
Enhanced Security Models for Network

Protocols

by

Shabsi Walfish

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

January 2008

Yevgeniy Dodis

�ד! בס!

To my family, with love.

iii

Acknowledgments

First and foremost, I thank my advisor Yevgeniy Dodis, who contributed to both this work, and

my personal development as a researcher, in innumerable ways. It was Yevgeniy who first drew

me into the study of cryptography with his irrepressible (and apparently contagious) enthusiasm

for the subject. Throughout my time in the graduate program, brainstorming together with

Yevgeniy was undoubtedly my favorite research activity. I greatly benefited from his incredible

talent for seeing the relationships between concepts and the way they fit into the “big picture”

of cryptography. He is a gifted teacher, and I feel most fortunate and honored to be his student.

I also thank several other contributors to this work, with whom I had the privilege to collab-

orate: Ran Canetti, Rafael Pass, and Victor Shoup. Ran closely guided the development of the

new security models presented in Chapter 1, and taught me a great deal about the philosophy of

security models (and the proper use of nomenclature). Rafael first encouraged me to study the

problem of deniability, and I credit him with providing some of the early insights leading to the

development of the deniable protocols presented in Chapter 4. I owe particular thanks to Victor

for his significant contributions to the efficient protocols of Chapter 5, and, more generally, for

teaching me by example how to be more precise in my reasoning. Victor is truly a world-class

scientist, and I learned many important lessons from his incisive observations about probabil-

ity theory, number theory, and formal proof techniques. Additionally, I thank Jonathan Katz

and Adam Smith for their contributions to the impossibility results for deniable authentication

appearing in Chapter 3. There are also many other researchers whom I thank for their vari-

ous insightful comments and suggestions regarding this work, including Johan H̊astad, Yehuda

Lindell, Philip MacKenzie, and Silvio Micali.

My years in graduate school were greatly enhanced by interactions with my fellow students

at New York University, including Carl Bosley, Nelly Fazio, Michael J. Freedman, Kristiyan

Haralambiev, Antonio Nicolosi, Prashant Puniya, and Daniel Wichs. I thank them all for being

encouraging and helpful compatriots.

iv

Acknowledgments

Above all, I am deeply thankful to my family and friends for their support, understanding, and

encouragement. I am especially grateful for the enduring support and assistance of my wonderful

parents, Marvin and Sheila, who taught me the most important things in life. I am also very

appreciative of my daughter, Tziporah, who (mercifully) slept quietly through the night whenever

I was up late working, and always greeted me with a smile in the morning. Most importantly, I

thank my beloved wife Meredith for all of her love, patience, and understanding as I completed

the writing of this thesis.

v

Abstract

Modeling security for protocols running in the complex network environment of the Internet

can be a daunting task. Ideally, a security model for the Internet should provide the following

guarantee: a protocol that “securely” implements a particular task specification will retain all

the same security properties as the specification itself, even when an arbitrary set of protocols

runs concurrently on the same network. This guarantee must hold even when other protocols are

maliciously designed to interact badly with the analyzed protocol, and even when the analyzed

protocol is composed with other protocols. The popular Universal Composability (UC) security

framework aims to provide this guarantee.

Unfortunately, such strong security guarantees come with a price: they are impossible to

achieve without the use of some trusted setup. Typically, this trusted setup is global in nature,

and takes the form of a Public Key Infrastructure (PKI) and/or a Common Reference String

(CRS). However, the current approach to modeling security in the presence of such setups falls

short of providing expected security guarantees. A quintessential example of this phenomenon

is the deniability concern: there exist natural protocols that meet the strongest known security

notions (including UC) while failing to provide the same deniability guarantees that their task

specifications imply they should provide.

We introduce the Generalized Universal Composability (GUC) framework to extend the UC

security notion and enable the re-establishment of its original intuitive security guarantees even

for protocols that use global trusted setups. In particular, GUC enables us to guarantee that

secure protocols will provide the same level of deniability as the task specification they implement.

To demonstrate the usefulness of the GUC framework, we first apply it to the analysis and

construction of deniable authentication protocols. Building upon such deniable authentication

protocols, we then prove a general feasibility result showing how to construct protocols satisfying

our security notion for a large class of two-party and multi-party tasks (assuming the availability

of some reasonable trusted setup). Finally, we highlight the practical applicability of GUC

by constructing efficient protocols that securely instantiate two common cryptographic tasks:

commitments and zero-knowledge proofs.

vi

Table of Contents

Dedication iii

Acknowledgments iv

Abstract vi

List of Figures x

Introduction 1

1 The Generalized Universal Composability (GUC) Framework 12

1.1 Overview of Generalized UC Security . 12

1.2 Details of the Generalized UC Framework . 19

2 Preliminaries and Tools 35

2.1 Adversarial Models . 35

2.1.1 Corruption Models . 35

2.1.2 Security with Trusted Parties . 37

2.2 Global Setup Models . 38

2.2.1 Common Reference String (CRS) Model 39

2.2.2 Augmented Common Reference String (ACRS) Model 39

2.2.3 Public Key Infrastructure (PKI) Model 42

2.2.4 The Random Oracle (RO) Model . 47

2.3 Honest Verifier Zero-Knowledge . 48

2.3.1 Σ-Protocols . 49

2.3.2 Ω-Protocols . 53

2.3.3 Constructing Augmented Σ-protocols from One Way Functions 57

2.3.4 Constructing Ω-protocols from Σ-protocols 57

2.4 Identity-Based Trapdoor Commitments . 58

2.4.1 Constructing Identity-Based Trapdoor Commitments 61

vii

TABLE OF CONTENTS

2.5 Specialized Encryption Schemes . 65

2.5.1 Dual Receiver Encryption (DRE) . 65

2.5.2 Non-Committing Encryption (NCE) . 69

2.5.3 Dense PRC Secure Encryption . 71

3 Deniability and Deniable Authentication 74

3.1 Deniability and Full Simulatability . 74

3.2 Deniable Authentication . 78

3.2.1 Attacks on Deniability . 81

3.2.2 Impossibility of Deniable Authentication in the PKI Model 89

3.2.3 Gap Between Static and Adaptive Corruptions 101

3.2.4 Equivalence of Fauth to Shared Key Model 104

3.3 A Mostly Deniable Key Exchange Protocol . 110

4 A Feasibility Result for Realizing General Functionalities 121

4.1 Deniable Realizations of General Cryptographic Tasks 121

4.2 Insufficiency of the Global CRS Model . 123

4.3 Realizing Fully Simulatable General Computation 128

4.3.1 Global Setup with Minimal Interaction: The Augmented CRS Model . . . 129

4.3.2 GUC-Realizing Fcom Using the ACRS Global Setup 131

4.3.3 High-level Description of Protocol UAIBC 133

4.3.4 Details and Design of Protocol UAIBC . 135

4.3.5 Security Proof for Protocol UAIBC . 139

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs 152

5.1 A Lower Bound for Round Complexity . 155

5.2 Efficient GUC Zero-Knowledge in the ACRS Model 161

5.3 Efficient GUC Commitments in the ACRS Model 170

5.4 Efficient Number-theoretic Instantiations . 172

5.4.1 An Efficient IBTC Supporting an Ω-protocol 174

5.4.2 Proof of Knowledge of a Waters Signature 175

viii

TABLE OF CONTENTS

5.4.3 An Efficient Ω-protocol for Proving Knowledge of a Representation 178

5.5 Reducing Round Complexity with Random Oracles 186

Conclusion 190

Bibliography 195

ix

List of Figures

1.1 The Basic UC Experiment in the G-hybrid Model 15

1.2 Comparison of Security Models . 20

2.1 Shared Functionality Ḡcrs . 40

2.2 Shared Functionality Ḡacrs . 41

2.3 Shared Functionality ḠΦ
krk . 44

2.4 Shared Functionality Ḡro . 48

3.1 Functionality Fauth . 78

3.2 Functionality Fid . 78

3.3 Functionality Fke . 79

3.4 Protocol Φmac for Realizing Fauth . 107

3.5 Functionality F IncProc
keia . 112

3.6 A Graphical Illustration of Protocol Φdre for Realizing Fkeia 115

3.7 Protocol Φdre for Realizing Fkeia . 116

4.1 Functionality Fcom . 125

4.2 A Graphical Illustration of Protocol UAIBC for Realizing Fcom 135

4.3 Protocol UAIBC . 136

5.1 Functionality FRzk . 159

5.2 Protocol DOZK . 162

5.3 Protocol DOC . 171

x

Introduction

The Evolution of Security Models

Prior to Claude Shannon’s seminal paper [81] in 1949, which introduced the concept of provably

secure cryptography, information security was little more than a continual arms race between

the designers of security mechanisms and those who sought to circumvent security. Increasingly

complex security schemes were constantly being designed and redesigned to combat novel attacks

of increasing sophistication. Such an approach to security is ultimately untenable – when a new

attack is discovered, it may remain possible to exploit the vulnerability of existing systems for

extended periods of time while the system designers scramble to develop and deploy a new

system capable of thwarting the attack. Shannon’s notion of provable security represented the

first attempt to escape from this constant cycle of attack discovery and system redesign – a

provably secure design will always remain secure, irrespective of new techniques that may be

discovered. However, as Shannon’s work immediately illustrated, designing practical security

systems that are provably secure against any conceivable attack is, simply, an impossible task.

Rather than abandon the notion of provable security altogether, modern cryptographers have

leveraged a fundamental observation: “real world” adversaries are typically subject to practical

limitations (for example, due to the basic laws of physics), so the class of attacks that a se-

cure system actually needs to withstand may be somewhat restricted. Therefore, in recent years

cryptographers have focused much of their efforts on defining security models that reflect various

(assumed) limitations on attackers’ capabilities. The most basic and successful “modern” secu-

rity model was implicitly introduced by Diffie and Hellman’s ground-breaking paper on public

key cryptography [40] in 1976, and was later established formally in [54]. The adversarial model

of [40] was the first to employ the notion of computationally intractable problems – problems

that are assumed to be too difficult to solve in any reasonable amount of time with modern

computing resources (even though their solutions do exist). Such computational intractability

can be leveraged for the purposes of designing secure systems by first assuming some partic-

ular practical limit on the computational resources available to an attacker. This approach is

commonly referred to as “computational security”, since security is only guaranteed against com-

1

putationally bounded adversaries (in contrast to Shannon’s perfectly impenetrable “information

theoretic” security model). Thus, rather than attempting to construct systems secure against all

possible attacks, for the purposes of computational security it is sufficient to construct systems

secure against all “Probabilistic Polynomial Time” (PPT) bounded adversaries. By realistically

restricting the computational abilities of the adversary in this fashion, [40] demonstrated the

possibility of much more practical provably secure systems.

While the notion of computational security allows cryptographers to avoid the impractical

requirements imposed by information theoretic security, it also comes with drawbacks. For in-

stance, we do not know of any useful1 problems which can be proven to be computationally

intractable, and, furthermore, it seems highly unlikely that such proofs can be found.2 Thus,

we are forced to rely on specific intractability assumptions when implementing secure systems in

this model. The extent to which this is a drawback largely depends on the supporting evidence

behind the assumptions being made, and, therefore, an attempt is made to rely only on the

most reasonable and thoroughly vetted assumptions. Another difficulty arises when consider-

ing issues of efficiency in implementations. Choosing specific parameters for the “size” of the

“intractable” problem (upon which the efficiency of the cryptosystem depends) also fixes the

quantity of computational resources required for an adversary to solve it. Since it is difficult

to know precisely what computational resources will become available to the attacker over the

course of time, it is possible (or even likely) that solving a specific instance of a problem which

seems to be computationally intractable at the present time will become feasible in the (near)

future. Finally, particular technological breakthroughs (such as quantum computers) could po-

tentially violate intractability assumptions (most notably including the “hardness of factoring

assumption”), rendering all systems relying on these assumptions insecure.

Thus, modern security models represent a tradeoff between “heuristic” design principles (where

the cryptosystem designer merely attempts to thwart all known attacks) and truly provable secu-

rity. This tradeoff allows us to implement practical systems that are provably secure, but at the

expense of making some specific assumptions about our adversary which may not always hold

1In this context, a functional problem may be considered “useful” if its solution can be checked
efficiently.

2Such a proof would conclusively show that “P 6= NP”, which is widely assumed to be
essentially unprovable.

2

Introduction

true. (Still, such assumptions represent a significant improvement over the heuristic approach,

which implicitly assumes that the attacker will not invent any new method of attack.) Ulti-

mately, our goal is to make our assumptions about the limitations of the adversary as realistic as

possible. Indeed, it is important to focus on realism when designing any security model. If the

security requirements of the model are too strong (such as the information theoretic modeling

of Shannon), it fails to admit many useful schemes that have practical security guarantees. On

the other hand, if the requirements of the model are too weak, it might admit some schemes

which are insecure in practice. Bearing this in mind, we are in a position to better appreciate the

formative influences at work and proceed to discuss the next steps in the evolution of security

models.

Following the advent of computational security notions, the issue of designing interactive

protocols to solve general security and privacy related problems drove the development of new

security models for networked environments, such as local area networks and the Internet. To

facilitate the process of modeling security requirements in network environments, these newer

models are often built around a security “framework” that formally models certain common

features of a particular communication network environment. These frameworks help to avoid

overly-complicated security definitions for simple tasks by separating the modeling of network

interactions from the modeling of the task itself. Furthermore, since many cryptographic tasks

are applicable to multiple varieties of network environments, it makes intuitive sense to separate

the security definition for the task from the security model for the network.

The most basic “network security framework” models a single dedicated channel between

participating parties, with only one instance of the protocol running over the channel. This

model was used implicitly in early works on cryptographic protocols, such as “zero-knowledge

proof” protocols introduced by Goldwasser et al. in [55]. Perhaps most importantly, it was shown

by Yao in [85] and Goldreich et al. in [51] that it is possible to solve virtually any multi-party

protocol problem in this model (i.e., securely compute any reasonable3 function of the parties’

inputs, without revealing any information beyond the output of the specified function) by using

special “secure protocol compilers”. Henceforth we refer to such protocol problems as general

multi-party computation problems.

3Here, “reasonable” essentially means computable in PPT.

3

Once a particular framework has been selected to model the behavior of the network itself,

we still require a means of defining security concerns specific to a given multi-party computation

problem. One highly elegant and fundamental technique for defining security of a particular

task is to employ the trusted party paradigm, first introduced in [51]. Intuitively, we will say

that a protocol securely “realizes” a given computational task if running the protocol amounts to

“emulating” an ideal protocol where all parties secretly hand their inputs to an imaginary “trusted

party” who locally computes the desired outputs and secretly hands them back to the parties.

One potential advantage of this paradigm is its strong “composability” property: if a protocol π

truly emulates a certain trusted party F , this would naturally imply that any system that makes

use of the trusted party F should, in principle, behave the same way even when replacing the

(perfectly secure) invocations of the trusted party F by invocations of the (practical) protocol π

that realizes F .

Several formalizations of the above intuitive ideas exist, e.g., [53, 69, 9, 18, 41, 76, 19, 78, 8].

These formalizations vary in their rigor, expressibility, generality and restrictiveness, as well as

security and composability guarantees. Among these, Canetti’s Universal Composability (UC)

framework [19] aims to achieve a very strong notion of composability that holds even within a

very general network “environment”. In a nutshell, the UC framework provides the following

powerful security guarantee:

A UC-secure protocol π implementing a trusted party F does not affect any activity

in the network environment differently than F does — even when there are arbitrary

protocols running concurrently with π that may be maliciously constructed.

Surely, if we can provably assert such a security guarantee for our protocols, then they are

sufficiently secure even for use in the complex environment of the Internet.

Unfortunately, as a consequence of the extremely stringent security requirements of the UC

framework, it was shown in a series of works [19, 23, 29, 66] that many important security tasks

cannot be proven secure in the “plain” UC framework. In particular, most useful two-party

protocols (such as commitment schemes, zero-knowledge proofs, etc.) cannot be proven to be

UC-secure. Indeed, the provably UC-secure protocols in [19] require that a majority of protocol

participants be honest, which is not a reasonable requirement for two-party protocols (since,

4

Introduction

for two parties, this implies that all participating parties are honest). Therefore, while the UC

framework gives us the security guarantees that we want, it would seem we have once again

arrived at an impasse akin to the sweeping impossibility results implied by Shannon’s work.

In order to circumvent this impasse and enable the construction of useful protocols that retain

strong security and composability guarantees, various enhancements and modifications to the UC

framework that enable the realization of useful two-party tasks have been proposed. Most mod-

ifications to UC are in fact relaxing the security requirements of the plain UC framework (which

explains how it once again becomes possible to realize useful functionalities). Such relaxations

can be dangerous, since they tend to admit new attacks with ramifications that must be care-

fully considered. For example, the “angel”-based security of Prabhakaran et al. [78] relaxes the

UC security model through the use of some (fictitious) “angels” that can run super-polynomial

time algorithms. Given that these “angels” can potentially break many computational secu-

rity assumptions, it is not entirely clear to what extent their introduction weakens the security

guarantees of the UC framework. Similarly, Barak et al. [8] also relax the model by allowing

super-polynomial time simulations. Alternatively, it is possible to overcome the impossibility

results by assuming an a priori bound on concurrency in the network, as in [67, 75, 74], or by

employing “timing assumptions” as was done by Kalai et al. in [62]. However, in addition to

weakening the security model, these alternative approaches seem to be inherently too impractical

for use in large networks such as the Internet (for efficiency reasons).

On the other hand, some enhancements to the UC-framework make useful two-party proto-

cols possible by additionally modeling the availability of certain real-world tools. These tools can

be used to help bolster the security of honest parties, enabling them to achieve the (previously

impossible) security goals of UC. Such tools may be useful both for overcoming the impossibil-

ities of the “plain” UC model, as well as (potentially) for improving the practical efficiency of

implementations.

For instance, in [30], Canetti et al. introduce a “Common Reference String” (CRS) – which

must be generated by trustworthy means – into the UC framework. Assuming the additional

availability of secure channels, it was shown in [30] that such a CRS can be used to realize any

reasonable two-party or multi-party computation task with full UC security. We will return to

this model shortly, but for now we note that a CRS is merely one possible example of a trusted

5

setup assumption that can be used to enable the construction of UC secure protocols for two-

party tasks. Another example of such a trusted setup tool is the key registration model of Barak

et al. [6]. Notably, both [30] and [6] took some liberties when idealizing the “real world” version

of these tools for the purposes of security modeling, as we will soon see.

Developing Realistic Enhancements

The main focus of this thesis regards the development and application of highly realistic en-

hancements for the UC framework. Each of the aforementioned previous works on enhancements

and relaxations of the UC framework introduced some unrealistic aspects into the modeling.

Such departures from the more fundamentally realistic “plain” UC model can produce a palpa-

ble weakening of the security guarantees provided by the model. While it is clearly impossible to

develop a completely realistic mathematical model of security, we will demonstrate how to make

a subtle (but important) improvement to the realism of the modeling which leads to a substantial

qualitative difference in the security guarantees it provides.

We begin our investigation of this phenomenon by pointing out a natural limitation of the

UC framework: it was designed to model situations where secure protocol sessions are “self-

contained”, and, therefore, it does not provide any mechanism from protocols to share state.

Indeed, one would normally consider it quite dangerous for a secure protocol session to either

leak state information, or import state information from other protocols. However, there is an

exception to this rule that occurs whenever protocols employ a one-time global setup. Since global

operations are generally expensive, most real-world examples of global setups – such as a Common

Reference String (CRS) setup or a Public Key Infrastructure (PKI) setup – are performed one

time only. Multiple secure protocol sessions must then re-use the one-time setup, and this means

that those secure protocols are indeed sharing state information across sessions. However, the

plain UC modeling requires that any such setup used by a particular protocol session be local

to that protocol session (i.e., the setup is invoked when the protocol session begins, and is not

reused by any other protocol sessions).

The approach taken by previous works in the UC framework to modeling of such one-time

global setups employs the Joint-state Universal Composition (JUC) theorem of Canetti and

Rabin [31]. At a high level, the JUC theorem allows multiple protocol sessions to share state

6

Introduction

by modeling them as sub-sessions within a single protocol. That is, if a protocol π makes use

of some one-time global setup G, we model it as part of a “multi-session extension” protocol Π

which parties can use to invoke multiple instances of π. Since Π is only run once (despite multiple

invocations of the sub-protocol π), it will invoke a single instance of G that will not share state

with any protocol outside of a single session of Π. Yet, this single instance of G is used by Π to

run multiple instances of the protocol π, thereby allowing us to capture the re-usability of G.

However, a subtle problem arises when applying the aforementioned JUC theorem to the

modeling of certain global setups. Since the single instance of G is accessible only to Π in the

modeling, we are implicitly assuming that only protocol sessions contained within π can make use

of the setup. On a superficial level, this seems to imply only that honest parties should agree not

to re-use information published by G in any protocol that was not specifically modeled within Π.

In and of itself, this would not be very problematic in practice (for example, it is already standard

in the cryptographic community to recommend that secret keys should only be used for a single

application). Unfortunately, if we dig a little deeper, we discover a more insidious problem with

the model. Since we will ultimately realize G via an actual trusted party on the network, who

publicizes the same information that G does, it is entirely possible that other (arbitrary) activity

in the network environment might be influenced by the presence of this information. That is, the

environment can observe global setups in the real world, whereas the model only allows parties

to access G via a specified protocol Π. A more realistic modeling would grant the environment

access to G as well, enabling it to observe public values in the same way that real world parties

can.

Of course, this immediately raises the question of whether or not such a subtle problem with

the modeling can lead to actual vulnerabilities in secure protocols. As a case study, consider the

CRS model employed by [30]. There, due to the application of JUC theorem, the CRS is assumed

to be generated and published only to instances of a particular UC-secure realization of the “bit

commitment” task. To model the “public” aspect of the information, a copy of the CRS is also

assumed to be given to the real world adversary attacking the protocol session. However, the

technique employed by [30] to show the existence of a simulator for any attack on the realized bit

commitment protocol does something unrealistic: it allows the simulator to generate the CRS

when attacking the ideal bit commitment functionality. Of course, in the real world, the CRS

7

must be generated by a trusted party. This means that, in the real world, it is not possible to

employ the simulation technique of [30] since once can clearly distinguish the simulation from

real world interactions by the use of a different CRS. In fact, as long as the CRS is generated by a

trustworthy party, it can be proved4 that no simulation attacking only the ideal bit commitment

functionality can produce transcripts that are indistinguishable from real world transcripts of the

commitment protocol proposed in [30]. This directly contradicts the intuitive basis of security

in the trusted party paradigm – it is possible to learn something by attacking the real world

protocol which it is not possible to learn by attacking the ideal functionality.

Still, it is difficult to say precisely what damage this “unsimulatable” information does to

our security in practice. In particular, the environment in [30] can still somehow learn the value

of the CRS by obtaining it from the adversary. This means that any attack which exploits

the “unsimulatable” information must rely upon the distinguisher having access to trustworthy

copy of the CRS (since, if one can lie about the CRS to the distinguisher, it is still possible to

simulate any attack via the technique of [30]). What difference can the trustworthiness of the

CRS possibly make to the distinguisher? There is at least one intuitive security property that

can be violated when the distinguisher trusts the source of the CRS: deniability. If a party P

who runs the ideal bit commitment protocol later wishes to deny having done so, it is safe for

P to make such a claim since the ideal bit commitment functionality leaves absolutely no traces

of interaction with P (see Chapter 4 for more details). On the other hand, a party who runs

the commitment protocol of [30] cannot plausibly deny having done so, since it is impossible for

anyone else to simulate the same protocol messages with respect to the real CRS. In a sense,

we are stating a tautology – if an attack on some protocol π realizing an ideal functionality F

cannot be indistinguishably simulated in the real world, then one cannot plausibly deny the use

of π instead of F . For the special case where F itself leaves behind no evidence of interaction

(as is the case with the ideal functionality for bit commitments), we intuitively say that π is not

“deniable”, whereas F itself was inherently “deniable”.

The problem with deniability that arises due to the modeling of [30] is, in fact, common to

the model of [6] as well, and inherently arises in previously proposed practical relaxations of

UC-security as well (namely, the same problem arises when using the “angel” modeling of [78]).

4See the impossibility result in Section 4.2.

8

Introduction

Worse yet, all of the aforementioned works assume the presence of ideal authenticated channels.

Ideal authenticated channels are inherently deniable, yet we do not have such channels in the real

world. Instead, we must use a message authentication protocol in combination with yet another

global setup (generally, a PKI). Here again, we will run into the problem of how to realistically

model the global setup within the confines of the UC framework – if we cannot address this,

then all protocols realized using authenticated channels will lose deniability, whether or not they

depend on any additional global setup. Since the task of global authentication inherently requires

some kind of global setup (in order to provide parties with some uniquely identifying information),

it is of absolutely crucial importance that we solve the problem of realistically modeling global

setup for any scenario where ideally authenticated channels are required.

In order to realistically model global setups, we must generalize the original UC framework

of [19] to support protocols that share state. In particular, our generalization must allow for

the modeling of protocols that share some state with other arbitrary protocols executing in the

network environment. To this end, we introduce the Generalized Universal Composability (GUC)

framework. The GUC framework will allow us to achieve the following intuitive notion, which

should be compared to the intuition of the original UC framework:

A GUC-secure protocol π using some global setup G, and implementing a trusted

party F , does not affect any activity in the network environment differently than F

does — even when there are arbitrary protocols running concurrently with π that may

be maliciously constructed, and even when those protocols have access to the same

global setup G.

With the support of the new GUC framework, we can realistically model the information

publicized by a global setup by giving it directly to the environment (in a trustworthy way),

as well as to all parties. This means that attack simulations cannot “lie” to the environment

about the information published by the global setup (as per the modeling of [30]), since the

environment will have direct access to it. A direct consequence of this more realistic modeling is

that the simulation used in the proof of security for a protocol (in the trusted party paradigm) can

actually be run in the real world, and the result will still be indistinguishable from real protocol

interactions. For the special case of “deniable” functionalities that we previously mentioned,

9

any GUC-secure realization of the functionality using such a realistic modeling of global setup

will retain the same deniability guarantees as the ideal functionality. Therefore, the primary

application of the new GUC model is to realize such “deniable” functionalities while still retaining

the desirable deniability property. More generally speaking, the GUC model enables protocol

designers to employ a more realistic modeling of global setup – and, as has historically been the

case, more realistic security models ultimately lead to more secure (or more practical) protocols.

Organization

The remainder of this thesis is organized into five chapters, followed by some concluding remarks.

Chapter 1 introduces our new Generalized Universal Composability (GUC) framework, and

proves that a strong composition theorem, analogous to that of the UC framework, holds in the

GUC framework as well. We also introduce a simplified variant of GUC, which we call External-

subroutine Universal Composability (EUC). The EUC framework is slightly simpler and more

restrictive than GUC, and is less satisfyingly realistic on an intuitive basis, but it is considerably

simpler to work with when proving security. Despite the additional restrictions and simplicity of

the EUC notion, for any protocols which can be modeled in the EUC framework (which includes

nearly all natural protocols using a global setup), we prove that EUC security is equivalent to

GUC security.

Chapter 2 details many fundamental notions, definitions, and tools that are used throughout

the remainder of the thesis. Most importantly, we introduce the various global setup models that

we refer to in our impossibility results and constructions. The global setups we model include

both Public Key Infrastructure (PKI) and Common Reference String (CRS) setups, in addition

to a new setup notion we call “Augmented Common Reference String” (ACRS) setup. We will

later show some important tasks for which a CRS setup does not suffice, but for which our newly

proposed ACRS setup model does suffice.

Chapter 3 explores the notion of deniability in greater detail, and studies the problem of

realizing ideal authenticated channels (which require “deniable authentication”). In particular,

since authentication typically requires the use of a global PKI, we consider the ramifications of

the GUC modeling on the applicability of a global PKI for authentication. Surprisingly, we show

that it is impossible to realize ideal authenticated channels via a global PKI, unless we assume

10

Introduction

a very limited adversary that is somewhat unrealistic. However, we also propose an alternative

(and reasonable) setup assumption that extends the PKI model by employing a specialized one-

time symmetric key exchange protocol with the following properties: 1) if the protocol succeeds,

parties obtain a key that allows them to realize ideal authenticated channels, but 2) if the protocol

aborts, the adversary can potentially prove that the parties were attempting to communicate.

This realization allows us to continue using ideal authenticated channels in order to construct

deniable protocols, and then we can rest assured that they remain secure in practice (provided

that the setup phase has successfully completed).

Chapter 4 begins by proving that, even assuming the presence of ideal authenticated channels,

the CRS model of [30] does not suffice to GUC-realize most useful functionalities (when the CRS

is realistically modeled as a global entity). Specifically, we prove that a realization of ideal bit

commitment is impossible in the CRS model (which, in turn, rules out many natural tasks that

imply bit commitments). At the same time, we show that the ACRS model does suffice to GUC-

realize most useful functionalities – specifically, we show how to GUC-realize bit commitments.

Furthermore, we show how to apply the techniques of [30] to GUC-realize any reasonable (i.e.,

“well-formed”) two-party or multi-party task in the ACRS model.

Finally, Chapter 5 shows how construct efficient GUC-secure protocols for string commitments

and “zero-knowledge proofs” in the ACRS model. Our constructions achieve practical levels of

efficiency by employing specific number theoretic assumptions. Furthermore, we show how the

network latency of our protocols can be reduced dramatically by employing the Random Oracle

(RO) model [11] to obtain round-optimal protocols for these tasks. The results of this chapter

conclusively demonstrate that it is possible to design very practical protocols in the new GUC

framework.

We conclude by discussing future directions for the GUC framework, and security models in

general.

11

1 • The Generalized Universal

Composability (GUC) Framework

Perhaps the must crucial aspect of “secure” protocol design is the meaning we impart to the

word “secure”. For this reason, we begin our exploration of network security by presenting a new

formal security model: the Generalized Universal Composability (GUC) framework. This model

builds off of the Universal Composability (UC) framework developed by Canetti [20], by extending

the modeling to include shared state. Protocols inherently share some state information across

multiple sessions (or, potentially, even with sessions of entirely different protocols) whenever they

make use of a global setup. It is extremely common for cryptographic protocols to make use of a

global setup, such as a PKI or CRS. Protocols that do not require such global setup have already

been well studied in the context of the UC framework – therefore, we will focus our attention

on applications of the new GUC framework to the design and analysis of protocols using global

setup.

Before delving into the details for our new security framework, we begin with a high-level

overview of the necessary concepts.

1.1 Overview of Generalized UC Security

To provide the proper setting for the new developments of the GUC framework, we now briefly

review the original UC framework of [19] (henceforth referred to as “Basic UC”). To keep our

discussion at a high level of generality, we will focus on the notion of protocol “emulation”,

wherein the objective of a protocol π is to emulate another protocol ϕ. Here, typically, π is

an implementation (such as the actual “real world” protocol) and ϕ is a specification (which

directly computes the desired “ideal functionality” F in an “ideally secure” way, by using a

trusted entity). Throughout our discussion, all entities and protocols we consider are “efficient”

(i.e., polynomial time bounded Interactive Turing Machines, in the sense detailed in [20]).

12

1 The Generalized Universal Composability (GUC) Framework

The Basic UC Framework. At a very high level, the intuition behind security in the basic

UC framework is that any adversary A attacking a protocol π should learn no more information

than could have been obtained via the use of a simulator S attacking protocol ϕ. (More generally,

the adversary attacking π should not be able to accomplish any goal that could not have been

accomplished by the simulated attack on protocol ϕ instead.) Furthermore, we would like this

emulation guarantee to be maintained even if ϕ were to be used a subroutine in (i.e., composed

with) arbitrary other protocols that may be running concurrently in the networked environment

– even after we substitute π for ϕ in all the instances where it is invoked. Thus, we may set

forth a challenge experiment to distinguish between actual attacks on protocol π, and simulated

attacks on protocol ϕ (referring to these protocols as the “challenge protocols”). As part of

this challenge scenario, we will allow adversarial attacks to be orchestrated and monitored by

a distinguishing environment Z that is also empowered to control the inputs supplied to the

parties running the challenge protocol, as well as to observe the parties’ outputs at all stages

of the protocol execution. One may imagine that this environment represents all other activity

in the network, including the actions of other protocol sessions that may influence inputs to

the challenge protocol (and which may, in turn, be influenced by the behavior of the challenge

protocol). Ultimately, at the conclusion of the challenge, the environment Z will be tasked

to distinguish between adversarial attacks perpetrated by A on the challenge protocol π, and

attack simulations conducted by S with protocol ϕ acting as the challenge protocol instead. If

no environment can successfully distinguish these two possible scenarios, then protocol π is said

to “UC-emulate” the protocol ϕ.

Specifying the precise capabilities of the distinguishing environment Z is crucial to the mean-

ing of this security notion. We want Z to somehow encompass the entire range of activity in the

network – which may be under adversarial control – that is external to the challenge protocol

but can potentially interact with it. If the environment Z is to properly capture general inter-

action between other activity in the network and the challenge protocol, then Z must be able to

choose the inputs to the challenge protocol and observe its outputs (for example, both of these

capabilities are required to model the scenario where the challenge protocol is being called as

a subroutine by another network protocol). Additionally, we must also grant Z the ability to

interact with the attacker (which will be either the adversary, or a simulation), in order to model

13

1.1 Overview of Generalized UC Security

the capability of the attacker to coordinate its attacks by exploiting concurrent network activ-

ities (which the environment is responsible for modeling). Granting precisely these capabilities

to Z, and then further allowing Z to invoke only a single session of the challenge protocol, is

precisely the model underlying the notion of UC-emulation originally put forth in Canetti’s basic

UC framework [19]. Canetti showed that these emulation requirements are sufficient to obtain a

very strong composition theorem, which guarantees that (potentially many) arbitrary instances

of the ϕ that may be running in the network can be safely substituted with any protocol π that

UC-emulates ϕ. Thus, even if we constrain the distinguisher Z to a fairly basic kind of inter-

action with a single adversary and a single session of the challenge protocol (even if we don’t

provide Z the ability to invoke other protocols at all), we can already achieve the strong and

intuitive security guarantees we desired. Notably, although the challenge protocol might invoke

subroutines of its own, it was not necessary to grant Z any capability to interact directly with

any such subroutines.

To distinguish the common (but special) case where ϕ is a “specification” (i.e., an “ideal”

secure protocol) and π is a “realization” (i.e., a more practical “real” protocol), we often say

that the protocol ϕ is used in the “ideal world” whereas π is used in the “real world”. We also

introduce the notion of “hybrid models” to help conceptually modularize the design of protocols.

A protocol π is said to be “realized in the G-hybrid model” if π invokes the ideal functionality

G as a subroutine (perhaps multiple times). (As we will soon see below, the notion of hybrid

models greatly simplifies the discussion of UC secure protocols that require “setup”.) A high-level

conceptual view of UC protocol emulation in a hybrid model is shown in Figure 1.1.

Limitations of Basic UC. Buried inside the intuition behind the basic UC framework is

the critical notion that the environment Z is capable of utilizing its input/output interface to

the challenge protocol to mimic the behavior of other (arbitrary) protocol sessions that may be

running in a computer network. Indeed, as per the result of [19] mentioned in our discussion

above, this is, in fact, the case – at least, when considering challenge protocols that are essentially

“self-contained”. Such self-contained protocols, which do not make use of any “subroutines” (such

as ideal functionalities) belonging to other protocol sessions, are called subroutine respecting

protocols – and the basic UC framework is focused on modeling this kind of protocol. On the

14

1 The Generalized Universal Composability (GUC) Framework

Basic UC (G-hybrid model) – Ideal

Z ED

S ϕ

_ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _

_ _ _

G
@A

Basic UC (G-hybrid model) – Real

Z ED

A π

_ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _

_ _ _

G
@A

Figure 1.1: The Basic UC Experiment in the G-hybrid model. A simulator S attacks a single
session of protocol ϕ running with an ideal subroutine G, whereas an arbitrary “real” adversary
A attacks a session of π running with an ideal subroutine G. The dashed box encloses protocols
where S or A control the network communications, whereas the solid lines represent a direct
Input/Output relationship. (In a typical scenario, ϕ would be the ideal protocol for a desired
functionality F , whereas π would be a practical protocol realizing F , with G modeling some
“setup” functionality required by π. Observe that the environment can never interact directly
with G, and thus, in this particular scenario, G is never invoked at all in the ideal world since we
are typically interested in the case where ideal protocol for F does not make use of G.)

other hand, special considerations would arise if the challenge protocol utilizes (or produces)

information that is also shared by other network protocol sessions. A typical example of such

shared information involves the use of a global setup such as a public Common Reference String

(CRS) or a standard Public Key Infrastructure (PKI). This kind of shared state is not directly

modeled by the basic UC framework discussed above. In fact, the composition theorem of [19]

only holds when considering instances of subroutine respecting protocols (which do not share

any state information with other protocol sessions). Unfortunately, it is impossible to produce

UC secure realizations of most useful functionalities without resorting to some kind of setup.

Yet, to properly comply with the requirements of the UC framework, the setup would have

to be done individually and independently for every protocol session! This does not faithfully

represent the common realization, where the setup is done only once (particularly since setup

15

1.1 Overview of Generalized UC Security

often involves large overhead) and is subsequently shared by all instances. To work around this

limitation previous works handled such “shared state” protocol design situations via a special

proof technique, known as the Joint-state Universal Composition Theorem (JUC Theorem) [31].

Intuitively, the JUC Theorem models shared state information by creating a single “multi-

session” protocol, which internally emulates multiple sessions of all the protocols in the network

that must share the information. (This is done by implementing all those protocols as “sub-

sessions” of the multi-session protocol, which merely maintains the shared state information and

dispatches any protocol request to a corresponding instance of the true destination protocol which

it runs as a subroutine). Yet, even the the JUC Theorem does not accurately model truly global

shared state information. The JUC Theorem only allows for the construction of protocols that

share state amongst themselves. That is, an a priori fixed set of protocols can be proven secure if

they share state information only with each other. No security guarantee is provided in the event

that the shared state information is also used by other protocols which the original protocols

were not specifically designed to interact with. Of course, malicious entities may take advantage

of this by introducing new protocols that use the shared state information if the shared state is

publicly available. In particular, protocols sharing global state (i.e., using global setups) which

are modeled in this fashion may not resist adaptive chosen protocol attacks, and can therefore

suffer from a lack of deniability, as we previously mentioned regarding the protocols of [23], [30],

and as is discussed in further detail in Chapter 3.

The Generalized UC Framework. To summarize the preceding discussion, the environment

Z in the basic UC experiment is unable to invoke protocols that share state in any way with

the challenge protocol. This limitation is unrealistic in the case of global setup, when protocols

share state information with each other (and indeed, it was shown to be impossible to realize

UC-secure protocols without resort to such tactics [23, 19, 29]). To overcome this limitation,

we propose the Generalized UC (GUC) framework. The GUC challenge experiment is similar

to the basic UC experiment, only with an unconstrained environment. In particular, we will

allow Z to actually invoke and interact with arbitrary protocols, and even multiple sessions

of the challenge protocol (since such multiple activations might conceivably be useful to Z in

its efforts to distinguish between the two possible challenge protocols). Some of the protocol

16

1 The Generalized Universal Composability (GUC) Framework

sessions invoked by Z may even share state information with challenge protocol sessions, and

indeed, those protocol sessions might provide Z with information related to the challenge protocol

instances that it could not have obtained otherwise. The only remaining limitation on Z is that

we prevent it from directly observing or influencing the network communications of the challenge

protocol sessions, but this is naturally the job of the adversary (which Z is allowed to interact

with). Thus, the GUC experiment allows a very powerful distinguishing environment capable of

truly capturing the behavior of arbitrary protocol interactions in the network, even if protocols

can share state information with arbitrary other protocols. Of course, protocols that are GUC

secure are also composable (this fact follows almost trivially from a greatly simplified version

of the composition theorem proof of [20], the simplifications being due to the ability of the

unconstrained environment to directly invoke other protocol sessions rather than needing to

“simulate” them internally).

The External-subroutine UC Framework. Unfortunately, since the setting of GUC is so

complex, it becomes extremely difficult to prove the security of protocols in this new framework.

Essentially, the distinguishing environment Z is granted a great deal of freedom in its choice

of attacks, and any proof of protocol emulation in the GUC framework must hold even in the

presence of other arbitrary protocols running concurrently. To simplify matters, we observe that

in practice protocols which are designed to share state do so only in a very limited fashion (such

as via a CRS, or a PKI, etc.). In particular, we will model shared state information via the use of

“shared functionalities”, which are simply functionalities that may interact with more than one

protocol session (such as the CRS functionality). For clarity, we will distinguish the notation for

shared functionalities by adding a bar (i.e., we use Ḡ to denote a shared functionality). We call

a protocol π that only shares state information via a single shared functionality Ḡ a Ḡ-subroutine

respecting protocol. Bearing in mind that it is generally possible to model “reasonable” protocols

that share state information as Ḡ-subroutine respecting protocols, we can make the task of proving

GUC security simpler by considering a compromise between the constrained environment of

basic UC and the unconstrained environment of GUC. An Ḡ-externally constrained environment

is subject to the same constraints as the environment in the basic UC framework, only it is

additionally allowed to invoke a single “external” protocol (specifically, the protocol for the shared

17

1.1 Overview of Generalized UC Security

functionality Ḡ). Any state information that will be shared by the challenge protocol must be

shared via calls to Ḡ (i.e., challenge protocols are Ḡ-subroutine respecting), and the environment

is specifically allowed to access Ḡ. Although Z is once again constrained to invoking a single

instance of the challenge protocol, it is now possible for Z to internally mimic the behavior of

multiple sessions of the challenge protocol, or other arbitrary network protocols, by making use of

calls to Ḡ wherever shared state information is required. Thus, we may avoid the need for the JUC

Theorem (and the implementation limitations it imposes), by allowing the environment direct

access to shared state information (e.g., we would allow it to observe the Common Reference

String when the shared functionality is the CRS functionality). We call this new security notion

External-subroutine UC (EUC) security, and we say that a Ḡ-subroutine respecting protocol π

Ḡ-EUC-emulates a protocol ϕ if π emulates ϕ in the basic UC sense with respect to Ḡ-externally

constrained environments.

We show that if a protocol π Ḡ-EUC-emulates ϕ, then it also GUC-emulates ϕ (and vice

versa, provided that π is Ḡ-subroutine respecting).

Theorem 1.1. Let π be any protocol which invokes no shared functionalities other than (possibly)

Ḡ, and is otherwise subroutine respecting (i.e., π is Ḡ-subroutine respecting). Then protocol π

GUC-emulates a protocol ϕ, if and only if protocol π Ḡ-EUC-emulates ϕ.

That is, provided that π only shares state information via a single shared functionality Ḡ, if

it merely EUC-emulates ϕ with respect to that functionality, then π is a full GUC-emulation of

ϕ! As a special case, we obtain that all basic UC emulations (which may not share any state

information) are also GUC emulations.

Corollary 1.1. Let π be any subroutine respecting protocol. Then protocol π GUC-emulates a

protocol ϕ, if and only if π UC-emulates ϕ.

The corollary follows by letting Ḡ be the null functionality, and observing that the Ḡ-externally

constrained environment of the EUC experiment collapses to become the same environment as

that of the basic UC experiment when Ḡ is the null functionality. Thus, it is sufficient to prove

basic UC security for protocols with no shared state, or Ḡ-EUC security for protocols that share

state only via Ḡ, and we will automatically obtain the full benefits of GUC security. The proof

of the theorem is given in Section 1.2.

18

1 The Generalized Universal Composability (GUC) Framework

Figure 1.2 depicts the differences in the experiments of the UC models we have just described,

in the presence of a single shared functionality Ḡ (of course, the GUC framework is not inherently

limited to special case of only one shared functionality). In Section 1.2 we elaborate the technical

details of our new models, in addition to proving the equivalence of GUC and EUC security.

