
Joint Training of a Neural Network and a Structured

Model for Computer Vision

by

Li Wan

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January, 2015

——————————–

Rob Fergus

Dedication

Large Dedicated to my parents.

ii

Acknowledgements

Firstly, I would like to thank my advisor Prof Rob Fergus for his patience and insightful

guidance. Rob introduce me to computer vision and deep learning. He was always eager

to discuss new ideas at any time help me understand the research field quickly. Rob

give me freedom and support to work on what I am really exciting. Rob is extremely

supportive through my PhD time. I also thank to Prof Yann LeCun and Prof David

Sontag for their guidance in the world of machine learning.

Many thanks to my colleague: David Eigen, Matt Zeiler and Sixin Zhang for sharing

sharing numerous late nights of work and intense collaboration. I would also to like to

thank Ross Goroshin for insightful discussion, especially on unsupervised learning.

Leo Zhu, Yuanhao Chen, Pierre Sermanet, and Clement Farabet for introducing me the

subfield of detection in computer vision. Their suggestions and encouragement helped

me overcome countless difficulties. Their knowledge and passion directly led me to choose

this field for my PhD. I’m especially grateful to Yuanhao and Clement, who shared with

me their GPU code.

Furthermore, I am grateful for having worked with great people at NYU: Nathan Sil-

berman, Sainbayar Sukhbaatar, Wojiech Zaremba, Emily Denton, Tom Schaul, Xiang

Zhang.

Finally, I thank my parents for their support and love during this long journey.

iii

Abstract

Identifying objects and telling where they are in real world images is one of the most

important problems in Artificial Intelligence. The problem is challenging due to: oc-

cluded objects, varying object viewpoints and object deformations. This makes the

vision problem extremely difficult and cannot be efficiently solved without learning.

This thesis explores hybrid systems that combine a neural network as a trainable feature

extractor and structured models that capture high level information such as object parts.

The resulting models combine the strengths of the two approaches: a deep neural network

which provides a powerful non-linear feature transformation and a high level structured

model which integrates domain-specific knowledge. We develop discriminative training

algorithms to jointly optimize these entire models end-to-end.

First, we proposed a unified model which combines a deep neural network with a latent

topic model for image classification. The hybrid model is shown to outperform models

based solely on neural networks or topic model alone. Next, we investigate techniques

for training a neural network system, introducing an effective way of regularizing the

network called DropConnect. DropConnect allows us to train large models while avoiding

over-fitting. This yields state-of-the-art results on a variety of standard benchmarks for

image classification. Third, we worked on object detection for PASCAL challenge. We

improved the deformable parts model and proposed a new non-maximal suppression

algorithm. This system was the joint winner of the 2011 challenge. Finally, we develop

a new hybrid model which integrates a deep network, deformable parts model and non-

maximal suppression. Joint training of our hybrid model shows clear advantage over train

each component individually, and achieving competitive result on standard benchmarks.

iv

Contents

Dedication ii

Acknowledgements iii

Abstract iv

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions and organization of the thesis 2

2 Literature survey 4

2.1 Object Recognition with Handcrafted feature 4

2.2 Object Detection with Handcrafted feature 5

2.3 Feature Learning . 7

2.4 Object Detection with Neural Network . 9

2.5 Training Deep Neural Network . 10

3 A Hybrid Neural Network-Latent Topic Model 12

3.1 Introduction . 12

3.2 The hybrid model . 14

3.2.1 Neural Network . 15

3.2.2 Hierarchical topic model . 16

v

3.2.3 The hybrid model: coupling the neural network and topic model . 17

3.3 Learning the hybrid model . 17

3.3.1 Brief description . 17

3.3.2 Pre-training of neural network . 18

3.3.3 Pre-training of the hierarchical topic Model 19

3.3.4 Joint optimization by gradient descent 19

3.3.5 Unifying probabilistic hierarchical model and neural network: back-

propagation . 23

3.3.6 Inference of the hybrid model: feed-forward 23

3.4 Toy experiments . 24

3.5 Vision experiments . 24

3.5.1 Dataset and image features . 25

3.5.2 Scene modeling: topic model, neural network and the hybrid . . . 26

3.5.3 Results . 27

3.6 Discussion . 28

4 Regularization of Neural Networks using DropConnect 29

4.1 Introduction . 29

4.2 Motivation . 30

4.2.1 Dropout . 30

4.2.2 DropConnect . 31

4.3 Model Description . 33

4.3.1 Training . 34

4.3.2 Inference . 34

4.4 Model Generalization Bound . 36

4.5 Implementation Details . 37

4.6 Experiments . 38

4.6.1 MNIST . 39

4.6.2 CIFAR-10 . 42

vi

4.6.3 SVHN . 43

4.6.4 NORB . 45

4.7 Discussion . 46

4.8 Theoretical Analysis of DropConnet Network 47

4.8.1 Preliminaries . 47

4.8.2 Bound Derivation . 48

5 Detection Model for PASCAL Challenge 53

5.1 Introduction . 53

5.2 Model Description . 54

5.3 Non-Maximum Suppression . 56

5.4 Experiment Results and Discussion . 58

6 End-to-End Integration of a ConvNet, Deformable Parts Model and

Non-Maximum Suppression 59

6.1 Introduction . 59

6.2 Model Architecture . 62

6.2.1 Convolutional Network . 62

6.2.2 Deformable Parts Model . 64

6.2.3 Bounding Box Prediction . 66

6.2.4 Non-Maximal Suppression (NMS) 67

6.3 Final Prediction Loss . 68

6.3.1 Motivation . 68

6.3.2 Loss Function . 69

6.3.3 Interpretation and Effect on NMS Ordering 72

6.3.4 Soft Positive Assignments . 72

6.4 Training . 73

6.5 Experiments . 74

6.6 Discussion . 77

vii

7 Conclusion 80

Bibliography 81

viii

List of Figures

2.1 Reproduced from LeCun [39]: a ConvNet composed a set of convolutions

and pooling operators as feature extractor followed by two fully connected

layers. Final Gaussian layer for classify handwritten digits. 8

3.1 (a) Neural network (NN). (b) Hierarchical topic model (HTM). (c) Our

hybrid model that combines the NN and HTM. 15

3.2 Toy experiment using 2D data (left), with 5 clusters drawn from 4 classes (cross,

dot, square, circle). Note that there are multiple clusters per class. Middle:

Visualization of 2D feature space x after NN pre-training and Gibbs sampling of

supervised topic model with K=5 clusters and Y=4 classes. The ellipses show

the mean and covariance of each Gaussian cluster in the HTM. In the HTM,

the color indicates the predicted class of each data point (the labels: red=cross,

green=dot, blue=square, cyan=circle). Note that several points are mislabeled.

Right: The feature space after back-propagation of unified model. The NN has

distorted the feature space to make classification easier for the topic model, with

only a single data point now being misclassified. 24

3.3 Images from 15-Scene DataSet . 25

ix

4.1 (a): An example model layout for a single DropConnect layer. After

running feature extractor g() on input x, a random instantiation of the

mask M (e.g. (b)), masks out the weight matrix W . The masked weights

are multiplied with this feature vector to produce u which is the input to

an activation function a and a softmax layer s. For comparison, (c) shows

an effective weight mask for elements that Dropout uses when applied to

the previous layer’s output (red columns) and this layer’s output (green

rows). Note the lack of structure in (b) compared to (c). 31

4.2 Comparison between Normal Network, DropOut Network and DropCon-

nect Network . 32

4.3 Using the MNIST dataset, in a) we analyze the ability of Dropout and

DropConnect to prevent overfitting as the size of the 2 fully connected

layers increase. b) Varying the drop-rate in a 400-400 network shows near

optimal performance around the p = 0.5 proposed by [25]. c) we show the

convergence properties of the train/test sets. See text for discussion. . . . 41

4.4 Images from CIFAR-10 . 42

4.5 Images from SVHN . 44

4.6 Images from NORB . 45

5.1 Reproduce from Zhu [78] (a) 3-layer tree model. The structure has tree

layers withe node in grid layout (b) A reference template without part

displacement (no deformation) Blue rectangle is the bounding box of the

root node. Yellow dots indicate the center of 36 parts at bottom layer.

(c,d) examples of part displacement. 54

5.2 Upper row: Edge-like HoG feature Bottom row: Regional Histogram of

Words(SIFT) . 55

x

6.1 An overview of our system: (i) a convolutional network extracts features

from an image pyramid; (ii) a set of deformable parts models (each cap-

turing a different view) are applied to the convolutional feature maps;

(iii) non-maximum suppression is applied to the resulting response maps,

yielding bounding box predictions. Training is performed using a new loss

function that enables back-propagation through all stages. 60

6.2 Reproduced from Parikh and Zitnick [51]: an ablation study of the stages

in a DPM model [15] . Their figure shows how significant performance

improvements could be obtained by replacing the parts detection and non-

maximum suppresssion stages with human subjects. This suggests that

these stages limit performance within the model. Our work focuses on

improving each of these, replacing the part detectors with a Convnet and

integrating NMS into the model. 61

6.3 model architecture, with Convolutional Network (left), Deformable Parts

Model (right) and non-maximum suppression (top) components. An input

x is first repeatedly downsampled to create an image pyramid (a). We

run the convolutional network on each scale, by performing four layers of

convolution and max-pooling operations (b.ii - b.iv). This produces a set

of appearance features φA(xs) at each scale, which are used as input to a

DPM (c.i). Each object class model has three views of object templates

(c.ii), each of which is composed of a root filter and nine parts filters.

These produce a response map Fv for each view (c.iii), which are then

combined using a pixel-wise max (c.iv) to form a final activation map for

the object class, F (xs, y). We then perform NMS (d) across responses for

all scales. To generate bounding boxes, we trace the activation locations

back to their corresponding boxes in the input. 63

xi

6.4 Root and parts filter setup for our DPM. (a) Each view v has a root filter

with a different pre-defined aspect ratio. (b) Part filters are aligned on a

3x3 grid relative to the root. (c) Parts may deform relative to the root

position at a cost, parameterized by wpart
D 65

6.5 Overview of the top part of our network architecture: (i) the root and

part layers are convolution layers with different sizes of filter but same

input size; (ii) OR/AND/Def layer preserve the size of the input to the

output; (iii) each AND layer represents an object view which contains a

root and 9 parts. 67

6.6 Aligning a bounding box from DPM prediction through the convolutional

network (see Section 6.2.3). 67

6.7 Three possible bounding boxes: blue, green and red (blue closest to the

ground truth). However, green and red should not be considered negative

instances (since they may be positive in other images where the person is

occluded). Thus, we want

r(blue) > r(red)

r(blue) > r(green) . 69

6.8 Illustration of ground-truth-constrained assignment A′ and unconstrained

assignmentsA from the model, along with associated neighborhoods. Note

neighborhoods are actually dense, and we show only a few boxes for illus-

tration. 71

6.9 Examples of detections using root filter only (left half of each exam-

ple; red) and the DPM with both root and part filters (right halves;

green+orange). 77

6.10 Examples of correct (green) and incorrect (red) detections found by our

model. 78

6.11 Examples of model with (green) and without (red) NMS loss (parts loca-

tion are ommited) . 79

xii

List of Tables

3.1 Classification rates of our model and other approaches on a scene classifica-

tion dataset [38]. Our implementation of discriminative hierarchical topic model

(HTM) is similar to Sudderth’s scene model[64]. The performance of the HTM

alone is close to the other two probabilistic models (pLSA+SVM) reported in [38]

and discriminative LDA [14] which is evaluated on 13 categories. The method of

“HTM+SVM” is a multi-class SVM with the input features of the latent topic

assignments of HTM. Our hybrid model is a combination of neural network and

HTM. We report the results of both pre-training and joint optimization, with

the latter achieving a performance of 70.1%. 27

4.1 Performance comparison between different implementations of our Drop-

Connect layer on NVidia GTX580 GPU relative to a 2.67Ghz Intel Xeon

(compiled with -O3 flag). Input dimension and Output dimension are

1024 and mini-batch size is 128. As reference we provide traditional ma-

trix multiplication using the cuBlas library. 36

4.2 MNIST classification error rate for models with two fully connected layers

of 800 neurons each. No data augmentation is used in this experiment. . 39

4.3 MNIST classification error. Previous state of the art is 0 .47 % [75] for a

single model without elastic distortions and 0.23% with elastic distortions

and voting [8]. 42

4.4 CIFAR-10 classification error using the simple feature extractor described

in [32](layers-80sec.cfg) and with no data augmentation. 43

xiii

4.5 CIFAR-10 classification error using a larger feature extractor. Previous

state-of-the-art is 9.5% [62]. Voting with 12 DropConnect networks pro-

duces an error rate of 9.32%, significantly beating the state-of-the-art. . 43

4.6 SVHN classification error. The previous state-of-the-art is 2.8% [75]. . . 45

4.7 NORM classification error for the jittered-cluttered dataset, using 2 train-

ing folds. The previous state-of-art is 3.57% [8]. 45

4.8 Symbol Table . 52

6.1 A performance breakdown of our approach. Columns show different training

methods and loss functions. Rows show different feature extractors and DPM

with/without parts. Note: (i) conv features give a significant boost; (ii) our new

NMS loss consistently improves performance, irrespective of features/model used

and (iii) fine-tuning (FT) of the entire model gives further gains. 74

6.2 Mean AP on PASCAL VOC 2007 . 76

6.3 Mean AP on PASCAL VOC 2011 . 76

xiv

Chapter 1

Introduction

1.1 Motivation

People are very good at recognizing objects and understand the location of objects.

Such task is trivial to humans because we learn from birth to understand the highly

diverse and complex world. Furthermore, human are improving their ability to recognize

object everyday. The understand of how human’s vision system works have attracted the

curiosity of researchers for long time. Towards the end of last century, people began to

build machines to understand images and video signals. Understanding of image signals

is difficult for machine due to the dimension of data is too high. This work aims to

develop learning algorithms that enable machine to understand and interact with real

world.

Structured models that capture high-level information are a natural way to describe data

such as constellations model [17], deformable part model [15], topic model [6] and other

types of probabilistic graphical models [26, 1]. Explicit variables (usually corresponding

to some tangible entity) are linked in a sparse dependency structure, which is typically

specified by hand using domain knowledge. They achieve great success in both image

classification and object detection based on fixed and carefully crafted image features

1

such as HoG [9], SIFT [44] and LBP [50].

Neural networks especially convolutional neural networks have proven effective learning

good feature representation from the image pixels [39] [34]. Instead of building handcraft

and domain-specific features, we learn from large amounts of data to get robust and

invariant features in a hierarchical manner. However, The variables in neural network

are lack of explicit meaning comparing with strucutred models, such as constellations

model and object part model.

In this thesis, we explore hybrid models which are designed to combine the strengths of

both domain-appropriate structured models with powerful non-linear features provided

by neural network We propose end-to-end training algorithms for hybrid models by

transforming structured model in to neural network layers.

1.2 Contributions and organization of the thesis

The main contributions of this thesis are as follows:

1. In Chapter 3, we introduce a hybrid model that combines a neural network with

a latent topic model. The neural network provides a low-dimensional embedding

for the input data, whose subsequent distribution is captured by the topic model.

The neural network thus acts as a trainable feature extractor while the topic model

captures the group structure of the data. Following an initial pre-training phase

to separately initialize each part of the model, a unified training scheme is intro-

duced that allows for discriminative training of the entire model. The approach

is evaluated on visual data in scene classification task, where the hybrid model is

shown to outperform models based solely on neural networks or topic models, as

well as other baseline methods.

2. In Chapter 4, We introduce DropConnect, a generalization of Dropout [25], for

regularizing large fully-connected layers within neural networks. When training

2

with Dropout, a randomly selected subset of activations are set to zero within each

layer. DropConnect instead sets a randomly selected subset of weights within the

network to zero. Each unit thus receives input from a random subset of units

in the previous layer. We derive a bound on the generalization performance of

both Dropout and DropConnect. We then evaluate DropConnect on a range of

datasets, comparing to Dropout, and show state-of-the-art results on several image

recognition benchmarks by aggregating multiple DropConnect-trained models.

3. In Chapter 5, we develop a state-of-the-art detection system based deformable part

model with handcrafted features [78]. We also proposed an iterative non-maximal

suppression algorithm which is a huristic way of merge results from detector. Such

algorithm is proven to be critical to achieve good performance in PASCAL chal-

lenge.

4. In Chapter 6, we introduce a hybrid model that integrate the whole detection

pipeline: combines convolutional neural network model (ConvNets), deformable

parts model (DPM) and post-processing non-maximal suppression (NMS). DPM

and ConvNets each have achieved notable performance in object detection. Yet

these two approaches find their strengths in complementary areas: DPMs are well-

versed in object composition, modeling fine-grained spatial relationships between

parts; likewise, ConvNets are adept at producing powerful image features, having

been discriminatively trained directly on the pixels. We train this model using a

new structured loss function that considers all bounding boxes within an image,

rather than isolated object instances. This enables the non-maximal suppression

(NMS) operation, previously treated as a separate post-processing stage, to be

integrated into the model. This allows for discriminative training of our combined

Convnet + DPM + NMS model in end-to-end fashion. We evaluate our system

on PASCAL VOC 2007 and 2011 datasets, achieving competitive results on both

benchmarks.

3

Chapter 2

Literature survey

2.1 Object Recognition with Handcrafted feature

The appearance of an image region can be effectively described by handcraft fixed fea-

tures: SIFT (Scale Invariant Feature Transform) [44], HoG (Histogram of Gradient) [9]

and LBP (Local Binary Pattern) [50]. These low-level hand-crafted features have been

quite successful. Generally speaking, all these features essentially describe the low order

statistics of the edge distribution. Each image region generate fixed size vector to describe

properties of the region. Different descriptors describe different information of images

patches: SIFT for appearance, HoG for edges and LBP for textures. Depending on dif-

ferent task, those features and their variations are either used separately [57] [38] [15] [17]

or combined [78] [69]. Low-level features are extracted on a regular dense grid [38] or at

sparse locations in the image [44]

The bag-of-words (BoW) model originated in the field of text processing have been

successfully applied to image classification tasks. Features learnt from dictionary learn-

ing [61] can be used for classifying images. The general pipeline is as follows: 1) extract

features from image regions 2) build a global dictionary (codebook) with feature of local

image patches. 3) summarize index of feature in dictionary for each region into normal-

4

ized histograms. 4) supervised classifier such as SVM or random forests is trained based

on image labels and normalized histograms. These methods have been proven successful

in visual object recognition task. Further improvements are obtained by using spacial

information [38]. Advanced kernel for svm also helps, such as histogram intersection or

chi-squared kernel [57].

