patches together. While subdivision

surfaces are generally defined as limits of recursive refinement algorithms, the sur-

faces produced by most popular schemes can still be interpreted as infinite collections

of stitched spline patches.

In this chapter we take a different and often neglected approach based on the man-

16

ifold construction of [38]. We demonstrate how this approach can produce with rel-

ative ease a number of desirable properties which are hard to achieve simultaneously

with polynomial patches, subdivision surfaces or variational surfaces. Specifically,

our surfaces are C∞-continuous with explicit nonsingular C∞ parameterizations, are

at least 3-flexible (i.e., can have arbitrary derivatives of order up to three) at control

vertices, depend linearly on control points, have fixed-size local support for basis

functions, and have good visual quality.

This surface representation was developed with its application to the boundary

integral equations. It provides a high-order, smooth and nonsingular parametrization

to ensure fast convergence of quadrature rules on surfaces, i.e., for the parametriza-

tion to have good mathematical quality; at the same time, it is essential to be able

to model objects of arbitrary shape and obtain good visual quality without additional

processing.

We have observed that even all existing flexible C2 constructions are quite com-

plex, and while higher-order constructions exist, despite having nice mathematical

properties few were ever fully implemented and visual surface quality was typically

inferior to lower-order schemes.

Subdivision surfaces are a notable exception: they were not constructed to satisfy

a specific set of requirements. Rather, it was observed that the subdivision algorithms

for splines generalize well to arbitrary control meshes, and the visual quality of the

surface is adequate in an intuitive sense, except near high-valence vertices. Analy-

sis of properties came later and is quite complex: even obtaining a C1 nonsingular

parametrization is nontrivial and requires inversion of the characteristic map [84].

In our approach, we relax the requirement of representing surfaces using poly-

nomial patches to simplify the construction needed to achieve good mathematical

17

quality, and we ensure that our surfaces approximate closely the shape of subdivision

surfaces to achieve acceptable visual quality for a similar range of vertex valences.

We believe that due to the properties enumerated above, representations of this

type provide the most convenient basis for “black-box” surface approximation soft-

ware: the user provides an input control mesh, and the surface and its parametric

derivatives of any order can be evaluated at any point. While the black-box approach

is not the most efficient, it is the most convenient and reliable one for applications

requiring a large variety of algorithms to operate on surfaces.

2.2 Related Work

We are not aware of any C∞ constructions for surfaces with general control meshes.

The work on computational representations of surfaces based on manifolds is rela-

tively limited. The idea was introduced in [38]. More recently, [58] have proposed a

Ck construction based only on polynomials.

Extensive literature exists on spline-based constructions of different types; Ck

constructions include S-patches [49], DMS splines [76], freeform splines [71] and

TURBS [72]. DMS splines were developed to the greatest extent; as a large number

of knots and control points need to be introduced for each triangle, an additional al-

gorithm is needed to position these points if only an initial mesh is given. TURBS

are based on singular parameterizations; both for free-form splines and TURBS, ad-

ditional degrees need to be set which can be done using fairing functionals and pre-

computed matrices, similar to the technique that we use. There are numerous C2

constructions, e.g. [37], [88], [60], [41],[12], and most recently [62]. There is an

even larger number of C1-constructions; excluding subdivision surfaces, which are

18

C2 away from isolated points, these constructions rarely yield surfaces of acceptable

quality. In all cases, the required polynomial degree and number of additional patch

control points to be set rapidly grows with smoothness.

Unfortunately, in most cases it is impossible to compare the visual quality of the

resulting surfaces to our construction. The implementation is complex and only few

images of simple objects are provided in the papers, as the stated goal in most cases

is to obtain surfaces satisfying a specific mathematical condition.

The literature related to subdivision surfaces is extensively reviewed in the book

[89] and in the course notes [96]. Direct fixed-time evaluation of subdivision surfaces

was introduced in [84], which is the only known approach to directly cast subdivision

surfaces in parametric form. [61] describes a technique for approximating Catmull-

Clark surfaces with a collection of bicubic patches joined with C1 continuity.

2.3 Construction

In this section, we start with the basic definitions of manifolds. We then give an

overview of our construction, followed by three key components of the construction.

2.3.1 Manifold Structure

We consider meshes consisting of quadrilaterals, although this is not critical for our

construction: it can be carried out in a similar way using triangle meshes and Loop

subdivision surfaces [96], for example. We focus on the quadrilateral case as it has

more relevance for geometric modeling applications.

The foundation of our approach is a simple construction of a C∞-manifold as-

sociated with a mesh. The basic definition of a manifold is as follows: a set M

19

has 2D manifold structure, if a collection of charts (Ci, χi) is defined, where Ci are

open domains in the plane, χi are one-to-one maps Ci → M , such that the images

Pi = χi(Ci) cover all of M . M is a C∞ manifold if the transition maps from chart

to chart

tji = χ−1
j ◦ χi : χ−1

i (Pi ∩ Pj) → χ−1
j (Pi ∩ Pj)

defined for pairs of charts for which χi(Ci) and χj(Cj) intersect, are C∞. Detailed

discussion of manifolds is given in [9, 13, 23, 38]. Notice that in our definition, the

charts are the maps from open sets in R2 to the manifold, while in most differential

geometry books they are defined the other way around. The reason is that, in this

thesis, we focus on the smooth parameterization of the surface (which is essential

to the accurate integration) rather than the global intrinsic properties of the manifold

(which are the main problems in differential geometry).

In our construction, we use the control mesh as the domain M . For this we need

to assume that the mesh has no self-intersections. This assumption is not crucial (we

can construct the domain in a more abstract manner) but simplifies explanations. It

has no implications for implementation.

Ci

Pi

χi

Cj

Pj

tij

M

χj

Figure 2.1: Basic definitions of manifold.

20

Another important idea related to manifolds is the partition of unity (POU). A set

of smooth functions wi each defined on M , and having compact support, is called a

partition of unity, if
∑

i wi(m) = 1 for m ∈ M . In our case, we require the support

of wi to be contained inside Pi. Therefore, wi ◦χi is a smooth function defined on Ci

and vanishes on the boundary of Ci.

2.3.2 Overview of the Construction

The general approach is close to the one in [38]. We construct functions gl
i : Ci →

R3, defining the local geometry on each chart; then, we use a partition of unity to

define the global geometry. The complete surface at m in M is defined by

∑
i

wi(m) · (gl
i ◦ χ−1

i)(m)

where i ranges over the charts such that m ∈ χi(Ci). However, in practice it is

evaluated on individual charts Ci via

gi(x) =
∑

j

wj(χi(x)) · gl
j(tji(x)) x ∈ Ci. (2.1)

where j ranges over the charts which overlap with Ci, and gi defines the global ge-

ometry in contrast to gl
i which defines the local geometry.

Note that the complexity of evaluation of this expression is determined by three

factors: complexity of transition maps tij , weights wj and geometry functions gl
j .

In our case, the transition maps can be expressed in complex form as zα (up to a

rotation), the weights are piecewise exponential and C∞, and the geometry functions

are polynomials of degrees proportional to the valence of vertices corresponding to

the charts. Another important observation is that gi(x) is C∞ if all components are

C∞. Next, we discuss each component separately.

21

2.3.3 Charts and Transition Maps

As a basis for our construction, we use the conformal atlas for meshes. While its

variations can be found in the literature (e.g. [24] in the context of parametrization),

a complete description is not easily available, and we present it here. We define

charts per vertex. Each chart domain is a curved star shape Di, shown in Figure 2.2.

The overlap region between the images of two charts in the control mesh is two

faces of the mesh. Rather than constructing the maps χi we construct the maps χ−1
i .

The chart construction proceeds in two steps: first, the faces adjacent to a given

vertex are mapped piecewise bilinearly to the plane (maps Li to domains Si). Then a

transformation ci is applied to each wedge of the regular star Si; ci squeezes it so that

it becomes a conformal image of square. Maps ci have simple explicit expressions for

each wedge. As illustrated in Figure 2.3 for the shown choice of coordinate system

these maps are compositions of a linear map lki
with matrix

cos(π/4)/ cos(π/ki) 0

0 sin(π/4)/ sin(π/ki)

where ki is the valence of Di and a simple map gki
, which using standard identifi-

cation of the plane with complex numbers z = x + iy, can be written as z4/ki . The

chart maps χ−1
i are compositions ci ◦ Li.

This atlas has an important property: all transition maps are conformal, in partic-

ular, C∞. In fact, the transition maps, for a certain choice of the coordinate systems

can be written as zk1/k2 . The fact that transition maps have simple expressions is very

important; it allows as to define the geometry in an efficiently computable way. The

proof of C∞ continuity for the transition map is outlined as follows:

Let’s fix coordinate systems in the domains Si, i = 1, 2 depicted in Figure 2.2

with x direction along the common edge of two shaded wedges. Let L′
i, i = 1, 2 be

22

c1

L1

S1 S2

D1 D2

L2

c2

transition map

Figure 2.2: Construction of the charts. The maps Li, i = 1, 2 are piecewise bilinear;

the maps ci are constructed on individual wedges as shown in Figure 2.3.

lk z4/k

linear conformal

Figure 2.3: On each wedge, the map ci is a composition of a linear map and the map

z4/ki .

the piecewise linear maps from a pair of adjacent unit squares. We also assume the

coordinate system x axis to be along the common edge. A similar choice is made

for the domains Di. The maps ci for these coordinates can be written as R(π/ki) ◦
gki

◦ lki
◦R(−π/ki) for the top quad and R(π/ki) ◦ gki

◦ lki
◦R(−π/ki), where ki is

the valence of the corresponding vertex, R(α) is the rotation by the angle α, and the

maps lki
and gki

are defined in Section 2.3.

The transition map c2◦L2◦L−1
1 ◦c−1

1 can then be written as c2◦L′
2◦L′

1
−1◦c−1

1 , with

the mesh maps itself eliminated. This can be done, as the composition of a linear and

a bilinear map is bilinear, and the maps are defined uniquely by the correspondence

of the domain corners, Li = L′
i ◦ L, so the bilinear part L is factored out.

23

Next, we observe that the two piecewise linear parts of L′
i are equivalent to

R(π/ki)◦ l−1
ki

◦R(−π/4) and R(−π/ki)◦ l−1
ki

◦R(π/4) in the chosen coordinate sys-

tem. Therefore, the transition map can be rewritten, for example on the top square, as

R(π/k2)◦gk2◦g−1
k1

◦R(−π/k1). In the complex form, the rotation is just a multiplica-

tion by exp(iα). The transition map is (exp(−iπ/k1)z)k1/k2 ◦ exp(iπ/k2) = zk1/k2 .

Exactly the same can be shown for the bottom square.

2.3.4 Partition of Unity

The partition of unity is a crucial element of our construction: the quality of surface

is defined not only by the quality of the geometry functions but also how well they

are blended. Our empirical observations are that the partition of unity cannot have

transition regions which are too steep, and, even more importantly, its support shape

should match the shape of the star-like shape of the corresponding chart.

We build the partition of unity from identical pieces defined initially on the stan-

dard square [0, 1] as a product of two identical one-dimensional functions η(u)η(v).

The function η is defined as follows [16]:

η(t) =

1 : 0 ≤ t ≤ δ

h((t−δ)/a)
(h((t−δ)/a)+h(1−(t−δ)/a))

: δ < t < 1 − δ

0 : 1 − δ ≤ t ≤ 1

where a = 1 − 2δ and h(s) = exp(2 exp(−1/s)/(s − 1)). The resulting function is

quite close in appearance to a Hermite spline (Figure 2.4).

We set δ > 0 for the following reason: When δ = 0, the transition maps has

unbounded derivatives at the boundary of the overlapping charts. While it is possible

that the composition of the transition map and the partition of unity has bounded

24

0

1

1

Figure 2.4: The solid line is the function η(t) used in the construction of the partition

of unity. The dashed line is a Hermite spline which is close to η(t).

derivatives if the partition of unity has sufficiently fast decay, we simply choose the

partition of unity to be constant near the boundary. In our implementation, we use

δ = 1/8.

Once the function is defined on the square, we obtain a weight, defined on the

whole chart as follows. First, we use a rotation by π/4 combined with the map

g−1
k = zk/4 to remap η(u)η(v) to a single wedge. The function is defined by rotational

symmetry on the rest of the chart. Finally, we use the chart to move the resulting

function onto M to get the partition of unity.

The resulting POU function is C∞ on the whole chart. One can easily verify that

derivatives of all orders of η(u)η(v), defined in Section 2.3 involving v, are zero at

the boundary v = 0, and same is true for u = 0 by symmetry. Remapping to a wedge

using a non-degenerate C∞ map does not change the fact that all derivatives vanish

identically, except derivatives along the boundary as the map that we use may not be

differentiable at zero; however, in a δ-neighborhood of zero the function η(u)η(v) is

constant. By symmetry, these match at all orders after rotations extending the map to

all wedges.

25

2.3.5 Defining geometry.

We define geometry using polynomials. The basic idea is to apply several subdi-

vision steps to define the overall coarse shape of the surface, and use polynomials

in the chart to fit this shape in the least square sense. As the fit is linear and the

control points of refined subdivision mesh depend linearly on the control points of

the original mesh, the transformation matrix converting control points to the poly-

nomial coefficients can be precomputed. Thus, in practice the process is reduced to

assembling a vector of control points and multiplying them by a matrix.

Every control point of the refined mesh after two Catmull-Clark subdivision steps

can be assigned to the points with bilinear coordinates (i/4, j/4) in each sector of

the star Sk. For each vertex v, we remap these points in Sk to the chart domain Dk

by using the map ci. There are m = 12k + 1 points inside Dk which we denote

x0, . . . xm−1. We compute 3D limit positions for these points in the same order, and

denote them s0, . . . , sm−1. Our goal is to define a geometry function gl such that

differences gl(xi) − si are minimized in the least squares sense.

We use the monomials of degree ≤ d = �min(14,
√

2(12k + 1))� as the basis

functions in the fitting process. The choice of 14 as the maximal degree is empirical:

using higher-order polynomials results in lower quality surfaces for high valences.

We denote these monomials p0, . . . , pn−1 where n = d(d + 1)/2 is the number of

monomials used in the fitting. We use the least square fit to solve for the basis coef-

ficients aj , such that gl =
∑n−1

j=0 ajpj . Let a be the vector of coefficients aj , s be the

vector of values si and U be the m × n matrix of monomial values pj(xi) at points

xi. Then the least squares fit minimizing ‖Ua − s‖2 is given by

a = U+s

26

where (·)+ denotes pseudoinverse. The n×m matrix U+ only depends on the valence

k since xi and pj depend only on k. Therefore, it can be precomputed once and used

for all charts with the same valence.

Flexibility of the surface at vertices in the center of the charts is easy to show, as

one can construct specific control point configurations yielding various low-degree

polynomials in a direct form.

We note that the above construction is the simplest among those we have tried; its

disadvantage is the relatively large size of Uk, which can be reduced by using a more

careful choice of polynomial bases and the singular value decomposition (SVD) from

n to 3k + 1 without loosing surface quality.

2.3.6 Alternatives

Although the construction described in the previous sections generates C∞ continu-

ous surfaces with good visual quality (Section 2.4), alternative choices for every step

of the construction are available and can potentially generate better surfaces.

In the chart definition step, instead of using the conformal map z4/ki in the con-

struction of the map ci from Si to Di, we can use any function of the form

|z|p(z

|z|)
4/ki ,

where p is positive. The chart maps and transition maps associated with this function

are still C∞ continuous although not conformal any more. One preferable choice of p

is log2(1/λki
) where λki

is the second largest eigenvalue of the subdivision matrix of

the Catmull-Clark subdivision scheme at valence ki. This choice makes the domain

Di very close to the shape of the characteristic map [96] of the Catmull-Clark scheme

and therefore the resulting map gi are very close to the standard C1 parameterization

27

of the subdivision surface.

In cases when the C∞ property of the generated surface is not important, we can

also use spline functions as function η to construct the partition of unity (Figure 2.4).

The resulting surfaces will have the same order of continuity as the spline function

assuming the rest parts of the construction remain unmodified.

Using polynomial bases is only one way to define the local geometry. More ad-

vanced methods include using trigonometric splines [75], radial basis functions [87]

and other interpolation methods. Another idea is to approximate the product of sub-

division surface geometry and the POU in each domain Ci, since only their product

is used for the construction of the global geometry. In this case, 2D trigonometric

polynomials can be used as the approximation bases.

2.4 Results

Implementing our scheme is relatively simple: our basic implementation has 1,500

lines of code including subdivision but excluding SVD code.

In most images, we use a reflection map on a part of the surface to show the sur-

face quality. Figure 2.5 shows a detailed comparison of the surfaces with Catmull-

Clark surfaces near valance 5, valence 8 and valence 12 vertices. The visual quality

of our surfaces is close to the one of Catmull-Clark surfaces, except in the imme-

diate neighborhood of the vertex, where reflection lines show lack of C2-continuity

of Catmull-Clark. This can also be observed in parametrization images, where a

uniformly spaced checkerboard in the parametric domain is mapped to the surface.

Figure 2.6 shows the sum of the magnitudes of the derivatives of the parametriza-

tion on a chart, to demonstrate the variation. We note that starting from fourth deriva-

28

tives the behavior is dominated by the behavior of the derivatives of the partition of

unity functions.

Figure 2.7 shows the principal curvature directions, Gaussian curvature, mean

curvature at various charts on several examples.

Figure 2.8 shows several examples of surfaces obtained from various control

meshes. In all cases, overall quality is quite similar to Catmull-Clark surfaces; as

expected, with smoother reflection lines near extraordinary vertices as in Figure 2.5.

29

our surface

our surface

Catmull-Clark

Catmull-Clark

5

8

12

Figure 2.5: Left: comparison of parameterizations: chart for our surface and Stam’s

for Catmull-Clark. Right: Surface behavior near extraordinary points for valence

5,8,12.

1.3

1.5

0.17

1.4

2.0

5.7

Figure 2.6: Maps of the total derivative magnitudes for the first, second and third

derivatives.

30

Figure 2.7: Principal curvature directions, Gaussian curvature and mean curvature.

For each example, the first figure shows the principal curvature directions in the

chart of an extraordinary vertex. Every cross represents the two principal curvature

directions. Notice the smooth transition of the directions (away from the umbilical

points). The second and third figures show the Gaussian and the mean curvatures.

31

Figure 2.8: Several examples of surfaces produced with our method.

32

2.5 Summary

The development of the construction described in this paper was driven by the need

for high-order surface representation from the the boundary integral solver for the

Stokes equation. It nicely meets its needs while being a completely general tool.

The surfaces generated by our construction are C∞ smooth with explicit C∞ param-

eterization, depend linearly and locally on control points and exhibits good visual

quality.

33

Chapter 3

Kernel Independent Fast Multipole

Method

This chapter describes a kernel-independent fast multipole method (FMM). This al-

gorithm is used to evaluate the non-adjacent interaction in the Nyström solver of the

boundary integral formulation of the Stokes equation.

3.1 Introduction

In attempting to evaluate the integrals deriving from the boundary integral formu-

lation of the Stokes equations, we need to evaluate the non-adjacent interaction ef-

ficiently without compromising the accuracy of the integrator. After discretization,

this problem becomes a special case of a more general problem: the evaluation of

pairwise interaction on a large set of particles, where the interaction corresponds to

the potential related to the fundamental solution of elliptic partial differential equa-

tions. Many other methods in computational physics (e.g., vortex methods, molecular

34

dynamics) are also based on the evolution of particle systems with this pairwise inter-

action. The most important among these kernels is the single-layer Laplacian. Other

kernels include the the kernels of the Helmholtz and Navier operators, their modified

versions, and their derivatives (double-layer and hypersingular kernels).

Particle formulations result in dense linear algebraic systems because all pairwise

interactions have to be computed. This is a significant bottleneck since for N particles

it results in a O(N2) computation. In order to make large scale problems tractable

it is essential to efficiently compute these interactions. A number of algorithms have

been proposed for this purpose. The fast multipole method (FMM) has been one of

the most successful, especially for non-uniform particle distributions.

The method presented in this chapter is a new kernel-independent FMM-like al-

gorithm. Our algorithm has the structure of the adaptive FMM algorithm [32] but

requires only the kernel evaluations, and it does not sacrifice the efficiency of the

original algorithm. The crucial element of our approach is to replace the analytic

expansions and translations with equivalent density representations. These represen-

tations are computed by solving local exterior and interior problems on circles (2D),

spheres or cubes (3D) using the integral equation formulations. We demonstrate the

efficiency of our method in both 2D and 3D for many kernels: the single and dou-

ble layer potentials of the Laplacian, the modified Laplacian, the Navier, the Stokes,

and their modified variants. Our method has O(N) asymptotic complexity, and, like

analytic FMM, works well for non-uniform particle distributions.

Synopsis of the new method. The basic structure of our method follows [35], the

original fast multipole method, which we briefly review in Section 3.2. FMM consists

of the following steps:

35

1. generation of a hierarchical tree partitioning of the computational domain;

2. accumulation of the multipole expansions for the far field by a postorder traver-

sal of the tree;

3. translation of the multipole moments to the local expansions;

4. construction of local expansions by a preorder traversal of the tree;

5. evaluation of the far field action on the particles using local expansions;

6. evaluation of the near field interactions.

The same steps are used in our algorithm. However in the postorder traversal of

the tree, the multipole expansion construction is replaced by solving local exterior

inverse problems. To represent the potential generated by particles inside a box, we

use a continuous distribution of an equivalent density on a surface enclosing the box.

To find this equivalent density on the surface, we match its potential to the poten-

tial of the original sources at another surface in the far field. The translations are

done by direct evaluation on the far field, sparsified with SVD or FFT. During the

preorder traversal of the tree, we evaluate the far field interaction on a surface enclos-

ing a target box, and solve an interior Dirichlet-type integral equation to compute an

equivalent density. Then we use this density to represent the potential inside a target

box.

Our method does not require implementation of analytic expansions for the ker-

nel, it only requires their existence, and exclusively uses kernel evaluations. Like

FMM, our algorithm is recursive and has an O(N) complexity. Additional proper-

ties like scale invariance and rotational symmetries of kernels can be used to further

accelerate the translation step, as in the case of the standard FMM.

36

Related work. The description of the original fast multipole algorithm can be

found in [35], and [73]. Although the method is highly successful in two dimen-

sions, the three-dimensional version of the original method was inefficient. Efficient

extensions in three dimensions were realized only recently [20]. For these reasons

many researchers tried to devise algorithms which were hybrids of tree codes and

FMM, in order to combine the high accuracy of FMM methods with the simplicity

of tree codes. In addition, the extension of the FMM to more general kernels like

the modified Laplacian [33], the Stokes [28] , and the Navier [27, 95] operators can

be quite cumbersome, due to the need to implement efficient translation operators.

Below, we only review algorithms that could be used to develop kernel independent

methods.

The idea of using a set of equivalent sources was first introduced in [1]. In that

paper, the far field is represented as the solution to an exterior Dirichlet problem on a

ball surrounding the particles using the exact Green’s function (Poisson formula) for

Laplacian. The method is somewhat easier than FMM to implement, but requires the

analytic form of the Green’s function for each kernel, which may not be available in

the general case.

In [5] instead of using the exact Green’s function, a number of equivalent densi-

ties are placed on a Cartesian grid in each source box; these densities are computed

analytically by matching a number of multipole moments in the multipole expan-

sion series of the original source densities. An important feature of this method is

the fact that the Cartesian grid allows the use of FFT to accelerate the multipole to

local-expansions translations. However, the method is not kernel-independent since

for different kernels different expansions have to be constructed. The same idea is

used in [50], and like in Anderson’s method the densities are distributed over a ball

37

containing the source box.

The idea of equivalent densities is also used in the precorrected FFT method,

[66]. The equivalent densities are distributed over a regular grid, so that the far field

convolutions can be computed with FFT instead of FMM. The term “precorrected”

is related to the computation of the local interactions: the subtraction of the local in-

fluence of the equivalent densities and the addition of the near field interactions. The

regular grid sources are computed by matching the field at selected checking points,

usually located on a ball enclosing the original sources. In [16], a precorrected FFT

method is applied to the Helmholtz kernel, but the equivalent sources are distributed

along the faces of an enclosing cube, and three FFTs along the coordinate system

planes are used to compute the far interaction. FFT-based methods are very efficient,

often faster than FMM due to much smaller constants. For uniform distributions of

particles FFT is likely to be preferable and it is kernel-independent. However, in the

case of highly irregular particle distributions FMM is more efficient.

A hybrid method for kernel independent matrix-vector multiplication algorithm

was proposed in [44] and [45]. Based on the fact that large blocks of the particle inter-

action matrix are low rank, this method uses singular value decomposition to sample

and sparsify these blocks. It can be applied recursively and attains a O(N log N)

complexity. We have applied this method on the Stokes and Navier operators [8] [7]

with very satisfactory results in both accuracy and speed. One serious shortcoming of

this method is the high setup cost. For problems with static particle distributions this

is not a concern, but it becomes a bottleneck for problems with time evolving parti-

cles. The SVD approach was been further explored in series of papers [93, 94, 30] to

obtain a kernel-independent method that does not require the kernel to be a solution

of an elliptic PDE or a convolution. However, due to its generality, as the authors of

38

these papers assert, the method does not achieve the efficiency of FMM for kernels

that are related to fundamental solutions of PDEs.

Another method for fast matrix multiplication is based on higher-order Taylor

expansions in Cartesian coordinates. This approach is not suitable for high accu-

racy computations because is computationally expensive (for pth-order accuracy it

requires O(pd) expansion terms). However, it is a kernel-independent method (the

higher-order expansions can be easily obtained by differentiation). For example, it

has been used to accelerate problems with the Stokes kernel [67].

As we pointed out in Chapter 1, another class of kernel-independent approaches

used in solving boundary integral equations is based on wavelet decompositions,

combined with a Galerkin scheme. This approach is quite promising, since it has

the same complexity with FMM, and allows the constructions of efficient precondi-

tioners for the resulting systems. However, it is hard to compare directly to FMM,

as different trade-offs are made: FMM is a “bottom-up” approach, and is relatively

insensitive to the distribution of samples. Adaptive wavelet methods are “top-down”

but require samples to be located on a surface satisfying certain assumptions, which

may not hold in the general case.

The rest of this chapter is organized as follows. In Section 3.2 we briefly review

the classical FMM algorithm for the two dimensional Laplacian. In Section 3.3 we

present the new algorithm and its implementation; in Section 3.4 we present an error

analysis for the algorithm, and in Section 3.5 we present numerical results for several

different scalar and vector kernels in two and three dimensions.

39

3.2 Review of the Fast Multipole Method

Given N source densities {ϕi} located at N points {yi} in Rd (d = 2, 3), we want

to compute the potential {ui} at N points {xi} induced by a kernel G (single layer,

double layer or other kernels of a elliptic PDE) using the following relation:

ui = u(xi) =
N∑

j=1

G(xi, yj)ϕ(yj) =
N∑

j=1

Gijϕj, i = 1, · · · , N.

We use x to refer to target locations and y to refer to source locations, but in general

{xi} and {yi} can be the same set of points.

Direct implementation of this summation gives an O(N2) algorithm. For a large

class of kernels and under reasonable assumptions on the particle distribution, FMM

requires O(N) work to compute an approximate potential with a prescribed relative

error, [55], [20]. The constant in the complexity estimate depends on the relative

error (the absolute error of the potential is bounded by the product of the relative

error and the total charge).