We are now in a position to state a strong new composition theorem, which will directly

incorporate the previous result (that proving EUC security is sufficient for GUC security). Let

ρ be an arbitrary protocol (not necessarily subroutine respecting!) which invokes ϕ as a sub-

protocol. We will write ρπ/ϕ to denote a modified version of ρ that invokes π instead of ϕ,

wherever ρ had previously invoked ϕ. We prove the following general theorem in Section 1.2

below:

Theorem 1.2 (Generalized Universal Composition). Let ρ, π, ϕ be PPT multi-party protocols,

and such that both ϕ and π are Ḡ-subroutine respecting, and π Ḡ-EUC-emulates ϕ. Then ρπ/ϕ

GUC-emulates protocol ρ.

We stress that π must merely Ḡ-EUC-emulate ϕ, but that the resulting composed protocol

ρπ/ϕ fully GUC-emulates ρ, even for a protocol ρ that is not subroutine respecting.

1.2 Details of the Generalized UC Framework

We now present more formal details of our new generalized UC (GUC) framework, and discuss its

relationship to basic UC Security. (Here we will refer to the formulation of UC security in [20]).

We also present a simplified variant of the new notion called External-subroutine UC (EUC),

and prove its equivalence. Finally, we re-assert the universal composition theorem with respect

to the new notion. Many of the low-level technical details, especially those that are essentially

identical to those of the basic UC framework, are omitted. A full treatment of these details can

be found in [20]. In particular, we do not discuss the proper modeling of polynomial runtime

restrictions, the order of activations, etc. These issues are handled as in the basic UC framework,

which we now briefly review.

19

1.2 Details of the Generalized UC Framework

UC with JUC Theorem

Z

A / S π / ϕ π / ϕ . . .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _

ED

BC
G

@A

EUC

Z ED

A / S π / ϕ

_ _ _ _�
�
�
�

�
�
�
�_ _ _ _

_ _ _ _ _

Ḡ
@A

"# !______________________

'&�������������������

`̀`̀

GUC

ZGFGFGF ED ED ED

ρ1

@A BC
� � �

ρ2

@A BC

. . . A / S π / ϕ π / ϕ . . .

_ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

Ḡ
@A BC BC

"# !__________________

'&�������������������

`̀`

Figure 1.2: Comparison of security models. Using Basic UC with the JUC Theorem to share
state, only copies of the challenge protocol (or other protocols which may be jointly designed
a priori to share G) are allowed to access the common subroutine G, and Z may only interact
with the “multi-session” version of the challenge protocol. In the EUC paradigm, only a single
session of the challenge protocol is running, but the shared functionality Ḡ it uses is accessible
by Z. Finally, in the GUC setting, we see the full generality of arbitrary protocols ρ1, ρ2, . . .
running in the network, alongside multiple copies of the challenge protocol. Observe that both
Z, and any other protocols invoked by Z (such as ρ1), have direct access to Ḡ in the GUC setting.
Intuitively, the GUC modeling seems much closer to the actual structure of networked protocol
environments.

20

1 The Generalized Universal Composability (GUC) Framework

Basic UC Security

The basic UC framework is built around the notion of UC emulation. A protocol is a UC secure

realization of an ideal functionality (which models the security goal), if it UC-emulates the ideal

functionality, in the sense that executing the protocol is indistinguishable for an external environ-

ment from an interaction with a trusted party running the ideal functionality. Before reviewing

the actual “UC experiment” that defines the notion of UC emulation, we first briefly review the

basic model of distributed computation, using Interactive Turing Machines (ITMs). While we

do not modify this model, familiarity with it is important for understanding our generalization.

Systems of ITMs. To capture the mechanics of computation and communication in computer

networks, the UC framework employs an extension of the ITM model [55] (see [20] for precise

details on the additional extensions). A computer program (such as for a protocol, or perhaps

program of the adversary) is modeled in the form of an ITM (which is an abstract notion). An

execution experiment consists of a system of ITMs which are instantiated and executed, with

multiple instances possibly sharing the same ITM code. (More formally, a system of ITMs is

governed by a control function which enforces the rules of interaction among ITMs as required by

the protocol execution experiment. Here we will omit the full formalisms of the control function,

which can be found in [20], and which require only minor modifications for our setting.)

A particular executing ITM instance running in the network is referred to as an ITI (or “ITM

Instance”), and we must have a means to distinguish individual ITIs from one another even if

they happen to be running identical ITM code. Therefore, in addition to the program code of

the ITM they instantiate, individual ITIs are parameterized by a party ID (pid) and a session

ID (sid). We require that each ITI can be uniquely identified by the identity pair id = (pid, sid),

irrespective of the code it may be running. All ITIs running with the same code and session

ID are said to be a part of the same protocol session, and the party IDs are used to distinguish

among the various ITIs participating in a particular protocol session. (By the uniqueness of

ITI identities, no party is allowed to participate in more than one protocol session using the

same session ID.) As a shorthand notation, we may write P to implicitly denote the pid of some

particular (generally self-evident) ITI that is being run by P . We also refer to a a particular

21

1.2 Details of the Generalized UC Framework

protocol session running with ITM code π as an instance of protocol π.

ITMs are allowed to communicate with each other via the use of three kinds of I/O tapes:

local input tapes, local subroutine output tapes, and communication tapes. The input and subrou-

tine output tapes model “trusted communication”, say, communication within a single physical

computer. The communication tape models “untrusted communication”, say, communication

over an open network. Consequently, writes to the local input tapes of a particular ITI must

include both the identity and the code of the intended target ITI, and the ITI running with

the specified identity must also be running the specified code, or else an error condition occurs.

Thus, input tapes may be used to invoke local “trusted” subroutines, and indeed, new ITIs must

be introduced into the currently executing system by means of such invocations. That is, if a

target ITI with the specified identity does not exist, it is created (“invoked”), and given the

specified code. We also require that when an ITI writes to the local subroutine output tape of

another ITI, it must provide its own code, and thus these tapes are useful for accepting output

from such local “trusted” subroutines. Finally, all “untrusted” communications are passed via

the communication tapes, which guarantee neither the code of the intended recipient ITI, nor

the code of the sending ITI (but merely their identities).

The UC Protocol Execution Experiment. The UC protocol execution experiment is de-

fined as a system of ITMs that is parameterized by three ITMs. An ITM π specifies the code of

the challenge protocol for the experiment, an ITM A specifies the code of the adversary, and an

ITM Z provides the code of the environment. The protocol execution experiment places precise

conditions on the order in which ITIs are activated, and which ITIs are allowed to invoke or

communicate with each other. The precise formal details of how these conditions are defined and

imposed (i.e., the control function and related formalisms) can be found in [20], but we shall

describe some of the relevant details informally. The experiment initially launches only an ITI

running Z. In turn, Z is permitted to invoke only a single ITI running A, followed by (multiple)

ITIs running the “challenge protocol” π provided that those ITIs running π all share the same

sid. This sid, along with the pids of all the ITIs running π, may be chosen arbitrarily by Z.

It is stressed that the environment may not invoke any additional ITIs, and it is only allowed

to write to the input tapes of ITIs which it has directly invoked (or to receive outputs from

22

1 The Generalized Universal Composability (GUC) Framework

those ITIs via its subroutine output tape). The environment may not interact with any of the

communication tapes, nor the tapes of ITIs that it did not directly invoke. In summary, the

environment can communicate only with the ITI running the code of the adversary A, and ITIs

participating in a single session of protocol π. We thus refer to the execution experiment as being

a constrained one, and, in particular, the environment Z as being a constrained environment.

The output of the environment Z in this basic UC protocol execution experiment is denoted by

EXECπ,A,Z .

Ideal Functionalities. We say an ITM F is an ideal functionality if its code represents a

desired (interactive) function to be computed by parties or other protocols which may invoke it

as a subroutine (and thus, in a perfectly secure way). The pid of any ITI running F is set to

the special value ⊥, indicating that the ITI is an ideal functionality. F accepts input from other

ITIs that have the same sid as F , and may write outputs to multiple ITIs as well.

Every ideal functionality F also induces an ideal protocol idealF . Parties running idealF

with the session ID sid act as dummy parties, simply forwarding their inputs to the input tape

of an ITI running F with the same sid, and copying any subroutine output received from F to

the subroutine output tape of the ITI which invoked the party (typically, the environment Z).

UC Emulation and Realizations. In the basic UC framework, a protocol π is said to UC-

emulate another protocol ϕ if, for any adversary A, there exists a simulator S such that for

all environments Z it holds that EXECϕ,S,Z ≈ EXECπ,A,Z . That is, no environment behaves

significantly differently in the protocol execution experiment when interacting with the challenge

protocol π, under any given attack, than it does when interacting with the challenge protocol

ϕ, under a simulation of that same attack. Intuitively, this means that the protocol π is “at

least as secure as” the protocol ϕ, since the effect of any attack on π can also be emulated

by attacking ϕ. A protocol π is said to UC-realize an ideal functionality F if π UC-emulates

idealF . Furthermore, if the protocol π is a G-hybrid protocol, then we say that π is a UC-secure

realization of F in the G-hybrid model.

23

1.2 Details of the Generalized UC Framework

Generalized UC Security

We present the generalized variant of UC security. Technically, the difference is very small;

however, its effect is substantial. The essential difference here from the basic UC security notion

is that in our model, the environment Z is allowed to invoke ITIs with arbitrary code and arbitrary

sids, including multiple concurrent instances of the challenge protocol π and other protocols. We

stress that these ITIs are even allowed to share state with each other across multiple sessions

(which is a significant departure from prior models). To simplify the presentation and analysis,

we will still assume that Z invokes only a single instance of the adversary A.1 We call such an

environment unconstrained, since it need not obey any constraints in regards to which protocols

it may invoke.2 To distinguish this from the basic UC experiment, we denote the output of an

unconstrained environment Z, running with an adversary A and a challenge protocol π in the

GUC protocol execution experiment, by GEXECπ,A,Z . GUC emulation is now defined as follows,

analogously to the definition of basic UC emulation outlined above:

Definition 1.3 (GUC-Emulation). Let π and ϕ be PPT multi-party protocols. We say that π

GUC-emulates ϕ if, for any PPT adversary A there exists a PPT adversary S such that for any

(unconstrained) PPT environment Z, we have:

GEXECϕ,S,Z ≈ GEXECπ,A,Z

As long as the protocol in question makes sure that no instance shares any subroutines with

other protocol instances, GUC security is equivalent to basic UC security. This statement, which

intuitively follows from the “universal composition theorem”, will be formalized later. However,

we are primarily interested in protocols that do share some modules, or subroutines, with other

1Although it is conceptually interesting to consider scenarios where the environment may
invoke separate adversaries to attack separate instances of the challenge protocol, particularly
when there is some shared state, it can be shown that this notion is equivalent to our simplified
single adversary model.

2More formally, the control function for the GUC protocol execution experiment allows Z to
invoke ITIs running arbitrary ITM code, and with arbitrary (but unique) identities. In particular,
the environment may invoke many ITIs with a special code ⊥ (even with different sids), which
the control function will substitute for ITIs running π. Thus, the reason for our departure with
the convention of [20] (which replaces the code of all ITIs invoked by Z with instances of π) is to
provide Z with the ability to invoke ITIs running arbitrary code (other than π), yet still enable
it to invoke instances of the challenge protocol without having access to its code.

24

1 The Generalized Universal Composability (GUC) Framework

protocol instances. For such protocols the generalized formulation differs radically from the basic

one. Specifically, we are interested in modeling “shared trusted modules”, which are captured

via the shared functionality construct.

Shared Functionalities. In addition to the notion of ideal functionalities inherited from the

basic UC security setting, we coin the notion of shared functionalities. A shared functionality

Ḡ is completely analogous to an ideal functionality, except that it can accept inputs from ITIs

with arbitrary session IDs. Thus, a shared functionality is just an ideal functionality that may

communicate with more than one protocol session. In order to distinguish shared functionalities

from ideal functionalities, we require the sid of a shared functionality to begin with the special

symbol # (which is used exclusively in the sid of shared functionalities). As a shorthand no-

tation, we denote the portion of the sid of a shared functionality which follows the # symbol

by shsid (and thus, shared functionalities have sid = #‖shsid). Similarly to ideal functionalities,

shared functionalities also have # as their fixed pid, and thus all shared functionalities have fixed

identities (and can be invoked only by specifying the code of their corresponding ITM).

Discussion. Recall that in the basic UC definition, Z is constrained in its ability to invoke

protocols. The environment is allowed to invoke a single instance of each party who is partici-

pating in a solitary session of the challenge protocol, as well as a single instance of the adversary

attacking the protocol. However, in basic UC, Z may not invoke or communicate with other ITIs

of any sort (e.g., to represent other parties and protocol sessions concurrently running in the

network). Intuitively, it would seem that if this constraint were removed and Z were allowed to

invoke arbitrary ITIs running arbitrary protocols (including multiple concurrent sessions of the

challenge protocol itself), then Z would become a more powerful distinguisher (strengthening the

security requirements for protocols to remain indistinguishable). In reality, as we will soon see,

since basic UC security does not allow protocols to share state3 with each other, any concurrent

protocol executions that Z might wish to run can simply be simulated by Z internally with no

need to actually invoke the ITIs. Thus, the constraint that Z may only invoke parties running a

3The typical example of protocols sharing state occurs when using the CRS model. Multiple
instances of a protocol may all share the same CRS, which certainly implies a relationship between
those protocol executions which is not captured by standard UC security.

25

1.2 Details of the Generalized UC Framework

single instance of the protocol it is attempting to distinguish is not a true limitation, and indeed

this is where the power of UC security comes from (e.g., the ability for Z to conduct this kind of

internal simulation is the reason UC security holds even in the presence of concurrent protocol

executions).

Unlike this basic UC security setting, we wish to consider definitions of security even for

protocols that may share state information externally with other (concurrently executing) sessions

of the same protocol, or even with other (independently designed) protocols. In such a setting,

it is no longer possible for Z to simulate other protocol executions internally, since some of those

protocols may share state with the protocol that Z is attempting to distinguish. Thus, the

constraints placed on Z in the basic UC setting are of great concern for us, since they would

prevent Z from ever seeing the effects of other protocol executions that share state externally

with the protocol Z is attempting to distinguish. Of course, protocol executions in the real

world certainly do involve such effects, as we will see in Chapter 3. We introduced the notion of

Generalized UC (GUC) security in order to address this issue by properly capturing interactions

between protocols that share state information externally.

External-subroutine UC Security

Since the unconstrained environment of the GUC security model is able to invoke arbitrary ITIs,

as well as multiple sessions of the challenge protocol, it becomes difficult to directly prove that one

protocol GUC-emulates another protocol, i.e., to show that a simulated adversary S attacking

a protocol ϕ behaves indistinguishably from an actual adversary A attacking protocol π. In

particular, such analysis requires direct argumentation about systems where multiple instances

of multiple protocols run concurrently. This stands in contrast to the situation with basic UC

security, where it suffices to analyze a single instance of the protocol in isolation, and security in

a multi-instance system follows from a general composition theorem.

We alleviate this situation in two steps. First, we formulate another notion of protocol

emulation, called External-subroutine UC (EUC) emulation, which is considerably simpler, and in

particular considers only a single instance of the challenge protocol. We show that this simplified

notion is equivalent to the GUC notion described above. In a second step, we use the new EUC-

emulation notion to re-assert the universal composition theorem with respect to GUC-emulation.

26

1 The Generalized Universal Composability (GUC) Framework

We remark that in the basic UC framework these two conceptual steps are demonstrated via

the same technical theorem (namely, the UC theorem). We find that in the present framework

it is clearer to separate the two issues.

Subroutine respecting protocols. Before proceeding to define External-subroutine UC em-

ulation, we coin the following terminology. We say that an ITI M is a subroutine of another ITI

M ′ if M either receives inputs on its input tape from M ′ (and does not explicitly ignore them),

or writes outputs to the subroutine output tape of M ′. Recursively, we also say that if M is a

subroutine of a party (ITI) running protocol π or a sub-party of protocol π, then M is a sub-party

of protocol π. By uniqueness of session identifiers, if there is an instance of protocol π running

with session ID sid, all ITIs running with session ID sid are running π or are sub-parties of π.

A protocol π is said to be Ḡ-subroutine respecting if none of the sub-parties of an instance

of π provides output to or receives input from any ITI that is not also party/sub-party of that

instance of π, except for communicating with a single instance of the shared ITI Ḡ. In other

words, an instance of a Ḡ-subroutine respecting protocol π has the property that all sub-parties

of this instance of π are only allowed to communicate with parties or sub-parties of this same

instance of π (they do not share themselves with other protocol instances in any way), with the

sole exception that calls to a shared functionality Ḡ are allowed. Using this terminology, we can

now define External-subroutine UC emulation.

The External-subroutine UC Protocol Execution Experiment. Rather than allowing

the environment to operate completely unconstrained as in the GUC experiment, we constrain

the environment of the EUC experiment so that it may only invoke particular types of ITIs.

Specifically, the environment is only allowed to invoke parties participating in a single instance

of the challenge protocol (as in the constrained environment of basic UC), plus a single ITI

running the code of a shared functionality Ḡ. In other words, the EUC experiment is the same

as the basic UC experiment, except that the environment (which is otherwise constrained in the

usual fashion) is also allowed to provide input to, and obtain output from, a single instance of

a shared functionality. (Typically, the code of this shared functionality would be specified by

the challenge protocol under consideration.) We say that such an environment is Ḡ-externally

27

1.2 Details of the Generalized UC Framework

constrained when it is allowed such extra access to a shared functionality Ḡ. (Note that although

we consider only one shared functionality at a time for the sake of simplicity, it is also reasonable

to define the notions of “subroutine respecting” and “EUC security” with respect to multiple

shared functionalities.) Given a Ḡ-subroutine respecting protocol π, we denote the output of

the environment in the Ḡ-EUC protocol experiment by EXECḠπ,A,Z . EUC-emulation is defined

analogously to the notion of GUC-emulation:

Definition 1.4 (EUC-Emulation). Let π and ϕ be PPT multi-party protocols, where π is Ḡ-

subroutine respecting. We say that π EUC-emulates ϕ with respect to shared functionality Ḡ

(or, in shorthand, that π Ḡ-EUC-emulates ϕ) if for any PPT adversary A there exists a PPT

adversary S such that for any Ḡ-externally constrained environment Z, we have:

EXECḠϕ,S,Z ≈ EXECḠπ,A,Z

Ḡ-EUC Secure Realization. We say that a protocol π realizes an ideal functionality F if

π Ḡ-EUC-emulates idealF . Notice that the formalism implies that the shared functionality Ḡ

exists both in the model for executing π and also in the model for executing the ideal protocol for

F , idealF .

We remark that the notion of Ḡ-EUC-emulation can be naturally extended to protocols that

use several different shared functionalities (instead of only one).

Equivalence of GUC to EUC and a generalized UC theorem

We show that Ḡ-EUC-emulation is, surprisingly, equivalent to full GUC-emulation for any Ḡ-

subroutine respecting protocol. Perhaps unsurprisingly, the proof of the equivalence theorem

incorporates most of the arguments of the universal composition theorem. In particular, the

“quality” of security degrades linearly with the number of instances of π invoked by Z in the

GUC experiment.

The formal statement of equivalence appears in Theorem 1.1 above. The proof of the theorem,

which we now give, makes use of a hybrid argument (akin to that in the universal composition

theorem of [20]) to show that security for the single-instance setting of EUC is sufficient to ensure

security under the more strenuous multi-instance setting of GUC.

28

1 The Generalized Universal Composability (GUC) Framework

Proof of Theorem 1.1. It is trivial to show that protocols which GUC-emulate each other also

Ḡ-EUC-emulate each other, since any simulation that is indistinguishable to unconstrained en-

vironments is certainly indistinguishable to the special case of Ḡ-externally constrained envi-

ronments as well. However, the other direction is non-obvious. The basic idea of the proof is

that a Ḡ-externally constrained environment can simulate the same information available to an

unconstrained environment, even while operating within its constraints. The proof technique

is essentially the same as the proof of composition theorem, only in this case multiple sessions

must be handled directly without going through an intermediate protocol. (That is, the proof

of composition theorem considers a protocol π which emulates a protocol ϕ, and shows that a

protocol ρ which may invoke multiple copies of π emulates a protocol ρ which invokes ϕ instead.

Here, we essentially need to demonstrate that if a single copy of π emulates ϕ, then multiple

copies of π emulate multiple copies of ϕ.)

Applying the technique of [20], we observe that there are equivalent formulations of protocol

emulation with respect to dummy adversaries (this must be proven separately, but the proofs

are essentially identical to those for the original notion of UC emulation), and we will use those

alternative formulations here to simplify the proof. Let D denote the fixed “dummy adversary”

(which simply forwards messages to and from the environment). For the remainder of the proof,

we shall refer to the “simulator S” as the “ideal adversary”, in order to avoid confusion with

the “internal simulation” being conducted by the environment (roughly speaking, S attempts to

mimic real attacks by attacking the ideal functionality, so this terminology is appropriate).

Suppose that π Ḡ-EUC-emulates ϕ. Then there exists some ideal adversary S that will satisfy

EXECḠπ,D,Z ≈ EXECḠϕ,S,Z for any Ḡ-externally constrained environment Z. To prove our claim,

we will need to show that the existence of such S is sufficient to construct a new ideal adversary

S̃ such that GEXECπ,D,Z̃ ≈ GEXECϕ,S̃,Z̃ holds for any unconstrained environment Z̃.

We construct an ideal adversary S̃ in a similar fashion to the construction of Aπ in the proof

of composition theorem in [20], using multiple instances of S that are simulated by Aπ internally.

That is, to ensure that each instance of ϕ mimics the corresponding instance of π, S̃ will run

separate copies of S for each instance of π (and S̃ then forwards messages between Z̃ and the

appropriate copy of S for each instance). We now prove that S̃ satisfies the requirement for

GUC-emulation via a hybrid argument (again, as is done in the proof of composition theorem).

29

1.2 Details of the Generalized UC Framework

Assume for the purpose of contradiction that EXECḠ
π,D,Z̃ 6≈ EXECḠ

ϕ,S̃,Z̃ (in particular, as-

sume the distinguishing advantage of Z̃ is ε). Let m be an upper bound on the number of

instances of π which are invoked by Z̃. For l ≤ m, let S̃l denote the ideal adversary for a mod-

ified execution EXl = EXEC(l, ϕ)Ḡ
π,S̃l,Z̃

in which the first l instances of π are simulated4 using

instances of S and ϕ (as would be done by S̃), but the remaining invocations of π by Z̃ are in

fact handled by genuine instances of π (with S̃l simply forwarding messages directly to and from

those instances, as D would). In particular, we observe that the modified interaction EX0 is just

the interaction with π, and EXl is the unmodified interaction with S̃ and ϕ replacing D and

π. Then, by our assumption that the interactions with EX0 and EXm are distinguishable, there

must be an 0 < l ≤ m such that Z̃ distinguishes between the modified interactions with EXl and

EXl−1 with advantage at least ε/m. We can construct an Ḡ-externally constrained environment

Z∗ from such a Z̃ which succeeds in distinguishing the ensembles EXECḠπ,D,Z∗ and EXECḠϕ,S,Z∗

with probability at least ε/m, contradicting the fact that π Ḡ-EUC-emulates ϕ.

The construction of Z∗ is slightly involved, but on a high level, Z∗ internally simulates the

actions of Z̃ including all ITIs activated by Z̃ (other than those for Ḡ and the l-th instance of

π), but forwards all communications sent to the l-th instance of π to its own external interaction

instead (which is either with a single instance of π and D, or ϕ and S). We observe that since π is

subroutine respecting, the only way ITIs activated by the simulated Z̃ may somehow share state

information with the challenge instance of π is via access to the shared functionality Ḡ. Whenever

an ITI invoked by the internal simulation of Z̃ wishes to communicate with Ḡ, Z∗ invokes

a corresponding dummy party with the same pid and sid, and then forwards communications

between the internally simulated ITI and the actual shared functionality Ḡ in Z∗’s external

interaction via the dummy party. Z∗ then outputs whatever the internally simulated copy of

Z̃ outputs. This interaction results in the simulated Z̃ operating with a view that corresponds

to either EXl−1 or EXl (which Z̃ can distinguish with probability at least ε/m), and thus Z∗

successfully distinguishes with probability at least ε/m, as claimed, completing the contradiction.

4Technically, we must modify the execution experiment here, since it is the environment which
attempts to invoke the challenge protocol π, which is beyond the control of the ideal adversary
S̃. Thus l and ϕ need to be specified as part of the execution experiment itself.

30

1 The Generalized Universal Composability (GUC) Framework

We observe that if a protocol π does not use any shared functionalities (i.e., π is Ḡ-subroutine

respecting for a null functionality that generates no output) then a corollary of the above claim

states that π UC-emulates ϕ if and only if π GUC-emulates ϕ. This equivalence shows the power

of the basic UC emulation security guarantee, since it is indeed equivalent to the seemingly

stronger notion of GUC emulation (for any protocols which exist in the more limited basic UC

setting).

Universal Composition. Finally, we generalize the universal composition theorem to hold

also with respect to GUC-emulation. That is, consider a Ḡ-subroutine respecting protocol ϕ

that is being used as a subroutine in some (arbitrary) larger protocol ρ. The new composition

theorem guarantees that it is safe to replace a protocol ϕ with a different protocol π that merely

Ḡ-EUC-emulates ϕ, and yet the resulting implementation of ρ (which now invokes π instead of

ϕ) will fully GUC-emulate the original version (which had invoked ϕ).

The formal composition theorem appears in Theorem 1.2 above, which we now prove. The

proof is similar in spirit to the proof of universal composition theorem (but here we no longer

require the hybrid argument, since multiple protocol instances are already taken care of by the

GUC setting).

Proof of Theorem 1.2. Since the notions of Ḡ-EUC-emulation and GUC-emulation are equivalent

for subroutine respecting protocols which do not use shared functionalities other than Ḡ, it

suffices to prove that if π GUC-emulates ϕ then ρπ/ϕ GUC-emulates ρ. (Of course, there is

a corresponding loss of exact security as per Theorem 1.1.) Thus, it suffices to prove that the

composition theorem holds for subroutine respecting protocols that GUC-emulate each other. As

before, we shall refer to the “simulator S” as the “ideal adversary”, in order to avoid confusion.

The proof that GUC-emulation is composable follows the same general approach as the com-

position theorem for basic UC in [20], with some simplifications resulting from the use of uncon-

strained environments. We once again make use of an equivalent formulation of GUC-emulation

with respect to dummy adversaries (the proof of equivalence for the GUC version of the dummy

adversary formulation is also entirely analogous to the proof of the same statement for basic UC

security). Thus, denoting the dummy adversary by D, we wish to construct an adversary Aρ

31

1.2 Details of the Generalized UC Framework

such that

GEXECρπ/ϕ,D,Z ≈ GEXECρ,Aρ,Z (1.1)

for any unconstrained environment Z.

Since π GUC-emulates ϕ there is an adversary S such that GEXECπ,D,Zπ ≈ GEXECϕ,S,Zπ

for any unconstrained environment Zπ. That is, S expects to interact with many instances of ϕ,

with the goal of translating them to mimic the action of corresponding instances of π from the

viewpoint of any environment Zπ. We will use S to construct Aρ satisfying (1.1) above. Unlike

the construction in the basic UC composition theorem, it is not necessary for Aρ to run multiple

copies of S (one for each session of π), since the GUC adversary S already deals with the scenario

where multiple sessions of π are executing (as unconstrained environments may invoke multiple

instances of the challenge protocol). Thus the construction of Aρ here is simpler.

Aρ will simply run a single copy of S internally, forwarding all messages intended for instances

of π (which are sub-parties to instances of the challenge protocol ρ) sent by Aρ’s environment

Z to its internal simulation of S, as well as forwarding any messages from S back to Z as is

appropriate. (Note that Aρ need not simulate any interactions with instances of π that are

invoked directly by Z rather than an instance of ρ, since those are not associated with the

challenge protocol.) Additionally, Aρ forwards S’s interactions with instances of ϕ between the

external instances of ϕ (again, only those which are sub-parties to instances of the challenge

protocol ρ) and its internal copy of S as well. (Intuitively, Aρ acts as the environment for S by

forwarding some of its own interactions with Z concerning instances of π, and also copying its

own interactions with external instances of ϕ. The reason S is not employed directly in place

of Aρ is that Aρ must translate sessions of the “challenge protocol” ρ in order to isolate their

sub-protocol invocations of ϕ, which is the challenge protocol that S expects to interact with.

Thus, effectively, the instances of ρ itself simply become part of the environment for S. Note

that there may be many instances of ρ which are being translated, and each of those instances

may invoke many instances of ϕ.)

In order to prove that Aρ satisfies (1.1) we perform a standard proof by contradiction. Assume

there exists an environment Z capable of distinguishing the interaction with Aρ and ρ from

the interaction with D and ρπ/ϕ. We show how to construct an environment Zπ capable of

32

1 The Generalized Universal Composability (GUC) Framework

distinguishing an interaction between S and ϕ from an interaction with D and π, contradicting

the fact that π GUC-emulates ϕ.

The construction of Zπ is again analogous to the technique applied in [20], with some ad-

ditional simplification (e.g., since there is no hybrid argument here, we may simply treat all

instances of ϕ the same way). As a useful tool in describing the construction of Zπ, we briefly

define an “internal simulation adversary” Âρ, which will be run internally by Zπ alongside an

internally simulated copy of Z. Whenever Âρ receives a message, it performs the same function

as Aρ, only replacing Aρ’s communications with its internal simulation of the adversary S (along

with its corresponding challenge protocol ϕ) by communications with the external adversary for

Zπ (and its corresponding challenge protocol, which will either be π if the adversary is D or ϕ

if the adversary is S). We observe that if Zπ’s adversary is D, then Âρ also acts like D, since it

will merely forward all messages. Similarly, if Zπ’s external adversary is S, then Âρ will function

identically to Aρ.

On a high level, the environment Zπ will internally simulate the environment Z and adversary

Âρ, externally invoking copies of any ITIs that are invoked by the simulations (with the exception

of instances of Z’s challenge protocol π, and any invocations of Zπ’s challenge protocol made

by Âρ), appropriately forwarding any messages between those ITIs and its internal copies of Z

and Aρ. Whenever the internal copy of Z wishes to invoke an instance of the challenge protocol

ρ, the environment Zπ internally simulates the instance (by modeling an ITI running ρ with

the specified identity), forwarding any communications between ρ and shared functionalities to

external instances of those shared functionalities (such forwarding may be accomplished by Zπ

externally invoking dummy parties with the same identities as the sub-parties of ρ that wish

to communicate with the shared functionalities, and then forwarding communications through

the dummy parties). Because ρ is subroutine respecting, it is safe to conduct such an internal

simulation, as instance of ρ do not share state with any ITIs external to Zπ except via the shared

functionalities (which are handled appropriately). Of course, whenever the internal simulation

of Âρ wishes to communicate with an instance of its challenge protocol, Zπ will forward the

communications to the correct instance of its own challenge protocol, as described above. When

the internally simulated Z halts and provides output, Zπ similarly halts, copying the same output.

Now, we can observe that GEXECπ,D,Zπ = GEXECρπ/ϕ,D,Z by considering that the internal

33

1.2 Details of the Generalized UC Framework

simulation conducted by Zπ will be a faithful recreation of the latter experiment. In particular,

by its construction, the simulation of Âρ will simply act as the dummy adversary D. Furthermore,

the internal simulation of ρ is correctly replacing all invocations of ϕ by invocations of π (and thus

is a perfect simulation of ρπ/ϕ), while the rest of the experiment proceeds identically. A similar

argument yields that GEXECϕ,S,Zπ = GEXECρ,Aρ,Z . Previously, we assumed for the sake of

contradiction that there exists an environment Z such that GEXECρπ/ϕ,D,Z 6≈ GEXECρ,Aρ,Z .

Combining this statement with the previous two equations yields the result that there exists

an environment Zπ such that GEXECπ,D,Zπ 6≈ GEXECϕ,S,Zπ , contradicting the fact that π

GUC-emulates ϕ, completing our proof.

34

2 • Preliminaries and Tools

In preparation for the following chapters, we now present a collection of useful concepts, notations,

definitions, and tools. While many of the tools discussed herein are tightly coupled to applications

that first appear much later in the thesis, they are presented here together in order to assist the

reader in identifying the relationships among the various tools and definitions. The reader is

strongly advised to refer back to this chapter upon encountering the relevant topics later in the

text.

2.1 Adversarial Models

Here we outline some additional details of our adversarial model that are not pre-specified by

the GUC framework described in Chapter 1. Indeed, the reason we often refer to GUC as a

“framework” rather than as a “model” is that it is flexible enough to encompass many possible

models of adversarial behavior.

2.1.1 Corruption Models

In this work, we will consider several kinds of corruption models, which model attackers of varying

strengths and capabilities. When providing feasibility results, we strive to provide security against

the strongest possible class of attacks. Conversely, impossibility results carry the most weight

when they hold even against weaker attacks, and therefore we will strive to use the weakest

possible attacks when proving infeasibility.

The strongest adversarial model we will consider allows adaptive corruptions: the attacker

is allowed to corrupt parties before, during, and after protocol executions. This means that

the adversary can eventually corrupt all the parties that were involved in any given protocol

execution. Furthermore, we assume that honest parties who are corrupted will provide a complete

history of their internal state to the adversary – that is, we do not rely on the ability of honest

parties to erase information. This is known as the non-erasure model. A slight weakening of

this attack model permits honest parties to explicitly erase some “temporary” internal state

35

2.1 Adversarial Models

information, and this variant is therefore referred to as the erasure model. In practice, it is often

possible to erase small quantities of short-lived data very effectively, which can justify use of the

erasure model in some circumstances.

We also introduce a slightly weaker corruption model, in which we allow for semi-adaptive

corruptions: the adversary is allowed to corrupt parties either before or after a particular round of

the protocol execution has completed, but may not corrupt parties while that stage of the protocol

is ongoing (for either party). The basic motivation for this model is that it seems highly unlikely

that any attacker can manage to corrupt an honest party during the narrow window of time in

which this round of the protocol execution occurs. (In practice, the window of vulnerability can

be made quite short by introducing appropriate “timeouts” into the protocol.) This model is

also closely related to the notion of forward security, in which corruptions that occur after the

completion of a protocol do not affect its security (or that of any prior executions). Once again,

we may consider both erasure and non-erasure variants of the semi-adaptive and forward security

models.

Finally, the weakest adversarial model that we consider allows only static corruptions: the

attacker is only allowed to corrupt some of the parties before the protocol has begun. In this

corruption model we no longer need to distinguish between erasure and non-erasure variants,

since any parties who are honest at the start of a protocol execution can never be corrupted and

will never reveal their internal state to the adversary (therefore, it is irrelevant whether or not

they are able to erase parts of their internal state).

In all cases, we will assume that adversarial corruption occurs on a “per party” basis – that

is, either a particular party is corrupt (acting adversarially) in all of its protocol sessions, or it is

honest in all of its protocol sessions. We will refer to this aspect of our modeling by saying that

all corruptions must occur in a PID-wise manner.1

1Previous works in the UC framework generally allow corruptions of a party to occur in an
individual session. Such modeling is straightforward when the entire state of the protocol is
self-contained in a single session, but can unnecessarily complicated matters when some shared
functionality is involved. For instance, if a party uses the same secret keys for “honest” sessions
that it uses in “corrupt” sessions, it can obviously harm the security of its own “honest” sessions
that way.

36

2 Preliminaries and Tools

2.1.2 Security with Trusted Parties

Our protocols will often have to make use of some mutually trusted third party, such as a

certification authority. In the real world, trust is often hard to come by. Therefore, we would

like to place reasonable limits on the trust we require, and to distribute that trust as much as

possible.

Of course, even when we are willing to place trust in some particular entity, we might not want

to trust that entity for a very long time. For example, we might be concerned that a trusted party

will eventually be corrupted by the adversary – either because the trusted party lacks adequate

security measures (and is therefore subject to being “hacked” by a malicious entity), or because

the trusted party’s affiliations and allegiances may change with time. For this reason, we wish to

consider security against adaptive corruption of the trusted third party (notice, this notion still

makes sense even if we only model static corruptions for ordinary parties).

If we are to allow the eventual corruption of a trusted party, we cannot expect protocols that

employ this particular trusted party to remain secure for use after the trusted party becomes

corrupt. However, we might hope that past protocol executions (which occurred while the trusted

party was still honest) remain secure. We say that such protocols are forward secure with respect

to corruption of the trusted party.

N.B.: All of the protocol constructions proposed in this work are forward secure with respect to

corruption of any trusted parties involved, except for the static secure protocols of Section 3.2.4.

This is holds true even if we assume that the trusted party is not able to erase any state informa-

tion (i.e., the protocols have forward security with respect to the trusted party in the non-erasure

model).

In all situations where a trusted party is required, it is possible to safely distribute the trust

among a group of parties – provided only that a majority of the group remains trustworthy

at all times (or else the “trusted party” being distributed among the group must be considered

corrupt). In particular, it is well known that a UC secure protocol for computing (essentially) any

efficient functionality can be obtained in the presence of an honest majority [19]. Distribution of

37

2.2 Global Setup Models

trust among a group with trustworthy majority merely requires that the group jointly compute

the trusted operations using such UC secure protocols. In some particular cases, rather than

relying upon this generic approach (which is highly inefficient), we will point out specific efficient

methods for distribution of trust among such groups.

2.2 Global Setup Models

While cryptographers commonly strive to minimize the need for parties to place trust in entities

that they do not control, it is well known that many important cryptographic tasks fundamentally

require parties to place trust in some external authority. For example, it is impossible to establish

the identity of another party over an unauthenticated network (such as the Internet) without first

placing trust in a certification authority, or directly communicating at least once with the relevant

party via some kind of authenticated channel (which is often impractical). Thus, cryptographic

protocols frequently require access to some trusted setup mechanism, such as a certification

authority who can provide a Public Key Infrastructure (PKI).

Even though we must occasionally place some trust in an external authority, it is still impor-

tant to minimize the level of trust required. For instance, trusting an external authority not to lie

about my identity to others (and not to lie about the identity of others to me) is not the same as

trusting that authority with access to all my private information and private communications.2

This concern is further highlighted by the fact that trust is often fleeting – a government that is

trustworthy today may be overthrown in a coup tomorrow. In light of the preceding discussion,

we will strive to limit the powers that must be entrusted to the authority, as well as to provide

forward security with respect to the corruption of trusted parties, wherever possible.

To further complicate matters, we must also concern ourselves with the financial costs incurred

by the trusted authority. If the costs associated with providing trusted services are too high, it

can become difficult (or impossible) for parties to find entities they consider trustworthy that

2It is important to remember that if a corrupt authority could assume control of my identity
and also lie to me about the identity of others, it will be able to gain access to my private
communications by performing a “man-in-the-middle” attack. Still, “man-in-the-middle” attacks
require pre-meditation and must be perpetrated in an active manner, which implies a high risk
that the corrupt behavior of the authority will be noticed and exposed.

38

2 Preliminaries and Tools

can also provide such costly services. The startup and maintenance costs for a modern PKI are

already quite high, resulting in a limited availability of PKIs (despite the intense need for such

services). Thus, we also strive to minimize the costs associated with implementing the trusted

setup mechanism.

2.2.1 Common Reference String (CRS) Model

Perhaps the simplest (and least costly) form of global setup is a Common Reference String (CRS).

In this setup model, formally described in Figure 2.1, the trusted authority simply samples a

single random value and then publishes it once and for all. When Ḡcrs is implemented in practice,

the trusted authority never even needs to interact with any parties at all after publishing the

reference string – it is precisely this non-interactivity that makes the CRS model so “cheap” and

attractive.

Note that this setup does not bind the identities of parties in any way, so clearly it is not useful

for authentication purposes. Despite this shortcoming, a series of works inspired by [19, 23, 30]

have sought to use the CRS model to construct UC secure protocols (while assuming the presence

authenticated and private channels). However – lacking the availability of the GUC “shared

functionality” modeling – those works implicitly assumed that the CRS would only be accessible

to the adversary, and honest parties running a particular protocol. Notably, these prior works

did not allow the environment to have direct access to the CRS, which can lead to a loss of

deniability as we will see in Chapter 3.

We also observe that it is often possible to efficiently distribute trust in the CRS model using

the “Multi-string Model” approach of [56].

2.2.2 Augmented Common Reference String (ACRS) Model

Unfortunately, as we will see in Chapter 4, the CRS setup model is not strong enough to enable

GUC secure realizations of most cryptographic tasks – even if we assume that private and au-

thenticated channels are available. This situation is extremely disappointing, since we seem to be

left with no choice but to resort to using a full PKI when designing GUC secure protocols. Since

PKIs are extremely costly, we would like to find a “cheaper” setup model that still allows us to

39

2.2 Global Setup Models

Shared Functionality Ḡcrs

Parameterized by a distribution U , Ḡcrs proceeds as follows, when activated by any party
P :

Initialization: If this is the first activation, sample a reference string µ
$← U , and

record the value µ.

Return the value µ to the activating party P .

Figure 2.1: The (global) Common Reference String shared functionality. This is a shared
functionality in the GUC model, and therefore it differs from the original Common Reference
String functionality Fcrs discussed in [19, 23, 30], which only provides the reference string to the
parties that take part in the actual protocol execution. In particular, the environment does not
have direct access to the reference string in that model, whereas our global modeling allows the
environment to have such access.

design GUC secure protocols. With that goal in mind, we introduce the Augmented Common

Reference String (ACRS) model, described formally in Figure 2.2.

Much like the CRS model (and in contrast to the PKI model), the ACRS model does not

require honest parties to interact with the trusted authority. Unlike the CRS model, though,

the ACRS model requires the trusted authority to offer a (one-time use only) interactive “key

retrieval service” for parties who choose to use it. The keys provided by the retrieval service

are specific to the party identifier (pid) of the requesting party, but since honest parties are not

required to obtain their keys the authority only expects to hand out a small number of keys in

practice (even if there are a large number of parties using the setup). In particular, all protocols

realized in the ACRS model cannot actually use the key retrieval service, since the model only

allows corrupt parties to retrieve their keys. Thus, we are assured that honest parties need never

communicate interactively with Ḡacrs in practice.

As we will see in Chapter 4, in our protocols the keys provided by the “key retrieval service”

will only useful for attacking one’s own security. Somewhat counter-intuitively, it is necessary

for corrupt parties to be capable of violating their own security if they wish to conduct attack

simulations against our protocols, and therefore corrupt parties will be permitted to retrieve

these keys precisely so that they may simulate attacks on a protocol (without actually having to

attack the protocol in the real world). This is crucial for providing deniability (see Chapter 3),

so that honest parties can argue that the protocol interactions they had with corrupt parties

40

2 Preliminaries and Tools

did not actually take place, and were instead simulated by the corrupt parties (acting alone).

Notice, since these keys can be used to break one’s own security, it is actually important that

honest parties not attempt to retrieve their keys – or else they might inadvertently harm their

own security by revealing their key to the adversary (for instance, if the environment causes the

honest party to run a malicious protocol that leaks secret keys). To summarize, the end result is

that honest parties must not interact with the trusted authority to retrieve their keys, whereas

corrupt parties must be capable of retrieving their keys by interacting with the trusted authority.

Shared Functionality Ḡacrs

Parameterized by a security parameter λ and a pair of algorithms (Setup,Extract), Ḡacrs
proceeds as follows, when activated by any party P :

Initialization: If no value has been previously recorded, sample random coins r $←
{0, 1}λ and compute the CRS as µ← Setup(r), then record the pair (µ, r).