Probabilistic graphical models [6, 26, 1] build on low level handcrafted features also

achieve success for various image recognition task [64][63][17][13]. Fergus et al. [17]

model objects with flexible constellations of parts achieve excellent results in both geo-

metrically constrained classes and flexible objects. Objects shape, appearance, occlusion

and relative scale are modeled under probabilistic framework. Learning the parameters

of model to maximize object likelihood in image with expectation-maximization (EM)

algorithm. The “generic” knowledge learnt by graphical models could even be applied

to models of unrelated categories as “prior” knowledge. Fei-Fei et al. [13] show such

prior knowledge is useful for object classification with just a few images.

2.2 Object Detection with Handcrafted feature

Handcrafted features can be applied to object detection. One example is pedestrian

detection with HoG features by Dalal et al. [9]. It achieved nearly perfect separation on

the MIT pedestrian dataset. They train their model based on HoG features as follows:

1) HoG features are densely computed on each image 2) Linear SVM trained with fixed

person patches as positive examples and person-free patches as negative examples. 3)

The method then re-train using augmented set including “hard-exmaples” which the

classifier fails. In the final stages, duplicate detector activation is removed by non-

maximal suppression (NMS) operation.

General object detection is also an important task in computer vision which requires

to predict both object labels and object locations at the same time. Detection systems

have been build based on the concept of “part-based” models [15][78][77][7][4][58][73]

5

with patch appearance features such as HoG, SIFT, or LBP. Felzenszwalb et al. [15]

build an object detection system call deformable part model (DPM) based on mixtures of

models with root and part structure. It has been applied successfully in PASCAL object

detection challenges. Such a model is learnt with latent svm on image pyramid (multi-

scale image). The part locations in such system are modeled as latent-variables in the

learning process. Such latent SVM formulation lead to an iterative learning algorithm

that alternates between fixing part locations for positive examples and estimate model

parameters for patch features. Zhu et al. [78] extends the concept of “part-based” model

to a deeper structure by introducing one more level of “part-on-part”, they applies an

extension of Concave Convex procedure (CCCP) Algorithm [74] called iCCP to learn

such one level deeper model. In addition to use HoG feature for previous two systems,

further improvement introduced by Chen et al. [7], who included both HoG feature and

vector quantized SIFT feature.

Different Object detection results can either enhance or inhibit each other within a scene

or context. This has been an area of active research in object recognition[11][67] [46][18]

[22] [27][2][36]. The general idea of objection detection with context information is as

follows: different object classes may be correlated with each other either by presents or

absence or by spatial layout. Desai et al. [11] and Torralba et al. [67] present models

that learn such contextual statistics from data. Such information provide strong prior

information enhancing the performance of individual detector.

End-to-end training of a multi-classes detector and post-processing has also been dis-

cussed in Desai et al. [11]. Their approach reformulates NMS as a contextual relation-

ship between locations. They replace NMS, which removes duplicate detections, with

a greedy search that adds detection results using an object class-pairs context model.

Such a model also handles interactions between different types of objects.

6

2.3 Feature Learning

Deep architectures (neural networks), that learn hierarchies of features with increasing

levels of invariance and complexity, are well fitted for vision task that requires highly

complex features [21][76]. Multi-layer network trained end-to-end with little prior knowl-

edge. In this framework, feature representations are jointly learnt with classifiers. Con-

volutional Networks (ConvNets) [39] are a special multi-layer neural network with end-

to-end supervise learning on raw image pixels. Unsupervised techniques have also been

successful applied at training or pre-training (initializing) multi-layer networks, such as

restricted Boltzmann machines [23], stacked auto-encoders [3].

Hinton et al. [23] have introduced a layer-by-layer strategy to initialize neural network.

One way of unsupervised learning objective is training a network to reconstruct its in-

put. Thus, the deep network is constructed as a stack of restricted Boltzmann machines

(RBM). Each layer trained to learn the distribution of layer input by maximizing an ap-

proximation of the data likelihood. Auto-encoders proposed by Bengio et al. [3] initialize

network layers directly by minimizing reconstruction error of input from output. After

initialization of each layer in the network, the whole network is jointly fine-tunned with

back-propagation based on label information.

The hybrid model in this thesis also following similar strategy:

• In Chapter 3: 1) layer-wise initialization of network. 2) train a topic model based

on network output. 3) convert topic model into neural network layer and 4) perform

joint back-propagation based on label information.

• In Chapter 6: 1) initialize ConvNet based on ImageNet dataset. 2) train DPM

with fixed part location 3) convert DPM to network layer 4) joint training of whole

model with flexible part location.

Convolutional Networks [39] has been successfully applied for image classification for

many years. The object can be handwritten characters [39], house numbers [59][8][70],

7

tiny image of objects [70][33], toys with texture background [8][41], and traffic signs [59][8].

Recently, it achieves a huge success form 1000-category ImageNet dataset [35]. Figure 2.1

illustrates a ConvNet for classifying handwritten characters created by LeCun et al. [39].

From a low-level point of view, images exhibit spatial relationship between neighboring

Figure 2.1: Reproduced from LeCun [39]: a ConvNet composed a set of convolutions
and pooling operators as feature extractor followed by two fully connected layers. Final
Gaussian layer for classify handwritten digits.

locations, i.e. 1) the correlation of neighboring pixel is high and faraway pixel is almost

zero 2) each image patch is more or less independent from each other. Based on such

properties of image, ConvNet effectively reduced number of network parameters in fea-

ture extractor by having shared and trainable filter bank for each input at all locations.

In Chapter 6 and Chapter 4, we adapt similar ConvNet feature extractor for both image

classification and image detction.

Kavukcuoglu et al. [28] proposed an unsupervised learning algorithm to initialize Con-

vNet layer by layer. It trained convolutional sparse auto-encoder with a linear decoder

to reconstruct image from sparse features. Such technique improves the performance

when the amount of label information is relative small. For example, training ConvNet

for pedestrian detection on the INRIA Pedestrian dataset [9]. Such initialization step

can be skipped when dataset is sufficient large [35].

8

2.4 Object Detection with Neural Network

The first system to combine structured learning with a ConvNet is LeCun et al. [39],

who train a ConvNet to classify individual digits, then train with hand written strings

of digits discriminatively. Very recently, Tompson et al. [66] trained a model for human

pose estimation that combines body part location estimates into a convolutional network,

in effect integrating an MRF-like model with a ConvNet. Their system, however, requires

annotated body part locations and is applied to pose estimation, whereas our system

does not require annotated parts and is applied to object detection.

Some recent works have applied ConvNets to object detection directly: Sermanet et

al. [60] train a network to regress on object bounding box coordinates at different strides

and scales, then merge predicted boxes across the image. Szegedy et al. [65] regress to a

bitmap with the bounding box target, which they then apply to strided windows. Both

of these approaches directly regress to the bounding box from the convolutional network

features, potentially ignoring many important spatial relationships. By contrast, we use

the ConvNet features as input to a DPM. In this way, we can include a model of the

spatial relationships between object parts.

In the R-CNN model, Girshick et al. [19] take a different approach in the use of Con-

vNets. Instead of integrating a location regressor into the network, they instead produce

candidate region proposals with a separate mechanism, then use the ConvNet to classify

each region. However, this explicitly resizes each region to the classifier field of view

(fixed size), performing significant distortions to the input, and requires the entire net-

work stack to be recomputed for each region. Instead, our integration runs the features

in a convolutional bottom-up fashion over the whole image, preserving the true aspect

ratios and requiring only one computational pass.

Most closely related is the concurrent work of Girshick et al. [20], who also combine

a DPM with ConvNet features in a model called DeepPyramid DPM (DP-DPM). Their

work, however, is limited to integrating fixed pretrained ConvNet features with a DPM.

9

We independently corroborate the conclusion that using ConvNet features in place of

HoG greatly boosts the performance of DPMs. Furthermore, we show how using a post-

NMS online training loss improves response ordering and addresses errors from the NMS

stage. We also perform joint end-to-end training of the entire system in Chapter 6.

2.5 Training Deep Neural Network

Network with millions or billions of parameters can easily over-fit to training data: net-

work tend to memorize the training data without promising generalization performance.

To overcome this problem, a wide range of techniques have been developed. Those tech-

niques are generally divided into two categories: 1) data augmentation algorithm [35][8]

and 2) network regularization algorithm [35][45][72][70]. Those two categories are not

mutually exclusive, they are usually used combined to achieve good results. Further

performance improvement could be introduced by voting of multiple instance of network

with different initialization of weights [70][8].

Ciresan et al. [8] train a set of neural networks for image classification task, including

handwritten digits, traffic signs, and Chinese characters. Building invariance into data

is a critical step of getting good performance: 1) translate image data 2) rotate image

3) rescale image and 4) flip image. By having augmented dataset, the original training

set became validation set to decide when to stop network.

Adding an `2 penalty on the network weights is a simple but effective approach, other

forms of neural network regularization include: bayesian methods [45], weight elimination

[72] and early stopping of training. However, all of these requires hand-tunning some

regularization parameter.

Recently, Hinton et al. proposed a new form of parameter free regularization called

Dropout [25]: For each training example, forward propagation involves randomly deleting

half of the activation in each layer. Extensive experiments shown that this significantly

10

reduces over-fitting and improve testing performance. In this thesis, we proposed Drop-

Connect which generalizes Dropout and shown this to be an even better regularization

than Dropout from both empirically and theoretically point of view.

11

Chapter 3

A Hybrid Neural Network-Latent

Topic Model

3.1 Introduction

Probabilistic graphical models [6, 26, 1] and neural networks [29, 52, 43] are the two

prevalent types of belief network in machine learning. In the first of these, explicit vari-

ables (usually corresponding to some tangible entity) are linked in a sparse dependency

structure, which is typically specified by hand using domain knowledge. This is quite

different to a neural network where variables lack explicit meaning and are densely con-

nected. In principle, the model is less dependent on the details of the problem, but

in practice selections must be made regarding the model architecture and the training

protocol (eg [40]).

Each model is appropriate for different settings. Probabilistic graphical models are

a natural way to represent the high level structure of a signal. Equally, deep neural

networks have proven effective at automatically learning good feature representations

from the raw signal, a situation where detailing the precise form of the dependencies is

problematic.

12

We proposes a model that combines a deep neural network with a latent topic models

and presents a joint learning scheme that allows the combined model to be trained in

a discriminative fashion. The resulting model combines the strengths of the two ap-

proaches: the deep belief network provides a powerful non-linear feature transformation

for the domain-appropriate topic model.

Our main technical contribution is a novel way of transforming the graphical model

during inference to form additional neural network layers. This transformation allows

the back-propagation [40] to be performed in a straightforward manner on the unified

model. We demonstrate this transformation for a latent topic model but the operation

is valid for any model where (approximate) inference is possible in closed-form.

We demonstrate our model in a computer vision setting, using it to perform scene clas-

sification. We choose this domain because (a) developing good feature representations

for visual data is an active area of research [43, 52] and the neural network part of our

model addresses this task and (b) latent topic models, such as latent Dirichlet allocation

(LDA) [6], have been shown to be effective for image classification, using a bag-of-words

image representations [10, 14].

The training procedure for our model involves a preliminary unsupervised phase where

the parameters of the deep-belief network are initialized. This is performed using re-

stricted Boltzmann machines (RBMs) in conjunction with contrastive divergence learn-

ing, in the style of Hinton and Salakhutdinov [24]. The same layer-wise greedy scheme

of [24, 3] is used.

Our graphical model is a variant of latent Dirichlet allocation [6] and is closely related

to the author-topic model [54], introduced to the vision community by Sudderth et

al. [64]. However, unlike these unsupervised models, ours is discriminative and incorpo-

rates the class label, similar to the Disc-LDA model of Lacoste-Julien et al. [37] and

the Supervised-LDA model of Blei and McAuliffe [5]. Ngiam et al. [49] show how a

feedforward neural-network can be used as a deterministic transformation as input to a

13

deep-belief network (DBN), showing results on MNIST and NORB datasets. In contrast,

we use a topic model instead of the DBN and evaluate on a more complex scene dataset.

Another related paper to ours is Salakhutdinov et al. [55], who combine a Gaussian

process with a deep-belief network. However, this is a simpler graphical model than

ours and lacks the modeling capabilities of latent topic models. The most closely related

paper is the contemporaneous work of Salakhutdinov [56] who combine an Hierarchical

Dirichlet Process with a Deep Boltzmann Machine.

3.2 The hybrid model

Our hybrid model is a combination of one particular probabilistic model, hierarchi-

cal topic model (HTM), and a neural network (NN). We consider a set of N images

{I1, . . . , Ii, . . . , IN} with labels y. From each we extract a set of SIFT descriptors [44]

{v1, . . . , vj , . . . , vni}. Each descriptor vj is individually mapped by a neural network with

parameters w to a feature vector xj in Rd, d being the number of units in the top layer

of the network. The transformation of v → x is denoted by fw(v). The structure of

neural network is encoded by layers of hidden units h. The connections of hidden units

are given in section 3.2.1.

Each image is represented by a topic model where each topic is a probability distribution

over visual words in a vocabulary. In prevalent topic models such as LDA[6, 14] and its

variants [64], the vocabulary is given by vector quantization, but not integrated into the

topic model. In this paper, we want to learn the feature representation and the topic

model jointly. We extend the topic model by adding an extra latent variable to encode

visual vocabulary. Unlike other topic models, our model is directly defined over image

features, and capable of learning vocabulary and topic distribution simultaneously. The

new topic model is of hierarchical structure (see Figure 3.1) whose distribution is given

in section 3.2.2.

The hierarchical topic model is combined with the neural network to form a hybrid model

14

x

u

y

β

N

M

n i
K

zα
S

γ φ

η

π

(b)

Input v

Hidden units h

Linear layer (W2)

Sigmoid layer (W1)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Gaussian likelihood

F2 (φ={μ,Σ})

Integration F1 (η)

F1(π)

Integration

Class labels y

S (=15)

M (=45)

K (=200)

Bayes

F0

Feature x

Latent word u

Latent topic z

(25 units)

(600 units)

128d

Output x

Input v

Hidden units h

Linear layer (W2)

Sigmoid layer (W1)

Layer 1

Layer 2 (25 units)

(600 units)

128d

(c)

(a)

Figure 3.1: (a) Neural network (NN). (b) Hierarchical topic model (HTM). (c) Our
hybrid model that combines the NN and HTM.

by treating the output x of the network as the bottom nodes of the hierarchy.

3.2.1 Neural Network

In this paper, we consider a neural network with two hidden layers, as shown in Fig-

ure 3.1(a). The first hidden one is a sigmoid layer which maps the input features v

into a binary representation h via a sigmoid function, i.e. h = σ(w1v + b1) where

σ(t) = 1/(1 + exp(−t)) and w1, b1 are the parameters of this layer. The second hidden

layer performs linear dimension reduction x = hw2 + b2, with w2, b2 being parameters.

The output of the units x correspond to the transformation fw(v) provided the whole

network. An arbitrary number of extra hidden layers could be inserted between these

two layers if more a complex transformation is preferred. Let w = {w1, b1, w2, b2} denote

all parameters of the network. Training the network is performed by back propagation

15

[40] on w. The initialization of w is obtained by learning a Restricted Boltzmann Ma-

chine (RBM) [23] with the same structure of network. We will give details of the training

procedure in section 3.3.2.

3.2.2 Hierarchical topic model

Given an image Ii, the neural network will transform each raw feature vj into a vec-

tor xj , which is input to the hierarchical topic model. We assume that each xj is

generated by a Gaussian distribution of the corresponding word cluster uj . The Gaus-

sian is parametrized by φuj = {µuj ,Σuj}. The word uj is generated by a multinomial

word distribution with parameters of ηzj . The distribution of topics zj is a multinomial

parametrized by πyi where yi is a label of scene category for image Ii. yi is provided

in the learning stage. The overall model is shown in Figure ??(b). The hierarchical

generative process is given by:

1. Draw latent topic zj ∼Multi(πyi)

2. Draw latent word uj ∼Multi(ηzi)

3. Draw feature vector xj ∼ Gaussian(φuj).

The prior distributions on π, η, φ are defined as follows:

πy ∼ Dir(α) for y ∈ {1, 2, . . . S}

ηz ∼ Dir(β) for z ∈ {1, 2, . . .M}

φu ∼ NIW(γ) for u ∈ {1, 2, . . .K}

where Dir(.) is Dirichlet distribution, NIW(γ) is normal-inverse-Wishart distribution,

parametrized by γ = {µ0, κ, ν,Λ0}. S is the number of scene categories (class labels), M

is the number of latent topics, and K is the size of word vocabulary.

16

The hyper-parameters α, β, γ are set by hand, their exact value not being too important.

Learning the model involves the estimation of the parameters π, η, φ. In section 3.3.3,

we will discuss the learning of the hierarchical model.

Note that, unlike standard LDA[6], our model has no image (or document) specific prior

of topic distribution. The most related representation is the scene model [64] which

essentially is a author-topic model [54].

3.2.3 The hybrid model: coupling the neural network and topic model

The hybrid model is designed to combine the strengths of the two models defined above.

The input x to the hierarchical topic model is the transformed output fw(v) of the neural

network. Note, in the hybrid model, x is not observable. The topic model captures

high-level scene structure of an image while the neural network offers approximate low-

dimensional embedding of raw features. Typically, the probabilistic topic model is a

sparse graph while neural network is a densely connected graph.