We will use the single layer Laplacian kernel to describe FMM. In two dimen-

sions we have G(x, y) = − 1
2π

log ρ, with r = x−y, and ρ = |r|. In the FMM context

it is convenient to use G(x, y) = Re(log(zx−zy)) where zx and zy are complex num-

bers corresponding to x (target) and y (source) points on the plane. The idea of FMM

is to encode the potentials of a set of source densities using the multipole expansion

and local expansion at places far away from these sources.

Multipole expansion. Suppose the m source densities {ϕj} located at {zj}, with

|zj − zC | < r, then for any z with |z − zC | > R, the induced potential u(z) can be

40

approximated by:

u(z) = a0 log(z − zC) +

p∑
k=1

ak

(z − zC)k
+ O(

rp

Rp
) (3.1)

where {ak, 0 ≤ k ≤ p} satisfies

a0 =
m∑

j=1

ϕj and ak =
m∑

j=1

−ϕi(zi − zC)k

k
.

The vector of coefficients {ak, 0 ≤ k ≤ p} is called the multipole expansion.

Local expansion. Suppose the m source densities {ϕj} located at {zj}, with |zj −
zC | > R, then for any |z − zC | < r, the induced potential u(z) can be approximated

by:

u(z) =

p∑
k=0

ck(z − zC)k + O(
rp

Rp
) (3.2)

where {ck, 0 ≤ k ≤ p} satisfies

c0 =
m∑

j=1

ϕj log(zC − zj) and cl =
m∑

j=1

−ϕj

l · (zj − zC)l
.

The vector of coefficients {ck, 0 ≤ k ≤ p} is called the local expansion.

In both expansions, p is usually a small constant determining from the desired

accuracy of the result.

FMM employs the above representations in a recursive way. The computational

domain, a box large enough to contain all source and target points, is hierarchically

partitioned into a tree structure (a quadtree in 2D or an octtree in 3D). Each node of

the tree corresponds to geometric box (square or cube). The tree is constructed so that

the leaves contain no more than a prespecified number of points. For each box, the

potential induced by its source densities is represented using a multipole expansion,

while the potential induced by the sources from non-adjacent boxes is encoded in a

41

local expansion. For a prescribed relative error ε, the number of expansion terms p is

chosen to be | logc ε| where c is (4 −√
2)/

√
2 in 2D and (4 −√

3)/
√

3 in 3D.

Not only these expansions (multipole and local) can be used for efficient eval-

uation, but translations between these expansions are also available which make an

O(N) algorithm possible. In particular, the following types of translations are used:

M2M: The multipole to multipole translation transforms the multipole expansions

of a box’s children to its own multipole expansion.

M2L: The multipole to local translation transforms the multipole expansion of a box

to the local expansion of another non-adjacent box.

L2L: Finally, the local to local translation of the local expansion of a box’s parent

to its own local expansion.

M2M translation. Suppose zC is the center of a box and zM is the center of its

parent. Suppose further {ak} is the multipole expansion at zC , then the multipole

expansion at zM can be written as:

u(z) = b0 log(z − zM) +

p∑
l=1

bl

(z − zM)l
+ O(ε),

where {bk, 0 ≤ k ≤ p} satisfies

b0 = a0 and bl = −a0(zC − zM)l

l
+

l∑
k=1

ak(zC − zM)l−k

(
l − 1

k − 1

)
.

M2L translation. Suppose zM and zL are the centers of two non-adjacent boxes

on the same level, {bk} is multipole expansion at zM . Then the local exp-anion at zL

transformed from {bk} is:

u(z) =

p∑
l=0

cl(z − zL)l + O(ε),

42

where {ck, 0 ≤ k ≤ p} satisfies

c0 = b0 log(zL − zM) +

p∑
k=1

bk

(zM − zL)k
(−1)k

cl = − b0

l · (zM − zL)l
+

1

(zM − zL)l

p∑
k=1

bk

(zM − zL)k

(
l + k − 1

k − 1

)
(−1)k.

L2L translation. Suppose zT is the center of a box and zL the center of its parent.

Suppose further {cl} is the local expansion at zL, then the local expansion at zT can

be written as

u(z) =

p∑
l=0

dl(z − zT)l + O(ε),

where {dk, 0 ≤ k ≤ p} satisfies

dl =

p∑
k=l

ck

(
k

l

)
(zT − zL)(k−l).

Using the tree structure, FMM consists of two basic steps. During the first step,

the upward pass, the tree is traversed in postorder (i.e., the children of a box are

visited before the box itself) to compute the multipole expansion for each box. At the

leaves, the multipole expansions are built following Equation (3.1) (this procedure

is also called the source to multipole (S2M) translation). At each non-leaf node, the

multipole expansion is shifted from its children using the M2M translation. In the

second step, the downwards pass, the tree is traversed in a preorder (i.e., the children

of a box are visited after the box itself) to compute the local expansion. For each box

B, the local expansion is the sum of two parts: first, the local-to-local transformation

collects the local expansion of B’s parent (the result condenses the contributions

from the sources in all the boxes which are not adjacent to B’s parent), and second,

the multipole-to-local transformation collects the multipole expansions of the boxes

which are the children of the neighbors of B’s parent but are not adjacent to B (these

43

boxes compose the interaction list of B). The sum of these two parts encodes all the

contribution from the sources in the boxes which are not adjacent to B itself. At the

end, for each box, the far interaction, which is evaluated using the local expansion at

this box (this step is called the local to target (L2T) translation), is combined with the

near interaction evaluated by iterating over all the source points in the neighborhood

of the target box to obtain the potential (see Figure 3.1).

M2M M2L

L2L

z
M

z
S

z
L

z
T

Figure 3.1: The multipole expansion at zS encodes the influence from the source

densities (marked with “+”) to the far field. The local expansion at zT encodes the

influence from the far field to the target points (marked with “∆”). M2M translation

transforms between the multipole expansions of the boxes in adjacent levels (zS to

zM), M2L translation transforms multipole expansion of a box to the local expansion

of non-adjacent boxes (zM to zL), and finally L2L translation transforms between

local expansions between adjacent levels (zL to zT).

Instead of Laurent series, in three dimensions the far field is represented by spher-

ical harmonics. There are several implementation details (mostly for the M2L trans-

formation) that are required for efficient implementation (especially in 3D), but we

do not mention them here. Overall, however, the organization of the computation

is the same as the two dimension case. For the derivation of the expansions and a

detailed discussion on error bounds and implementation details see [20] and [35].

44

3.3 The New Algorithm

Our algorithm is designed to generalize FMM to second-order constant coefficient

non-oscillatory elliptic partial differential equations. Examples of such systems are

given in Appendix A, where we also list the corresponding fundamental solution ker-

nels. Such kernels satisfy the underlying PDE everywhere but the singularity location

(pole), and are smooth away from the singularity. All problems under consideration

admit a unique solution for the properly posed interior/exterior Dirichlet problems.

Smoothness and uniqueness are the basic properties that we use to develop our FMM

approximation.

Our algorithm has the same structure with the original FMM method. The dif-

ferences are how the densities are represented efficiently and how the M2M, M2L,

and L2L transformations are computed. We first describe these representations and

transformations, then state the complete algorithm and conclude with a discussion on

efficient implementation. Below we summarize the notation we use in the description

of the method; these notations are defined in Section 3.3.1.

3.3.1 Density Translations

Given a set of N points, we define the computational domain to be a box large enough

to contain all points. We construct a hierarchical tree (a quadtree in 2D and an octtree

in 3D) so that each leaf of the tree contains no more than s points where s is a

prescribed number. We assume that some points are labeled as sources yi and other

points as targets xi. The source densities ϕi at the source locations yi, i = 1 . . . N

are given, and we want to evaluate the potential {ui} at the target locations {xi}.

We refer to the tree nodes (squares in 2D and cubes in 3D) as boxes. For a spatial

45

B a box in the computation tree

NB the near range of the box B in R
d

FB the far range of the box B in R
d

IB
s the set of of indices of source points or densities in B

IB
t the set of indices of target points or potentials in B

yB,u the upward equivalent surface of B

ϕB,u the upward equivalent density of B

xB,u the upward check surface of B

uB,u the upward check potential of B

yB,d the downward equivalent surface of B

ϕB,d the downward equivalent density of B

xB,d the downward check surface of B

uB,d the downward check potential of B

p the degree of discretization for equivalent densities

s the maximum number of source (or target) points allowed in a leaf box

N the total number of source and target points

R the depth of the computation tree

M the total number of boxes in the computation tree

Table 3.1: FMM related notations.

region R, we use IR
s and IR

t to denote the index sets of the source and target points

in R. Most commonly, R is a box of the computational tree.

If B is a box centered at c and has side length 2r, then the box centered at c with

side length 6r is called the near range of B and is denoted by NB. R
d \NB is called

the far range and is denoted by FB. Note that in our definition, B is a part of NB.

Equivalent densities and check potentials. We represent the potential in FB from

the source densities {ϕi, i ∈ IB
s } in B as the potential from a density distribution ϕB,u

supported at prescribed locations yB,u in NB (Figure 3.2). We call ϕB,u the upward

46

equivalent density and yB,u the upward equivalent surface of box B.

Results from potential theory put two restrictions on the positions of yB,u (see

[47], chapter 6). First, to guarantee the smoothness of the potential produced by

ϕB,u, its support yB,u should not overlap with FB. Second, to guarantee that ϕB,u is

able to represent the potential produced by any source distribution in B, yB,u needs

to enclose B. Therefore, in order to ensure the existence of ϕB,u, yB,u is required to

lie between B and the boundary of FB. We use a circle in 2D and a sphere or cube

in 3D for reasons that will be explained later.

The potentials induced by the source densities and the upward equivalent density

satisfy the underlying second order linear elliptic PDE. As the solution of an exterior

Dirichlet problem for such PDE is unique, these two potentials are guaranteed to be

equal in all of FB if they coincide at the boundary of FB, or any surface between

FB and yB,u. We call such an intermediate surface the upward check surface and

denote it by xB,u. We call the potential computed on this surface the upward check

potential and denote it by uB,u. These surfaces are also chosen to be circles in 2D,

and spheres or cubes in 3D. The equality of potentials on the upward check surface

can be written as follows:

∫
yB,u

G(x, y)ϕB,u dy =
∑
i∈IB

s

G(x, yi)ϕi = uB,u, for any x ∈ xB,u. (3.3)

Similarly, we represent the potential in B from the source densities in FB as the

potential induced by a density distribution ϕB,d defined at prescribed location yB,d

in NB (Figure 3.2). We call ϕB,d downward equivalent density and yB,d downward

equivalent surface. To ensure the existence of ϕB,d, yB,d needs to be located between

FB and B. As the solution of the interior Dirichlet problem for the PDE we consider

is also unique, we need to match the potentials only on a surface xB,d between B and

47

(1)

(2)

(1)

(2)

Figure 3.2: The equivalent/check surfaces in 2D. Left: Given the potential gener-

ated by the source densities inside a box, located at the points marked with “+”, we

represent it by using the upward equivalent density located at the upward equivalent

surface. The equivalent surface is shown as the solid circle enclosing the box. The

upward check potentials induced by the sources and the upward equivalent density

are matched at the upward check surface (the dashed circle). Right: To represent the

potential in the box generated by the source in the far range, we use the downward

equivalent density located at the downward equivalent surface. The downward equiv-

alent potentials induced by both sources are matched at the upward check surface. In

both plots, the discretization points of the equivalent and check surfaces are equally

spaced and marked with “•” and “◦” respectively. For both upward or downward

steps, the computation of the equivalent density includes two steps shown by arrows

in each plot: (1) the evaluation of the check potential using the original source, and

(2) the inversion of the integral equation to obtain the equivalent density.

yB,d. We call the surface xB,d downward check surface, and the matched potential

uB,d the downward check potential.

We usually choose both yB,d and xB,d to be circles in 2D and spheres or cubes in

3D. The potential yB,d satisfies the following equation for any x ∈ xB,d:

∫
yB,d

G(x, y)ϕB,d dy =
∑

i∈IFB
s

G(x, yi)ϕi = uB,d. (3.4)

The integral equations (3.3) and (3.4) are the first-kind Fredholm equations. Inverting

such equations for a general right-hand side is an ill-conditioned problem since it

48

is an ill-posed infinite dimensional problem. However, the right-hand sides have a

special form that guarantees the existence of the solution of the integral equation. To

solve these equations numerically in a stable way, we use a regularization scheme, as

discussed in Section 3.3.2.

(1)

(2)

(1)
(2)

(1)

(2)

Figure 3.3: Three translations in 2D. Left: M2M translation. To compute the upward

equivalent density of the large square, we evaluate the (upward check) potential at the

dashed circle using its child box’s upward equivalent density at the small solid circle

(this operation is marked with arrow (1)), and invert the integral equation to get its

upward equivalent density at the large solid circle (marked with arrow (2)). Middle:

M2L translation transforms the upward equivalent density of the left box (surrounded

by one circle) to the downward equivalent density of the right box (surrounded by two

circles). We first evaluate the downward check potential at the dashed circle using the

upward equivalent density (located at the small solid circle) (marked with (1)), and

then invert the equation to obtain the downward equivalent density at the downward

equivalent surface — the large solid circle (marked with (2)). Right: L2L translation

transforms the downward equivalent density of the large box to its child — the the

small box.

In all three figures, the discretization points for the equivalent surface are marked

with “•” and the ones for check surface are marked with “◦”.

M2M translation. For every leaf box B in the tree, the computation of the upward

equivalent density ϕB,u from the source densities uses equation (3.3). The procedure

49

of M2M translation is similar (Figure 3.3). To translate the upward equivalent density

from a box A to its parent box B, we solve the following equation for ϕB,u:

M2M:
∫

yB,u

G(x, y)ϕB,u(y) dy =

∫
yA,u

G(x, y)ϕA,u(y) dy, for all x ∈ xB,u.

(3.5)

To ensure the existence of ϕB,u for B, yB,u must enclose yA,u for any of its children

A.

M2L translation. Once the upward equivalent density has been computed for each

box, M2L translation computes the downward equivalent density (Figure 3.3). Sup-

pose A is a box in FB. The M2L translation is similar to (3.4), and we solve the

following equation to find ϕB,d:

M2L:
∫

yB,d

G(x, y)ϕB,d(y) dy =

∫
yA,u

G(x, y)ϕA,u(y) dy, for all x ∈ xB,d.

(3.6)

To ensure the existence of ϕB,d, yB,d must be disjoint from yA,u for all A in FB.

L2L translation. The L2L translation computes the downward equivalent density

of a box B at level i from that of its parent A at level i−1 (Figure 3.3). The procedure

is again similar to equation (3.4). The potential ϕB,d satisfies

L2L:
∫

yB,d

G(x, y)ϕB,d(y) dy =

∫
yA,d

G(x, y)ϕA,d(y) dy, for all x ∈ xB,d. (3.7)

To ensure the existence of ϕB,d, yB,d must lie in yA,d.

Equations (3.5), (3.6) and (3.7) corresponding to M2M, M2L and L2L transla-

tions are all ill-conditioned for an arbitrary right-hand side. However, similar to (3.3)

and (3.4), the right hand sides in our case are sufficiently smooth to guarantee the

existence and stability of the solution of the integral equation.

50

Summary. We have described two density representations and three translations

used to convert between these densities. The two equivalent densities correspond to

the multipole and local expansions in FMM, while the three translations replace the

three transformations in FMM.

In order to guarantee the existence of the equivalent densities the equivalent and

check surfaces have to satisfy certain restrictions. We summarize them as follows:

for each box B

• yB,u and xB,u lie between B and FB; xB,u encloses yB,u;

• yB,d and xB,d lie between B and FB; yB,d encloses xB,d;

• yB,u encloses yA,u for any descendant box A,

• yB,u is disjoint from yA,d for all A in FB,

• yB,d lies inside yA,d, where A is B’s parent.

3.3.2 Discretization

Regularization. Equations (3.3), (3.5), (3.6), and (3.7) need to be discretized. Each

one of them consists of two steps. First, we need to evaluate the check potential at

box B using the equivalent density from box A. This step is discretized using a sim-

ple numerical quadrature. Second, we need to compute the equivalent density at B

from the check potential computed in the previous step. This requires the numerical

solution of a first-kind Fredholm equation. We denote this equation as

Kϕ = u

where ϕ is the equivalent density of B, u is the check potential of B and K evaluates

u from the kernel and ϕ. We solve this equation using Tikhonov regularization [47]:

ϕ = (αI + K∗K)−1K∗u.

51

This becomes a second-kind Fredholm integral equation, and in our implementation

we solve it using the Nyström method (Galerkin or collocation methods could be

used).

Surface geometry and discretization. The above two steps need to discretize the

equivalent surfaces and check surfaces. In 2D we choose circular equivalent and

check surfaces. We use the trapezoidal rule to integrate the check potential and to dis-

cretize the integral equations; in this manner we obtain super-algebraic convergence.

In 3D this is no longer possible: to the best of our knowledge, there are no simple

quadrature rules for functions defined on spheres that converge super-algebraically.

Instead, we use cubes as the equivalent and check surfaces (Figure 3.4 and 3.5), and

construct quadratures of fixed order on the faces of the cubes. In Section 3.3.4 we

explain how this approach facilitates fast M2L translations, and in Section 3.5 we

show that the accuracy in 3D is not too different from the 2D case.

2D case. For a box B centered at c with side length 2r, all related surfaces are

circles centered at c. The upward equivalent surface yB,u has radius (
√

2+d)r where

d a fixed number satisfying 0 ≤ d ≤ 4−√
2

3
. The upward check surface xB,u has radius

(4 −√
2 − 2d)r. The downward equivalent surface yB,d has radius (4 −√

2 − 2d)r.

Finally, the downward check surface xB,d has radius (
√

2 + d)r (Figure 3.2 and 3.3).

Note that our choice of the surfaces satisfies all restrictions at the end of Section

3.3.1. All circles are discretized with p equally spaced points with trapezoidal rule.

The accuracy of our method is determined by the choice of p. This simple rule is

known to have super-algebraic convergence for smooth functions. d is chosen to be

quite small (equal to 0.1 in our implementation). By doing so, the equivalent surface

52

and check surfaces involved in each translations are well-separated and the kernel

used in the check potential integration step is very smooth. Therefore the trapezoidal

rule gives good accuracy in the integration of check potential.

Remark 3.1. We could have chosen the upward/downward check surface to be identi-

cal with the upward/downward equivalent surface. However, in this case the integral

equation would have a kernel-dependent form and we would need more complex

quadrature rules that can be used to integrate singular kernels.

3D case. For a box B centered at c with side length 2r, all the related surfaces

are the boundaries of cubes centered at c. The upward equivalent surface yB,u is the

boundary of a box with halfwidth (1 + d)r where 0 ≤ d ≤ 2
3
. The upward check

surface xB,u is the boundary of a box with halfwidth (3 − 2d)r. The downward

equivalent surface yB,d is the same as xB,u. Finally, the downward check surface

xB,d is the same as yB,u (Figure 3.4 and 3.5). These surfaces satisfy the restrictions

at the end of Section 3.3.1. For every surface, the quadrature points are distributed

evenly on six faces, and on every face, the points are distributed on an evenly spaced

2D Cartesian grid. Under this distribution, the quadrature points at the corner of

the box are shared by three faces, and those at the edge of the box are shared by

two faces. We can also view these quadrature points as the boundary nodes of a 3D

regular Cartesian grid. Similarly to the 2D case, we use p to denote the total number

of quadrature points on the surface of the box. Note that in 3D analytic FMM p is

used to denote the order of the multipole/local expansion, therefore, p2 is the actual

number of coefficients used in the expansion. The quadrature weights are chosen in a

way such that on every face the quadrature rule integrates low order 2D polynomials

exactly. In our experiments, good quadrature results are observed since all the kernels

53

are smooth away from the singularity. The parameter d is chosen to be quite small

(again equal to 0.1 in our implementation) due to the reason stated in the 2D case.

(1)

(2)

(1)

(2)

Figure 3.4: The cross sections of the equivalent/check surfaces in 3D. Left: the up-

ward equivalent density. Right: the downward equivalent density. In both plots, the

innermost square is the source box. The equivalent and check surfaces are both dis-

cretized using the boundary nodes of a regular Cartesian grid. The nodes for the

equivalent surfaces are marked with “•” and those for the check surfaces with “◦”.

(1)

(2)

(1)

(2) (1)

(2)

Figure 3.5: Three translations in 3D. Left: M2M translation. Middle: M2L transla-

tion. Right: L2L translation. 3D translations are similar to 2D. There are two dif-

ferences: (1) equivalent/check surfaces are now cubes and (2) discretization points

are the boundary nodes of a regular Cartesian grid. Note that for M2L translation the

discretization points of upward equivalent surface and downward check surface are

from the same Cartesian grid, therefore it can be sped up with FFT (interior nodes

are padded with zero density).

54

Summary. Each one of the discretized M2M, M2L and L2L translations involves a

potential evaluation and a solution of an integral equation. However, by choosing the

quadrature points fixed relative to the box, both the evaluation and the solving depend

only the level and the relative positions of the boxes involved in these translations.

We can precompute and store these operators for each level and each relative position.

Therefore, each translation invokes two matrix multiplications.

3.3.3 The Complete Algorithm

In this section we describe our algorithm in detail. First we give some definitions

related to the algorithm. Our definitions closely follow Greengard [32].

Definitions. The neighbors of a box are adjacent boxes in the same level. For

uniform distributions of particles, a uniformly refined grid is used. In this case the

neighbor list LB
N of a box B is the set of all neighbors of B and B itself. For a box

away from the boundaries, the neighbor list contains 9 boxes in 2D or 27 boxes in

3D. These boxes are all contained in NB.

The interaction list LB
I is the set of children of the neighbors of B’s parent which

are not B’s neighbors. Again, ignoring the boundary effects, this list contains 27

boxes in 2D and 189 boxes in 3D. These boxes are all contained in FB.

If the particle distribution is uniform, a regular grid can be used; however, we are

primarily interested in non-uniform particle distributions. In this case an adaptively

refined grid is needed. The grid is recursively refined until the number of points in

each leaf box is less than a fixed number s. Following the adaptive FMM algorithm,

we give the following definitions (Figure 3.6).

For a leaf box B, the U list LB
U contains B itself and the leaf boxes which are

55

adjacent to B. For a non-leaf box, the U list is empty.

The V list LB
V is the set of the children of the neighbors of the parent of B which

are not adjacent to B.

If B is a leaf box, the W list LB
W consists of all the descendants of B’s neighbors

whose parents are adjacent to B, but who are not adjacent to B themselves. For a

non-leaf box, the W list is empty.

The X list LB
X consists of all boxes A such that B ∈ LC

W .

V

V

V

V

V V

V V

X

V

V

U

U

W W

U
W W
U U

WW

W
WW
WU

B U

X

U

U U

V V

V

V

V

V

Figure 3.6: Lists LB
U , LB

V , LB
W and LB

X of box B.

For a leaf box B, LB
U is similar to LB

N in the uniform case, and LB
V is similar to

LB
I . There is also a conjugate relation on these four lists. Suppose that A and B are

two boxes.

• If A is in LB
U , then B is in LA

U .

• If A is in LB
V , then B is in LA

V .

• If A is in LB
W , then B is in LA

X .

• If A is in LB
X , then B is in LA

W .

For a box B, the U ,V ,W and X lists contain all boxes whose contribution needs

56

to be processed by B itself. The contribution from more distant boxes are considered

by B’s ancestors. For a box U in LB
U , a direct computation of the interaction of U ’s

source points with B’s target points is necessary since U and B are adjacent. For a

box V in LB
V , we compute the interaction from V to B using M2L translation since

two boxes are well-separated. For a box W in LB
W , we can evaluate the potential

directly at B’s target points using the upwards equivalent density of W , as B is in the

far range of W . Finally, for a box X in LB
X , since B is still in the near range of X , we

represent the potential from X to B by first evaluating the potential at the downwards

check surface at B and then invert it to the downwards equivalent density ϕB,d. The

pseudocode is given in Figure 3.7.

57

STEP 1 TREE CONSTRUCTION

for each box B in preorder traversal of the tree do

subdivide B if B has more than s points in it

end for

for each box B in preorder traversal of the tree do

construct LB
U , LB

V , LB
W and LB

X for B

end for

STEP 2 UPWARDS PASS

for each leaf box B in postorder traversal of the tree do

evaluate uB,u at xB,u using {ϕi, i ∈ IB
s }

solve for ϕB,u at yB,u that matches uB,u at xB,u (Equation (3.3))

end for

for each non-leaf box B in postorder traversal of the tree do

add to uB,u at xB,u the contribution from ϕC,u for each child C of B

solve for ϕB,u at yB,u that matches uB,u at xB,u (Equation (3.5))

end for

STEP 3 DOWNWARDS PASS

for each non-root box B in preorder traversal of the tree do

add to uB,d at xB,d the contribution from ϕV,u for each box V in LB
V

add to uB,d at xB,d the contribution from {ϕi, i ∈ IX
s } for each box X in LB

X

add to uB,d at xB,d the contribution from ϕP,d, where P is the parent of B

solve for ϕB,d at yB,d that matches uB,d at xB,d (Equation (3.6) and (3.7))

end for

for each leaf box B in preorder traversal of the tree do

add to {ui, i ∈ IB
t } the contribution from ϕB,d

add to {ui, i ∈ IB
t } the contribution from {ϕi, i ∈ IU

s } for each box U in LB
U

add to {ui, i ∈ IB
t } the contribution from ϕW,u for each box W in LB

W

end for

Figure 3.7: Kernel independent FMM algorithm, adaptive case.

58

3.3.4 Implementation Issues

In the previous section we described the overall structure of the algorithms with some

implementation details omitted for clarity. These details, however, are very important

for an efficient implementation of any FMM method. The most important issues are

the efficient acceleration of the M2L computation, and the overall memory manage-

ment.

Another aspect of our discussion is the distinction between the setup phase and

the fast summation phase. Many times the particle distributions come from dis-

cretization of integral equations; then, given a fixed spatial particle distribution, the

summation is carried many times (i.e., the matrix vector multiplication within an

iterative solver such as GMRES). Many issues that we discuss here are related to

efficient multiple evaluations.

Acceleration techniques. In our complexity analysis, we consider only the uni-

form particle distribution and uniform grids. While analysis of adaptive refinement

is possible it requires assumptions on particle distribution. We refer the reader to

[55]. The most expensive part of our algorithm are the M2L translations: the evalua-

tion of the contribution to uB,d of a target box B from ϕA,u where A is a source box

in the interaction list of B.

We denote the size of the interaction list by I . For a single box, the complexity

of the M2L translation is O(I · p2). The M2M and L2L translations are applied only

once for each box and their contribution to the overall algorithm is not as important.

Thus, the M2L part needs to be efficiently implemented since it is one of the two

most expensive parts of the algorithm. (The other bottleneck is the computation of

particle-to-particle dense interactions).

59

SVD-based acceleration (2D). In 2D, we use an SVD-based acceleration tech-

nique. We first assemble the matrix M of the interaction from yA,u to xB,d. We

observe that M is numerically low rank. The number of the significant singular val-

ues of M is small compared to the dimension of M , and the rest of the singular values

are less than the accuracy required by the pairwise interaction evaluation. Suppose

USV T = M is the SVD of M . We can store only the columns of U and V which

correspond to the dominant singular values of S and discard the rest. This approach

gives us an efficient representation of M . In 3D this approach does not yield satis-

factory results. Although M2L operators are low rank, in practice the cutoff number

of equivalent density points in which the compression is effective, is very large. For

this reason an FFT-based approach is preferable.