If P is honest, then return the value µ to P .

Key Retrieval: If P is corrupt, then compute SKP ← Extract(r, µ, P) and return
the pair (µ,SKP) to P .

Figure 2.2: The Augmented CRS shared functionality.

Remark: As was mentioned previously, it is possible to further reduce the level of trust required

in the Ḡacrs setup model by allowing the adversary to adaptively corrupt the trusted authority

after the completion of all secure protocol sessions. This scenario can be modeled by adding a

corruption instruction that causes the Ḡacrs functionality to supply the value r to the adversary.

If the security of any protocol sessions that have already completed prior to the corruption of the

trusted authority is not compromised, we say that the protocols are forward secure with respect

to corruptions of Ḡacrs. All of our protocols realized using the Ḡacrs model will be forward secure

with respect to the corruption of Ḡacrs.

Remark: In fact, it is even possible to naturally extend the efficient trust distribution technique

of [56] for use in the ACRS model by simply substituting our GUC secure commitment schemes

from Chapter 4 for the CRS based UC secure commitments used by [56]. Indeed, such distribution

41

2.2 Global Setup Models

of trust is even more important for the ACRS model, where the trusted authority must remain

available in the long term in order to provide the key retrieval service. Using the approach of

[56], the key retrieval service can remain available even after some of the parties in the trusted

group have gone offline – provided, of course, that a majority of the still-available members of

the group remain trustworthy.

2.2.3 Public Key Infrastructure (PKI) Model

In the Public Key Infrastructure (PKI) model, parties can request to register cryptographic

public keys with a trusted “certification authority” that will publish the public key and attest to

its validity. For the purposes of the present work, we choose to model a PKI that assumes Key

Registration with Knowledge of secret keys. That is, parties will provide both their public keys and

secret keys to the trusted certification authority, who will verify that the secret key corresponds to

the registered public key. We formally describe this model using the key registration functionality

described in Figure 2.3.

Intuitively, registration with knowledge ensures that parties cannot attempt to register com-

pletely malformed public keys or public keys belonging to other parties (since in either case,

the registering party will not be able to provide a corresponding secret key). At first, it might

seem that requiring parties to provide their secret keys to the certification authority increases the

required level of trust. In practice, though, it does not matter much for our intended applications

to authentication and commitment schemes. For instance, when using a PKI for authentication

purposes, the registration authority can already impersonate any party (even unregistered par-

ties) to any other party, even if no secret keys are provided during the registration process.3

3Technically, there are still some practical downsides to providing the certification authority
with secret keys, even if the PKI is only used for authentication. Knowledge of secret keys allows
the authority to impersonate parties in a totally transparent and spontaneous fashion, whereas
it may be possible to detect impersonations that require the certification authority to substitute
parties’ public keys. However, the potential threat this poses is overshadowed by the loss of
deniability that inevitably results when choosing not to provide secret keys to the certification
authority. A possible compromise was suggested in [6]: have the parties provide only their
public keys to the certification authority, and then (preferably while physically isolated from the
network) perform a standard zero-knowledge proof of knowledge for the corresponding secret key.

42

2 Preliminaries and Tools

Similarly, in the case of our application to commitment schemes, the certification authority can

always perform a simple substitution of public keys in order to break exactly the same security

properties of the commitments that are being protected by the secret keys (again, this can be

done even if no secret keys are provided during registration).

In addition to requiring key registration with knowledge, we also model the requirement that

honest parties protect their secret keys by refusing to provide them as input to all but a pre-

specified protocol denoted by Φ. (More generally, we will allow a Φ to include a pre-specified

list of protocols.) Indeed, since honest parties can be caused to run arbitrary protocols by the

environment, if we don’t place restrictions on which protocols are allowed access to the secret key

some protocol might publicize the secret keys of honest parties or otherwise “leak” information

about them. To formally model the intuitive requirement that secret keys are to be used only

with protocol(s) Φ, we parameterize the key registration functionality by a description of the code

for Φ and restrict the key registration functionality to provide honest parties with their secret

keys only if they are running this code. Otherwise, the key registration functionality refuses to

provide honest parties with their own secret keys, thus modeling the prohibition against using

the secret keys with other protocols. Corrupt parties, on the other hand, are still allowed to

retrieve their secret keys and use them in an arbitrary manner.

Remark: Our Ḡkrk functionality is very similar to that of [6]. However, [6] modeled their key

registration functionality without benefit of the “shared functionality” paradigm introduced with

the GUC model. Therefore, the entire PKI in their model is only visible to a single session of a

single protocol – most importantly, the environment was not allowed access to public keys. Such

modeling is not realistic, since public keys are long-lived and widely available in practice. By

making Ḡkrk a shared functionality, we are able to properly model the environment’s access to

public keys – but we then have to add some extra logic to the functionality to ensure that secret

keys are not leaked via abusive protocols. We view this extra logic as an advantage of the GUC

modeling – one is now forced to explicitly specify the usage requirements for secret keys directly

in the key registration functionality, thus making protocol designers aware of the requirements.

43

2.2 Global Setup Models

Shared Functionality ḠΦ
krk

Parameterized by a security parameter λ, a protocol (or, more generally, a list of pro-
tocols) Φ, and a (deterministic) key generation function Gen, shared functionality Ḡkrk
proceeds thusly when running with parties P1, . . . , Pn:

Registration: When receiving a message (register) from an honest party Pi that has
not previously registered, sample r $← {0, 1}λ then compute (PK i,SK i)← Genλ(r)
and record the tuple (Pi,PK i,SK i).

Corrupt Registration: When receiving a message (register, r) from a corrupt
party Pi that has not previously registered, compute (PK i,SK i) ← Genλ(r) and
record the tuple (Pi,PK i,SK i).

Public Key Retrieval: When receiving a message (retrieve, Pi) from any party
Pj (where i = j is allowed), if there is a previously recorded tuple of the form
(Pi,PK i,SK i), then return (Pi,PK i) to Pj . Otherwise return (Pi,⊥) to Pj .

Secret Key Retrieval: When receiving a message (retrievesecret, Pi) from a
party Pi that is either corrupt or honestly running the protocol code for Φ, if there
is a previously recorded tuple of the form (Pi,PK i,SK i) then return (Pi,PK i,SK i)
to Pi. In all other cases, return (Pi,⊥).

Figure 2.3: The Φ-Key Registration with Knowledge shared functionality.

Remark: In the non-erasure model, without loss of generality, we can restrict ourselves to

parameterizing with a function Gen that always outputs SK = r. Therefore, the adversary

will be able to learn the random coins used during generation of the public key PK i by simply

obtaining SK i from Ḡkrk after corrupting the honest party Pi. Furthermore, as in the case of the

Ḡacrs above, we can model the scenario where the certification authority is eventually corrupted

by the adversary. In this case, even the secret keys of honest parties are revealed to the adversary

after Ḡkrk has become corrupt. Once again, all our protocols in the PKI model will be forward

secure with respect to corruption of the certification authority in the non-erasure model.

Relationship to the “Bulletin Board” and “Bare Public Key” Models. One natural

question that arises from our discussion of the PKI setup model is whether or not a weaker

PKI modeling might suffice. For example, in the “bulletin board” setup model (also referred

to as an “ideal certification authority” in [21]), parties are allowed to generate their own public

keys and then post them in a public directory that allows anyone to obtain a particular party’s

44

2 Preliminaries and Tools

posted public key in an authenticated manner. The trusted entity responsible for maintaining the

bulletin board never attempts to learn any secret keys, nor does it even verify that parties possess

their own secret keys. Similarly, one might consider the “bare public key” model introduced by

[24], which is identical to the bulletin board model except that all parties are required to post

their public keys during an initialization phase that occurs before any network protocols are run

(a slightly stronger requirement).

Unfortunately, it would seem that any such “weak” PKI model that does not allow corrupt

parties to retrieve their own secret keys cannot be used to GUC-realize authentication even

against static corruptions (see Section 3.2.2). Similarly, the impossibility result of Section 4.2

implies that these setup models cannot be used to securely realize bit commitments even if

authenticated channels are already available. Nevertheless, we can still make use of a weak PKI

setup by combining it with another setup, such as an ACRS. For example, assuming that Identity

Based Encryption (IBE) schemes [13] exist, it is possible to obtain all the same feasibility results

in the combined bulletin board/ACRS setup model that we achieve in Chapters 3 and 4 when

using the (stronger) Ḡkrk setup notion. Informally, we can transform our Ḡkrk-hybrid model

protocols to use a combined Ḡacrs and bulletin board hybrid model instead, using the following

method:

Let the ACRS setup publish a global reference string containing 1) a reference string σ for

use with a standard Non-Interactive Zero-Knowledge proof (NIZK) [47] and 2) the master public

key MPK for an IBE scheme [13]. The ACRS setup entity will also provide corrupt parties with

IBE decryption keys for their own identities (but it will not provide them with any trapdoors for

the NIZK reference string).

Now, the original protocol in the Ḡkrk-hybrid model can be altered to instead use a bulletin

board (in combination with the aforementioned ACRS setup) by replacing all of the interactions

with Ḡkrk as follows:

Registration: Party Pi first generates an ordinary a public key/secret key pair (PK i,SK i)

along with an IBE encryption (under identity Pi) of the corresponding secret key SK i, and

a NIZK proof that the resulting IBE ciphertext actually contains an encryption of a valid

secret key for PK i. Party Pi then posts PK i along with the IBE ciphertext and the NIZK

45

2.2 Global Setup Models

proof to the bulletin board. Furthermore, Pi records SK i for later use.

Public Key Retrieval: Retrieve Pi’s posting from the public bulletin board, and check the

NIZK proof to make sure the IBE ciphertext contains a valid copy of SK i corresponding to

PK i. If the NIZK proof verifies correctly, return PK i as Pi’s public key. Otherwise, return

⊥.

Secret Key Retrieval: If the code of the original protocol is indeed allowed to access the

honest party Pi’s secret key in the ḠΦ
krk model, then party Pi running the altered protocol

will simply look up its internal record of SK i and return it. Otherwise, return ⊥.

Of course, we must also require that all honest parties in the bulletin board model do not use

their secret keys except with ḠΦ
krk-hybrid protocols that have been altered in this fashion.

Intuitively, posting these IBE ciphertexts (along with the NIZK proof of validity) alongside

the public keys assures all other parties that if some party P is corrupt, then P can always

retrieve its own secret key by first obtaining the IBE decryption key for its own identity from the

ACRS setup entity and then decrypting the IBE ciphertext. In particular, this guarantee enables

us to employ the same GUC simulation techniques used by our Ḡkrk-hybrid model protocols in

order to simulate the “altered” protocols. We omit the formal proof of this claim4 since the

details are straightforward (and somewhat tedious).

In practice, however, there is little advantage to using this weakened setup model. Although

the trusted entity responsible for maintaining the bulletin board does not learn any secret keys,

as was previously mentioned, it can still violate the security of honest parties by generating a

fresh public key and (illegitimately) posting it in place of the victim’s own public key. However,

this attack is more noticeable – for example, the victim might observe that an illegitimate public

key has been issued for its identity, giving the victim the opportunity to “cry foul” in a public

venue. On the other hand, when using our Ḡkrk PKI setup, the certification authority (i.e.,

the trusted setup entity) might “silently” abuse knowledge of a party’s secret key (for example,

by impersonating the party) without providing the victim with any hint of the attack. Notice,

4Note, we do not claim to have a general transformation from protocols using Ḡkrk to protocols
in the combined Ḡacrs and bulletin board setup model. Rather, our specific protocols are easily
shown to maintain their security after the above transformation.

46

2 Preliminaries and Tools

however, that the ACRS setup entity also has the capability to silently abuse its knowledge of

secret keys – therefore, when combining the bulletin board setup with the ACRS setup, there

is still the potential for such “silent” attacks. Perhaps the best that can be said about the

weakened model is that one has to place complete trust only in the ACRS setup entity (which

is less expensive to maintain, increasing the likelihood that trustworthy parties are willing to do

so), as well as placing slightly less trust in a bulletin board setup entity (since it is more likely

to be detected if it “cheats”).

2.2.4 The Random Oracle (RO) Model

The Random Oracle (RO) model is a very powerful and widely used technique for designing

efficient cryptographic protocols (see [11]). Intuitively, in the RO model some particular cryp-

tographic hash functions are assumed to be essentially opaque to analysis, allowing protocol

designers to model them as if they were random functions. While it is provably impossible to

instantiate any cryptographic hash function satisfying this “random oracle” property (e.g., see

[25]), practitioners continue to make use of the RO model since attacks that exploit the gap

between well-designed cryptographic hash functions and (purely theoretical) random oracles are

generally considered to be unlikely.

Although, as we will see, the RO model does not appear to be useful when we consider the

feasibility of designing GUC secure protocols for most tasks, it can still be applied to improve the

efficiency of GUC secure protocols. Since cryptographic protocols that are not highly efficient are

unlikely to be used in practice, demonstrating that GUC secure protocols can be made efficient

is an important goal of the present work. To that end, when studying the design of efficient GUC

secure protocols in Chapter 5, we will demonstrate an application of the RO model to improving

the efficiency of GUC secure protocols. A formal description of the RO model setup assumption

is given in Figure 2.4.

Remark: Our modeling of random oracles differs from previous works in the UC framework,

which modeled the random oracle using a standard ideal functionality rather than as a shared

functionality. The interpretation of the ideal functionality modeling is that the cryptographic

hash function used to instantiate the random oracle must be made available only to the parties

47

2.3 Honest Verifier Zero-Knowledge

Shared Functionality Ḡro

Parameterized by a security parameter λ, the shared functionality Ḡro proceeds as follows
when activated by any party P :

Upon receiving a message (P, sid, x) from party P , if there is a record of the form
(x, v) then return v to P . If no such record exists, then sample a random value
v

$← {0, 1}λ, record the pair (x, v), and return v to P .

Figure 2.4: The (global) Random Oracle shared functionality.

participating in the protocol and to the adversary, but not to the external environment. This

interpretation does not reflect reality – in fact, other parties who are not involved in the same

protocol can also make use of the same cryptographic hash function. Once consequence of this

unrealistic interpretation is that the UC simulator can seemingly replace the random oracle by

intercepting random oracle queries (observing them), and “programming” arbitrary responses to

those queries. On the other hand, modeling the random oracle as a shared functionality assumes

that everyone has access to the cryptographic hash function, which is much more realistic. With

this GUC based approach to modeling, the simulator can no longer replace the random oracle

(nor even observe the random oracle queries) since the environment itself can interact directly

with the random oracle, cutting the simulator out of the picture entirely. This has particular

importance for the issue of deniability, which we study in Chapter 3.

2.3 Honest Verifier Zero-Knowledge

Zero-Knowledge (ZK) proof protocols, first introduced in [55], are a fundamental building block

used in many cryptographic protocols. In particular, ZK proofs can be used to transform pro-

tocols that are only secure against so-called “honest but curious” adversaries (who always obey

the protocol) into protocols that are secure even against malicious adversaries (who may attempt

to deviate from the protocol).5 Indeed, we will focus significantly on the matter of designing

efficient GUC secure ZK proofs in Chapter 5 due to their widespread utility.

5Essentially, the transformation consists of having parties send ZK proofs showing the correct-
ness of their protocol flows, relative to a particular (previously committed, but hidden) protocol
input.

48

2 Preliminaries and Tools

In this section, we discuss some specific definitions for more traditional ZK proof protocols

with standalone security (rather than GUC security) that are used as building blocks in some of

our other constructions (ultimately working towards GUC secure protocols). These definitions

are not new, but we have slightly tailored some of the definitional details and presentational

issues for our own applications.

2.3.1 Σ-Protocols

The most basic ZK proof protocols that we will consider in this work are commonly known as

Σ-protocols (see [68, 35]). Intuitively, Σ-protocols are three move protocols for proving some

particular NP-relation in zero-knowledge.

Definition 2.1. Let X,W , and L ⊂ X be finite sets. We refer to an element x ∈ X as

an “instance”, an element w ∈ W as a “witness”, and the set L as a “language”. Furthermore,

assume there is an efficiently testable binary relation R, such that for all x ∈ L we have (x,w) ∈ R

for some w ∈ W . (Here we define “efficiently testable” to mean R runs in time polynomial in

|x|, and therefore we must also have that |w| ≤ poly(|x|).)

Consider a three move protocol run between a prover P , with input (x,w) ∈ R, and a verifier

V with input x, executed as follows. P chooses some random coins ra, computes a← A(x,w, ra),

and sends a to V . V then chooses a random string c (the “challenge”), and sends it to P . Finally,

P computes and responds with z ← Z(x,w, ra, c). The verifier V then computes and outputs

the result of B(x, a, c, z), which returns either accept or reject. We require that A, Z, and B

be (deterministic) poly-time algorithms, and that |c| ≤ poly(|x|). Such a protocol is called an

Σ-Protocol for the language L if it satisfies the following properties:

� Completeness - If (x,w) ∈ R then an interaction between P (x,w) and V (x) – follow-

ing the procedure outlined above – causes the verifier to output accept with overwhelming

probability.

� Special HVZK (Honest Verifier Zero-Knowledge) - There exists a PPT algorithm

ZKSim (a “Zero-Knowledge simulator”), such that every PPT distinguisher D has at most

negligible advantage in the following game:

49

2.3 Honest Verifier Zero-Knowledge

1. D computes (x,w) ∈ R along with a challenge c, and sends (x,w, c) to the challenger.

2. The challenger chooses b ∈ {0, 1} and some coins r at random, and computes the

following:

if b = 0: a← A(x,w, r), z ← Z(x,w, r, c)

if b = 1: (a, z)← ZKSim(x, c, r)

The challenger then sends (a, z) to D.

3. D outputs a guess b̂ ∈ {0, 1}.

4. D’s advantage is defined to be |Pr[b = b̂]− 1/2|.

Attack Game 1: Special HVZK Attack Game

To simplify analysis, we additionally require that ZKSim must always output either a “valid”

pair (a, z), i.e., such that B(x, a, c, z) outputs accept, or an error condition.6

Intuition: Essentially, this means that for any efficiently computable challenge c, it is

possible to produce a protocol transcript computationally indistinguishable from an actual

run with a prover (who knows w), even without knowledge of w. Furthermore, we require

that the indistinguishability holds even if the distinguisher knows the witness w. (This

additional requirement is slightly stronger than the usual HVZK property.) We chose to

define the HVZK security property in the form of an interactive game in order to ensure

that the challenge is generated computationally, which facilitates the use of certain number

theoretic assumptions (such as Strong RSA) for constructing Σ-protocols.

� Special Soundness - There exists a PPT algorithm Erw (a “rewinding extractor”), such

that every PPT adversary D wins the following game with at most negligible probability:

6Note that this requirement does not further restrict the class of languages with Augmented
Σ-protocols.

50

2 Preliminaries and Tools

1. D computes (x, a, c, z, c′, z′), where c 6= c′, and sends it to the challenger.

2. The challenger computes w ← Erw(x, a, c, z, c′, z′).

3. D wins if both B(x, a, c, z) and B(x, a, c′, z′) return accept, but (x,w) 6∈ R.

Attack Game 2: Special Soundness Attack Game

Augmented Σ-Protocols

Since we are attempting to construct protocols that will remain secure even in the presence of

adaptive corruptions, we would naturally like to ensure that Σ-protocol HVZK simulations are

indistinguishable from actual “honest” proofs even after random coins are revealed. To that

end, we will consider an “augmented” definition of Σ-protocols that adds a new reverse state

construction property. This property will allow us to construct “fake” state information after

honest runs of the Σ-protocol (with a prover who knows the witness), in order to make them

appear as if they were instead output by the zero-knowledge simulator (which does not require

knowledge of the witness). This property is closely related to the “non-erasure” Σ-protocols of

[35], which instead satisfy the state construction property – that is, it is possible to create random

coins making it appear as if a simulated proof (originally computed without the witness) were

an honest proof. Both reverse state construction and state construction properties are used to

deal with adaptive corruptions, but they are each applicable to different simulation scenarios.

In particular, while we will be making use of reverse state construction, none of our simulation

techniques happen to require the use of state construction.

We now formally state the properties of Augmented Σ-protocols (in particular, we define the

reverse state construction property):

Definition 2.2. An Augmented Σ-protocol is a three move protocol which, in addition to satis-

fying the properties of Σ-protocols given in Definition 2.1, also satisfies the following property:

� Reverse State Construction - There exists a PPT algorithm RSC such that every PPT

distinguisher D has at most negligible advantage in the following game:

51

2.3 Honest Verifier Zero-Knowledge

1. D computes (x,w) ∈ R along with a challenge c, and sends (x,w, c) to the challenger.

2. The challenger samples coins ra and rs from a uniformly random distribution, and

then computes (a, z) ← ZKSim(x, c, rs), a′ ← A(x,w, ra), z′ ← Z(x,w, ra, c), and

r′s ← RSC(x,w, ra, c). Then the challenger chooses a random bit b ∈ {0, 1}, and

proceeds as follows:

if b = 0: Send (a, z, rs) to D.

if b = 1: Send (a′, z′, r′s) to D.

3. D outputs a guess b̂ ∈ {0, 1}.

4. D’s advantage is defined to be |Pr[b = b̂]− 1/2|.

Attack Game 3: Reverse State Construction Attack Game

N.B.: For the case b = 1, the values of a′ and z′ being supplied to D in the game above

come from the outputs of A and Z, not ZKSim. Therefore, in order for the values of a′ and z′

observed by D to remain consistent with r′s, it must be true with overwhelming probability that

ZKSim(x, c,RSC(x,w, ra, c)) (the “simulation” output resulting from the coins produced by the

Reverse State Construction procedure) yields the same choice of a′ and z′ as are produced by A

and Z when using the random coins ra. Otherwise, D would notice the inconsistency and could

correctly guess that b̂ = 1 whenever a discrepancy occurs, giving D a non-negligible advantage.

Intuition: This additional property ensures that after a standard run of the Σ-protocol, it is

possible for the prover to find some pseudo-random input for the simulator causing it output

the same transcript. Furthermore, even a distinguisher who knows the witness cannot determine

whether those pseudo-random coins were chosen using this reconstruction procedure or not (i.e.,

whether they are truly random). It is easy to verify that this property actually implies the

above Special HVZK property of Σ-protocols as well. The reasons for this particular additional

requirement will become clear in Section 2.4.

52

2 Preliminaries and Tools

2.3.2 Ω-Protocols

The notion of an Ω-protocol was introduced in [50]. While our notion of an Ω-protocol is the same

in spirit as that in [50], we also introduce some new properties, and there are a few points where

the technical details of our definition differ. We will need these slightly specialized definitions in

order to accommodate the specific number theoretic constructions used in our application of Ω

to construction efficient GUC secure protocols in Chapter 5.

Intuitively, Ω-protocols are Σ-protocols that have an extra “trapdoor soundness” property.

In particular, Ω protocols accept a “reference parameter” as an additional input. A party who

possesses a trapdoor for the reference parameter is capable of extracting the witness used by the

prover from the transcript of any honest run of the HVZK proof. That is, it is possible to extract

the witness from an Ω-protocol without rewinding the prover (when given knowledge of the

trapdoor). The notion of trapdoor soundness is closely related to that of verifiable encryption

[2, 17]. Indeed, all known constructions of Ω-protocols boil down to using a public key for a

semantically secure encryption scheme as reference parameter, where the trapdoor is the secret

key; the prover encrypts a witness, and then proves that it did so using a Σ-protocol.

Here we will also introduce an additional “system parameter” that is of little conceptual

importance, but is merely a technical requirement for our number theoretic instantiations of Ω-

protocols. The system parameter is used to determine the sets X, W , and L, over which the Ω

protocol may operate. Note that the system parameter should never be “trapdoored”.

We now proceed to formally define the properties of Ω protocols.

Definition 2.3. Let ParamGen be an efficient probabilistic algorithm that takes as input 1λ,

where λ is a security parameter, and outputs a system parameter Λ. The system parameter Λ

determines the finite sets X,W , and L ⊂ X, as well as an efficiently testable binary relation R,

such that for all x ∈ L we have (x,w) ∈ R for some w ∈W . The sets X and W , and the relation

R should be efficiently recognizable (given Λ). There is also an efficient probabilistic algorithm

RefGen that takes as input a system parameter Λ and outputs a pair (ρ, τ), where ρ is called a

reference parameter, and τ is called a trapdoor. Furthermore, suppose that there are algorithms

53

2.3 Honest Verifier Zero-Knowledge

A, Z, and B satisfying the same properties as a Σ-protocol (only, here these algorithms are

additionally parameterized by the system parameter Λ and the reference parameter ρ).

Such a protocol is called an Ω-Protocol for the language L if it satisfies all the security

properties of Σ-protocols whenever Λ and ρ are honestly generated and the following additional

property is satisfied:

� Trapdoor Soundness - There exists a PPT algorithm Etd, called the trapdoor extractor,

such that every PPT adversary D has at most negligible probability of winning in the

following game:

1. The challenger generates a system parameter Λ and a reference parameter/trapdoor

pair (ρ, τ), and then sends (Λ, ρ) to D.

2. A computes x ∈ X and first flow a, then sends the pair (x, a) to the challenger.

3. The challenger generates a random challenge c, and sends it to D.

4. D generates a response z, and sends this to the challenger.

5. The challenger runs Etd on input (Λ, τ, x, a, c, z), obtaining a value w.

6. D wins if (a, c, z) is an accepting conversation for x, but (x,w) 6∈ R (i.e., w is not a

witness for x).

Attack Game 4: Trapdoor Soundness

We also define a slightly weaker variant of Ω-protocols that have only partial trapdoor sound-

ness. Intuitively, partial trapdoor soundness means that a party in possession of the trapdoor

can only learn some function of the prover’s witness from an honest proof transcript (rather

than learning the entire witness). In particular, this weaker soundness requirement is useful in

our number theoretic construction of an Ω-protocol for proving knowledge of a decommitments.

Namely, in our construction, the trapdoor extractor outputs the message contained in the com-

mitment without also extracting the random coins used to commit, even though these random

coins are a part of the witness.

54

2 Preliminaries and Tools

Definition 2.4. We say that an Ω-protocol is only partial trapdoor sound if it satisfies all the

properties of Ω-protocols, except that the trapdoor soundness property is replaced with the

following weaker requirement:

� Partial Trapdoor Soundness - There exists a PPT algorithm Etd, called the trapdoor

extractor, such that every PPT adversary D has at most negligible probability of winning

in the following game:

1. The challenger generates a system parameter Λ and a reference parameter/trapdoor

pair (ρ, τ), and sends (Λ, ρ) to D. Note that Λ defines X,L,W,R as above.

2. D computes x ∈ X, along with two accepting conversations (a, c, z) and (a, c′, z′) for

x, where c 6= c′, and gives these to the challenger.

3. The challenger then runs Erw on input (Λ, ρ, x, a, c, z, c′, z′), obtaining w ∈W .

The challenger also runs Etd on input (Λ, τ, x, a, c, z), obtaining a value v.

4. D wins if w is not a witness for x, or if v 6= f(w).

Attack Game 5: Partial Trapdoor Soundness

Remark: Using a standard rewinding argument ([10]), it is easy to show that partial trapdoor

soundness property implies the trapdoor soundness property when f is the identity function,

assuming the size of the challenge space is large (i.e., super-polynomial).

Finally, we state an additional useful variant of Ω-protocols that is important in our appli-

cations: Ω-protocols with dense reference parameters, which we sometimes abbreviate to the

shorter name dense Ω-protocols. Intuitively, this refers to the class of Ω-protocols with reference

parameters that can be chosen via random sampling while remaining indistinguishable from those

produced by RefGen. As we will see in Chapter 5, this enables us to use a coin-flipping protocol

to allow parties to agree upon a reference parameter.

Definition 2.5. We say that a (partial trapdoor sound) Ω-protocol has dense reference param-

eters, or that it is a dense Ω-protocol, if it satisfies the following additional properties:

55

2.3 Honest Verifier Zero-Knowledge

Recall that ρ belongs to Φ̂, which is determined by Λ. Let Φ be some larger set, also deter-

mined by Λ. We call elements of Φ extended reference parameters. Further suppose that:

� we have an efficient algorithm that samples the uniform distribution on Φ — this algorithm

takes Λ as input;

� we have an efficient algorithm that determines membership in Φ — this algorithm also

takes Λ as input;

� we have an efficiently computable binary operation on Φ that makes Φ into an abelian

group; the inverse operation of the group should also be efficiently computable;

� it is computationally infeasible to distinguish a random element of Φ from a random element

of Φ̂.

The last condition may be stated more precisely as saying that every PPT distinguisher D

has at most negligible advantage in the following attack game:

1. The challenger generates a system parameter Λ. This determines sets Φ̂ and Φ as

above.

2. The challenger chooses b ∈ {0, 1} at random, and computes an extended reference

parameter ρ in one of two ways, depending on b:

� if b = 0, then ρ← RefGen(Λ);

� if b = 1, then ρ
$← Φ.

The challenger sends ρ to D.

3. D outputs b̂ ∈ {0, 1}.

4. D’s advantage is defined to be |Pr[b = b̂]− 1/2|.

Attack Game 6: Dense Reference Parameters

56

2 Preliminaries and Tools

2.3.3 Constructing Augmented Σ-protocols from One Way Functions

Here we briefly describe a generic technique for constructing an Augmented Σ-protocol for any

NP-relation. First, we observe that every NP-relation is known to have such an ordinary Σ-

protocol if one-way functions exist [48, 52, 12]. Specifically, the protocol of [12] (wherein the

prover commits to a permutation of a graph with a Hamiltonian cycle, and is challenged to re-

veal either a cycle or the permutation) is easily shown to support the requirements of augmented

Σ-protocols if we use a commitment scheme that yields pseudo-random commitments. In partic-

ular, the reverse state construction property can be achieved by simply producing random coins

corresponding to the graph opened by the simulator, along with coins yielding the same values as

all the unopened commitments (which were actual commitments edges in the graph, although we

can now pretend that they were simply random strings by relying on the pseudo-randomness of

the commitments). Note that the existence of the required pseudo-random commitment schemes

based on one-way functions is a fairly straightforward consequence of [57] and [70].

2.3.4 Constructing Ω-protocols from Σ-protocols

We now briefly sketch how to efficiently construct an Ω-protocol Π for a relation R, given any

efficient Σ-protocol Ψ for relation R. Furthermore, we show how to achieve the dense reference

parameter property for the Ω-protocol, assuming the existence of a “dense” semantically secure

encryption scheme.

Intuitively, we want to apply a transformation to Ψ that adds both the dense reference

parameter and trapdoor extractability properties while carrying over Ψ’s existing Σ-protocol

properties.

Let the reference parameter for Π be the public key pk for a “dense” semantically secure en-

cryption Enc (where the dense property of the encryption scheme simply satisfies the requirements

of the Dense Reference Parameter property of Ω protocols). For instance, standard El-Gamal

encryption will suffice for this purpose (under the DDH assumption). Let ψ = Encpk (s,m) denote

an encryption of message m with random coins s.

Let a, zc denote the first and last messages (respectively) of the prover in protocol Ψ when

operating on input (x,w, r) and with challenge c, where (x,w) ∈ R and r denotes the random

57

2.4 Identity-Based Trapdoor Commitments

coins of the prover. The three messages to be sent in protocol Π will be denoted as a′, c′, z′.

Intuitively, we will use a cut-and-choose technique to provide extractability, and then amplify

the soundness by parallel repetition k times. The first message a′ of Π is constructed as follows:

1. For i = 1, . . . , k, choose random coins ri and compute ai, z0
i , and z1

i using the prover input

(x,w, ri).

2. For i = 1, . . . , k, compute ciphertexts ψ0
i = Encpk (s0

i , z
0
i) and ψ1

i = Encpk (s1
i , z

1
i).

3. Set a′ := (ψ0
1 , ψ

1
1 , . . . , ψ

0
k, ψ

1
k).

The challenge c′ sent to the prover in Π is a k-bit string c′ = c′1c
′
2 . . . c

′
k. The last message z′

of protocol Π is then constructed as follows:

1. For i = 1, . . . , k, set z′i := (sc
′
i
i , z

c′i
i).

2. Set z′ := (z′1, . . . , z
′
k).

The verifier’s algorithm for Π is simply constructed accordingly, verifying that all the cipher-

texts were correctly constructed, and that the corresponding conversations for Ψ are valid.

Theorem 2.6. Π constructed as above is an Ω-protocol for relation R, provided that Ψ is a

Σ-protocol for relation R and Enc is a dense one-time semantically secure public key encryption

scheme.

The proof of this theorem is entirely straightforward, and is left as an exercise.

2.4 Identity-Based Trapdoor Commitments

We now define a tool that is central to our constructions in Chapter 4: Identity-Based Trapdoor

Commitments (IBTCs). Our IBTC definition is actually a slight generalization of the identity-

based chameleon hash functions first introduced in [3]. Any Identity-Based Chameleon Hash

function is sufficient (but not necessary) to yield an IBTC.

Definition 2.7 (IBTC). An Identity-Based Trapdoor Commitment scheme IC is given by

a 5-tuple of PPT algorithms IC = (Setup,Extract,Com,ECom,Eqv), with the following basic

properties:

58

2 Preliminaries and Tools

� Setup: A deterministic algorithm which takes as input a (uniformly random) “master secret

key” MSK ∈ {0, 1}λ (where λ is a security parameter), and outputs a public key PK .

� Extract: On input (ID ,MSK) outputs a trapdoor SK ID for identity ID .

� Com: A deterministic algorithm which takes as input a tuple of the form (PK , ID , d,m),

and outputs a commitment κ for message m under identity ID using random input d. The

domain from which d is chosen is denoted by D. As a shorthand, we may write ComID(d,m)

to denote Com(PK , ID , d,m).

� ECom: On input (PK , ID ,SK ID) outputs a pair (κ, α), to be used with Eqv.

� Eqv: On input (PK , ID ,SK ID, κ, α,m) produces a value d ∈ D such that ComID(d,m) = κ.

That is, d makes κ appear to be a commitment to m.

Following conventional terminology, we refer to κ as a “commitment” for identity ID and the

pair (d,m) as the corresponding “decommitment”. A commitment c for identity ID is said to

“open to” a certain message m using the decommitment pair (d,m) if c = Com(PK , ID , d,m).

Furthermore, Identity-Based Trapdoor Commitments are required to satisfy the following

security properties:

� Binding - Every PPT adversary A wins the following game with negligible probability:

1. The challenger computes MSK $← {0, 1}λ, PK ← Setup(MSK), and then sends PK

to A.

2. A is allowed to query an oracle for Extract(PK , ·,MSK) (many times).

3. A outputs (ID , d,m, d′,m′).

4. A wins if ID was not submitted to the Extract oracle in Step 2 and m 6= m′, but

ComID(d,m) = ComID(d′,m′).

Attack Game 7: Binding Attack Game (for IBTCs)

� Equivocability - Every PPT adversaryA has at most negligible advantage in the following

game:

59

2.4 Identity-Based Trapdoor Commitments

1. The challenger computes MSK $← {0, 1}λ, PK ← Setup(MSK), and then sends MSK

to A (unlike the previous game, where only PK was provided to A).

2. A chooses an identity ID and a message m, and sends (ID ,m) to the challenger.

3. The challenger chooses b ∈ {0, 1} at random, and computes d ∈ D in one of two ways,

depending on b:

– if b = 0, then d
$← D;

– if b = 1, then SK ID ← Extract(PK , ID ,MSK), (κ, α)← ECom(PK , ID ,SK ID),

d← Eqv(PK , ID ,SK ID , κ, α,m).

The challenger then sends d to A.

4. A outputs a “guess” b̂ ∈ {0, 1}.

5. A’s advantage is defined to be |Pr[b̂ = b]− 1/2|.

Attack Game 8: Equivocability Attack Game (for IBTCs)

Remark: Throughout this work, our efforts are directed towards obtaining security in the

presence of adaptive corruptions. Therefore, we only consider IBTCs that utilize the random

input to Com as the decommitment, rather than a more general notion that allows for Com to

generate a separate decommitment value. Similarly, we require all the random coins input to

Setup to come from MSK in order to enable forward security (i.e., to tolerate adaptive corruption

of the trusted setup party).

Intuition: Roughly speaking, the security properties of IBTCs consist of two natural computa-

tional security properties known as “binding” and “equivocability”. The binding property states

that any adversary, given only knowledge of PK and the secret keys of some users other than ID ,

cannot produce a commitment for ID with two different openings. The equivocability property

guarantees that the output of Eqv is indistinguishable from a uniformly random choice of d, even

60

2 Preliminaries and Tools

to an adversary who knows MSK (this is required for forward security reasons). In other words,

Eqv allows one to open a special “equivocable commitment” κ produced by ECom in such a way

that κ is indistinguishable from a normal commitment to m generated via Com(PK , ID , d,m)

(rather than ECom), even though m had not yet been specified when κ was actually produced

using ECom.

2.4.1 Constructing Identity-Based Trapdoor Commitments

Our approach is based on the technique from [46] for constructing commitment schemes from

Σ-protocols, only we will be making use of Augmented Σ-protocols in order to obtain security

against adaptive corruptions. In particular, we will make use of signature schemes that have

Augmented Σ-protocols for proving knowledge of a signature. The following theorem summarizes

the results of our IBTC construction technique:

Theorem 2.8. There exists an efficient construction of an IBTC from any signature scheme

with an “augmented Σ-protocol”. In particular, such signature schemes exist if one-way functions

exist, and can be efficiently constructed under the Strong RSA assumption.

The proof follows immediately from the details of the construction, which we now outline:

Let Υ = (Gen,Sig,Ver) denote any signature scheme that is existentially unforgeable against

chosen message attack (i.e., it is UF-CMA secure). Define a relation RΥ(x,w) such that (x,w) ∈

RΥ if either 1) x = 〈VK ,m〉 and w = σ such that Ver(VK ,m, σ) = accept; or 2) w = rg such

that (VK ,SK) = Gen(rg, 1λ) and SK is a valid signing key corresponding to VK (that is, w

contains all the random coins used by the Gen algorithm when producing VK and SK). We say

that Υ has an Augmented Σ-protocol if there is an Augmented Σ-protocol for the relation RΥ.

Remark: The second case of RΥ, which allows rg to be used as a witness, is necessary to ensure

that the properties of the Augmented Σ-protocol for the signature scheme are preserved even with

respect to adversaries who eventually learn rg. We ultimately rely on this property for “forward

security” purposes, in case the trusted setup party who generates VK is later corrupted. Of

course, since Gen(rg, 1λ) yields the signing key SK , if the witness is rg we can use it to compute

61

2.4 Identity-Based Trapdoor Commitments

a signature witness σ satisfying the form of the first case. Therefore, if there is an Augmented

Σ-protocol for signatures, we can easily transform it into an Augmented Σ-protocol for RΥ by

simply having provers with a witness rg compute the appropriate signature witness, and then

run the original Augmented Σ-protocol using the signature witness (of course, a prover who

starts with a signature witness simply runs the original protocol). This transformation does not

at all impact the efficiency of the original protocol, and it is easily verified that all properties

of Augmented Σ-protocols hold for the transformed protocol with respect to the relation RΥ.

Therefore, we observe that it is sufficient to have an Augmented Σ-protocol for the signature

scheme alone, despite our use of the slightly more involved relation RΥ.

Given such a signature scheme, we can construct an Identity-Based Trapdoor Commitment

scheme as follows:

� Setup(1λ): Compute (VK ,SK)← Gen(rg; 1λ), where rg denotes the random coins used by

the Gen algorithm. Return the pair (PK = VK ,MSK = rg).

� Extract(PK , ID ,MSK): Run Gen(MSK , 1λ) to obtain SK . Compute σID = Sig(SK , ID).

Return SK ID = σID .

� Com(PK , ID , d,m): Compute (a, z)← ZKSim(x = 〈PK , ID〉, c = m, rs = d), where ZKSim

is the Σ-protocol simulator for RΥ. Return the commitment κ = a.

� ECom(PK , ID ,SK ID): Sample random coins ra from a uniform distribution and then com-

pute a = A(x = 〈PK , ID〉, w = SK ID , ra). Return the pair (κ = a, α = ra).

� Eqv(PK , ID ,SK ID , κ, α,m): Set rs = RSC(x = 〈PK , ID〉, w = SK ID , ra = α, c = m).

Return d = rs.

Intuition: The message m is used as the “challenge” flow on which to run the Zero-Knowledge

simulator for the Σ-protocol, producing the prover’s first flow a and a response z. Only the

first value, a, is used to form the commitment κ. The decommitment d consists of exactly the

random coins rs used to conduct the simulation. The prover’s response flow z is not used at all.

This is a slight departure from the technique of [46], which instead uses z as the decommitment

62

2 Preliminaries and Tools

and requires the recipient to verify that B(a, c, z) outputs accept. In this work, we allow the

eventual (adaptive) corruption of the committer, in which case all random coins used in the

HVZK simulation must be revealed. Since security must hold against an adversary who can

eventually learn the random coins rs (used by the HVZK simulation algorithm ZKSim to produce

the pair (a, z) for the Σ-protocol), we can simplify our protocols by allowing the random coins

rs to serve directly as the decommitment. Nevertheless, when considering specific instantiations,

in practice it may be more efficient to send z as the decommitment (using the approach of [46])

rather than rs (even though rs must still be provided to the adversary when the committer is

corrupted).

Equivocation of a commitment is achieved by using knowledge of the witness w (i.e., the

equivocation trapdoor SK ID) to “honestly” conduct the Σ-protocol proof (instead of simulating)

so that the prover can later respond to any “challenge” (thus opening the commitment to any

message), even though the first flow was already sent as the commitment. Once again, we avoid

the need to send the response flow z by sending the random coins rs as the decommitment

instead, and, therefore, we make use of the Reverse State Construction algorithm to produce the

decommitment.

We are now ready to prove Theorem 2.8.

Proof of Theorem 2.8. We will prove that the previously described implementation is a secure

IBTC. It is easy to verify the correctness of the implementation, so we will proceed directly to

prove the security properties:

� Binding. Suppose there is an adversary A breaking the binding property of the commit-

ment scheme. We describe a reduction that forges signatures for Υ (in the UF-CMA attack

game) by acting as the challenger for A in the security game for the binding property of

the IBTC as follows:

1. To forge a signature in a UF-CMA attack game with verification key VK , the chal-

lenger sets PK = VK and sends PK to A.

2. The challenger then responds to A’s queries to the Extract(PK , ·,MSK) oracle by

63

2.4 Identity-Based Trapdoor Commitments

simply forwarding them to the signature oracle in the UF-CMA game, and returning

the responses. (It is easy to verify that this yields the correct output.)

3. Wait until A outputs a tuple (ID , d,m, d′,m′).

4. If A wins the binding attack game, then ID was never queried to the oracle, and

κ = ComID(d,m) = ComID(d′,m′). In this case, we may compute pairs of the form

(κ, z) ← ZKSim(〈PK , ID〉,m, d) and (κ, z′) ← ZKSim(〈PK , ID〉,m′, d′). That is, we

now have two accepting transcripts for the Augmented Σ-protocol which begin with

the same first flow, enabling us to use the rewinding extractor (from the soundness

property) to obtain: w ← Ext(〈PK , ID〉, κ,m, z,m′, z′). With overwhelming proba-

bility, w is a valid witness and therefore either contains a signature σID such that

Ver(PK , ID , σID) accepts, or the random coins needed to recover the signing key itself

(in which case it is easy to produce a forgery). Since ID was never queried to the

oracle in the binding attack game, the reduction never queried it to the signing oracle

in the UF-CMA game, and thus the reduction may output σID as a new forgery.

That is, whenever A succeeds in breaking the binding property of our IBTC construc-

tion, the reduction outputs a forgery with overwhelming probability. Clearly then, if the

signature scheme is unforgeable, the binding property must hold.