3.3 Learning the hybrid model

3.3.1 Brief description

The task of learning the hybrid model is to maximize the posterior distribution of class

label y, given the input data v. The loss function is given by:

L(w, π, η, φ) = − log p(y|v, w, π, η, φ) (3.1)

Since x = fw(v), p(y|x,w, π, η, φ) = p(y|v, w, π, η, φ), and applying Bayes rule, we thus

have:

L = − log p(fw(v)|y, π, η, φ) + log
S∑
ỹ=1

p(fw(v)|ỹ, π, η, φ) (3.2)

17

The likelihood function of the hierarchical topic model for an image Ii is defined as

p(fw(v)|y):
ni∏
j=1

M∑
zj=1

 K∑
uj=1

p (fw(vj)|uj , φ) p (uj |zj , η)

 p (zj |y, π)

The optimization of the loss function is performed by gradient descent. The learning

procedure consists of two steps:

1. We first initialize the parameters {w0, π0, η0, φ0} obtained by pre-training the neu-

ral network and the hierarchical topic model which will be introduced in sections

3.3.2 and 3.3.3.

2. The parameters are then updated according to the following rules (where c is a

learning rate):

wt+1 = wt − c∂L
∂w

, πt+1 = πt − c∂L
∂π

ηt+1 = ηt − c∂L
∂η

, φt+1 = φt − c∂L
∂φ

(3.3)

The major technical issues of learning are (i) how to obtain a good initialization; (ii)

how to calculate the gradients of the loss function defined over the joint model. We will

address these two issues in the following sections.

3.3.2 Pre-training of neural network

We first pre-train the neural network by learning RBMs with the same structure in an

unsupervised manner. A RBM is an undirected graphical model with connections be-

tween visible units v and hidden units h. The joint distribution p(v, h) ∝ exp(−E(v, h))

with the normalization constant Z =
∑

v,h exp(−E(v, h)). The transformation provided

by neural network is defined as p(h|v) in the corresponding RBM. We apply the con-

trastive divergence (CD) algorithm [23] to train the network. CD algorithm is a greedy

layer-wise learning method for stack of Restricted Boltzmann machine (RBMs) which

18

maximize the variational lower bound of the model likelihood. Hinton and Osindero [23]

show that such initialization works well for discriminative training.

Each layer of NN is initialized by the corresponding RBM model. More precisely, the

RBM energy for pre-training of the bottom layer is E(v, h) = −1
2(v − b)T (v − b) −

hT c− vTWh. The energy of RBM for pre-training of the second (top) layer is E(h, x) =

−1
2(x− c)T (x− c)− hT b− hTWx.

3.3.3 Pre-training of the hierarchical topic Model

Once we have pre-trained the neural network, the resulting x = fw(v) are fixed and

used as input to the hierarchical topic model. The training of the graphical model is

performed by Gibbs sampling in the style adopted by Sudderth et al. [64] in their similar

scene model. The sampling procedure is given in Algorithm 1:

Algorithm 1 Gibbs sampler for the hierarchical topic model.

1: for image i do
2: for feature j in image i do
3: remove uij form cached statistics for latent variable k = zij and m = uij
4: – πyk ← πyk − 1
5: – ηkm ← ηkm − 1
6: – φm ← remove uij from φm
7: Sample zij and uij jointly from multinomial distribution:
8: – p(zij , uij |xij , π, η, φ, α, β, γ) ∝ p(xij |uij , φ, γ)p(uij |ηzij , β)p(zij |πyi , α)
9: Add back feature xij to the cached statistic for its new latent variable k = zij

and m = uij :
10: – πyk ← πyk + 1,ηkm ← ηkm + 1
11: – φm ← add uij to φm.
12: end for
13: end for

3.3.4 Joint optimization by gradient descent

We now have the full pre-trained model with all parameters initialized. Gradient descent

is applied to update the parameters. The loss function defined in Eq. 3.2 can be expanded

19

as follows:

L = −
∑
j

log p(fw(vj)|y, π, η, φ) +

log

S∑
i=1

∏
j

p(fw(vj)|y = i, π, η, φ)

Let F0(A, y) ≡ L where A is a ni × S matrix, Aji = [p(fw(vj)|y = i, π, η, φ]ji and F0 is

a function which takes an input of a matrix A and a label information y. F0(A, y) is a

form of:

F0(A, y) = −
∑
j

logAjy + log
∑
i

∏
j

Aji (3.4)

We can decompose each element of A as follows:

Aji = p(fw(vj)|y = i, π, η, φ)

=

M∑
zj=1

p(fw(vj)|zj , η, φ)p(zj |y = i, π)

= [F1(B,C)]ji

where Bjm = p(fw(vj)|z = m, η, φ)

and Cmi = p(z = m|y = i, π)

Here matrix B is of size ni × M and matrix C is of size M × S. Function F1 is a

multiplication of two matrices, i.e. A = F1(B,C) = BC.

The decomposition of matrix B is given by:

Bjm = p(fw(vj)|z = m, η, φ)

=
K∑

uj=1

p(fw(vj)|uj , φ)p(uj |z = m, η)

= [F1(D,E)]jm

where Djk = p(fw(vj)|u = k)

and Ekm = p(uj = k|z = m, η)

20

where E is the η matrix of size K ×M and D is of size ni ×K. We can decompose the

matrix D:

Djk = p(fw(vj)|u = k, φ)

= |Σk|−1 exp

(
−1

2
(fw(vj)− µk) Σ−1K (fw(vj)− µk)T

)
= [F2(x, φ)]jk where φk = {µk,Σk}

Function F2 evaluates the likelihood (dropping out the normalization constant) of the

input data vi for different Gaussian centers φk = {µk,Σk} for k = 1, 2, . . . ,K. The

output of F2(fw(v), φ) is |Σk|−1 exp(−1
2(fw(vj)− µk)Σ−1k (fw(vj)− µk)T).

After defining the functions F0, F1, F2, the loss function can be rewritten:

L = F0(F1(F1(

D︷ ︸︸ ︷
F2 (fw(v), φ),

E︷︸︸︷
η)︸ ︷︷ ︸

B

,

C︷︸︸︷
π)

︸ ︷︷ ︸
A

, y) (3.5)

and

∂L

∂π
=

∂F0(A, y)

∂A

∂F1(B, π)

∂π
∂L

∂η
=

∂F0(A, y)

∂A

∂F1(B, π)

∂B

∂F1(D, η)

∂η

∂L

∂φk
=

∂F0(A, y)

∂A

∂F1(B, π)

∂B

∂F1(D, η)

∂D

∂F2(fw(v), φ)

∂φk
∂L

∂w
=

∂F0(A, y)

∂A

∂F1(B, π)

∂B

∂F1(D, η)

∂D
ni∑
j=1

∂F2(fw(vj), φ)

∂fw(vj)

∂fw(vj)

∂w

The gradients of L w.r.t w, φ, η, π can be obtained by applying chain rule, provided the

gradients of F0, F1, F2:

21

1. Function F0(A, y) evaluation:

F0(A, y) = −
∑
j

logAjy + log

S∑
i=1

ni∏
j=1

Aji

and gradient computation:

∂F0(A, y)

Aji
= −1 +

exp(F0(A, y))

Aji

2. Function F1(B, π) evaluation:

[F1(B, π)]ik =

∑
j Bijπjk∑
k πjk

and gradient computation:

∂[F1(B, π)]ik
∂Bij

=
πjk∑
t πjt

and

∂[F1(B, π)]ik
∂πjk

=
Bij∑
t πjt

− [F1(B, π)]ik∑
t πjt

The reason that we divide the output by
∑

k Rjk is because the second parameter

π of this function is always sufficient static of multinomial distribution, thus must

always sum to one. The derivative for F1(D, η) takes a similar form.

3. Function F2(x, φ) ,where φ = {φ1, φ2, . . . , φK} each of φk is a Gaussian center φk =

{µk,Σk} [F2(x, φ)]jk = |Σk|−1 exp(−1
2(xj − µk)Σ−1k (xj − µk)T) Taking gradients

we obtain (omitting the Σk update for brevity):

∂[F2(x, φ)]jk
∂xj

= −[F2(x, φ)]jk(xj − µk)Σ−1k

∂[F2(x, φ)]jk
∂µk

= [F2(x, φ)]jk(xj − µk)Σ−1k

22

3.3.5 Unifying probabilistic hierarchical model and neural network:

back-propagation

The gradient descent scheme introduced in section 3.3.4 can be interpreted as a back-

propagation algorithm on a new neural network which unifies the hierarchical topical

model and the neural network. The decomposition of the loss function in Eq. 3.5 allows

us applying chain rule to calculate the gradients w.r.t. all the parameters in the hybrid

model. It suggests a strong connection with the back-propagation algorithm if we define

four consecutive layers from top to bottom in the following order:

1. Bayesian Layer: Function F0

2. Integration Layer on z: Function F1 with π as the second parameter

3. Integration Layer on u: Function F1 with η as the second parameter

4. Gaussian Likelihood Layer: Function F2

The transformation of each layer is defined by the corresponding function F and its

parameters. We can simply add these four invented layers on the top of the original

neural network, yielding a unified neural network. By back-propagating through this

unified network, we can estimate the parameters of the hybrid model.

3.3.6 Inference of the hybrid model: feed-forward

Inference is performed as a feed-forward procedure on the unified neural network. Given

a testing image v, the first two layers of the neural network produce encoded features

x = fw(v). According to the definition of the four additional layers, the output at the top

layer is p(y|fw(v)) for y = 1, 2, . . . , S. The task of inference y∗ = arg maxy p(y|fw(v)) is

the same as passing x through Gaussian likelihood layer(F2), Integration layer(F1(·, η)),

Integration layer(F1(·, π)) and Bayesian layer F0 (see Figure 1(c)). Note that our hybrid

approach can be extended to any graphical model where the (approximate) inference can

be performed in closed-form.

23

3.4 Toy experiments

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15

Input v Features x
(Before Backprop)

−10 −8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8

Features x
(After Backprop)

Figure 3.2: Toy experiment using 2D data (left), with 5 clusters drawn from 4 classes (cross,
dot, square, circle). Note that there are multiple clusters per class. Middle: Visualization of
2D feature space x after NN pre-training and Gibbs sampling of supervised topic model with
K=5 clusters and Y=4 classes. The ellipses show the mean and covariance of each Gaussian
cluster in the HTM. In the HTM, the color indicates the predicted class of each data point
(the labels: red=cross, green=dot, blue=square, cyan=circle). Note that several points are
mislabeled. Right: The feature space after back-propagation of unified model. The NN has
distorted the feature space to make classification easier for the topic model, with only a single
data point now being misclassified.

We illustrate the different stages of training in our model with toy 2D data, as shown

in Figure 3.4. The data is drawn from 4 classes, arranged in 5 crescent-shaped clusters

(which cannot easily be separated by a Gaussian mixture model). Pre-training the NN

(having a 2-50-2 architecture) for the most part preserves the structure of the input

data (see Figure 2(middle)) in the feature space, thus the topic model, using Gaussian

distributions makes many classification errors. But following back-propagation of the

entire model (Figure 2(right)), the NN provides a significant warping of the input space,

thus making it easier to separate the clusters. Note that the Gaussian clusters of the

topic model do not lie directly on top of the features since the topic model optimizes a

discriminative criterion, rather than a generative one.

3.5 Vision experiments

In this section, we provide a quantitative evaluation of our hybrid model on a vision

dataset and compare its performance with alternative methods such as a standard neural

24

network, hierarchical topic model, pLSA, LDA and their variants.

3.5.1 Dataset and image features

We evaluated our hybrid model on challenging image scene recognition dataset [38] where

the experimental results of standard probabilistic graphical models such as pLSA and

LDA have been reported. This dataset consists of 1500 training images and 2998 test

images each of which is labeled by one of 15 scene categories such as street, kitchen,

coast, etc (Shown in Figure 3.3). Each image is represented by a set of SIFT descriptors

which are sampled every 16 pixels (giving ∼ 240 per image). Each SIFT descriptor is a

128-dimensional vector which encodes the histogram of gradients of a local image patch

with size of 32×32. Since we focus on the theoretical issues involved when combining NN

with graphical models, the pyramid representation [38] which leads to better performance

is not used.

Figure 3.3: Images from 15-Scene DataSet

25

3.5.2 Scene modeling: topic model, neural network and the hybrid

Topic model. The baseline model of image scene is standard LDA [6, 14]. We first

form visual vocabulary with size of 200 (following [14]) where visual words are obtained

by vector quantization of SIFT descriptors. An image scene is represented by LDA

which learns the latent topic distributions of visual words. When labels are provided in

training, the variants of LDA such as supervised LDA [5] and discriminative LDA [37]

can be applied. The performance of LDA is directly based on [14].

Hierarchical topic model. Unlike LDA, the hierarchical topic model introduced in

section 3.2.2 integrates the representation of dictionary. The observation data input to

HTM is SIFT features. The HTM is capable of learning the visual vocabulary and the

topic distribution jointly. Our HTM method which makes use of class labels is related to

the discriminative version of LDA [37]. We also follow the standard way [38, 37] to study

the discriminative power of the inferred latent topics by training a SVM with the assigned

topics as classification features. Note that the input to all variants of both HTM and

LDA models are fixed visual vocabulary without the ability of learning transformation

of low-level feature representation, i.e. SIFT descriptors.

Neural network. We use the same architecture of the neural network as described in

section 3.2.1. In order to predict scene labels, we extend the neural network by imposing

a softmax layer on the top which performs logistic regression of the scene labels and the

output of the feature transformation. Learning the extended neural network is performed

by standard back-propagation [40]. Unlike the topic models, this approach lacks a high

level model of the scene.

Hybrid model: The hybrid model is a combination of the hierarchical topic model and

the neural network which integrate the ability of learning low-level feature transformation

and high-level scene representation. The input to the model is SIFT features, used by

the other approaches. The free parameters and hyper-parameters are set to S = 15

(categories), M = 45 (topics), K = 200 (words), α = 1/3, β = 1/3. Let d denote the

26

pLSA+SVM [38] LDA [14] Supervised LDA [5] Neural Network HTM
63.3 65.2 67.0 51.6± 1.1 64.9± 1.2

HTM+ SVM Hybrid model Hybrid model Hybrid model Hybrid model
no pre-train pre-train NN only pre-trained fully trained

65.5± 1.5 47.2 52.5 65.7± 0.4 70.1± 0.6

Table 3.1: Classification rates of our model and other approaches on a scene classification
dataset [38]. Our implementation of discriminative hierarchical topic model (HTM) is similar to
Sudderth’s scene model[64]. The performance of the HTM alone is close to the other two prob-
abilistic models (pLSA+SVM) reported in [38] and discriminative LDA [14] which is evaluated
on 13 categories. The method of “HTM+SVM” is a multi-class SVM with the input features of
the latent topic assignments of HTM. Our hybrid model is a combination of neural network and
HTM. We report the results of both pre-training and joint optimization, with the latter achieving
a performance of 70.1%.

dimension of µ (=25). γ is set to (µ0 = 0d, κ = 0.1, ν = d+ 5,Λ0 = Id). The NN has a

128 − 600 − 25 architecture. Back-propagation is performed using conjugate gradients,

with mini-batches of 75 images by ∼ 200 features/image. Convergence occurs in about 70

iterations. The corresponding separate HTM and NN use the same parameter settings.

3.5.3 Results

We report the classification accuracy of the three types of methods in Table 3.1. Each

model is trained on 5 random splits of training and test sets. We can see that the

neural network, which lacks high-level representation, performs badly with classification

accuracy of 51.6%. We also tried adding an extra hidden layer to better match the

capacity of hybrid model, which resulted in a performance of 50.7%. The baseline HTM

achieves 64.9% which is significantly better than neural network, and is comparable with

other latent topic models LDA [14] (65.2%) and pLSA [38] (63.3%). The method of

“HTM+SVM” which is a multi-class SVM using latent topic assignments of HTM as

classification features, provides slightly improved predictions (65.5% vs 64.9%).

The hybrid model is analyzed after: i) pre-training and ii) full training with joint op-

timization. The pre-trained hybrid model achieves 65.7% , slightly better than HTM,

which shows that simple pre-trained feature transformation offers similar predictions.

The fully trained hybrid model further improves the classification accuracy to 70.1%

27

which is significantly better than HTM. It shows that joint optimization is capable of

learning better low-level feature transformations for high-level topic modeling.

3.6 Discussion

We have introduced a unified representation that unifies two distinct classes of model

that are widely used in machine learning and an end-to-end training scheme for the

model. A number of improvements to our model could easily be incorporated. For

example, a convolutional form of NN [40] could be used to directly learning from image

pixels, or a spatial structure could be incorporated into the topic model, in the style of

Sudderth et al. [64].

Our approach for joint training of the two models is a simple one that can be applied to

more complex types of graphical model, provided (approximate) inference is possible in

closed form. Finally, our model is not limited to image data and could easily be applied

to other modalities such as text or audio.

28

Chapter 4

Regularization of Neural

Networks using DropConnect

4.1 Introduction

Neural network (NN) models are well suited to domains where large labeled datasets

are available, since their capacity can easily be increased by adding more layers or more

units in each layer. However, big networks with millions or billions of parameters can

easily overfit even the largest of datasets. Correspondingly, a wide range of techniques

for regularizing NNs have been developed. Adding an `2 penalty on the network weights

is one simple but effective approach. Other forms of regularization include: Bayesian

methods [45], weight elimination [72] and early stopping of training. In practice, using

these techniques when training big networks gives superior test performance to smaller

networks trained without regularization.

Recently, Hinton et al. proposed a new form of regularization called Dropout [25].

For each training example, forward propagation involves randomly deleting half the

activations in each layer. The error is then backpropagated only through the remaining

activations. Extensive experiments show that this significantly reduces over-fitting and

29

improves test performance. Although a full understanding of its mechanism is elusive,

the intuition is that it prevents the network weights from collaborating with one another

to memorize the training examples.

In this paper, we propose DropConnect which generalizes Dropout by randomly dropping

the weights rather than the activations. Like Dropout, the technique is suitable for fully

connected layers only. We compare and contrast the two methods on four different image

datasets.