FFT-based acceleration (3D). Suppose box A is in the interaction list of box

B. As mentioned in Section 3.3.2, yA,u is chosen to be the boundary of A, and the

integration points are the nodes of a Cartesian grid which are on the boundary of

of A. The same is true for xB,d. Therefore, by assigning zero density to the grid

points in the interior of B we can view the evaluation of the potential uB,d from

the density ϕA,u as a 3D convolution. This convolution can be evaluated efficiently

by FFT. Since we use 3D convolutions, there are O(p3/2) instead of p densities and

targets in each M2L translation. For each box, we carry out the FFT and inverse

FFT only once, to obtain an O(p3/2 log(p)) complexity. The convolution (pointwise

vector multiplication) is applied I times for each box, with O(I · p3/2) complexity.

Several acceleration schemes for the M2L translation of the analytic FMM have

been proposed in the past. In [25], a 2D FFT based scheme is used to transform

the multipole coefficients to the local coefficients. This scheme gives a O(p log(p))

60

complexity for each M2L translation. In [36] and [20] exponential representation, an

intermediate representation between multipole and local expansions is introduced.

Based on this new representation, a diagonal transformation is used to transfer be-

tween exponential expansions efficiently. This technique cuts down the complexity

to O(I · p). An essential step of the translation to exponential representation is the

computation of some nontrivial kernel-dependent quadrature weights. While both

of these two schemes give asymptotically superior complexity than the O(I · p3/2)

complexity of our FFT based acceleration technique, our FFT based technique only

involves potential evaluations and thus is kernel independent.

Storage compression. Since the M2M, M2L and L2L translations are used re-

peatedly, we precompute and store the matrices of these operators. Three storage

compression techniques are used to reduce the memory usage.

Homogeneity. Many kernels in the problems we are considering are homoge-

neous: if we scale the distance between the source point and the target point by a

factor α, the potential at the target is amplified by a factor αk, where k is a constant.

For example, the 3D Laplace single layer kernel, S(x, y) = 1
4π

1
r
, has this property.

Since the integration points of the equivalent densities of a box are fixed relative to

the box, the translation operators between different levels of the computation tree

only differ by a constant, usually a power of 2. Hence, instead of storing the matrices

for each level, we store only the matrices for a single level. Modified kernels, like

modified Laplace, modified Stokes and modified Navier equations, do not have this

property.

61

Symmetry. In 2D the integration points are equally spaced on a circle; in 3D

the integration points of the equivalent densities are chosen to be the nodes of a

regular Cartesian grid. In both cases they are symmetric with respect to the x, y

and z axes. For example, if we flip the positive x direction to be the negative x

direction, the positions of the set of the integration points do not change, even though

two integration points might swap their positions. Consider the M2M translation:

Suppose B is the parent box of two different boxes C1 and C2 and we need to evaluate

the potential uB,u at xB,u, the contribution from ϕC1,u at yC1,u and from ϕC2,u at

yC2,u. Further suppose we already have the matrix of the operator from yC1,u to

xB,u. In order to evaluate the contribution from ϕC2,u at xB,u, we first perform a

change of coordinates to move yC2,u to yC1,u, and then evaluate the contribution using

the operator from yC1,u to xB,u. We then perform another change of coordinates to

move yC1,u back to yC2,u. The same techniques can be carried out for M2L and L2L

translations.

The above procedure is only correct in the case of a scalar density and a scalar

potential. In the cases with vector or tensor densities and potentials, the change

of coordinates not only affects the support of the density or potential, but it also

modifies their values. Therefore, a rescaling step is necessary after each change of

coordinates. A general translation using symmetry involves five steps: (a) forward

change of coordinates, (b) rescaling of density, (c) translation using stored matrix,

(d) rescaling of potential, and (e) backward change of coordinates. This technique

works for all the kernels listed in the appendix, and gives us a compression factor of

eight in 3D and four in 2D.

62

Lazy computation. In the case of non-uniform density distribution, the depth

of the computation tree can be quite large. However, not all the M2L translations are

actually needed in the computation. Therefore, in our algorithm, the matrix repre-

sentation of a M2L translation is only computed where it is actually needed by some

box. This lazy computation strategy results in significant savings on memory usage

in non-uniform density distributions, and modified kernels.

3.3.5 Complexity

The analysis of the adaptive algorithm is essentially the same, but more involved

and requires assumptions about the particle distribution. For simplicity, we give the

complexities of our method and FMM in [20] for 3D uniform particle distribution.

The number of boxes M is approximately N/s. We use p to denote the number of

coefficients.

Step Our method FMM

S2M translation O(Np + Mp2) O(Np)

M2M translation O(Mp2) O(Mp3/2)

M2L translation O(Mp3/2 log p + 189Mp3/2) O(20Mp3/2 + 189Mp)

L2L translation O(Mp2) O(Mp3/2)

L2T translation O(Np) O(Np)

Near Interaction O(27Ns) O(27Ns)

Table 3.2: Complexity comparison of our method and analytic FMM.

The hidden constants in the complexity estimates are approximately the same for

all translations; 189 is the number of the M2L boxes and 27 is the number of boxes in

the near interaction. In practice, s is of the same order as p. Therefore, the S2M and

L2T steps of both methods are of the same order O(Np). Our M2L translation is also

63

of the same order as that of [20]. The M2M and L2L steps have higher complexity in

our method, due to the fact that no acceleration techniques are applied in these two

steps. However, in all experiments in Section 3.5, we observe that this does not slow

down our method significantly since these steps are applied once for each box.

3.4 Error Analysis

Given the direct interaction operator G between the sources in a box B at level l and

targets in a well-separated target box A at level m, we examine the error related to

the FMM approximation. First, we show that our FMM acceleration can be viewed

as a factorization of G, provided that all integrations are carried out exactly. Then

we present analysis of the discretization error behavior for homogeneous kernels

from scale invariant PDE in 2D case. The scale invariance means that the PDE only

involves the second order derivatives of the potential variable, such PDEs includes

Laplace, Stokes and Navier equations.

Numerical results indicate that the method works well in 3D and for inhomoge-

neous kernels; we leave derivation of rigorous error bounds in these cases as future

work.

It is important to point out that here we prove an error bound of the FMM ap-

proximation of the interaction operator G. This error is a relative error in the sense

that the absolute error for the computed potential is bounded by the product of the

relative error with the magnitude of the exact potential.

64

3.4.1 FMM Factorization

FMM can be viewed as a factorization of the operator G. Suppose the M2L transla-

tion operator is applied at level k when the interaction between A and B is evaluated.

Let B = Bl, Bl−1, . . . , Bk be the sequence of ancestor boxes of B up to level k,

and A = Am, Am−1, . . . , Ak the sequence of ancestor boxes of A. For our purposes,

it is convenient to consider a single sequence of boxes, Bl, . . . Bk, Ak, . . . Am, of

length l + m − 2k + 2; we denote this single sequence {Ci}, i = 0 . . . n + 1, where

n = l + m − 2k. With each box Ci, we associate an equivalent surface yi and a

check surface xi, with equivalent density ϕi defined on yi and potential ui defined on

xi. For boxes Bi upward surfaces are used, and for boxes Ai downward surfaces are

used.

We introduce sequences of operators Ki and Ei mapping densities defined on

equivalence surfaces to potentials defined on check surfaces. These operators cor-

respond to left and right-hand sides of (3.5), (3.6) and (3.7). We use an auxiliary

operator K[Y → X] : C(Y) → C(X), where Y and X are regions in 2D or 3D

(typically surfaces or boxes). The operator K is defined by

(K[Y → X]f)(x) =

∫
Y

G(x, y)f(y) dy for x ∈ X.

Then

Ki = K[yi → xi], Ei = K[yi → xi+1], Li = EiK
+
i . (3.8)

where K+
i = (K∗

i Ki)
−1K∗

i is the pseudo-inverse of Ki.

Finally, let D = K[yA,u → A], the operator evaluating the density on the upward

equivalent surface of A = Cn+1 at an arbitrary point inside A. Using these operators,

65

evaluation of the potential uA at the target box due to the sources in B using our

hierarchical decomposition can be written in the following form:

uA
hier = DK+

n+1En . . . E0K
+
0 uB,u. (3.9)

As illustrated in Figure 3.8,the first sequence part of the sequence of operators

corresponds to the upward traversal of the tree, with the M2M translation defined

by (3.5) applied on each step. It is followed by the M2L translation (3.6) and the

downward traversal with the L2L translation (3.7) applied on each step. Since the

kernels are homogeneous, the operators Ki and Ei are level-independent of Ci up

to an identical scale factor, and the composition Li = EiK
+
i is level-independent as

these factors cancel. For such kernels, we rescale Ei and Ki to make them completely

level-independent.

Bk ϕl−k
Kl−k ��

�� ��
El−k ��������������������������������

��
ul−k
�� ��

Ll−k ����������������������

ϕk+1
Kl−k+1 ��

El−k+1

������������
ul−k+1

Ll−k+1
��

Ak

...
...

El−k−1

��������������
Ll−k

��

...
En−1

���������������
...

Bl−1 ϕ1
K1 ��

E1

��������������
u1

L1

��

ϕn
Kn ��

En

������������� un

Ln

��

Am−1

Bl = B ϕ0
K0 ��

E0

���������������
u0 = uB,u

L0

��

ϕn+1
Kn+1 ��

D

�������������
un+1 Am = A

M2M translations uhier L2L translations

Figure 3.8: Operators used in the error analysis.

66

In comparison, direct evaluation yields

udirect =
∑
i∈IB

s

G(x, yi)ϕi.

Expression (3.9) can be viewed as a sequence of transformations of densities,

starting with ϕ0 = ϕB,u to ϕn+1 = ϕA,d, defined on the sequence of upward

and downward equivalent surfaces. Let {Di} be the sequence of nested open do-

mains with boundaries xi: Ext(xBl,u) ⊃ . . . ⊃ Ext(xBk,u) ⊃ Int(xAk,d) ⊃
. . . ⊃ Int(xAm,d) ⊃ A (for the upward traversal, we use exterior domains, for the

downward traversal, interior). Similarly we define {Fi} to be the sequence of the

nested open domains with boundary yi: B ⊂ Int(yBl,u) ⊂ . . . ⊂ Int(yBk,u) ⊂
Ext(yAk,d) ⊂ . . . ⊂ Ext(yAm,d).

It is sufficient to show that the potential uvol
i in Di induced by ϕi, uvol

i = K[yi →
Di]ϕi, is equal to uvol

i+1 in Di+1 ⊂ Di, and that the potential induced by the first

density ϕ0 is the same as udirect in D0, the exterior of xB,u. Equivalence of uA
hier and

udirect in the interior of A follows by induction.

The key is the observation that in the interior of Di, uvol
i satisfies the elliptic PDE

for which the kernel G(x, y) satisfies the underlying elliptic PDE. Therefore, we can

regard it as the solution of the Dirichlet problem with boundary conditions uvol
i |xi

=

ui. The Dirichlet problem is exterior for upward check surfaces xi and interior for

downward surfaces xi. In either case, from the uniqueness of the solution of the

Dirichlet problem, it follows that the potential is defined uniquely by its boundary

values. The density ϕi+1 is computed from ϕi using Ki+1ϕi+1 = Eiϕi, i.e., the

potentials induced by these densities on xi+1 are required to coincide. It follows that

the potentials coincide in all of Di+1. Similarly, ϕ0 is computed using the condition

that the induced potential coincides with pB,u i.e., udirect evaluated at xB,u = x0;

67

therefore, u0 coincides with udirect in D0.

3.4.2 Discretization Error

We present a qualitative error analysis in 2D, determining the dependence of the error

on the tree depth l and the discretization error ε introduced at a single translation

step. In 2D, the equivalent surfaces and check surfaces are chosen to be circles. Our

analysis is carried out in the Sobolev spaces on a unit circle H t[0, 2π] for t ≥ 1,

which we denote H t. We use ‖ · ‖ to denote the H t norm. Since the kernel is C∞

everywhere away from the singularity, uA is in H t for any t. Although the error is

more naturally measured in L2, H t is a more convenient choice for analysis of our

method, as the Nyström method for integral equations is norm-convergent in H t for

t ≥ 1 in 2D. Note that this approach also yields an upper bound for the L2 error,

although this bound is likely to be too conservative.

We also define Si, a subspace of H t, with

Si = {K[Fi ∪ yi → xi](u), u ∈ H t}. (3.10)

Since the potential produced by the density in Fi can be represented by the one pro-

duced by the density on yi, we can also write Si to be {K[yi → xi](u), u ∈ H t}.

To simplify the exposition, in our error analysis we omit the last step DK+
n+1

which introduces an additional fixed error due to solution of Kn+1φn+1 = un. Ex-

pression (3.9) with the last step excluded can be written as

un = LnLn−1 . . . L0u0. (3.11)

We use notation L(j:i) for the composition LjLj−1 . . . Li for j ≥ i; we also ab-

breviate L(j:0) as L(j). We define L(j:i) to be the identity for j < i.

68

We use the following four auxiliary results in in our error analysis. The proofs of

the first two lemmas can be found in the Appendix.

Lemma 3.1. Ei : H t → Si+1, Ki : H t → Si and Li : Si → Si+1 are all compact in

the H t norm.

Lemma 3.2. The H t norm of any operator L(j:i) = LjLj−1 . . . Li : Si → Sj+1 is

uniformly bounded independently of i and j.

Lemma 3.3. Suppose Pn is a sequence of bounded symmetric operators from H t to

H t with Pn → I pointwisely, and D is a compact operator also from H t to H t. Then

sequences PnD and DPn are norm convergent to D.

Proof. Approximate D by a finite dimensional operator.

Lemma 3.4. In 2D, the Nyström method with trapezoidal rule is H t norm convergent

for second-kind Fredholm integral equations with smooth kernels.

Proof. See Chapter 12 of [47].

The proofs of Lemma 3.1 and Lemma 3.2 are given at the end of this subsection.

As mentioned in Section 3.3.2, we use Tikhonov regularization to invert Ki. We

introduce the regularized operator L̄i as

L̄i = Ei(αiI + K∗
i Ki)

−1K∗
i ,

and its Nyström discretization by

L̃i = Ẽi(αiI + K̃i
∗
K̃i)

−1K̃i
∗
.

K̃i is the discretization of Ki defined by K̃if(x) =
∑pi

r=1 wr
i G(x, yr

i)f(yr
i) for

x ∈ xi, where ui is the number of quadrature points and wr
i and yr

i are quadra-

ture weights and discretization points respectively, Ẽi is defined in the same way. It

69

is important to notice that K̃i is from H t to Si since the quadrature points {yr
i } stay

on yi. Similarly, Ẽi is an operator from H t to Si+1. Therefore, both L̄i and L̃i are

well-defined operators from Si to Si+1.

It can be shown that closure of Si in H t is the orthogonal complement of a finite

number of functions. These functions span the null space of K. Therefore, Li can

be extended to be defined over the whole H t by using continuity and assigning Li to

be zero operator on these finite number of functions. The norm of the extension of

Li is bounded by the H t norm of Li on Si. The compactness of Li is also preserved.

Similarly, the same argument applies to L(j:i), L̄i and L̃i. All of them can be defined

over H t. The goal of our analysis is to estimate the H t norm of L̃(n) − L(n) =

L̃nL̃n−1 . . . L̃0 − LnLn−1 . . . L0.

Proof of Lemma 3.1

Proof. First, we prove the compactness of Ki and Ei. Since yi and xi are disjoint,

the kernel G in Ki is C∞ in both variables. Thus, Ki, as a convolution operator with

C∞ kernel, is compact in H t norm. Ei is also compact in H t norm since yi is disjoint

from xi+1.

Now, we prove that Li is compact in H t norm (see Figure 3.9 for the domains

involved). Suppose ui ∈ Si on xi, we can find ϕi ∈ H t on yi such that ϕi = K+
i ui.

Since K[yi → xi](ϕi) = Kiϕi = KiK
+
i ui = ui, K[yi → Di](ϕi) is the solution

of boundary value problem on domain Di with boundary condition ui. On the other

hand, ui+1 = Ei(ϕi) = K[yi → xi+1] is the solution of this problem on xi+1. Hence,

Li(ui) = EiK
+
i (ui) = Ei(ϕi) = ui+1 is equivalent to the Poisson formula which

evaluates the potential at xi+1 from the potential at xi. The kernel in Poisson formula,

which corresponds to the fundamental solution of the PDE with domain Di, is C∞

70

smooth since xi and xi+1 are disjoint. This means that the Poisson formula represents

a compact operator in H t norm for any t. Therefore, Li is a compact operator in H t

norm.

yi xi

xi+1

Di

Figure 3.9: The domains used in the proof of Lemma 3.1 where Li corresponds to a

M2M translation. The grayed region is Di.

To clarify the idea behind the proof, we give the analytic form of the M2M trans-

lation operator for a simplified case for the single layer potential for the 2D Laplacian.

The main reason for the compactness is the inclusion of xi in xi+1.

We assume that the three surfaces yi, xi and xi+1 are concentric circles such that

their radii ρe
i , ρc

i and ρc
i+1 satisfy the condition 0 ≤ ρe

i ≤ ρc
i ≤ ρc

i+1.

Standard logarithm expansion and simple algebraic manipulations yield

log |x − y| = log |x| +
∞∑

k=−∞,k �=0

(−1)k

|k|
(|y|
|x|

)|k|
eikθxe−ikθy ,

where θx and θy are the polar coordinate angles of the position vectors x and y re-

spectively. If we assume that this kernel acts on the space of continuous periodic

functions in [0, 2π] with zero mean and we can drop the log |x| term. As the trigono-

metric functions are orthogonal on L2(0, 2π), the above expression is a diagonaliza-

tion of the single layer operator. As the eigenvalues are all positive, they coincide

with singular values.

71

First, we solve Kiϕi = ui. In this case, since |x| = ρc
i ≥ |y| = ρe

i , the singular

values decay exponentially, so the problem Kiϕi = ui is ill-posed: small perturba-

tions on the high frequency components of uc get exponentially amplified. However,

since ui is the potential induced by the densities in the interior of yi, ϕi is a well-

defined function with the following relationship on Fourier coefficients:

ϕ̂i(k) = (−1)k|k|
(

ρc
i

ρe
i

)|k|
ûi(k)

Second, we evaluate ui+1 with Eiϕi. The Fourier coefficients of ui+1 are given

by

ûi+1(k) =
(−1)k

|k|
(

ρe
i

ρc
i+1

)|k|
ϕ̂i(k) =

(
ρc

i

ρc
i+1

)|k|
ûi(k)

This expression actually gives the singular value decomposition of Li using the

trigonometric basis on the circle, where
(

ρc
i

ρc
i+1

)|k|
are the singular values of Li. The

singular values decay exponentially to zero since ρc
i < ρc

i+1, therefore Li a compact

operator (with analytic kernel).

Proof of Lemma 3.2

Proof. A product L(k), with k terms each one being an L operator, represents a se-

quence of M2M translations followed by a M2L translation and followed by a se-

quence L2L translations. To prove the lemma, we only need to show the existence of

uniform bounds for the cases where L(k) corresponds to a sequence of M2M transla-

tions or a sequence of L2L translations. Here we prove the latter case. The proof for

the other case is the same.

Suppose L(k) transforms uA,d at xA,d of box A into uB,d at xB,d of box B. Since

L(k) only involves L2L translations, B is contained in A and it is k level deeper in the

computation tree. Suppose A has halfwidth r, from Section 3.3.2, we know xA,d has

72

radius (
√

2 + d)r and xB,d for any box B is contained in a circle which is concentric

to xA,d and has radius (
√

2+ d
2
)r. Hence, xB,d is always away from xA,d by a distance

d
2
r, which is independent of k.

As we pointed out in the proof of Lemma 3.1, the transformation L(k) can be

viewed in a different way: it is equivalent to the Poisson formula which evaluates the

potential at xB,d from the potential uA,d at xA,d. The H t norm of the Poisson formula

grows to infinity only when xB,d and xA,d approach to each other. In our case, since

xB,d and xA,d are separated by a distance d
2
r which is independent of k, the norm of

L(k) is bounded from above uniformly.

3.4.3 Single Step Error

Our first step is to estimate the error L̃i −Li for a single translation step. We split the

error into two parts: L̄i − Li and L̄i − L̃i.

We take H t as a Hilbert space with the standard scalar product defined by (f, g) =∑t
i=0

∫ 2π

0
Dif Dig. Since Ki is a compact operator in H t (Lemma 3.1), for any f ∈

H t we can expand Kif as

Kif =
∞∑

r=0

σr
i (f, vr

i)u
r
i

were {ur
i} and {vr

i } are orthonormal bases in H t and σr
i are singular values of Ki.

In operator form, this decomposition can be written as UiSiVi, where Vi : H t → l2

is defined by the map from f to the sequence {(f, vr
i)}, Ui : l2 → H t maps a

sequence of coefficients {ar} to
∑

r arur
i , and Si : l2 → l2 is a diagonal operator

with entries σr
i . Clearly, UiU

∗
i = I and ViV

∗
i = I because the bases {ur

i} and {vr
i }

are orthonormal.

73

Then

L̄i = Ei(αiI + K∗
i Ki)

−1K∗
i

= EiK
+
i Ki(αiI + K∗

i Ki)
−1K∗

i

= LiUiS
2
i (αiI + S2

i)
−1U∗

i .

As αi approaches 0, UiS
2
i (αiI + S2

i)
−1U∗

i approaches I pointwisely. Since Li is

compact in H t norm, L̄i → Li in H t norm as αi → 0 (Lemma 3.3 applied to the

extensions of Li and L̄i to H t). Hence, for any fixed ε, we can choose a fixed αi such

that ‖Li − L̄i‖ ≤ ε
2
.

Since Nyström’s method is norm convergent for second kind Fredholm integral

equations in H t (Lemma 3.4), as pi increases, (αiI + K̃∗
i K̃i)

−1 approaches (αiI +

K∗
i Ki)

−1 in H t norm. Therefore, for any fixed ε we can find pi such that ‖L̄i−L̃i‖ ≤
ε
2
.

Combining the above estimates we get the following theorem:

Theorem 3.1.

‖L̃i − Li‖ ≤ ε (3.12)

by choosing αi and pi based on ε.

Since the kernel is homogeneous and related to a scale invariant PDE, Si and Li

depend only on the relative positions of the boxes Ci and Ci+1. Therefore, there are

only finite number of operators Li that can appear in the above analysis: 4 from each

of the M2M and L2L translations and 72−32 = 40 from the M2L translations. As we

stated before, Ei and Ki can also be chosen to be level independent. Similarly, there

are only a finite number of Ei and Ki operators as well. Therefore, we can choose α

and p uniformly so that the estimate (3.12) applies for any Li, Ki and Ei.

74

3.4.4 Total Discretization Error

Using a single step norm estimate of L̃ − L, we can estimate ‖L̃(n) − L(n)‖ using

Lemma 3.2. We use a constant C to denote the uniform bound for L(i:j) for all

0 ≤ j ≤ i ≤ n. Then for any i,

‖L(i) − L̃(i)‖ =
∥∥ i∑

j=0

L(i:j+1)(Lj − L̃j)L̃
(j−1)

∥∥ ≤ Cε(1 +
i−1∑
j=0

‖L̃(j)‖).

This expression gives us a recurrence relationship on the norm of ‖L̃(i)‖:

‖L̃(i)‖ ≤ C + Cε
(
1 +

i−1∑
j=0

‖L̃(j)‖)

Assuming C ≥ ε, from the recurrence we obtain

‖L̃(j)‖ ≤ 2C(1 + Cε)j

and thus

‖L̃(n) − L(n)‖ ≤ Cε(1 +
n−1∑
j=0

2C(1 + Cε)j) = C(2((1 + Cε)n − 1) + ε). (3.13)

Although this estimate has an exponential dependence on n, it is only an upper

bound and, in our experience, quite pessimistic. Moreover, our numerical experi-

ments show that the uniform bound C is a small constant both in 2D and 3D for

various kernels. Further, in actual calculations n is likely to be less than 40, and ε at

least of order 10−4. Therefore, in practice (1+Cε)n − 1 behaves as Cnε. Finally, we

have the following theorem:

Theorem 3.2.

‖L̃(n) − L(n)‖ = O(nε).

75

Remark 3.2. Unlike our method, in the original analytic FMM method, there is no er-

ror associated with M2M, M2L and L2L transformations. The only error introduced

in the analytic FMM are the S2M and M2T operators.

Remark 3.3. The basic parameters in our approximation are the regularization param-

eter α and the number of quadrature points p. In general, the regularization parameter

α is chosen to filter out the noise or error in the data. In our experiments we choose

α to be a constant factor of the desired accuracy of the FMM approximation (ε) and

then we choose the correct number of quadrature points by trial-and-error. The latter

is very inexpensive because is independent of the size of the problem, and thus can

be estimate quickly with a small test case.

Remark 3.4. The error associated with an approximate integral evaluation

u − ũ =

∫
G(x, y)ϕ −

∑
i

wiG(x, yi)ϕi,

is the quadrature error. In 2D we use the trapezoidal rule on the circle which is super-

algebraically convergent. This enables us to approximate the operator L with L̃ with

a small number of quadrature points. However, to our knowledge, in 3D there is no

simple integration rule on the sphere that will result in similar high order accuracy;

standard polynomial accuracy algorithms must be used. This is an important dif-

ference with the analytic FMM, which guarantees exponential convergence (on the

number of multipole terms) for the far field approximation. Nonetheless, in our nu-

merical experiments we did not observe noticeable differences between the 2D and

3D version.

76

3.5 Numerical Results

In this section we present numerical results for our method. First, we examine the

accuracy of the equivalent density approximation. Second, we present results on the

overall accuracy of the method.

3.5.1 Accuracy on the Equivalent Density Approximation

In this section we present results that indicate that our equivalent density approxima-

tions give good accuracy in both two and three dimensions.

For two and three dimensions we show the results of three kernels: the Laplace

single layer kernel, the modified Stokes double layer kernel and the Navier single

layer kernel (Figure 3.10 and 3.11). For each kernel, the left plot is the accuracy of

the upward equivalent density approximation, and the right one is the accuracy of the

downward equivalent density approximation. For the upward equivalent density, we

give the error for points in the exterior of the source box in the region corresponding

to the interaction list of the box. For the downward equivalent density we give the

error in the interior of the box. In all plots, the side length of the box is 2; we calculate

the error by taking the maximum norm over a sphere centered at the center of the box.

The abscissa of a plot is the radius of the sphere, and the ordinate is the logarithm of

the error.

2D case. Figure 3.10 shows the error of the equivalent density approximation for

the 2D Laplace single layer kernel, the 2D modified Stokes double layer kernel and

the 2D Navier single layer kernel. In all three cases, the source density is located

close to a corner of the box. The regularization parameter α is chosen to be 10−12 in

77

all plots. Although not reported here, we have generated similar plots for all kernels

given in Appendix A. All results exhibit similar accuracy. In some plots for 2D case,

the 32-point error curve has larger error than the 24-point error curve. This is related

to the regularization: we use 10−12 for α when solving the inverse problem and this

complicates direct comparisons as we increase p. We do not have a strict analytic

error bound like the analytic FMM algorithm for the Laplace equation. However,

Figure 3.10 shows that our scheme gives comparable accuracy.

3D case. Figure 3.11 shows the equivalent density approximation errors for the 3D

Laplace single layer kernel, the 3D modified Stokes double layer kernel and the 3D

Navier single layer kernel. In each case, the source density is again placed close to

one corner of the cube. The regularization parameter α used in these plots is 10−9.

78

2.5 3 3.5 4 4.5 5 5.5 6
-14

-12

-10

-8

-6

-4

-2

0

error p=16
error p=24
error p=32
potential

lo
g

1
0
|ε

a
p

p
|

R S

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-14

-12

-10

-8

-6

-4

-2

0

lo
g

1
0
|ε

a
p

p
|

R S

Single-layer Laplacian.