� Equivocability. Equivocability of commitments follows immediately from the Reverse

State Construction property of Augmented Σ-protocols. Clearly, any adversary capable of

distinguishing the output of Eqv from random coins (when given access to MSK), can also

be used to distinguish the output of RSC (when using a witness containing rg). That is, set

x = 〈PK , ID〉 and w = rg in the Reverse State Construction game, and feed the resulting

challenge to the adversary who breaks the equivocability of the commitment scheme, then

output the same guess as the equivocability adversary. It is easy to verify that the resulting

advantage in the Reverse State Construction game is the same as that of the adversary

attacking the equivocability property of the commitment scheme.

64

2 Preliminaries and Tools

Signature Schemes with Augmented Σ-Protocols

To complete the construction of IBTCs, it remains to construct a signature scheme with an aug-

mented Σ-protocol for the knowledge of the signature. Recall that, by the result of Section 2.3.3,

there exists an Augmented Σ-protocol for any NP-relation.

Since signature schemes can also be constructed from one-way functions, we immediately

obtain a generic construction of IBTCs based on one-way functions. We also notice that we can

have more efficient constructions if we use certain signature schemes based on specific number-

theoretic assumptions. For example, we can use any “signature scheme with efficient protocols”,

such as the one of [16] based on strong RSA, or the Waters’ signature scheme which we employ

in Chapter 5.

2.5 Specialized Encryption Schemes

We make use of several specialized encryption schemes in our constructions, which we formally

outline here.

2.5.1 Dual Receiver Encryption (DRE)

Conceptually, a Dual Receiver Encryption (DRE) scheme is similar to the notion of plaintext-

aware encryption (via key registration) proposed in [58]. Intuitively, DRE allows anyone to

encrypt a message to two parties, with a single ciphertext. Crucially, we are guaranteed that

attempts to decrypt a ciphertext by either of the two recipients, will produce the same result.

(Of course, each recipient should somehow know who the other intended recipient is, or else this

notion is not very meaningful.)

Definition 2.9. We say that the 3-tuple of PPT algorithms, (Gen,DREnc,DRDec) is a Dual

Receiver Encryption (DRE) scheme if it satisfies the following properties:

Correctness: For any two values r0, r1 ∈ {0, 1}λ and any message M , we require for

i = 0, 1 that:

DRDec(PK i,SK i,PK 1−i,DREnc(PK 0,PK 1,M)) = M

65

2.5 Specialized Encryption Schemes

where (PK i,SK i)← Gen(ri).

Soundness: Any PPT adversary A has at most negligible probability of winning the

following game.

1. The challenger chooses r0 ∈ {0, 1}λ uniformly at random, generates a public key pair

(PK 0,SK 0)← Gen(r0), and sends PK 0 to A.

2. A outputs r1 ∈ {0, 1}λ, and a ciphertext ψ.

3. A wins if r1 generates a public key (PK 1,SK 1)← Gen(r1) with respect to which ψ does

not decrypt consistently, i.e., DRDec(PK 0,SK 0,PK 1, ψ) 6= DRDec(PK 1,SK 1,PK 0, ψ).

CCA2 Security: Any PPT adversary A has at most negligible advantage in the following

game:

1. The challenger chooses r0, r1 ∈ {0, 1}λ uniformly at random, then generates public

key pairs (PK i,SK i)← Gen(ri) for i = 0, 1, and sends (PK 0,PK 1) to A.

2. The challenger answers arbitrary decryption queries from A, i.e., it provides A with

access to an oracle for DRDec(PK 0,SK 0,PK 1, ·).

3. A chooses two messages M0 and M1, and sends (M0,M1) to the challenger.

4. The challenger chooses a bit b ∈ {0, 1} uniformly at random, computes the ciphertext

ψ ← DREnc(PK 0, PK1,Mb), and sends ψ to A.

5. The challenger answers more decryption queries from A, except for queries on ψ.

6. A outputs a guess bit b̂.

7. A’s advantage is defined to be |Pr[b̂ = b]− 1/2|.

Furthermore, we restrict Gen to be a deterministic algorithm (so that all of its random coins are

taken from the input r).

An example of such a DRE scheme is to use any CCA2 secure encryption scheme to encrypt

the message twice, once under each public key, and then provide two Non-Interactive Zero-

Knowledge (NIZK) proofs (of the kind used in [80]) that both ciphertexts contain equivalent

plaintexts – one proof using a reference string taken from the first public key, and one proof

66

2 Preliminaries and Tools

using a reference string taken from the second public key. This is similar to the approach used

in [58], and the proof of security is analogous. More formally:

Theorem 2.10. The scheme (Gen,DREnc,DRDec) described below is a secure DRE scheme,

when parameterized by any public key encryption scheme that is CCA2 secure (i.e., secure against

adaptive chosen ciphertext attacks), and any Non-Interactive Zero-Knowledge (NIZK) proof sys-

tem.

Gen: Given random coins as input, Gen uses some of them to generate a public key/secret

key pair (pk , sk) for the CCA2 public key encryption scheme, and the rest to produce a

reference string σ for the NIZK proof system. Gen outputs (PK = 〈pk , σ〉,SK = sk).

DREnc: On input (PK 0,PK 1,M), DREnc first parses PK i = 〈pk i, σi〉, and then computes

ciphertext ci as the encryption of M under public key pk i (for i = 0, 1). Next, DREnc

computes a NIZK proof πi under reference string σi, proving that c0 and c1 both valid

ciphertexts containing encryptions of the same value (again, for i = 0, 1). Finally, DREnc

outputs the tuple ψ = (c0, π0, c1, π1).

DRDec: On input (PK 0,SK 0,PK 1, ψ), DRDec first parses the public keys PK i as (pk i, σi)

(for i = 0, 1), and the ciphertext ψ as (c0, π0, c1, π1). Next, DRDec verifies that both π0

and π1 are valid NIZK proofs with respect to σ0 and σ1 (respectively) that c0 and c1 are

valid ciphertexts containing an encryption of the same value under public keys pk0 and pk1

(respectively). If the verification fails, DRDec returns ⊥. Otherwise, DRDec returns the

decryption of c0 using secret key SK 0.

Proof. The correctness property of the scheme is easily verified (following from completeness of

the NIZK proof system, and correctness of the underlying CCA2 secure public key encryption

scheme). To prove soundness, by way of contradiction, we simply observe that any adversary who

defeats the soundness property of the DRE scheme can easily be used to violate the soundness

property of the NIZK proof system used with respect to PK 0 (i.e., the public key which is not

under control of the adversary). Proving the CCA2 security of the DRE scheme is slightly more

involved, and we proceed by means of two intertwined reductions, as follows. Suppose, by way

67

2.5 Specialized Encryption Schemes

of contradiction, there is an adversary A that succeeds in the CCA2 Security attack game with

advantage ε, where ε is non-negligible.

First, let us modify the original attack game by having the challenger replace the honestly

generated values of σ0 and σ1 used in PK 0 and PK 1 with “trapdoored” (simulatable) refer-

ence strings, and then subsequently letting it simulate the two NIZK proofs (π0 and π1) rather

than computing them honestly. By the zero-knowledge property of the NIZK proof system, the

adversary’s advantage in the new game, ε′, must also be non-negligible.

Next, we consider an alternative version of this game, which we call the “Mixed Ciphertext

Game”. In this game, rather than computing challenge ciphertext ψ ← DREnc(PK 0,PK 1,Mb)

honestly, the challenger instead computes c0 as the encryption of Mb under pk0, and c1 as the

encryption of M1−b under pk1 (while “faking” both proofs π0 and π1 with the NIZK simulator, as

per the previously modified attack game). In all other respects, the game proceeds normally. Let

δ denote the probability that A correctly guesses b (which corresponds to the message encrypted

by c0). (Note that this success probability is not be confused with A’s “advantage” at this game.)

To analyze the adversary’s success probability δ in the Mixed Ciphertext Game, we will

consider a reduction to the security of the underlying public key encryption scheme. Given

a public key pk , the reduction first chooses PK 0 normally (along with its secret key), but sets

PK 1 = pk (for which it does not know the secret key). Later, when A chooses messages (M0,M1),

the reduction forwards these to its own challenger, receiving a ciphertext c in response. The

reduction then computes ψ as in the Mixed Ciphertext Game, except that instead of choosing c1

to be the encryption of M1−b, it simply sets c1 = c. Finally, when A outputs a guess bit b̂, the

reduction outputs the same guess bit.

Clearly, whenever c is an encryption of Mb, the resulting game corresponds to our modified

version of the original CCA2 security attack game (since both c0 and c1 will encrypt the value

Mb). Therefore, the reduction’s distinguishing success probability in this event will be 1
2 + ε′

(since A guesses correctly with this probability, in the original game). On the other hand, if c

is an encryption of Mb−1, then the reduction’s success probability is δ, since the game played

by the reduction corresponds exactly to the Mixed Ciphertext Game. Thus, the overall success

probability of this reduction is 1
2 (1

2 + ε′ + δ). If the underlying public key encryption scheme is

CCA2 secure, this implies that δ ≈ 1
2 − ε

′ (that is, δ = 1
2 − ε

′ up to negligible factors).

68

2 Preliminaries and Tools

Finally, we arrive at a contradiction by giving a reduction attacking the CCA2 security of

the underlying public key encryption scheme. Given a public key pk , our reduction first chooses

a random bit β ∈ {0, 1}, then generates PK 1 normally (along with its secret key), but sets

PK 0 = pk (for which it does not know the secret key). During the game, when the reduction

must answer decryption queries from A, it uses the secret key for PK 1 rather than PK 0 in order

to decrypt (this change will not matter as long as the NIZK proof system remains sound, and

we will neglect the negligible probability of failure in the present calculations for the sake of

clarity). When A chooses messages (M0,M1), the reduction forwards these to its own challenger,

receiving a ciphertext c in response. The reduction then computes ψ by setting c0 = c and c1

to be an encryption of Mβ . Finally, when the reduction obtains a guess bit b̂ from A, it checks

whether b̂ = β. If so, the reduction outputs b̂. Otherwise, the reduction outputs a random bit.

To analyze the success probability of A in our reduction, we observe that one of two possible

conditions occurs: either 1) the challenge ciphertext c corresponds to a matching encryption of

Mβ , or 2) it corresponds to a mismatched encryption of M1−β . In case 1, the game plays out

identically to the original CCA2 attack game (modified to use simulated proofs). Therefore,

the overall success probability in case 1 is 1
2 + ε′ + 1

2 (1
2 − ε

′) (accounting for the random guess

that is made whenever b̂ does not match β). In case 2, the game plays out identically to the

Mixed Ciphertext Game described above. Thus, the overall success probability in case 2 is 1
2δ

(since the reduction will guess randomly whenever A “correctly” deduces b̂ relative to c0 = c,

but will always output an incorrect guess whenever A guesses b̂ inconsistently with c0). Given

that case 1 and case 2 are equiprobable, we find the overall success probability of the reduction

to be 3
8 + ε′+δ

2 . If the underlying public key encryption scheme is CCA2 secure, this implies that

δ ≈ 1
4 − ε

′, contradicting our earlier result that δ ≈ 1
2 − ε

′.

2.5.2 Non-Committing Encryption (NCE)

We will also be making use of 2-round non-committing encryption (NCE) scheme, of the kind

first proposed by [22]. Intuitively, an NCE scheme is a semantically secure encryption scheme

with the extra property that it allows a simulator to produce a public key/ciphertext pair which

it can later “open” to an arbitrary message. That is, the simulator can produce a secret key

69

2.5 Specialized Encryption Schemes

such that decrypting the ciphertext with that secret key yields the message. Furthermore, the

simulator can even show random coins making it appear that the secret key and public key were

honestly generated, and that the message was legitimately encrypted to produce the ciphertext.

To simplify our notation, we make use of non-committing encryption for λ-bit messages, al-

though it is typically defined in the literature for 1-bit messages. (In particular, we wish to encrypt

messages proportionately sized to the security parameter, which we also denote by λ.) Informally,

we refer to an NCE scheme as a 5-tuple of algorithms (NCGen,NCEnc,NCDec,NCSim,NCEqv)

where NCEnc and NCDec satisfy the usual notion of semantic security for encryption, and (1)

NCSim outputs a public key pk , a ciphertext γ, and some auxiliary information α, (2) The public

keys and ciphertexts output by NCSim are indistinguishable from public keys output by NCGen

and ciphertexts resulting from encryption under such keys, and (3) Given the output of NCSim

and any message M , NCEqv can produce a secret sk and computationally random coins r∗, rγ

such that NCGen(r∗) = (pk , sk), NCDec(sk , γ) = M , and NCEnc(rγ ; pk ,M) = γ. That is, NCE

schemes can operate just like normal encryption schemes, but it is also possible to generate in-

distinguishable “rigged” public keys and ciphertexts such that the ciphertexts can be made to

appear as if they contain any desired plaintext (with some appropriate choice of secret key).

Details regarding the construction of such NCE schemes can also be found in [22, 34, 65].

At a high level, one can construct a NCE scheme from any public key (1-bit) encryption

scheme with the following special properties: 1) there is an “oblivious key generation” algorithm

for sampling fresh public keys without learning their corresponding secret keys (and yielding

a distribution on the public key space that is indistinguishable from that of the ordinary key

generation process), 2) given a fixed public key, there is an “oblivious sampling” algorithm

for producing a valid ciphertext encrypting a random bit without learning the corresponding

plaintext bit (and yielding a distribution on the ciphertext space that is indistinguishable from

that of the ordinary encryption process). For the purposes of adaptive security (in the non-

erasure model), we also require that appropriate random coins can be produced for the oblivious

key generation and sampling algorithms, a posteriori, so as to make “normally” produced public

keys and ciphertexts appear as if they were produced by the oblivious procedures. To construct

a NCE scheme for 1-bit messages from such an “obliviously samplable” public key encryption

scheme, the recipient will essentially choose λ pairs of public keys (pk i,0, pk i,1) (for i = 1, . . . , λ),

70

2 Preliminaries and Tools

where λ is a security parameter. Instead generating all the public keys in the usual manner,

the recipient randomly chooses a bit β, and generates only the public keys of the form pk i,β in

the normal fashion. The remaining public keys of the form pk i,1−β are all “obliviously sampled”

using the algorithm implied by property 2 above. (This is the NCGen procedure.) To encrypt a

bit m (i.e., to implement NCEnc), the sender will generate one ciphertext pair corresponding to

each public key pair. For each public key pair, the sender randomly selects one of the two public

keys with which to encrypt the bit m, while the other public key is used to “obliviously sample”

a random ciphertext. The resulting 2λ ciphertexts are then sent to the recipient. On average,

3/4 of the ciphertexts sent in this fashion will encode the correct bit m. In order to decrypt

(i.e., to implement NCDec), the recipient opens the λ ciphertexts encrypted under the “normal”

public keys (for which it knows the corresponding secret key), and computes the bit occurring in

the majority of such plaintexts.

Intuitively, the simulation procedure (NCSim) for the scheme above can be implemented by

first generating all public keys using the normal procedure (rather than generating half of them

obliviously). Ciphertexts can then be produced (using normal encryption) so that a majority

of bits encrypted under one half of the key pairs are 0, and the majority in the other half are

1. To perform the equivocation (NCEqv), simply select the appropriate half of the public keys

(with respect to which a majority of the ciphertexts encode the desired message bit m) to be

the “normal” ones, and then “pretend” that the other public keys were obliviously generated.

Similarly, an appropriately chosen subset of the undesirable ciphertexts can be made to look as

if they had been obliviously sampled. Finally, we note that this entire scheme can be repeated

λ times, in parallel, in order to encrypt λ-bit messages (i.e., encrypting one λ-bit message will

require 2λ2 ciphertexts).

2.5.3 Dense PRC Secure Encryption

The commitment protocol of [30] (which uses a common reference string) requires the use of a

CCA secure public key encryption scheme with Pseudo-Random Ciphertexts (PRC). The CCA

security requirement arises due to the fixed nature of the global public encryption key, which is

reused during every run of the protocol. Our protocol, on the other hand, will not make use of

71

2.5 Specialized Encryption Schemes

any fixed public keys for encryption. Instead, we will be using a coin-flipping protocol to choose

a fresh public key for each run of our commitment protocol (this is discussed in more detail

below). One advantage of doing this is that we will require only semantically secure encryption

with PRC, since each key is used only once. However, there is also a disadvantage: the public

key is chosen as the result of a fair coin-flipping protocol (which will be uniformly random in

some finite group), so the encryption scheme must have “dense” public keys. Informally, this

means we require public keys to be computationally indistinguishable from random. Fortunately,

schemes satisfying these requirements exist under widely used computational assumptions, such

as the DDH assumption (in fact, standard El-Gamal encryption suffices). The formal definition

of security for Dense PRC encryption provided below has the flavor of “left-or-right” security,

which is most convenient for the proof of security of our protocol.

Definition 2.11 (Dense PRC Encryption). A public key encryption scheme PRC = (G,E,D),

satisfying the standard correctness properties for public key encryption, is said to be Dense PRC

secure if it satisfies the following additional constraints:

1. Public keys produced by G lie within some abelian group Φ, with efficiently computable

inverse and group operations.

2. Membership in Φ is efficiently testable.

3. The uniform distribution on Φ is efficiently samplable.

4. The distribution of public keys produced by G is computationally indistinguishable from

the uniform distribution on Φ.

5. For all PPT adversaries A:

Pr[ALR(·,0)(1λ) = 1]− Pr[ALR(·,1)(1λ) = 1] ≤ negl(λ),

where the answer to a query of the oracle LR(m, b) is computed by obtaining (K,K−1)←

G(1λ) and returning the pair 〈K,EK(m)〉 if b = 0, or returning the uniformly random pair

〈U,R〉 if b = 1 (where U is chosen from a group Φ, and R from {0, 1}|EU (m)|). We need not

allow A to query the oracle more than once, but this restriction is unimportant as long as

fresh keys are computed on each query to the oracle.

72

2 Preliminaries and Tools

Intuition: The final condition in the definition captures the main security property of Dense

PRC: an honestly generated public key (output by G) and an honestly generated ciphertext

(output by E) are indistinguishable from a randomly chosen public key and a random bit string

of appropriate length. Note that it must be possible to encrypt messages to random public

keys, and that the result ciphertexts must still appear to be random (since otherwise we would

have a way to distinguish random public keys from honestly generated ones). This is important

for our purposes, since our protocols require parties to encrypt messages under a randomly

generated public key. The remaining properties of Dense PRC schemes are merely technical

requirements that enable two parties to jointly select a random public key via a standard “coin-

flipping protocol”.

73

3 • Deniability and Deniable

Authentication

3.1 Deniability and Full Simulatability

Historically, there have been many different definitions of deniability for cryptographic protocols

(e.g., [44, 42, 73, 37, 39]). In fact, to this day, the issue of defining what we mean by the term

“deniability” is almost entirely unsettled in the cryptographic community. Partly, this is because

deniability seems to mean different things in different contexts. However, the definitional problem

runs much deeper than this, since the are rarely any consistent definitions even for well defined

and well studied cryptographic tasks such as authentication.

At an intuitive level, a cryptographic protocol is said to be “deniable” if it is possible for the

protocol participants to deny their participation by arguing that any “evidence” of said partici-

pation (as might be obtained by other, potentially corrupt protocol participants and observers)

could have been fabricated without their involvement.1 While it may sound natural, this intu-

ition is not generally of much help in proposing a formal definition of deniability, since it is open

to many different interpretations. For instance, how plausible must the claim of the putative

protocol participant be (namely, the claim that he or she was “framed” by fabricated evidence)?

Most everyone would probably agree that it would not be believable if the participant’s argument

1There are other applications of the word “deniability” that we do not consider here, since
they carry a completely different intuitive meaning. For instance, it is sometimes said that a
voting protocol is “deniable” if the participants are inherently unable to prove how they have
voted to others – even if they intentionally deviate from the voting protocol (this requirement is
often referred to as the “secret ballot principle”). Such notions are more appropriately captured
by the term “incoercibility”, rather than “deniability”, since they offer security to parties who
act dishonestly (ostensibly, under coercive influence). Throughout this work, we consider all
parties who intentionally deviate from protocol specifications to be corrupt, and therefore we
do not attempt to guarantee their security in any sense. Indeed, it is generally impractical or
impossible to provide such security to parties who deviate arbitrarily from the protocol, since
they might simply choose to “hand over” control of their identity (and all their secrets) to an
adversarial entity. However, for certain specialized circumstances (such as with voting systems),
it makes sense to consider security for coerced parties who may deviate from the honest protocol.
Extension of our notion of deniable realizations to this setting is left to future work.

74

3 Deniability and Deniable Authentication

claims that that the “whole world” conspired against him or her. At the other extreme, the claim

of denial might merely state that a single, unnamed individual was responsible for fabricating

evidence of a party’s participation. Thus, if there exists even one individual who might plausibly

have the means and motive to fabricate such evidence, the claim would certainly be believable

(and if we believe no such individual exists, then no claim of denial can possibly be believed

anyway). So, ideally, we should strive to obtain the latter form of deniability. Yet, this too

is not clearly defined – after all, what constitutes plausible “means” to fabricate evidence? If

the practical price of fabricating evidence were very high, then we might not find the claim of

denial very plausible even though anyone could have fabricated the evidence (after paying the

aforementioned high price). Indeed, any serious discussion of plausible deniability is inherently

subjective, since plausibility is a subjective notion.

Our goal in the present discussion is therefore not to define deniability once and for all,

but rather to outline a general approach to understanding and achieving a natural notion of

deniability for well-defined cryptographic tasks. To maintain a focus on objective goals, our

notion of deniability will be quantifiably “plausible” in a computational sense. Ultimately, the

degree of plausibility achieved by our definitions and constructions outside of the computational

sense will be left to the subjective view of the individual. Therefore, the notion of deniability we

seek is that of full simulatability – any evidence of protocol interaction with a particular party

can be simulated in a computationally efficient manner without the involvement of that party.

Of course, we must define our notion of deniability with respect to the task at hand – for

instance, if one is running a contract signing protocol that is designed to provide the other party

with a “digital signature” of some statement, then one should not later expect to deny having

signed the statement since, by definition, digital signatures preclude the possibility of such a

denial. Thus, if we are to define a general notion of deniability for cryptographic tasks, then our

goal should be for protocols to provide no evidence of interaction that is not inherently revealed

by the task itself. For example, in the case of the contract signing protocol, there should be

no evidence that the contract was signed via the protocol interaction – it should be possible for

the signer to plausibly claim that this particular signature was simply communicated directly

(perhaps even to a third party) and that no sophisticated contract signing protocol ever took

place.

75

3.1 Deniability and Full Simulatability

We are now in a position to state a very elegant and general definition of deniability for

cryptographic tasks. Recalling the basic notion of the trusted party paradigm (as outlined in the

Introduction), we intuitively expect realized protocols to guarantee the same security as the ideal

functionalities they realize. In particular, the adversary should learn nothing more from attacking

the protocol than could be learned from attacking its corresponding ideal functionality. Protocols

realized with such a guarantee are inherently deniable, since a protocol participant can plausibly

claim that any information sent during the protocol session could have been obtained by an

adversary (given only knowledge of the same information revealed by the ideal functionality2 for

the task under consideration) via an attack simulation conducted entirely without the putative

participant’s actual participation.

Of course, it goes without saying that realized protocols only guarantee the same “security”

as the ideal functionality does when viewed in the particular context of a security model. To

preserve our notion of deniability (and security in general), it is crucial that the security model

be made as close to reality as possible. Trivially, if the capabilities of a real world adversary are

not adequately captured by the model, attacks against the “security” (and deniability) of the

protocol might be possible in practice even though the protocol satisfies the (unrealistically weak)

security requirements of the model. Surprisingly, it is also possible that a security model featuring

an adversary with greater capabilities than the real world adversary will lead to a problem with

deniability (even though the security model simply appears to be “too strong”). Unlike most

natural security properties that we might consider, the plausibility of a denial depends upon the

ability of an adversary to accomplish a particular “attack” – namely, the adversary must plausibly

be capable of simulating (fabricating) evidence of protocol interactions. If the adversary of the

security model is more powerful than the real world adversary, it is entirely possible that the only

reason the adversary learns nothing useful by attacking “secure” protocols is that the adversary

is already powerful enough to independently generate similar information. If the real world

2Again, if the output of the ideal functionality “incriminates” a party by revealing some of his
secrets, the resulting protocol does not meet a very intuitive interpretation of the word “deniable”
(as was the case in the contract signing example above). Still, the protocol itself may be said
to be “as deniable” as the functionality it realizes, which is the most one can ask for. If this is
not sufficiently “deniable” in practice, then the only recourse is to change the functionality itself,
since that is where the problem lies.

76

3 Deniability and Deniable Authentication

adversary is not as powerful, then perhaps it can still gain something useful by attacking the

protocol after all, since it cannot exercise the same natural powers as the adversary of the security

model. Indeed, we will see a concrete example of this phenomenon in Chapter 4.

To summarize the lessons of the preceding discussion, we will not attempt to formally define

the meaning of “deniability” itself, since it is highly subjective by nature. Rather, for any

particular cryptographic task F , we will say that:

A protocol π is a deniable realization of F if it securely realizes the task F in a realistic

security model, in such a way that any attack on π can be simulated by attacking F

using roughly equivalent resources.

In other words, by our definition, any “lack of deniability” that is evident in π (but not in F)

can be directly attributed to an inaccuracy in the security model, or an excessively expensive

simulation procedure. Therefore, we view the loss of deniability merely as a first sign that the

security model or the “proof of security” (in the form of an attack simulation) is flawed, since

deniability is automatically assured by a realistic security model and a reasonable security proof.

To reiterate, any inaccuracy in the security model can present a problem for deniability (e.g., even

when the adversary in the model is unrealistically more powerful than any real life adversary).

With this definition in mind, we will study the application of the GUC security model to

the problem of deniable authentication (in this chapter) and to the construction of deniable

realizations for general cryptographic tasks (in Chapter 4). As we will see, our particular deniable

realizations of cryptographic tasks will guarantee that even “on line” (interactive) deniability is

preserved, since our simulator can very practically be run in real time. Indeed, as long as an

honest party P never deviates from the protocol, it is not possible for other (even corrupt)

protocol participants to conclusively demonstrate P ’s participation in our “fully simulatable”

protocol sessions to a third party, even while the protocol is ongoing! This simulation guarantee

will hold even in the presence of arbitrary concurrent protocol executions in the network, and

even when the honest party participates in those concurrent protocols. Such a strong notion of

deniability is essentially unheard of in the literature.3

3The model of [59] contains a similar notion, but they do not allow adaptive corruptions
(which are very important in practice), and their constructions require the use of special hardware
“signature cards” that are tamper-resistant.

77

3.2 Deniable Authentication

3.2 Deniable Authentication

Following our definition of deniability from the previous section, we approach the problem of

designing deniable authentication protocols by simply defining the task of authentication. In the

UC framework, the task of authentication is commonly modeled by the ideal functionality Fauth,

shown in Figure 3.1. The Fauth functionality very cleanly captures the task of authenticated

message transmission (over public channels). Similarly, the simpler task of identification can be

modeled via the functionality Fid, shown in Figure 3.2. Finally, we will also give the definition

of a task that is closely related to authentication, but has seemingly stronger requirements:

symmetric key exchange. The ideal functionality for symmetric key exchange, Fke, is shown

in Figure 3.3. Unlike Fauth, which reveals the message to the adversary, Fke must not merely

transmit a key in secret, but it must randomly sample the key as well. This would appear to

make Fke a much more complex functionality, but in practice, we will show that is closely related

to Fauth (see Section 3.2.4 below).

Functionality Fauth

1. Upon receiving an input (send, sid,m) from party S, do: If sid = (S,R, sid′) for
some R, then output (sent, sid,m) to the adversary, and, after a delay, provide the
same output to R and halt. Otherwise, ignore the input. (The adversary controls
the channel delay.)

2. Upon receiving (corruptsend, sid,m′) from the adversary, if S is corrupt and
(sent, sid,m) was not yet delivered to R, then output (sent, sid,m′) to R and
halt.

Figure 3.1: The message authentication functionality (see [20]).

Functionality Fid

1. Upon receiving an input (identify, sid) from party S, do: If sid = (S,R, sid′) for
some R, then output (identified, sid) to the adversary, and, after a delay, provide
the same output to R and halt. Otherwise, ignore the input. (The adversary
controls the channel delay.)

Figure 3.2: A simple party identification functionality.

78

3 Deniability and Deniable Authentication

Functionality Fke

Fke, running with parties S and R and adversary S proceeds as follows:

1. Upon receiving message of the form (keyexchange, sid, S,R) from party S, if
S is not yet “active”, mark S “active”, and a send public delayed output
(keyexchange, sid, S,R) to R. (Otherwise, ignore the message).

2. Upon receiving a message of the form (keyexchange, sid, S,R) from party R, if
R is not yet “active”, mark R as “active” and send a public delayed output
(active, sid, S,R) to S. (Otherwise, ignore the message.)

3. Upon receiving a message of the form (setkey, sid, S,R, k′) from S, if R is corrupt
and S is “active”, then output (setkey, sid, S,R, k′) to S and R, and halt. If R
is “active” but not corrupt, then sample a fresh key k

$← {0, 1}λ and send the
message (setkey, sid, S,R, k) to R. Furthermore, if S is “active”, then send the
delayed message (setkey, sid, S,R, k) to S as well. In all cases, this completes the
protocol, and the functionality halts.

Figure 3.3: An ideal functionality for symmetric key exchange.

Remark: It is important to note that the ideal functionality Fauth captures precisely the defini-

tion of “authenticated channels” that is used throughout the literature. Authenticated channels

are widely assumed to do nothing more nor less than Fauth accomplishes. Notably, most works

in the area of secure multi-party computation (and the UC framework in particular) assume the

existence of such authenticated channels (with the notable exception of the extensive literature

regarding key exchange protocols). Therefore, there is a great need for secure realizations of the

Fauth functionality.

Given that we want to realize these functionalities in a deniable way, we will focus our

efforts on using the most accurate possible modeling to capture the natural security requirements

of protocols running on the Internet. In particular, it is well known that it is impossible to

realize either of these functionalities (barring any physical realization via a secure communications

line), unless parties already possess some secret information which they can use to differentiate

themselves from other parties. Therefore, in practice, parties who wish to perform authentication

nearly always make use of a PKI (as described in Section 2.2.3). The GUC framework is uniquely

suited to accurately model global setups such as PKI (which cannot be directly modeled in the UC

framework), and therefore we will focus our attention on security models in the GUC framework.

79

3.2 Deniable Authentication

Furthermore, we will assume that both the authenticating party S and the intended recipient

R have public keys. This is in contrast to many of the deniable authentication models previously

found in the literature [44, 45, 43, 63, 73, 37], in which the recipient is not assumed to have a

public key. In our setting, such modeling would not be acceptable, since the Fauth functionality

does not permit S to “accidentally” authenticate the message to anyone other than the intended

recipient R – therefore, in our setting R must have a means of establishing identity as well (such

as a public key). Furthermore, none of those works achieve our notion of “on-line deniability”,

where simulation must be done in a straight-line fashion (so it can be performed in real-time) and

yet the protocol remains concurrently composable with other arbitrary protocols. While security

with concurrent self-composition was an explicit goal in several of the prior works [44, 45, 63, 37],

to the best of our knowledge all prior constructions achieving concurrent security use timing as-

sumptions [44] which, though somewhat reasonable, seem preferable to avoid.4 More importantly,

the deniable authentication protocols we study benefit from the strong guarantees provided by

the GUC security modeling, and therefore remain secure even when executed concurrently with

other arbitrary protocols, something not addressed in previous works.

We first demonstrate that many previous works on deniable authentication suffer from prac-

tical security flaws that can allow an attacker to violate the deniability of the protocol. Next,

we will give a result showing that some security flaws are inherent in protocols for deniable au-

thentication that rely on a PKI, since realizing the (deniable) authentication functionality in a

realistic model is impossible if we require security against adaptive corruptions (or even forward

security, without erasures). Finally, we will examine our best options for realizing authenticated

channels in light of this negative result, ultimately achieving a very practical compromise that

allows us to salvage the basic model of (deniable) authenticated channels that is used implicitly

throughout the literature on multi-party computation (which we also rely upon for our protocols

in Chapters 4 and 5).

4It is not entirely clear whether plugging a generic concurrent ZK proof [79] into any existing
deniable authentication protocol would yield a concurrently-secure protocol. In any case, con-
current ZK proofs require super-logarithmic round complexity [27] and do not result in efficient
protocols.

80

3 Deniability and Deniable Authentication

3.2.1 Attacks on Deniability

The basic notion of deniable authentication was originally introduced by Dwork et al. in [44],

using a model where only the sender (who is being authenticated) has a public key. While [44]

focuses on achieving deniable authentication even for concurrent protocol executions (via the use

of timing assumptions), the requirement for authenticating to a specific party was not considered.

Essentially, by assuming that only the sender has a public key, the model of [44] makes it impos-

sible for the sender to conclusively determine which party it is authenticating the message to. Of

course, in reality, the particular party the sender is authenticating to can matter a great deal.

For instance, if Bob intends to send a politically subversive message to fellow political activist

Alice, there would likely be undesirable consequences for Bob if he accidentally authenticates

the message to a government official instead. Perhaps more importantly, the standard notion of

authenticated channels inherently assumes that the message is being authenticated to a specific

recipient, and is therefore incompatible with this “single public key” deniable authentication.

This means that the notion of deniable authentication proposed in [44], as well as any subse-

quent works in the “single public key” setting (e.g., [45, 43, 71, 63, 73, 37]), are insufficient to

achieve some authentication requirements that are very important in practice.

In fact, in any model where only the sender possesses a secret (for authentication purposes),

the following simple attack on deniability will succeed even if the messages for the authentication

protocol are correctly routed to the intended recipient without interference. Suppose that S

intends to authenticate the message M to a some party R, who is attempting to prove to judge

J that S is the true sender of M . Rather than directly running the authentication protocol

in the usual fashion, R will ask the judge J to compute the protocol messages on behalf of R

(which is certainly possible, since R is not assumed to have any secrets used by the authentication

protocol). R then simply forwards all messages from J to S, and from S to J . If the protocol

completes successfully, then S will really be authenticating the message M directly to J (instead

of R). Therefore, in such models, S cannot have deniability with respect to an interactive

judge J , irrespective of the underlying authentication protocol (provided, of course, that the

authentication itself is sound).

Of course, one might be tempted to think that a practical form of deniability can still be

81

3.2 Deniable Authentication

obtained – namely, protocols might still be deniable with respect to an “offline” judge, who is

only presented with the “evidence” a posteriori. However, when considering protocols running

in a more complex environment (such as the Internet), it is nearly inevitable that some “online”

activity occurring concurrently with the protocol can be used by a corrupt party to assist in

the production of “evidence” – even if the judge itself is “offline” (non-interactive). To provide

a more concrete example, imagine there is a time-stamping bulletin board available somewhere

on the Internet. This bulletin board allows parties to publicly post information, and the post is

automatically time-stamped and assigned a unique identification number (many such services are

widely available today). A corrupt recipient can post the protocol messages it receives directly to

the bulletin board, and then formulate its protocol responses based on the identification numbers

assigned to the resulting posts. This attack automatically defeats the deniability of any protocol

with a simulation procedure that requires rewinding (such as the protocols of [44, 63, 37]),

since the (external) bulletin board cannot be rewound. Furthermore, the bulletin board even

provides a complete “paper trail” for the authentication that is being publicly attested to (albeit

unwittingly) by the party who maintains the bulletin board. This paper trail would allow any

judge to subsequently verify the message authentication, assuming only that the bulletin board

was honest. This holds true for any authentication protocol that does not require the recipient

to have a secret key and uses a rewinding simulator.

Lest one suspect that this kind of naturally occurring online attack is specific to protocols

that have rewinding simulators, we refer the reader to [45], which features deniable authentication

protocols in the “trusted center” model (where there is a trusted third party with a public key,

in addition to the sender). In a remark on the limitations of the deniability provided by their

protocols, the authors describe how a corrupt recipient can gather evidence against the sender by

interleaving messages with authentication sessions involving other recipients. This demonstrates

that other Internet users running the same protocol can also provide a practical source of “online”

deniability attacks. The lesson to be learned is that it is unrealistic to consider deniability only

against an “offline” judge for Internet protocols, since there are many (publicly available) “online”

activities on the Internet which can be easily used to help incriminate parties.

Having demonstrated several serious issues with the deniability of protocols in the “single

public key” model, we now proceed to survey some works that allow both the sender and recipient

82

3 Deniability and Deniable Authentication

to have public keys. A prototypical technique underlying many such works was introduced by

Jakobsson et al. in [60], in the form of designated verifier proofs (and the related notion of

designated verifier signatures). Intuitively, the approach taken by [60] is to prove statements of

the form “either x is true, or I know the secret key of the verifier”. Clearly, the verifier will be

incapable of convincing anyone else that x is true after seeing such a proof. Similarly, in the

context of deniable authentication, the sender will provide a proof that essentially says “either I

am authenticating the message, or I know the recipient’s secret key”. Unfortunately, this type of

statement contains a subtle flaw that compromises the deniability of the authentication protocol:

the proof clearly implicates either the sender or the recipient in the communication. It is not

possible for both parties to jointly deny the protocol, since the statement proved essentially says

that either the message was really authenticated by the sender, or the proof was really produced

by the receiver. In the case of a non-interactive authentication protocol using this approach (e.g.,

using a designated verifier signature), the aforementioned flaw trivially enables even an “offline”

judge to exclude the possibility that the authentication was completely fabricated by a third

party – clearly, at least one of the two (allegedly) communicating parties was involved. In case

the authentication is done via an interactive proof protocol instead, the attack we previously

described using a time-stamping bulletin board can be used to achieve the same effect.

On a related note, we observe that [60] is not the only technique to suffer from the problem

of jointly incriminating at least one of the parties involved. For example, various works on

“deniable” ring authentication [71, 82, 83] suffer from a similar weakness. In particular, even

when all parties are honest, transcripts of deniable ring authentications in the setting of the works

by Susilo et al. [82, 83] reveal evidence that at least one of the members of the ring participated

or that the intended recipient participated. Since we are considering a setting where there is

only a single sender who wishes to authenticate, the “ring” can include at most the sender and

the recipient – therefore, even honest transcripts will incriminate at least one of the two. (In

the setting of [71], the receiver is not required to have a secret key, and therefore the attacks

suggested in our earlier discussion of such “single public key” models will apply.)

We will proceed with our survey by considering some of the more recent attempts at deniable

authentication (again, in settings where the receiver is also allowed to have a public key). We

begin with the various protocols proposed for use in deniable key exchange by Di Raimondo et al.

83

3.2 Deniable Authentication

in [38] (which were offered as replacements for the seriously flawed deniable authentication pro-

tocol presented in [14]). Following an approach similar to that of our construction in Section 3.3,

the constructions of [38] are actually “deniable key exchange” protocols, which can be used to

authenticate messages via the additional application of a standard Message Authentication Code

(MAC). The three key exchange protocols suggested for use in deniable applications by [38] are

known as SIGMA, SKEME, and HMQV. (The deniability properties of SIGMA and SKEME

are explored more formally in [39], using models with considerably weaker security requirements

than the one presented in this work.) We now consider attacks on the deniability of each of these

protocols in turn.

The SIGMA key exchange protocol is signature based (indeed, the name derives from “SIGn

and MAc”). Essentially, both parties must send ordinary digital signatures of some (ostensibly

random) values during the SIGMA authentication protocol. Since the protocol transmits digital

signatures from both the sender and the recipient in the clear, both the sender and the recipient

inherently provide some direct evidence that messages were being sent. This evidence imme-

diately renders the SIGMA approach incompatible with the standard notion of authenticated

channels (which does not provide any evidence that any messages are being sent at all), yet this

fact alone might not be considered a very significant problem – after all, given that one has a

public key, we naturally expect it to be used. However, Di Raimondo et al. already pointed out in

[38], it is also possible for the recipient to encode arbitrary statements into one of the “random”

group elements that will be signed by the sender. Thus, it is easy to obtain convincing evidence

that the sender was attempting to communicate with a particular recipient – in fact, one might

reasonably take issue with the claim that SIGMA is at all deniable. The authors of [38] still

advocate the SIGMA protocol though, due to its “perfect forward secrecy” property (i.e., the

exchanged key can be made forward secure in the erasure model). Of course, SIGMA does not

provide “forward deniability” (since the protocol is not deniable even when no compromise has

occurred), which is of far greater concern for our purposes.

The second suggested protocol, SKEME, provides a noticeable improvement in security over

SIGMA (although SKEME does not provide the same “perfect forward secrecy” guarantee as

SIGMA, we are unconcerned with that particular security notion in our setting anyway, since

we do not use the exchanged key for encryption). Unfortunately, SKEME still falls far short of

84

3 Deniability and Deniable Authentication

the deniability guarantees we would like. In a nutshell, parties running the SKEME protocol

perform a standard Diffie-Hellman key exchange, as well as sending each other random values

encrypted under their respective public keys. The final shared key is then derived from the

resulting Diffie-Hellman key, as well as both of the random values. Mutual authentication of

the SKEME key exchange is assured by virtue of each party’s ability to decrypt the random

value sent by the other party. If the sender uses the exchanged key to authenticate a message,

that authentication is ultimately being provided through the ability of the sender to decrypt a

ciphertext. Thus, a judge may gather evidence against the sender by collaborating with a recipient

(who is acting as an informant), and supplying this recipient with a ciphertext of the judge’s

own choosing. If the recipient sends the judge’s ciphertext as part of the SKEME key exchange,

and then provides the judge with all the details of the SKEME key exchange and the subsequent

message authentication, the judge will be able to verify the authentication (which could not

have been fabricated by the recipient alone, since the recipient did not know the random value

contained in the judge’s ciphertext). Notice, the judge does not need the recipient’s secret key in

order to perform the verification (a single decryption of the ciphertext from the sender suffices,

since the SKEME key is just a function of the two encrypted values and the Diffie-Hellman key

exchange). Still, attacking the deniability of SKEME in this fashion is more challenging than the

aforementioned simplistic and direct attacks on the deniability of SIGMA.

The third suggested protocol, HMQV, satisfies the strongest form of deniability among the

protocols suggested by [38]. In fact – unlike SIGMA and SKEME – the basic HMQV protocol

appears to satisfy even the GUC security requirements for (deniable) key exchange, albeit only

for static corruptions. (We offer an even more efficient protocol with the same security guarantees

for the static corruption model in Section 3.2.3.) However, the HMQV protocol still does not

offer forward security (namely, it fails to provide forward deniability). At a high level, the key

exchanged in the HMQV protocol is derived from a combination of an interactive Diffie-Hellman

key exchange (using freshly generated public keys) with a non-interactive Diffie-Hellman key

exchange (using the fixed long-term public keys of the communicating parties). Since the protocol

messages of HMQV are essentially just unauthenticated Diffie-Hellman keys, it is possible for an

“informant” to pretend to be the recipient while exchanging a key with the sender, allowing the

informant to gather useful evidence. For instance, consider an adversary (informant) who cuts

85

3.2 Deniable Authentication

the wire to the intended (honest) recipient and then performs the standard HMQV key exchange

protocol with the sender. By providing the judge with the Diffie-Hellman secret it used in the

HMQV protocol, as well the subsequent authenticated message from the sender, the adversary

can incriminate the sender to any judge who obtains the honest recipient’s secret key (e.g., if

the judge gets a warrant to seize the recipient’s keys, these can also be used to incriminate the

sender). That is, although the adversary itself cannot verify the sender’s authentication (since it

does not have the recipient’s secret key, which is needed to complete the non-interactive Diffie-

Hellman exchange), the adversary can still provide the information information necessary for the

judge to verify the sender’s authentication (after the judge obtains the recipient’s secret key, of

course). Therefore, the protocol is not forward secure for the sender with respect to the eventual

“corruption” (or even a passive compromise) of the recipient.5 This attack can be dramatically

strengthened (removing the need for a third-party adversary/informant altogether) if we disallow

erasures – in this case, even the past transcripts of ordinary protocol executions between honest

parties will suffice to incriminate the sender to any judge who can subpoena the “internal state”

data from the honest recipient’s machine (i.e., this data would include the temporary secret used

by the recipient for the interactive Diffie-Hellman exchange).