4.2 Motivation

To demonstrate our method we consider a fully connected layer of a neural network with

input v = [v1, v2, . . . , vn]T and weight parameters W (of size d× n). The output of this

layer, r = [r1, r2, . . . , rd]
T is computed as a matrix multiply between the input vector and

the weight matrix followed by a non-linear activation function, a, (biases are included in

W with a corresponding fixed input of 1 for simplicity):

r = a(u) = a(Wv) (4.1)

4.2.1 Dropout

Dropout was proposed by [25] as a form of regularization for fully connected neural

network layers. Each element of a layer’s output is kept with probability p, otherwise

being set to 0 with probability (1 − p). Extensive experiments show that Dropout

improves the network’s generalization ability, giving improved test performance.

When Dropout is applied to the outputs of a fully connected layer, we can write Eq. 4.1

as:

r = m ? a(Wv) (4.2)

30

DropConnect
weights

W (d x n)

b) DropConnect
mask M

 Features
v (n x 1)

u (d x 1)

a) Model Layout

Activation
 function

a(u)

Outputs
 r (d x 1)

Feature
extractor
g(x;Wg)

 Input
 x

Softmax
 layer

s(r;Ws)

Predictions
 o (k x 1)

c) Effective Dropout
mask M’

Previous layer mask

C
ur

re
nt

 la
ye

r o
ut

pu
t m

as
k

Figure 4.1: (a): An example model layout for a single DropConnect layer. After running
feature extractor g() on input x, a random instantiation of the mask M (e.g. (b)),
masks out the weight matrix W . The masked weights are multiplied with this feature
vector to produce u which is the input to an activation function a and a softmax layer
s. For comparison, (c) shows an effective weight mask for elements that Dropout uses
when applied to the previous layer’s output (red columns) and this layer’s output (green
rows). Note the lack of structure in (b) compared to (c).

where ? denotes element wise product and m is a binary mask vector of size d with each

element, j, drawn independently from mj ∼ Bernoulli(p).

Many commonly used activation functions such as tanh, centered sigmoid and relu [47],

have the property that a(0) = 0. Thus, Eq. 4.2 could be re-written as, r = a(m ?Wv),

where Dropout is applied at the inputs to the activation function.

4.2.2 DropConnect

DropConnect is the generalization of Dropout in which each connection, rather than

each output unit, can be dropped with probability 1 − p. DropConnect is similar to

Dropout as it introduces dynamic sparsity within the model, but differs in that the

sparsity is on the weights W , rather than the output vectors of a layer. In other words,

the fully connected layer with DropConnect becomes a sparsely connected layer in which

the connections are chosen at random during the training stage. Note that this is not

31

v1

v4

v2

v3

r1

r2

r3

a(.) v1

v4

v2

v3

a(.)

r1

r2

r3

m(.)

1

0

1

v1

v4

v2

v3

a(.)
r1

r2

r3

(a) Normal Network (b) DropOut Network (c) DropConnect Network

Figure 4.2: Comparison between Normal Network, DropOut Network and DropConnect
Network

equivalent to setting W to be a fixed sparse matrix during training.

For a DropConnect layer, the output is given as:

r = a ((M ?W) v) (4.3)

whereM is a binary matrix encoding the connection information andMij ∼ Bernoulli(p).

Each element of the mask M is drawn independently for each example during training,

essentially instantiating a different connectivity for each example seen. Additionally, the

biases are also masked out during training. From Eq. 4.2 and Eq. 4.3, it is evident that

DropConnect is the generalization of Dropout to the full connection structure of a layer1.

Figure 4.2 illustration the difference between different kinds of networks.

The paper structure is as follows: we outline details on training and running inference

in a model using DropConnect in section 3, followed by theoretical justification for

DropConnect in section 4, GPU implementation specifics in section 5, and experimental

results in section 6.

1This holds when a(0) = 0, as is the case for tanh and relu functions.

32

4.3 Model Description

We consider a standard model architecture composed of four basic components (see

Figure 4.1a):

1. Feature Extractor: v = g(x;Wg) where v are the output features, x is input data

to the overall model, and Wg are parameters for the feature extractor. We choose

g() to be a multi-layered convolutional neural network (CNN) [40], with Wg being

the convolutional filters (and biases) of the CNN.

2. DropConnect Layer: r = a(u) = a((M ?W)v) where v is the output of the feature

extractor, W is a fully connected weight matrix, a is a non-linear activation function

and M is the binary mask matrix.

3. Softmax Classification Layer: o = s(r;Ws) takes as input r and uses parameters

Ws to map this to a k dimensional output (k being the number of classes).

4. Cross Entropy Loss: A(y, o) = −
∑k

i=1 yilog(oi) takes probabilities o and the

ground truth labels y as input.

The overall model f(x; θ,M) therefore maps input data x to an output o through a

sequence of operations given the parameters θ = {Wg,W,Ws} and randomly-drawn

mask M . The correct value of o is obtained by summing out over all possible masks M :

o = EM [f(x; θ,M)] =
∑
M

p(M)f(x; θ,M) (4.4)

This reveals the mixture model interpretation of DropConnect (and Dropout), where the

output is a mixture of 2|M | different networks, each with weight p(M). If p = 0.5, then

these weights are equal and o = 1
|M |
∑

M f(x; θ,M) = 1
|M |
∑

M s(a((M ?W)v);Ws)

33

4.3.1 Training

Training the model described in Section 4.3 begins by selecting an example x from the

training set and extracting features for that example, v. These features are input to the

DropConnect layer where a mask matrix M is first drawn from a Bernoulli(p) distribu-

tion to mask out elements of both the weight matrix and the biases in the DropConnect

layer. A key component to successfully training with DropConnect is the selection of

a different mask for each training example. Selecting a single mask for a subset of

training examples, such as a mini-batch of 128 examples, does not regularize the model

enough in practice. Since the memory requirement for the M ’s now grows with the size

of each mini-batch, the implementation needs to be carefully designed as described in

Section 4.5.

Once a mask is chosen, it is applied to the weights and biases in order to compute the

input to the activation function. This results in r, the input to the softmax layer which

outputs class predictions from which cross entropy between the ground truth labels is

computed. The parameters throughout the model θ then can be updated via stochastic

gradient descent (SGD) by backpropagating gradients of the loss function with respect to

the parameters, A′θ. To update the weight matrix W in a DropConnect layer, the mask

is applied to the gradient to update only those elements that were active in the forward

pass. Additionally, when passing gradients down to the feature extractor, the masked

weight matrix M ?W is used. A summary of these steps is provided in Algorithm 2.

4.3.2 Inference

At inference time, we need to compute r = 1/|M |
∑

M a((M ? W)v), which naively

requires the evaluation of 2|M | different masks – plainly infeasible.

The Dropout work [25] made the approximation:
∑

M a((M ?W)v) ≈ a(
∑

M (M ?W)v),

i.e. averaging before the activation rather than after. Although this seems to work in

34

Algorithm 2 SGD Training with DropConnect

Input: example x, parameters θt−1 from step t− 1, learning rate η
Output: updated parameters θt
Forward Pass:
Extract features: v ← g(x;Wg)
Random sample M mask: Mij ∼ Bernoulli(p)
Compute activations: r = a((M ?W)v)
Compute output: o = s(r;Ws)
Backpropagate Gradients:
Differentiate loss A′θ with respect to parameters θ:
Update softmax layer: Ws = Ws − ηA′Ws

Update DropConnect layer: W = W − η(M ? A′W)
Update feature extractor: Wg = Wg − ηA′Wg

Algorithm 3 Inference with DropConnect

Input: example x, parameters θ, # of samples Z.
Output: prediction u
Extract features: v ← g(x;Wg)
Moment matching of u:
µ← EM [u] σ2 ← VM [u]

for z = 1 : Z do %% Draw Z samples
for i = 1 : d do %% Loop over units in r

Sample from 1D Gaussian ui,z ∼ N (µi, σ
2
i)

ri,z ← a(ui,z)
end for

end for
Pass result r̂ =

∑Z
z=1 rz/Z to next layer

practice, it is not justified mathematically, particularly for the relu activation function.2

We take a different approach. Consider a single unit ui before the activation function

a(): ui =
∑

j(Wijvj)Mij . This is a weighted sum of Bernoulli variables Mij , which can

be approximated by a Gaussian via moment matching. The mean and variance of the

units u are: EM [u] = pWv and VM [u] = p(1 − p)(W ? W)(v ? v). We can then draw

samples from this Gaussian and pass them through the activation function a() before

averaging them and presenting them to the next layer. Algorithm 3 summarizes the

method. Note that the sampling can be done efficiently, since the samples for each unit

and example can be drawn in parallel. This scheme is only an approximation in the case

of multi-layer network, it works well in practise as shown in Experiments.

2Consider u ∼ N(0, 1), with a(u) = max(u, 0). a(EM (u)) = 0 but EM (a(u)) = 1/
√

2π ≈ 0.4.

35

Mask Weight Impl Time(ms) Speedup
fprop bprop acts bprop weights total

CPU-float 480.2 1228.6 1692.8 3401.6 1.0 ×
CPU-bit 392.3 679.1 759.7 1831.1 1.9 ×
GPU-float
global memory

21.6 6.2 7.2 35.0 97.2 ×

GPU-float
tex1D memory

15.1 6.1 6.0 27.2 126.0 ×

GPU-bit
tex2D memory

2.4 2.7 3.1 8.2 414.8 ×

GPU-Lower Bound
cuBlas+read mask

0.3 0.3 0.2 0.8

Table 4.1: Performance comparison between different implementations of our DropCon-
nect layer on NVidia GTX580 GPU relative to a 2.67Ghz Intel Xeon (compiled with -O3

flag). Input dimension and Output dimension are 1024 and mini-batch size is 128. As
reference we provide traditional matrix multiplication using the cuBlas library.

4.4 Model Generalization Bound

We now show a novel bound for the Rademacher complexity of the model R̂`(F) on the

training set (see Section 4.8 for derivation):

R̂`(F) ≤ p
(

2
√
kdBsn

√
dBh

)
R̂`(G) (4.5)

where max|Ws| ≤ Bs, max|W | ≤ B, k is the number of classes, R̂`(G) is the Rademacher

complexity of the feature extractor, n and d are the dimensionality of the input and

output of the DropConnect layer respectively. The important result from Eq. 4.5 is

that the complexity is a linear function of the probability p of an element being kept in

DropConnect or Dropout. When p = 0, the model complexity is zero, since the input

has no influence on the output. When p = 1, it returns to the complexity of a standard

model.

36

4.5 Implementation Details

Our system involves three components implemented on a GPU: 1) a feature extractor,

2) our DropConnect layer, and 3) a softmax classification layer. For 1 and 3 we utilize

the Cuda-convnet package [32], a fast GPU based convolutional network library. We

implement a custom GPU kernel for performing the operations within the DropConnect

layer. Our code is available at http:///cs.nyu.edu/~wanli/dropc.

A typical fully connected layer is implemented as a matrix-matrix multiplication be-

tween the input vectors for a mini-batch of training examples and the weight matrix.

The difficulty in our case is that each training example requires it’s own random mask

matrix applied to the weights and biases of the DropConnect layer. This leads to several

complications:

1. For a weight matrix of size d×n, the corresponding mask matrix is of size d×n×b

where b is the size of the mini-batch. For a 4096× 4096 fully connected layer with

mini-batch size of 128, the matrix would be too large to fit into GPU memory if

each element is stored as a floating point number, requiring 8G of memory.

2. Once a random instantiation of the mask is created, it is non-trivial to access all the

elements required during the matrix multiplications so as to maximize performance.

The first problem is not hard to address. Each element of the mask matrix is stored as

a single bit to encode the connectivity information rather than as a float. The memory

cost is thus reduced by 32 times, which becomes 256M for the example above. This

not only reduces the memory footprint, but also reduces the bandwidth required as

32 elements can be accessed with each 4-byte read. We overcome the second problem

using an efficient memory access pattern using 2D texture aligned memory. These two

improvements are crucial for an efficient GPU implementation of DropConnect as shown

in Table 4.1. Here we compare to a naive CPU implementation with floating point masks

and get a 415× speedup with our efficient GPU design.

37

http:///cs.nyu.edu/~wanli/dropc

4.6 Experiments

We evaluate our DropConnect model for regularizing deep neural networks trained for

image classification. All experiments use mini-batch SGD with momentum on batches

of 128 images with the momentum parameter fixed at 0.9.

We use the following protocol for all experiments unless otherwise stated:

• Augment the dataset by: 1) randomly selecting cropped regions from the images,

2) flipping images horizontally, 3) introducing 15% scaling and rotation variations.

• Train 5 independent networks with random permutations of the training sequence.

• Manually decrease the learning rate if the network stops improving as in [32] ac-

cording to a schedule determined on a validation set.

• Train the fully connected layer using Dropout, DropConnect, or neither (No-Drop).

• At inference time for DropConnect we draw Z = 1000 samples at the inputs to the

activation function of the fully connected layer and average their activations.

To anneal the initial learning rate we choose a fixed multiplier for different stages of

training. We report three numbers of epochs, such as 600-400-200 to define our schedule.

We multiply the initial rate by 1 for the first such number of epochs. Then we use a

multiplier of 0.5 for the second number of epochs followed by 0.1 again for this second

number of epochs. The third number of epochs is used for multipliers of 0.05, 0.01,

0.005, and 0.001 in that order, after which point we report our results. We determine

the epochs to use for our schedule using a validation set to look for plateaus in the loss

function, at which point we move to the next multiplier. 3

Once the 5 networks are trained we report two numbers: 1) the mean and standard

deviation of the classification errors produced by each of the 5 independent networks,

3In all experiments the bias learning rate is 2× the learning rate for the weights. Additionally weights
are initialized with N(0, 0.1) random values for fully connected layers and N(0, 0.01) for convolutional
layers.

38

and 2) the classification error that results when averaging the output probabilities from

the 5 networks before making a prediction. We find in practice this voting scheme,

inspired by [8], provides significant performance gains, achieving state-of-the-art results

in many standard benchmarks when combined with our DropConnect layer.

4.6.1 MNIST

The MNIST handwritten digit classification task [40] consists of 28×28 black and white

images, each containing a digit 0 to 9 (10-classes). Each digit in the 60, 000 training

images and 10, 000 test images is normalized to fit in a 20×20 pixel box while preserving

their aspect ratio. We scale the pixel values to the [0, 1] range before inputting to our

models.

For our first experiment on this dataset, we train models with two fully connected layers

each with 800 output units using either tanh, sigmoid or relu activation functions to

compare to Dropout in [25]. The first layer takes the image pixels as input, while the

second layer’s output is fed into a 10-class softmax classification layer. In Table 4.2

we show the performance of various activations functions, comparing No-Drop, Dropout

and DropConnect in the fully connected layers. No data augmentation is utilized in this

experiment. We use an initial learning rate of 0.1 and train for 600-400-20 epochs using

our schedule.

neuron model error(%) 5 network voting error(%)

relu No-Drop 1.62± 0.037 1.40
Dropout 1.28± 0.040 1.20
DropConnect 1.20± 0.034 1.12

sigmoid No-Drop 1.78± 0.037 1.74
Dropout 1.38± 0.039 1.36
DropConnect 1.55± 0.046 1.48

tanh No-Drop 1.65± 0.026 1.49
Dropout 1.58± 0.053 1.55
DropConnect 1.36± 0.054 1.35

Table 4.2: MNIST classification error rate for models with two fully connected layers
of 800 neurons each. No data augmentation is used in this experiment.

39

From Table 4.2 we can see that both Dropout and DropConnect perform better than not

using either method. DropConnect mostly performs better than Dropout in this task,

with the gap widening when utilizing the voting over the 5 models.

To further analyze the effects of DropConnect, we show three explanatory experiments

in Figure 4.3 using a 2-layer fully connected model on MNIST digits. Figure 4.3a shows

test performance as the number of hidden units in each layer varies. As the model size

increases, No-Drop overfits while both Dropout and DropConnect improve performance.

DropConnect consistently gives a lower error rate than Dropout. Figure 4.3b shows the

effect of varying the drop rate p for Dropout and DropConnect for a 400-400 unit network.

Both methods give optimal performance in the vicinity of 0.5, the value used in all other

experiments in the paper. Our sampling approach gives a performance gain over mean

inference (as used by Hinton [25]), but only for the DropConnect case. In Figure 4.3c we

plot the convergence properties of the three methods throughout training on a 400-400

network. We can see that No-Drop overfits quickly, while Dropout and DropConnect

converge slowly to ultimately give superior test performance. DropConnect is even slower

to converge than Dropout, but yields a lower test error in the end.

In order to improve our classification result, we choose a more powerful feature extractor

network described in [8] (relu is used rather than tanh). This feature extractor consists

of a 2 layer CNN with 32-64 feature maps in each layer respectively. The last layer’s

output is treated as input to the fully connected layer which has 150 relu units on which

No-Drop, Dropout or DropConnect are applied. We report results in Table 4.3 from

training the network on a) the original MNIST digits, b) cropped 24 × 24 images from

random locations, and c) rotated and scaled versions of these cropped images. We use

an initial learning rate of 0.01 with a 700-200-100 epoch schedule, no momentum and

preprocess by subtracting the image mean.

We note that our approach surpasses the state-of-the-art result of 0.23% [8], achieving a

0.21% error rate, without the use of elastic distortions (as used by [8]).

40

200 400 800 1600
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Hidden Units

%
 T

es
t E

rro
r

No−Drop
Dropout
DropConnect

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.2

1.4

1.6

1.8

2

2.2

2.4

% of Elements Kept

%
 T

es
t E

rro
r

Dropout (mean)
DropConnect (mean)
Dropout (sampling)
DropConnect (sampling)

100 200 300 400 500 600 700 800 900
10−3

10−2

Epoch

C
ro

ss
 E

nt
ro

py

No−Drop Train
No−Drop Test
Dropout Train
Dropout Test
DropConnect Train
DropConnect Test

Figure 4.3: Using the MNIST dataset, in a) we analyze the ability of Dropout and
DropConnect to prevent overfitting as the size of the 2 fully connected layers increase.
b) Varying the drop-rate in a 400-400 network shows near optimal performance around
the p = 0.5 proposed by [25]. c) we show the convergence properties of the train/test
sets. See text for discussion.