2.5 3 3.5 4 4.5 5 5.5 6
-12

-10

-8

-6

-4

-2

0

lo
g

1
0
|ε

a
p

p
|

R S

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-14

-12

-10

-8

-6

-4

-2

0

lo
g

1
0
|ε

a
p

p
|

R S

Modified double-layer Stokes, λ = 1.

2.5 3 3.5 4 4.5 5 5.5 6
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

lo
g

1
0
|ε

a
p

p
|

R S

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-14

-12

-10

-8

-6

-4

-2

0

lo
g

1
0
|ε

a
p

p
|

R S

Single-layer Navier.

Figure 3.10: Results of the equivalent density approximation in 2D. Left: the error

of the upward equivalent density approximation. Right: the error of the downward

equivalent density approximation. The abscissa of the plots is the radius of the sphere

Rs, and the ordinate is the logarithm of the error εapp. The solid curve is the maximum

norm of the potential. The remaining three curves show the maximum norm error for

16-, 24- and 32-point approximation of the equivalent densities. For modified Stokes,

we tested λ from 1e-3 to 1e+3 and obtained similar error plots. For λ greater than

1e+3, far field interaction is negligible.

79

3 3.5 4 4.5 5 5.5 6
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

error p=56
error p=152
error p=296
potential

lo
g

1
0
|ε

a
p

p
|

R S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g

1
0
|ε

a
p

p
|

R S

Single-layer Laplacian.

3 3.5 4 4.5 5 5.5 6
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g

1
0
|ε

a
p

p
|

R S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-10

-9

-8

-7

-6

-5

-4

-3

-2

lo
g

1
0
|ε

a
p

p
|

R S

Modified double-layer Stokes, λ = 1.

3 3.5 4 4.5 5 5.5 6
-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g

1
0
|ε

a
p

p
|

R S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g

1
0
|ε

a
p

p
|

R S

Single-layer Navier.

Figure 3.11: Results of the equivalent density approximation in 3D. Left: the error

of the upward equivalent density approximation. Right: the error of the downward

equivalent density approximation. The abscissa of the plots is the radius of the sphere

Rs, and the ordinate is the logarithm of the error εapp. For each plot, the solid curve

shows the maximum norm of the potential. The rest three plots show the maximum

norm error where the equivalent density is approximated with 56, 152 and 296 points.

These numbers correspond to discretization points that are the boundary nodes of

volume Cartesian grids of size 4 × 4 × 4, 6 × 6 × 6, 8 × 8 × 8 (per box).

80

3.5.2 Overall Approximation Error

In this section we give wall-clock time and memory requirements for several kernels.

All experiments were performed on a Sun Ultra 80 workstation with a 450 MHz

CPU. In 3D case, the FFTW package is used for FFT computation. Our code has

been implemented in C++.

In our experiments we assume that the source points and the target points coin-

cide. We use three sets of density distributions in the cube with range [−1, 1] in each

dimension. The first set is a distribution on a sphere, which is typically non-uniform.

The second set is a uniform distribution of density in a cube. The last set has densities

only at the box corners. The objective of this set of points is to check the stability of

multiple M2M and L2L transformations of our method. For all density distributions

the densities are chosen randomly from [0, 1). The three data sets for the 3D case are

shown in Figure 3.12.

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
-1

0.5

0

0.5

1

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
-1

-0.5

0

0.5

1

Figure 3.12: Three data sets in 3D: Left: densities distributed on the unit sphere,

Middle: densities distributed uniform in the unit cube, Right: densities distributed at

the eight corners of the unit cube.

We organize the table in a way similar to [20]. The columns of every table repre-

sent the following quantities.

81

N : the number of points used in computation (we use the same number of source

and target points).

R : the number of levels of the computation tree.

M : the number of boxes in the computation tree.

p : the number of discretization points used in the equivalent density approximations.

In 2D examples, we use 16, 24, and 32 points. In 3D examples, we choose the

discretization points to be the boundary nodes of volume Cartesian grids of

size 4× 4× 4, 6× 6× 6, 8× 8× 8. These numbers correspond to 56, 152 and

296 points respectively.

s : the maximum number of points allowed in a leaf box of the computation tree.

S : the memory used to store M2M, M2L, and L2L translations.

Tfmm : the running time of our algorithm.

Tdir : the running time of the direct evaluation. For each table, only the number in

the first line is actually tested; all other numbers are obtained by extrapola-

tion. The error is computed in relative 2-norm. We randomly select k points

x1, x2, · · · , xk, evaluate the potential ui using our algorithm and the potential

ũi using direct evaluation at these k points. The error is estimated using the

formula from [20]:

E =

(∑k
i=1 |ui − ũi|2∑k

i=1 |ũi|2

)1/2

,

where k is chosen to be 40 in all experiments.

Below, we report the results on the first two data sets (non-uniform and uniform

distribution) for five different kernels:

82

• 2D Laplace single layer kernel (Table 3.3),

• 3D Laplace single layer kernel (Table 3.4),

• 3D Modified Laplace single layer kernel (Table 3.5),

• 3D Modified Stokes double layer kernel (Table 3.6),

• 3D Navier single layer kernel (Table 3.7).

Our results from 2D are quite satisfactory since we can compute interactions

between 2 million particles in 6 digits of accuracy in around 90 seconds, as we can

see in Table 3.3. We discuss relative performance of our method in greater detail in

the 3D case since this is more difficult to implement efficiently. We compare with

results from two papers: the single-layer 3D Laplacian results of Cheng, Greengard,

and Rokhlin [20] and modified single-layer 3D Laplacian results of Greengard and

Huang [33].

In the first paper the authors use a 167 MHz Sun workstation and in the second a

440 MHz Sun platform. As mentioned before we are using a 450 MHz Sun worksta-

tion. The metric we use for the purposes of comparison is the total number of CPU

cycles in millions per grid point. We compute this number as

η =
Tfmm × CPU

N
.

where ηa and η are the numbers of cycles per particle for the analytic FMM and

and for our algorithm respectively. This is a only rough estimate that does not take

into account the difference in chip architecture (e.g., memory bus clock), different

floating point precision of the calculations (most calculations in the first paper were

performed in single precision, all our results are in double precision), and different

input densities.

83

N R M p s S (Mb) Tfmm (s) Tdir (s) Error

32768 10 2989 16 40 1.52e+00 1.53e+00 1.71e+02 2.80e-06

131072 12 11857 16 40 1.91e+00 5.85e+00 2.74e+03 1.24e-06

524288 14 47241 16 40 2.30e+00 2.36e+01 4.39e+04 1.51e-06

2097152 16 190601 16 40 2.69e+00 9.32e+01 7.02e+05 2.80e-06

32768 9 1597 24 60 2.97e+00 1.92e+00 1.71e+02 2.68e-08

131072 12 6505 24 60 3.94e+00 7.47e+00 2.74e+03 2.84e-08

524288 14 26073 24 60 5.10e+00 2.97e+01 4.39e+04 3.36e-08

2097152 16 104129 24 60 5.98e+00 1.24e+02 7.02e+05 2.24e-08

32768 9 1493 32 80 5.28e+00 2.23e+00 1.71e+02 1.89e-10

131072 11 5953 32 80 6.84e+00 1.03e+01 2.74e+03 1.77e-10

524288 13 23825 32 80 8.41e+00 4.04e+01 4.39e+04 7.05e-10

2097152 15 95425 32 80 9.97e+00 1.49e+02 7.02e+05 6.03e-10

The particles are uniformly distributed on the perimeter of a circle.

N R M p s S (Mb) Tfmm (s) Tdir (s) Error

32768 8 2837 16 40 1.14e+00 1.45e+00 1.71e+02 5.72e-07

131072 10 12245 16 40 1.53e+00 5.26e+00 2.74e+03 3.71e-07

524288 12 47829 16 40 1.92e+00 2.16e+01 4.39e+04 4.46e-07

2097152 14 189717 16 40 2.31e+00 8.89e+01 7.02e+05 5.24e-07

32768 7 1557 24 60 2.13e+00 1.78e+00 1.71e+02 2.05e-09

131072 9 5909 24 60 3.01e+00 7.21e+00 2.74e+03 2.50e-09

524288 11 25557 24 60 3.88e+00 2.75e+01 4.39e+04 1.64e-09

2097152 14 104085 24 60 4.85e+00 1.07e+02 7.02e+05 1.48e-09

32768 7 1557 32 80 3.78e+00 2.12e+00 1.71e+02 2.83e-11

131072 9 5269 32 80 5.34e+00 8.81e+00 2.74e+03 2.87e-11

524288 11 23893 32 80 6.91e+00 3.54e+01 4.39e+04 2.17e-11

2097152 13 95253 32 80 8.47e+00 1.34e+02 7.02e+05 6.50e-11

The particles are uniformly distributed inside a cube.

Table 3.3: Performance for particles interacting via the single-layer Laplacian in 2D.

84

N R M p s S (Mb) Tfmm (s) Tdir (s) Error

24576 6 1377 56 60 1.72e+00 5.72e+00 9.74e+01 2.12e-05

98304 7 5049 56 60 1.72e+00 2.38e+01 1.56e+03 3.21e-05

393216 8 19065 56 60 1.72e+00 9.51e+01 2.49e+04 6.08e-05

1572864 9 76185 56 60 1.72e+00 3.82e+02 3.99e+05 6.03e-05

24576 5 585 152 150 5.90e+00 1.16e+01 9.74e+01 3.34e-07

98304 6 2289 152 150 5.90e+00 4.76e+01 1.56e+03 5.86e-08

393216 7 11193 152 150 5.90e+00 2.18e+02 2.49e+04 2.45e-07

1572864 9 44145 152 150 5.90e+00 8.35e+02 3.99e+05 3.08e-07

24576 4 273 296 250 1.47e+01 1.81e+01 9.74e+01 1.59e-09

98304 6 1449 296 250 1.47e+01 8.15e+01 1.56e+03 1.40e-09

393216 7 5073 296 250 1.47e+01 3.41e+02 2.49e+04 1.10e-09

1572864 8 19161 296 250 1.47e+01 1.38e+03 3.99e+05 2.81e-09

The particles are distributed on the surface of a sphere.

N R M p s S (Mb) Tfmm (s) Tdir (s) Error

24576 4 585 56 60 1.72e+00 6.40e+00 9.74e+01 6.64e-06

98304 5 3657 56 60 1.72e+00 3.11e+01 1.56e+03 1.27e-05

393216 7 28233 56 60 1.72e+00 1.30e+02 2.49e+04 5.00e-05

1572864 8 88137 56 60 1.72e+00 4.08e+02 3.99e+05 5.84e-05

24576 4 585 152 150 5.90e+00 1.60e+01 9.74e+01 1.54e-08

98304 5 3657 152 150 5.90e+00 9.28e+01 1.56e+03 4.70e-08

393216 6 14409 152 150 5.90e+00 3.18e+02 2.49e+04 1.10e-07

1572864 7 37449 152 150 5.90e+00 8.47e+02 3.99e+05 2.13e-07

24576 4 585 296 250 1.47e+01 3.65e+01 9.74e+01 5.25e-10

98304 4 585 296 250 1.47e+01 1.11e+02 1.56e+03 4.57e-10

393216 5 3657 296 250 1.47e+01 4.31e+02 2.49e+04 6.85e-10

1572864 6 17481 296 250 1.47e+01 1.46e+03 3.99e+05 1.46e-09

The particles are uniformly distributed inside a cube.

Table 3.4: Performance for particles interacting via the single layer Laplacian in 3D.

85

First, we compare Table 3.4 with Tables IV, V, and VI of [20]. For the three digit

accuracy (Table IV) the average ηa is 0.07 for single precision. Our method achieves

an η equal to 0.11 (in double digit accuracy), approximately a factor of 1.5 slower.

Similar conclusions hold for the 6-digit accuracy results(Table V), for which the an-

alytic FMM achieves ηa = 0.15 in single precision, whereas our method achieves

η = 0.23 in double precision. For the modified single layer Laplacian we compare

the 6-digit accuracy entries (Table I, [33]), with Table 3.5 (uniform distribution in a

cube). In this case ηa = 0.3 and η = 0.4, which is slightly better than 1.5; the actual

difference in performance is even less, since we achieving about one additional digit

of accuracy (average error 7 × 10−7 for the analytic FMM compared an average of

7 × 10−8 in our case).

Another reason our method is slower might be related to the dense interactions.

In order to save storage we do not precompute them, and we have found that this

slows down our method by a factor of 2 to 4. The most time consuming part is

computing the 1/
√

(r · r) term, which we have found impossible to optimize either

with lookup tables or with special vector routines available from most vendors. For

large problems that require several summations for the same particle partitions further

running time improvements can be achieved by precomputing and storing all dense

interactions. The memory requirements in this case can be substantial.

In conclusion, it appears that our method compares reasonably well with the an-

alytic FMM by being a factor of 1.5 or less slower. Extending our code from the

Laplacian to the modified Laplacian was very easy as we simply implemented a dif-

ferent kernel evaluation. Inspecting the results for the other kernels, we can confirm

the O(N) complexity of our method and the convergence to the exact sum as we

increase the number of quadrature points.

86

N R M p s S (Mb) Tfmm (s) Tdir (s) Error

6144 5 441 56 60 4.55e+00 1.97e+00 1.15e+01 3.55e-05

24576 6 1377 56 60 6.27e+00 8.24e+00 1.83e+02 7.71e-05

98304 7 5049 56 60 8.29e+00 3.33e+01 2.94e+03 3.11e-05

393216 8 19065 56 60 1.00e+01 1.28e+02 4.70e+04 8.22e-05

6144 4 225 152 150 1.08e+01 4.38e+00 1.15e+01 2.48e-07

24576 5 585 152 150 1.57e+01 1.99e+01 1.83e+02 9.55e-08

98304 6 2289 152 150 2.26e+01 7.58e+01 2.94e+03 3.18e-07

393216 7 11193 152 150 2.85e+01 3.39e+02 4.70e+04 3.63e-07

6144 3 57 296 250 1.18e+01 6.90e+00 1.15e+01 2.50e-09

24576 4 273 296 250 2.64e+01 3.00e+01 1.83e+02 1.88e-09

98304 6 1449 296 250 5.30e+01 1.23e+02 2.94e+03 1.96e-09

393216 7 5073 296 250 6.99e+01 5.35e+02 4.70e+04 3.71e-09

The particles are distributed on the surface of a sphere.

N R M p s S (Mb) Tfmm (s) Tdir (s) Error

6144 4 585 56 60 3.35e+00 3.72e+00 1.15e+01 5.28e-06

24576 4 585 56 60 3.35e+00 1.06e+01 1.83e+02 2.29e-05

98304 5 3657 56 60 5.07e+00 4.25e+01 2.94e+03 3.98e-05

393216 7 28233 56 60 8.14e+00 1.64e+02 4.70e+04 4.88e-05

6144 3 73 152 150 5.38e+00 4.09e+00 1.15e+01 2.10e-08

24576 4 585 152 150 1.13e+01 2.11e+01 1.83e+02 9.86e-08

98304 5 3657 152 150 1.72e+01 1.08e+02 2.94e+03 7.23e-08

393216 6 14409 152 150 2.31e+01 4.14e+02 4.70e+04 4.57e-08

6144 3 73 296 250 1.29e+01 5.87e+00 1.15e+01 7.15e-10

24576 4 585 296 250 2.75e+01 4.39e+01 1.83e+02 6.02e-10

98304 4 585 296 250 2.75e+01 1.98e+02 2.94e+03 4.28e-10

393216 5 3657 296 250 4.22e+01 6.65e+02 4.70e+04 8.24e-10

The particles are uniformly distributed in a cube.

Table 3.5: Performance of our method for particles interacting via the modified single

layer Laplacian in 3D.

87

N R M p s S (Mb) Tfmm (s) Tdir (s) Error

6144 5 441 56 60 8.18e+01 2.65e+01 1.04e+02 9.56e-04

24576 6 1377 56 60 1.13e+02 1.02e+02 1.66e+03 1.45e-03

98304 7 5049 56 60 1.49e+02 3.91e+02 2.66e+04 1.47e-03

6144 4 225 152 150 2.00e+02 7.59e+01 1.04e+02 5.66e-06

24576 5 585 152 150 2.92e+02 2.39e+02 1.66e+03 6.90e-06

98304 6 2289 152 150 4.20e+02 1.01e+03 2.66e+04 1.06e-05

6144 3 57 296 250 2.16e+02 6.44e+01 1.04e+02 8.77e-08

24576 4 273 296 250 4.89e+02 3.59e+02 1.66e+03 1.67e-07

98304 6 1449 296 250 9.87e+02 1.69e+03 2.66e+04 1.88e-07

The particles are distributed on the surface of a sphere.

N R M p s S (Mb) Tfmm (s) Tdir (s) Error

6144 4 585 56 60 6.03e+01 6.97e+01 1.04e+02 5.32e-04

24576 4 585 56 60 6.03e+01 1.23e+02 1.66e+03 5.01e-04

98304 5 3657 56 60 9.13e+01 6.09e+02 2.66e+04 7.00e-04

6144 3 73 152 150 9.87e+01 4.35e+01 1.04e+02 1.77e-06

24576 4 585 152 150 2.09e+02 3.57e+02 1.66e+03 2.96e-06

98304 5 3657 152 150 3.19e+02 2.04e+03 2.66e+04 9.32e-06

6144 3 73 296 250 2.36e+02 7.63e+01 1.04e+02 3.71e-08

24576 4 585 296 250 5.09e+02 8.28e+02 1.66e+03 8.02e-08

98304 4 585 296 250 5.09e+02 2.01e+03 2.66e+04 9.88e-08

The particles are uniformly distributed in a cube.

Table 3.6: Performance of our method for particles interacting via the modified dou-

ble layer Stokes kernel in 3D.

In all experiments, we store only the linear operators for M2M, M2L and L2L

translations, since these operators are applied repetitively in a single pairwise inter-

action evaluation. The dense interactions between adjacent boxes are not stored. The

storage number reported in all tables considers only the memory used by M2M, M2L

and L2L operators, while the storage used to store the densities and potentials (which

88

N R M p s S (Mb) Tfmm (s) Tdir (s) Error

6144 5 441 56 60 1.55e+01 1.29e+01 5.91e+01 8.54e-05

24576 6 1377 56 60 1.55e+01 4.93e+01 9.46e+02 6.71e-05

98304 7 5049 56 60 1.55e+01 1.98e+02 1.51e+04 6.32e-05

6144 4 225 152 150 5.50e+01 3.29e+01 5.91e+01 1.07e-06

24576 5 585 152 150 5.50e+01 1.10e+02 9.46e+02 1.66e-06

98304 6 2289 152 150 5.50e+01 4.59e+02 1.51e+04 1.02e-06

6144 3 57 296 250 1.08e+02 3.28e+01 5.91e+01 7.30e-09

24576 4 273 296 250 1.36e+02 1.82e+02 9.46e+02 8.51e-09

98304 6 1449 296 250 1.36e+02 8.51e+02 1.51e+04 8.73e-09

The particles are distributed on the surface of a sphere.

N R M p s S (Mb) Tfmm (s) Tdir (s) Error

6144 4 585 56 60 1.55e+01 3.41e+01 5.91e+01 3.70e-05

24576 4 585 56 60 1.55e+01 6.65e+01 9.46e+02 4.82e-05

98304 5 3657 56 60 1.55e+01 3.13e+02 1.51e+04 6.68e-05

6144 3 73 152 150 4.94e+01 2.19e+01 5.91e+01 1.81e-07

24576 4 585 152 150 5.50e+01 1.62e+02 9.46e+02 3.50e-07

98304 5 3657 152 150 5.50e+01 9.48e+02 1.51e+04 4.86e-07

6144 3 73 296 250 1.18e+02 3.78e+01 5.91e+01 2.56e-09

24576 4 585 296 250 1.36e+02 4.22e+02 9.46e+02 3.58e-09

98304 4 585 296 250 1.36e+02 1.00e+03 1.51e+04 4.39e-09

The particles are uniformly distributed in a cube.

Table 3.7: Performance of our method for particles interacting via the single layer

Navier kernel in 3D.

scales linearly with respect to the number of points and boxes) is not included. This

explains why for the results of homogeneous kernels (Tables 3.4 and 3.7), the storage

numbers remain small and do not increase with the number of points and the number

of levels.

89

Stability of multiple M2M and L2L translations. Here we test the stability of the

M2M and L2L translations of our algorithm using the last data set which only has

density distribution at the corners of the cube. Table 3.8 shows the result on this data

set with 2D Laplace single layer kernel. Table 3.9 reports the errors with 3D Laplace

single layer kernel.

N R M p s S (Mb) Tfmm (s) Tdir (s) Error

524288 18 47449 16 40 2.17e+00 2.17e+01 4.39e+04 4.46e-06

524288 18 26041 24 60 4.54e+00 2.63e+01 4.39e+04 1.20e-08

524288 17 23833 32 80 7.91e+00 3.50e+01 4.39e+04 1.04e-10

Table 3.8: Performance of our method for the 2D single layer Laplacian. In this

experiment the particles are distributed over the boundaries of four circles. These

circles are quite small compared the size of the (square) computational domain, and

located near to the four corners of the domain. In this way the tree is “forced” to have

many levels (up to 18). We use this experiment to test the numerical stability of our

M2M and L2L translations.

N R M p s S (Mb) Tfmm (s) Tdir (s) Error

196608 12 11057 56 60 1.72e+00 4.58e+01 6.23e+03 1.75e-05

196608 11 4721 152 150 5.90e+00 1.04e+02 6.23e+03 1.20e-07

196608 10 2225 296 250 1.47e+01 1.50e+02 6.23e+03 1.53e-09

Table 3.9: Performance of our method for the 3D single layer Laplacian. In this

experiment the particles are distributed over the boundaries of eight spheres. These

spheres are quite small compared the size of the (cubic) computational domain, and

located near to the eight corners of the box.

90

3.6 Summary

In this chapter, we have described a new kernel-independent fast multipole method,

which generalizes FMM to a broad class elliptic kernels while attaining an algorith-

mic complexity (including constants) which is on par with the analytic FMM. Here

we summarize the main features of our algorithm.

• Our algorithm has the same structure as the original adaptive FMM method.

• We have demonstrated that the method performs well for single and double

layers, the Laplacian, the modified Laplacian, the Stokes, the modified Stokes,

and the Navier kernels in two and three dimensions. By providing just a kernel

evaluation routine our method is immediately applicable, as long as the kernel

is associated with a non-oscillatory second-order elliptic PDEs.

• Comparisons of the running times between our method and the best known

FMM implementations, and for same accuracy levels, indicate that our ap-

proach was successful in efficiently extending FMM to other kernels.

• To our knowledge, our results are the first fast summation computations for the

modified Stokes and Navier operators.

• Our method is also directly applicable for derivatives of the kernels we have

presented here. Indeed, we have tested our method on the hypersingular kernels

resulting from differentiating the double layer Stokes and Navier equations.

• The M2L translations in our method are suboptimal. In 3D, the analytic expo-

nential translations require O(p), whereas our method requires O(p3/2) where

91

p is the number of coefficients used in the approximation (the number of mo-

ments in the analytic FMM, and the number of discretization points in our

method).

• Our method does not have a level independent error estimate that comes with

the original FMM algorithm for Laplacian kernel. However, the error analysis

in Section 3.4 shows that in practice the error can increase with the depth at

most in a linear fashion.

92

Chapter 4

Parallel Implementation of Kernel

Independent FMM

For large scale problems, even the iterative solvers with fast multipole method ac-

celeration can still be quite slow on one computer. This brings up the request for

parallel implementation of these solvers. This chapter describes a message passing

based parallel implementation of the kernel independent FMM algorithm described

in Chapter 3. In the Nyström solver for boundary integral equation, the particle po-

sitions and densities are associated to the discretization of integral equations, and

at each time step the interaction computation (matrix vector multiplication within a

Krylov method) is carried out multiple times. Therefore, our parallel implementation

is designed to achieve maximum efficiency in the multiplication phase.

93

4.1 Introduction

To parallelize an FMM algorithm on a distributed memory platform, one faces with

two major challenges. First, the data, including the particles and the octtree data

structure) needs to be stored in a distributed way, since one processor often does not

have enough memory to contain the whole data set. Therefore, we need efficient

schemes to partition the particles over processors and to build a distributed octtree

based on this distributed particle set. In our implementation, we use the local essential

tree [90] to store the data structure.

Second, the algorithm needs to meet certain communication and synchronization

requirements: (1) Tree-related communication is required to maintain a consistent

global tree. (2) Synchronization at upward and downward pass since there is data

dependence between the equivalent densities of a parent and its child, and these

two boxes can belong to different processors. (3) Communication related to M2L

translation is necessary since one box needs the upward equivalent density or source

information of another box owned by a different processor. In our implementation

we have logically separated the computation and communication. During the up-

ward and downward passes, a processor performs its own computation ignoring the

existence of other processors. Between them, a single step combines the upward

equivalent density computed by all processors and takes care of the communication.

The advantage of this approach is that no synchronization is required at the compu-

tation passes. A disadvantage is the redundant computation at the nodes which are

close to the root of the global computation tree. However since the number of these

nodes is small, this has negligible influence on the overall computation.

94

Related work on parallel tree-codes. The first successful distributed-memory par-

allel implementations for non-uniform particle distributions were obtained for the

Barnes-Hut algorithm by Warren and Salmon [90]. Key ideas in this paper were the

local essential trees (LETs), which provide a framework for parallelization of Barnes-

Hut algorithm and can be extended to the FMM. The hashed octtree data structures

were first introduced in [91] along with space-filling curves used for partitioning

and load balancing, and further increased efficiency and scalability of tree-codes. A

similar approach for shared memory machines, and one of the first scalable FMM

implementations, is found in [80], in which a cost-zones partitioning is used with or-

thogonal recursive bisection. A comparison between FMM algorithms, hybrids, and

the Barnes-Hut method can be found in [10]. The main conclusion is that for higher

accuracies, FMM is the fastest method. Another nice comparison between different

platforms and algorithms can be found in Hu and Johnsson [43], in which the authors

report results on up to 100 million particles on uniform particle distributions on a

CM-5.

Recent papers on distributed-memory implementations include FMM for electro-

magnetics [40]; Helmholtz-type problems using optimal M2L translations [59]; and

molecular dynamics FMM implementations that scale to 24 millions of particles on

thousands of processors [56, 57]. Efficient data-structures and discussions on the

theory of partitioning and complexity can be found in [77] and [85].

Other approaches for particle interactions include particle-mesh algorithms like

those used in NAMD-2 [65] which employs FFTs for Ewald summation on regular

grids. Such approaches could be extended to more general kernels, but they are

restricted to approximately uniform particle distributions. Parallel Stokes solvers

were presented in [64], but without FMM or Barnes-Hut acceleration.

95

4.2 The Parallel Algorithm

4.2.1 Data Partitioning and Tree Generation

Our partitioning scheme is fairly straightforward. We take advantage of the fact that

our input is a set of surface patches on which the particles are generated. We first

gather all input surface patches on a single processor, and assign to each patch a

weight which in the simplest case is equal to the number of particles in that patch.

Second, we partition the clusters into groups with equal weights and assign each

group to one processor. To do this we use Morton curve partitioning. Alternatively,

we could use Morton curve partitioning directly on the particles but we have found

the first approach faster. No additional load balancing information is used besides

the number of particles. Work estimates from a previous time step could be used to

obtain more balanced partitioning.