Perhaps most importantly, we note that all three protocols (SIGMA, SKEME, and HMQV)

are vulnerable to attacks by a fully interactive “online” judge. Rather than belaboring the point

by exploring such attacks in further detail, here we will simply quote Di Raimondo et al. in [38],

who already noticed this flaw: “... a proof of communication [with party B] can be provided

from [a party] A to [a judge] J if A and J actively collaborate at the time the communication is

happening, in particular during the run of the key exchange protocol.” Whereas the authors of

[38] suggest that these attacks are of minimal significance in practice, we feel that this is not the

case. As we have already argued above with the example of the time-stamping bulletin board, it

is often possible to leverage resources that are present in the external network to achieve the same

effect as an “online” interactive judge. Therefore, the Internet itself makes this kind of attack

5Although this is somewhat counter-intuitive, we must believe that the recipient remains
honest until after the attack is been completed, since the recipient would have been able to
“simulate” the sender by colluding with the adversary. This makes sense in real life, since a
judge might very reasonably be convinced that the recipient was not colluding with an informant
(prior to the seizure of the recipient’s data).

86

3 Deniability and Deniable Authentication

against deniability quite practical indeed. (Of course, we stress again that the deniability of the

HMQV protocol only suffers from these attacks when considering the requirements of forward

security,6 whereas the other protocols are not even secure in the static corruption model when

an online judge is available.)

Quite recently, deniable authentication protocols based on random oracles and the (non-

standard) Knowledge of Exponent Assumption (KEA) have been proposed (e.g., [73, 86, 61]).

In general, such protocols are inherently undeniable7 in the real world, since they are analyzed

under the assumption that only the communicating parties can issue random oracle queries

or compute exponentiations (whereas, in reality, these tasks may actually be performed by an

external third party). For this reason, even the so-called uncontrollable Random Oracle (uRO)

model (also referred to as the non-programmable random oracle model), suggested by Pass in

[73] for the purposes of achieving deniability, does not suffice to achieve deniability in practice.

For example, the protocol simulation techniques used by [73, 61] in the uRO model require the

simulator to “extract” (passively observe) all the random oracle queries that are issued as part of

the simulated protocol session. However, this sort of “extraction” is certainly not possible in the

real world, where an external party (such as the judge, or a trusted friend) might be computing

some protocol messages on behalf of the party who is attempting to gather evidence against the

sender. As a concrete example, consider the uRO-Auth protocol of [61], where the sender has a

public key with a trapdoor permutation Ts. In short, in the uRO-Auth protocol, the recipient

R computes H(r,R, S,m) (where H is the random oracle, and r is a nonce) and sends it along

with Ts(r) to the sender S. The sender checks the consistency of the protocol flow from R,

and then authenticates by responding with H(r, S,R,m) (notice the reversal of the sender and

recipient identities). Simulation of this protocol is done by “extracting” the value of r from the

random oracle input, following the intuition that a party who computes H(r,R, S,m) can surely

6A trivial modification of the HMQV protocol can essentially be used to achieve our definition
in Section 3.3, but only if we allow erasures. Indeed, the requirement for erasures seems to be
HMQV’s only significant shortcoming when compared to our protocol (which can be viewed as
a feasibility result for the non-erasure model). Given that HMQV is far more efficient than our
construction, currently, HMQV may be the best choice for use in practical systems.

7To the best of the authors’ knowledge, the protocol of Section 5.5 is the first exception to
this rule. Indeed, even this exceptional case is made possible due to the use of the random oracle
for efficiency purposes only, rather than fundamentally relying upon the random oracle model
for security purposes.

87

3.2 Deniable Authentication

compute H(r, S,R,m). However, this intuition is misleading. If the judge chooses r and provides

H(r,R, S,m) along with Ts(r) to the recipient R, the judge will be convinced that S participated

if R can produce the value H(r, S,R,m). After all, since the random oracle query was issued

by the judge, R has no way of extracting the value of r needed to compute H(r, S,R,m) (but,

of course, S can learn it by inverting the trapdoor permutation). The protocol of [73] can be

attacked in exactly the same fashion, and the protocol of [86] (which depends upon the KEA

assumption) also falls prey to an analogous attack (where the judge computes the exponentiation

so that the exponent cannot be extracted by the simulator).

Before concluding our survey (which is not exhaustive), we briefly consider some related works

that feature secure models similar to our own. Independently, Hofheinz et al. [59] also proposed

a notion of deniability based on the UC framework that is closely related to our GUC notion.

However, the model of [59] already assumes the presence of authenticated channels (without

describing any appropriate method of realizing them over unauthenticated links), and therefore

they do not consider the problem of deniable authentication. Additionally, the deniable protocols

they construct require all parties to have so-called “signature cards” (a device with tamper-proof

hardware containing a signing key). This is a very strong/expensive setup assumption, and even

with this setup their protocols are only secure against static corruptions. Furthermore, since the

notion of deniability in [59] depends upon the ability of parties to access their own signature cards,

a judge can obtain incriminating evidence against Alice by first confiscating Bob’s signature card

and then asking Bob to run the protocol with Alice. The related setup model of [64], which

assumes the availability of tamper-proof “secure token” hardware, suffers from a similar problem

with deniability (and the specific protocols proposed in that work, which were never specifically

claimed to be deniable, are vulnerable to other attacks on deniability as well).

Finally, we note that the modeling of deniable authentication in [61] is also based on an

approach derived from UC security. However, the random oracle in the first protocol of [61]

(discussed above) is unrealistically modeled as a “local” ideal functionality (i.e., the environment

is not allowed to issue oracle queries directly), whereas we model random oracles using “global”

shared functionalities (see Section 2.2.4). The second protocol presented in [61], which does not

use the random oracle model, is only secure with respect to static corruptions (and is significantly

more complicated than our proposed solution for the static corruption scenario).

88

3 Deniability and Deniable Authentication

In summary, we have demonstrated explicit attacks against the forward security of all pre-

viously proposed deniable authentication protocols (as well as giving many attacks that work

even in the static corruption scenario). These attacks “slip through the cracks” in the security

provided by previous deniable authentication models, due to unrealistic modeling. Indeed, it

seems very likely that many more practical attacks of a similar nature to the ones described

herein exist. Of course, this leaves us with the question of how to design more secure deniable

authentication protocols, since previous solutions all seem to suffer from practical flaws. Suitably

armed with knowledge of these practical attacks on the deniability of authentication protocols,

and our more realistic security framework for modeling the requirements of deniability, we are

prepared to investigate potential approaches to the design of more secure solutions in depth.

3.2.2 Impossibility of Deniable Authentication in the PKI Model

Given that so many previous authentication protocols seem vulnerable to practical attacks on

deniability (despite being designed specifically to resist such attacks), one begins to wonder why

this problem is so difficult. We now prove a startling (and seemingly quite harsh) impossibility

result: adaptively secure deniable authentication and key exchange (in fact, even identification)

is impossible in the PKI model, even if parties prove the knowledge of their secret keys, even in

erasures are allowed, even if each secret key is used only once, and even if no man-in-the-middle

attacks are allowed. In the non-erasure model, we can also rule out even deniable protocols which

are only forward-secure.

Before stating the formal impossibility result and giving its proof, we first comment on why

the impossibility result is not as obvious as it might otherwise seem to be. At first, it appears that

since the behavior of the sender S can be simulated in a straight-line manner without its secret

key SKS , there is an attacker who can impersonate the sender to the recipient R (by running

the simulator). Of course, one of the reasons why this does not have to work is that R might use

its own secret key SKR for verification. In particular, a simulated transcript might look different

than the real one to R, since R can employ knowledge of SKR to distinguish the transcript

(whereas the adversary does not have this ability). One “fix” to this problem is to (adaptively)

corrupt R and then check the simulated transcript from R’s viewpoint. Unfortunately, if R is

89

3.2 Deniable Authentication

corrupted too early (say, at the very beginning), it could be the case that knowledge of R’s

secret key is subsequently employed by the simulator in order to simulate the proper transcript

(without talking to S or obtaining SKS). Notice that such a simulation does not contradict

soundness, since, in the real world, R would know that he is not simulating the conversation with

S. On the other hand, if R is corrupted too late (say, at the very end), the initial flows from

the “then-honest” party R were also chosen by the simulator, so there is no guarantee that they

correspond to the behavior of a real R interacting with the sender’s simulator.

Theorem 3.1. There does not exist an adaptively-secure protocol Π for realizing the deniable

identification functionality Fid in the ḠΠ
krk-hybrid model. Moreover, the impossibility holds even

under the following additional assumptions/constraints:

– Secure data erasures are allowed.

– Each honest party P will not use its secret key SKP for more than one identification session

(either as a sender or as a recipient).

– The attacker A will either try to impersonate the sender to an honest recipient exactly once,

or will try to impersonate the recipient to an honest sender exactly once. In particular, A will

not mount the man-in-the-middle attack against two honest parties.

Since identification Fid is trivial to implement from either Fauth (by having S authenticate any

fixed message) or Fke (by having S reveal the exchanged key), we get:

Corollary 3.1. Under the same conditions, it is impossible to securely realize adaptively secure

deniable authentication Fauth and deniable key exchange Fke functionalities.

Proof. Let Π be any protocol for deniable identification using r = r(n) rounds, and assume

toward a contradiction that Π is adaptively secure. Without loss of generality, we assume that

the receiver goes first, and that the final message of the protocol is sent by the sender. In

particular, we let α1, α2, . . . , αr denote the messages sent by the receiver R and β1, . . . , βr denote

the response messages sent by the sender S. For convenience, we let αr+1 denote the binary

decision bit of the receiver indicating whether or not R accepted. Throughout the protocol, we

denote the current state of the sender and the receiver by ωS and ωR, respectively. This evolving

state will include all the information currently stored by the given party, except for its secret key.

90

3 Deniability and Deniable Authentication

Because we allow erasures, the current state does not include any information previously erased

by this party.

We already stated that we only consider two kinds of attackers: sender impersonator AS and

receiver impersonator AR. The sender impersonator AS will talk with an honest receiver R,

while the receiver impersonator AR will talk to an honest sender S. By assumption, there exists

efficient simulators SimR and SimS for AS and AR, respectively: the job of SimR is to simulate

the behavior of R when talking to AS , while the job of SimS is to simulate the behavior of S

when talking to AR. Moreover, the GUC security of Π implies that SimS and SimR have to work

given only oracle access to R and S, respectively.8 In particular, this means that in each round

1 ≤ i ≤ r,

– As long as neither S or R is corrupted, SimS (resp. SimR) will receive some arbitrary message

αi (resp. βi) and have to generate a “good-looking” response βi (resp. αi+1). Moreover, it has

to do so without the knowledge of the secret keys SKS and SKR or any of the future messages

αi+1, . . . (resp. βi+1, . . .).

– If S (resp. R) is corrupted, SimS (resp. SimR) will be given the secret SKS (resp. SKR),

and will then be responsible to generate a “consistent-looking” internal state ωS (resp. ωR)

for the corresponding party at round i. The pair (SKS , ωS) (resp. (SKR, ωR)) will then be

given to the attacker and the environment.

From this description, we make our first key observation: as long as S and R are not corrupted, it

is within the power of our attackers AS and AR to internally run the simulators SimS and SimR,

respectively. In particular, we can make meaningful experiments where AS runs SimS against an

honest receiver R, or AR runs SimR against an honest sender S. Of course, a priori it is unclear

what happens during these experiments, since SimS was only designed to work against attackers

AR who do not know SKR (as opposed to R itself, who certainly knows it), and similarly for

SimR. Indeed, the bulk of the proof consists of showing that such “unintended” usages of SimS

and SimR nevertheless result in the “expected” behavior. In particular, we give a sequence or

8This is because, without loss of generality, AS and AR are simply the dummy parties for-
warding the messages of the environment, and the simulator has to work for any environment.
In fact, this property follows whenever there is an external “judge” with whom the adversary
may interact when gathering evidence of protocol interactions.

91

3.2 Deniable Authentication

“hybrid experiments” culminating by showing that, without knowing the secret key of the sender,

the simulator SimS can still successfully imitate the sender to an honest receiver, contradicting

the soundness of identification.

The Hybrid Experiments. The hybrid experiments we define will be parameterized by the

round number i, roughly indicating for how many rounds the attacker will run the corresponding

simulator SimS or SimR before corrupting the sender and the receiver. In particular, for each

round 0 ≤ i ≤ r−1 we will have 8 experiments real-Ri
1, ideal-Ri

1, real-Si1, ideal-Si1, real-Si2,

ideal-Si2, real-Ri
2, ideal-Ri

2 (except real-Ri
1 would be defined for i = r as well). The no-

tation above can be interpreted as follows. The “real/ideal” distinction dictate whether the

corresponding sender (resp. receiver) impersonator runs against a real receiver R (resp. sender

S) or against the simulator SimR (resp. SimS). In particular, the definition of the corresponding

attacker is always given in the real world, and the corresponding ideal world is then syntactically

derived in order to analyze the behavior of the same attacker against the simulator. The “-R/-S”

suffix corresponds to the identity of the party the attacker is trying to fool (or their simulator if

in the ideal world). Finally, the subscript “1/2” corresponds to whether the attacker corrupts the

parties after the receiver’s message αi+1 (in which case the attacker is denoted by A), or after

the sender’s response βi+1 (in which case the attacker is denoted by B). For example, the hybrid

real-Si2 will correspond to running the real sender S against an attacker BiR (defined in this

experiment), and having BiR corrupt the parties after the flow βi+1, while the hybrid ideal-Si2

corresponds to running the same attacker against the simulator SimS .

The formal definition of all the hybrids is given in Figure 3.1, and will be further elaborated

below. We mention, though, that in each of the hybrids the attacker will output a some decision

bit (roughly corresponding to whether the receiver accepts in the given experiment), and we

will only care about the probability that this bit is 1. To simplify the notation, we write Pr[X]

to denote the corresponding probability of outputting 1 in hybrid X. Also, for hybrids X and

Y , we write X ≡ Y to indicate that Pr[X] = Pr[Y] (even though the experiments might differ

in other regards), and X ≈ Y to indicate the |Pr[X] − Pr[Y]| is a negligible function of the

security parameter. With this convention, we will show the following chain of implications for

92

3 Deniability and Deniable Authentication

any 0 ≤ i ≤ r − 1:

real-Ri
1 ≈ ideal-Ri

1 ≡ ideal-Si1 ≈ real-Si1 ≡ real-Si2 (3.1)

≈ ideal-Si2 ≡ ideal-Ri
2 ≈ real-Ri

2 ≡ real-Ri+1
1 .

We now proceed by examining the corresponding hybrids and showing the above chain one

implication at a time.

93

3.2 Deniable Authentication

Experiment real-Ri1: attacker AiS against honest

R

1. For j = 1 to i:

– AiS receives αj from R, and forwards this message

(internally) to SimS .
– AiS obtains βj (internally) from SimS , and for-

wards this message to R.

2. AiS receives αi+1 from R. It then corrupts R and is

given the key skR and the state ωR.

3. AiS corrupts S and gets the the key skR (the ωS is

ignored). It then gives skS to SimS , which outputs

ω′S .

4. Using skS , ω
′
S , skR, ωR, adversary AiS runs the pro-

tocol to completion. It outputs 1 iff the result is that

R outputs “accept”.

Experiment ideal-Ri1: attacker AiS against

simulator SimR

1. For j = 1 to i:

– AiS receives αj (externally) from SimR, and for-

wards this message (internally) to SimS .
– AiS obtains βj (internally) from SimS , and for-

wards this message to SimR.

2. AiS receives αi+1 from SimR. It then corrupts R.

When this happens, SimR gets skR, generates state

ω′R, and gives (skR, ω
′
R) to AiS .

3. AiS corrupts S and gets skS . (It does not matter

what state ωS is output by SimR.) AiS gives skS to

its internal copy of SimS , which outputs ω′S .

4. Using skS , ω
′
S , skR, ω

′
R, adversary AiS runs the pro-

tocol to completion. It outputs 1 iff the result is that

R outputs “accept”.

Experiment real-Si1: attacker AiR against honest S

1. For j = 1 to i:

– AiR obtains αj (internally) from SimR, and for-

wards this message to S.
– AiR receives βj from S, and forwards this message

(internally) to SimR.

2. AiR obtains αi+1 (internally) from SimR.

3. AiR corrupts S, and receives in return skS and ωS .

4. AiR corrupts R, and receives in return skR and state

ωR (that will be ignored). AiR gives skR to its internal

copy of SimR, which outputs state ω′R.

5. Using skS , ωS , skR, ω
′
R, adversary AiR runs the pro-

tocol to completion. It outputs 1 iff the result is that

R outputs “accept”.

Experiment ideal-Si1: attacker AiR against

simulator SimS

1. For j = 1 to i:

– AiR obtains αj (internally) from SimR, and for-

wards this message (externally) to SimS .
– AiR receives βj (externally) from SimS , and for-

wards this message (internally) to SimR.

2. AiR obtains αi+1 (internally) from SimR.

3. AiR corrupts S. When this happens, SimS gets skS ,

generates state ω′S , and gives (skS , ω
′
S) to AiR.

4. AiR corrupts R and gets skR. (It does not matter

what state ωR are output by SimS , since AiR will any-

way ignore them.) AiR gives skR to its internal copy

of SimR, which outputs state ω′R.

5. Using skS , ω
′
S , skR, ω

′
R, adversary AiR runs the pro-

tocol to completion. It outputs 1 iff the result is that

R outputs “accept”.

94

3 Deniability and Deniable Authentication

Experiment real-Si2: attacker BiR against honest S

1. For j = 1 to i:

– BiR obtains αj (internally) from SimR, and for-

wards this message to S.
– BiR receives βj from S, and forwards this message

(internally) to SimR.

2. BiR obtains αi+1 (internally) from SimR, and for-

wards this message to S. It receives in return a mes-

sage βi+1 from S.

3. BiR corrupts S, and receives in return skS and state

ωS .

4. BiR corrupts R, and receives in return skR and state

ωR (that will be ignored). BiR gives skR to its internal

copy of SimR, which outputs state ω′R.

5. Using skS , ωS , skR, ω
′
R, adversary BiR runs the pro-

tocol to completion. It outputs 1 iff the result is that

R outputs “accept”.

Experiment ideal-Si2: attacker BiR against

simulator SimS

1. For j = 1 to i:

– BiR obtains αj (internally) from SimR, and for-

wards this message to SimS .
– BiR receives βj from SimS , and forwards this mes-

sage (internally) to SimR.

2. BiR obtains αi+1 (internally) from SimR, and for-

wards this message to SimS . It receives in return a

message βi+1 from SimS .

3. BiR corrupts S. When this happens, SimS gets skS ,

generates state ω′S , and gives (skS , ω
′
S) to BiR.

4. BiR corrupts R, and receives in return skR. (It does

not matter what state ωR are output by SimS , since

BiR will anyway ignore them.) BiR gives skR to its

internal copy of SimR, which outputs state ω′R.

5. Using skS , ω
′
S , skR, ω

′
R, adversary BiR runs the pro-

tocol to completion. It outputs 1 iff the result is that

R outputs “accept”.

Experiment real-Ri2: attacker BiS against honest R

1. For j = 1 to i:

– BiS receives αj from R, and forwards this message

(internally) to SimS .
– BiS obtains βj (internally) from SimS , and for-

wards this message to R.

2. BiS receives αi+1 from R, and forwards this mes-

sage (internally) to SimS . It obtains a message βi+1

from SimS .

3. BiS corrupts R, and gets skR and ωR.

4. BiS corrupts S and obtains skS and state ωS (which

are ignored). BiS gives skS to its internal copy of SimS

to obtain ω′S .

5. Using skS , ω
′
S , skR, ωR, adversary BiS runs the pro-

tocol to completion. It outputs 1 iff the result is that

R outputs “accept”.

Experiment ideal-Ri2: attacker BiS against

simulator SimR

1. For j = 1 to i:

– BiS receives αj (externally) from SimR, and for-

wards this message (internally) to SimS .
– BiS obtains βj (internally) from SimS , and for-

wards this message (externally) to SimR.

2. BiS receives αi+1 (externally) from SimR, and for-

wards this message (internally) to SimS . It obtains a

message βi+1 from SimS .

3. BiS corrupts R. When this happens, SimR gets skR,

generates state ω′R, and gives (skR, ω
′
R) to BiS .

4. BiS corrupts S and obtains skS . (It does not matter

what state ωS are output by SimR, since BiS will any-

way ignore them.) BiS gives skS to its internal copy

of SimS to obtain ω′S .

5. Using skS , ω
′
S , skR, ω

′
R, adversary BiS runs the pro-

tocol to completion. It outputs 1 iff the result is that

R outputs “accept”.

Table 3.1: Experiments used in the impossibility proof.

95

3.2 Deniable Authentication

Experiment real-Ri
1. This experiment is defined for 0 ≤ i ≤ r, and defines a sender imper-

sonator AiS interacting with an honest R. It runs the simulator SimS until receiving αi+1 from

R. Then it corrupts R and learns (SKR, ωR). After this it corrupts S and learns SKS . Now,

it tells the internal simulator SimS that S was corrupted first (although this is not the case),

so SimS only expects SKS in order to output the simulated state ω′S .9 Finally, it simulates the

behavior of Π until completion with the sender’s side holding (SKS , ω
′
S), and the receiver’s side

holding (SKR, ωR).

Experiment ideal-Ri
1. By the alleged security of Π, we have real-Ri

1 ≈ ideal-Ri
1, where the

latter experiment runs the same attacker AiS against the simulator SimR. The main difference

here is that the receiver’s state ω′R after the corruption is now simulated by SimR. Notice, since

R is corrupted first, SimR only gets to know SKR when producing ω′R. The next implication

in (3.1) is that ideal-Ri
1 ≡ ideal-Si1, but we first need to define real-Si1 before talking about

ideal-Si1.

Experiment real-Si1. This experiment is defined for 0 ≤ i ≤ r − 1, and defines a receiver

impersonator AiR interacting with an honest S. It runs the simulator SimR until receiving αi+1

from SimR. Then it corrupts S and learns (SKS , ωS). After this it corrupts R and learns SKR.

Once again, it tells the internal simulator SimR that R was corrupted first (although this is not the

case), so SimR only expects SKR in order to output the simulated state ω′R. Finally, it simulates

the behavior of Π until completion with sender’s side holding (SKS , ωS), and the receiver’s side

holding (SKR, ω
′
R). By the alleged security of Π, we have that real-Si1 ≈ ideal-Si1, where the

latter is expanded below.

Experiment ideal-Si1. This experiment runs the same attacker AiR against the simulator

SimS . The main difference here is that the sender’s state ω′S after the corruption is now simulated

by SimS . Notice, since S is corrupted first, SimS only gets to know SKS when producing ω′S .

We can now verify the crucial fact that ideal-Ri
1 ≡ ideal-Si1. At the first glance, this is quite

9We remark that this will happen in most of our games: when the attacker internally runs the
simulator SimP for a party P (either S or R) to produce the fake state ωP , the attacker always
tells this internal simulator that the party is corrupted first, even though, in reality, this party
was corrupted second. In a moment, we will see that this subtlety is crucially used.

96

3 Deniability and Deniable Authentication

unexpected, since, in the one case, we have an adversary AiS interacting with SimR and, in the

other case, we have a different adversary AiR interacting with SimS . However, remember that

AiS really runs SimS internally, and AiR really runs SimR internally. Thus, in both experiments

we are effectively running the two simulators SimS and SimR against each other.

A bit more precisely, the only syntactic difference between the two ideal experiments lies

in that the order of the corruptions, which is different. A closer look, however, reveals that the

order does not matter because of the way the experiments are defined. Specifically, in experiment

ideal-Ri
1 the (external) simulator SimR observes the corruption of R occurring first, and outputs

state ω′R without any knowledge of SKS . In this same experiment, the (internal) simulator SimS

is not “told” about the corruption of R, and outputs state ω′S without knowledge of SKR.

Similarly, in experiment ideal-Si1 the (internal) simulator SimR “thinks” that corruption of

R occurs first, and outputs ω′R without knowledge of SKS ; on the other hand, the (external)

simulator SimS observes that corruption of S occurs first, and outputs ω′S without knowledge

of SKR. Therefore, the probability that the adversary outputs 1 is indeed identical in each case,

as claimed: ideal-Ri
1 ≡ ideal-Si1.

Experiment real-Si2. This experiment is defined for 0 ≤ i ≤ r − 1, and is very similar to

real-Si1. (Indeed, we will shortly argue that real-Si2 ≡ real-Si1.) As with real-Si1 which

defined a receiver impersonator AiR (interacting with an honest S), here we define a slightly

different receiver impersonator BiR. Concretely, the only difference between the two experiments

is that, in real-Si2, the adversary forwards αi+1 to the honest sender S (before corrupting S),

while in real-Si1 the adversary does not (and corrupts S right away). However, since the response

βi+1 is computed honestly in both experiments, either by the actual sender S in real-Si2, or by

the first attacker AiR running the code of S in real-Si1, this minor difference has no effect on

the probability that the adversary outputs 1 in either experiment. Thus, real-Si2 ≡ real-Si1.

In essence, the point of this experiment is to “move a step forward” (on the sender side), so

that the parties are now corrupted after the flow βi+1.

Experiment ideal-Si2. By the alleged security of Π, we have that real-Si2 ≈ ideal-Si2, where

the latter experiment runs the same attacker BiR against the simulator SimS . In particular, the

97

3.2 Deniable Authentication

main difference from from the real experiment is that the sender’s state ω′S after the corruption

is now simulated by SimS . Notice, since S is corrupted first, SimS only gets to know SKS when

producing ω′S .

Once again, the next implication in the chain (3.1) is that ideal-Si2 ≡ ideal-Ri
2, but we first

need to define real-Ri
2 before talking about ideal-Ri

2.

Experiment real-Ri
2. This is defined for 0 ≤ i ≤ r−1, and defines a sender impersonator BiS

interacting with an honest R. It runs the simulator SimS until receiving βi+1 from SimS . Then

it corrupts R and learns (SKR, ωR). After this it corrupts S and learns SKS . Once again, it

tells the internal simulator SimS that S was corrupted first (though this is not the case), so SimS

only expects SKS in order to output the simulated state ω′S . Finally, as before, it simulates the

behavior of Π until completion with sender’s side holding (SKS , ω
′
S), and receiver’s side holding

(SKR, ωR). By the alleged security of Π, we have real-Si1 ≈ ideal-Si1, where the latter is

expanded below.

Experiment ideal-Ri
2. This experiment runs the same attacker BiS against the simulator

SimR. The main difference here is that the receiver’s state ω′R after the corruption is now

simulated by SimR. Notice, since S is corrupted first, SimR only gets to know SKR when

producing ω′R. Similar to our previous analysis of ideal-Si1 and ideal-Ri
1, we may notice here

also that experiment ideal-Ri
2 is just a syntactic re-writing of experiment ideal-Si2. Indeed,

the only difference lies in the order of corruptions; once again, however, the order does not

matter because of the way the experiments are defined. The argument is analogous to the

previous one: in experiment ideal-Si2 the (external) simulator SimS observes the corruption of

S occurring first, and outputs state ω′S without knowledge of SKR. In this same experiment, the

(internal) simulator SimR is not “told” about the corruption of S, and outputs state ω′R without

knowledge of SKS . Similarly, in experiment ideal-Ri
2 the (internal) simulator SimS “thinks”

that corruption of S occurs first, and outputs ω′S without knowledge of SKR; the (external)

simulator SimR observes that corruption of R occurs first, and outputs ω′R without knowledge

of SKS . Therefore, the probability that the adversary outputs 1 is indeed identical in each case,

as claimed: ideal-Si2 ≡ ideal-Ri
2.

98

3 Deniability and Deniable Authentication

Experiment real-Ri+1
1 . To complete chain (3.1), we must argue that real-Ri

2 ≡ real-Ri+1
1

(for 0 ≤ i < r), where the latter experiment simply advances the already defined experiment

real-Ri
1 by one round. The argument is very similar to the proof that real-Si1 ≡ real-Si2,

which essentially advanced the honest sender one step forward. Here, instead, we are advancing

the honest receiver one step forward, by letting him compute αi+2. Indeed, the only difference

between the two experiments real-Ri
2 and real-Ri+1

1 is that, in real-Ri+1
1 , the adversary

receives αi+2 from the honest receiver R (before corrupting R), while in real-Ri
2 the adversary

does not (and corrupts R right away). However, since the message αi+2 is computed honestly in

both experiments, either by the actual receiver R in real-Ri+1
1 , or by the attacker BiS running the

code of R in real-Ri
2, this minor difference has no effect on the probability that the adversary

outputs 1 in either experiment. Thus, real-Ri+1
1 ≡ real-Ri

2, completing the proof of chain

(3.1).

Connecting The Endpoints. Using chain (3.1) for 0 ≤ i ≤ r−1, and the fact that the number

of rounds r is polynomial in the security parameter, we conclude that real-R0
1 ≈ real-Rr

1. To

see that this leads to contradiction, let us examine these “endpoints” more closely.

Experiment real-R0
1. Looking at Figure 3.1, here we are effectively simulating the run of

the honest sender against the honest receiver. Indeed, on the sender’s side, since the sender is

corrupted before he sends any messages, and the initial state ωS of such sender is empty, the

attacker A0
S is simply running the code of S. On the receiver’s side, A0

S lets honest R send

α1, and then corrupts R and still runs it honestly, which is equivalent to running R all the

way. Since Π presumably implements Fid, this means that Pr[real-R0
1] is negligibly close to 1

(because the honest sender should identify to the honest receiver in the ideal model). By our

proof that real-R0
1 ≈ real-Rr

1, we get that Pr[real-Rr
1] is also negligibly close to 1. However,

let us examine the latter experiment now.

Experiment real-Rr
1. Looking at Figure 3.1, here the sender impersonator ArS runs the

simulator SimS against the honest receiver R all the way until R outputs its decision bit αr+1.

Only after this point does it corrupt R and S and outputs this decision bits αr+1. As we just

argued, Pr[αr+1 = 1] must be negligibly close to 1. But this clearly leads to a contradiction:

99

3.2 Deniable Authentication

without corrupting the sender S, the sender impersonator ArS caused honest R to accept with

probability negligibly close to 1, which should never happen in the ideal model.

This completes the proof.

Assuming data erasures are not allowed, we now extend the above proof to handle forward-

secure attackers, which can only corrupt the parties after the end of the protocol. This is quite

interesting, since many previous approaches to deniability only protected an honest sender against

a malicious receiver. Here, we show that a malicious impersonator can always break the denia-

bility of two honest parties (only one of which needs to be present), provided the distinguisher

can later obtain the keys of the sender and the receiver.

To see this, we notice that the sender/receiver impersonators used in the proof always stopped

the protocol somewhere in the middle, by simultaneously corrupting both parties (and then doing

some internal simulation). Instead, we can let them explicitly abort the protocol at the same

point in time they used to corrupt the parties, and only then to corrupt the parties and do

the corresponding internal simulation (thus, the corruption only occurs after the protocol has

completed). Of course, if erasures were allowed, the parties could always erase all their temporary

state the moment the abort happens. However, without erasures, the corresponding simulator

would still have to produce a consistent state of the party prior to the abort, and the same

impossibility proof goes through. Thus,

Theorem 3.2. If data erasures are not allowed, it is impossible to realize the identification,

authentication, or key exchange functionalities with forward security (in any Ḡkrk-hybrid model).

This holds even under the remaining constraints of Theorem 3.1. In particular, semi-adaptive

security (without erasures) is also impossible.

Finally, we note that the weaker “bare public key” or “bulletin board” setup models (see

Section 2.2.3) are not sufficient to realize these functionalities at all, even with mere static security.

This seems to imply that key registration with knowledge is an unavoidable requirement for the

PKI setup.

Theorem 3.3. It is impossible to realize the identification, authentication, or key exchange

functionalities in either the bare public key or bulletin board setup models. This impossibility

holds even in the static corruption model.

100

3 Deniability and Deniable Authentication

The proof of this theorem is quite simple. In either of the two setup models, the simulator

has no means of obtaining any secret keys. Therefore, if a simulator exists for some identification

protocol (in the scenario where the receiver is corrupt but the sender is honest), that same

simulation procedure can be used by anyone in order to authenticate on behalf of the honest

sender, violating the soundness of the identification protocol. We omit a more formal exposition

of the proof by contradiction, since the details are trivial.

3.2.3 Gap Between Static and Adaptive Corruptions

To the best of our knowledge, previously all known tasks realizable against static attackers can

still be realized against adaptive attackers (though perhaps less efficiently and/or under stronger

assumptions). Thus, now demonstrate the first example of a security task where static security

is not just a matter of simplicity or efficiency, but a matter of feasibility. Namely, we show

how to GUC-realize the functionality Fauth secure against static corruptions in the PKI model,

giving us the first provable separation between static and adaptive security. We accomplish

this by employing a standard tool we refer to as Non-Interactive Authenticated Key Exchange

(NI-AKE), which we now define formally.

Definition 3.4 (Non-Interactive Authenticated Key Exchange (NI-AKE)). A Non-Interactive

Authenticated Key Exchange (NI-AKE) is given by a pair of poly-time algorithms (Gen,SymExt),

satisfying the following properties:

Correctness of Symmetric Extraction: For any choice of ri, rj , let (PK i,SK i) ←

Gen(ri) and (PK j ,SK j)← Gen(rj). Then SymExt(SK i,PK j) = SymExt(SK j ,PK i).

Indistinguishability of Extracted Keys: No PPT distinguisher D succeeds with more

than negligible advantage at the following game:

1. The challenger samples random values r0
$← {0, 1}λ and r1

$← {0, 1}λ, and computes

(PK 0,SK 0) ← Gen(r0) and (PK 1,SK 1) ← Gen(r1). The values PK 0 and PK 1 are

given to D.

2. The challenger samples a random bit b $← {0, 1}. If b = 0, the challenger computes

k ← SymExt(SK 0, PK1). If b = 1, the challenger samples k $← {0, 1}λ. The value k is

101

3.2 Deniable Authentication

then given to D.

3. D computes a guess bit b̂← D(PK 0,PK 1, k).

4. D’s advantage is defined to be Pr[b̂ = b]− 1/2.

The basic intuition for this definition is that availability of “authenticated” public keys might

allow the parties to agree upon a shared secret k, where the availability of the sender’s secret key

and the receiver’s public key (or the receiver’s secret key and the sender’s public key) enables

the sender (and receiver) to compute k non-interactively (i.e., no further communication needs

to occur once the parties possess each other’s public keys).

The standard technique for implementing NI-AKE is based on the Decisional Diffie Hellman

(DDH) assumption, as follows. Assume we will operate in some multiplicative group G of order

q generated by some generator g, where the DDH assumption10 holds. If each party Pi has a

secret key xi ∈ Zq and corresponding public key yi = gxi , then Pi and Pj will non-interactively

share a common key gxixj = y
xj
i = yxij (i.e., SymExt(xi, yj) := yj

xi). However, by the DDH

assumption, the key value gxixj still looks like a random group element to an attacker who only

knows the public keys yi and yj .

Given any secure NI-AKE, our statically secure authentication protocol is very simple: to

authenticate a message M to a receiver R, the sender simply computes a Message Authentication

Code (MAC) tag for the tuple (sid, S,R,M) using the key k that he non-interactively shares with

the receiver, while the receiver verifies the tag using the same key. A bit more formally,

Theorem 3.5. Assuming the existence of a NI-AKE (Gen,SymExt), there exists an efficient

protocol Φ such that Fauth can be UC-realized in the ḠΦ
krk-hybrid model, with static security.

Proof. As already stated, the Gen function will define the public and secret keys for each party,

and Φ uses SymExt to obtain a MAC key kij for use between a given pair of parties Pi and

Pj . To authenticate a message M , send M along with the MAC of (sid, Pi, Pj ,M), where the

MAC can be implemented using a pseudo-random function. We briefly sketch how to do the

simulation, omitting the details of the formal proof of simulation indistinguishability (which are

quite standard).

10DDH states that the tuple (g, ga, gb, gab) is computationally indistinguishable from
(g, ga, gb, gc), where a, b, c are random in Zq.

102

3 Deniability and Deniable Authentication

If both parties are honest, the simulation initially samples a random key kij , which it will

use in place of the legitimate shared key (as the simulator does not have access to either party’s

secret key, so it cannot compute the actual shared key value). To authenticate a message, the

simulator computes the MAC using kij and allows the recipient to accept the ideal authentication

if and only if the MAC tag is allowed to pass through the network unaltered by the (simulated)

adversary. Since a staticly corrupting adversary can never learn the secret keys corresponding to

either of these two honest parties, the key kij chosen by the simulator remains indistinguishable

from the legitimate shared key to the adversary. Indistinguishability of this simulation procedure

follows directly from the security properties of the NI-AKE, and from the unforgeability property

of the MAC.

If one party Pi is corrupt, retrieving the party’s secret key SK i allows the simulator to run

SymExt(SK i,PK j) to get the same shared MAC key kij as the one obtained by its honest partner

Pj via SymExt(SK j ,PK i). This holds with all but negligible probability even if the corrupt party

Pi chose malicious randomness ri for Gen, as allowed by the Ḡkrk functionality. Given this key,

the simulator can perfectly simulate the behavior of the honest party. Indistinguishability of this

simulation procedure follows trivially.

Remark: The above protocol is not forward secure (let alone adaptively secure), even if we

allow erasures. Intuitively, the adversary can detect simulated authentication from real authen-

tication between two honest parties by later corrupting either one of the honest parties, deriving

the appropriate MAC key with SymExt, and then checking the previously recorded MACs. Still,

given our impossibility results, this protocol based on using a MAC with NI-AKE essentially

matches the best we can do if we insist on realizing Fauth in the non-erasure model. We conjec-

ture that it is also impossible to realize Fauth with a forward secure protocol even if erasures are

allowed, and that therefore there is no remaining gap for further improvement in this direction.

Remark: Although it might appear that NI-AKE is being used to realize Fke, and that here we

are combining Fke with a MAC in order to realize Fauth, this is not the case. NI-AKE does not

trivially realize Fke, since the exchanged key is fixed. That is, parties running multiple instances

103

3.2 Deniable Authentication

of Fke expect to see fresh keys for each instance of the key exchange protocol, but any number of

instances of NI-AKE will always output the same key. However, we can easily combine NI-AKE

with a highly efficient symmetric key authenticated encryption scheme in order to realize Fke.

Intuitively, the protocol is the same as the one above, only the MAC is replaced by a (symmetric

key) authenticated encryption of the fresh random key (which is being exchanged). The proof

security is entirely analogous, except we also rely upon the privacy property of the authenticated

encryption in order to hide the exchanged key from the adversary.

3.2.4 Equivalence of Fauth to Shared Key Model

In this section we show that if parties have access to a basic key exchange functionality Fke, as

described in Figure 3.3, then it is possible to realize Fauth with adaptive security. Conversely,

if parties are given access to Fauth, it is possible to realize Fke with adaptive security. Aside

from showing equivalence (under appropriate assumptions) between deniable authentication and

deniable key exchange, which is a simple extension of existing work applied to our setting, we

discuss the importance of this result in terms of contrasting public key infrastructure (PKI),

implied by the Ḡkrk functionality, and “symmetric key infrastructure” (SKI), implied by the Fke

functionality.

Contrasting SKI and PKI. To obtain a symmetric key infrastructure (i.e., a shared key

setup) from Fke, we would like to ensure that each pair of parties need only invoke one instance

of Fke, at initialization time. The resulting shared key should then be reused in all future sessions.

One way of ensuring this one-time setup would be to define a separate shared functionality for

symmetric key registration, akin to that of Ḡkrk. Indeed, with some care, it is possible to formalize

such one-time functionality. However, for the sake of simplicity,11 we will instead apply the “JUC

11A complete formal definition of the shared functionality for symmetric key setup is somewhat
difficult to work with, since it adds the additional complexity of interaction at setup time to the
already subtle issue of protecting keys from being leaked by protocols other than Φ. With
some care, however, these details could be easily filled in. In practice, this approach seems
counter-intuitive anyway, since the main idea here is to replace the one-time symmetric key
setup functionality by a realization using a key exchange protocol, rather than using a trusted
party to implement the shared functionality (as in the case of PKI).

104

3 Deniability and Deniable Authentication

Theorem” [31], which will effectively allow us to obtain the same conclusion. The JUC Theorem

approach enables us to realize the “multi-session extension” of Fauth (i.e., a single instance of

Fauth which can authenticate an arbitrary number of messages), using only a single instance

of Fke at initialization time. Whereas the JUC Theorem does not help us to model public key

infrastructure, since the public keys must be made available to the environment (and indeed, this

is the reason why we need to use the GUC framework), we do not encounter this difficulty in the

symmetric key setting. Its easy to see why: if the shared keys are directly provided to each pair

of communicating parties at setup time, no information about those keys is ever published to the

environment (in reality, there is no certification authority publicizing keys as there was for the

PKI model).

With this discussion in mind, one can interpret the equivalence between Fauth and Fke to

mean that a Symmetric Key Infrastructure is sufficient to realize Fauth with security against

adaptive corruptions, whereas Public-Key Infrastructure is not. And this leads to the following

puzzling observation. It is already well known that secure channels alone are not sufficient

to UC-realize most useful two-party functionalities, such as bit commitments or zero knowledge

[19, 23, 29]. On the other hand, the main result of [6] (as well as the upcoming result in Chapter 4)

shows that Ḡkrk is sufficient to UC/GUC-realize any well-formed functionality with adaptive

security, assuming the availability of secure channels. The upshot is that, absent physically

secure channels, our current feasibility results imply that both PKI and SKI are needed in order

to UC/GUC-realize most useful two party functionalities with adaptive security.12

Equivalence of Fke and Fauth. Both directions are fairly simple and appear in the litera-

ture in different contexts. To implement Fauth (an even the multi-session extension of Fauth)

from Fke with adaptive security, we essentially need to MAC the given message using the ideal

shared key that the parties obtain from Fke. (This is similar to the statically secure protocol

in Section 3.2.3, except the NI-AKE piece obtained using the PKI is replaced here by an ideal

call to Fke.) Similarly, in the other direction, we show how to realize Fke given Fauth, using a

12Alternatively, Chapter 4 shows that an Augmented Common Reference String (ACRS) can be
used to replace the PKI. Therefore, it is also possible UC-realize useful two party functionalities
given both ACRS and SKI. We remark that the impossibility of implementing Fauth using PKI
easily extends to include ACRS setups alongside the PKI.

105

3.2 Deniable Authentication

natural protocol based on non-committing public key encryption (NCE) [22]. Intuitively, NCE

schemes can operate just like normal encryption schemes, but it is also possible to generate in-

distinguishable “rigged” public keys and ciphertexts, such that the ciphertexts can be made to

appear as if they contain any desired plaintext (with some appropriate choice of secret key). This

rigging allows the simulator to ensure that a transcript simulated between two honest parties can

be made to appear as though they exchanged any particular symmetric key (a crucial property

for deniability, in the event that symmetric keys are ever leaked). Informally, the protocols is

quite simple: the initiator of the exchange sends a public key pk of the NCE to the responding

party over an authenticated channel (given by Fauth), and the responding party replies with a

ciphertext containing key k encrypted under the non-committing public key pk .