41

crop rotation scaling model error(%) 5 network voting error(%)

no no No-Drop 0.77± 0.051 0.67
Dropout 0.59± 0.039 0.52
DropConnect 0.63± 0.035 0.57

yes no No-Drop 0.50± 0.098 0.38
Dropout 0.39± 0.039 0.35
DropConnect 0.39± 0.047 0.32

yes yes No-Drop 0.30± 0.035 0.21
Dropout 0.28± 0.016 0.27
DropConnect 0.28± 0.032 0.21

Table 4.3: MNIST classification error. Previous state of the art is 0 .47 % [75] for a
single model without elastic distortions and 0.23% with elastic distortions and voting
[8].

4.6.2 CIFAR-10

CIFAR-10 is a data set of natural 32x32 RGB images [31] in 10-classes with 50, 000 images

for training and 10, 000 for testing. Figure 4.4 shows a few images from CIFAR-10. Before

inputting these images to our network, we subtract the per-pixel mean computed over

the training set from each image.

Figure 4.4: Images from CIFAR-10

The first experiment on CIFAR-10 (summarized in Table 4.4) uses the simple convolu-

tional network feature extractor described in [32](layers-80sec.cfg) that is designed for

rapid training rather than optimal performance. On top of the 3-layer feature extractor

we have a 64 unit fully connected layer which uses No-Drop, Dropout, or DropConnect.

No data augmentation is utilized for this experiment. Since this experiment is not aimed

at optimal performance we report a single model’s performance without voting. We train

for 150-0-0 epochs with an initial learning rate of 0.001 and their default weight decay.

42

DropConnect prevents overfitting of the fully connected layer better than Dropout in

this experiment.

model error(%)

No-Drop 23.5
Dropout 19.7
DropConnect 18.7

Table 4.4: CIFAR-10 classification error using the simple feature extractor described in
[32](layers-80sec.cfg) and with no data augmentation.

Table 4.5 shows classification results of the network using a larger feature extractor

with 2 convolutional layers and 2 locally connected layers as described in [32](layers-

conv-local-11pct.cfg). A 128 neuron fully connected layer with relu activations is added

between the softmax layer and feature extractor. Following [32], images are cropped to

24x24 with horizontal flips and no rotation or scaling is performed. We use an initial

learning rate of 0.001 and train for 700-300-50 epochs with their default weight decay.

Model voting significantly improves performance when using Dropout or DropConnect,

the latter reaching an error rate of 9.41%. Additionally, we trained a model with 12

networks with DropConnect and achieved a state-of-the-art result of 9.32%, indicating

the power of our approach.

model error(%) 5 network voting error(%)

No-Drop 11.18± 0.13 10.22
Dropout 11.52± 0.18 9.83
DropConnect 11.10± 0.13 9.41

Table 4.5: CIFAR-10 classification error using a larger feature extractor. Previous
state-of-the-art is 9.5% [62]. Voting with 12 DropConnect networks produces an error
rate of 9.32%, significantly beating the state-of-the-art.

4.6.3 SVHN

The Street View House Numbers (SVHN) dataset includes 604, 388 images (both training

set and extra set) and 26, 032 testing images [48]. Similar to MNIST, the goal is to

43

classify the digit centered in each 32x32 RGB image. Images from SVHN is illustrate

in Figure 4.5.

Figure 4.5: Images from SVHN

Due to the large variety of colors and brightness variations in the images, we pre-process

the images using local contrast normalization as in [75]. The feature extractor is the same

as the larger CIFAR-10 experiment, but we instead use a larger 512 unit fully connected

layer with relu activations between the softmax layer and the feature extractor. After

contrast normalizing, the training data is randomly cropped to 28 × 28 pixels and is

rotated and scaled. We do not do horizontal flips. Table 4.6 shows the classification

performance for 5 models trained with an initial learning rate of 0.001 for a 100-50-10

epoch schedule.

Due to the large training set size both Dropout and DropConnect achieve nearly the

same performance as No-Drop. However, using our data augmentation techniques and

careful annealing, the per model scores easily surpass the previous 2.80% state-of-the-art

result of [75]. Furthermore, our voting scheme reduces the relative error of the previous

state-of-to-art by 30% to achieve 1.94% error.

44

model error(%) 5 network voting error(%)

No-Drop 2.26± 0.072 1.94
Dropout 2.25± 0.034 1.96
DropConnect 2.23± 0.039 1.94

Table 4.6: SVHN classification error. The previous state-of-the-art is 2.8% [75].

4.6.4 NORB

In the final experiment we evaluate our models on the 2-fold NORB (jittered-cluttered)

dataset [41], a collection of stereo images of 3D models (Examples in Figure 4.6). For each

image, one of 6 classes appears on a random background. We train on 2-folds of 29, 160

images each and the test on a total of 58, 320 images. The images are downsampled from

108× 108 to 48× 48 as in [8].

Figure 4.6: Images from NORB

model error(%) 5 network voting error(%)

No-Drop 4.48± 0.78 3.36
Dropout 3.96± 0.16 3.03
DropConnect 4.14± 0.06 3.23

Table 4.7: NORM classification error for the jittered-cluttered dataset, using 2 training
folds. The previous state-of-art is 3.57% [8].

We use the same feature extractor as the larger CIFAR-10 experiment. There is a 512

45

unit fully connected layer with relu activations placed between the softmax layer and

feature extractor. Rotation and scaling of the training data is applied, but we do not

crop or flip the images as we found that to hurt performance on this dataset. We trained

with an initial learning rate of 0.001 and anneal for 100-40-10 epochs.

In this experiment we beat the previous state-of-the-art result of 3.57% using No-Drop,

Dropout and DropConnect with our voting scheme. While Dropout surpasses Drop-

Connect slightly, both methods improve over No-Drop in this benchmark as shown in

Table 4.7.

4.7 Discussion

We have presented DropConnect, which generalizes Hinton et al. ’s Dropout [25] to the

entire connectivity structure of a fully connected neural network layer. We provide both

theoretical justification and empirical results to show that DropConnect helps regularize

large neural network models. Results on a range of datasets show that DropConnect often

outperforms Dropout. While our current implementation of DropConnect is slightly

slower than No-Drop or Dropout, in large models models the feature extractor is the

bottleneck, thus there is little difference in overall training time. DropConnect allows us

to train large models while avoiding overfitting. This yields state-of-the-art results on a

variety of standard benchmarks using our efficient GPU implementation of DropConnect.

46

4.8 Theoretical Analysis of DropConnet Network

4.8.1 Preliminaries

Definition 1 (DropConnect Network). Given data set S with ` entries: {x1,x2, . . . ,x`}

with labels {y1, y2, . . . , y`}, we define DropConnect network as a mixture model:

o =
∑
m

p(M)f(x; θ,M) = Em [f(x; θ,M)] (4.6)

Each network f(x; θ,M) has weights p(M) and network parameters are θ = {Ws,W,Wg}.

Ws are the softmax layer parameters, w are the DropConnect layer parameters and Wg

are the feature extractor parameters. Further more, m is the DropConnect layer mask.

Remark 1. when each element of Mi has equal probability of being on and off (p = 0.5),

the mixture model has equal weights for all sub-models f(x; θ,M), otherwise the mixture

model has larger weights in some sub-models than others.

Reformulate cross-entropy loss on top of soft-max into a single parameter function that

combines soft-max output and labels. Same as logistic.

Definition 2 (Logistic Loss). The following loss function defined on k-class classification

is call logistic loss function:

Ay(o) = −
∑
i

yi ln
exp oi∑
j exp(oj)

= −oi + ln
∑
j

exp(oj)

where y is binary vector with ith bit set on

Lemma 1. Logistic loss function A has the following properties:

1. Ay(0) = ln k

2. −1 ≤ A′y(o) ≤ 1

3. A′′y(o) ≥ 0.

The first one says A(0) is depend on some constant related with number of labels. The

47

second one says A is Lipschitz function with L = 1. The third one says A is a convex

function w.r.t x.

Definition 3 (Rademacher complexity). For a sample S = {x1, . . . , x`} generated by a

distribution D on set X and a real-valued function class F in domain X, the empirical

Rademacher complexity of F is the random variable:

R̂` (F) = Eσ

[
sup
f∈F
|2
`

∑̀
i=1

σif(xi)| | x1, . . . , x`

]

where sigma = {σ1, . . . , σ`} are independent uniform {±1}-valued (Rademacher) random

variables. The Rademacher complexity of F is R`(F) = ES

[
R̂` (F)

]
.

Theorem 1 ([30]). Fix δ ∈ (0, 1) and let F be a class of functions mapping from M

to [0, 1]. Let (Mi)
`
i−1 be drawn independently according to a probability distribution D.

Then with probability at least 1− δ over random draws of samples of size `, every f ∈ F

satisfies:

E [f(M)] ≤ Ê [f(M)] +R`(F) +

√
ln (2/δ)

2`

≤ Ê [f(M)] + R̂`(F) + 3

√
ln (2/δ)

2`

4.8.2 Bound Derivation

Theorem 2 ([42]). Let F be class of real functions. If A: R → R is Lipschitz with

constant L and satisfies A(0) = 0, then R̂`(A ◦ F) ≤ 2LR̂(F)

Lemma 2. Let F be class of real functions and H = [Fj]kj=1 be a k-dimensional function

class. If A: Rk → R is a Lipschitz function with constant L and satisfies A(0) = 0,

then R̂`(A ◦H) ≤ 2kLR̂`(F)

Lemma 3 (Classifier Generalization Bound). Generalization bound of a k-class classifier

48

with logistic loss function is directly related Rademacher complexity of that classifier

E[Ay(o)] ≤
1

`

∑̀
i=1

Ayi(oi) + 2kR̂`(F) + 3

√
ln (2/δ)

2`

Proof. From Lemma 1, Logistic loss function (A− c)(x) ∈ A due to (A− c)′(x) ≤ 1 and

(A− c)(0) = 0 with some constant c. By Lemma 2: R̂`((A− c) ◦ F) ≤ 2kR̂`(F)

Lemma 4. For all neuron activations: sigmoid, tanh and relu, we have: R̂`(a ◦ F) ≤

2R̂`(F)

Lemma 5 (Network Layer Bound). Let G be the class of real functions Rd → R with

input dimension F , i.e. G = [Fj]dj=1 and HB is a linear transform function parameterized

by W with ‖W‖2 ≤ B, then R̂`(H ◦ G) ≤
√
dBR̂`(F)

Proof.

R̂`(H ◦ G)

= Eσ

[
sup

h∈H,g∈G

∣∣∣∣∣2` ∑̀
i=1

σih ◦ g(xi)

∣∣∣∣∣
]

= Eσ

[
sup

g∈G,‖W‖≤B

∣∣∣∣∣
〈
W,

2

`

∑̀
i=1

σig(xi)

〉∣∣∣∣∣
]

≤ BEσ

 sup
fj∈F

∥∥∥∥∥∥
[

2

`

∑̀
i=1

σji f
j(xi)

]d
j=1

∥∥∥∥∥∥

= B
√
dEσ

[
sup
f∈F

∣∣∣∣∣2` ∑̀
i=1

σif(xi)

∣∣∣∣∣
]

=
√
dBR̂`(F)

Remark 2. Given a layer in our network, we denote the function of all layers before as

G = [Fj]dj=1. This layer has the linear transformation function H and activation function

a. By Lemma 4 and Lemma 5, we know the network complexity is bounded by:

R̂`(H ◦ G) ≤ c
√
dBR̂`(F)

49

where c = 1 for identity neuron and c = 2 for others.

Lemma 6. Let FM be the class of real functions that depend on m, then R̂`(EM [FM]) ≤

EM

[
R̂`(FM)

]
Proof.

R̂`(EM [FM]) = R̂`

(∑
M

p (M)FM

)
≤
∑
M

R̂`(p(M)FM)

≤
∑
M

|p(M)|R̂`(FM) = EM

[
R̂`(FM)

]

because of common fact: 1) R̂`(cF) = |c|R̂`(F) and 2) R̂`(
∑

iFi) ≤
∑

i R̂`(Fi)

Theorem 3 (DropConnect Network Complexity). Consider the DropConnect neural

network defined in Definition 1. Let R̂`(G) be the empirical Rademacher complexity of

the feature extractor and R̂`(F) be the empirical Rademacher complexity of the whole

network. In addition, we assume:

1. weight parameter of DropConnect layer |W | ≤ Bh

2. weight parameter of s, i.e. |Ws| ≤ Bs (L2-norm of it is bounded by
√
dkBs).

Then we have:

R̂`(F) ≤ p
(

2
√
kdBsn

√
dBh

)
R̂`(G)

Proof.

R̂`(F) = R̂`(EM [f(x; θ,M])

≤ EM

[
R̂`(f(x; θ,M)

]
(4.7)

= EM

[
R̂`(s ◦ a ◦ hm ◦ g)

]
≤ (

√
dkBs)

√
dEM

[
R̂`(a ◦ hm ◦ g)

]
(4.8)

= 2
√
kdBsEM

[
R̂`(hm ◦ g)

]
(4.9)

where hm = (M ?W)v. Equation (4.7) is based on Lemma 6, Equation (4.8) is based

50

on Lemma 5 and Equation (4.9) follows from Lemma 4.

EM

[
R̂`(hm ◦ g)

]
= Em,σ

[
sup

h∈H,g∈G

∣∣∣∣∣2` ∑̀
i=1

σiw
TDMg(xi)

∣∣∣∣∣
]

(4.10)

= Em,σ

[
sup

h∈H,g∈G

∣∣∣∣∣
〈
DMw,

2

`

∑̀
i=1

σig(xi)

〉∣∣∣∣∣
]

≤ EM

[
max
w
‖DMw‖

]
Eσ

 sup
gj∈G

∥∥∥∥∥∥
[

2

`

∑̀
i=1

σig
j(xi)

]n
j=1

∥∥∥∥∥∥
 (4.11)

≤ Bhp
√
nd
(√

nR̂`(G)
)

= pn
√
dBhR̂`(G)

where DM in Equation (4.10) is an diagonal matrix with diagonal elements equal to m

and inner product properties lead to Equation (4.11). Thus, we have

R̂`(F) ≤ p
(

2
√
kdBsn

√
dBh

)
R̂`(G)

Remark 3. Theorem 3 implies that p is an additional regularizer we have added to

network when we convert a normal neural network to a network with DropConnect layers.

Consider the following extreme cases:

1. p = 0: the network generalization bound equals to 0, which is true because classifier

does not depends on input any more

2. p = 1: reduce to normal network

51

Symbol Description Related Formula
y Data Label, can either be integer label

for bit vector(depends on context)
x Network input data
g(.) Feature extractor function with param-

eter Wg

v Feature extractor network output v = g(x,Wg)
M DropConnect connection information

parameter (weight mask)
h(.) DropConnect transformation function

with parameter W,M
u DropConnect output u = h(v;W,M)
a(.) DropConnect activation function
r DropConnect after activation r = a(u)
s(.) Dimension reduction layer function

with parameter Ws

o Dimension reduction layer output (net-
work output)

o = s(r;Ws)

θ All parameter of network expect weight
mask

θ = {Ws,W,Wg}

f(.) Overall classifier(network) output o = f(x; θ,M)
λ Weight penalty
A(.) Data Loss Function A(o− y)
L(.) Over all objective function L(x, y) =

∑
iA(oi − yi) + 1/2λ‖W‖22

n Dimension of feature extractor output
d Dimension of DropConnect layer out-

put
k number of class dim(y) = k

Table 4.8: Symbol Table

52

Chapter 5

Detection Model for PASCAL

Challenge

5.1 Introduction

An object is represented by a mixture of hierarchical tree models where the nodes rep-

resent object parts. The nodes can move spatially to allow both local and global shape

deformations [78][7]. The image features are histograms of words (HOWs) [44] and ori-

ented gradients (HOGs) [9] which enable rich appearance representation of both struc-

tured (eg, cat face) and textured (eg,cat body) image regions. Learning the hierarchical

model is a latent SVM problem which can be solved by the incremental concave-convex

procedure (iCCCP) [74]. Object detection is performed by scanning sub-windows using

dynamic programming. The detections are rescored by a context model which encodes

the correlations of 20 object classes by using both object detection and image classifica-

tion.

By extending the work from Zhu et al. [78][7] (Section 5.2) and a novel non-maximum

suppression algorithm (Section 5.3), we achieve 1st in PASCAL VOC 2011 detection

challenge.

53

5.2 Model Description

An object class consists of 4-6 templates from 2-3 different views each of which is rep-

resent by a 3-layer tree-structure model. The structure of model is given in Figure 5.1.

The first layer has one root node which represent the object bounding box. The root

node has 9 child nodes at second layer in a 3 × 3 grid layout. Furthermore, each node

at the second layer has 4 child nodes at the third layer. The nodes in second and third

layer can move spatially with respect to its parent node with linear penalty.

Figure 5.1: Reproduce from Zhu [78] (a) 3-layer tree model. The structure has tree
layers withe node in grid layout (b) A reference template without part displacement (no
deformation) Blue rectangle is the bounding box of the root node. Yellow dots indicate
the center of 36 parts at bottom layer. (c,d) examples of part displacement.

Each node of tree contains two kind of image feature: HoW and HoG as show in Fig-

ure 5.2. Thus, there are three types of potential terms in overall model:

1. Spatial deformation terms (dx, dy) specifies how much child node deform from its

default location with data terms: φshape = [dx2, dy2, dx, dy]

2. Edge-like HoG feature φHoG with linear kernel.

3. Regional appearance HoW features φHoW defines by histograms of words with

quasi-linear kernel. The words are K-means centroid of SIFT feature from image

54

patches.