An essential part in the FMM algorithm is the generation of the octtree. However,

since our applications require tens to hundreds of interaction computations, we have

adopted a simple but suboptimal tree construction algorithm. An important idea in

parallel tree-based algorithms is the Local Essential Tree (LET) [90], which is the

global tree subset that a processor needs to evaluate the interaction on particles it

owns. In an adaptive FMM algorithm, in order to calculate the interaction at a box

B, we need the information from the boxes in the following four lists ([20],[32]): (1)

U list LB
U which contains B itself and the leaf boxes which are adjacent to B if B is

leaf, and it is empty when B is non-leaf; (2) V list LB
V which contains the children

of the neighbors of B’s parent, which are not adjacent to B; (3) W list LB
W which

contains all the descendants of B’s neighbors whose parents are adjacent to B but

who are not adjacent to B themselves if B is leaf, and it is empty if B is a non-leaf;

96

and (4) X list LB
X , which contains all boxes A such that B ∈ LA

W . Therefore, for a

certain processor P , its LET first contains the boxes which contains points belonging

to P and second the boxes in the U , V , W , and X lists of these boxes. For a box B

of the first kind, we say P contributes to B, or equivalently, P is a contributor of B.

If B is of the second kind, we say P uses B or P is a user of B.

In the tree generation, besides LET, we maintain a compact representation of

the global tree by using an array in every processor, which we call the global tree

array. Each entry in the global tree array corresponds to a box in the global tree,

and this array is ordered according to a level-by-level traversal of the tree. The only

information stored is the global number of particles in the box and the indices of its

children boxes in the array. This representation only contains topological structure

of the tree. In practice, for a 200M points data set with s chosen to be 60, the size

of the array is less than 16M. Our algorithm constructs the local tree and this array

structure level by level. All processors begin at level 0 with the same box which is

large enough to contain the global particle set. At every level l, each processor puts its

local number of points in boxes at level l as well as into its local copy of the global

tree array. Then, an MPI Allreduce is used over all local copies of the global tree

array to sum up the local number of points for each box at level l. After this collective

communication, each local array contains the global number of points in each box in

level l. By comparing each box’s global number of points with s (the maximum

number of points allowed in each leaf box), each processor can decide whether a

box in level l should be further subdivided. Based on this decision, a processor can

construct the l + 1 level of its local tree and the array representation of the l + 1 level

of the global tree. After the construction of the local tree, the computation of the

local FMM lists is straightforward by using the global tree represented in the array.

97

4.2.2 Interaction Calculation

Before the interaction calculation, we first partition the global tree array, so that for

each box B the owner processor coordinates the communication related to B. If only

one processor contributes to B, then it is the owner of B. If multiple processors

contribute to B, then it can be owned by any processor, and the owner is chosen to

balance the communication load. This can be done as follows. For each processor

P , first we use the global tree array to decide the boxes for which P is the only

contributor, and mark them as “taken”. Second, we use MPI Allreduce to combine

the information, so that every processor P knows all boxes already taken by some

processor. Third, every processor P uses the same sequential algorithm to assign

unmarked boxes to processors in order to balance communication load. In the end,

all processors have the owner information for any box in the global computation tree.

The interaction calculation part is logically separated into three stages. The first

stage is a computation step which performs the upward computation. Each processor

P builds the upward equivalent densities for the LET nodes to which it contributes

(ignoring the existence of the other processors).

The second stage has two components. First, for each leaf box, we need to collect

its source positions and source density (also known as ghost information) from its

contributors and make them available for its users. The gather/scatter procedure for

doing this is given in Figure 4.1. Second, for each box (leaf or non-leaf), we need

to sum up the upward equivalent densities produced by its contributors and make it

available for its users. The procedure for this is similar with two modifications: (1)

we iterate over all boxes in the LET instead of just the leaf boxes, and (2) the owner of

a box sums up the received upward equivalent densities to obtain the global upward

equivalent densities for that box.

98

STEP 1 GATHER

for each box B in the LET do

if P contributes to B then

P sends its local source position/density information of B to the owner of B

end if

if P owns B then

P receives the local information of B from all the contributors of B

P combines them into the global position/density information of B

end if

end for

STEP 2 SCATTER

for each box B in the LET do

if P owns B then

P sends the global position/density information of B to all users of B

end if

if P uses B then

P receives the global position/density information of B from the owner of B

end if

end for

Figure 4.1: Gather/Scatter procedure.

The third stage performs the downward computation. Here, for each LET node

B, to which it contributes, P transforms the source density or upward equivalent

density of the boxes in U , V , W and X lists into local equivalent density or target

potential at node B (ignoring the existence of the other processors again). In our

implementation the upwards traversal is overlapped with the ghost communication;

and the equivalent densities communication is overlapped with the dense and X-list

computations.

99

4.3 Scalability Results

We present fixed-size and isogranular scalability analysis. For fixed-size scalability

analysis, we increase the number of processors for a fixed problem size. This analysis

exposes the grain size (i.e., the number of particles per processor) for which we can

expect reasonable speedups. For isogranular scalability analysis we keep the grain

size fixed and we increase the number of processors (and thus the problem size).

Such analysis reveals communication problems related to the size and frequency of

the messages as well as global reductions and problems with algorithmic scalability.

In our case, however, we expect good algorithmic scalability since FMM is an O(N)

algorithm under reasonable assumptions on the particle distribution [55].

Before we describe our numerical experiments, we emphasize two main conclu-

sions from our work on the sequential performance of our method. First, the most

expensive parts of the FMM algorithm are the M2L interactions and the dense inter-

actions, both in the downward traversal of the tree, especially in three dimensions.

Second, our method achieves algorithmic speed-ups which are on par with the fastest

known implementations of the FMM for the Laplacian [20] and modified Laplacian

kernels [33].

The problem setup is the following: The input is a set of surfaces, which we then

sample to get the particle positions. We build the hierarchical tree structure and then

we perform several interaction calculations. In this article we always report results

for a single interaction calculation, averaged over several iterations.

We assume the sets of source and target points to be identical. We use two sets of

density distributions in the cube with range [−1, 1] in each dimension. The first set

is produced by sampling 512 spheres centered at an 8 × 8 × 8 Cartesian grid in the

100

unit cube. For relatively low sampling rates, up to 10 million particles, we obtain a

uniform particle distribution. For higher sampling rates the distribution per processor

becomes non-uniform since the sampling over a single sphere is non-uniform. Our

second particle set is a non-uniform distribution of particles clustered at the eight cor-

ners of the unit cube. In all density distributions, the densities are chosen randomly

from [0, 1], and the relative error in all experiments is 10−5.

Our algorithm has been implemented in C++. We used the fast exponential,

square root and reciprocal libraries in the CXML routines, FFTW [26] for the M2L

translations, and PETSc [4] for profiling and for its Krylov iterative solvers. All

our tests were performed on the Pittsburgh Supercomputing Center’s TCS-1 teras-

cale computing HP Alphaserver Cluster comprising of 750 SMP ES45 nodes. Each

node is equipped with four Alpha EV-68 processors at 1 GHz and 4 Gbytes of mem-

ory. The peak performance is approximately 6 Tflops/s, and the peak performance

for the top-500 LINPACK benchmark is approximately 4 Tflops/s. The nodes are

connected by the Quadrics interconnect which delivers over 500 MB/s of message-

passing bandwidth per node and has a bisection bandwidth of 187 GB/s. In all our

tests we have used 4 processors per node.

Description of results We report wall-clock timings, Gflops/s rates and parallel

efficiency measurements for several problem sizes and kernels. Fixed size scalabil-

ity results for 3.2M particles are reported in Table 4.1, in which we provide timings

for the interaction calculation and for the tree construction, including communica-

tion. We also report aggregate Gflops/s rates. In these examples we have used 3.2

million particles. We report wall-clock time in seconds and flop rates for a single

interaction computation. We also report timings for the tree construction and com-

101

munication phases. Here (P) is the number of processors; (Total) is the total time

(averaged across processors) of the interaction phase; (Ratio) is the difference be-

tween the maximum and minimum time across processors, which is an indication

of load imbalance; Comm is the average time spent in MPI communication; (Up)

is the average time spent in the upward traversal of the tree; (Down) is the average

time spent in the downward traversal of the tree; (Avg) is the average Gflops/s during

the interaction calculation; (Peak) is the peak Gflops/s; and (Gen/Comm) is the time

spent in the tree construction phase. Overall, we can observe that we obtain excellent

scalability up to 512 processors. Communication costs however, become significant

once we hit 512 processors or more. In these cases we use less than 6,000 particles

per processor, i.e., too fine a grain size.

In Figure 4.2, we report the aggregate CPU cycles (across processors) per point

for the interaction calculation. These numbers are computed as P×C×T (P)
N

, where P

is the number of processors; C is the clock rate which in our case is 1GHz; T (P) is

the wall-clock time on P processors; and N is the number of particles. This metric

is used to measure parallel scalability and can be used to compare among different

machines, clock-rates and problems sizes. However, it hides architecture-dependent

characteristics like cache performance and memory bus speed. There are five stages:

(Up) is the upward traversal of the tree used to built equivalent densities; (Comm)

is the communication of the ghost points and equivalent densities; (DownU) is the

dense interaction calculations for LU lists; (DownV) is the M2L translations for LV

lists; (DownX) and (DownW) are the calculations for LX and LW lists associated

with the adaptive algorithm. In the right column, (Avg) is the the average, across

processors, Mflops rate; (Peak) is the peak rate; and the (Max/Min) indicate the Max-

imum/minimum average rates across processors—an indication of load imbalance.

102

The work efficiency is computed using the timings in Table 4.1. The Mflops/s effi-

ciency is computed based on the rates given in the figure. As we can see, up to 512

processors the efficiency is quite good: there is only a small increase in the total work

per particle.

We also compute a floating point efficiency as an index of efficient utilization of

the machine. The work efficiency is T (1)
T (P)P

and the flop-rate efficiency is computed

as f(P)/f(1), where f(P) is the flop-rate per processor on P -processors.

103

Laplacian kernel
Interaction computation Tree

Time (sec) GFlops/s Time (sec)
P Total Ratio Comm Up Down Avg Peak Gen/Comm

1 392.75 1.00 0.00 58.41 334.34 0.28 0.31 13.97
4 103.67 1.00 0.87 14.63 88.30 1.06 1.25 3.81
8 51.33 1.00 0.54 7.42 43.48 2.15 2.46 2.27

16 25.49 1.10 0.55 3.69 21.99 4.30 4.96 1.47
64 6.74 1.10 0.33 0.96 6.10 16.53 19.00 0.68

256 1.67 1.20 0.15 0.24 1.55 64.53 77.49 0.51
512 1.10 1.20 0.40 0.12 0.74 104.89 154.69 0.87

1024 1.13 1.20 0.81 0.07 0.45 108.67 258.55 1.09

Modified Laplacian kernel
Interaction computation Tree

Time (sec) GFlops/s Time (sec)
P Total Ratio Comm Up Down Avg Peak Gen/Comm

1 478.66 1.00 0.00 75.09 403.57 0.31 0.36 13.88
4 120.43 1.00 2.48 19.24 99.41 1.22 1.40 3.74
8 59.58 1.00 0.62 9.50 49.57 2.49 2.83 2.19

16 30.32 1.00 0.46 4.78 25.82 4.84 5.62 1.35
64 7.48 1.10 0.23 1.21 6.56 19.16 22.19 0.55

256 2.08 1.30 0.22 0.32 1.96 69.77 83.16 0.59
512 1.24 1.20 0.32 0.16 1.01 125.29 166.35 0.55

1024 1.25 1.20 0.85 0.10 0.51 127.67 261.21 1.25

Stokes kernel, non-uniform particle distribution
Interaction computation Tree

Time (sec) GFlops/s Time (sec)
P Total Ratio Comm Up Down Avg Peak Gen/Comm

1 1171.92 1.00 0.00 146.28 1025.64 0.37 0.56 22.95
4 332.69 1.00 19.17 41.63 284.49 1.29 1.97 6.05
8 155.07 1.00 3.51 19.97 135.53 2.76 4.10 2.94

16 78.02 1.00 1.51 10.02 70.39 5.47 8.28 1.51
64 21.11 1.20 0.75 2.70 19.95 20.47 31.71 0.80

256 5.92 1.50 0.53 0.74 6.18 72.77 122.11 0.81
512 3.29 1.70 0.48 0.40 3.59 130.60 237.08 0.73

1024 2.35 1.80 0.82 0.22 2.18 191.96 446.76 0.96

Table 4.1: Fixed size scalability results.

104

Laplacian kernel, uniform particle distribution

1 4 8 16 64 256 512 1024
0

0.08

0.16

0.24

0.32

0.4

A
gg

re
ga

te
 C

P
U

 c
yc

le
s/

pa
rt

ic
le

, i
n

m
ill

io
ns

Number of processors

0

0.2

0.4

0.6

0.8

1

W
or

k
ef

fic
ie

nc
y

Up
Comm
DownU
DownV
DownW
DownX
Eval
Effncy

1 4 8 16 64 256 512 1024
0

70

140

210

280

350

M
F

lo
ps

/s
 p

er
 p

ro
ce

ss
or

Number of processors

0

0.2

0.4

0.6

0.8

1

M
F

lo
ps

/s
 e

ffi
ci

en
cy

Avrg
Peak
Effncy
Max/Min

Modified Laplacian kernel, uniform particle distribution

1 4 8 16 64 256 512 1024
0

0.09

0.18

0.27

0.36

0.45

A
gg

re
ga

te
 C

P
U

 c
yc

le
s/

pa
rt

ic
le

, i
n

m
ill

io
ns

Number of processors

0

0.2

0.4

0.6

0.8

1

W
or

k
ef

fic
ie

nc
y

Up
Comm
DownU
DownV
DownW
DownX
Eval
Effncy

1 4 8 16 64 256 512 1024
0

80

160

240

320

400

M
F

lo
ps

/s
 p

er
 p

ro
ce

ss
or

Number of processors

0

0.2

0.4

0.6

0.8

1

M
F

lo
ps

/s
 e

ffi
ci

en
cy

Avrg
Peak
Effncy
Max/Min

Stokes kernel, non-uniform particle distribution

1 4 8 16 64 256 512 1024
0

0.16

0.32

0.48

0.64

0.8

A
gg

re
ga

te
 C

P
U

 c
yc

le
s/

pa
rt

ic
le

, i
n

m
ill

io
ns

Number of processors

0

0.2

0.4

0.6

0.8

1

W
or

k
ef

fic
ie

nc
y

Up
Comm
DownU
DownV
DownW
DownX
Eval
Effncy

1 4 8 16 64 256 512 1024
0

120

240

360

480

600

M
F

lo
ps

/s
 p

er
 p

ro
ce

ss
or

Number of processors

0

0.2

0.4

0.6

0.8

1

M
F

lo
ps

/s
 e

ffi
ci

en
cy

Avrg
Peak
Effncy
Max/Min

Figure 4.2: Fixed-size scalability results for different kernels. Here 3.2 million par-

ticles were used. The left column shows aggregate CPU cycles per particle; the right

column shows Mflops/s/processor for different stages of the interaction calculation

phase and the flop-rate efficiency.

105

In Table 4.2 and Figure 4.3, we report isogranular scalability results for 200 thou-

sand particles per processor and for the Laplace and Stokes kernels.

In these examples we have used 200,000 particles per processor. We report the

wall-clock time and Gflops/s for the interaction computation, and timings for the tree

construction and communication phases. P, Total, Ratio, Comm, Up, Down, Avg,

Peak and Gen/Comm have the same meaning as in Table 4.1. For the larger problem

we have a total 400 million particles, which for the Stokes case corresponds to 1.2

billion unknowns. In these experiments we do not report work efficiency because

the algorithm behavior slightly changes as we increase the problem size and at first

sight it appears that we obtain superlinear speedups. The particles are sampled for

512 spheres regularly arranged in a cube. For small numbers of particles we have

uniform distributions, but for the very large problems the problem locally is non-

uniform. As a result the number of M2L interactions drops and since this is the most

costly part of the computation it appears that the work efficiency improves. Overall,

we observe that the running time is slightly decreasing. This is due to algorithmic

changes; the M2L translations work (Down) is decreasing. We observe very good

scalability, i.e., low communication costs during the interaction calculation phase;

the increase for 2048 processors, in the non-uniform distribution case is due to the

load imbalance.

As in Figure 4.2 we report total cycles per particle and flop-rates for the whole

interaction calculation and its different phases in Figure 4.3. The Mflops/s efficiency

is computed based on the rates given in the figure. We are not reporting work ef-

ficiency because the algorithmic behavior of the problem changes with increasing

problem size, due to the increase in non-uniformity of the distribution at finer scales.

In this case the number of M2L translations decreases, resulting in a overall work

106

decrease. In addition, M2L computations run at about 300 Mflops/s, while all other

parts run at about 400+ Mflops/s. This produces apparent superlinear efficiencies,

especially in the work-intensive Stokes case. Our implementation exhibits excellent

scalability results on thousands of processors: As we can observe from the plots for

the Laplacian kernel we maintain an 80% efficiency on up to 2048 processors. In

the non-uniform distribution (last row) we observe a rather significant decrease of

the efficiency down to 65%. This is due to load imbalance, and is something that we

are currently working to improve. Finally notice that that for the largest problem the

peak performance was 1Tflops/s.

107

Laplacian kernel, uniform particle distribution
Interaction computation Tree

Time (sec) GFlops/s Time (sec)
P Total Ratio Comm Up Down Avg Peak Gen/Comm

1 30.56 1.00 0.00 2.87 27.69 0.27 0.28 0.49
4 28.59 1.00 0.23 3.13 25.29 1.03 1.16 0.70

16 25.97 1.10 1.06 3.77 22.80 4.17 4.84 1.42
64 21.76 1.10 1.38 3.73 18.26 17.04 17.78 3.02

256 22.06 1.10 1.65 3.48 19.54 64.36 73.89 13.48
1024 22.22 1.10 3.09 3.84 18.39 247.78 262.64 71.26
2048 23.54 1.20 0.96 4.05 21.34 488.07 568.89 964.47

Stokes kernel, uniform particle distribution
Interaction computation Tree

Time (sec) GFlops/s Time (sec)
P Total Ratio Comm Up Down Avg Peak Gen/Comm

1 133.26 1.00 0.00 7.38 125.88 0.30 0.49 0.49
4 166.79 1.00 0.63 8.62 157.86 1.03 2.06 0.64

16 146.72 1.10 2.00 12.34 139.38 4.41 8.46 1.59
64 106.00 1.10 2.13 10.74 99.06 18.86 33.21 3.54

256 88.06 1.10 2.43 10.59 81.94 81.57 127.91 14.16
1024 79.34 1.10 2.10 10.59 72.53 338.56 494.97 69.42
2048 76.28 1.10 2.06 10.58 69.36 669.99 986.45 936.78

Stokes kernel, non-uniform particle distribution
Interaction computation Tree

Time (sec) GFlops/s Time (sec)
P Total Ratio Comm Up Down Avg Peak Gen/Comm

1 82.68 1.00 0.00 10.39 72.29 0.34 0.54 1.17
4 80.43 1.00 0.72 9.88 70.01 1.39 2.14 1.37

16 78.03 1.10 1.30 9.75 70.75 5.46 8.51 1.47
64 84.16 1.20 4.02 10.67 79.55 20.05 31.40 2.52

256 86.24 1.50 8.97 11.17 92.44 71.49 119.76 8.21
1024 92.60 2.00 4.20 12.55 114.93 248.16 426.40 69.34
2048 108.64 2.50 12.32 17.72 139.36 453.44 752.03 988.24

Table 4.2: Isogranular scalability results.

108

Laplace kernel, uniform particle distribution

1 4 16 64 256 1024 2048
0

0.032

0.064

0.096

0.128

0.16

A
gg

re
ga

te
 C

P
U

 c
yc

le
s/

pa
rt

ic
le

, i
n

m
ill

io
ns

Number of processors

Up
Comm
DownU
DownV
DownW
DownX
Eval

1 4 16 64 256 1024 2048
0

70

140

210

280

350

M
F

lo
ps

/s
 p

er
 p

ro
ce

ss
or

Number of processors

Avrg
Peak
Effncy
Max/Min

0

0.2

0.4

0.6

0.8

1

M
F

lo
ps

/s
 e

ffi
ci

en
cy

Stokes kernel, uniform particle distribution

1 4 16 64 256 1024 2048
0

0.18

0.36

0.54

0.72

0.9

A
gg

re
ga

te
 C

P
U

 c
yc

le
s/

pa
rt

ic
le

, i
n

m
ill

io
ns

Number of processors

Up
Comm
DownU
DownV
DownW
DownX
Eval

1 4 16 64 256 1024 2048
0

120

240

360

480

600

M
F

lo
ps

/s
 p

er
 p

ro
ce

ss
or

Number of processors

Avrg
Peak
Effncy
Max/Min

0

0.2

0.4

0.6

0.8

1

M
F

lo
ps

/s
 e

ffi
ci

en
cy

Stokes kernel, non uniform particle distribution

1 4 16 64 256 1024 2048
0

0.14

0.28

0.42

0.56

0.7

A
gg

re
ga

te
 C

P
U

 c
yc

le
s/

pa
rt

ic
le

, i
n

m
ill

io
ns

Number of processors

Up
Comm
DownU
DownV
DownW
DownX
Eval

1 4 16 64 256 1024 2048
0

120

240

360

480

600

M
F

lo
ps

/s
 p

er
 p

ro
ce

ss
or

Number of processors

Avrg
Peak
Effncy
Max/Min

0

0.2

0.4

0.6

0.8

1

M
F

lo
ps

/s
 e

ffi
ci

en
cy

Figure 4.3: Isogranular scalability results for Laplacian and the Stokes kernels. These

charts show the aggregate CPU cycles per particle and Mflops/s/processor for the

different stages of the interaction calculation.

109

Finally in Table 4.3 we report results from our largest runs on 3000 processors. In

this set of runs the geometry is the 512 spheres and we solve problems for the Laplace

equation with 100K and 230K particles per processor and for the Stokes equations

also with 230K particles per processor. For all the other experiments we have used

rough 60 particles per box, while in this experiment we use 120 particles per box to

slightly reduce the costs of tree construction.

Interaction computation Tree

Time (sec) GFlops/s Time (sec)

unknowns Total Ratio Comm Up Down Avg Peak Gen/Comm

0.300 B 7.63 1.5 1.03 2.43 5.69 696.8 802.2 837.4

0.690 B 21.59 2.2 3.23 4.13 15.29 789.3 972.1 1101

2.070 B 65.97 1.8 3.06 9.87 62.10 1134 1587 1077

Table 4.3: 3000 processor runs. In these examples we have solved three problems

100K and 230K particles per CPU for for the Laplace and Stokes equations all for

the 512 spheres input. For the larger problem we have a total 700 million particles,

which for the Stokes case corresponds to 2.1 billion unknowns. Notice that for the

interaction calculation we have sustained 1.13 Tflops/s which translates to 25% effi-

ciency compared to the sustained performance for the LINPACK benchmark on the

TCS-1.

Discussion Examination of the performance numbers leads to the following ob-

servations: (1) The code uses about 160 thousand CPU cycles per particle for five

digits of accuracy for the Laplacian kernel and about 200 thousand and 800 thousand

cycles for the modified Laplacian and Stokes respectively. (2) For the fixed problem

size (3.4 million particles) we obtain 80% efficiency for up to 256 processors and then

the communication costs start increasing. (3) In the isogranular scalability good effi-

ciency is maintained up to 2048 processors with peak performance of 1 Tflops/s and

110

sustained performance of 0.7 Tflops/s. (4) The communication costs during the in-

teraction computation scale very well. (5) The tree construction and communication

does not scale beyond 1024 processors. (6) Load imbalance for highly non-uniform

distributions is significant. (7) In our largest runs we have obtained 1.13 Tflops/s

sustained performance and 1.6 Tflops/s peak performance for 2.1 billion unknowns.

It is apparent that we get better performance for the Stokes kernel. The reason

is that the scalar kernels like the Laplacian and modified Laplacian have less work

per particle and less communication than the Stokes kernels. We have observed an

increase in the flop-rate for the Stokes kernel albeit the higher communication costs.

We should note that our implementation of the tree construction and load bal-

ancing is not optimal; our focus was on efficient implementation of the interaction

computation, which we apply several times before we update the particle positions.

Tree construction and load balancing are well isolated parts in our code and known

techniques can be used to improve their efficiency. We plan to incorporate more effi-

cient algorithms in the near future. In particular, we plan to use workload information

from previous time steps for load balancing. In addition we are currently changing

our level-to-level tree construction in order to obtain a completely scalable algorithm.

4.4 Summary

In this chapter, we have presented a MPI-based scalable and platform-independent

parallel implementation of our kernel independent fast multipole method.

Our parallel implementation has several important features. First, our MPI-based

parallel implementation logically separates computation and communication to avoid

synchronization in upward and downward pass, and to exploit maximal computation

111

and communication overlapping. Second, we verified that the method scales up to

3000 processors and achieves very good per processor sustained performance (up to

480 Mflops/s). As a result, we were able to reach 1.13 Tflops/s sustained performance

for a Stokes flow problem with 2.1 billion unknowns.

112

Chapter 5

Nyström Integration

5.1 Introduction

In this chapter, we describe the Nyström discretization method for the numerical

solution of the integral equation

1

2
ϕ(x) + (Dϕ)(x) = f(x).

As we mentioned earlier, this equation is solved using a Krylov space iterative lin-

ear solver, such as GMRES. The essential step of this solver is the evaluation of

(Dϕ)(x), which is required to be accurate and efficient. In the following sections,

we first present the discretization scheme and quadrature rule of our Nyström solver.

Then, we prove its error bounds and give the complete algorithm for the evaluation

of (Dϕ). We also describe how to extend this algorithm to evaluate other related

physical quantities such as pressure p and stress s. Then, we present an accurate

and efficient way to evaluate velocity, pressure and stress at any point inside the do-

main Ω. Finally, we comment on how to extend the algorithms to other equations,

including the Laplace’s equation, the Navier’s equation and their modified version.

113

In this chapter, the boundary Γ of the computation domain is represented with the

surface representation scheme introduced in Chapter 2. The basic ideas are motivated

by the work of Bruno and Kunyansky [16].

5.2 Discretization and Singular Integral Evaluation

for Velocity

By using the surface representation scheme in Chapter 2, the boundary Γ is covered

by several patches Pi for i = 1, · · · , K, each smoothly parameterized over a chart Ci

(Figure 5.1).

Ci

Pi

gi

Cj

Pj

Γ

gj

Figure 5.1: Parameterization of boundary.

Two sets of functions are essential to the discretization scheme described in this

chapter:

• gi : Ci → R3 which parameterizes the domain boundary using charts in 2D.

• wi : Γ → R which provides a partition of unity (POU) of the boundary Γ and

the support of wi is in Pi. Following the convention of [16], we call wi the

114

fixed partition of unity, since it does not depend on the point x at which the

integration is evaluated.

We first rewrite the integral (Dϕ)(x) in terms of the domain Ci:

(Dϕ)(x) =
K∑

k=1

∫
Ci

D(x, gk(ck))wk(gk(ck))ϕ(gk(ck))Jk(ck) dck,

where Jk denote the Jacobian of map gk. We define

ψk(ck) = wk(gk(ck))ϕ(gk(ck))Jk(ck)

which is a function vanishing at the boundary of Ci since wk does so. Then, we have

(Dϕ)(x) =
K∑

k=1

∫
Ck

D(x, gk(ck))ψk(ck) dck. (5.1)

We discretize each domain Ck with a Cartesian grid with uniform spacing h.