We now formally prove the the equivalence of Fauth to the Shared Key model.

Theorem 3.6. If one way functions exist, then there exists a protocol Φmac that UC-realizes

Fauth in the Fke hybrid model, even against adaptive corruptions. Furthermore, there also exists

a protocol that UC-realizes the natural multi-session extension of Fauth in the Fke hybrid model,

requiring only a single call to Fke, even against adaptive corruptions.

Proof of Theorem 3.6. Our protocol will make use of a standard cryptographic Pseudo-Random

Function (PRF) family, denoted F = {fk | k ∈ {0, 1}λ} where for a random k ∈ {0, 1}λ we

have that the function fk : {0, 1}∗ → {0, 1}λ is computationally indistinguishable from a random

function to any distinguisher that is not given k (such function families are known to exist if one

way functions exist). Since the multi-session version of the protocol Φmac implies the existence

of the single-session version (and indeed, is essentially identical to it), we will describe only

the multi-session protocol. Intuitively, the protocol is to obtain a symmetric key (per pair of

communicating parties), and use the PRF with that key as a “Message Authentication Code”

(MAC) to authenticate the message together with its sub-session identifier. See Figure 3.4 for a

formal description of the protocol.

To prove that the above protocol emulates Fauth even in the presence of adaptive corruptions,

we describe a UC-simulator for protocol Φmac, and prove that for any adversary A, the output

of S is indistinguishable to all environments Z. S uses the standard approach of running a

copy of A internally, and forwarding all communications between A and Z. Recall that S will

106

3 Deniability and Deniable Authentication

Protocol Φmac for Realizing Fauth

The protocol Φmac, running with parties S and R (the sender and recipient, respectively),
proceeds as follows:

Initialization: The first time S wishes to communicate with R, the following
initialization protocol is run.

1. S invokes Fke with input (keyexchange, sid, S,R), and then waits to receive a
message (setkey, sid, S,R, k) from Fke. Upon receipt, S records the message
containing the key.

2. R invokes Fke with input (keyexchange, sid, S,R), and waits to receive a
message (setkey, sid, S,R, k) from Fke. Upon receipt, R records the message
containing the key.

Authentication: To authenticate a message M from S to R with sub-session
identifier ssid, the following authentication protocol is run.

1. S computes τ = fk(sid‖ssid‖M) and sends (sid, ssid, S,R,M, τ) to R.

2. Upon receipt of a message (sid, ssid, S,R,M, τ) from S, R checks if τ ?=
fk(sid‖ssid‖M), and outputs (authentic, sid, ssid, S,R,M) if so. Otherwise,
the message is ignored.

Figure 3.4: Protocol Φmac for realizing the multi-session extension of Fauth in the Fke-hybrid
model.

107

3.2 Deniable Authentication

control the transmission delays of Fauth, so not only will S receive notifications when S attempts

to authenticate a message M to R, but S can decide whether or not to allow R to receive the

message. Upon seeing an attempted message authentication, S must simulate the behavior of the

“real world” authentication protocol Φmac for S and R (including all the protocol communication,

which takes place over insecure channels). To accomplish this, S will simply run the protocol

Φmac on behalf of S and R, as they would in the real world, but S will play the role of Fke

whenever S or R invoke it as part of their protocol. Playing the role of Fke allows S to learn

the symmetric key k (either by observing the key set by a corrupt party R, or by choosing the

key when the parties are honest) – which, in turn, allows S to honestly simulate computations in

Φmac which depend upon knowledge of k. To ensure that the output distributions of the parties

are accurately simulated, the simulator will have to handle two concerns: 1) Recalling that Fauth

immediately notifies S when a message is sent by S, whenever an honest sender S sends message

m to R, S will delay the delivery of m to R until a (simulated) session of protocol Φmac results in

R accepting the same authenticated message m. 2) Whenever an honest recipient R accepts some

message m from S in the simulated interaction of protocol Φmac, then S activates an instances

of Fauth on behalf of the sender (which must be corrupt, or else S cannot activate Fauth on the

sender’s behalf) with message m for recipient R. The only case not covered by either case 1 or

2 occurs when both S and R are honest, yet a simulated interaction of Φmac for R accepts some

message m that was not actually sent by S (that is, in the equivalent “real world” interaction,

an honest R would accept such an authenticated message from S even though S never sent it).

In this case, we say that the simulation has failed – but we note that this occurs with at most

negligible probability by security of the PRF family, since only S knows k (and S will never

compute a valid tag τ for any message that was not actually sent by S, although the adversary

may see many valid tags for messages with different sids). Whenever this unlikely failure condition

does not occur, the simulation of the protocol is entirely honest (i.e., the simulated interaction

is identically distributed to the real world interaction, including the outputs of the parties), it

follows immediately that it is indistinguishable to Z.

108

3 Deniability and Deniable Authentication

Theorem 3.7. Assuming the existence of non-committing encryption, there exists a protocol

that UC-realizes Fke in the Fauth-hybrid model, even against adaptive corruptions.

Proof of Theorem 3.7. Here we will only sketch the proof, which is a trivial consequence of the

secure message transmission property of non-committing encryption used with authenticated

channels (in fact, [34] essentially defines non-committing encryption as the realization of the

secure message transmission functionality in the authenticated channels model).

Let (NCGen,NCEnc,NCDec,NCSim,NCEqv) be a NCE scheme. Then the protocol for realizing

Fke proceeds as follows:

1. S generates (pk , sk) ← NCGen() and sends a (public) authenticated message of the form

(keyexchange1, sid, S,R, pk) to R.

2. R samples a random key k
$← {0, 1}λ and computes γ ← NCEnc(pk , k), then sends a

(public) authenticated message (keyexchange2, sid, S,R, γ) to S.

In standard fashion, the UC-simulator S for this protocol will run an internal copy of the real-

world adversary A, and feed it with simulated protocol flows (while simply forwarding all com-

munications taking place between A and Z). To simulate the protocol when the parties are

honest at the outset, S will generate pk and γ using NCSim. When the receiver or sender is

corrupt at the outset, the simulation is to just run the honest protocol on behalf of the honest

party. To handle an adaptive corruption of either party after the first message, the simulator

simply chooses a random message and runs NCEqv with it to obtain the corresponding sk and

random coins r∗ that make it appear as if (pk , sk) were produced by NCGen (these coins will be

used to simulate internal state of the sender if need be). The protocol then proceeds on behalf of

the remaining honest party as if the corrupted party had been corrupt at the outset. To handle

adaptive corruption of a party after the completion of the protocol, S will learn the key k from

Fke which was exchanged by the honest parties, and then using NCSim to produce consistent

coins for both S and R that make it appear is if γ contained a legitimate encryption under pk of

k.

The proof that the simulated interaction is indistinguishable from the real interaction is a

straightforward series of reductions to the security properties of NCE. The most complicated

109

3.3 A Mostly Deniable Key Exchange Protocol

case arises when the honest parties are corrupted at the end of the protocol, and in this case we

use the full strength of NCE to show that the simulator can make it appear as if the protocol

contained a key exchange of key k, which it did not know when it generated the protocol flows

(even including appropriate state information for both S and R, in the non-erasure model).

Remark: It is not necessary to use a non-committing encryption scheme in the protocol for

realize Fke if we only concern ourselves with security against static corruptions. In that case,

standard public key encryption schemes will clearly suffice (this follows from trivial simplifications

to the proof above, by removing all adaptive corruptions from the analysis). An even more

efficient method of realizing Fke with security against static corruptions is described in the final

remarks of Section 3.2.3.

3.3 A Mostly Deniable Key Exchange Protocol

Given the result of the previous sections, one might wonder if it possible to achieve adaptive

security in the UC model at all, whenever physically secured channels are unavailable – message

authentication is impossible in this case (as is symmetric key exchange). Indeed, with the excep-

tion of key exchange protocols, virtually all known constructions of UC secure protocols already

assume the availability authenticated channels. Must we abandon all those protocols? In this

section, we will give one possible avenue for salvaging existing adaptively secure protocols from

this seemingly catastrophic situation: we show how to implement UC authenticated channels that

support adaptively secure protocols, even though the process of establishing the authenticated

channel is not itself adaptively secure.

In particular, we will establish authenticated channels by using a special one-time symmetric

key exchange protocol, and employing the result of Section 3.2.4 to build authenticated channels

on top of the key exchange. Of course, realizing Fke itself is impossible, even if we only ask for

forward security, as per our previous discussion.

Therefore, instead of attempting to realize Fke directly, we will consider a similar functionality,

dubbed Key Exchange with Incriminating Abort Fkeia (shown in Figure 3.5), which provides the

110

3 Deniability and Deniable Authentication

adversary the additional capability to ask for a protocol abort. Whenever the functionality is not

asked to abort, it behaves identically to Fke. However, if it is asked to abort, the functionality

allows the adversary to somehow incriminate one of the participating parties (namely, S). We

must also make one additional concession to the impossibility result – our realization of Fkeia

can only tolerate semi-adaptive corruptions. (Given that we will be allowing the protocol to

incriminate S whenever it aborts, it makes sense that we cannot allow fully adaptive corruptions

– after all, the adversary could always ensure that the protocol does not abort by adaptively

corrupting the parties immediately before an abort occurs.)

In practice, since we will only run this key exchange once (at setup time), forward security

is much more important than tolerating fully adaptive corruptions. If the key exchange protocol

succeeds (with no adaptive corruption occurring during the protocol execution), then we can

still use adaptively secure protocols realized in the Fke-hybrid model, and they will retain their

adaptive security. Again, intuitively, the only difference between the F IncProc
keia -hybrid model and

the Fke-hybrid model is that parties may be incriminated when the key exchange is aborted –

before any other protocols requiring the Fke-hybrid model (such as the realization of Fauth given

in Section 3.2.4) are even run. In other words, Fkeia almost represents a deniable realization

of Fke: if we could somehow guarantee that Fkeia never aborts, then it would GUC-realize Fke

(and, in turn, so would any protocol realizing Fkeia).

Remark: Ironically, any protocol that GUC-realizes Fkeia is a “deniable realization” of Fkeia,

but Fkeia itself is not intuitively “deniable”. The situation becomes clearer when viewing Fkeia

itself as separate cryptographic tool that attempts to realize Fke but falls short of the mark

(due to the possibility of aborts). Then we may comfortably say that, of course, a “deniable

realization” of Fkeia is not a “deniable realization” of Fke. As long as we consider deniability in

terms of the task being realized, rather than the question of whether or not the protocol itself is

“deniable”, then we may avoid confusion.

In order to model the incrimination, Fkeia is directly described in the Ḡkrk-hybrid model, and

it is assumed that Fkeia will be supplied with access to the secret keys of the activating parties.

Such access to keys will not be used by Fkeia unless an abort occurs, in which case Fkeia will

111

3.3 A Mostly Deniable Key Exchange Protocol

Functionality F IncProc
keia

Fkeia, which is parameterized by an “incrimination procedure” IncProc, and a security
parameter λ proceeds as follows, when running in the Ḡkrk-hybrid model with parties
S and R (who have already registered secret keys SKS and SKR, respectively) and
adversary S:

1. Upon receiving a message of the form (S, keyexchange, sid, S,R,SKS) from
party S, if there are no previous records, then record the value
(keyexchange, sid, S,R,SKS), mark S “active”, and a send public delayed out-
put (keyexchange, sid, S,R) to R. (Otherwise, ignore the message.)

2. Upon receiving a message of the form (R, keyexchange, sid, S,R,SKR) from party
R, if R is not yet “active”, mark R as “active” and send a public delayed output
(active, sid, S,R) to S. (Otherwise, ignore the message.)

3. Upon receiving a message of the form (setkey, sid, S,R, k′) from S, if R is corrupt
and S is “active”, then output (setkey, sid, S,R, k′) to S and R, and halt. If R
is “active” but not corrupt, then sample a fresh key k

$← {0, 1}λ and send the
message (setkey, sid, S,R, k) to R. Furthermore, if S is “active”, then send the
delayed message (setkey, sid, S,R, k) to S as well. In all cases, this completes the
protocol, and the functionality halts.

4. Upon receiving a message of the form (abort, sid, S,R) from S, if S is “active”,
send (abort, sid, S,R) as a delayed message to S and mark S “aborted”. If R is
“active”, send (abort, sid, S,R) as a delayed message to R (i.e., S need not notify
either party that the protocol was aborted, and may still cause R to output a key
using a setkey message, but cannot cause S to output a key once an abort has
occurred).

5. Upon receiving a message of the form (incriminate, sid, S) from S, if this is the
first time receiving such a message and S is currently “aborted” and honest, then
run the procedure IncProc(sid, S,R,PKS ,PKR,SKS).

Figure 3.5: The ideal functionality for Key Exchange with Incriminating Abort, parameterized
by an incrimination procedure IncProc which runs only if the key exchange is aborted by the
adversary.

112

3 Deniability and Deniable Authentication

use the secret key of S to produce some kind of “evidence” that S attempted to exchange keys

with R (the secret key of R is never used). The nature of this “evidence” will depend on the

details of our realization of Fkeia, but its affect on the security in the ideal model will be limited

– intuitively, it can only provide some evidence that S used Fkeia attempting to talk to R, but

will not do any further harm security in the ideal world. This is primarily due to the restriction

that the PKI modeled by Ḡkrk is used by honest parties only to run the key exchange protocol.

To make the basic structure of the functionality as general as possible, we parameterize Fkeia by

an incrimination procedure, IncProc, which is some additional code in the functionality that can

be changed to suit different realizations of Fkeia.

Intuition: The main complication to understanding the security guarantees provided by F IncProc
keia

is that it is not clear what “damage” the incrimination procedure IncProc might do after a pro-

tocol abort. When considering the security provided by Fkeia in the ideal model, it helps to

recall that honest parties will not use Ḡkrk for anything other than key exchange.13 Once any

particular IncProc has been specified, irrespective of the kind of information from S’s secret key

that IncProc may give to the adversary, the potential security consequences of the information

revealed to the adversary in the ideal model can be classified into two criteria: 1) it might allow

the adversary to prove that S attempted a key exchange with R that aborted (since the adver-

sary can produce information which can’t be simulated without access to S’s secret key, and that

can only be obtained via an aborted key exchange), and 2) the security of future key exchanges

involving S may be affected, since some information about S’s secret key has been leaked. It

should be clear that, given any particular IncProc, if we can successfully realize F IncProc
keia then the

security of future key exchanges must not be affected by aborts (otherwise, the realization would

be insecure). So, in truth, we only need to worry about the first kind of consequence. Indeed,

the whole point of giving the adversary access to IncProc is that the adversary will obtain some

information that it could not have simulated unless S first invoked Fkeia in an aborted attempt

to do a key exchange with R – and this is precisely the kind of effect that we mean by “incrimina-

13For simplicity, our definition of Ḡkrk only requires that honest parties do not use their secret
keys with other protocols. Technically, this is fine, as long as the implications of doing otherwise
have been properly accounted for. That is, any protocols designed to use ḠΦ

krk must obviously
take the information leaked by Φ into account.

113

3.3 A Mostly Deniable Key Exchange Protocol

tion”. Therefore, IncProc should capture the kind of incriminating information that is obtained

by the real world adversary after a protocol abort (as precisely as possible). This allows us to

accurately model incrimination (i.e., non-simulatable protocol flows) in the ideal world for the

first time.

Finally, it is important to remember that Fkeia requires access to the secret keys of the

parties, and, therefore, Ḡkrk must be parameterized with the code of the ideal protocol for Fkeia

(to enable honest parties running Fkeia to retrieve their own secret keys). As a notational

convenience, wherever we write ḠΦ
krk in reference to a protocol Φ for realizing F IncProc

keia , we assume

that Ḡkrk is also implicitly parameterized with the code of F IncProc
keia . Also, recall that corruptions

are assumed to be be PID-wise, so a party is considered to be either honest in all sessions or

corrupt in all sessions.

At the core of our constructions for realizing Fkeia is a technique we refer to as Dual Receiver

Encryption (DRE), described above in Section 2.5. DRE schemes guarantee that both parties

who are recipients of a given ciphertext will decrypt it in the same way. This will allow us to

ensure a symmetry between S and R that enables either of them to simulate the actions of the

other party in response to any particular protocol flow (yet still preventing the adversary from

seeing the flows when the parties are honest).

Our suggested protocol for realizing F IncProc
keia is summarized in Figure 3.6. Intuitively, the

incrimination procedure IncProc will expect the adversary to supply a ciphertext that matches

the form of ψ1 in the protocol below, and will then use S’s secret key to decrypt ψ1 and compute

a corresponding flow ψ2. The incrimination procedure hands ψ2 to the adversary, along with

the random coins used to construct the encryption and the key pair for the non-committing

encryption scheme.

We now state and prove a formal theorem regarding the realizability of F IncProc
keia .

Theorem 3.8. Assuming the existence of a Dual Receiver Encryption scheme (Gen,DREnc,DRDec)

and a Non-Committing Encryption scheme (NCGen,NCEnc,NCDec,NCSim,NCEqv), there is a

protocol Φdre that realizes F IncProc
keia in the ḠΦdre

krk -hybrid model with semi-adaptive security, where

IncProc(sid, S,R,PKS ,PKR,SKS) proceeds as follows:

114

3 Deniability and Deniable Authentication

Step # S R

(1)
keyexchange0,sid,S,R //

(2)
ψ1=DREnc(PKS ,PKR,〈sid,ηR〉)oo ηR

$← {0, 1}λ

(3)
(pk , sk)← NCGen()

ηS
$← {0, 1}λ

ψ2=DREnc(PKS ,PKR,〈sid,ηR,ηS ,pk〉) //

(4) k ← NCDec(sk , γ)
ψ3=DREnc(PKS ,PKR,〈sid,ηS ,γ〉)oo k

$← {0, 1}λ
γ ← NCEnc(pk , k)

Figure 3.6: A graphical illustration of Protocol Φdre for realizing Fkeia. S andR check consistency
of each flow immediately upon receiving it; if the flow is not consistent, the protocol is aborted.

1. Upon receiving a message of the form (incriminate1, sid, S,R, ψ1) from S, the functionality

computes 〈sid′, ηR〉 ← DRDec(SKS ,PKR, ψ1). If sid′ = sid, the functionalities continues

by sampling a random nonce ηS
$← {0, 1}λ along with random coins r∗, rψ

$← {0, 1}λ, gener-

ating a fresh key pair for NCE (pk , sk)← NCGen(r∗), and then computing the dual-receiver

encryption ψ2 ← DREnc(rψ; PKS ,PKR, 〈sid, ηR, ηS , pk , 〉). Otherwise, ψ2 ←⊥. Finally,

the functionality responds by sending the message (incriminate2, sid, S,R, ψ2, r
∗, rψ) to S.

Furthermore, Φdre also realizes Fke in the ḠΦdre
krk -hybrid model with static security. We also

observe that here IncProc can be simulated using the secret key of R instead of S, so in practice,

it can only incriminate one of the pair {S,R}, and not specifically S.

Remark: As we will see, the incrimination procedure must provide the random coins r∗ and rψ

to S in order to enable it to simulate consistent semi-adaptive corruptions of S without erasures,

after an aborted protocol run occurs. If we were to allow S to random coins used in aborted

protocol runs, it would only be necessary for IncProc to provide ψ2. However, given that r∗ and

rψ are freshly chosen by IncProc independent of S’s secret key, it does not do significant “harm”

to leak this additional information in the ideal model. Indeed, even leaking the full decryption of

of ψ1 would not do considerable harm in this instance – however, we strive to leak the minimal

amount of information necessary to make F IncProc
keia realizable.

115

3.3 A Mostly Deniable Key Exchange Protocol

Proof of Theorem 3.8. We begin by specifying the protocol we use.

Protocol Φdre for Realizing Fkeia

The protocol Φdre, when running with parties S and R (who have already retrieved each
other’s public keys, as well as their own secret keys), proceed as follows (we assume that
parties S and R receive messages of the expected form at each step, or else they abort):

1. S sends the message (keyexchange0, sid, S,R) to R.

2. R samples a random value ηR
$← {0, 1}λ, computes ψ1 ←

DREnc(PKS ,PKR, 〈sid, ηR〉). R then sends (keyexchange1, sid, S,R, ψ1) to
S.

3. S computes 〈sid′, ηR〉 ← DRDec(SKS ,PKR, ψ1). If sid′ 6= sid, then S aborts.
Otherwise, S samples a random value ηS

$← {0, 1}λ, generates a fresh key pair for
NCE (pk , sk) ← NCGen(), and computes ψ2 ← DREnc(PKS ,PKR, 〈ηR, ηS , pk , 〉).
S then sends (keyexchange2, sid, S,R, ψ2) to R.

4. R computes 〈η′R, ηS , pk〉 ← DRDec(SKR,PKS , ψ2). If η′R 6= ηR, then
R aborts. Otherwise, R samples a random session key k

$← {0, 1}λ
and computes ψ3 ← DREnc(PKS ,PKR, 〈ηS ,NCEnc(pk , k)〉). R then sends
(keyexchange3, sid, S,R, ψ3) to S. R then outputs k as its session key.

5. S computes 〈η′S , γ〉 ← DRDec(SKS ,PKR, ψ3). If η′S 6= ηS then S aborts. Other-
wise, S outputs outputs NCDec(sk , γ) as its session key.

Figure 3.7: Protocol Φdre for realizing F IncProc
keia using Dual Receiver Encryption.

In order to simplify the proof that Φdre GUC-realizes F IncProc
keia , we will make use of the EUC

model (relying upon the proof of equivalence from Chapter 1). Recall that the EUC model

is essentially identical to the standard UC modeling, only the environment Z is allowed direct

access to the shared functionality (in our case, that is ḠΦdre
krk). That is, we will only need to show

that a single instance of Φdre with session sid, interacting with A, can be substituted by a single

instance of Fkeia interacting with S – even when the environment Z is allowed to invoke ḠΦdre
krk

(using parties with any session IDs other than sid). Unfortunately, things are slightly complicated

by the ability of the environment to invoke many sessions of Φdre and F IncProc
keia that use the same

instance of ḠΦdre
krk (although those sessions will not share the same sid with the protocol we are

substituting). In particular, this empowers the environment to use any information about party’s

secret keys that it might obtain from other sessions of Φdre and F IncProc
keia . Therefore, throughout

the proof, we will need to argue that providing the environment with access to such information

does not help it distinguish the simulation. Fortunately, in the case of our protocol, this is a

116

3 Deniability and Deniable Authentication

straightforward argument since the session id sid is included in all the ciphertexts that might be

revealed by other protocol sessions. Therefore, even if the environment can learn ciphertexts for

other sessions, they will not be useful in constructing flows for the session under attack.

We construct our EUC simulator S, which runs an internal copy of A, as follows.

Handling interactions between A and Z: All messages between Z and A are for-

warded directly by S between its internal copy of A and the external environment Z.

Simulating with honest S and honest R: Whenever S receives a notification from

Fkeia that S is attempting to exchange a key with R, it initiates a simulation of protocol

Φdre on behalf of S and R. The simulator chooses random values for ηR and ηS , and uses

NCSim to produce p̂k , γ̂, and α. The simulator then computes the honest flow in Step 2 from

R to S, and “sends” the flow over the channel in its internal simulation of A. Now there

are two possible continuations: 1) If A allows this protocol flow to pass unaltered, then S

continues the process by computing and sending (internally) the corresponding honest flow

in Step 3 for S (however, pk was generated via NCSim instead of the NCGen used in the

real interaction). The simulator then continues by responding according to the protocol

for R in Step 4, except that γ̂ is used instead of a freshly encrypted key. If A alters this

final flow, the simulator will cause S to abort, but will still send a setkey to F IncProc
keia to

cause R to output a random key. 2) If A alters the first flow of the protocol (in Step 2)

to contain a ciphertext ψ′1, then S will immediately issue an abort message to F IncProc
keia in

order to gain access IncProc. However, S will not yet deliver the abort notification to S or

R. To compute the flow from S in Step 3 of the protocol, S will invoke IncProc using the

ciphertext ψ′1. This will return some ciphertext ψ′2 along with some random coins r∗ and

rψ. The simulator can then ψ′2 on behalf of S, and record the random coins for future use

in the event that S is corrupted after the protocol aborts. If A sends any further message

to S (or R), then S sends the abort message to S (or R).

We note that if either honest party is not first marked as “active” in the key exchange

protocol, the simulator will refuse to send protocol flows on that party’s behalf (intuitively,

this is because the environment has not instructed the party to conduct a key exchange).

Therefore, all protocol flows originating with A will be considered “altered” flows, and the

117

3.3 A Mostly Deniable Key Exchange Protocol

simulation for the activated party can proceed as above, except that no abort notifications

are passed to the inactive party.

Even if the key exchange protocol aborts, we observe that the simulator knows all the

random coins necessary to simulate the internal state of both S and R at all times. Namely,

the simulator has the random coins used to form any protocol flows which it sent on behalf

of those parties, even in the case that it sends a flow constructed by IncProc (since IncProc

additionally provides S with the random coins used by the incriminating flow, except for the

nonces themselves, which S can obtain by decrypting ψ′2 with either secret key). The only

complication arises when the protocol between two honest parties completes successfully.

In this case, the simulator had sent some value ˆgamma in the final flow from R of Step 4.

Once the one of the party’s is corrupted, the simulator will learn which key k was chosen

by the ideal functionality F IncProc
keia (it cannot know this value while both parties remain

honest). In order to ensure that the state of the corrupt party is consistent, after learning

k post-corruption, S will immediately run NCEqv(p̂k , γ̂, α) to produce coins rγ and r∗ such

that (pk = p̂k , sk) ← NCGen(r∗) and γ̂ = γ ← NCEnc(rγ ; pk , k). The simulator will then

provide r∗ (and the implied sk) as internal state for S and rγ as internal state for R, making

it appear as if the simulated key exchange honestly resulted in session key k.

Simulating with a corrupt R or corrupt S: The simulation for this case is straight-

forward – the simulator will use its knowledge of the corrupt party’s secret key to decrypt

all the dual-receiver ciphertexts received by the honest party. It will then send responses

in accordance with the real world protocol actions for the honest party. Successful and

aborted key exchanges are simulated naturally in the ideal world by issuing corresponding

requests to F IncProc
keia on behalf of S, and appropriately controlling the message delays. There

is never any need for the simulator to make use of IncProc in this scenario (i.e., when one

of the parties is corrupt at the outset). The only subtlety arises when the simulator needs

to form the last flow on behalf of an honest R, since it will need to know what value of k

to use. The simulator can obtain k before forming the final protocol flow sent on behalf of

an honest R (if need be) by issuing setkey to FkeiaIncProc before sending the flow in Step

4, and “catching” the output sent to corrupt S (of course, the honest R will successfully

118

3 Deniability and Deniable Authentication

output key k just before the simulator has actually sent the final flow on its behalf, but this

is acceptable since R always outputs key key k if it sends the final flow at all). Therefore,

in all circumstances, the protocol flows can be honestly computed. Furthermore, handling

a subsequent semi-adaptive corruption of the remaining honest party is trivial, since once

again the simulator possesses all the random coins used to produce protocol flows sent on

behalf of the honest party.

We now sketch a brief indistinguishability proof for the above simulation.

Indistinguishability of the honest/honest simulation: To see that the simulation is

indistinguishable, we need to argue that the protocol flows are indistinguishable and that

the outputs of the honest parties in the simulated interaction correspond to their outputs

in the real interaction.

If A does not attempt to alter any of the protocol flows between S and R, then it is easy

to see that (by the security properties of NCE) S yields indistinguishable interactions.

This holds even if S or R is later corrupted (again, by security properties of NCE). If the

protocol runs to completion for R, then R will output a random key in both the real and

ideal interactions. Similarly, if the protocol runs to completion for S, then R must also have

run to completion, and S will output the same random session key as R in both the real

and ideal interactions. Note that the random session key that appears in the transcript will

correctly match the keys output by S and/or R whenever A is able to decrypt the DRE,

since as soon as A corrupts a party to get the secret key S can use the NCE to make it

appear as though the simulated transcript resulted in a key exchange output of particular

session key k.

If A alters any flow of the protocol at all, our construction of S will not allow S to output

a key. This strategy can only fail if A can indeed come up with “valid” protocol flows that

were not sent by R in this session, and yet will cause S to output a session key in the real

world. Since S encrypts a nonce ηS in Step 3 of the protocol using DRE, and expects to

see the same nonce in the response of Step 4 before agreeing to accept the session key, we

can see that this situation only occurs if A can somehow send a “valid” DRE encryption

containing ηS back to S. It is easy to see that, even if A can forward flows to other sessions

119

3.3 A Mostly Deniable Key Exchange Protocol

of protocol Φdre or F IncProc
keia run by S or R, he can only produce such a “valid” ciphertext

with negligible probability. (Notably, ciphertexts cannot be forwarded between different

sessions since they contain the session id.) Therefore, the output of S is properly simulated

in this case with all but negligible probability. A symmetric argument will show that the

same holds true of R’s output, in the event that the message from S to R in Step 3 is

tampered with.

It remains only to argue the indistinguishability of the transcript (with respect to semi-

adaptive corruptions) after such message tampering. This is entirely straightforward, with

the only subtle case arising when A alters the first flow from R to S sent in Step 2. In this

case S must invoke IncProc, or else it would not be able to construct a protocol flow that

remains indistinguishable in the face of a future corruption (of either S or R). However,

we note that by invoking IncProc, S performs the same operations that an honest party

S would perform in Step 3 of the protocol. Furthermore, IncProc provides S with all

the information needed to computing appropriate internal state for S. Thus, S produces

indistinguishable interactions in all cases where the parties are initially honest.

Indistinguishability when one party is corrupt: Whenever one party is corrupt

at the outset, the simulator conducts an entirely honest simulation, since the security

properties of DRE guarantee that all protocol flows will decrypt the same way, whether

using the secret key of the honest party or that of the corrupt party. Thus the real and

ideal interactions are identically distributed. It is also easy to verify that the output of the

honest party is correctly simulated as well.

Notably, although we can only realize F IncProc
keia when we consider security against adaptive

corruptions, the same protocol we use to realize F IncProc
keia in this setting is also a static secure

realization of Fke. Therefore, we have achieved a strictly stronger notion of security than the

natural non-interactive protocol using NI-AKE and MACs. Honest parties are always guaranteed

complete deniability when the protocol succeeds, and even if the protocol aborts, deniability is

maintained until some future corruption of a party occurs. It is an open question whether this

notion of deniability can be further improved upon.

120

4 • A Feasibility Result for

Realizing General Functionalities

4.1 Deniable Realizations of General Cryptographic Tasks

Now that we have considered the issue of deniable authentication, we turn our attention to more

general cryptographic tasks. As per our discussion in Section 3.1, we will focus on “deniable

realizations” of such tasks. Before attempting to construct deniable realizations, we proceed

with a case study of security flaws related to deniability that appear in previous work, focusing

on works in the Common Reference String model (see Section 2.2). The main result of [30] is to

demonstrate the feasibility of UC-realizing general two-party and multi-party tasks in the CRS

model. However, as we will see, the UC-realizations of [30] do not provide deniability in practice

– a warning sign that the security modeling employed in [30] somehow fails to adhere tightly to

reality.

For instance, consider the ideal functionality for Zero Knowledge (ZK) – we expect that any

secure realization of that functionality should reveal no information to the adversary beyond

the output of the ideal functionality (which contains only a single bit). In particular, the ideal

functionality’s output can easily be computed entirely without the help of the prover (or his

secrets), and thus the prover should be able to completely deny his participation in zero-knowledge

proof protocols since they never reveal any information that would otherwise be unobtainable to

the adversary. However, we already know from the result of [73] that it is impossible to achieve

such deniability for ZK in the CRS model. Indeed, we may see that the UC simulator for ZK

functionality in [30] chooses a fresh CRS, and generates the simulated protocol transcripts with

respect to that, instead of the published real-world CRS. Thus, if a protocol transcript makes use

of the real-world CRS, it could not have been obtained via simulation (and therefore a successful

prover is indeed incriminated by the transcript).

Since there is no deniability, the adversary is truly able to obtain valuable information by

observing protocol interactions that would not be revealed by the ideal functionality. Thus we

121

4.1 Deniable Realizations of General Cryptographic Tasks

have found a practical example of an actual security loss that directly results from the disparity

between reality and some aspect of the security modeling inherent in the CRS technique of [30].

But what went wrong?

To gain a better understanding of the issue, it is helpful to consider the issue of deniability in

light of the “real world” resources required in order to run the GUC simulator to simulate a given

protocol session. If the resources required to simulate a protocol session are readily available,

then we say the protocol session is plausibly deniable (since it is plausible that information

obtained from the protocol was the result of a simulation). If the resources required to simulate

are difficult or impossible to obtain, then there is no guarantee of plausible deniability (since it

will be difficult to convince others that an incriminating protocol transcript was the result of a

simulation). We wish to employ simulation techniques that require only minimal resources to

conduct a simulation, increasing the plausibility of denials (as well as decreasing the value of any

information that an adversary might obtain by attacking a secure protocol). Thus, we might

use the term fully simulatable to refer to any plausibly deniable realizations of tasks in the GUC

framework.

From this vantage point, we observe that the resource required to conduct the protocol simu-

lations in [30] is a “trapdoor” for the CRS. In particular, the CRS must be “rigged” with such a

trapdoor a priori. Such rigging is certainly not plausible when there is a trusted party choosing

the CRS, and this is in fact the root of the deniability problem for the CRS model. Furthermore,

knowledge of such a trapdoor imparts the ability to completely violate security of any protocol

constructed using the techniques of [30], and thus there would be no security against any entity

that was also capable of simulating protocols. (Similarly, in the “imaginary angel” model of

[78], the simulator requires access to super-polynomial time functionalities that are certainly not

plausibly available in the real world – and thus, the deniability problem arises there as well.

Furthermore, if the “imaginary angels” of [78] were to somehow be made practical in the real

world, all security would be lost.)

To take the analysis a step further, we may understand that the problem originates with

the ideal functionality modeling the CRS setup. As was already discussed, in the basic UC

framework of [20], no mechanism was provided for modeling state information that was shared

by multiple protocol sessions. The JUC Theorem of [31] alleviated this situation somewhat by

122

4 A Feasibility Result for Realizing General Functionalities

providing a means for multiple sessions of the same protocol (or a particular fixed set of jointly

designed protocols) to share state information within the confines of the existing UC modeling.

However, the JUC Theorem is not concerned with the issue of global shared state that may

directly influence the environment outside of the protocol execution. In [30], the JUC Theorem

is employed in order to model the reusable nature of the CRS, but this modeling does not reflect

the global availability of the CRS, since the environment can observe the CRS too.

The end result is that in the [30] modeling of a CRS, the environment can only learn about

the CRS via the adversary. This means that the simulator (the “ideal adversary” that defines

the capabilities of the attacker in the UC framework) has the ability to lie to the environment

about the CRS. Surely, the ability to deceive the entire “outside world” (as represented by the

environment) about the value of the CRS is quite powerful. Ironically, it is precisely because the

real world adversary obviously lacks the ability to perpetrate such deceptions that deniability is

lost. As we mentioned in Section 3.1, deniability can be lost even if the security model is “too

strong” due to modeling an adversary that is more powerful than the real one. That is precisely

what has happened here.

Now that we understand where the modeling went astray, we can employ the tools of the

GUC framework to correct the problem – instead of preventing the environment from directly

observing the CRS, we model a truly global CRS which the environment is fully entitled to access

directly. That is, the simulator no longer has the power to deceive the environment about the

CRS – consequently, the simulator will not be able to get any information about the CRS (such

as a trapdoor) that the real-world adversary would be unable to obtain. We now investigate the

consequences of this more realistic modeling.

4.2 Insufficiency of the Global CRS Model

In fact, as we will now demonstrate, a global CRS setup is not sufficient to GUC-realize even the

basic two-party commitment functionality. Indeed, we will further elaborate the nature of this

insufficiency by considering some weaknesses in the security of previously proposed constructions

in the CRS model.

This section shows that the simple CRS model is insufficient for GUC-realizing the simple bit

123

4.2 Insufficiency of the Global CRS Model

commitment functionality Fcom (even in the secure channels model). Let us elaborate.

Recall that many interesting functionalities are unrealizable in the UC framework without

any setup assumption. For instance, as we mentioned earlier, it is easy to see that the ideal

authentication functionality, Fauth, is unrealizable in the plain model. Furthermore, many two

party tasks, such as Commitment, Zero-Knowledge, Coin-Tossing, Oblivious Transfer and others

cannot be realized in the UC framework by two-party protocols, even if authenticated communi-

cation is provided [23, 29, 19].

As a recourse, the common reference string (CRS) model was used to re-assert the general

feasibility results of [51] in the UC framework. That is, it was shown that any “well-formed”

ideal functionality can be realized in the CRS model [23, 30]. However, the formulation of the

CRS model in these works postulates a setting where the reference string is given only to the

participants in the actual protocol execution. That is, the reference string is chosen by an ideal

functionality, Fcrs, that is dedicated to a given protocol execution. (Fcrs is the ideal functionality

analogous to our Ḡcrs shared functionality from Section 2.2.1, but as a consequence of being an

ideal functionality rather than a shared functionality, it gives the reference string only to the

adversary and the participants involved in one particular protocol execution.) Intuitively, this

formulation means that, while the reference string need not be kept secret to guarantee security,

it cannot be safely used by other protocol executions. In other words, no security guarantees

are given with respect to executions that use a reference string that was obtained from another

execution rather than from a dedicated instance of Fcrs. (The UC with joint state (JUC) theorem

of [31] allows multiple executions of certain protocols to use the same instance of the CRS, but it

requires all instances that use the CRS to be carefully designed to satisfy some special properties.)

In contrast, we are interested in modeling a setting where the same CRS is globally available

to all parties and all protocol executions. This means that a protocol π that uses the CRS must

take into account the fact that the same CRS may be used by other arbitrary protocols, even

protocols that were specifically designed to interact badly with π. Using the GUC security model

defined in Chapter 1, we define this weaker setup assumption as a shared ideal functionality that

provides the value of the CRS not only to the parties of a given protocol execution, but rather

to all parties, and even directly to the environment machine. In particular, this global CRS

functionality, Ḡcrs, exists in the system both as part of the real protocol execution and as part

124

4 A Feasibility Result for Realizing General Functionalities

of the ideal process. (The functionality Ḡcrs can be found in Figure 2.1 above.)

We demonstrate that Ḡcrs is insufficient for reproducing the general feasibility results that

are known to hold in the Fcrs model. Furthermore, no global setup that provides only publicly

available information (e.g., such as the “random oracle” described in Section 2.2.4) suffices to

enable general feasibility results in the GUC model. To exemplify this fact, we show that no

two-party protocol that uses such a publicly accessible setup as its only setup assumption GUC-

realizes the ideal commitment functionality, Fcom (presented in Figure 4.1). The proof follows

essentially the same steps as the [23] proof of impossibility of realizing Fcom in the plain model.

For instance, the reason that these steps can be carried out even in the presence of Ḡcrs is,

essentially, that the simulator must obtain the reference string from an external entity (Ḡcrs),

rather than generating the reference string by itself. We conjecture that most other impossibility

results for UC security in the plain model can be extended in the same way to hold for GUC

security in the presence of Ḡcrs and general publicly accessible setups.

Functionality Fcom

Commit Phase: Upon receiving a message (commit, sid, S,R, b) from party S, where
b ∈ {0, 1}, record the value b and send the message (receipt, sid, S,R) to R and
the adversary. Ignore any future commit messages.

Reveal Phase: Upon receiving a message (reveal, sid) from S: If a value b was
previously recorded, then send the message (reveal, sid, b) to R and the adversary
and halt. Otherwise, ignore.

Figure 4.1: The Commitment Functionality Fcom (see [23])

Theorem 4.1. Let Pub denote an arbitrary PPT “oracle” (Interactive Turing Machine) that

returns only public information – that is, the computation performed by Pub is independent

of the particular pids which are querying it. There exists no bilateral, terminating protocol π

that GUC-realizes Fcom and uses only the shared functionality for Pub. This holds even if the

communication is ideally authentic. (In particular, we note that Pub = Ḡcrs is one such public

oracle.)

Proof. Intuitively, the proof of the impossibility of UC commitments (for the plain model) de-

scribed in [23] holds here as well, since a Pub-externally constrained environment Z is able to

125

4.2 Insufficiency of the Global CRS Model

obtain direct access to the oracle Pub by invoking a separate dummy party specifically to for-

ward oracle queries and responses to Pub, thus preventing the simulator S from intercepting the

queries and producing responses on its own (say, in order to arrange knowledge of a trapdoor).

The basic proof technique is to argue that if there is a simulator which can observe commitments

sent by a corrupt party and extract an appropriate input to the ideal functionality from them,

then this same simulator can be used by the adversary to extract commitments sent by honest

parties. Since all parties concerned (including the environment) have access to Pub, and since

Pub provides the same interface to all parties (whether or not they are corrupt), it is essentially

straightforward to argue this.

More formally, suppose that there exists a commitment protocol π (for a party S committing

a bit b to a party R) and a simulator S such that EXECFcom,S,Z ≈ EXECπ,A,Z for any adversary

A and any Pub-externally constrained environment Z (here we may even allow S to depend on

the choice of A and Z). We will arrive at a contradiction.

We accomplish this by constructing a new Pub-externally constrained environment Z ′ and

a new adversary A′ such that there is no simulator S ′ which can satisfy EXECFcom,S′,Z′ ≈

EXECπ,A′,Z′ . Recall that a Pub-externally constrained environment may invoke dummy parties

running idealPub using any unique (pid, sid), and thus may obtain the same publicly available

information that any party can obtain.

Our A′ is constructed so as to corrupt the recipient R at the beginning of the protocol. During

the protocol, A′ will run the algorithm for S and feeding it with oracle responses from the same

Pub oracle that A′ has access to, and using the same party and session identities for S and R in

this “virtual” run of S. Furthermore, while acting as the environment for this copy of S, A will

“corrupt” the party “S” in the virtual view of S. Whenever A′ receives protocol messages from

the honest party S in the real protocol execution, it sends the same messages on behalf of the

“corrupt party S” in the virtual view of S. Whatever messages S would send on behalf of the

“honest” virtual recipient “R”, A′ will send on behalf of the real party R (which it has previously

corrupted in the real world). At some point, S must send the message (commit, sid, S,R, b′) to

the commitment functionality. At this point, the adversary A′ will output the bit b′, and halt.

We define the environment Z ′ to choose a random bit b, and provide it as the input for the

honest committer S. If the adversary outputs b′ such that b′ = b, then Z ′ outputs 1 (and 0

126

4 A Feasibility Result for Realizing General Functionalities

otherwise). (Additionally, we implement any trivial interface for Z ′ to forward its Pub oracle

access to A′.) Observe that no decommitment ever occurs, and thus the view of S ′ must be

independent of the choice of b (meaning that S ′ must be correct with probability 1/2). However,

as S must produce a bit b′ that matches b with all but negligible probability (since we assumed

it simulates the protocol π correctly), A′s guess b′ must match b with high probability, and thus

Z ′ will clearly distinguish between the guesses of A′ and those of S ′ (which are correct with

probability exactly 1/2).

Remark: We note that this impossibility result also implicitly rules out the use of the shared

key model by the result of Section 3.2.4, since we assume the presence of authenticated channels.

In other words, a “symmetric key infrastructure” (SKI) does not help. On the other hand,

we will soon see that a public key infrastructure (PKI) (in combination with authenticated

channels) does suffice to realize Fcom. This contrast is particularly striking in light of the result

of Section 3.2.2, which states that one cannot realize adaptively secure authenticated channels

using a PKI, despite the fact that SKI suffices for that task. Ultimately, if we wish to realize

Fcom with true adaptive security over unauthenticated channels, an SKI is necessary but not

sufficient, but the combination of SKI with PKI is sufficient but not necessary (e.g. an ACRS

setup can be used to replace the PKI).