Figure 5.2: Upper row: Edge-like HoG feature Bottom row: Regional Histogram of
Words(SIFT)

Each tree model is associated with a latent variable h which defines all parts node

locations. Thus, the objection is detected by solving:

y∗, h∗ = arg maxwTφ(x, y, h)

where y∗ is final detection score for current window and φ(x, y, h) counts all three kind

of features φshape, φHoG and φHoW for each node with latent variable h.

The general idea of learning procedure is optimize the following function via CCCP

algorithm with λ as regularization term.

min
w
λ

1

2
‖w‖22 +

N∑
i=1

[
max
y,h

[
wTφ(xi, y, h)

]
+ L(yi, y, h)−max

h

[
wTφ(xi, yi, h)

]]

= min
w

[
λ

1

2
‖w‖22 +

N∑
i=1

max
y,h

[
wTφ(xi, y, h) + L(yi, y, h)

]]
−
[
max
h

[
wTφ(xi, yi, h)

]]

where L(yi, y, h) is the loss function. For object detection problem L(yi, y, h) = 1 if

yi = y and L(yi, y, h) = 0 if yi 6= y. The model minimize when unconstrained y agrees

with yi for each term.

55

5.3 Non-Maximum Suppression

Non-Maximum Suppression (NMS) is an important post-processing task to removes near

duplicate detection result and retain only the local maximal in a set of detection result.

Removing such duplications is important because it introduce false alarm in final per-

formance evaluation. We will begin with standard NMS algorithm [9][15] and gradually

develop better versions of it.

Given a set of detection result assignment A = {(bi, ri)}i=1,2,...,n. Here ri is the response

of ith bounding box bi. We want to produce A′ = {(b′i, r′i)}i=1,2,...,m ⊂ A to remove

duplication detection results and improve final mAP performance. Usually, m� n.

The first version of NMS given in Algorithm 4 which is used in many of popular sys-

tems [78][15].

Algorithm 4 Non-Maximum Suppression (NMS)

1: sort (r, b) ∈ A in descending order with r
2: A′ = {}
3: for bi ∈ A do
4: match = false
5: for bj ∈ A′ do
6: if overlap(bi, bj) ≥ 0.5 then
7: match = true
8: break
9: end if

10: end for
11: if not match then
12: A′ ← A′ ∩ {(bi, ri)}
13: end if
14: end for

The overlap(b, b′) in Line 6 of Algorithm 4 is defined as

overlap(b, b′) =
Area(b′ ∩ b)
Area(b′ ∪ b)

(5.1)

The overlap function in Eq. 5.1 is the same as PASCAL evaluation: A predict bounding

box is correct iff it’s overlap ≥ 50% (define in Eq. 5.1) with ground truth bounding box.

56

Duplicate matchings are consider as wrong prediction.

We found an extension of previous overlap function that works better in practise is

defined as:

overlap(b, b′) = max

(
Area(b′)

Area(b′ ∪ b)
,

Area(b)

Area(b′ ∪ b)

)
(5.2)

It introduces about 2mAP performance boost compare to standard form in Eq. 5.1. All

overlap function in NMS will refer to Eq. 5.2 except explicitly stated.

Our final version of NMS shown in Algorithm 5 which extends Algorithm 4 to an iterative

process by using old version as initialization step. It repeats the process of compute

centroid and updating centroid process:

1. compute maximal index aj of each bounding box bj with respect to each center b′i

by using overlap function (Line 3-5).

2. update b′i based on all bounding box with maximal index aj = i. The merge of

bounding box simply takes the maximal score and a larger bounding box includes

all smaller ones (Line 6-9).

Iterative NMS consistently improves final detection further by 1− 2 mAP.

Algorithm 5 Iterative Non-Maximum Suppression

1: init center A′ = {(b′i, r′i)} from Algorithm 4
2: for step = 1, 2, . . . , 20 do
3: for (rj , bj) ∈ A do
4: aj ← argi max overlap(bj , b

′
i)

5: end for
6: for (b′i, r

′
i) ∈ A′ do

7: b′i ← merge(bj ∈ A ∧ aj = i)
8: r′i ← max(rj ∈ A ∧ aj = i)
9: end for

10: end for

57

5.4 Experiment Results and Discussion

We have develop state-of-the-art detection system, mainly by improving 1) image features

and its corresponding learning algorithm 2) non-maximum suppression. A summary of

system performance is available at http://pascallin.ecs.soton.ac.uk/challenges/

VOC/voc2011/results/index.html (Competition “comp3” NYUUCLA HIERARCHY

result).

The final model for detection task is divided into following stages:

1. Extract features from image patch. The most useful feature: HoG, SIFT, LBP

2. Lean hierarchical part-based model

3. Apply NMS algorithm to detection result set

4. Re-score each detection result by context, including classification and detection

results from the other class.

The above 4 steps performs separately from each other and was tunned independently

to achieve good performance. However, these steps are highly correlated. Furthermore,

recent advances in deep learning shown that image features learnt by ConvNet generally

better than hand crafted features by Krizhevsky et al. [35]. Thus, it leads us to an model

integrates all of 4 steps with trainable ConvNet features. In Chapter 6, we presents such

integrated model and its corresponding end-to-end training algorithm.

58

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/results/index.html
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/results/index.html

Chapter 6

End-to-End Integration of a

ConvNet, Deformable Parts

Model and Non-Maximum

Suppression

6.1 Introduction

Object detection has been addressed using a variety of approaches, including sliding-

window Deformable Parts Models [15, 78, 16], region proposal with classification [19, 68],

and location regression with deep learning [60, 65]. Each of these methods have their

own advantages, yet are by no means mutually exclusive. In particular, structured

parts models capture the composition of individual objects from component parts, yet

often use rudimentary features like HoG [9] that throw away much of the discriminative

information in the image. By contrast, deep learning approaches [34, 76, 60], based on

Convolutional Networks [39], extract strong image features, but do not explicitly model

object composition. Instead, they rely on pooling and large fully connected layers to

59

combine information from spatially disparate regions; these operations can throw away

useful fine-grained spatial relationships important for detection.

The basic building blocks of our model architecture come from the DPMs of Felzenszwalb

et al. [15] and Zhu et al. [78][7], and the ConvNet of Krizhevsky et al. [34]. We make

crucial modifications in their integration that enables the resulting model to achieve

competitive object detection performance. In particular, we develop ways to transfer

the ConvNet from classification to the detection environment, as well as changes to the

learning procedure to enable joint training of all parts.

ConvNet
Features

...

Response
Pyramid

Deformable
Parts Model

fprop

bprop

ro
o
t

A
N

D

p
a
rt1

p
a
rt9

D
e
f

D
e
f

...
ro

o
t

A
N

D

p
a
rt1

p
a
rt9

D
e
f

... O
R

obj view

obj view

Image
Pyramid

Final
Prediction

D
e
f

... ...

bicycle

person

person

...
...

NMS

NMS

Figure 6.1: An overview of our system: (i) a convolutional network extracts features
from an image pyramid; (ii) a set of deformable parts models (each capturing a different
view) are applied to the convolutional feature maps; (iii) non-maximum suppression is
applied to the resulting response maps, yielding bounding box predictions. Training is
performed using a new loss function that enables back-propagation through all stages.

In this paper, we propose a framework (shown in Figure 6.1) that combines these two

approaches, fusing together structured learning and deep learning to obtain the advan-

60

!"

"#$%&'()*+#'

, - ."!

!"#
!$#
!%#
!&#! #
!'#
!(#
!)#
!*#
!+#
!,#
!-#

(a) Human-machine hybrid person detectors

!"#$% &$%#$%
!"# $ %"!

'(

)(

*(

++(

,(

-(

.(

/(

(b) Human studies

INRIA PASCAL
0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Im
pr

ov
em

en
t i

n
AP

Parts
Spatial Models
NMS

(c) Results
Figure 2: (a) We replaced each component in the machine pipeline (red) with human subjects
(green). (b) The various tasks performed by human subjects. For instance, in the first task (top)
subjects performed the entire person detection process by looking at an input image, and providing
bounding boxes around people in the image. In the remaining tasks, subjects only perform a part of
the process as denoted by the extent of the green bars. (c) Summary of our findings.

machines to form complete object detectors, as seen in Figure 2 (a). The various human tasks in-
volved are summarized in Figure 2 (b). As before, we conducted these human studies on Amazon
Mechanical Turk.

Our experiments concluded that part detection is the weakest link for challenging person detection
datasets. Non-maximal suppression and context can also significantly boost performance. However,
the use of human or machine spatial models does not significantly or consistently affect detection
accuracy. A summary of the results can be seen in Figure 2 (c). This was the first analysis of its
kind that provided the community valuable and concrete feedback about which specific problem to
focus on to improve overall performance: in this case, classifying local image patches into one of
six person-part categories.

3 Challenges

The key idea behind human-debugging is to replace isolated components of a machine pipe-line with
human subjects. This necessitates designing studies that require humans to perform very specific
tasks; whose input and outputs precisely match those used by the equivalent machine implementa-
tion. This leads to several interesting challenges.

Accessing isolated human-models: It is crucial for the information available to humans to be equiv-
alent to that available to the machine implementation. This often involves providing information in

3

Figure 6.2: Reproduced from Parikh and Zitnick [51]: an ablation study of the stages in
a DPM model [15] . Their figure shows how significant performance improvements could
be obtained by replacing the parts detection and non-maximum suppresssion stages with
human subjects. This suggests that these stages limit performance within the model.
Our work focuses on improving each of these, replacing the part detectors with a Convnet
and integrating NMS into the model.

tages of each. We use a DPM for detection, but replace the HoG features with features

learned by a convolutional network. This allows the use of complex image features, but

still preserves the spatial relationships between object parts during inference.

An often overlooked aspect of many detection systems is the non-maximum suppression

stage, used to winnow multiple high scoring bounding boxes around an object instance

down to a single detection. Typically, this is a post-processing operation applied to the

set of bounding boxes produced by the object detector. As such, it is not part of the loss

function used to train the model and any parameters must be tuned by hand. However,

as demonstrated by Parikh and Zitnick [51], NMS can be a major performance bottleneck

(see Figure 6.2). We introduce a new type of image-level loss function for training that

takes into consideration of all bounding boxes within an image. This differs with the

losses used in existing frameworks that consider single cropped object instances. Our

new loss function enables the NMS operation trained as part of the model, jointly with

the Convnet and DPM components.

61

6.2 Model Architecture

The architecture of our model is shown in Figure 6.3. For a given input image x, we

first construct an image pyramid (a) with five intervals over one octave1 We apply the

ConvNet (b) at each scale xs to generate feature maps φA(xs). These are then passed

to the DPM (c) for each class; as we describe in Section 6.2.2, the DPM may also be

formulated as a series of neural network layers. At training time, the loss is computed

using the final detection output obtained after NMS (d), and this is then back-propagated

end-to-end through the entire system, including NMS, DPM and ConvNet.

6.2.1 Convolutional Network

We generate appearance features φA(x) using the first five layers of a Convolutional

Network pre-trained for the ImageNet Classification task. We first train an eight layer

classification model, which is composed of five convolutional feature extraction layers,

plus three fully-connected classification layers2. After this network has been trained, we

throw away the three fully-connected layers, replacing them instead with the DPM. The

five convolutional layers are then used to extract appearance features.

Note that for detection, we apply the convolutional layers to images of arbitrary size (as

opposed to ConvNet training, which uses fixed-size inputs). Each layer of the network

is applied in a bottom-up fashion over the entire spatial extent of the image, so that

the total computation performed is still proportional to the image size. This stands

in contrast to [19], who apply the ConvNet with a fixed input size to different image

regions, and is more similar to [60].

Applying the ImageNet classification model to PASCAL detection has two scale-related

1We use as many octaves as required to make the smallest dimension 48 pixels in size.
2The fully connected layers have 4096 - 4096 - 1000 output units each, with dropout applied to the

two hidden layers. We use the basic model from [76], which trains the network using random 224x224
crops from the center 256x256 region of each training image, rescaled so the shortest side has length 256.
This model achieves a top-5 error rate of 18.1% on the ILSVRC2012 validation set, voting with 2 flips
and 5 translations.

62

xs=4 xs=1

max

φA(xs)	

F(xs, y)

wv=1 wv=2 wv=3

Fv=1 Fv=2 Fv=3

xs

2x2 max pool
11x11 convolution

2x2 max pool
5x5 convolution

3x3 convolution
3x3 convolution

Layer 1

Layer 2

Layer 4

3

96

256

384

384

φA(xs)	

384

1

1

(a)

(b.i)

(b.ii)

(b.iii)

(b.iv)

(c.i)

(c.ii)

(c.iii)

(c.iv)

(c.v)

xs=0 xs=2 xs=3

(d)
NMS

responses for each scale

Figure 6.3: model architecture, with Convolutional Network (left), Deformable Parts
Model (right) and non-maximum suppression (top) components. An input x is first
repeatedly downsampled to create an image pyramid (a). We run the convolutional net-
work on each scale, by performing four layers of convolution and max-pooling operations
(b.ii - b.iv). This produces a set of appearance features φA(xs) at each scale, which
are used as input to a DPM (c.i). Each object class model has three views of object
templates (c.ii), each of which is composed of a root filter and nine parts filters. These
produce a response map Fv for each view (c.iii), which are then combined using a pixel-
wise max (c.iv) to form a final activation map for the object class, F (xs, y). We then
perform NMS (d) across responses for all scales. To generate bounding boxes, we trace
the activation locations back to their corresponding boxes in the input.

problems that must be addressed. The first is that there is a total of 16x subsampling

between the input and the fifth layer; that is, each pixel in φA corresponds to 16 pixels

63

of input — this is insufficient for detection, as it effectively constrains detected bounding

boxes to a lie on a 16-pixel grid. The second is that the ImageNet classifier was trained

on objects that are fairly large, taking up much of the 224x224 image area. By contrast,

many target objects in PASCAL are significantly smaller.

To address these, we simply apply the first convolution layer with a stride of 1 instead

of 4 when combining with the DPM (however, we also perform 2x2 pooling after the top

ConvNet layer due to speed issues in training, making the net resolution increase only

a factor of 2). This addresses both scale issues simultaneously. The feature resolution

is automatically increased by elimination of the stride. Moreover, the scale of objects

presented to the network at layers 2 and above is increased by a factor of 4, better

aligning the PASCAL objects to the ImageNet expected size This is due to the fact that

when the second layer is applied to the output of the stride-1 maps, their field of view

is 4x smaller compared to stride-4, effectively increasing the size of input objects.

Note that changing the stride of the first layer is effectively the same as upsampling

the input image, but preserves resolution in the convolutional filters (if the filters were

downsampled, these would be equivalent operations; however we found this to work well

without changing the filter size, as they are already just 11x11).

6.2.2 Deformable Parts Model

Part Responses

The first step in the DPM formulation is to convolve the appearance features with the

root and parts filters, producing appearance responses. Each object view has both a

root filter and nine parts filters; the parts are arranged on a 3x3 grid relative to the root,

as illustrated in Figure 6.4. (This is similar to [78], who find this works as well as the

more complex placements used by [15]). Note that the number of root and parts filters

is the same for all classes, but the size of each root and part may vary between classes

64

ht

8 9 7

6 5

1 2 3

4

8 9 7

6 5

1
2

3

4

384 384

(a) wroot
A,v (b) wpart

A,v (c) wpart
A,v , w

part
D,v

Figure 6.4: Root and parts filter setup for our DPM. (a) Each view v has a root filter
with a different pre-defined aspect ratio. (b) Part filters are aligned on a 3x3 grid relative
to the root. (c) Parts may deform relative to the root position at a cost, parameterized
by wpart

D .

and views.

Given appearance filters wroot
A,y,v for each class y and view v, and filters wpart

A,y,v,p for each

part p, the appearance scores are:

F root
v (xs, y) = wroot

A,y,v ∗ φA(xs)

F part
v,p (xs, y) = wpart

A,y,v,p ∗ φA(xs)

Part responses are then fed to the deformation layer.

Deformation Layer

The deformation layer finds the optimal part locations, accounting for both apperance

and a deformation cost that models the spatial relation of the part to the root. Given

appearance scores F part
v,p , part location p relative to the root, and deformation parameters

wD,v,p for each part, the deformed part responses are the following (input variables (xs, y)

omitted):

F def
v,p = max

δi,δj
F part
v,p [pi + δi, pj + δj] + wpart

D,v,pφD(δi, δj) (6.1)

where F part
v,p [pi + δi, pj + δj] is the part response map F part

v,p (xs, y) shifted by spatial offset

(pi + δi, pj + δj), and φD(δi, δj) = [|δi|, |δj |, δ2i , δ2j]T is the shape deformation feature.

wpart
D,y,v ≥ 0 are the deformation weights.

65

Note the maximum in Eq. 6.1 is taken independently at each output spatial location:

i.e. for each output location, we find the max over possible deformations (δi, δj). In

practice, searching globally is unnecessary, and we constrain to search over a window

[−s, s]× [−s, s] where s is the spatial size of the part (in feature space). During training,

we save the optimal (δ̂i, δ̂j) at each output location found during forward-propagation

to use during back-propagation.

The deformation layer extends standard max-pooling over (δi, δj) with (i) a shift offset

(pi, pj) accounting for the part location, and (ii) deformation cost wTDφD(δi, δj). Setting

both of these to zero would result in standard max-pooling.

AND/OR Layer

Combining the scores of root, parts and object views is done using an AND-like accumu-

lation over parts to form a score Fv for each view v, followed by an OR-like maximum

over views to form the final object score F :

Fv(xs, y) = F root
v (xs, y) +

∑
p∈parts

F def
v,p (xs, y)

F (xs, y) = max
v∈views

Fv(xs, y)

F (xs, y) is then the final score map for class y at scale s, given the image x as shown in

Figure 6.5.

6.2.3 Bounding Box Prediction

After obtaining activation maps for each class at each scale of input, we trace the acti-

vation locations back to their corresponding bounding boxes in input space. Detection

locations in F (xs, y) are first projected back to boxes in φA(xs), using the root and parts

filter sizes and inferred parts offsets. These are then projected back into input space

through the convolutional network. As shown in Figure 6.6(right), each pixel in φA(xs)

66

...root

AND

part1 part9

Def Def

AND

OR

...