The set of grid points inside Ck is denoted by {ck,i}. The union of all grid points⋃K
k=1{ck,i} is the Nyström points used in the numerical approximation of the integral

Dϕ(x). By ϕk,i we denote the value of function ϕ at points ck,i, ψk,i the value of ψ,

and xk,i the position gk(ck,i). The goal of the integral solver is to find the values ϕk,i.

At each step of the GMRES solver, we need to approximate (Dϕ)(xk,i) efficiently

and accurately using the values ϕk,i.

We now consider the integrals in (5.1) one by one. By dropping the index k, the

integral over a single chart is of the following form

∫
C

D(x, g(c))ψ(c) dc. (5.2)

Non-singular part. If x �∈ g(C), then D(x, g(c)) is non-singular for any point c ∈
C, and the integrand D(x, g(c))ψ(c) and its derivatives vanish at the boundary of C.

115

Such a function can be regarded as a periodic function on a rectangular domain which

contains C. Therefore, the trapezoidal rule with weights h2 at points ci gives super-

algebraic convergence if the function ψ (and equivalently ϕ) is infinitely smooth. If

ψ is a CM function, the trapezoidal rule gives an error of order O(hM).

Singular part. If x = g(c′) for some c′ ∈ C, we introduce a C∞ function ηc′

defined by

ηc′(c) = θ(
|c − c′|√

h
)

where θ : [0,∞) → [0, 1] is a non-increasing C∞ function satisfying θ(r) = 1 for

r ≤ 1
4

and θ(r) = 0 for r ≥ 1 and | · | is the Euclidean distance in 2D. By definition,

ηc′ is a radial function with support in a disk of radius
√

h centered at c′. We call ηc′ a

floating partition of unity (following [16]), since its support depends on the position

of x. Using the function ηc′ , we rewrite (5.2) into two parts:∫
C

D(g(c′), g(c))ψ(c) dc =

∫
C

D(g(c′), g(c))(1 − ηc′(c))ψ(c) dc (5.3)

+

∫
C

D(g(c′), g(c))ηc′(c)ψ(c) dc. (5.4)

(5.3) is not singular since ηc′(c) vanishes in the neighbors of c′, thus we integrate it

using the trapezoidal rule as we did before for the non-singular part. To integrate

(5.4), we transform the domain into a polar coordinate system centered at c′. Let

q = c − c′ = (ρ cos(θ), ρ sin(θ)), the second integral is equivalent to:∫ π

0

dθ

∫ √
h

−√
h

D(g(c′), g(c(ρ, θ)))θ(
|ρ|√
h

)ψ(c(ρ, θ))ρ dρ

(notice here we allow ρ to be negative in order to make the integrand a periodic

function). We choose the Cartesian grid in polar coordinates(
(a − 1

2
) · h, b · 2π/� 2π√

h
�
)

116

as the quadrature points, where a and b range over the integers where these points are

in the integration domain (Figure 5.2). The number of quadrature points is of order

O(1
h
) and the grid is fully symmetric in the polar coordinates.

u

v

ρ

θ

(u,v) (ρ,θ)

o

c'

π

Figure 5.2: Integration points in Cartesian and polar coordinates.

We will show in the next section that the above algorithm gives a high-order

quadrature rule for the integral (5.2) for x ∈ g(C). However, the quadrature points for

(5.4) are on a Cartesian grid in polar coordinates, instead of the quadrature points xi

in the Cartesian coordinates. This necessitates an efficient and accurate interpolation

procedure to obtain the values of ψ at the polar-coordinate quadrature points from its

values at the Cartesian quadrature points. The method we use, which is similar to the

one in [16], has two steps: the preprocessing step and the evaluation step.

In the preprocessing step, we perform the following procedure for each chart Ck.

Since ψk is a periodic function on a rectangular domain which contains xk,i as its

Cartesian grid, we first use a 2D fast Fourier transform (FFT) to calculate the Fourier

coefficients of ψk from the values ψk,i at xk,i. We then use these Fourier coefficients

to approximate the value of ψk on a new grid, which is much finer than the original

grid again by means of an FFT. The spacing of the new grid is chosen to be 8 times

117

smaller than the spacing of the old grid. If the function ψk is infinitely smooth, these

approximation values are super-algebraically close to the true value of ψk.

The evaluation step is as follows. Given a point x, for each patch Ck such that

x ∈ g(Ck), we need to interpolate the values of ψk at a polar-coordinate grid centered

at the preimage of x in Ck. For each point on this polar-coordinate grid, we collect

the values of ψk on the 4 × 4 subgrid (of the refined grid), which contains the point

in the center cell, and use Lagrange interpolation to approximate the value of ψk.

This interpolation procedure is highly efficient due to the periodicity of ψ which

enables us to use the fast Fourier transform. In practice, we find 8-fold refinement

gives approximation error of order 10−8, which is much smaller compared to the

other error introduced in the overall algorithm, thus we can safely neglect the error

from this interpolation procedure.

Compared with the discretization scheme in [16], our algorithm differs in two

major ways.

• The support of the floating partition of unity ηc′ is of size
√

h.

• The integration grid for the singularity is fully symmetric in the polar coor-

dinates. As a result, 2D fast Fourier transform is used in the interpolation

procedure.

The first change enables us to give strict error bounds for the integration error. The

second change allows us to integrate integrals with a higher order of singularity.

118

5.3 Error Analysis

In this section, we derive the error bounds for the procedure described in Section 5.2

for the integration of ∫
C

D(x, g(c))ψ(c) dc

when x = g(c′) for some c′ ∈ C. We assume that the interpolation procedure ex-

plained in the previous section introduces no error, and the functions ϕ is CM con-

tinuous for some M ≥ 2. Our plan is to show that the integration schemes for both

(5.3) and (5.4) are high-order accurate.

Lemma 5.1. Suppose D ⊂ R2 and functions a ∈ CM(D) and b ∈ CM(D) satisfy

the following conditions.

‖a(m)‖∞ ≤ C1(m)

(
1√
h

)m+s

m = 0, · · · , M

and

‖b(m)‖∞ ≤ C2(m)

(
1√
h

)m+t

m = 0, · · · , M

where s ≥ 0 and t ≥ 0, then

‖(ab)(m)‖∞ ≤ C3(m)

(
1√
h

)m+s+t

m = 0, · · · , M.

Here C1, C2 and C3 are all constants depending on m.

Proof. Use Leibniz rule on (ab)m for m = 1, · · · , M .

Lemma 5.2. Assume D is a bounded open set in R2 and f : D → R can be written

into the following decomposition.

f(q) =
1

|q|H(
q

|q|)S(q) q ∈ R2

119

where H is a homogeneous function, and S is a CM function that vanishes on the

boundary of D. Then the error of the trapezoidal rule with spacing h on function

∫
D

f(q)(1 − θ(
|q|√
h

)) dq

is O(h
M−1

2), where η0 is the floating partition of unity at the origin.

Proof. Since 1 − θ(|·|√
h
) is equal to zero in the neighborhood of the origin and S

vanishes at the boundary of D, we obtain the following estimate for the error e of the

trapezoidal rule:

e ≤ C0(M)hM‖(f(1 − θ(
| · |√

h
))(M)‖∞.

Now we estimate ‖(f(1−θ(|·|√
h
))(M)‖∞. If |q| ≤

√
h

4
, (f(1−θ(|·|√

h
))(M)(q) = 0 since

θ(|q|√
h
) = 1.

Now suppose |q| ≥
√

h
4

. We have the following estimates:

|f (m)(q)| ≤ C1(m)(
4√
h

)m+1, m = 1, · · · , M,

from f ’s decomposition, and

|(1 − θ(
| · |√

h
))(m)(q)| ≤ C2(m)(

1√
h

)m m = 1, · · · , M

since θ is a fixed function. Using Lemma 5.1, we have

|(f(1 − θ(
| · |√

h
)))(m)(q)| ≤ C3(m)(

1√
h

)m+1 m = 1, · · · , M.

Take m = M , we have

e ≤ C0(M)hMC3(M)(
1√
h

)M+1 = C0(M)C3(M)h
M−1

2 = O(h
M−1

2).

120

Lemma 5.3. The trapezoidal rule on (5.3) with spacing h gives O(h
M−1

2) accuracy

if ϕ is CM continuous.

Proof. Using the definition of D(x, y), we can write

D(x, y) =
1

|r|H(
r

|r|)

where H is a homogeneous function. Suppose x = g(c′) and y = g(c) for c and c′ in

the chart C. By letting q = c − c′ and q = |q|, we can write

D(g(c′), g(c)) =
1

|q|H
′(

q

|q|)T
′(q)

where H ′ is a homogeneous function on chart C and T ′ is an infinity smooth function.

Since ϕ is CM continuous, ψ is CM continuous and vanishing on the boundary of C.

Therefore D(g(c′), g(c))ψ(c) can be rewritten as:

1

|q|H
′(

q

|q|)S
′(q)

where S ′ = T ′ψ is CM smooth and vanishes at the boundary C. Using Lemma 5.2,

we proved that the trapezoidal rule is O(h
M−1

2) accurate for

∫
C

D(x, g(c))(1 − ηc′(c))ψ(c) dc.

Lemma 5.4. Suppose f : R → R is a CM function. Then the trapezoidal rule with

spacing h has O(h
M
2) accuracy on the integral:

∫ √
h

−√
h

f(ρ)θ(
|ρ|√
h

) dρ

121

Proof. The proof is similar to the one for Lemma 5.2. The trapezoidal rule gives

error

C0h
M‖θ(| · |√

h
)‖∞.

We can bound the magnitude of the M th derivative of θ(|·|√
h
) by h

M
2 . Therefore, the

error is of order O(h
M
2).

Lemma 5.5. The polar-coordinate trapezoidal rule on (5.3) gives O(h
M
2) accuracy

if ϕ is CM continuous.

Proof. First we make two observations: (1) the function D(x, g(c(ρ, θ)))ρ is an in-

finitely smooth function in the polar coordinates parameterization (even at the neigh-

borhood of the origin), and (2) the function ψ(c(ρ, θ)) is CM continuous since ϕ is

continuous.

Let us define

B(θ) =

∫ √
h

−√
h

D(x, g(c(ρ, θ)))θ(
|ρ|√
h

)ψ(c(ρ, θ))ρ dρ.

Since D(x, g(c(ρ, θ)))ψ(c(ρ, θ))ρ is a smooth function, from Lemma 5.4 we know

that the trapezoidal rule with spacing h on the variable ρ can integrate the function

B(θ) for any fixed theta with O(h
M
2) accuracy.

We notice that B(θ) itself is also a periodic function defined on θ ∈ [0, π]. Using

the trapezoidal rule with spacing
√

h gives accuracy h
M
2 on the following integral

∫ π

0

B(θ) dθ.

The values of B(θ) used for integration are not exact. There is an O(h
M
2) error

between the actual value of B(θ) and the approximation value computed from the

trapezoidal rule integration in the ρ direction. Nevertheless, since all the quadrature

122

weights for the trapezoidal rule are positive, the error on the values of B(θ) can

introduce errors at most of the same order. Thus, the overall error is again O(h
M
2).

Now we can state the overall error estimate of our quadrature algorithm.

Theorem 5.1. Our quadrature rule for the integral (Df)(x), evaluated at any x on

the boundary Γ gives O(h
M−1

2) accuracy if ϕ is CM continuous.

Proof. Combine Lemma 5.3 and Lemma 5.5.

In the following, we prove an additional result which is necessary in estimating

the singular integral evaluation for other kernels.

Lemma 5.6. Suppose that f : R → R can be written in the following form:

f(ρ) =
ρ

|ρ|2S(ρ),

where S is a CM function. Then the trapezoidal rule with quadrature points at (k −
1
2
)h gives O(h

M−1
2) accuracy on the integral

∫ √
h

−√
h

f(ρ)θ(
|ρ|√
h

) dρ

which is understood in the Cauchy sense.

Proof. We use the singularity subtraction to reorganize the integral:∫ √
h

−√
h

ρ

|ρ|2S(ρ)θ(
|ρ|√
h

) dρ =

∫ √
h

−√
h

ρ

|ρ|2 (S(ρ) − S(0))θ(
|ρ|√
h

) dρ +(∫ √
h

−√
h

ρ

|ρ|2 θ(
|ρ|√
h

) dρ

)
S(0)

The integrand of the first integral is a actually a CM−1 (due to the singularity sub-

traction) and periodic function. The trapezoidal rule with quadrature points (k− 1
2
)h

123

gives O(h
M−1

2) accuracy by using Lemma 5.4. The second integral is a Cauchy inte-

gral with principal value zero, and the trapezoidal rule with (k − 1
2
)h as quadrature

points produces zero as well, since the quadrature points, the function θ(|·|√
h
) and the

integration domain are all symmetric around the origin.

Therefore, the trapezoidal rule with symmetric quadrature points (k − 1
2
)h gives

the overall error O(h
M−1

2) on the principal value of the integral.

Theorem 5.2. Suppose a kernel K can be written into the following form

K(x, y) =
r

|r|3H(
r

|r|)S(r),

where r = x−y, H is a homogeneous function and S is an infinitely smooth function.

Then the quadrature rule described for Dϕ gives O(h
M
2
−1) accuracy on (Kϕ)(x) at

any x on Γ if ϕ is CM smooth.

Proof. We separate the integral into two parts using a floating POU at the preimage

of x. ∫
C

D(x, g(c))(1 − ηc′(c))ψ(c) dc +

∫
C

D(x, g(c))ηc′(c)ψ(c) dc.

Following the argument of Lemma 5.3, we can show that our quadrature method for

the first integral gives the order O(h
M
2
−1) error. Using Lemma 5.6 and following the

argument of Lemma 5.5, we can show our quadrature method gives O(h
M−1

2) error

for the second integral. Therefore the overall error is of order O(h
M
2
−1).

All the error estimates proved in this section are under the condition ϕ is CM con-

tinuous for M ≥ 2. In the case where ϕ is a C∞ function, following the same argu-

ments, it is straightforward to show that our quadrature rule achieves super-algebraic

convergence.

124

5.4 Efficient Implementation

In this section, we show that the quadrature algorithm described can be implemented

in a highly efficient way without compromising the accuracy proved in the previous

section.

For each x on Γ, we have

(Df)(x) =
K∑

k=1

∫
Ck

D(x, gk(ck))ψk(ck) dck,

which can be written as the sum of three parts.

∑
k:x�∈gk(Ck)

∫
Ck

D(x, gk(ck))ψk(ck) dck (5.5)

∑
k:x∈gk(Ck)

∫
Ck

D(x, gk(ck))(1 − ηc′k(ck))ψk(ck) dck (5.6)

∑
k:x∈gk(Ck)

∫
Ck

D(x, gk(ck))ηc′k(ck)ψk(ck) dck (5.7)

where c′k is the preimage of x in the chart Ck under the map gk. (5.7) is evaluated

using the trapezoidal rule in local polar coordinates at c′k. (5.5) and (5.6) are the non-

singular parts of the integral. They are approximated by the trapezoidal rule on the

quadrature points ck,i in the forms:

∑
k:x �∈gk(Ck)

∑
i

D(x, gk(ck,i))ψk,ih
2

and ∑
k:x∈gk(Ck)

∑
i

D(x, gk(ck,i))(1 − ηc′k(ck,i)ψk,ih
2.

Summing them up, we have

∑
k

∑
i

D(x, gk(ck,i))ψk,ih
2 −

∑
k:x∈gk(Ck)

∑
i

D(x, gk(ck,i))ηc′k(ck,i)ψk,ih
2.

125

In the first summation, the sources ψk,ih
2 are independent of the evaluation point x.

In this case, we can use the kernel independent fast multipole method described in

Chapter 3 to evaluate the value for all quadrature points x efficiently without com-

promising the accuracy. For every point x, the second summation only involves the

points ck,i where ηc′k is positive, which is of a small number since the support of ηc′k

is localized into a disk with radius
√

h. The algorithm is given in Figure 5.3.

Calculate ψk,i = wk,iϕk,iJk(ck,i) for each xk,i.

Evaluate ul,j =
∑

k,i D(xl,j, xk,i)ψk,ih
2 using the kernel independent FMM.

for each xl,j do

for each Ck such that xl,j ∈ gk(Ck) do

Calculate
∑

i D(xl,j, gk(ck,i))ηc′k(ck,i)ψk,ih
2 and subtract the resulting value

from ul,j .

end for

end for

Preprocessing the grids ψk,i for high-order interpolation.

for each xl,j do

for each Ck such that xl,j ∈ gk(Ck) do

Integrate
∫

Ck
D(x, gk(ck))ηc′k(ck)ψk(ck) dck, using the trapezoidal rule in po-

lar coordinates and adding the resulting value to ul,j .

end for

end for

Figure 5.3: Singular integral for velocity.

We denote by N the total number of quadrature points xk,i. In general, we have

N ≈ K
h2 , where K is the total number of patches covering the boundary Γ. Since

K remains constant as we refine h, we have N = O(1
h2). The computation cost of

different stages of the algorithm is listed as follows:

1. The kernel independent FMM algorithm has complexity O(N).

126

2. In the first double for loop, for each xl,j and each Ck, since the support of float-

ing POU is of size h, the number of quadrature points at which the evaluation

is required is O(
√

N). Therefore, the overall complexity O(N3/2).

3. The preprocessing procedure has complexity O(N log N) due to the efficiency

of fast Fourier transform.

4. The second double for loop is also O(N3/2) since for each the xl,j and each Ck

the number of polar-coordinate quadrature points is of order O(1
h
) = O(

√
N).

Summing up over all stages of the algorithm, we have shown that the complexity of

our quadrature algorithm is O(N3/2).

In practice, we notice several important points. First, the constant in the complex-

ity analysis of the kernel independent FMM algorithm is large, despite the fact that

the algorithm itself is O(N). Second, the dominant complexity from the correction

steps (subtraction and addition) is highly related to the radius of the floating POU.

We have chosen the radius to be
√

h, but by using a POU which shrinks faster (e.g.

h3/4), we can lower the complexity of the algorithm at the cost of decreasing the ac-

curacy. On the contrary, by using a POU which shrinks slower (e.g. h1/4), we can

lower the error bound but the complexity of the algorithm will increase. In practice,

we observe that the FMM computation step is dominant for large values of h while

the correction steps are dominant for small values of h.

We denote this quadrature algorithm by an operator Y D, associated with kernel

D. To summarize,

• Y D is efficient: it has complexity O(N3/2).

• Y D is accurate: (Y Dϕ − Dϕ)(x) is of order max(h
M−1

2 , ε) for x on Γ, where

ε is the error tolerance used in the kernel independent FMM step.

127

5.5 Singular Integration for Pressure and Stress

The previous sections described the numerical quadrature algorithm Y D for the high-

order and efficient evaluation of Dϕ(x) for x ∈ Γ. With Y D available, we use iter-

ative linear algebraic solvers (such as GMRES) to solve for the double layer density

ϕ in
1

2
ϕ + Dϕ = f.

In this section, we describe the algorithms to evaluate the limit pressure p and stress

s on the boundary Γ from the solution ϕ. These quantities are of great importance for

practical applications of the Stokes equations. We first present the integral formula-

tions for p and s on Γ in terms of the double layer density ϕ. Similar to the velocity

field u, each formulation involves a term which represents the jump of the pressure or

stress across the interface, and a singular integral (with higher order singularity). We

then derive the jumps and present an algorithm to evaluate the jumps with high-order

accuracy. Finally, we present the algorithms to evaluate the related singular integrals

using the operator Y .

Let ϕ be the double layer density on Γ. For x ∈ Ω, the double layer representation

for pressure p(x) is

p(x) = (Kϕ)(x) =

∫
Γ

µ

2π
(

n

|r|3 − 3
(r · n(y))r

|r|5)ϕ(y) ds(y),

where r = x − y and K is used to denote both the kernel and the integral operator.

The double layer representation for stress s(x) is

s(x) = (Tϕ)(x) =

∫
Γ

T (x, y)ϕ(y) ds(y),

where T is quite complicated and given in Appendix B. It is important to notice that

both K and T have singularities of order 1
|r|3 .

128

In order to derive the formula for x on the boundary Γ, we use the following fact

from the potential theory of the Stokes equation: if ϕ ≡ c is a constant, then the

velocity field u in Ω generated by ϕ is again a constant, and correspondingly, the

pressure field p and the stress field s are both zero [47, 69, 70]. Suppose x′ ∈ Ω

approaches to the boundary point x ∈ Γ, then the following is also true:

p(x′) =

∫
Γ

K(x′, y)(ϕ(y) − ϕ(x)) ds(y),

s(x′) =

∫
Γ

T (x′, y)(ϕ(y) − ϕ(x)) ds(y).

However, these two integrals have the same singularity type as the integral formula-

tion for the velocity field u. If x′ would be on the boundary Γ, these integrals should

be interpreted in the Cauchy sense. We know that for this kind of kernels, the inte-

rior limits of p(x′) (denoted by p(x)) and s(x′) (denoted by s(x)) have the following

integral form:

p(x) =
1

2
[[p]](x) +

∫
Γ

K(x, y)(ϕ(y) − ϕ(x)) ds(y), (5.8)

s(x) =
1

2
[[s]](x) +

∫
Γ

T (x, y)(ϕ(y) − ϕ(x)) ds(y). (5.9)

where [[p]] is the difference between the interior limit and the exterior limit of p at

x, and [[s]] the difference of s. Notice, both integrals are interpreted in the Cauchy

sense, and the integrands depend on the evaluation point. We sometimes also write

p(x) =
1

2
[[p]](x) +

∫
Γ

K(x, y)ϕ(y) ds(y),

s(x) =
1

2
[[s]](x) +

∫
Γ

T (x, y)ϕ(y) ds(y),

where the integral is understood in the Hadamard sense [39].

We derive the jump [[p]](x) and [[s]](x) in terms of the double layer density ϕ.

129

We are equipped with three conditions:

[[u]] = ϕ, (5.10)

[[(−pI + µ(∇u + ∇ut))n]] = 0 Lyaponov-Tauber condition, (5.11)

[[div u]] = 0. (5.12)

We choose a local orthonormal frame α, β in the tangent plane at x. Taking the

derivative with respect to α and β in (5.10), we get

[[∇u]]α = ϕα [[∇u]]β = ϕβ.

This can be extended into the following six equalities:

αt[[∇u]]α = αtϕα αt[[∇u]]β = αtϕβ,

βt[[∇u]]α = βtϕα βt[[∇u]]β = βtϕβ,

nt[[∇u]]α = ntϕα nt[[∇u]]β = ntϕβ.

Multiplying (5.11) with α and β, we get two equalities:

αt([[∇u]] + [[∇u]]t)n = 0 βt([[∇u]] + [[∇u]]t)n = 0.

Since div u = tr(∇u) and tr(A) = tr(ABB−1) = tr(B−1AB), we have

tr((α, β, n)t[[∇u]](α, β, n)) = 0.

This is equivalent to

αt[[∇u]]α + βt[[∇u]]β + nt[[∇u]]n = 0.

From these nine equalities, we get immediately:

[[∇u]] = (α, β, n)

αtϕα αtϕβ −ntϕα

βtϕα βtϕβ −ntϕβ

ntϕα ntϕβ −αtϕα − βtϕβ

 (α, β, n)t.

130

The jumps for p and s are

[[p]] = −2µ(αtϕα + βtϕβ)

and

[[s]] = µ(α, β, n)

4αtϕα + 2βtϕβ αtϕβ + βtϕα 0

αtϕβ + βtϕα 2αtϕα + 4βtϕβ 0

0 0 0

 (α, β, n)t.

To evaluate the jumps [[p]](x) and [[s]](x), we need to evaluate ϕα for a unit

direction α in the tangent plane at an arbitrary point x from the values of ϕ at the

quadrature points xk,i. One method is the following. First, we pick a patch Ck such

that x = gk(c
′
k) for some c′k ∈ Ck and calculate the direction q such that ∇gk(c

′
k)q =

α. Then, we interpolate the gradient of ϕ in the direction of q using the values of ϕ at

the Nyström points ck,i in chart Ck. However, since ϕ is not a periodic function on Ck,

this interpolation procedure in general can only be local. Moreover, the interpolation

accuracy is limited when c′k — the point at which we interpolate — is close to the

boundary of the domain Ck since the interpolation now becomes an “extrapolation”

procedure.

To achieve high-order accuracy for the ϕα, we use the partition of unity. We write

ϕα(x) =
∑

k:x∈gk(Ck)

(wkϕ)α(x).

For each k, since wkϕ is now a periodic function in domain Ck. Therefore, on each

Ck we can use an interpolation procedure similar to the one we developed for inter-

polating ψ to approximate (wkϕ)α. In our implementation, a preprocessing step is

performed for each function ϕ to build an eight-fold refined grid for interpolation. At

the evaluation stage, we use Lagrange interpolation again to approximate the value

of (wkϕ)α.

131

We now explain the algorithm for the evaluation of the singular integrals in the in-

tegration formulation of p(x) and s(x). Here we present the pressure evaluation as an

example, and the case for the stress is the same since they have the same singularity.

First we observe that in the integral

∫
Γ

K(x, y)(ϕ(y) − ϕ(x)) ds(y),

the integrand K(x, y)(ϕ(y) − ϕ(x)) has the form

r

|r|3H(
r

|r|)S(r),

where H is a homogeneous function, and S is a CM function. Theorem 5.2 guaran-

tees that, by using our numerical integration operator Y K on the double layer density

ϕ − ϕ(x), the result at point x is O(h
M
2
−1) accurate. Notice that ϕ − ϕ(x) depends

on the target point x, and the result from using Y K on ϕ − ϕ(x) is only valid for

the pressure at the point x. However, evaluating the operator Y K once for each x is

clearly too expensive and not acceptable. The algorithm we propose uses the linearity

of Y K to evaluate (Kϕ)(x) at all points x much more efficiently.

We write

Y K(ϕ − ϕ(x)) = Y Kϕ − Y Kϕ(x)

= Y Kϕ − Y K(e1, e2, e3)ϕ(x)

= Y Kϕ − (Y Ke1, Y Ke2, Y Ke3)ϕ(x),

where e1, e2 and e3 are the constant vector functions defined on Γ with value (1, 0, 0)t,

(0, 1, 0)t and (0, 0, 1)t respectively. The most important point here is: although

Kϕ(x) is not defined for a general function ϕ (it is only defined for a smooth function

ϕ which vanishes at x), Y Kϕ(x) is defined for all points x as a numerical integration

132

operator. The complete algorithm to integrate Kϕ(x) for a set of points x on Γ is

given in Figure 5.4.

Evaluate gd = Y Ked for d = 1, 2, 3.

Evaluate p = Y Kϕ.

for each evaluation point x do

p(x) ← p(x) − (g1(x), g2(x), g3(x))ϕ(x).

end for

Figure 5.4: Singular integration for the pressure.

Since the operator Y K has complexity O(N3/2), it is obvious that the current al-

gorithm also has complexity O(N3/2). For a fixed combination of evaluation points

and the Nyström discretization points, the first step of the algorithm only needs to be

done once, and can be reused for different double layer density function ϕ. This al-

gorithm depends on the idea of cancellation: both the values (Y Kϕ) and Y Kϕ(x) at

point x are “wrong”; however, their difference gives the correct value. This indicates

that the algorithm may potentially suffer from floating point errors due to cancella-

tion. In our numerical experiments which all use double precision floating point, we

have not observed the degradation of the accuracy.

The algorithm for the stress s is exactly the same, since the integral formulation

of s has the same order of singularity as the one of p. To summarize, the algorithm

in Figure 5.4 has O(N3/2) complexity and gives O(h
M
2
−1) accuracy for the pressure

and stress if the double layer potential ϕ is CM continuous. If ϕ is infinitely smooth,

the algorithm described is super-algebraic convergent.