Essentially, this impossibility result says that neither the CRS functionality Ḡcrs, nor the Random

Oracle functionality Ḡro (nor any combination thereof) can be used to realize Fcom in the GUC

model. Another consequence of this result is that no global setup that is implemented in a

completely non-interactive fashion can suffice for realizing Fcom (since it must inherently be

public). At the other extreme, note that the Ḡro model is already already so strong that it

cannot truly be realized without the use of a fully interactive trusted party, and yet it still does

not suffice to avoid the impossibility result. In the next section, we study the problem of realizing

Fcom using setup assumptions with minimal interaction requirements.

127

4.3 Realizing Fully Simulatable General Computation

4.3 Realizing Fully Simulatable General Computation

We now turn our attention to the problem of constructing fully simulatable GUC-secure protocols.

That is, we would like it to be possible for a real-world adversary to simulate the effects of

any attack on a protocol (in a computationally indistinguishable manner), without actually

conducting the attack on the protocol (instead utilizing only the information that would be

revealed by an ideally secure realization). The impossibility result of Section 4.2 implies that we

cannot do this in the standard CRS model (if we correctly model the global availability of the

CRS). Thus, we must consider alternatives to the CRS model if we hope to achieve our goal.

Since we must somehow avoid the impossibility result of Section 4.2 for the CRS model,

we would like to find reasonable alternative global setup assumptions that allow for realizing

interesting tasks. That is, we are looking for shared functionalities Ḡ (as defined in Chapter 1),

so that on the one hand Ḡ will be implementable in reality with reasonable trust assumptions,

and on the other hand we will have protocols that GUC-realize interesting functionalities and still

use no setup (i.e., no ideal functionalities) other than Ḡ. We say that such GUC-secure protocols

are “fully simulatable” since the GUC-simulator for attacking the ideal protocol can, in a very

practical sense, be run directly by the adversary. This allows the adversary to simulate the same

information that can be gotten by attacking any session of the real protocol, without the need

to actually perform an attack. (Of course, this simulated information is inherently useless to the

adversary, since the ideal protocol attacked by the simulation is secure by definition.)

We first observe that if the system is equipped with a “fully interactive trusted party” that

realizes, say, Fmcom, the multi-session variant of Fcom, by interacting separately and privately

with each session, then we can directly use the protocol of [30] to GUC-realize any “well-formed”

functionality. However, we would like to find more reasonable global setup assumptions, and

in particular assumptions that require less interaction from the trusted entity. (Indeed, this

realization requires the trusted party to perform strictly more work than it would by directly

computing the desired functionalities, i.e., the trivial realization of ideal model functionalities).

Although it is clear that we can achieve fully simulatable protocols by using highly interactive

trusted parties to compute functionalities, it seems to be a more difficult problem to realize

GUC-secure protocols using an “offline” shared functionality. Indeed, by our earlier impossibility

128

4 A Feasibility Result for Realizing General Functionalities

results, some degree of interaction would seem to be essential, so we begin by considering the

idea of limiting the interaction to a “registration phase”.

We observe that the “key registration with knowledge (KRK)” setup of [6], properly modified

to serve as a shared functionality (see Ḡkrk in Section 2.2.3), allows us to GUC-realize any “well-

formed” ideal functionality with security against static corruptions (using the techniques of that

work). Although the setup phase is interactive since parties must register their public keys with

registration authority, it is possible to show (with some minor modifications) that the protocol

of [6] can allow the trusted party to remain “offline” for all subsequent protocol activity.

Theorem 4.2. The [6] protocol GUC-realizes Fzk, even when given access only to Ḡkrk, as long

as the party corruptions are non-adaptive and PID-wise.

The proof of this theorem is by a natural extension of the proof in [6] to the EUC framework

(which is, of course, equivalent to GUC), but surprisingly, we can achieve a much stronger goal

than mere GUC security against static corruptions that requires an interactive setup.

4.3.1 Global Setup with Minimal Interaction: The Augmented CRS

Model

Although it may seem that at least an interactive “registration phase” is required in order to

avoid our earlier impossibility result, we show that something even less interactive will suffice.

We introduce a further simplification of Ḡkrk that approaches the simplicity and non-interactivity

of the Ḡcrs model, denoted Ḡacrs. Surprisingly, we show how to construct a protocol that GUC-

realizes Fcom (and thus any well-formed functionality) having access only to Ḡacrs. Unlike Ḡkrk,

the Ḡacrs shared functionality does not require any interaction (much like Fcrs), but merely offers

a one-time use interactive “key retrieval” service to those who choose to use it. Therefore, we

refer to this new setup assumption as the Augmented CRS (ACRS) model (see Section 2.2.2 for

full details). In particular, protocols realized in the ACRS model will not actually make use of

the key retrieval service, since the model only allows corrupt parties to retrieve their keys. Thus,

we are assured that honest parties need never communicate interactively with Ḡacrs – in fact,

honest parties cannot even directly distinguish between a global CRS and a global ACRS setup

(yet, the CRS setup is insufficient to realize Fcom, whereas the ACRS setup suffices!).

129

4.3 Realizing Fully Simulatable General Computation

Somewhat counter-intuitively, it is even crucial that uncorrupted parties in ACRS model

never “bother” to obtain their secret keys from the trusted authority (since even an honest party

may inadvertently execute a rogue protocol, which might expose the secret key). Similarly, it

is crucial that corrupted parties have access to their secret keys, since otherwise they would be

unable to conduct attack simulations. (On a side note, security is still guaranteed to honest

parties who obtain their keys and use them to conduct attack simulations provided that they only

use their keys for simulation purposes. This is a direct consequence of the “equivalence” between

the information revealed by attack simulations, and the information that can be obtained via

real-world attacks.) To enforce the protocol design criteria that honest parties should not require

access to their secret keys, the Ḡacrs functionality is defined so that it refuses to supply secret

keys to honest parties. Of course, a direct realization of Ḡacrs by a trusted party would not

attempt to actually determine which parties are honest, yet intuitively it is easy to see that this

modeling will still suffice. Namely, it is not problematic even if the real-world trusted party gives

keys to honest parties, as long as they are careful to protect their own security by keeping their

keys secret (and, therefore, honest parties will act just as if they do not possess their keys).

While we discuss the details of the ACRS model above in Section 2.2.2, a few additional

salient points are worth mentioning in the present context.

Comparing Ḡkrk and Ḡacrs. The main difference between Ḡacrs and Ḡkrk is that in Ḡacrs there

is a single public value, whereas in Ḡkrk an extra public value must be given per party identity.

Using a paradigm analogous to the identity-based encryption of [13], we avoid the use of per-

party public keys and replace them with a single short “master public key” (and indeed our

constructions use short public keys that depend only on the security parameter). This property,

combined with the fact that the parties who follow their protocols never obtain their secret keys,

makes Ḡacrs very close in spirit to a global CRS setup as in Ḡcrs. In fact, in light of the far-

reaching impossibility result for Ḡcrs, Ḡacrs can be regarded as a “minimum interaction” global

setup.

We note that, as pointed out in [6], Ḡkrk can be naturally implemented by multiple “regis-

tration authorities”, where no single authority needs to be fully trusted by all. (However, we

once again stress that Ḡkrk requires all parties, even those who honestly follow their protocols,

130

4 A Feasibility Result for Realizing General Functionalities

to interactively register with a some authority and obtain a public key.) Similarly, although

Ḡacrs with a short public key would naturally seem to call for a realization by a single trusted

entity, the same technique applies and several instances of Ḡacrs may be run by different trusted

authorities. Unlike Ḡkrk, however, parties may participate in protocols while placing their trust

in an arbitrary trusted authority, without ever having registered with any authority. This is

extremely useful for settings where PKIs are not desirable or easy to implement, and where no

single “global” authority is available (e.g., see [5]).1

In the next section, we will prove the following result:

Theorem 4.3. There exists a protocol that GUC-realizes Fcom given access to Ḡacrs. Party

corruptions can be adaptive (and in the non-erasure model), as long as they are PID-wise.

Finally, we note that a GUC secure realization of Fcom is indeed sufficient to GUC-realize any

“well-formed” multi-party functionality. This may be accomplished by first using Fcom to realize

Fzk (as in [30]), and then using Fzk to realize the “one-to-many” Zero-Knowledge functionality,

F1:M
zk (via the technique of [74]). The multi-party protocol compiler from [30] can then be used

to yield a UC-secure realization of any well-formed multi-party functionality in the F1:M
zk -hybrid

model without using any shared state (thus it is also a GUC-secure realization by Corollary 1.1).

4.3.2 GUC-Realizing Fcom Using the ACRS Global Setup

We now describe the construction of a protocol satisfying the conditions of Theorem 4.3, above.

When combined with the compiler from [30], such a fully simulatable realization of Fcom yields a

fully simulatable realization of any well-formed two-party or multi-party functionality. Further-

1In fact, the protocol we will describe in Section 4.3.2 can also support a “graceful failure”
approach similar to that outlined in [6], in the scenario where protocol participants do not
mutually trust any single authority. That is, by using suitable “graceful” tools (in the case of
our protocol, a “graceful” IBTC) , we can ensure full GUC security if trustworthy authorities are
used by all parties, and ordinary stand-alone security for party P in the case where only party
P ’s authority is trustworthy (even if party P ’s own authority is made completely unavailable
after publishing its reference string and/or is later corrupted subsequent to the completion of
the protocol!). The proof of this claim is a straightforward consequence of our protocol in
Section 4.3.2, combined with the fact that our IBTC construction in Section 2.4 guarantees hiding
even for maliciously chosen public keys (as long as it remains possible to verify the existence of
the Σ-protocol with HVZK property for the signature scheme). Of course, all IBTCs addressed
to party P should make use of the reference string published by the authority that P trusts.

131

4.3 Realizing Fully Simulatable General Computation

more, we show that, in addition to requiring only the more minimal Ḡacrs setup, our protocol

achieves significantly stronger properties than the fully simulatable protocol from [6] realized in

the Ḡkrk model. (Of course, our protocol can also be trivially modified for use in the Ḡkrk model,

where it will enjoy the same strengthened security guarantees.)

Firstly, our protocol realizing Fcom in the Ḡacrs model remains secure even in the presence

of adaptive corruptions (whereas the protocol of [6] does not). Intuitively, adaptive security

seems to be difficult to attain in either the Ḡkrk or Ḡacrs models, since an adaptive adversary is

eventually able to learn nearly all secrets in the system (save only for the random coins of the

trusted party). Since the simulator relies on these same secrets to “break” privacy of (corrupt)

parties during attack simulations, it would seem that an adversary provided with access to all

secrets should be able to violate the privacy of past protocol transcripts (allowing it to discern

simulated “information-less” interactions from genuine ones). Our protocol manages to avoid

this problem through the use of some additional interactivity.

Remarkably, our protocol for realizing Fcom will also maintain security of past protocol exe-

cutions even when the trusted party implementing Ḡacrs is later corrupted (revealing the random

coins used to generate the CRS, and leaving the overall system with no secrets at all)! That

is, our protocol will guarantee that past transcripts of protocol interactions can never be used

to compromise the security or deniability of honest parties even if the trusted party is later cor-

rupted. Security is only lost when the trusted party acts maliciously prior to, or during protocol

execution. This kind of “forward security” with respect to the trusted party further minimizes the

trust assumptions required to realize Ḡacrs in the real-world. For instance, an adversary cannot

later coerce the trusted party into breaking the security of an honest party after the completion of

the protocol. Such forward security cannot be achieved using the protocol of [6] since knowledge

of the secret key allows “extraction” from past commitments, breaking privacy. Similarly, the

protocol of [30] also loses all privacy of past transcripts if the trusted party implementing the

CRS setup later reveals a trapdoor.

132

4 A Feasibility Result for Realizing General Functionalities

4.3.3 High-level Description of Protocol UAIBC

Our protocol for realizing Fcom in the Ḡacrs shared hybrid model, which we call Protocol UAIBC

(for UC Adaptive Identity-Based Commitment), relies on two new techniques. First, we construct

an identity-based trapdoor commitment (IBTC) which enjoys adaptive security. Then we provide

a general transformation from any IBTC into a protocol that securely implements Fcom.

Constructing IBTC. In the setting of IBTC a single “master-key” is made public. Addition-

ally, all parties can obtain a private-key that is associated to their party identifier. (Note that

this setting corresponds exactly to the interface of Ḡacrs.) Intuitively, an IBTC is a commitment

scheme with the additional property that a committer who knows the receiver’s secret-key can

equivocate commitments (i.e., it can open up commitments to any value, breaking the bind-

ing property of the commitment). Furthermore, it should hold that an adversary that obtains

the secret-keys of multiple parties, still should not be able to violate the binding property of

commitments sent to parties for which it has not obtained the secret-key.

Constructions of IBTCs were previously known in the Random Oracle Model [3, 87]. In

Section 2.4 we provide a conceptually simple approach to constructing an adaptively secure

IBTC from any one-way function, in the standard model. Our technique relies on the use of Σ-

protocols [32], in an approach based on that of [46] (and perhaps surprisingly can result in a very

practical protocol). On a very high-level (and very oversimplified) the general idea is as follows:

1) let the master-key be a public-key for a signature scheme, 2) let the secret-key for a party be a

signature on its party identifier, and 3) construct a commitment scheme where the reveal phase

consists of a “proof” that either the revealed value is consistent with the value committed to, or

the committer knows a signature on the receiver’s party identifier (this “proof” must also “hide”

which of these two statements actually holds). We mention that the actual instantiation of this

idea is somewhat more involved, in order to guarantee adaptive security, and we provide the full

details of our construction in Section 2.4.

From IBTC to GUC Commitments. Recall that a protocol for realizing Fcom must intu-

itively satisfy two properties (in addition to the traditional binding and hiding properties of any

commitment scheme): 1) it must be equivocable, and 2) it must be extractable. We show how to

133

4.3 Realizing Fully Simulatable General Computation

transform any “equivocable” commitment scheme (such as an IBTC) into a protocol for securely

realizing Fcom (for single bit commitments). Previously similar types of transformations have

appeared in the literature (e.g., [30, 7]). Unfortunately all such transformations either require

some additional non-global setup (and are thus not applicable in out setting), or only work in the

case of static security. We now turn our focus to the protocol UAIBC, which GUC-realizes the

Fcom functionality via a novel transformation of an IBTC from a mere equivocable commitment

(in the standard model), to an equivocable and extractable commitment secure against adaptive

corruptions in the GUC-security model. We remark that our transformation technique can be

employed by substituting any merely equivocable commitment scheme (such as standard public

key based trapdoor commitments) in place of the IBTC in our protocol, and will yield a scheme

that is both equivocable and extractable, a general approach that may prove useful in many

other contexts.

We now describe some of the details and intuition for our protocol UAIBC. We will show that

UAIBC realizes the Fcom ideal functionality in a fully simulatable manner (even against adaptive

adversaries in the non-erasure setting). Furthermore, the protocol UAIBC is forward secure, so

that past protocol sessions will remain secure even if the trusted party implementing Ḡacrs is

later corrupted. We refer to this latter property as “strong full simulatability”, since the output

transcript of a GUC-simulation will be indistinguishable from a real transcript even to parties in

possession of all keys (indeed, even if the parties possess all the random coins used to generate the

CRS!). The protocol is given in the combined secure and authenticated channels model (formally

denoted as the Fsmt and Fauth hybrid models, respectively). In particular, UC-secure channels

are used crucially in the proof of security of UAIBC, detailed in Section 4.3.2.

On a high-level, protocol UAIBC proceeds as follows. The committer S and receiver R first

perform a coin-tossing to generate a public-key ρ for a dense crypto-system. This coin-tossing

requires the receiver to use an IBTC, and has the property that if the committer is corrupted, the

outcome of the coin-tossing can be set to any value. After a completed coin-tossing, the committer

commits to a single bit b using an IBTC (let c denote this commitment), and additionally sends

an auxiliary string e: e is either a random string in case b = 1, and an encryption to the

decommitment information of c if b = 0. (We here require that the encryption scheme used has

pseudo-random ciphertexts.) In the reveal phase, the committer is required to provide correct

134

4 A Feasibility Result for Realizing General Functionalities

decommitment information for c, and additionally reveal the value encrypted in e in case b = 0.

We graphically illustrate the operation of this protocol in Figure 4.2.

Step # S(b) R

Commit Phase

(1)
commit,sid,S,R //

(2)
κ1oo

ρ1
$← Φ

d1
$← D

κ1 ← ComS(d1, ρ1)

(3) ρ2
$← Φ

ρ2 //

(4)
d1,ρ1oo ρ← ρ1 · ρ2

(5)

κ1
?
=ComS(d1, ρ1)
ρ← ρ1 · ρ2

d
$← D

κ← ComR(d, b)
if b = 0 ψ ← Eρ(r, d)

if b = 1 ψ ← random

κ, ψ //

Reveal Phase

(1&2) if b = 0
if b = 1

b=0, d, r //
b=1, d //

if b = 0 Eρ(r, d)
?
=ψ

κ
?
=ComR(d, b)⇒ b

Figure 4.2: A graphical illustration of Protocol UAIBC for realizing Fcom, with S committing
bit b to R. Note that Com is the commitment operation of an IBTC (the subscript is the identity
of the intended recipient), and Eρ is a Dense PRC secure encryption using public key ρ (the first
input is the random coins fed to the encryption operation, and the second is the plaintext). Steps
2 to 4 of the Commit phase are essentially a coin-tossing protocol, whereas the subsequent steps
are similar to the protocol of [30].

We now take a brief detour to specify the security properties of the IBTC scheme and the

dense crypto-system required by our protocol, before proceeding with more in-depth discussion

of the protocol.

4.3.4 Details and Design of Protocol UAIBC

A full description of the protocol UAIBC in the Ḡacrs (Augmented CRS) model is shown in

Figure 4.3 below.

135

4.3 Realizing Fully Simulatable General Computation

Protocol UAIBC

Let (G,E,D) be a Dense PRC secure encryption scheme. We denote the key-space of
the dense encryption scheme by Φ, and the security parameter by λ. Then Protocol
UAIBC proceeds as follows, with party S committing a bit b to party R, in the shared
Ḡacrs hybrid model. (Note, we also assume ideal private and authenticated channels for
all communications.)

Common Reference String: All parties are initialized with a CRS produced by Ḡacrs
(a public key for an IBTC scheme from Setup, used as an implicit parameter to
Com). Note that Ḡacrs is a shared subroutine of Protocol UAIBC.

Commit Phase:

1. S sends (com0, sid, S,R) to R.

2. R samples ρ1
$← Φ and a decommitment d1

$← D, and records them. R then
computes κ1 ← ComS(d1, ρ1), and sends (com1, sid, S,R, κ1) to S.

3. S samples ρ2
$← Φ, and sends the message (com3, sid, S,R, ρ2) to R.

4. R computes and stores ρ← ρ1 · ρ2, and sends (com3, sid, S,R, d1, ρ1) to S.

5. S verifies that κ1 = ComS(d1, ρ1), and ignores the message if verification
fails. If verification succeeds, S computes ρ ← ρ1 · ρ2, then chooses d ← D
and records it along with ρ. Additionally, if b = 0, S chooses and records
random coins r, and then computes ψ ← Eρ(r, d); otherwise, when b = 1, S
chooses ψ at random. S then sends (com4, sid, S,R, κ, ψ) to R.

6. R receives (com4, sid, S,R, κ, ψ) from S and records it. R then outputs
(receipt, sid, S,R).

Reveal Phase:

1. S retrieves the necessary records and, if b = 0, sends (rev, sid, S,R, d, 0, r) to
R; otherwise, S sends (rev, sid, S,R, d, 1) to R.

2a. When receiving a message of the form (rev, sid, S,R, d, 0, r), R retrieves the
values of ρ, κ, and ψ corresponding to sid from its records and verifies that
Eρ(r, d) = ψ and ComR(d, 0) = κ. If the verification succeeds, R outputs
(reveal, sid, S,R, 0). Otherwise, R ignores the message.

2b. When receiving a message of the form (rev, sid, S,R, d, 1), R retrieves the
value of κ corresponding to sid from its records and verifies that ComR(d, 1) =
κ. If the verification succeeds, R outputs (reveal, sid, S,R, 1). Otherwise, R
ignores the message.

Figure 4.3: Protocol UAIBC for realizing Fcom in the Ḡacrs shared hybrid model.

136

4 A Feasibility Result for Realizing General Functionalities

Intuitively, the final flow of the commit phase of the UAIBC protocol is very similar to the

UAHC protocol of [30] and the CLOS-KR protocol of [6]. The actual structure of the last flow

in UAIBC is slightly different from the UAHC and CLOS-KR protocols since it uses a single

ciphertext, rather than two ciphertexts as the UAHC and CLOS-KR protocols do. The only

purpose of this minor change is to further simplify the presentation of the protocol and the

proof, and indeed it would seem that the same change can be safely made to the UAHC and

CLOS-KR protocols.

The novelty of protocol UAIBC is its use of a coin-flipping protocol to choose the public key for

the encryption scheme (used when producing ψ), rather than using a globally fixed key as in [30],

or public keys belonging to the individual parties as in [6]. The net result of this coin-flipping

protocol is that no party (trusted or otherwise) should ever be in possession of the decryption

key, unless perhaps some “cheating” occurred during the coin-flipping process (as we will discuss

below).

Of course, the use of this coin-flipping protocol makes the commitment phase of the protocol

interactive (whereas in [30] it was not). We remark that some interactivity is unavoidable when

constructing adaptively secure GUC commitment schemes in the Augmented CRS model (see

the lower bound of Section 5.1).

Simulation of the UAIBC protocol is slightly involved. On a high level, as with all UC-secure

realizations of Fcom, the simulator must be able to extract the actual committed values being sent

by corrupt parties during the commit phase, while simultaneously being capable of equivocating

commitments that are sent by honest parties (for which the simulator must generate the protocol

flows). On the surface, these properties seem to conflict – if a specific value can be extracted from

a flow of the commitment protocol, then the flow must be binding, and yet, the simulator must

also be able to equivocate flows, so they are not always binding. This conflict is particularly

striking in the Augmented CRS model, where the adversary is allowed to learn all the same

trapdoor information as the simulator. When no trapdoor information is available exclusively

to the simulator, it is difficult to imagine how commitments can be binding for the adversary,

but remain equivocable for the simulator. In other words, it would seem that if the simulator

has the power to extract committed values and to equivocate commitments, an equally powerful

real-world adversary should also have these capabilities. Indeed, that difficulty is precisely what

137

4.3 Realizing Fully Simulatable General Computation

causes the UAHC protocol to fail in our setting. Fortunately, there is one crucial advantage

that the simulator is allowed to have that enables us to overcome these conflicts: the simulator is

allowed to choose the random coins used to generate the protocol flows of honest parties, whereas

the real-world adversary has no such control (although it may learn the random coins upon later

corruption of the honest party). The coin-flipping technique is a method for leveraging this

advantage.

The coin-flipping protocol executed in Steps 1-4 of the UAIBC commitment protocol is de-

signed so that the simulator can program the outcome of the coin-flip whenever party S is corrupt.

By using the S’s IBTC key, SKS , to equivocate the commitment sent in Step 2, the simulator

can arrange the public key ρ to be any string of its choosing. Of course, the simulator will choose

a public key ρ for which it knows the corresponding secret key, ρ−1. Thus, if party S is corrupt,

the simulator is able to decrypt the ciphertext sent in Step 5, extracting the committed value.

To equivocate commitments sent to a corrupt party R, the simulator uses the IBTC key

belonging to R, SKR, in order to generate an equivocable commitment to be sent in the final

flow (Step 5). The ciphertext sent contains a legitimate opening to 0, but will later be passed

off as a random ciphertext in the event that the simulator must open to 1. While such an

equivocation could be detected by someone with knowledge of ρ−1, in this instance, no one (not

even the simulator) can have such knowledge, as the coin-flipping process will be fair.

Proving that the simulation described above is indeed indistinguishable from the real-world

interaction requires the use of a rewinding technique. We stress that the UC simulation itself

does not employ any rewinding (which is of critical importance, since a UC simulator may not

rewind the environment). However, the use of a rewinding technique is required whenever we

must “program” the coin-flipping results in the case where the adversary corrupts party R. In

particular, this scenario is encountered only in the reduction to the security of the encryption

scheme used for one of the simulation indistinguishability hybrid arguments. In order to show

that the encryption can be broken if the hybrid experiments can be distinguished, we must

arrange for the encryption key being attacked by the reduction to appear in the outcome of the

coin-flipping (even when R is corrupted).

In summary, protocol UAIBC introduces a technique for transforming trapdoor commitments

(which are merely equivocable) to full-fledged (adaptive and forward secure!) UC commitments

138

4 A Feasibility Result for Realizing General Functionalities

(which must be both equivocable and extractable) by using a simulatable coin-flipping protocol.

In particular, the simulatable coin-flipping protocol makes use of both rewinding and trapdoors

to achieve simulatability. (We employ only the trapdoor based simulation technique when con-

structing the UC simulator itself, while relying on the ability to rewind the coin-flipping protocol

only for the proof of the simulation’s indistinguishability.) Our general approach to construct-

ing adaptively UC secure commitments from standard trapdoor commitments is of independent

interest, and indeed, the problem was implicit in many prior works (e.g. [30, 23, 7]) which ei-

ther resort to impractical techniques (such as per-session CRS) or are forced to settle for static

(non-adaptive) security.

4.3.5 Security Proof for Protocol UAIBC

In this section, we will prove that protocol UAIBC is a GUC-secure realization of Fcom in the

Ḡacrs shared hybrid model. Before proceeding with the details of the proof, we first state and

prove a general lemma regarding coin-tossing protocols that is used in our proof of security. Our

lemma is analogous to the Reset Lemma of [10], but unlike the Reset Lemma it aims to guarantee

not only that certain events will occur after rewindings, but that the output distribution of the

entire experiment remains computationally indistinguishable.

Lemma 4.1 (Coin-tossing Lemma). Consider a general “indistinguishability” task, X. The

task is represented as a PPT algorithm that may take as input a system parameter Λ, a random

reference parameter ρ, a bit string x, and challenge bit b. The system parameter Λ is generated by

some designated PPT parameter generation algorithm. The reference parameter ρ must be drawn

from an abelian group Φ (which possibly depends on the choice of Λ) with efficiently computable

inverse and group operations (which we write multiplicatively). The uniform distribution on Φ

must be efficiently samplable, and membership in Φ should be efficiently decidable. The task X is

said to be computationally indistinguishable if every PPT distinguisher D has at most negligible

advantage in the following attack game:

139

4.3 Realizing Fully Simulatable General Computation

1. The challenger first generates a system parameter Λ (in accordance with the parameter

generation algorithm). The challenger then samples ρ $← Φ, and sends the pair (Λ, ρ)

to D.

2. D computes an arbitrary value x, and sends x to the challenger.

3. The challenger chooses b $← {0, 1}, computes y ← X(Λ, ρ, x, b), and sends y to D.

4. D outputs a guess b̂ ∈ {0, 1}.

5. D’s advantage is defined to be |Pr[b = b̂]− 1/2|.

Attack Game 9: Task Indistinguishability Attack Game

Suppose that, instead of selecting the reference parameter at random from Φ, we generate

the reference parameter using a simple “coin tossing” protocol that takes place between the

challenger and the distinguisher. The coin tossing makes use of a string commitment Com that

is computationally binding with respect to the distinguisher (this security property is formally

described in Section 2.4). For the sake of generality, we allow both Com and Φ to be parameterized

by Λ. We claim that the computational indistinguishability of X holds, even though ρ is now

being chosen with some participation by the distinguisher itself.

More formally, for any computationally indistinguishable task X, the advantage of any PPT

distinguisher D′ is at most negligible in the following attack game:

140

4 A Feasibility Result for Realizing General Functionalities

1. The challenger first generates a system parameter Λ (in accordance with the parameter

generation algorithm). The challenger then sends Λ to D′.

2. D′ sends a commitment κ1 to the challenger.

3. The challenger samples ρ2
$← Φ, and sends ρ2 to D′.

4. D′ computes an arbitrary value x, along with an opening (d1, ρ1), and sends the triple

(d1, ρ1, x) to the challenger.

5. The challenger verifies that κ1 = Com(d1, ρ1), and that ρ1 ∈ Φ. The challenger

then computes ρ $← ρ1 · ρ2. Finally, the challenger chooses b $← {0, 1}, computes

y ← X(Λ, ρ, x, b), and sends y to D′. If the verification step fails, the challenger sends

the error message ⊥ to D′ instead.

6. D′ outputs a guess b̂ ∈ {0, 1}.

7. D′’s advantage is defined to be |Pr[b = b̂]− 1/2|.

Attack Game 10: Coin-tossing Attack Game (for general tasks)

To summarize, subject to some minor and natural technical qualifications, the Coin-tossing

Lemma states that: Experiments that are computationally indistinguishable when fed with a

randomly sampled reference parameter will remain indistinguishable when the reference parameter

is substituted by the output of a (three round) two-party coin-tossing protocol (where the second

flow of the protocol is assumed to be generated honestly).

Proof. Suppose that D′ is an efficient distinguisher for the game described in Attack Game 10

that succeeds with a non-negligible advantage α. In particular, we have that α ≥ 1/p for

some polynomial p (at infinitely many values of the security parameter). We show how to

construct an efficient distinguisher D that succeeds with non-negligible advantage in Attack

Game 9, contradicting the computational indistinguishability of the task. The distinguisher D

operates as follows:

1. D runs a copy of D′ internally, acting as the challenger for D′, and begins by passing along

141

4.3 Realizing Fully Simulatable General Computation

the value of Λ it receives in Step 1 of Attack Game 9. The value ρ that D also receives in

Step 1 is recorded for later use.

2. After receiving a commitment κ1 from the internal copy of D′, D samples ρ∗2
$← Φ and

sends it to D′.

3. If D′ does not respond with a valid opening of κ1, then D outputs 0 and halts. Otherwise,

if D′ responds with a value x∗ and a valid opening of κ1 to the value ρ1, then D proceeds

as follows:

ω
$← {1, . . . , p}

for i← 1 to p do

if i = ω // Pray ω is the “right” guess

then ρ2 ← ρ · ρ−1
1

else ρ2
$← Φ

rewind D′ back to Step 3 of Attack Game 10 and send ρ2 to D′

if D′ responds with x and a valid opening of κ1 to the value ρ′1, then

if i 6= ω then output 0 and halt // Prayers unanswered

if ρ′1 6= ρ1 then output 0 and halt // Commitment broken!

D passes x to its challenger in Step 2 of Attack Game 9

D receives a response y from its challenger, and forwards y to D′

when D′ outputs b̂, D outputs b̂ and halts

output 0 and halt // rewinding failed to produce second opening

We claim that this D will have advantage at least 1/4p2 at game Attack Game 9. To see this,

will consider a series of modifications to Attack Game 10.

Game G0. This game is modified version of Attack Game 10 that plays out identically unless

the verification in Step 5 succeeds. In this case, instead of simply sending the value y, the

challenger will rewind D′ to Step 3 and feed it with another (freshly sampled) value of ρ2,

as many times as it takes to get a second run with a successful opening of the commitment.

That is, after rewinding, the game proceeds normally to Step 5, only now if the verification

142

4 A Feasibility Result for Realizing General Functionalities

fails, we will rewind D′ to Step 2 again and repeat until the verification in Step 5 has

succeeded for a second time, after which the game continues as in the original version.

What is the advantage of D′ in G0? If the advantage of D′ was α in Attack Game 10,

then the advantage of D′ at G0 is also α. To see why, let C and C ′ be random variables

representing the value of ρ2 chosen on the first and last runs (respectively), and let R be

the random variable representing all the random coins used in Step 1 and the random tape

of D′ (note that the value of R is unaffected by any number of rewindings). Let Succ(r, ρ2)

be a predicate denoting whether the verification in Step 5 succeeds when R = r and C = ρ2

(i.e., it indicates whether D′ gives a valid opening of the commitment with those outcomes).

Together, R and C represent all the random coins used in Attack Game 10. We will show

that, for any fixed choice of R, the distribution of C ′ is the same as the distribution of

C, and therefore distribution of the modified experiment is unchanged from that of the

original. Fixing our choice of R and expanding the distribution of C ′ by total probability

theorem yields:

Pr[C ′ = ρ2 | R = r] = Pr[C ′ = ρ2 | R = r, Succ(r, C)] · Pr[Succ(r, C)]

+ Pr[C ′ = ρ2 | R = r,¬Succ(r, C)] · Pr[¬Succ(r, C)]

= Pr[C = ρ2 | R = r, Succ(r, C)] · Pr[Succ(r, C)]

+ Pr[C = ρ2 | R = r,¬Succ(r, C)] · Pr[¬Succ(r, C)]

The equality of the first terms in the sums follows from simply observing that C ′ = C in

the event that D′ fails to open the commitment on the first run, since no rewinding occurs

in that case (the first run is the last run). The equality of the second terms follows by

observing that, conditioned on Succ(r, C), the variable C ′ is uniformly distributed among

the values of ρ2 such that Succ(r, ρ2) is true, since in this case we will “rewind” by feeding

uniformly random choices of ρ2 into the experiment until Succ(r, ρ2) holds. (Of course, C

is also uniformly distributed among those same values when conditioned on Succ(r, C).)

Applying total probability theorem again to the last line in the equation above, we obtain:

Pr[C ′ = ρ2 | R = r] = Pr[C = ρ2 | R = r]. Thus, the distributions of the pair (R,C)

143

4.3 Realizing Fully Simulatable General Computation

and the pair (R,C ′) are identical. We conclude that the output distribution of the original

experiment in Attack Game 10 and the output distribution in Game G0 are the same.

Game G1. This is a minor modification of Game G0. In the event that rewindings occur, G1

is identical to G0 for the first p rewindings. After p rewindings have occurred, G1 proceeds

from Step 3 as in the original version of Attack Game 10, without making any further

attempts to rewind. G1 is otherwise identical to G0.

To analyze what happens toG0 if we bound the number of rewindings by p, we first calculate

the expected number of rewindings in G0. Let N denote the number of rewindings that

occur in a run of G0. Using our previously established notation, we will analyze the E[N]

by first fixing the choice of R. We can then compute the expected number of rewindings

E[N | R = r] with a simple application of total probability theorem (combined with the

linearity property of expectation):

E[N | R = r] = E[N | R = r, Succ(r, C)] · Pr[Succ(r, C)]

+ E[N | R = r,¬Succ(r, C)] · Pr[¬Succ(r, C)]

= (1/Pr[Succ(r, C)]) · Pr[Succ(r, C)]

+ 0 · Pr[¬Succ(r, C)]

= 1 (for Pr[Succ(r, C)] 6= 0)

The second equality follows by observing that, for a fixed value ofR, the probability that any

of the rewindings succeeds is exactly the same as Pr[Succ(r, C)] (the initial probability with

which a rewinding occurs). Of course, conditioned on ¬Succ(r, C), there are no rewindings

at all. In case Pr[Succ(r, C)] = 0, we will have that E[N | R = r] = 0, since no rewindings

can occur. For any fixed choice of r we have shown that E[N | R = r] ≤ 1, and therefore,

we may conclude that E[N] ≤ 1.

Now we are in a position to analyze the advantage of D′ in G1. Since the expected number

of rewinding attempts in G0 is at most 1, the overall probability that there will be more

than p rewinding attempts is at most 1/p, by Markov’s inequality. Therefore, with all but

144

4 A Feasibility Result for Realizing General Functionalities

probability 1/p, the rewinding procedure of G1 perfectly simulates G0, wherein D′ has the

same advantage α as in the original setting of Attack Game 10. In the event that G1 differs

from G0, the distinguisher D′ learns no information about b, so the probability that b̂ = b

is 1/2 (by independence). Therefore, the overall advantage of D′ in Game G1 is at least

α− (1/2)(1/p) ≥ 1/p− 1/2p = 1/2p.

Game G2. This is the same as Game G1, except that whenever a second opening of the

commitment is obtained, it is checked against the original opening. If the commitment has

been opened in two different ways, the game is halted. Since opening the commitment in

two different ways must occur with negligible probability (by the binding property of the

commitment scheme), for sufficiently large choices of the security parameter, this abort

happens with probability at most 1/4p. Therefore, the advantage of D′ in G2 differs from

that of G1 by at most 1/4p, so we have that D′ has advantage at least 1/2p− 1/4p = 1/4p

in Game G2.

Game G3. Finally, we modify Game G2 to exactly match the procedure we described above

for constructed D from D′. Namely, G3 differs from G2 in that if we must rewind, we first

select a uniformly random “guess” at one of the p possible rewindings, and if the “guess”

does not correspond to the rewinding on which the second opening of the commitment

occurs, the game is halted (and the advantage is computed as if D′ had output 0). Since

the “guess” for the rewinding instance is accurate with probability 1/p, the experiment

plays out as in Game G2 with probability at least 1/p. In the event that a halt occurs, we

will have that b̂ = b with probability 1/2 (again, by independence). Therefore, the overall

advantage of D′ in Game G3 will be at least (1/p)(1/4p) = 1/4p2.

This concludes our analysis of the advantage of D in our construction, showing that D indeed has

a non-negligible advantage if distinguisher D′ can succeed at Attack Game 10 with non-negligible

advantage.

Proof of Theorem 4.3. We now prove the security of protocol UAIBC, by showing that it is a

GUC-secure realization of Fcom. We describe a technique for simulating the protocol flows

of UAIBC in the ideal-world with Fcom, and give a proof that the simulation in the ideal-world

145

4.3 Realizing Fully Simulatable General Computation

setting is indistinguishable from a real-world execution of UAIBC, even if the adversary is allowed

to corrupt the trusted party implementing Ḡacrs at the end of the game. Recall that we need only

prove that UAIBC will Ḡacrs-EUC-emulate Fcom, and thus we will be proving with respect to a

Ḡacrs-externally constrained environment Z. To model this, we may imagine that Z is provided

with SKPa , for any corrupt party Pa, at the moment of corruption. (In reductions to the security

of the IBTC, we make an oracle query to obtain the key SKPa , which, as can be seen below, will

never correspond to the key under attack by the reduction.)

Initialization - All parties are initialized with a copy of the common reference string PK

published by ḠSetup,Extract
acrs during its honestly executed global initialization step. That is,

the simulation we describe below merely expects the initialization step to be completed

prior to the start of the simulation (no special setup is required on behalf of the simulator

itself).

Simulating Communication with Z - S simply forwards communications between A and

Z.

Simulating the commit phase for honest parties (Strategy 1) - Since we are in the

secure channels model, the simulator need only send null messages of appropriate length

for each of the messages passed in UAIBC. Nothing more need be done unless one of the

parties is corrupted at some later time. If the sender is later corrupted, the simulator

receives the sender’s input and can construct internal state for the sender representing an

honestly generated transcript. If the recipient is later corrupted (prior to the reveal phase,

which would again provide the simulator with the correct input) then the simulator must

follow the strategy we now describe for the case of a recipient corrupted prior to the sender.

Simulating the commit and reveal phases for corrupt recipients (Strategy 2) - If

the recipient is corrupted at any point during the commit phase while the sender is still

honest, the simulator conducts the following strategy. We note that, once again, we depend

critically on the secure channels model to allow the simulator to choose the content of the

prior transcript only after corrupting the recipient in the ideal model. Since only the

recipient has been corrupted, the simulator must be able to complete the commit phase of

146

4 A Feasibility Result for Realizing General Functionalities

the protocol on behalf of the sender without actually knowing the committed bit b (which

Fcom will not disclose until the reveal phase is initiated). Thus, the simulator needs to

be able equivocate the commitment so that it can be opened to the proper value b in the

subsequent reveal phase. Before generating any of the protocol flows, S issues a retrieve

request to ḠSetup,Extract
acrs on behalf of the corrupt R in order to obtain SKR. All flows will be

honestly generated except the final message sent by S in Step 5 of the commit phase of the

protocol. S computes (κ̂, α)← ECom(R; SKR) and d(b̂) ← Eqv(R,SKR, κ̂, α, b̂) for b̂ = 0, 1

and stores the results. Instead of the honest flow, S sends (com4, sid, S,R, κ̂, ψ̂) where ê is

the encryption of d(0) (computed exactly as though committing to b = 0 in Step 5).

When performing the reveal phase, S can simply open to b = 0 using the decommitment

d(0) honestly (including opening ψ̂ correctly). If S must open to b = 1 it can use the

decommitment d(1), and by the pseudo-random property of the encryption scheme, it can

“pretend” that ψ̂ was chosen at random.

Simulating the commit and reveal phases for corrupt senders (Strategy 3) - If the

sender is corrupted while the recipient is honest during the commit phase, the simulator

will need to learn the committed bit b from the sender in order to correctly provide the

corresponding commit phase input to Fcom. Once again, we note that the simulator need

not generate any actual protocol flows until the actual time of corruption, so the following

strategy may be employed irrespective of the particular step in the protocol of the commit

phase at which S is corrupted. Upon the initial corruption of S, S will issue a retrieve

request to ḠSetup,Extract
acrs on S’s behalf in order to retrieve SKS . The simulation strategy

will replace the flows sent by R in Steps 2 and 4 with specially “rigged” flows. S first

generates and stores a valid key-pair for the dense encryption scheme (ρ, ρ−1) ← G(1λ).

For Step 2, S computes and stores (κ̂1, α) ← ECom(S,SKS), sending κ̂1 in place of the

honestly computed κ1 (on behalf of the honest party R). In Step 4, S computes and stores

ρ̂1 ← ρ · ρ−1
2 and d̂1 ← Eqv(S,SKS , ρ̂1). S replaces the legitimate decommitment d1 that

would normally be sent in Step 4 with d̂1, and the result is that κ1 = ComS(d̂1, ρ̂1). This

procedure ensures that S knows the decryption key for the ciphertext ψ sent by S in Step

5, and can thus decrypt ψ if b = 0 and it was legitimately formed. If S is able to decrypt ψ

147

4.3 Realizing Fully Simulatable General Computation

to obtain a valid d such that κ = ComR(d, 0), then S proceeds by invoking Fcom as if S had

committed to 0, otherwise it invokes it with a commitment to 1 (since S cannot possibly

produce a valid opening of the commitment to 0 in this case).

Notice that in this scenario, the simulator will not need to send any message during the

reveal phase, since the sender is corrupted and is the only party sending messages during

a reveal operation. The simulation will only fail (and halt) if a valid reveal phase message

is sent from S (who is corrupt, and controlled by A) which opens to a different bit b than

the simulator chose when invoking Fcom at the end of the commit phase.

Message delivery - S will merely deliver messages from Fcom whenever A delivers the cor-

responding protocol messages in the simulated UAIBC interaction, in the obvious manner.

Given the above simulation strategies, we must prove that the environment Z’s interactions with

S will be indistinguishable from Z’s interactions with A in the real-world, even if A is allowed

to corrupt the trusted party TḠacrs at the end of the experiment. To show this, we consider the

following hybrid experiments.

I0 - Real-world interaction. Protocol UAIBC running in the “real-world” (in this case, the

Ḡacrs-Relativized setting), interacting with the real-world adversary A.

I1 - Employing the commitment part of Strategy 2. The interaction proceeds exactly as

in the real-world, except that wherever Step 5 of the protocol is executed with a corrupt

receiver R, the honest sender S computes (κ̂, α)← ECom(R,SKR) (for now, we will simply

imagine that that S is somehow provided with SKR). S then computes the decommitment

as d← Eqv(R,SKR, κ̂, α, b). The remainder of the protocol is then conducted as usual. In

the event that S is later corrupted, its internal state is constructed to be consistent with a

random selection process for the same value of d.

Lemma 4.2. I1 is computationally indistinguishable from I0.