AND

Figure 6.5: Overview of the top part of our network architecture: (i) the root and
part layers are convolution layers with different sizes of filter but same input size; (ii)
OR/AND/Def layer preserve the size of the input to the output; (iii) each AND layer
represents an object view which contains a root and 9 parts.

has a field of view of 35 pixels in the input, and moving by 1 pixel in φA moves by 8 pixels

in the input (due to the 8x subsampling of the convolutional model). Each bounding

box is obtained by choosing the input region that lies between the field of view centers

of the box’s boundary. This means that 17 pixels on all sides of the input field of view

are treated as context, and the bounding box is aligned to the interior region.

17 17 8(p-1) + 1

8

p
!A(xs)

xs

context context bounding
box

Figure 6.6: Aligning a bounding box from DPM prediction through the convolutional
network (see Section 6.2.3).

6.2.4 Non-Maximal Suppression (NMS)

The procedure above generates a list of label assignments A0 = {(bi, yi, ri)i=1...|B|} for

the image, where bi is a bounding box, and yi and ri are its associated class label and

67

network response score, i.e.ri is equal to F (x, yi) at the output location corresponding

to box bi. B is the set of all possible bounding boxes in the search.

The final detection result is a subset of this list, obtained by applying a modified version

of non-maximum suppression derived from [78]. If we label location bi as object type yi,

some neighbors of bi might also have received a high scores, where the neighbors of b are

defined as:

neigh(b) = {b′|overlap(b, b′) ≥ θ}

However, neigh(bi)\bi should not be labeled as yi to avoid duplicate detections. Applying

this, we get a subset of A = {(bi, yi, ri)i=1...n} as the final detection result; usually

n� |B|.

When calculating overlap(b, b′), we use a symmetric form when the bounding boxes are

for different classes, but an asymmetric form when the boxes are both of the same class.

For different-class boxes:

overlap(b, b′) =
Area(b ∩ b′)
Area(b ∪ b′)

and threshold θ = 0.75.

For same-class boxes, egboxes of different views or locations,

overlap(b, b′) = max

(
Area(b ∩ b′)
Area(b)

,
Area(b ∩ b′)
Area(b′)

)

with theshold θ = 0.5.

6.3 Final Prediction Loss

6.3.1 Motivation

Our second main contribution is the use of a final-prediction loss that takes into account

the NMS step used in inference. In contrast to bootstrapping with a hard negative

68

Figure 6.7: Three possi-
ble bounding boxes: blue,
green and red (blue clos-
est to the ground truth).
However, green and red
should not be considered
negative instances (since
they may be positive in
other images where the
person is occluded). Thus,
we want
r(blue) > r(red)
r(blue) > r(green)

pool, such as in [78] [15], we consider each image individually when determining positive

and negative examples, accounting for NMS and the views present in the image itself.

Consider the example in Figure 6.7: A person detector may fire on three object views:

red, green, and blue. The blue (largest in this example) is closest to the ground truth,

while green and red are incorrect predictions. However, we cannot simply add the green

or red boxes to a set negative examples, since they are indeed present in other images

as occluded people. This leads to a situation where the red view has a higher inference

score than blue or green, i.e. r(red) > r(blue) and r(red) > r(green), because red is

never labeled as negative in the bootstrapping process. After NMS, blue response will

be suppressed by red, causing a NMS error. Such an error can only be avoided when

we have a global view on each image: if r(blue) > r(red), then we would have a correct

final prediction.

6.3.2 Loss Function

Recall that the NMS stage produces a set of assignments predicted by the model A =

{(bi, yi, ri)i=1...n} from the set B of all possible assignments. We compose the loss using

two terms, C(A) and C(A′). The first, C(A), measures the cost incurred by the assign-

ment currently predicted by the model, while C(A′) measures the cost incurred by an

69

assignment close to the ground truth. The current prediction cost C(A) is:

C(A) =
∑

(bi,yi,ri)∈A

H(ri, yi)︸ ︷︷ ︸
CP (A)

+
∑

(bj ,yj ,rj)∈S(A)

H(rj , 0)

︸ ︷︷ ︸
CN (A)

(6.2)

where H(r, y) = I(y > 0) max(0, 1 − r)2 + I(y = 0) max(0, r + 1) i.e. a squared hinge

error. 3 S(A) is the set of all bounding boxes predicted to be in the background (y = 0):

S(A) = B \ neigh(A) with

neigh(A) =
⋃

(bi,yi,ri)∈A

neigh(bi)

. CP (A) and CN (A) are the set of positive predicted labels and the set of background

labels, respectively.

The second term in the loss, C(A′), measures the cost incurred by the ground truth

bounding boxes under the model. Let the ground truth bounding box set be Agt =

{(bgti , y
gt
i)i=1...m}. We construct a constrained inference assignment A′ close to Agt by

choosing for each bgti the box (b′i, y
′
i, r
′
i) = argmax(b,y,r) r, where the argmax is taken over

all overlap(b, bgti) ≥ θ′; that is, the box with highest response out of those with sufficient

overlap with the ground truth. (θ′ = 0.7 in our experiments.) Similarly to before, the

cost C(A′) is:

C(A′) =
∑

(b′i,y
′
i,r

′
i)∈A′

H(r′i, y
′
i) +

∑
(b′j ,y

′
j ,r

′
j)∈S(A′)

H(r′j , 0) (6.3)

Thus we measure two costs: that of the current model prediction, and that of an as-

signment close to the ground truth. The final discriminative training loss is difference

between these two:

L(A,A′) = C(A′)− C(A) ≥ 0 (6.4)

3 where I is an indicator function that equals 1 iff the condition holds

70

Note this loss is always greater than 0 because the constrained assignment always has

cost at least as large as the unconstrained one, and L(A,A′) = 0 when A = A′, i.e. when

we produce detection results which are consistent with the ground truth Agt.

Combining Equations Eq. 6.2 and Eq. 6.3 leads to

L(A,A′) = LP (A,A′) + LN (A,A′) (6.5)

LP (A,A′) =
∑

(b′,y′,r′)∈A′

H(r′, y′)−
∑

(b,y,r)∈A

H(r, y)

LN (A,A′) =
∑

(b′,y′,r′)∈S(A′)

H(r′, 0)−
∑

(b,y,r)∈S(A)

H(r, 0)

=
∑

(b,y,r)∈N\N ′

H(r, 0)−
∑

(b′,y′,r′)∈N ′\N

H(r′, 0)

where N = neigh(A) and N ′ = neigh(A′). The last line comes from the fact that most

of the boxes included in S(A) and S(A′) are shared, and cancel out (see Figure 6.8);

thus we can compute the loss looking only at these neighborhood sets.

Figure 6.8: Illustration of ground-truth-constrained assignment A′ and unconstrained as-
signments A from the model, along with associated neighborhoods. Note neighborhoods
are actually dense, and we show only a few boxes for illustration.

71

6.3.3 Interpretation and Effect on NMS Ordering

As mentioned earlier, a key benefit to training on the final predictions as we describe is

that our loss accounts for the NMS inference step. In our example in Figure 6.7, if the

response r(red) > r(blue), then red ∈ A and blue ∈ A′. Thus LP (A,A′) will decrease

r(red) and increase r(blue). This ensures the responses r are in an appropriate order

when NMS is applied. Once r(blue) > r(red), the mistake will be fixed.

The term LN in the loss is akin to an online version of hard negative mining, ensuring

that the background is not detected as a positive example.

6.3.4 Soft Positive Assignments

When training jointly with the ConvNet, it is insufficient to measure the cost using only

single positive instances, as the network can easily overfit to the individual examples.

We address this using soft positive assignments in place of hard assignments; that is, we

replace the definition of CP in Eq. 6.2 used above with one using a weighted average of

neighbors for each box in the assignment list:

CP (A) =
∑
bi∈A

∑
bj∈neigh(bi) αijH(rj , yj)∑

j αij

where αij = 2(Area(bi ∩ bj)/Area(bi))− 1, and similarly for CP (A′).

Note a similar strategy has been tried in the case of HoG features before, but was not

found to be beneficial [15]. By contrast, we found this to be important for integrating

the ConvNet. We believe this is because the ConvNet has many more parameters than

can easily overfit, whereas HoG is more constrained.

72

6.4 Training

Our model is trained in online fashion with SGD, with each image being forward prop-

agated through the model and then the resulting error backpropagated to update the

parameters. During the fprop, the position of the parts in the DPM are computed and

then used for the subsequent bprop. Training in standard DPM models [15] differs in

two respects: (i) a fixed negative set is mined periodically (we have no such set, instead

processing each image in turn) and (ii) part positions on this negative set are fixed for

many subsequent parameter updates.

We first pretrain the DPM root and parts filters without any deformation, using a fixed

set of 20K random negative examples for each class. Note that during this stage, the

ConvNet weights are fixed to their initialization from ImageNet. Following this, we

perform end-to-end joint training of the entire system, including ConvNet, DPM and

NMS (via the final prediction loss). During joint training, we use inferred part locations

in the deformation layer.

The joint training phase is outlined in Algorithm 6. For each training image sample,

we build an image pyramid, and fprop each scale of the pyramid through the ConvNet

and DPM to generate the assignment list A0. Note A0 is represented using the output

response maps. We then apply NMS to get the final assignments A, as well as construct

the ground-truth constrained assignments A′. Using the final prediction loss L(A,A′)

from Eq. 6.5, we find the gradient and backpropagate through the network to update

the model weights. We repeat this for 15 epochs through the training set with a learning

rate η = 10−3, then another 15 using η = 10−4.

At test time, we simply forward-propagate the input pyramid through the network (Con-

vNet and DPM) and apply NMS.

73

Algorithm 6 Training algorithm for each image

1: Input: Image X with ground truth assignment Agt

2: Build image pyramid X → X1, X2, . . . , Xs

3: A0 = {}
4: for Xi ∈ X1, X2, . . . Xs do
5: A0 = A0 ∪ assignments from responses F (Xi;w)
6: end for
7: find A = NMS(A0)
8: find A′ using A0 and Agt

9: for Xi ∈ X1, X2, . . . Xs do

10: find gradient at scale i: gi = ∂L(A,A′)
∂F (Xi;w)

∂F (Xi;w)
∂w

11: end for
12: w ← w + η

∑
i gi

6.5 Experiments

We apply our model to the PASCAL VOC 2007 and VOC 2011/2012 object detection

tasks [12]. Table Table 6.1 shows how each component in our system improves perfor-

mance on the PASCAL 2007 dataset. Our baseline implementation of HoG DPM with

bootstrap training achieves 30.7 mAP. Switching HoG for a fixed pretrained ConvNet

results in a large 32% relative performance gain to 40.8 mAP, corroborating the finding

of [20] that such features greatly improve performance. On top of this, training using our

online post-NMS procedure improves substantially improves performance to 43.3 mAP,

and jointly training all components (ConvNet + DPM + NMS) further improves to 46.5

mAP. In addition, we can train different models to produce detections for each class, or

Bootstrap NMS loss NMS loss+FT
HoG-root 22.8 23.9 N/A

HoG-root+part 30.7 33.2 N/A
conv-root 38.7 40.3 43.1

conv-root+part 40.8 43.3 46.5

Table 6.1: A performance breakdown of our approach. Columns show different training
methods and loss functions. Rows show different feature extractors and DPM with/without
parts. Note: (i) conv features give a significant boost; (ii) our new NMS loss consistently improves
performance, irrespective of features/model used and (iii) fine-tuning (FT) of the entire model
gives further gains.

train all classes at once using a single model with shared ConvNet feature extractor (but

different DPM components). Training all classes together further boosts performance to

74

46.9% mAP. Note that this allows the post-NMS loss to account for objects of different

classes as well as locations and views within classes, and also makes inference faster due

to the shared features. We call this model “conv-dpm+FT-all”, and the separate-class

set of models “conv-dpm+FT”.

Comparisons with other systems are shown in Tables Table 6.2 (VOC 2007) and Table 6.3

(VOC 2011/2012). For VOC 2007 (Table 6.2), our results are very competitive, beating

all other methods except the latest version of R-CNN trained on fc7 (“R-CNN(v4)FT

fc7”). Notably, we outperform the DP-DPM method (45.2% vs. our 46.9%), due to

our integrated joint training and online NMS loss. In addition, our final model achieves

comparible performance to R-CNN [19] with a similar feature extractor using pool5 fea-

tures (46.9% vs. 47.3%). Recent version of R-CNN achieve a better performance 54.2%

using a more complex network which includes fully connected layers (fc7); extending

our model to use deeper networks may also provide similar gains from better feature

representations.

Table 6.3 shows our system performance on VOC2011. Here our system outperforms

comparison methods, and in particular DP-DPM, achieving 43.7% mAP versus 29.6%

for HoG-DPM [15] and 41.6% for DP-DPM [20].

Finally, we provide examples of detections from our model in Figures Figure 6.9, Fig-

ure 6.10 and Figure 6.11. Detection results are either show in green or red with ground

truth bounding box in blue. Figure Figure 6.11 illustrates training with our new loss

function helps model fix problem for both inter-class and intra-class NMS. Our loss al-

lows the larger view of the train to be selected in (a), rather than the more limited

view that appears in more images. However, the gains are not limited to selecting larger

views: In (c), we see a cat correctly selected at a smaller scale. Finally, there are also

examples of inter-class correction in (f), eg“train” being selected over “bus”.

Figure Figure 6.9 shows the effect of using a DPM with parts over just the root-only

model. Figures Figure 6.10 shows correct and incorrect detection examples.

75

V
O

C
2
00

7
ae

ro
b
ik

e
b
ir

d
b

oa
t

b
ot

l
b
u

s
ca

r
ca

t
ch

ai
r

co
w

ta
b

le
d
og

h
o
rs

e
m

b
ik

e
p

er
s

p
la

n
t

sh
ee

p
so

fa
tr

ai
n

tv
m

A
P

D
et

ec
to

rN
et

[6
5]

29
.2

3
5.

2
19

.4
16

.7
3.

7
53

.2
50

.2
2
7.

2
1
0.

2
34

.8
30

.2
2
8.

2
46

.6
4
1.

7
26

.2
10

.3
32

.8
26

.8
39

.8
4
7.

0
3
0
.5

H
oG

-d
p
m

(v
5
)

[1
5]

33
.2

6
0.

3
10

.2
16

.1
27

.3
54

.3
58

.2
2
3.

0
20

.0
24

.1
26

.7
12

.7
58

.1
48

.2
43

.2
12

.0
21

.1
36

.1
46

.0
43

.5
3
3
.7

H
S
C

-d
p
m

[5
3]

32
.2

5
8.

3
11

.5
16

.3
30

.6
49

.9
54

.8
2
3.

5
21

.5
27

.7
34

.0
13

.7
58

.1
51

.6
39

.9
12

.4
23

.5
34

.4
47

.4
45

.2
3
4
.3

R
eg

io
n
le

ts
[7

1]
54

.2
5
2.

0
20

.3
24

.0
20

.1
55

.5
68

.7
4
2.

6
19

.2
44

.2
49

.1
26

.6
57

.0
54

.5
43

.4
16

.4
36

.6
37

.7
59

.4
52

.3
4
1
.7

D
P

-D
P

M
[2

0]
44

.6
6
5.

3
32

.7
24

.7
35

.1
54

.3
56

.5
4
0.

4
26

.3
49

.4
43

.2
41

.0
61

.0
55

.7
5
3
.7

25
.5

47
.0

39
.8

47
.9

5
9
.2

4
5
.2

R
-C

N
N

[1
9]
f
c 7

56
.1

5
8.

8
34

.4
29

.6
22

.6
50

.4
58

.0
5
2.

5
18

.3
40

.1
41

.3
4
6
.8

49
.5

53
.5

39
.7

23
.0

46
.4

36
.4

50
.8

59
.0

4
3
.4

R
-C

N
N

(v
1)

F
T
p
oo
l 5

55
.6

5
7.

5
31

.5
23

.1
23

.2
46

.3
59

.0
4
9.

2
16

.5
43

.1
37

.8
39

.7
51

.5
55

.4
40

.4
23

.9
46

.3
37

.9
49

.7
54

.1
4
2
.1

R
-C

N
N

(v
4)

F
T
p
oo
l 5

58
.2

6
3.

3
3
7
.9

27
.6

26
.1

54
.1

6
6
.9

5
1
.4

2
6
.7

5
5
.5

43
.4

4
3.

1
5
7.

7
5
9.

0
4
5.

8
2
8
.1

5
0
.8

40
.6

53
.1

5
6.

4
4
7
.3

R
-C

N
N

(v
1)

F
T
f
c 7

60
.3

6
2.

5
41

.4
37

.9
29

.0
52

.6
61

.6
5
6.

3
24

.9
52

.3
41

.9
48

.1
54

.3
57

.0
45

.0
26

.9
51

.8
38

.1
56

.6
62

.2
4
8
.0

R
-C

N
N

(v
4)

F
T
f
c 7

6
4
.2

6
9
.7

5
0
.0

4
1
.9

32
.0

6
2
.6

7
1
.0

6
0
.7

3
2
.7

5
8
.5

46
.5

5
6
.1

60
.6

6
6
.8

5
4
.2

3
1
.5

5
2
.8

4
8
.9

5
7
.9

6
4
.7

5
4
.2

H
oG

29
.3

5
5.

5
9.

3
13

.3
25

.2
43

.1
53

20
.4

18
.5

25
.1

23
.3

10
.3

55
.4

44
.2

40
.8

1
0.

5
1
9.

8
3
4.

3
4
3.

3
39

.5
3
0
.7

H
oG

+
32

.8
5
8.

5
10

.3
16

.0
27

.1
46

.1
56

.9
2
1.

9
20

.6
27

.2
26

.4
13

.0
57

.8
47

.5
44

.2
11

.0
22

.7
36

.5
45

.8
42

.1
3
3
.2

co
n
v
-r

o
o
t

38
.1

6
0.