133

5.6 Evaluation of Nearly Singular Integrals

In this section, we present the algorithm to evaluate the velocity u, pressure p and

stress ψ at an arbitrary point x in the domain. We explain the algorithm in terms of

the velocity field u, and comment on the algorithms for p and s at the end of this

section. For x ∈ Ω, the integral formulation of u is

u(x) = (Dϕ)(x) =

∫
Γ

D(x, y)ϕ(y) dy.

The integrand is not singular since D(x, y) is not singular when x ∈ Ω. If x is of a

constant distance away from Γ, then we can bound the derivatives of the integrand.

Using the trapezoidal rule on each chart Ck, k = 1, · · · , K with quadrature points

ck,i gives high-order accuracy. The difficult part is when x approaches the boundary

Γ, in which case D(x, y) can become nearly singular and oscillatory, and there are no

a priori bounds for the derivatives of D(x, y) as x approaches Γ, and thus the error

bounds on the trapezoidal rule do not apply anymore.

The main task of the algorithm described in this section is to evaluate (Dϕ)(x)

at any point x ∈ Ω with uniform high-order accuracy and with high efficiency, given

the values of a smooth function ϕ at the Nyström quadrature points xk,i on Γ.

The idea of our algorithm is to partition Ω into different regions and use different

schemes for integral evaluation for each region. Given the discretization spacing h,

we partition the domain Ω into three regions:

• Ω0 = {x ∈ Ω|dist(x, Γ) ∈ (
√

h,∞)},

• Ω1 = {x ∈ Ω|dist(x, Γ) ∈ (h,
√

h]},

• Ω2 = {x ∈ Ω|dist(x, Γ) ∈ (0, h]},

134

Γ

Ω1

Ω2

Ω0

x

n(x0)

x0

x1

x
L

Γ

Ω1

Ω2

.
.
.

Figure 5.5: Evaluation of nearly singular integrals. Left: different regions based on

their distance to the boundary. Right: evaluation procedure for x ∈ Ω2.

(see Figure 5.5).

The algorithm works as follows. If x ∈ Ω0, we use the trapezoidal on the Nyström

points xk,i with weights ψk,i (which is computed by scaling ϕk,i using fixed POU and

the Jacobian) to evaluate Dϕ(x).

For the points x ∈ Ω1, in each chart Ck we resample the function ψk on a refined

Cartesian grid with spacing h3/2 using the values ψk,i at the old grid xk,i (which has

grid size h). Since both grids are Cartesian and ψk is periodic function on Ck, the

resampling can be done by first computing the discrete Fourier transform of ψk, then

padding the higher frequency with zeros, and finally using inverse Fourier transform

to compute the values on the refined grid. Both the Fourier transform and the in-

verse Fourier transform can be done using FFT. With ψk’s values on the refined grid

available, we use the trapezoidal rule on the new grid to evaluate Dϕ(x).

For each point x ∈ Ω2, we first find a point x0 ∈ Γ such that∣∣∣∣ x − x0

|x − x0| · n(x0)

∣∣∣∣ ≥ α,

where α is less than but close to 1. This basically states that x − x0 is almost or-

thogonal to the tangent plane at x0. We can achieve this by using a Newton-type

135

nonlinear solver to maximize the quantity in the equation above. In practice, the

nonlinear solver finds such a point x0 in a small number of steps. We then define

points xl, l = 1, · · · , L by

xl = x0 + l · x − x0

|x − x0|βh

where β is a constant which satisfies α · β ≥ 1. Since α is close to 1, we can choose

β to be close to 1 as well. We then use the singular integral algorithm described

in Section 5.2 to evaluate 1
2
ϕ(x0) + Dϕ(x0) which is the limit of Dϕ at x0. The

points {xl, l = 1, · · ·L} are now in Ω1 since α · β > 1, and we evaluate them using

the trapezoidal rule described above. Finally, we use these values to perform a one

dimensional Lagrange interpolation to obtain the value of Dϕ at x. In practice, we

choose L to be equal to 3 (see Figure 5.5).

We now prove that the procedure described gives high-order convergence.

Lemma 5.7. For x ∈ Ω0, the procedure described gives O(h
M
2
−1) error if ϕ is CM

continuous.

Proof. For a fixed x, we can write

g(y) = D(x, y)ϕ(y) =
1

|r|2S(r)

where S is a CM function. Since x is at least
√

h away from Γ, we have the following

estimates for the M th derivatives of g:

‖g(M)‖∞ ≤ C0
1

|r|M+2
≤ C0

1

hM/2+1

where C0 is a constant. The error from the trapezoidal rule is then bounded by

‖g(M)‖∞ · hM = O(h
M
2
−1).

136

Lemma 5.8. For x ∈ Ω1, the procedure described gives O(h
M
2
−2) error if ϕ is CM

continuous.

Proof. For a fixed x, we write again

g(y) = D(x, y)ϕ(y) =
1

|r|2S(r)

where S is a CM function. Since x is at least
√

h away from Γ, we have the following

estimates for the M th derivatives of g:

‖g(M)‖∞ ≤ C0
1

|r|M+2
≤ C0

1

hM+2

where C0 is a constant. The values of ψ (which are computed from ϕ) on the refined

Cartesian grid themselves have at most O(hM) error since the FFT based refining

scheme achieves the maximum accuracy possible. The error from the trapezoidal

rule on the refined grid with spacing h3/2 can be bounded by

‖g(M)‖∞ · h3M/2 = O(h
M
2
−2).

Lemma 5.9. For x ∈ Ω2, the procedure described gives O(hmin(M/2−2,L)) error if ϕ

is CM continuous.

Proof. The limit velocity at x0, 1
2
ϕ(x0) + Dϕ(x0), is O(h

M
2
−1) accurate from Theo-

rem 5.1. From the previous lemma, we know (Dϕ)(xl), l = 1, · · · , L are O(h
M
2
−2)

accurate. The error introduced by the Lagrange interpolation procedure is of order

O(hL). Therefore, the overall error is at most O(hmin(M/2−2,L)).

Combining these lemmas, we are ready to state the following theorem:

137

Theorem 5.3. For any x ∈ Ω, the procedure described gives O(hmin(M/2−2,L)) error

if ϕ is CM continuous.

This procedure can be implemented efficiently. Given a set of X ⊂ Ω, the algo-

rithm to evaluate the velocities at all x in X is given in Figure 5.6. The complexity

of this algorithm is O(N3/2).

Partition the points in X into three sets X0, X1 and X2 depending on which region

(Ω0, Ω1 or Ω2) they belong to.

Evaluate Dϕ(x) for points in X0 using trapezoidal rule on grid points xk,i with

FMM acceleration.

Use FFT to interpolate ψ onto a refined grid with spacing h3/2.

Evaluate Dϕ(x) for points in X1 using trapezoidal rule on the refined grid with

again FMM acceleration.

For every point x ∈ X2, find its correspondent x0 and xl, l = 1, · · · , L,

Evaluate 1
2
ϕ + Dϕ at all points x0 using the algorithm in Section 5.2, again accel-

erated by FMM algorithm

Evaluate Dϕ at all points xl using the refined grid with FMM acceleration.

Use Lagrange interpolate to calculate the velocity at xs in X2.

Figure 5.6: Nearly singular integration for velocity.

The algorithm to evaluate the pressure p and the stress s at arbitrary point x in Ω

is similar to the presented algorithm for u. The only difference is that since p and s

has a high-order singularity, the error bound for the velocity of points in regions Ω1

and Ω2 has a larger estimate, and it is observed in practice. To improve the accuracy,

we can apply the idea of singularity subtraction here: for a point x in Ω1 or Ω0 which

is close to Γ, we find its nearest point x0 on the boundary. Then instead of evaluating

the pressure using ∫
Γ

K(x, y)ϕ(y) ds(y),

138

we use ∫
Γ

K(x, y)(ϕ(y) − ϕ(x0)) ds(y).

The integrand in the later is much smoother. Efficient implementation for the second

integral follow the ideas in Section 5.5.

5.7 Singular and Nearly Singular Integral Evaluation

for Other Equations

In this section, we briefly describe how to adapt the algorithms described in this

chapter to other equations, including the Laplace’s equation, Navier’s equation, and

their modified versions. We discuss first the case of singular integral evaluation, then

the case of nearly singular integral evaluation.

For the Laplace equation, we can use the operator Y to evaluate the double layer

formulation for the potential, since its kernel has the same singularity property as

the double layer kernel for the velocity of the Stokes equations. For the potential

gradient, the algorithm described in Section 5.5 can be used. The only difference is

the jump, which is given in Appendix B.

For the Navier equation, the double layer representation for displacement is an

integral of the Cauchy type. As stated in Theorem 5.2, the numerical integration

operator Y can still be used. The double kernel for the stress has the same order of

singularity as the one for the Stokes equations, and thus the same algorithm can be

used. The jump formula are given in Appendix B.

For the modified Stokes equations, since the kernel for the velocity field u has

the same singularity behavior as the one for the Stokes equations, Y can be used

139

without any modification. The algorithm for evaluating the pressure p and stress s

is different, as we explain as follows using p as an example. We denote by KM the

modified pressure kernel. It can be decomposed into

KM = KS + KD,

where KS is the pressure kernel for the Stokes equation, and their difference KD has

no singularity. We now have for x ∈ Ω,

p(x) = (KMϕ)(x) =

∫
Γ

KS(x, y)ϕ(y) ds(y) +

∫
Γ

KD(x, y)ϕ(y) ds(y),

The first integral is equivalent to∫
Γ

KS(x, y)(ϕ(y) − ϕ(x)) ds(y).

Following the same argument in Section 5.5, then we have the following representa-

tion for the pressure limit at a boundary point x ∈ Γ:

p(x) =
1

2
[[p]](x) +

∫
Γ

KS(x, y)(ϕ(y) − ϕ(x)) ds(y) +

∫
Γ

KD(x, y)(ϕ(y)) ds(y).

We use the operator Y to integrate both integrals numerically, though for the second

integral a simpler procedure would suffice. The approximation to both integrals takes

the following form:

(Y KS

(ϕ − ϕ(x)))(x) + (Y KD

ϕ)(x)

= (Y KS

ϕ)(x) − (Y KS

ϕ(x))(x) + (Y KD

ϕ)(x)

= ((Y KS

+ Y KD

)ϕ)(x) − (Y KS

ϕ(x))(x)

= (Y KM

ϕ)(x) − (Y KS

ϕ(x))(x).

Here we use the fact that Y is a numerical integration operator defined for any func-

tions ϕ as opposed to a singular integral operator which is only defined on specific

140

kinds of functions. The algorithm to perform the above integration is similar to the

one in Figure 5.4 with the only difference that the correction functions gd are com-

puted using the kernels from the Stokes equation. The jumps for p and s are the same

as the ones for the Stokes equations.

The algorithms for the modified Laplace equation and the modified Navier equa-

tion are modified in the same way as we described for the modified Stokes equations.

Finally, we point out that, with the available algorithms for evaluating singular

integrals, the algorithms for evaluating the nearly singular integrals for the modified

equations are identical to the ones for their non-modified versions.

5.8 Summary

In this chapter, we presented several algorithms to integrate the singular integrals

coming from the boundary integral formulation. The singular integral was partitioned

into two parts: the non-adjacent part and the adjacent part. The smooth non-adjacent

part was integrated using the trapezoidal rule. The singular adjacent part was inte-

grated in polar coordinate to remove or decrease the singularity. Our algorithm has

high-order efficiency, low complexity, works on the kernels coming from a range

of equations without any modification, and has proved error bounds. We also pro-

posed efficient and accurate algorithms to handle the nearly singular integrals which

emerges from the evaluation of the boundary integral anywhere in the computation

domain.

141

Chapter 6

Results and Applications

6.1 Results

In this section, we present the numerical results of our 3D boundary integral solver

in several examples. All the algorithms described in Chapter 5 have been imple-

mented in C++. The timings cited are the wall-clock time and all the experiments are

performed on a Pentium II 650MHz machine.

In every example, we use an exact solution to specify the velocity on the domain

boundary which is represented using the high-order surface representation. We then

perform several runs with several increasing discretizations.

For a fixed discretization, we carry out the following steps:

• Solve for the double layer density ϕ on Γ from the specified velocity u. We

choose the error tolerance of the FMM algorithm to be 10e-6.

• Select a set of N points on the boundary, where N is the number of discretiza-

tion used in solving ϕ, and compute the velocity u and pressure p on these

142

points. This step is used to test the accuracy of our algorithms for the singular

integration.

• Select another set of N points in the domain but close to the boundary, and

evaluate u and p on these points. This step is used to test the accuracy of our

algorithms for integrating nearly singular integrals.

For both the singular and nearly singular integral evaluation, we use the following

formulas to test the accuracy of our algorithm:

εu =

(∑N
i=1 |ui − ũi|2∑N

i=1 |ũi|2

)1/2

,

εp =

(∑N
i=1 |pi − p̃i|2∑N

i=1 |p̃i|2

)1/2

where ui and pi are the velocity and pressure computed by our algorithms and ũi and

p̃i are those of the exact solution.

For each example, we organize the table into three parts corresponding to the

three steps of the tests. In the first part which reports the computation time for solving

ϕ, the columns of the table represent the following quantities:

• Discretization: the number of charts and the size of Cartesian grid used for

discretization in each chart.

• iters: the number of iterations used in the GMRES solver for ϕ.

• Ttotal/iter: the time used to evaluate Dϕ in each iteration.

• Tfmm/iter: the time spent on the FMM computation for the non-adjacent in-

tegration in each iteration.

143

• Tmod/iter: the time spent on integrating the local singular integral in each

iteration, including subtracting part of the FMM computation, and adding the

results by integration in polar coordinates.

The second part reports the time and error of evaluating u and p on the boundary Γ.

The columns besides Discretization are:

• Tu: the time used for evaluating velocity.

• εu: the error of the evaluated velocity.

• Tp: the time used for evaluating pressure.

• εp: the error of the evaluated pressure.

The last part of the table reports the time and error of evaluating u and p in the

domain. The columns have the same meaning as the ones in the second part of the

table.

The associated figure consists of three plots. The first plot reports the relationship

between the time spent on each GMRES iteration and the number of discretization

point N . In the second and third plots, we show the errors of our algorithms for

different discretizations, where S ≈ O(1
h
) is the number of discretization points in

each direction of the 2D Cartesian grid used for discretizing every chart.

The boundaries of the domains used in the examples are shown in Figure 6.1.

Every boundary is contained in the cube with range [−1, 1] in every dimension.

Example 1. This simple example is an interior problem with the first surface in

Figure 6.1 as the domain boundary. The exact solution used is

u = (y − y2, 0, 0)t and p = −2µx.

144

Figure 6.1: Domains.

The results are shown in Table 6.1 and Figure 6.2.

Example 2. We use the second surface in Figure 6.1 as the domain boundary. This

is an interior problem and the exact solution is

u = (y3z, z3x, x3y)t and p = 6µxyz

The results are shown in Table 6.2 and Figure 6.3.

Example 3. In this example, the domain is a unbound region with boundary as the

second surface in Figure 6.1. The exact solution for this exterior problem is a unit

Stokeslet centered at the point (0.1, 0.1, 0.1)t. The results are given in Table 6.3 and

Figure 6.4.

145

Discretization iters Ttotal/iter Tfmm/iter Tmod/iter

8 × 12 × 12 8 4.70e+00 3.59e+00 1.04e+00

8 × 24 × 24 8 2.25e+01 1.43e+01 7.88e+00

8 × 48 × 48 7 1.31e+02 6.17e+01 6.54e+01

8 × 96 × 96 7 7.67e+02 2.28e+02 5.36e+02

Discretization Tu εu Tp εp

8 × 12 × 12 4.68e+00 8.90e-04 1.52e+00 1.84e-01

8 × 24 × 24 2.19e+01 1.15e-04 7.76e+00 5.64e-02

8 × 48 × 48 1.28e+02 1.51e-05 3.98e+01 1.21e-02

8 × 96 × 96 7.90e+02 1.74e-06 2.46e+02 3.14e-03

Discretization Tu εu Tp εp

8 × 12 × 12 7.94e+00 1.41e-03 2.84e+00 2.34e-01

8 × 24 × 24 6.31e+01 1.62e-04 2.14e+01 6.14e-02

8 × 48 × 48 5.12e+02 2.03e-05 1.84e+02 1.51e-02

8 × 96 × 96 4.36e+03 2.41e-06 1.44e+03 4.45e-03

Table 6.1: Results of Example 1.

10 12 14 16 18
0

2

4

6

8

10

T
total

T
fmm

T
mod

log2(N)

lo
g

2
(T

)

3 4 5 6 7
-20

-15

-10

-5

0

ε
u

p
ε

log2(S)

lo
g

2
(ε

)

3 4 5 6 7
-20

-15

-10

-5

0

ε u
ε p

log2(S)

lo
g

2
(ε

)

Figure 6.2: Results of Example 1.

As shown by the results, the time Tfmm spent on FMM in each iteration of the

GMRES solver increases linearly with N — the number of discretization points,

while the time Tmod spent on the local integrator for the singularity increases as

O(N3/2). This matches with the complexity analysis of our algorithms. In our

146

Discretization iters Ttotal/iter Tfmm/iter Tmod/iter

32 × 12 × 12 15 2.29e+01 1.44e+01 8.16e+00

32 × 24 × 24 15 1.27e+02 5.71e+01 6.65e+01

32 × 48 × 48 14 7.71e+02 2.37e+02 5.17e+02

Discretization Tu εu Tp εp

32 × 12 × 12 2.19e+01 3.19e-03 7.35e+00 1.82e-01

32 × 24 × 24 1.23e+02 4.07e-04 4.24e+01 4.64e-02

32 × 48 × 48 7.63e+02 4.32e-05 2.62e+02 6.65e-03

Discretization Tu εu Tp εp

32 × 12 × 12 3.44e+01 4.05e-03 1.13e+01 2.59e-01

32 × 24 × 24 2.67e+02 5.24e-04 9.04e+01 6.98e-02

32 × 48 × 48 2.12e+03 6.76e-05 7.15e+02 8.39e-03

Table 6.2: Results of Example 2.

12 13 14 15 16 17
3

4

5

6

7

8

9

10

T
total

T
fmm

T
mod

log2(N)

lo
g

2
(T

)

3.5 4 4.5 5 5.5 6
-16

-14

-12

-10

-8

-6

-4

-2

ε u
ε p

log2(S)

lo
g

2
(ε

)

3.5 4 4.5 5 5.5 6
-14

-12

-10

-8

-6

-4

-2

0
ε u
ε p

log2(S)

lo
g

2
(ε

)

Figure 6.3: Results of Example 2.

examples, for coarse discretizations, the FMM part takes more time than the local

integrator, while for finer discretizations, the situation is reversed. We note that the

point where this transition happens depends on various parameters used in our al-

gorithms, most notably, the tolerance of the FMM algorithm and the support of the

floating partition of unity (POU).

The time used on checking u and p on the boundary Γ is proportional to the time

used by every iteration of the GMRES solver. The error plots show that convergence

147

Discretization iters Ttotal/iter Tfmm/iter Tmod/iter

32 × 12 × 12 17 2.46e+01 1.47e+01 8.35e+00

32 × 24 × 24 17 1.31e+02 6.10e+01 6.39e+01

32 × 48 × 48 16 7.44e+02 2.37e+02 4.91e+02

Discretization Tu εu Tp εp

32 × 12 × 12 2.35e+01 1.70e-03 7.44e+00 1.73e-01

32 × 24 × 24 1.19e+02 2.38e-04 3.99e+01 4.39e-02

32 × 48 × 48 7.87e+02 2.91e-05 2.54e+02 6.08e-03

Discretization Tu εu Tp εp

32 × 12 × 12 3.40e+01 2.87e-03 1.12e+01 2.51e-01

32 × 24 × 24 2.73e+02 3.37e-04 9.08e+01 7.08e-02

32 × 48 × 48 2.02e+03 4.29e-05 7.19e+02 7.84e-03

Table 6.3: Results of Example 3.

12 13 14 15 16 17
3

4

5

6

7

8

9

10

T
total

T
fmm

T
mod

log2(N)

lo
g

2
(T

)

3.5 4 4.5 5 5.5 6
-16

-14

-12

-10

-8

-6

-4

-2

ε u
ε p

log2(S)

lo
g

2
(ε

)

3.5 4 4.5 5 5.5 6
-15

-10

-5

0
ε u
ε p

log2(S)

lo
g

2
(ε

)

Figure 6.4: Results of Example 3.

rate of u is roughly h3, while the convergence rate of p is about h2. This demonstrates

the high-order behavior of our algorithms for singular integrals. We notice that for the

coarsest discretization with 12 points per dimension, the error for p is relatively large,

usually of order 10e-1. The reason is that, in such case, the number of discretization

points is too low for the interpolation procedure for the jumps of the pressure to

approximate even the derivatives of the fixed partition of unity, which is used in our

surface representation. One of the possible solutions is to use a smoother partition of

148

unity.

The time used by the checks of u and p in the domain Ω grows like O(N3/2). Most

of the computation time is spent on the evaluation at points in regions Ω1 and Ω2,

where an FMM evaluation on a finer discretization with spacing O(h3/2) is required.

6.2 Applications

In this section, we presents several applications which use the our boundary integral

solver.

Embedded boundary integral solver. This is a method for the solution of the

Stokes equations with distributed force. The equations are given by:

−µ∆u + ∇p = b in Ω,

div u = 0 in Γ, (6.1)

u = f on Γ,

where b is a known forcing term.

Following [52], we split the solution of the problem into several steps as follows.

We first embed Ω in a domain Ω′ which can be discretized easily, typically a rectangle

(Figure 6.5). By linearity we decompose (6.1) into two problems: one problem that

has an inhomogeneous body force and zero boundary conditions for Ω′; the other on

Ω has no body force, but nontrivial boundary conditions:

−µ∆u1 + ∇p1 = b in Ω′,

div u1 = 0 in Γ′, (6.2)

u1 = 0 on Γ′,

149

where Γ′ is the boundary of Ω′, and

−µ∆u2 + ∇p2 = 0 in Ω,

div u2 = 0 in Γ, (6.3)

u2 = f − u1 on Γ.

For (6.2), we discretize the domain Ω′ by a regular grid and use the Q1-Q1 finite

element method to solve the equation. For (6.3), we use the boundary integral solver

described in this thesis. The solution of the original problem (6.1) is u = u1 +u2 and

p = p1 + p2.

Γ

Ω '

Γ

Ω Ω

Γ '

Figure 6.5: Domains in the embedded boundary integral solver. Left: the origin

domain Ω with boundary Γ. Right: Ω is embedded into a rectangular domain Ω′ with

boundary Γ′.

Interaction between Stokes fluid and rigid body objects. The simulation of the

motion and dynamics of a rigid object immersed in a viscous fluid is important to

various applications in biomedical engineering (Figure 6.6). We use the linear inte-

gral formulation of the Stokes equation to model the viscous fluid. The motion of

the objects are modeled by the rigid body dynamics. The interface conditions are

the balance of the force and the continuity of the interface velocity. We use semi-

implicit time discretization: at each time step, we first update the position of the rigid

150

objects using the old velocity, then we solve a coupled nonlinear system (including

the boundary integral equation for the Stokesian fluid, the rigid body equations and

the coupling conditions) to compute the interface quantities (including the velocity

and force).

Figure 6.6: Interaction between viscous fluid and rigid body objects. Left: fluid and

object domains. Middle and Right: frames from the simulations of fluid and rigid

object interaction.

151

Chapter 7

Conclusion

7.1 Summary

In this thesis, we have presented an efficient and high-order boundary integral solver

for the Stokes Equations in complex 3D geometries. Our solver uses indirect bound-

ary integral formulation and discretizes the equation using the Nyström method to

achieve high-order accuracy. Although it is developed for the Stokes equations, we

have shown that it can be used for other elliptic PDEs with minimal modification.

The three major components of our solver are:

C∞ Surface Representation. We have presented a simple method to model C∞

surfaces. We first use polynomials as bases to construct local geometry on each C∞

smooth chart, then blend them together to obtain the global geometry using a C∞ par-

tition of unity. The generated surfaces are C∞-continuous with explicit nonsingular

C∞ parameterizations, have high-order flexibility at control vertices, depend linearly

on control points, have fixed-size local support for basis functions, and demonstrate

152

good visual quality.

Kernel Independent Fast Multipole Method and its Parallel Implementation.

We have developed a kernel independent fast multipole algorithm, which general-

izes FMM to a wide range of kernels. We use “equivalent densities” to replace the

multipole and local expansions, and develop translation procedures which only use

the kernel evaluation. In the 3D case, the translation procedure is implemented using

FFT to achieve maximal efficiency. Our algorithm is adaptive and has the same struc-

ture as the original FMM algorithm. It exhibits comparable efficiency and accuracy

results with the best published FMM implementation and has a proved error bound.

We also provide an MPI-based parallel implementation for distributed memory ar-

chitectures. Our implementation achieves computation and communication balance

and demonstrates good scalability results.

High-order efficient Nyström Integrator. We have presented algorithms to in-

tegrate with high-order accuracy the singular integrals coming from the boundary

integral formulation. The singular integral is partitioned into two parts: the adjacent

part and the non-adjacent part. The non-adjacent part is smooth and we integrate it

using the trapezoidal rule. The adjacent part is singular and we integrate it in polar

coordinates to remove or decrease the singularity. Our algorithm has low complexity,

works on the kernels coming from a range of equations without any modification, and

has proved error bounds. We also proposed efficient and accurate algorithms to han-

dle the nearly singular integrals which emerge from the evaluation of the boundary

integral anywhere in the computation domain.

153

7.2 Future Work

High-order Surface Representation. Our construction can be improved in a vari-

ety of ways, as most of the components were identified empirically: in particular, to

get good behavior for higher order derivatives, one needs a better partition of unity.

As some alternatives mentioned in Section 2.3.6, it is quite possible that there are

better charts, fewer or lower degree polynomials to be used for geometric functions,

or entirely different geometric functions which can yield better results.

Another direction is to generalize our construction to model manifolds with

boundaries, crease edges or even corners. Although most of these extension are

straightforward, they are the first step to extend our boundary integral solver to do-

mains with non-smooth boundaries.

For most of the current applications, the domain boundary is represented with

either a piecewise linear triangle mesh or a densely sampled point cloud, even though

the boundary itself is high-order or even infinitely smooth. A common example is

the sphere, which is C∞ smooth but usually represented by a triangle mesh in most

of the finite element or boundary element simulations. An interesting but challenging

problem is to transform these triangle meshes or densely sampled point clouds into

high-order representations like our scheme.

Kernel Independent Fast Multipole Method and its Parallel Implementation.

In our kernel independent FMM algorithm, we have focused on second order con-

stant coefficient PDEs with non-oscillatory solutions. However, our method is not

restricted to such systems. It should be straightforward to generalize it to higher

order systems like the biharmonic equation. In such cases, the Dirichlet problem in-

volves first and second derivatives of the underlying field. We can either differentiate

154

the kernel to obtain the derivatives or use a set of two check-point surfaces. We plan

to explore this approach in the future.

Another class of problems is related to second order PDEs with oscillatory so-

lutions or Helmholtz-type problems. For low frequencies we have performed pre-

liminary tests (on the M2M and L2L transformations) that indicate that our method

works as is. An implementation for this class of problems is under way.

Although our parallel implementation exhibits good scalability results, two prob-

lems in our implementation are the tree construction algorithm and the inefficient

load balancing algorithm which create problems for more than 1024 processors. We

are currently working on adaptations of our algorithm for applications such as molec-

ular dynamics, where efficient tree construction is much more important.