9
21

.9
17

.8
29

.3
51

.4
58

.5
2
6.

7
16

.5
31

.1
33

.2
24

.2
65

.0
58

.0
44

.4
21

.7
35

.4
36

.8
49

.5
54

.1
3
8
.7

co
n
v
-d

p
m

45
.3

6
4.

5
21

.1
21

.0
34

.2
54

.4
59

.0
3
2.

6
20

.0
31

.0
34

.5
25

.3
63

.8
60

.1
45

.0
23

.2
36

.0
38

.4
51

.5
56

.2
4
0
.8

co
n
v
-d

p
m

+
48

.9
6
7.

3
25

.3
25

.1
35

.7
58

.3
60

.1
3
5.

3
22

.7
36

.4
37

.1
26

.9
64

.9
62

.0
47

.0
24

.1
37

.5
40

.2
54

.1
57

.0
4
3
.3

co
n
v
-d

p
m

+
F

T
5
0
.9

6
8.

3
31

.9
28

.2
38

.1
6
1.

0
61

.3
39

.8
25

.4
46

.5
4
7.

3
29

.6
67

.5
6
3
.4

46
.1

25
.2

39
.1

45
.4

57
.0

57
.9

4
6
.5

co
n
v
-d

p
m

+
F

T
-a

ll
49

.3
6
9
.5

31
.9

2
8
.7

4
0
.4

6
1
.5

61
.5

41
.5

25
.5

44
.5

4
7
.8

32
.0

6
7
.5

6
1.

8
46

.7
25

.9
40

.5
4
6
.0

5
7
.1

5
8.

2
4
6
.9

T
ab

le
6.

2:
M

ea
n

A
P

on
P

A
S

C
A

L
V

O
C

20
07

V
O

C
20

11
/2

01
2

ae
ro

b
ik

e
b
ir

d
b

oa
t

b
ot

l
b
u

s
ca

r
ca

t
ch

a
ir

co
w

ta
b

le
d

og
h
or

se
m

b
ik

e
p

er
s

p
la

n
t

sh
ee

p
so

fa
tr

ai
n

tv
m

A
P

H
oG

-D
P

M
[1

5]
45

.6
49

.0
11

.0
1
1.

6
27

.2
50

.5
43

.1
2
3.

6
1
7.

2
2
3.

2
10

.7
20

.5
42

.5
44

.5
41

.3
8.

7
29

.0
18

.7
40

.0
34

.5
29

.6
co

n
v
-r

o
ot

56
.0

45
.4

20
.6

1
2.

7
29

.5
49

.2
38

.6
3
8.

1
1
6.

4
2
8.

2
22

.9
28

.8
48

.3
52

.1
47

.7
1
7.

0
39

.1
29

.6
4
1.

2
48

.6
35

.5
co

n
v
-d

p
m

56
.9

53
.2

26
.6

1
7.

6
29

.9
51

.4
42

.5
4
2.

4
1
6.

5
3
1.

6
25

.0
37

.7
52

.7
56

.7
49

.9
1
6.

5
41

.0
30

.9
4
4.

4
49

.7
38

.4
co

n
v
-d

p
m

+
59

.6
56

.6
29

.8
20

31
.1

55
.8

42
.8

43
.3

18
.3

35
.6

2
8.

5
39

.7
5
6.

3
5
9.

7
51

.1
19

.6
42

.1
33

.1
49

.1
50

.3
41

.1
co

n
v
-d

p
m

+
F

T
-a

ll
63

.3
60

.2
33

.4
2
4.

4
33

.6
60

44
.7

49
.3

19
.4

36
.6

3
0.

2
40

.7
57

.7
61

.4
52

.3
21

.2
44

.4
37

.9
51

.1
52

.2
4
3
.7

T
ab

le
6.

3:
M

ea
n

A
P

on
P

A
S

C
A

L
V

O
C

20
11

76

Figure 6.9: Examples of detections using root filter only (left half of each example; red)
and the DPM with both root and part filters (right halves; green+orange).

6.6 Discussion

We have described an object detection system that integrates a Convolutional Network,

Deformable Parts model and NMS loss in an end-to-end fashion. This fuses together

aspects from both structured learning and deep learning: object structures are modeled

by a composition of parts and views, while discriminative features are leveraged for

appearance comparisons. Our evaluations show that our model achieves competitive

performance on PASCAL VOC 2007 and 2011 datasets, and achieves substantial gains

from integrating both ConvNet features as well as NMS, and training all parts jointly.

77

,

Figure 6.10: Examples of correct (green) and incorrect (red) detections found by our
model.

78

(b)

(c)

(f)

(d)

(a)

(e)

Figure 6.11: Examples of model with (green) and without (red) NMS loss (parts location
are ommited)

79

Chapter 7

Conclusion

Structured models are good at capturing high-level information into model and neural

networks are effectively learning good feature representation. Throughout this thesis,

we have explored hybrid models combine structured model and neural network for both

image classification and object detection.

In Chapter 3, we build hybrid model that combines neural networks with topical model

for image classification and shown the advantages of such end-to-end trained hybrid

model over individual components. In Chapter 4, we proposed neural network regu-

larization technique called DropConnect to overcome overfitting problem in training.

Both theoretical and empirical results clearly shown the advantages of DropConnect.

In Chapter 5, we build a detection system based on deformable part model with hand-

craft features. An iterative non-maximal suppression algorithm also proposed for post-

processing of detector result. To overcome the disadvantages of handcraft features, we

build a hybrid model that combines ConvNets and part-based model for object detec-

tion (In Chapter 6). This system also integrates post-processing step which was treated

as a separate step before. A single network represents object contains root and parts

with ConvNet feature extractor plus end-to-end training achieves good performance.

Extensive experiment results shown performance again of such integration.

80

Bibliography

[1] R. P. Adams, H. M. Wallach, and Z. Ghahramani. Learning the structure of deep

sparse graphical models. Journal of Machine Learning Research - Proceedings Track,

9:1–8, 2010.

[2] R. Baur, A. Efros, and M. Hebert. Statistics of 3d object locations in images.

Technical report, 2008.

[3] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, U. D. Montral, and M. Qubec.

Greedy layer-wise training of deep networks. In In NIPS. MIT Press, 2007.

[4] M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured

output regression. In ECCV, 2008.

[5] D. Blei and J. McAuliffe. Supervised topic models. In NIPS, 2007.

[6] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of Machine

Learning Research, 3:993–1022, 2003.

[7] Y. Chen, L. Zhu, and A. L. Yuille. Active mask hierarchies for object detection.

In ECCV 2010, volume 6315 of Lecture Notes in Computer Science, pages 43–56.

Springer, 2010.

[8] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks

for image classification. In Proceedings of the 2012 IEEE Conference on Computer

81

Vision and Pattern Recognition (CVPR), CVPR ’12, pages 3642–3649, Washington,

DC, USA, 2012. IEEE Computer Society.

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In

CVPR, 2005.

[10] C. Dance, J. Willamowski, L. Fan, C. Bray, and G. Csurka. Visual categorization

with bags of keypoints. In ECCV International Workshop on Statistical Learning

in Computer Vision., Prague, 2004.

[11] C. Desai, D. Ramanan, and C. Fowlkes. Discriminative models for multi-class object

layout. International Journal of Computer Vision, 2011.

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-

man. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.

http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

[13] L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian approach to unsupervised one-shot

learning of object categories. In Proceedings of the 9th International Conference on

Computer Vision, Nice, France, pages 1134–1141, Oct. 2003.

[14] L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene

categories. CVPR, pages 524–531, 2005.

[15] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detec-

tion with discriminatively trained part-based models. IEEE Trans. Pattern Anal.

Mach. Intell., 32(9):1627–1645, Sept. 2010.

[16] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object de-

tection with discriminatively trained part based models. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 32(9):1627–1645, 2010.

[17] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised

scale-invariant learning. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, volume 2, pages 264–271, June 2003.

82

[18] C. Galleguillos, A. Rabinovich, and S. Belongie. Object categorization using co-

occurrence, location and appearance. In Computer Vision and Pattern Recognition,

2008. CVPR 2008. IEEE Conference on, pages 1–8, June 2008.

[19] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for

accurate object detection and semantic segmentation. CoRR, abs/1311.2524, 2013.

[20] R. B. Girshick, F. N. Iandola, T. Darrell, and J. Malik. Deformable part models

are convolutional neural networks. CoRR, abs/1409.5403, 2014.

[21] I. J. Goodfellow, Q. V. Le, A. M. Saxe, H. Lee, and A. Y. Ng. Measuring invariances

in deep networks, 2009.

[22] X. He, R. Zemel, and M. Carreira-Perpindn. Multiscale conditional random fields for

image labeling. In Computer Vision and Pattern Recognition, 2004. CVPR 2004.

Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages

II–695–II–702 Vol.2, June 2004.

[23] G. E. Hinton and S. Osindero. A fast learning algorithm for deep belief nets. Neural

Computation, 18:2006, 2006.

[24] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507, July 2006.

[25] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Improving neural networks by preventing co-adaptation of feature detectors. CoRR,

abs/1207.0580, 2012.

[26] T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. In

Machine Learning, page 2001, 2001.

[27] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in perspective. Int. J.

Comput. Vision, 80(1):3–15, Oct. 2008.

83

[28] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu, and Y. LeCun.

Learning convolutional feature hierachies for visual recognition. In Advances in

Neural Information Processing Systems (NIPS 2010), 2010.

[29] K. Kavukcuoglu, P. Sermanet, Y. lan Boureau, K. Gregor, M. Mathieu, and Y. Le-

cun. Learning convolutional feature hierarchies for visual recognition, 2010.

[30] V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding

the generalization error of combined classifiers. Annals of Statistics, 30:2002, 2000.

[31] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Master’s

thesis, University of Toront, 2009.

[32] A. Krizhevsky. cuda-convnet. http://code.google.com/p/cuda-convnet/, 2012.

[33] A. Krizhevsky. cuda-convnet. http://code.google.com/p/cuda-convnet/, 2012.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. pages 1106–1114, 2012.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In P. Bartlett, F. Pereira, C. Burges, L. Bottou,

and K. Weinberger, editors, Advances in Neural Information Processing Systems

25, pages 1106–1114. 2012.

[36] S. Kumar and M. Hebert. A hierarchical field framework for unified context-based

classification. In IEEE, editor, Tenth IEEE International Conference on Computer

Vision (ICCV ’05), volume 2, pages 1284 – 1291, October 2005.

[37] S. Lacoste-Julien, F. Sha, and M. Jordan. Disclda: Discriminative learning for

dimensionality reduction and classification. In NIPS, 2009.

[38] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In CVPR, pages 2169–2178, 2006.

84

http://code.google.com/p/cuda-convnet/
http://code.google.com/p/cuda-convnet/

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278 –2324, nov 1998.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278 –2324, nov 1998.

[41] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recogni-

tion with invariance to pose and lighting. In Proceedings of the 2004 IEEE computer

society conference on Computer vision and pattern recognition, CVPR’04, pages 97–

104, Washington, DC, USA, 2004. IEEE Computer Society.

[42] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Springer, New York,

1991.

[43] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks

for scalable unsupervised learning of hierarchical representations. In ICML, pages

609–616, 2009.

[44] D. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

[45] D. J. C. Mackay. Probable networks and plausible predictions - a review of prac-

tical bayesian methods for supervised neural networks. In Bayesian methods for

backpropagation networks. Springer, 1995.

[46] K. Murphy, A. Torralba, and W. T. Freeman. Using the forest to see the trees: A

graphical model relating features, objects, and scenes, 2003.

[47] V. Nair and G. E. Hinton. Rectified Linear Units Improve Restricted Boltzmann

Machines. In ICML, 2010.

[48] Y. Netzer, T. Wang, C. A., A. Bissacco, B. Wu, and A. Y. Ng. Reading digits

in natural images with unsupervised feature learning. In NIPS Workshop on Deep

Learning and Unsupervised Feature Learning 2011, 2011.

85

[49] J. Ngiam, Z. Chen, P. W. Koh, and A. Ng. Learning deep energy models. In

L. Getoor and T. Scheffer, editors, Proceedings of the 28th International Conference

on Machine Learning (ICML-11), ICML ’11, pages 1105–1112, New York, NY, USA,

June 2011. ACM.

[50] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and rotation

invariant texture classification with local binary patterns. IEEE Trans. Pattern

Anal. Mach. Intell., 24(7):971–987, July 2002.

[51] D. Parikh and C. L. Zitnick. Human-debugging of machines. In In NIPS WCSSWC,

2011.

[52] M. Ranzato and G. Hinton. Modeling pixel means and covariances using factorized

third-order Boltzmann Machines. In CVPR, 2010.

[53] X. Ren and D. Ramanan. Histograms of sparse codes for object detection. 2013

IEEE Conference on Computer Vision and Pattern Recognition, 0:3246–3253, 2013.

[54] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The author-topic model for

authors and documents. In Uncertainty in Artificial Intelligence 20, pages 487–494,

2004.

[55] R. Salakhutdinov and G. E. Hinton. Using deep belief nets to learn covariance

kernels for gaussian processes. In NIPS, 2008.

[56] R. Salakhutdinov, J. Tenenbaum, and A. Torralba. Learning to learn with compound

hd models. In NIPS, 2011.

[57] C. Schmid. Beyond bags of features: Spatial pyramid matching for recognizing

natural scene categories. In In CVPR, pages 2169–2178, 2006.

[58] P. Schnitzspan, M. Fritz, S. Roth, and B. Schiele. Discriminative structure learning

of hierarchical representations for object detection. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2238–2245, June 2009.

86

[59] P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural networks applied

to house numbers digit classification. In Pattern Recognition (ICPR), 2012 21st

International Conference on, pages 3288–3291, Nov 2012.

[60] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Over-

feat: Integrated recognition, localization and detection using convolutional net-

works. CoRR, abs/1312.6229, 2013.

[61] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object

matching in videos. In Proceedings of the International Conference on Computer

Vision, volume 2, pages 1470–1477, Oct. 2003.

[62] J. Snoek, H. Larochelle, and R. A. Adams. Practical bayesian optimization of

machine learning algorithms. In Neural Information Processing Systems, 2012.

[63] E. Sudderth and M. Jordan. Shared segmentation of natural scenes using depen-

dence Pitman-Yor processes. In Proc. Neural Information Processing Systems, 2008.

[64] E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Describing visual scenes

using transformed objects and parts. Intl. Journal of Computer Vision, 77, March

2008.

[65] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection.

NIPS, 2013.

[66] J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional

network and a graphical model for human pose estimation. CoRR, abs/1406.2984,

2014.

[67] A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object

detection using boosted random fields. In L. Saul, Y. Weiss, and L. Bottou, edi-

tors, Advances in Neural Information Processing Systems 17, pages 1401–1408. MIT

Press, 2005.

87

[68] J. Uijlings, K. Sande, T. Gevers, and A. Smeulders. Selective search for object

recognition. International Journal of Computer Vision, 104(2):154–171, 2013.

[69] S. Walk, N. Majer, K. Schindler, and B. Schiele. New features and insights for

pedestrian detection. In Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on, pages 1030–1037, June 2010.

[70] L. Wan, M. Zeiler, S. Zhang, Y. Lecun, and R. Fergus. Regularization of neural

networks using dropconnect. In In ICML, 2013.

[71] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection.

IEEE 14th International Conf. on Computer Vision, 2013.

[72] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization by weight-

elimination with application to forecasting. In NIPS, 1991.

[73] Y. N. Wu, Z. Si, H. Gong, and S. chun Zhu. Active basis for modeling, learning and

recognizing deformable templates, 2008.

[74] A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Comput.,

15(4):915–936, Apr. 2003.

[75] M. D. Zeiler and R. Fergus. Stochastic pooling for regualization of deep convolu-

tional neural networks. In ICLR, 2013.

[76] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks.

CoRR, abs/1311.2901, 2013.

[77] L. Zhu, Y. Chen, A. Torralba, W. Freeman, and A. Yuille. Part and appearance

sharing: Recursive compositional models for multi-view. In Computer Vision and

Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1919–1926, June

2010.

[78] L. L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hierarchical structural

learning for object detection. 2010 IEEE Conference on Computer Vision and

88

Pattern Recognition, 0:1062–1069, 2010.

89

	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions and organization of the thesis

	Literature survey
	Object Recognition with Handcrafted feature
	Object Detection with Handcrafted feature
	Feature Learning
	Object Detection with Neural Network
	Training Deep Neural Network

	A Hybrid Neural Network-Latent Topic Model
	Introduction
	The hybrid model
	Neural Network
	Hierarchical topic model
	The hybrid model: coupling the neural network and topic model

	Learning the hybrid model
	Brief description
	Pre-training of neural network
	Pre-training of the hierarchical topic Model
	Joint optimization by gradient descent
	Unifying probabilistic hierarchical model and neural network: back-propagation
	Inference of the hybrid model: feed-forward

	Toy experiments
	Vision experiments
	Dataset and image features
	Scene modeling: topic model, neural network and the hybrid
	Results

	Discussion

	Regularization of Neural Networks using DropConnect
	Introduction
	Motivation
	Dropout
	DropConnect

	Model Description
	Training
	Inference

	Model Generalization Bound
	Implementation Details
	Experiments
	MNIST
	CIFAR-10
	SVHN
	NORB

	Discussion
	Theoretical Analysis of DropConnet Network
	Preliminaries
	Bound Derivation

	Detection Model for PASCAL Challenge
	Introduction
	Model Description
	Non-Maximum Suppression
	Experiment Results and Discussion

	 End-to-End Integration of a ConvNet, Deformable Parts Model and Non-Maximum Suppression
	Introduction
	Model Architecture
	Convolutional Network
	Deformable Parts Model
	Bounding Box Prediction
	Non-Maximal Suppression (NMS)

	Final Prediction Loss
	Motivation
	Loss Function
	Interpretation and Effect on NMS Ordering
	Soft Positive Assignments

	Training
	Experiments
	Discussion

	Conclusion
	Bibliography