High-order efficient Nyström Integrator. Our Nyström integrator successfully

integrates the singular and nearly singular integrals from the boundary integral for-

mulation with high efficiency and high-order accuracy. However, our choices on

some parameters of the algorithm (e.g., the radius of the floating POU) are not opti-

mal. One can study how to choose these parameters depending on the efficiency and

accuracy required for the real life applications.

In our algorithm, we discretize each chart of the boundary using an evenly spaced

Cartesian grid. In most of the problems, however, in order to be more efficient, one

needs to take an adaptive approach: to discretize the boundary based on the com-

plexity of the geometry and the behavior of the boundary condition. One approach

is based on the idea of the partition of unity. Instead of using one POU function at

each chart, one can use several POU functions which cover regions with different

geometric complexity. The chart is then sampled with several overlapping Cartesian

155

grids with different spacings, one for each POU. The spacings are chosen based on

the behavior of the geometry and boundary function at the support of each POU.

The idea behind our Nyström integrator can be also readily extended to integrate

singular and hyper-singular volume integrals.

Boundary Integral Solver. The boundary integrals of the second order have the-

oretically good spectral properties which make iterative methods the standard ap-

proach to solve these equations. However, when we deal with domains with high

curvature and/or complexity topology, the condition number can grow quickly to a

point that plain iterative solvers can still be quite slow. Our Nyström solver can be

adapted into the existing two-grid and multi-grid preconditioners simply by discretiz-

ing the charts using coarser Cartesian grids.

The solver proposed in this thesis does not handle boundaries with crease edges

or corners. To handle these sharp features, one method is to use the charts which are

degenerate at these features. All components of our Nyström integrator remain the

same except we need to increase the radius of the floating POU around these features

in order to achieve high-order accuracy. However, the complexity of this method

will increase substantially. A challenging problem is to develop integrators which

are both efficient and accurate for boundaries with these sharp features.

We have mentioned the approach of using the Galerkin method with wavelet de-

composition to solve boundary integral equations of the second kind. Our surface

representation makes the wavelet design easy in this case: we simply define wavelets

of periodic domain in the chart first and then lift them onto the surface. One interest-

ing direction is to develop a Galerkin method solver based on this kind of wavelets

and compare its efficiency and accuracy with the Nyström solver described in this

156

thesis.

157

Appendix A

Kernels Tested with FMM

In this appendix, we give a summary of the kernels tested with our kernel independent

fast multipole method. In the following formulas, y is the location of the singularity,

x is the location the evaluation point, n is the surface normal direction at y, r = x−y.

We use S to stand for the single layer kernel and D for the double layer kernel.

Laplace Equation.

−∆u = 0,

S(x, y) =

1
2π

ln 1
|r| (2D)

1
4π

1
|r| (3D)

D(x, y) =

− 1

2π
1

|r|2 (r · n) (2D)

− 1
4π

1
|r|3 (r · n) (3D)

.

Modified Laplace Equation.

αu − ∆u = 0,

S(x, y) =

1
2π

k0(λ|r|) (2D)

1
4π

1
|r|e

−λ|r| (3D)
D(x, y) =

− λ

2π
k1(λ|r|)

|r| (r · n) (2D)

− e−λ|r|
4π

(
1

|r|3 + λ
|r|2

)
(r · n) (3D)

,

where λ =
√

α.

158

Stokes Equation (Incompressible creeping flows).

−µ∆u + ∇p = 0, div u = 0

S(x, y) =

1
4πµ

(ln 1
|r|I + r⊗r

|r|2) (2D)

1
8πµ

(1
|r|I + r⊗r

|r|3) (3D)
D(x, y) =

− 1

π
r⊗r
|r|4 (r · n) (2D)

− 6
8π

r⊗r
|r|5 (r · n) (3D)

.

Modified Stokes Equation (Unsteady incompressible creeping flows).

αu − µ∆u + ∇p = 0, div u = 0

S(x, y) =
1

µ
(G(|r|)I + H(|r|)(r ⊗ r)) ,

D(x, y) = A(|r|) ((r · n)I + n ⊗ r) + B(|r|)(r ⊗ n) + C(|r|)(r · n)(r ⊗ r),

where

G(s) = −f ′′(s) − (d − 2)
f ′(s)

s
,

H(s) =
f ′′(s)

s2
− f ′(s)

s3
,

A(s) = −f ′′′(s)
s

− (d − 3)
f ′′(s)

s2
+ (d − 3)

f ′(s)
s3

,

B(s) = −p + 2
f ′′(s)

s2
− 2

f ′(s)
s3

,

C(s) = 2
f ′′′(s)

s3
− 6

f ′′(s)
s4

+ 6
f ′(s)
s5

,

and

f(s) =

1
2πλ2 (ln(1

s
) − k0(λs)) (2D)

1
4πλ2 (

1
s
− 1

s
e−λs) (3D)

, p(s) =

1
2π

1
s2 (2D)

1
4π

1
s4 (3D)

, λ =

√
α

µ
.

159

Navier Equation (Elastostatics).

−µ∆u − µ

1 − 2ν
∇ · div u = 0

S(x, y) =

1
µ

(
3−4ν

8π(1−ν)
log(1

|r|) + 1
8π(1−ν)

(r⊗r)
|r|2

)
(2D)

1
µ

(
3−4ν

16π(1−ν)
1
|r| + 1

16π(1−ν)
(r⊗r)
|r|3

)
(3D)

D(x, y) =

1−2ν
4π(1−ν)

(
− ((r·n)I+n⊗r)

|r|2 + (r⊗n)
|r|2 − 2

1−2ν
(r·n)(r⊗r)

|r|4
)

(2D)

1−2ν
8π(1−ν)

(
− ((r·n)I+n⊗r)

|r|3 + (r⊗n)
|r|3 − 3

1−2ν
(r·n)(r⊗r)

|r|5
)

(3D)
.

Modified Navier Equation (Elastodynamics).

αu − µ∆u − µ

1 − 2ν
∇ · div u = 0

S(x, y) =
1

µ
(G(|r|)I + H(|r|)(r ⊗ r)) ,

D(x, y) = A(|r|) ((r · n)I + n ⊗ r) + B(|r|)(r ⊗ n) + C(|r|)(r · n)(r ⊗ r),

where

G(s) = η2f − f ′′(s) + (β + 1 − d)
f ′(s)

s
,

H(s) = β
f ′′(s)

s2
− β

f ′(s)
s3

,

A(s) = −1

s
f ′′′(s) +

2β + 1 − d

s2
f ′′(s) + (

η2

s
− 2β + 1 − d

s3
)f ′(s),

B(s) =
γ(β − 1)

s
f ′′′(s) +

2β + γ(β − 1)(d − 1)

s2
f ′′(s) +

(
γη2

s
− 2β + γ(β − 1)(d − 1)

s3
)f ′(s),

C(s) =
2β

s3
f ′′′(s) − 6β

s4
f ′′(s) +

6β

s5
f ′(s),

160

and

f(s) =

1
2π(λ2−η2)

(k0(ηs) − k0(λs)) (2D)

1
4π(λ2−η2)

(1
s
e−ηs − 1

s
e−λs) (3D)

,

λ =

√
α

µ
, η =

√
1 − 2ν

2(1 − ν)
· α

µ
, β =

1

2(1 − ν)
, γ =

2ν

1 − 2ν
.

161

Appendix B

Jumps and Integrals

In this appendix, we give a summary of the boundary integral formulas for several

elliptic PDEs and their associated jumps across the boundary. For the jumps, we

choose orthonormal directions α and β in the tangent plane at point x.

Laplace Equation. Potential:

u(x) =
1

2
[[u]](x) +

∫
Γ

D(x, y)ϕ(y) ds(y)

[[u]] = ϕ

D(x, y) = − 1

4π

(r · n(y))

|r|3
Gradient of potential:

∇u =
1

2
[[∇u]] +

∫
Γ

T (x, y)ϕ(y) ds(y)

[[∇u]] = (ϕα, ϕβ, 0)(α, β, n)t

T (x, y) = − 1

4π

(
n(y)

|r|3 − 3
(r·, n)r

|r|5
)

162

Stokes Equations. Velocity:

u(x) =
1

2
[[u]](x) +

∫
Γ

D(x, y)ϕ(y) ds(y)

[[u]] = ϕ

D(x, y) = − 6

8π

r ⊗ r

|r|5 (r · n(y))

Pressure:

p(x) =
1

2
[[p]](x) +

∫
Γ

K(x, y)ϕ(y) ds(y)

[[p]] = −2ν(αtϕα + βtϕβ)

K(x, y) =
ν

2π

(
n(y)

|r|3 − 3
(r · n(y))r

|r|5
)

Stress:

s(x) =
1

2
[[s]](x) +

∫
Γ

T (x, y)ϕ(y) ds(y)

[[s]] = µ(α, β, n)

4αtϕα + 2βtϕβ αtϕβ + βtϕα 0

αtϕβ + βtϕα 2αtϕα + 4βtϕβ 0

0 0 0

 (α, β, n)t

T (x, y)ϕ(y) = −6ν

8π

{
(r ⊗ ϕ(y) + ϕ(y) ⊗ r)(r · n(y))

r5
+

(r ⊗ n(y) + n(y) ⊗ r)(r · ϕ(y))

r5
+

(n(y) · ϕ(y))

r3
I − 5

(r · ϕ(y))(r · n(y))r ⊗ r

r7

}

Navier Equation. Displacement:

u(x) =
1

2
[[u]](x) +

∫
Γ

D(x, y)ϕ(y) ds(y)

[[u]] = ϕ

163

D(x, y) =
1 − 2ν

8π(1 − ν)

{
−((r · n(y))I + n ⊗ r)

|r|3 +
(r ⊗ n(y))

|r|3

− 3

1 − 2ν

(r · n(y))(r ⊗ r)

|r|5
}

Stress:

s(x) =
1

2
[[s]](x) +

∫
Γ

T (x, y)ϕ(y) ds(y)

[[s]] = µ(α, β, n)

4
2−2ν

αtϕα + 4ν
2−2ν

βtϕβ αtϕβ + βtϕα 0

αtϕβ + βtϕα
4ν

2−2ν
αtϕα + 4

2−2ν
βtϕβ 0

0 0 0

 (α, β, n)t

T (x, y)ϕ(y) =
µ(1 − 2ν)

8π(1 − 2ν)

{
−n(y) ⊗ ϕ(y) + ϕ(y) ⊗ n(y)

|r|3

+
−6ν

1 − 2ν
(r · ϕ(y))

r ⊗ n(y) + n(y) ⊗ r

|r|5

+
−6ν

1 − 2ν
(r · n(y))

r ⊗ ϕ(y) + ϕ(y) ⊗ r

|r|5

+(
2 − 8ν

1 − 2ν

(r · n(y))

|r|3 − 6

1 − 2ν

(r · n(y))(r · ϕ(y))

|r|5)I

+ (−6
n(y) · ϕ(y)

|r|5 +
30

1 − 2ν

(r · n(y))(r · ϕ(y))

|r|5 (r ⊗ r)

}
.

164

Bibliography

[1] C. R. Anderson. An implementation of the fast multipole method without mul-

tipoles. SIAM Journal on Scientific and Statistical Computing, 13(4):923–947,

1992.

[2] K. E. Atkinson. The numerical solution of integral equations of the second kind,

volume 4 of Cambridge Monographs on Applied and Computational Mathe-

matics. Cambridge University Press, Cambridge, 1997.

[3] C. T. H. Baker. The numerical treatment of integral equations. Clarendon Press,

Oxford, 1977. Monographs on Numerical Analysis.

[4] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, L. C. McInnes, and B. F.

Smith. PETSc home page. http://www.mcs.anl.gov/petsc, 2001.

[5] C. L. Berman. Grid-multipole calculations. SIAM Journal on Scientific Com-

puting, 16(5):1082–1091, 1995.

[6] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical

algorithms. I. Comm. Pure Appl. Math., 44(2):141–183, 1991.

[7] G. Biros, L. Ying, and D. Zorin. The embedded boundary integral

method for the unsteady incompressible Navier-Stokes equations. Tech-

165

nical Report TR2003-838, Courant Institute, New York University, 2002.

http://www.cs.nyu.edu/csweb/Research/TechReports/TR2003-838/TR2003-838.pdf.

[8] G. Biros, L. Ying, and D. Zorin. A fast solver for the Stokes equations with

distributed forces in complex geometries. J. Comput. Phys., 193(1):317–348,

2004.

[9] R. L. Bishop and R. J. Crittenden. Geometry of manifolds. AMS Chelsea

Publishing, Providence, RI, 2001. Reprint of the 1964 original.

[10] G. Blelloch and G. Narlikar. A practical comparison of n-body algorithms. In

Parallel Algorithms, Series in Discrete Mathematics and Theoretical Computer

Science. American Mathematical Society, 1997.

[11] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. AIM: Adaptive integral

method for solving large-scale electromagnetic scattering and radiation prob-

lems. Radio Sci., 31:1225, 1996.

[12] H. Bohl and U. Reif. Degenerate Bézier patches with continuous curvature.

Comput. Aided Geom. Design, 14(8):749–761, 1997.

[13] W. M. Boothby. An introduction to differentiable manifolds and Riemannian

geometry, volume 120 of Pure and Applied Mathematics. Academic Press Inc.,

Orlando, FL, second edition, 1986.

[14] C. Brebbia, J. Telles, and L. Wrobel. Boundary element techniques. Springer-

Verlag,, Berlin, 1984.

166

[15] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Soci-

ety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second

edition, 2000.

[16] O. P. Bruno and L. A. Kunyansky. A fast, high-order algorithm for the solution

of surface scattering problems: Basic implementation, tests, and applications.

Journal of Computational Physics, 169:80–110, 2001.

[17] X.-C. Chai and O. B. Widlund. Domain decomposition algorithms for indefi-

nite elliptic problems. SIAM Journal on Scientific and Statistical Computing,

13(1):243–258, 1992.

[18] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta Numer-

ica, 1994.

[19] G. Chen and J. Zhou. Boundary element methods. Computational Mathematics

and Applications. Academic Press Ltd., London, 1992.

[20] H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm

in three dimensions. Journal of Computational Physics, 155:468–498, 1999.

[21] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering The-

ory, 2nd Edition. Applied Mathematical Sciences. Springer, 1998.

[22] W. Dahmen and R. Schneider. Composite wavelet bases for operator equations.

Math. Comp., 68(228):1533–1567, 1999.

[23] M. P. do Carmo. Differential geometry of curves and surfaces. Prentice-Hall

Inc., Englewood Cliffs, N.J., 1976. Translated from the Portuguese.

167

[24] T. Duchamp, A. Certain, A. DeRose, and W. Stuetzle. Hierarchical computation

of pl harmonic embeddings. Technical report, University of Washington, 1997.

[25] W. D. Elliott and J. A. Board. Fast fourier transform accelerated fast multipole

algorithm. SIAM Journal on Scientific Computing, 17(2):398–415, 1996.

[26] M. Frigo and S. G. Johnson. FFTW home page. http://www.fftw.org, 2000.

[27] Y. Fu et al. A fast solution for three-dimensional many-particle problems of

linear elasticity. International Journal for Numerical Methods in Engineering,

42:1215–1229, 1998.

[28] Y. Fu and G. J. Rodin. Fast solution method for three-dimensional Stokesian

many-particle problems. Communications in Numerical Methods in Engineer-

ing, 16:145–149, 2000.

[29] O. Ghattas and X. Li. A variational finite element method for stationary non-

linear fluid-solid interaction. J. Comput. Phys., 121(2):347–356, 1995.

[30] Z. Gimbutas and F. Rokhlin. A generalized fast mulipole method for nonoscil-

latory kernels. SIAM Journal on Scientific Computing, 24(3):796–817, 2002.

[31] J. Gómez and H. Power. A multipole direct and indirect BEM for 2D cavity

flow at low Reynolds number. Engineering Analysis with Boundary Elements,

19:17–31, 1997.

[32] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems.

MIT Press, Cambridge, MA, 1988.

168

[33] L. Greengard and J. Huang. A new version of the fast multipole method for

screened Coulomb interactions in three dimensions. Journal of Computational

Physics, 180:642–658, 2002.

[34] L. Greengard, M. C. Kropinski, and A. Mayo. Integral equation methods for

Stokes flow and isotropic Elasticity in the plane. Journal of Computational

Physics, 125:403–414, 1996.

[35] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal

of Computational Physics, 73:325–348, 1987.

[36] L. Greengard and V. Rokhlin. A new version of the fast multipole method

for the Laplace equation in three dimensions. Acta Numerica, pages 229–269,

1997.

[37] J. A. Gregory and J. M. Hahn. A C2 polygonal surface patch. Comput. Aided

Geom. Design, 6(1):69–75, 1989.

[38] C. M. Grimm and J. F. Hughes. Modeling surfaces of arbitrary topology using

manifolds. In Proceedings of SIGGRAPH 95, Computer Graphics Proceedings,

Annual Conference Series, pages 359–368, Aug. 1995.

[39] W. Hackbusch. Integral equations, volume 120 of International Series of Nu-

merical Mathematics. Birkhäuser Verlag, Basel, 1995. Theory and numerical

treatment, Translated and revised by the author from the 1989 German original.

[40] B. Hariharan, S. Aluru, and B. Shanker. A scalable parallel fast multipole

method for analysis of scattering from perfect electrically conducting surfaces.

169

In Proceedings of Supercomputing, The SCxy Conference series, Baltimore,

Maryland, November 2002. ACM/IEEE.

[41] T. Hermann. G2 interpolation of free form curve networks by biquintic Gregory

patches. Comput. Aided Geom. Design, 13(9):873–893, 1996. In memory of

John Gregory.

[42] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley. Removing the stiffness from

interfacial flows with surface tension. J. Comput. Phys., 114(2):312–338, 1994.

[43] Y. Hu and S. L. Johnsson. A data-parallel implementation of o(n) hierarchical

N-body methods. In Proceedings of Supercomputing, The SCxy Conference

series, Pittsburgh, Pennsylvania, November 1996. ACM/IEEE.

[44] S. Kapur and D. E. Long. IES 3: Efficient electrostatic and electromagnetic

simulation. IEEE Computational Science and Engineering, 5(4):60–67, 1998.

[45] S. Kapur and J. Zhao. A fast method of moments solver for efficient parameter

extraction of MCMs. In Design Automation Conference, pages 141–146, 1997.

[46] S. Kim and S. J. Karrila. Microhydrodynamics: Principles and Selected Appli-

cations. Butterworth-Heinemann, 1991.

[47] R. Kress. Linear Integral Equations. Applied Mathematical Sciences. Springer,

1999.

[48] X.-Y. Li and S.-H. Teng. Generating well-shaped Delaunay meshes in 3D. In

Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algo-

rithms, Washington, DC, 2001. ACM.

170

[49] C. T. Loop and T. D. DeRose. A multisided generalization of bézier surfaces.

ACM Trans. Graph., 8(3):204–234, 1989.

[50] J. Makino. Yet another fast multipole method without multipoles–

pseudoparticle multipole method. Journal of Computational Physics, 151:910–

920, 1999.

[51] A. Mammoli and M. Ingber. Parallel multipole BEM simulation of two-

dimensional suspension flows. Engineering Analysis with Boundary Elements,

24:65–73, 2000.

[52] A. Mayo. The fast solution of Poisson’s and the biharmonic equations on irreg-

ular regions. SIAM Journal on Numerical Analysis, 21(2):285–299, 1984.

[53] S. G. Mikhlin. Integral equations and their applications to certain problems

in mechanics, mathematical physics and technology. Second revised edition.

Translated from the Russian by A. H. Armstrong. A Pergamon Press Book. The

Macmillan Co., New York, 1964.

[54] S. G. Mikhlin and S. Prössdorf. Singular integral operators. Springer-Verlag,

Berlin, 1986. Translated from the German by Albrecht Böttcher and Reinhard

Lehmann.

[55] K. Nabors, F. Korsmeyer, F. Leighton, and J. K. White. Preconditioned, adap-

tive, multipole-accelerated interative methods for three-dimensional first-kind

integral equations of potential theory. SIAM Journal on Scientific and Statisti-

cal Computing, 15:713–735, 1994.

171

[56] A. Nakano. Parallel multilevel preconditioned conjugate-gradient approach

to variable-charge molecular dynamics. Computer Physics Communications,

104:59–69, 1997.

[57] A. Nakano et al. Scalable atomistic simulation algorithms for materials re-

search. In Proceedings of Supercomputing, The SCxy Conference series, Den-

ver, Colorado, November 2001. ACM/IEEE.

[58] J. C. Navau and N. P. Garcia. Modeling surfaces from meshes of arbitrary

topology. Comput. Aided Geom. Design, 17(7):643–671, 2000.

[59] J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M. Wandzura. Scalable elec-

tromagnetic scattering calculations on the SGI Origin 2000. In Proceedings

of Supercomputing, The SCxy Conference series, Portland, Oregon, November

1999. ACM/IEEE.

[60] J. Peters. Curvature continuous spline surfaces over irregular meshes. Comput.

Aided Geom. Design, 13(2):101–131, 1996.

[61] J. Peters. Patching Catmull-Clark meshes. In Proceedings of ACM SIGGRAPH

2000, Computer Graphics Proceedings, Annual Conference Series, pages 255–

258, July 2000.

[62] J. Peters. C2 free-form surfaces of degree (3, 5). Comput. Aided Geom. Design,

19(2):113–126, 2002.

[63] N. Phan-Thien and S. Kim. Microstructures in elastic media. The Clarendon

Press Oxford University Press, New York, 1994. Principles and computational

methods.

172

[64] N. Phan-Thien, K. Y. Lee, and D. Tullock. Large scale simulation of suspen-

sions with PVM. In Proceedings of SC97, The SCxy Conference series, San

Jose, CA, November 1997. ACM/IEEE.

[65] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé. Namd: Biomolecular sim-

ulation on thousands of processors. In Proceedings of Supercomputing, The

SCxy Conference series, Baltimore, Maryland, November 2002. ACM/IEEE.

[66] J. R. Phillips and J. K. White. A precorrected-FFT method for electorstatic

analysis of complicated 3-D structures. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 16(10):1059–1072, 1997.

[67] V. Popov and H. Power. An O(N) taylor sereis multipole boundary element

method for three-dimensional elasticity problems. Engineering Analysis with

Boundary Elements, 25:7–18, 2001.

[68] H. Power. The completed double layer integral equation method for two-

dimensional Stokes flow. IMA Journal of Applied Mathematics, 51:123–145,

1993.

[69] H. Power and L. Wrobel. Boundary Integral Methods in Fluid Mechanics.

Computational Mechanics Publications, 1995.

[70] C. Pozrikidis. Boundary Integral and Singularity Methods for Linearized Vis-

cous Flow. Cambridge University Press, 1992.

[71] H. Prautzsch. Freeform splines. Comput. Aided Geom. Design, 14(3):201–206,

1997.

173

[72] U. Reif. TURBS—topologically unrestricted rational B-splines. Constr. Ap-

prox., 14(1):57–77, 1998.

[73] V. Rokhlin. Rapid solution of integral equations of classical potential theory.

Journal of Computational Physics, 60:187–207, 1983.

[74] J. Ruppert and R. Seidel. On the difficulty of triangulating three-dimensional

nonconvex polyedra. Discrete and Computational Geometry, 7(3), 1992.

[75] L. L. Schumaker. Spline functions: basic theory. Robert E. Krieger Publishing

Co. Inc., Malabar, FL, 1993. Correlated reprint of the 1981 original.

[76] H.-P. Seidel. Polar forms and triangular B-Spline surfaces. In D.-Z. Du and

F. Hwang, editors, Euclidean Geometry and Computers, 2nd Edition, pages

235–286. World Scientific Publishing Co., 1994.

[77] F. E. Sevilgen and S. Aluru. A unifying data structure for hierarchical methods.

In Proceedings of Supercomputing, The SCxy Conference series, Portland, Ore-

gon, November 1999. ACM/IEEE.

[78] M. Shelley, T. Hou, and J. Lowengrub. Boundary integral methods for multi-

component fluids and multiphase materials. Journal of Computational Physics,

160:302–363, 2001.

[79] J. R. Shewchuk. Sweep algorithms for constructing higher-dimensional con-

strained Delaunay triangulations. In Proceedings of the sixteenth annual sym-

posium on Computational geometry, Kowloon, Hong Kong, 2000. ACM.

174

[80] J. P. Singh, C. Holt, J. L. Hennessy, and A. Gupta. A parallel adaptive fast

multipole method. In Proceedings of Supercomputing, The SCxy Conference

series, Portland, Oregon, November 1993. ACM/IEEE.

[81] I. H. Sloan. Error analysis of boundary integral methods. In Acta numerica,

1992, Acta Numer., pages 287–339. Cambridge Univ. Press, Cambridge, 1992.

[82] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain decomposition. Cam-

bridge University Press, Cambridge, 1996. Parallel multilevel methods for el-

liptic partial differential equations.

[83] J. Song, C. Lu, W. Chew, and S. Lee. Fast Illinois solver code (fisc). IEEE

Antennas Propag. Mag., 40:27, 1998.

[84] J. Stam. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary

parameter values. In Proceedings of SIGGRAPH 98, Computer Graphics Pro-

ceedings, Annual Conference Series, pages 395–404, Orlando, Florida, July

1998. ACM SIGGRAPH / Addison Wesley. ISBN 0-89791-999-8.

[85] S.-H. Teng. Provably good partitioning and load balancing algorithms for paral-

lel adaptive N-body simulation. SIAM Journal on Scientific Computing, 19(2),

1998.

[86] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press

Inc., San Diego, CA, 2001. With contributions by A. Brandt, P. Oswald and K.

Stüben.

175

[87] G. Wahba. Spline models for observational data, volume 59 of CBMS-NSF

Regional Conference Series in Applied Mathematics. Society for Industrial and

Applied Mathematics (SIAM), Philadelphia, PA, 1990.

[88] T. J. Wang. A C2-quintic spline interpolation scheme on triangulation. Comput.

Aided Geom. Design, 9(5):379–386, 1992.

[89] J. Warren and H. Weimer. Subdivision Methods for Geometric Design. Morgan

Kaufmann, 2001.

[90] M. S. Warren and J. K. Salmon. Astrophysical N-body simulations using hi-

erarchical tree data structures. In Proceedings of Supercomputing, The SCxy

Conference series, Minneapolis, Minnesota, November 1992. ACM/IEEE.

[91] M. S. Warren and J. K. Salmon. A parallel hashed oct-tree N-body algorithm.

In Proceedings of Supercomputing, The SCxy Conference series, Portland, Ore-

gon, November 1993. ACM/IEEE.

[92] W. L. Wendland. On some mathematical aspects of boundary element methods

for elliptic problems. In The mathematics of finite elements and applications, V

(Uxbridge, 1984), pages 193–227. Academic Press, London, 1985.

[93] N. Yarvin and V. Rokhlin. Generalized gaussian quadratures and singular value

decompositions of integral operators. SIAM Journal on Scientific Computing,

20(2):699–718, 1998.

[94] N. Yarvin and V. Rokhlin. An improved fast multipole algorithm for potential

fields on the line. SIAM Journal on Numerical Analysis, pages 629–666, 1999.

176

[95] K. Yoshida, N. Nishimura, and S. Kobayashi. Application of fast multipole

Galerkin boundary integral equation method to elastostatic crack problems in

3D. International Journal for Numerical Methods in Engineering, 50(3):525–

547, 2001.

[96] D. Zorin, P. Schröder, A. DeRose, L. Kobbelt, A. Levin, and W. Sweldens. Sub-

division for modeling and animation. SIGGRAPH 2001 Course Notes, 2001.

177