Proof. The proof is by reduction to the equivocability property of IBTCs, since the only

difference from I0 is the use of an equivocable commitment. We observe that if there is

an adversary A such that Z can distinguish interactions in I0 from I1, there is a (simple)

148

4 A Feasibility Result for Realizing General Functionalities

reduction which breaks the equivocability property of the IBTC. This indistinguishability

holds even for adversaries in the strong fully simulatable setting, since the reduction is

given MSK (containing the random coins used by Setup) as part of its input. Thus, it is

easy for the reduction to properly simulate even the corruption of the trusted party. We

omit the trivial details of the reduction.

I2 - Employing only Strategy 2. This interaction is the same as I1, only S will perform Step

5 completely as described in Strategy 1. That is, in addition to the change made in I1, the

only difference between I2 and I1 is the computation of the value of ψ. In the event that

the honest party commits a bit b = 1, the value of ψ now contains Eρ(r, d(0)), whereas it

would have been random in I1.

Lemma 4.3. I2 is computationally indistinguishable from I1.

Proof. The proof is by reduction to the pseudo-random property of ciphertexts from E.

Unfortunately, it is not obvious how to build a reduction attacking the security of a partic-

ular public key ρ∗, as we must do in order to achieve the reduction. In fact, we must use

a “rewinding” technique in order to accomplish this. While it is critical that UC secure

protocols be straight-line simulatable (i.e., they may not use rewinding techniques for sim-

ulation purposes, see [66] for details), we stress that here we are using the rewinding only

in the proof of indistinguishability for the simulator. The simulator itself does not perform

any rewinding.

Therefore, our reduction makes use of Lemma 4.1 (the Coin-tossing Lemma) to abstract

away the complicated analysis of the rewinding procedure. Observe that the first three flows

of UAIBC are a simple coin-tossing protocol, satisfying all the conditions of Lemma 4.1,

provided that the GUC experiment we are running does not require access to S’s trapdoor

(which is relevant for the binding property of the commitment used in the coin-tossing

phase) until after the coin-tossing has completed. Since S is an honest party in this scenario,

we can be sure that the neither A nor Z (nor, of course, the simulator itself) will expect

access to S’s trapdoor, and the conditions of the Coin-tossing Lemma are thus satisfied.

Accordingly, we may substitute the coin-flipped public key ρ with any randomly generated

149

4.3 Realizing Fully Simulatable General Computation

public key (as if the coin-flipping phase of the protocol had never happened, in either the

real or ideal/simulated views). In particular, we may substitute a challenge key ρ∗ that our

reduction to the security of E is attempting to break. If the resulting versions of I2 and I1

are indistinguishable (when using such a random challenge key ρ∗), then we know that the

unmodified versions of I2 and I1 (where ρ is the outcome of the coin-flipping protocol) are

also indistinguishable.

In fact, it is easy to see that I2 and I1 must indeed be indistinguishable if the public key ρ∗

(challenged to the reduction) is used instead of the coin-flipping protocol output – after all,

the reduction to the security of E is now a direct one: the only change between I2 and I1 is

the substitution of a ciphertext encrypted under ρ∗ for a random string. Indistinguishability

of this substitution is precisely the guarantee provided by Dense PRC encryption. Given

that I2 and I1 are indistinguishable when the parties are fed with a random key ρ∗, we may

apply the Coin-tossing Lemma to obtain indistinguishability of the full-fledged versions of

I2 and I1 (which use the coin-tossing protocol).

Once again, we observe that providing the adversary with MSK at the end of the game does

not help the adversary to distinguish ciphertexts, since it is too late to use it to equivocate

any of the commitments, and thus the adversary cannot “rig” any public keys.

I3 - Adding Strategy 3. This interaction is the same as I2 only now R also employs Strategy

2. We first note that it is not a problem that the simulator is revealing commitments

to κ̂1 instead of κ1 since the distributions are indistinguishable by the “dense” public

key property of the encryption scheme. The only remaining difference is the use of an

equivocable commitment, and thus we prove the indistinguishability of I3 and I2 using the

same technique as Lemma 4.2. Note that, since the indistinguishability of equivocations

holds even against distinguishers that know MSK, the simulation remains indistinguishable

even if the trusted party is corrupted after the protocol.

I4 - Adding Strategy 1. This interaction is the same as I3, only we now employ Strategy 1

as well. This is, in fact, just a conceptual change to I3, since Strategy 1 merely delays the

actual computation of protocol flows until they are observable by A. Indistinguishability

150

4 A Feasibility Result for Realizing General Functionalities

follows immediately in the secure channels model.

I5 - Simulated interaction. This is the same as I5 unless the simulation fails and halts, which

can only occur if a reveal phase successfully opens a commit phase to for the bit b′ 6= b,

where b is the bit the simulation invoked Fcom with after the commit phase. This can

occur in one of two ways. 1) The simulator was unable to decrypt ψ to yield a valid d in

Step 5, yet the reveal phase shows that ψ contains a correct encryption of a valid d. This

would violate the correctness property of the encryption scheme, so this case never occurs.

2) The simulator decrypted ψ, yielding a valid d such that κ = ComR(d, 0), but the reveal

phase showed a decommitment d′ such that κ = ComR(d′, 1). This breaks the binding

property of the IBTC, and a reduction to this property can be built in the obvious way.

We observe that the binding property is broken at “runtime”, so the reduction will not need

to deal with corruption of the trusted party in the “strong fully simulatable setting” (where

we achieve forward security with respect to the corruption of the trusted party), which is

critical since the reduction will not know MSK. Thus, I5 must be indistinguishable from

I4, even if the trusted party is corrupted after completion of the protocol.

151

5 • Efficient Protocols for

Commitments and Zero-Knowledge

Proofs

As we have already argued, from the security and functionality perspectives, the GUC secure

protocols of Chapter 4 realized in the ACRS model appear to be strictly superior to UC secure

protocols realized in the CRS model of [30]. This raises the natural question of what price must

be paid for such gains, particularly in terms of efficiency. Unfortunately, the constructions in

Chapter 4 are very inefficient: the commitment scheme committed to the message in a bit-by-bit

manner, while the zero-knowledge (ZK) proof for any NP-relation R was implemented using the

generic Cook-Levin reduction to a canonical NP-complete problem via the generic technique of

[30] for transforming a realization of Fcom into a realization of Fzk. Thus, now that the feasibility

of GUC secure computation has been established, it is natural to ask if one can build efficient,

GUC-secure commitment and ZK proofs in the ACRS (or PKI) model. In this chapter, we

provide such efficient GUC-secure commitment and ZK proofs which are secure against adaptive

corruptions, therefore making the ARCS model an attractive alternative to the CRS model on

nearly all fronts.

The only drawback of our solution is that we rely on data erasures, which is not the case for

many efficient UC protocols, such as that of Damgard and Nielsen [35]. In practice, although

adaptive security (or at least forward security) is of critical concern (particularly in the context

of deniability),1 we believe that the assumption of data erasures is very realistic, especially if the

data to be erased is highly ephemeral in nature. In particular, this assumption is widely used in

practice (for example, for analyzing most key exchange protocols, such as Diffie-Hellman), and

was already used in several works on UC security as well (e.g., [28, 50, 68, 26], although there

the use of erasures was hidden deep in the paper). Of course, in light of the feasibility results of

1We remark that adaptive security with erasures trivially implies static security, and is usually
much harder to achieve than the latter.

152

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

Chapter 4 (which have feature adaptive security in the non-erasure model) we may still hope that

future research will remove this restriction entirely even from efficient GUC-secure protocols.

In the following sections we present a simple “protocol compiler” transforming any efficient

“dense” Ω-protocol proof for an NP-relation R (see Section 2.3.1) into an efficient, constant-round

GUC-secure ZK proof (GUC ZK) for R. The notion of Ω-protocols was originally introduced by

Garay, MacKenzie and Yang [50]. Briefly, Ω-protocols are simply Σ-protocols with an extra prop-

erty that one can generate a public reference parameter ρ together with a trapdoor information

τ , such that knowledge of τ allows one to extract the witness from any valid conversation between

a prover and verifier who use ρ as a reference parameter (as opposed to the usual special sound-

ness property, where one needs two different transcripts with the same first flow). In [50, 68],

Ω-protocols were used for the similar task of building UC-secure ZK proofs in the CRS model

(which means, of course, that they are not GUC-secure protocols as per the main impossibility

result of Chapter 4). As a result of the more stringent requirements of GUC-security, our com-

piler is considerably more involved than the compiler of [50, 68] (which also used erasures). For

example, in the GUC setting the simulator is not allowed to know a trapdoor τ for any globally

published reference parameter ρ, so we have to sample the reference parameter ρ using the ACRS

model with a coin-flipping protocol (in a similar fashion to the approach we used in the protocol

of Section 4.3.2). As a result of this need to generate ρ via coin-flipping, our compiler requires

Ω-protocols whose reference parameters are “dense” (i.e., indistinguishable from random), and

therefore none of the previous Ω-protocols of [50, 68] is suitable for our purpose.

Therefore, of independent interest, we will present several novel constructions of dense Ω-

protocols. First, we show how to build a direct, but only semi-efficient dense Ω-protocol for any

NP relation R from any Σ-protocol for R. Although this Ω-protocol uses the cut-and-choose

technique (somewhat similar to the technique of Pass [73], but in a very different setting), it

is very general and yields a much more efficient GUC ZK protocol than the technique of [30]

(employed in our feasibility result), which uses a generic Cook-Levin reduction. Next, we show

a very efficient, number-theoretic based dense Ω-protocol for proving the knowledge of discrete

log representation. Once again, this Ω-protocol had to use some interesting additional tools to

get beyond the “non-dense” Ω-protocol of [50], such as the “projective Paillier encryption” of

Cramer and Shoup [33]. As a result, we get a semi-efficient GUC ZK for any R having an efficient

153

Σ-protocol, and a very efficient GUC ZK for proving the knowledge of discrete log representation.

Furthermore, using the same techniques for constructing efficient ZK, we proceed to build

efficient constant-rate (and constant-round) GUC-secure commitments in the ACRS model. In

spirit, this result is similar to the result of Damgard and Nielsen [35], who constructed the first

constant-rate UC-secure commitments in CRS model. However, our security requirements are

more stringent, and, in fact, it seems hopeless to adapt the protocol of [35] to the GUC framework.

Instead, we observe that GUC commitments can easily be constructed using our techniques for

GUC ZK, provided that we can build an efficient Ω-protocol for a particular relation R on identity-

based trapdoor commitments (IBTCs). See Section 2.4 for further discussion of IBTCs. Intuitively,

in this Ω-protocol a prover needs to show that he knows the message being committed in the

value κ, with respect to a particular identity. In fact, if one can build an IBTC scheme where the

required relation R would simply use a proof of knowledge for a discrete log representation, our

previous GUC ZK protocol would complete the job. Unfortunately, the IBTCs we constructed

in Section 2.4 are of a much more complicated form. Therefore, we will now build a specialized

IBTC scheme (of independent interest) which is based on Water’s signature scheme [84]. The

resulting IBTC not only has the needed form for its relation R, but is also much simpler and

more efficient than prior IBTCs built in the standard model. Combining these results, we finally

build the required GUC commitment.

Finally, we outline a technique for reducing the round complexity of our protocols (in fact,

for achieve optimal round complexity) by using the random oracle (RO) model in conjunction

with the GUC framework (see Section 2.2.4). Given that we previously proved in Section 4.2

that no completely public setup model including the random oracle model can be used to realize

GUC commitment, it is very surprising to find that random oracles are still useful in the GUC

framework, even in the presence of the “more powerful” ACRS setup (which is sufficient to realize

GUC commitment). Indeed, the RO is simply modeled as a shared functionality available both

in the real and in the ideal model. As such, the simulator cannot “reprogram” the RO. Even

more counter-intuitively, the simulator cannot even “extract” the random oracle queries used by

the real-model attacker! This is because, without loss of generality, we may assume that all such

queries are made by the environment (which the simulator cannot control), and that the outputs

resulting from the oracle queries are sent to the adversary by the environment instead of the

154

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

oracle. Correspondingly, the RO model seems very restricted in the GUC framework. However,

we still show that one can meaningfully use it in conjunction with the ACRS model, because we

are allowed to extract and reprogram the RO in the proof of security. In particular, by applying

the Fiat-Shamir heuristic to our GUC ZK protocols, we obtain an efficient, two-message, straight-

line extractable and simulatable (in fact, GUC-secure!) ZK proof for any relation R having an

efficient dense Ω-protocol (see above for examples of such Ω-protocols). Moreover, in this protocol

one only needs to erase some short data during a local computation (i.e., no sensitive data needs

to be stored while waiting for network traffic).2 This makes the need for data erasures even

more minimal, since the data to be erased is completely ephemeral.

5.1 A Lower Bound for Round Complexity

One important measure of efficiency for cryptographic protocols is round complexity – protocols

that require multiple messages to be sent back and forth incur a proportional overhead due to

network latency. Clearly, it is very important for practical reasons to design protocols with

constant round complexity – and, indeed, all the protocols we have previously described already

feature this very desirable property. However, it would be even better to construct protocols with

optimal round complexity. Of course, in the setting of stand-alone security it is clear that the

“commit phase” of commitments is nearly always implemented non-interactively (i.e., using a

single message sent by the committer S to the recipient R), and we might wonder if is possible to

have GUC-secure commitments that are similarly non-interactive. Furthermore, we might even

hope to obtain GUC-secure Non-Interactive Zero-Knowledge (NIZK) proofs, which are known to

exist in the CRS model with stand-alone security.

Unfortunately, as we will now demonstrate, GUC secure protocols for commitment and zero-

knowledge inherently require some extra interactivity (when they are realized using most natural

global setups such as a PKI or ACRS). That is, we will show that the “commit phase” of any

GUC-secure commitment scheme requires more than one message, and that GUC-secure NIZK

proofs are impossible. This lower bound holds only with respect to protocols that have forward

2Of course, we can get a less efficient GUC ZK protocol with these properties, which does not
rely on data erasures at all, by applying the Fiat-Shamir heuristics to the inefficient protocol of
Section 4.3.2.

155

5.1 A Lower Bound for Round Complexity

security (where it holds even if we allow erasures). Indeed, we strongly conjecture that there

exist GUC-secure non-interactive protocols realizing these tasks in the static corruption model.

However, given the comparatively weak security guarantees of the static corruption model, for

most applications it seems preferable to employ interactive protocols while retaining adaptive

security.

We begin by proving an impossibility result for non-interactive commitment schemes with

forward security in the GUC framework (see Section 2.1 for a description of forward security).

Theorem 5.1. We say that an “oracle” (or Interactive Turing Machine) is monotonically con-

sistent if it always returns the same response to party P when queried repeatedly on the same

input by party P (even across separate sessions), except that it may choose not to respond to

some queries when P is honest (otherwise, consistency holds independently of P ’s corruption

status). Let Priv denote any PPT monotonically consistent oracle (whose outputs may depend

on the pid of the querying party, but not the sid).

There exists no non-interactive (single message), terminating protocol π that GUC-realizes

Fcom with forward security (even in the erasure model), using only the shared functionality for

Priv. This holds even if the communication is ideally authentic. (In particular, we note that

Priv = Ḡacrs and Priv = Ḡkrk are efficient monotonically consistent oracles, even if they are

combined with the random oracle shared functionality Ḡro.)

Proof of Theorem 5.1. Suppose there exists a non-interactive protocol π GUC-realizing Fcom

in the Priv shared hybrid model. Then, in particular, there must be a simulator S such that

EXECFcom,S,Z ≈ EXECπ,A,Z for a particular adversary A and Priv-externally constrained envi-

ronment Z, which are constructed as follows.

Let A be a “dummy adversary” that simply forwards protocol flows between corrupt parties

and the environment (i.e., when A receives a message from Z, it will send the message on behalf

of some specified corrupt party; similarly, whenever a corrupt party receives a message, A simply

forwards it to Z). Let Z operate by first corrupting party S (the committer), then choosing a

random bit b $← {0, 1} and running the commit phase of π on behalf of S in order to obtain

commitment κ. Wherever π makes oracle queries to Priv, Z issues the same queries on behalf of

S (relying on monotonic consistency to be sure that it will obtain at least the same information

156

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

as an honest S would). Z sends κ to A, and waits for party R to output (receipt, . . .). Next,

Z runs the reveal phase of π on behalf of S (again, issuing queries to Priv where necessary) and

forwards the corresponding messages through A. Finally, Z waits for R to output (reveal, sid, b̂)

and if b = b̂ then Z outputs 1; otherwise, Z outputs 0.

Clearly, if the GUC experiments above must remain indistinguishable, S must cause R to

output b̂ = b with overwhelming probability. Since S is interacting with Fcom, it must specify

the value of b̂ to Fcom prior to the point where R outputs (receipt, . . .), which always occurs

before Z has initiated the reveal phase of π. That is, when A feeds S with an honestly generated

commitment κ for a bit b, S will immediately compute a bit b̂ such that b̂ = b with overwhelming

probability. Therefore, S acts like an “extractor” for commitments. However, we stress that

while computing b̂, S expects to have access to the oracle Priv – and, in particular, we note that

party S is corrupt so that S may ask queries for S which would not be answered when S is honest

(we will see how this matters shortly).

Intuitively, we have just shown that S can be used to extract a commitment sent by honest

parties, violating the natural “hiding” property of the commitment, although this extractor

requires access to the private oracle on behalf of the committer. Indeed, this “extractor” requires

access to the private oracle for a corrupt committer, and therefore one might think this extractor

is potentially “harmless” since it only violates the security of honest parties after they become

corrupt. However, security against adaptive corruptions requires that past transcripts sent by

honest parties who later become corrupt remain indistinguishable from simulated transcripts

(which were created while the party was still honest). Of course, the simulator does not know the

inputs of honest parties, so simulated commitments must be independent of the actual bit being

committed to – and herein lies the contradiction. If there is an extractor that can open honest

commitments to reveal the committed bit with overwhelming probability (when the committing

party has later become corrupt), then this extractor distinguishes honest commitments from

simulated commitments (where the extractor can only be correct/incorrect with probability 1/2

for a commitment to a random bit, assuming it even generates an output).

More formally, we will show that the existence of the simulator S above contradicts the

security of π against adaptive corruptions, by creating a particular environment Z ′ which succeeds

in distinguishing EXECFcom,S′,Z′ from EXECπ,A,Z′ after an adaptive corruption operation for

157

5.1 A Lower Bound for Round Complexity

any simulator S ′ (as before, A is just a “dummy adversary”). As a notational convenience, we

will write SPriv(S, κ) to denote the output bit b̂ produced by the simulation above, when running

on (honestly generated) commitment κ sent by S – recalling that S can only be run when S is

corrupt.

Our Z ′ proceeds by corrupting R at the outset, and then choosing random a bit b $← {0, 1},

which it gives as input to the honest party S. It then expects to obtain κ (the output of the

commit phase) from the adversary. After receiving κ, Z ′ instructs the honest party to reveal b,

completing the protocol. In accordance with the forward security corruption model, Z ′ is now

allowed to corrupt S, which will enable to Z ′ to obtain complete access to Priv for S. Once this

access has been obtained, Z ′ is free to compute b̂ ← SPriv(S, κ). In the real world experiment

(where protocol π is being attacked by the dummy adversary), the distribution of κ is exactly

identical to its distribution in the original setting above where S outputs b̂ = b with overwhelming

probability. On the other hand, in the ideal world experiment (where Fcom is being attacked by

S ′), we know that S ′ must produce κ independently of the bit b (since b is the hidden input of

the honest party, sent only to Fcom which hides it from S information theoretically). This means

that in the ideal world, we must have that b̂ = b with probability at most 1/2, since the entire

computation of b̂ is independent of b! Therefore, Z ′ can distinguish between the real world and

ideal world experiments with probability at least 1/2 − negl(λ), contradicting our assumption

that π is GUC-secure.

Remark: The class of shared functionalities modeled by Priv is very large indeed, making this

impossibility result quite strong. Not only do all the global setups described in Section 2.2 (Ḡcrs,

Ḡacrs, Ḡkrk, and Ḡro) fit the modeling requirements of Priv, so would most natural formulations

of a shared functionality for one-time shared key setups. Notice, whereas our earlier impossibility

result in Section 3.2.2 implicitly held even in the presence of shared key setup, since authenticated

channels are sufficient to realize such setup (see Section 3.2.4), the same is not automatically true

here. Indeed, our realization of shared key setup based on authenticated channels is interactive,

and therefore one might otherwise think shared key setups can suffice to realize non-interactive

commitments with forward security. The ability to model shared key setup as a shared func-

tionality satisfying the aforementioned Priv oracle shows that this is not so. In fact, even if we

158

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

combine a shared key setup with all our other setup functionalities (Ḡcrs, Ḡacrs, Ḡkrk, and Ḡro)

into a single all-encompassing global setup, our impossibility result still holds.

Next, we will prove that the same impossibility extends to NIZK proofs for many natural

NP-relations. More formally, we describe the ideal Zero-Knowledge functionality for relation R,

FRzk, is described in Figure 5.1.3 Our impossibility result shows that it is impossible to have

forward secure non-interactive GUC-realizations of FRzk for non-trivial relations R (that are not

already trivialized by the shared functionality for the global setup4).

Functionality FRzk

Fzk, parameterized by a binary relation R and running with a prover P , a verifier V , and
an adversary S, proceeds as follows upon receipt of a message (ZK-prover, sid, P, V, x, w)
from the prover P :

If (x,w) ∈ R, then send (ZK-proof,sid, P, V, x) to V and S, and halt. Other-
wise halt.

Figure 5.1: The Zero-Knowledge Functionality for Relation R

Theorem 5.2. We say that an “oracle” (or Interactive Turing Machine) is monotonically con-

sistent if it always returns the same response to party P when queried repeatedly on the same

input by party P (even across separate sessions), except that it may choose not to respond to

some queries when P is honest (otherwise, consistency holds independently of P ’s corruption

status). Let Priv denote any PPT monotonically consistent oracle (whose outputs may depend

on the pid of the querying party, but not the sid).

Further, we say that an NP-relation R defining some language L is non-trivial if we believe

3Technically, the relation R might be determined by system parameters, which form part of
a CRS. Here, we note that the same CRS must be used in both the “ideal” and “real” settings
(e.g., using the Ḡcrs modeling).

4Of course, it is easy to see how one might achieve non-interactive proofs for certain languages
related to the global setup. For example, if the global setup is a PKI that uses key registration
with knowledge, parties can trivially prove the statement that their public keys are “well-formed”
(without even communicating at all!) since the global setup already asserts the verity of this
statement on their behalf. Therefore, our impossibility result does not necessarily extend to cases
where the relation R to be proved is determined by system parameters, but we will only make
use of relations that are not trivialized by the presence of the system parameters (where the
impossibility result still holds).

159

5.1 A Lower Bound for Round Complexity

that no PPT algorithm efficiently decides membership in L (i.e., L 6∈ BPP). In particular, R

is non-trivial with respect to oracle Priv if there is no PPT algorithm for efficiently deciding

membership in L even when given oracle access to Priv (for arbitrary party identifiers, and even

with all parties being marked as corrupt).

There exists no non-interactive (single message), terminating protocol π that GUC-realizes

FRzk with forward security (even in the erasure model), using only the shared functionality for

Priv, for any NP-relation R that is non-trivial with respect to Priv. This holds even if the

communication is ideally authentic. (In particular, we note that Priv = Ḡacrs and Priv = Ḡkrk

are efficient monotonically consistent oracles, even if they are combined with the random oracle

shared functionality Ḡro.)

Proof of 5.2. The proof is entirely analogous to the proof of Theorem 5.1, and therefore we will

only sketch it at a high level and direct the reader to the previous proof for further details. Here

will call the prover P and the verifier V .

Assuming there is a non-interactive and GUCsecure realization of FRzk, we first follow the

approach of Theorem 5.2 in order show that (using a similar shorthand notation) there exists

an extracting simulator SPriv(P, x, ψ). For any x ∈ L, this extracting simulator is capable of

computing a witness w such that (x,w) ∈ R if ψ is an honestly generated non-interactive proof

according to protocol π. However, SPriv(P, x, ψ) expects to be run after the corruption of P ,

and it we are guaranteed that it will succeed in extracting a valid witness w (from any honestly

generated proof ψ) with overwhelming probability in that scenario.

Then we construct an environment Z ′ which, parameterized by any (x,w) ∈ R, first feeds

(x,w) to an honest prover P , and then obtains the resulting protocol flow ψ. Note that ψ is

the protocol flow that is either observed by the dummy adversary running in the real world

experiment, or is being “faked” by some simulator in the ideal model. The environment then

corrupts the honest prover (after completion of the proof protocol), and runs SPriv(P, x, ψ)

to obtain w. In particular, since w must be valid with overwhelming probability in the real

world, it must also be valid with overwhelming probability in the ideal world running with some

(efficient) simulator S ′ (or else the environment can successfully distinguish the two experiments,

contradicting the claimed GUC-security of the protocol). However, the value of w is information

160

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

theoretically hidden from S ′ by FRzk, so its clear that S ′ must output ψ given only x and access

to the Priv oracle (in particular, while V is corrupt and P is honest).

To conclude the proof, we show how to obtain a witness w for statement x using only a Priv

oracle, contradicting the non-triviality of L with respect to Priv. Given any statement x, we first

pick some party P to act as the prover, and V to act as the verifier. Then we run S ′Priv(x) to

produce a “fake” proof ψ. Finally, we run SPriv(P, x, ψ) to obtain w such that (x,w) ∈ R. Since

this entire procedure produces a valid witness w for any x ∈ L while using only oracle access to

Priv, we have successfully contradicted the non-triviality of L with respect to Priv.

The lesson we learn from these impossibility results is that we must have some interactivity

in protocols for many natural tasks if we wish to achieve forward security in the GUC-framework

(with reasonable setup assumptions). That is, there is a lower bound of at least two messages

required for protocols that directly imply GUC-secure commitments or zero-knowledge (without

adding further interactivity). This raises the question of whether or not we can achieve round

optimal commitments and zero-knowledge proofs, and how many messages are required in the

optimal case. In Section 5.5, we will show how to realize both GUC-secure commitments and

zero-knowledge protocols for any NP-relation R using only two messages in the random oracle

model. Therefore, we can meet the lower bound in the random oracle model. It remains an

open question if the 4 message commitment protocol of Section 4.3.2 can be further improved

in the plain ACRS model (without using random oracles). Similarly, it is an open question if

one can improve upon the 6 message protocol for general zero-knowledge proofs implied by the

commitment scheme of Section 4.3.2 (using the technique from [30] for construct Fzk from Fcom)

without resorting to random oracles.

5.2 Efficient GUC Zero-Knowledge in the ACRS Model

We now describe a general transformation from any dense Ω-protocol Π for a relation R to a

GUC-secure zero-knowledge proof for the relation R in the ACRS (Ḡacrs) model.5 In our con-

struction, we will use an identity-based trapdoor commitment (IBTC) scheme (see Section 2.4).

5Recall that, by the results of Section 2.3.1 and Section 2.3.2, it is possible to construct these
dense Ω-protocols for any NP-relation under reasonable assumptions.

161

5.2 Efficient GUC Zero-Knowledge in the ACRS Model

Commitments in this scheme are written ComID(d,m), where ID is identity of the recipient, d is

some random coins, and m is the committed message. We also denote by Φ the space of extended

reference parameters for Π.

The ACRS Setup is instantiated using the Setup function of the IBTC. In addition, any system

parameters Λ for the Ω-protocol are placed in the public value of the augmented CRS, alongside

the output of Setup. Note that there is no trapdoor associated with the system parameter for

the Ω-protocol, so this system parameter is essentially a “standard” CRS. A critical difference

between our approach and that of Garay et al [50] is that the reference parameter for the Ω-

protocol is not placed in the CRS; rather, a fresh reference parameter ρ is generated with every

run of the protocol, using the three-move “coin-tossing” protocol introduced in Section 4.3.2

(which is where we need the IBTC).

We describe our protocol for realizing FRzk in Figure 5.2 below.

Protocol DOZK

Running between a prover P (with private input (x,w)) and a verifier V (who are both
initialized with knowledge of a common reference string µ = PK that is a public key for
an IBTC scheme) the protocol DOZK proceeds as follows:

1. V computes ρ1
$← Φ, forms a commitment κ1 = ComP (d1, ρ1), and sends κ1 to P .

2. P computes ρ2
$← Φ and sends ρ2 to V .

3. V first verifies that ρ2 ∈ Φ, and then sends the opening (d1, ρ1) to P .
4. P verifies that (d1, ρ1) is a valid opening of κ1, and that ρ1 ∈ Φ.

Both P and V locally compute ρ← ρ1 · ρ2.
5. P initiates the dense Ω-protocol Π, in the role of prover, using its witness w for
x. P computes the first message a of that protocol, forms the commitment κ′ =
ComV (d′, a), and sends κ′ to V .

6. V sends P a challenge c for protocol Π.
7. P computes a response z to V ’s challenge c, and sends (d′, a, z) to V .
P then erases the random coins used by Π.

8. V verifies that (d′, a) is a valid opening of κ′ and that (a, c, z) is an accepting
conversation for Π.

Figure 5.2: Protocol DOZK for realizing FRzk in the Ḡacrs shared hybrid model, using any dense
Ω-protocol Π for the relation R.

Theorem 5.3. The protocol described above GUC-emulates the FRzk functionality in the secure-

channels model, with security against adaptive corruptions (with erasures).

Proof of Theorem 5.3. We first observe that the protocol above only makes use of a single shared

162

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

functionality, Ḡacrs. Therefore, we are free to make use of the equivalence theorem and EUC

model (see Chapter 1. This allows us to prove the GUC security of the protocol using the

standard techniques of the UC framework, with only a single (but crucial) modification – we will

allow the environment access to the shared functionality.

Let A be any PPT adversary attacking the above protocol. We describe an ideal adversary

S attacking the ideal protocol for FRzk that is indistinguishable from A to any distinguishing

environment Z, in the presence of a shared setup Ḡacrs. In standard fashion, S will run a copy

of A internally. We now formally describe how S interacts with its internal copy of A.

First, we give the remaining details of the simulator, which are essentially standard fare in

the UC literature.

Initialization. All parties are assumed to be initialized with a copy of the common reference

string PK published by Ḡacrs during its global initialization phase. If the parties have not already

been so initialized, S activates a copy of the Ḡacrs shared functionality, which then proceeds with

the initialization. (Notice, an external copy of the globally shared Ḡacrs functionality is actually

being invoked by S, and S does not attempt to initialize any parties directly.)

Simulating communication with Z. S simply forwards all communications between its

internal copy of A and Z.

Simulating communication with Ḡacrs. S simply forwards all communications between its

internal copy of A and Ḡacrs.

Simulating a proof between two honest parties, P and V . Since we are in the secure

channels model, S simply notifies A that communications (with messages of appropriate length

for a proof protocol) have taken place between P and V . If A blocks any communications, S

blocks V from receiving the output of FRzk.

If either P or V is corrupted during the execution of the protocol, or subsequent to its comple-

tion, the protocol transcript preceding the corruption event is generated using the corresponding

technique described below (including provisions for the internal state of the corrupt party). Intu-

itively, this retroactive generation of protocol flows this is made possible by the non-committing

encryption (NCE) scheme used to implement secure channels.

163

5.2 Efficient GUC Zero-Knowledge in the ACRS Model

Simulating a proof between an honest P and corrupt V . The following simulation

strategy is employed whenever P is honest and V is corrupted at any point prior to, or during,

the execution of the protocol.

S, upon notification from FRzk of a successful proof from P of statement x, proceeds as follows.

First, acting on behalf of the corrupt party V , S obtains the trapdoor SK V from Ḡacrs.

Next, S runs the coin-tossing phase of the protocol with the corrupt party V (being controlled

by S’s internal copy of A) normally. Upon completion of the coin-tossing phase at Step 5, rather

than sending a commitment to the first message sent by Π (which would require the witness w as

an input) as per the protocol specification, S obeys the following procedure for the next 3 steps

of the protocol:

5. S computes (κ̂′, α)← ECom(V,SK V). S then sends the equivocable commitment κ̂′ to the

corrupt verifier V (which is part of S’s internal simulation of A).

6. S receives a challenge c from the corrupt verifier V .

7. S runs the HVZK simulator ZKSim for protocol Π on input (Λ, ρ, x, c), obtaining messages

a and z. S then equivocates κ̂′, by computing d′ ← Eqv(V,SK V , κ̂
′, α, a), and sends d′, a, z

to the corrupt verifier V .

Observe that this simulation is done entirely in a straight-line fashion, and requires only the

trapdoor SK V belonging to corrupt party V .

If P is also corrupted at some point during this simulation, S must generate P ’s internal state

information and provide it to A. If P is corrupted prior to Step 5, then S can easily provide the

random coins used by P in all previous steps of the protocol (since those are simply executed by

S honestly). A corruption after Step 5 but before Step 7 is handled by creating an honest run

of protocol Π using witness w (which was revealed to S immediately upon the corruption of P),

and computing the internal value d′ via d′ ← Eqv(V,SK V , a). κ′, where a is now the honestly

generated first message of Π. Finally, if corruption of P occurs after Step 7 of the simulation,

the internal state is easily generated to be consistent with observed protocol flows, since they

already contain all relevant random coins, given the erasure that occurs at the end of Step 7.

Intuitively, the faithfulness of this simulation follows from the equivocability and binding

properties of commitments, and the HVZK and dense reference parameters properties of the

164

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

Ω-protocol Π. We stress that while the proof of this requires a rewinding argument (specifically,

see Lemma 4.1), the simulation itself is straight-line.

Simulating a proof between a corrupt P and honest V . The following simulation strategy

is employed whenever V is honest, and P is corrupted at any point prior to or during the execution

of the protocol.

First, acting on behalf of the corrupt party P , S obtains the trapdoor SKP from Ḡacrs.

Then S generates a pair (ρ, τ) using the RefGen algorithm for Π, and “rigs” the coin-tossing

phase of the protocol by playing the role of V (communicating with the internal simulation of

the corrupt party P) and modifying the initial steps of the protocol as follows:

1. S computes (κ̂1, α)← ECom(P,SKP), and sends κ̂1 to P .

2. P replies by sending some string ρ2 to V .

3. S computes ρ1 ← ρ · ρ−1
2 , and d1 ← Eqv(P,SKP , κ̂1, α, ρ1).

S first verifies that ρ2 ∈ Φ. Then S sends the opening (d1, ρ1) to P .

The remainder of the protocol is simulated honestly.

Observe that the outcome of this coin-flipping phase will be the same ρ generated by S at

the start of the protocol (along with its corresponding trapdoor information τ). If and when

the verifier accepts, S runs the trapdoor extractor Etd for Π on input (Λ, τ, x, a, c, z) to obtain

a witness w for x. S then sends the pair (x,w) to the ideal functionality FRzk on behalf of the

corrupt prover P .

In the event that V is also corrupted at any point prior to completion of the protocol, S

simply produces internal state for V consistent with the visible random coins in the transcript

(none of the verifier’s random coins are hidden by the honest protocol).

Intuitively, the faithfulness of this simulation follows from the equivocability and binding prop-

erties of commitments, and the trapdoor soundness and dense reference parameters properties

of the Ω-protocol Π. Again, we stress that while the proof of this requires a rewinding argument

(embodied by our “coin-tossing lemma”, Lemma 4.1, from Section 4.3.5), the simulation itself is

straight-line.

Now that we have fully described the behavior of S, it remains to prove that S interacting

with FRzk (the ideal world interaction) is indistinguishable from A interacting with the protocol

165

5.2 Efficient GUC Zero-Knowledge in the ACRS Model

(the real-world interaction), from the standpoint of any environment Z with access to Ḡacrs. We

stress that even Z cannot obtain trapdoor information from Ḡacrs for any honest parties, since

Ḡacrs will not respond to requests for such trapdoors.

We structure our indistinguishability proof as a sequence of games, starting with the unaltered

real-world interaction and proceeding by steps towards the ideal world interaction.

I0 - Real-world interaction The original protocol runs with adversary A.

I1 - Simulating interactions between two honest parties This interaction is the same as

I0, only the computation of the actual protocol messages between two honest parties is

delayed until one of them becomes corrupted (at which point, A expects to learn the

corrupted party’s history via examination of its internal state).

Given that we are in the secure channels model (which implies that any messages sent

between honest parties remains entirely private until one of them is corrupted) this is only

a conceptual change to I0, so the distributions of these two games are trivially identical.

I2 - Modifying (κ′, d′) sent to corrupt verifier When the verifier is corrupt but the prover

is honest, we have the honest prover replace the commitment κ′ to be sent in Step 5 of the

protocol with an equivocable commitment opened to the same value. That is, we provide

the honest prover with the trapdoor information SK V of the corrupt verifier, and we modify

Steps 5-7 of the protocol as follows:

5. P starts the Ω-protocol Π for relation R, with common input (Λ, ρ, x). As usual, P

plays the role of the prover in Π and computes the first message a.

P computes (κ̂′, α)← ECom(V,SK V).

P then sends the equivocable commitment κ̂′ to the corrupt verifier V .

6. P receives a challenge c from the corrupt verifier V .

7. P computes a response z to V ’s challenge c. P computes d′ ← Eqv(V,SK V , κ̂
′, α, a),

and sends d′, a, z to the corrupt verifier V .

I3 - Modifying (a, z) sent to a corrupt verifier Once again, this change affects only the sce-

nario where the prover is honest and the verifier is corrupt.

166

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

This interaction is the same as I2, only the values of a, z sent by the prover are generated

using the HVZK Simulator for Π, rather than using Π directly.

That is, modify Step 7 of the protocol as follows:

7. P runs the HVZK simulator ZKSim for protocol Π on input (Λ, ρ, x, c), obtaining

simulated messages a and z (this values are used instead of those that would have

been generated via Π).

P computes d′ ← Eqv(V,SK V , κ̂
′, α, a), and sends d′, a, z to the corrupt verifier V .

I4 - Modifying the coin-toss commitment for corrupt provers This interaction is exactly

the same as I3 in case the verifier is corrupt. However, in the event that the prover is cor-

rupt, we modify the coin-flipping stage of the protocol to replace the commitment sent by

the honest verifier with an equivocable commitment opened to the same value.

That is, we provide the honest verifier with the trapdoor information SKP of the corrupt

prover, and we modify Steps 1-3 of the protocol as follows:

1. V computes ρ1
$← Φ.

V computes (κ̂1, α)← ECom(P,SKP), and sends κ̂1 to P .

2. P replies by sending some string ρ2 to V .

3. V computes d1 ← Eqv(P,SKP , κ̂1, α, ρ1).

V first verifies that ρ2 ∈ Φ. Then V sends the opening (d1, ρ1) to P .

I5 - Rigging the coin-flipping for corrupt provers This interaction is the same I4, only in

the case where the prover is corrupt we further modify the coin-flipping phase of the protocol

by changing the honest verifier’s opening in Step 3 in order to “rig” the outcome of the

coin-flipping to a pre-specified choice of reference parameter ρ.

Specifically, we make the following change:

3. P generates a pair (ρ, τ) ← RefGen(Λ), and sets ρ1 = ρ · ρ−1
2 (rather than choosing

ρ1 at random).

V computes d1 ← Eqv(P,SKP , κ̂1, α, ρ1).

V first verifies that ρ2 ∈ Φ. Then V sends the opening (d1, ρ1) to P .

167

5.2 Efficient GUC Zero-Knowledge in the ACRS Model

I6 - The ideal world The most significant difference between I5 and the final, simulated in-

teraction in the ideal world is that the simulator uses the rigged coin-flipping technique to

“trapdoor extract” a witness when the prover is corrupt – and then the honest verifier’s

output is taken from the FRzk functionality, rather than a direct verification of the protocol

messages. There is a minor difference when the verifier is corrupt – now it is the simulator

who generates the protocol messages of the honest prover, rather than the prover itself.

There are also corresponding changes in message delivery, none of which are ultimately

visible to the environment or the (now, internally simulated) adversary.

Provided that the trapdoor extraction procedure produces a valid witness whenever the cor-

rupt prover succeeds in convincing an honest verifier, I5 and I6 are identically distributed.

Claim 5.4. I2 is indistinguishable from I1.

Proof. The proof follows directly from the equivocability property of IBTCs. Namely, any en-

vironment that can distinguish I2 from I3 can easily be made to distinguish equivocable com-

mitments from honest commitments to the same value by simply plugging in the challenge com-

mitments appropriately (and using Ḡacrs to provide the same public setup parameters as the

challenger’s IBTC system).

Claim 5.5. I3 is indistinguishable from I2.

Proof. The proof follows by observing that if I3 can be distinguished from I2, then either (a)

extended reference parameters can be distinguished from reference parameters, or (b) real con-

versations for Π can be distinguished from simulated conversations. The reduction follows by an

application of Lemma 4.1, which allows us to “rig” the coin-tossing phase of the protocol (which

is taking place in either interaction I3 or I2) to yield the same ρ specified by the challenger in

the HVZK attack game. (Observe that we require the dense reference parameter property of the

Ω-protocol, to satisfy the requirements of the Lemma.) In particular, Lemma 4.1 assures us that

any successful attacker distinguishing our protocol with its coin-tossing phase can be replaced

by an equivalent attacker who distinguishes a modified version of the protocol that replaces the

coin-tossing phase (and its resultant choice of ρ) by directly sampling ρ instead. This means that

we can now ensure that the challenge reference parameter is being used for the Ω protocol (since

168

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

we may substitute the random challenge parameter in place of the coin-tossing). Once we have

substituted the in the proper reference parameter ρ from the challenger, we may simply send

(x,w, c) to the HVZK game challenger (where w is taken from the input to the honest prover P

in our protocol interaction), and replace the honest prover P ’s choice of (a, c) by the response

from the challenger. Distinguishing I3 from I2 now corresponds precisely to guessing the HVZK

challenge bit b.

Claim 5.6. I4 is indistinguishable from I3.

Proof. This is a straightforward reduction to equivocability of IBTCs, as before.

Claim 5.7. I5 is indistinguishable from I4.

Proof. We begin by considering a modified interaction I4 where V computes ρ1 by first selecting

ρ uniformly at random, and then computing ρ1 ← ρ · ρ−1
2 . It is easy to see that the distribution

of ρ1 is unaltered, and thus we have made only a conceptual change to I4.

Given this new view of I4, it is easy to see that if we modify I4 as per game I5, the only

difference is that the value ρ used by V is no longer random, but is instead chosen according

to RefGen. From here, it is straightforward to reduce the distinguishing game to the Dense

Reference Parameter property of the Ω-protocol.

Claim 5.8. I6 is indistinguishable from I5.

Proof. This proof is by reduction to trapdoor extractability property of the Ω-protocol. Recall

that the “rigging” of the reference string is already taken care of by the technique of I5 (so we

may easily arrange for the same ρ selected by the challenger in the extraction attack game of

the Ω-protocol). The trapdoor soundness property for Π guarantees that we get a witness with

overwhelming probability.

Combining the preceding claims yields the desired proof that the real interaction I0 is indis-

tinguishable from the ideal interaction I6.

169

5.3 Efficient GUC Commitments in the ACRS Model

5.3 Efficient GUC Commitments in the ACRS Model

In this section we describe an efficientGUC-secure realization of a multi-bit message variant of

Fcom (i.e., rather than committing to a single bit, it is possible to commit to λ bits simultane-

ously). The realization is secure against adaptive corruptions, but only in the erasure model.

Our protocol for efficiently GUC-realizing Fcom is based on a modification to the protocol for

efficient GUC zero-knowledge proofs from Section 5.2. This time, we will make use of a dense

Ω-protocol specifically for the IBTC opening relation; here, a witness for a commitment κ with

respect to an identity ID is a valid opening (d,m) (i.e., ComID(d,m) = κ). Instead of trapdoor

soundness, we only require partial trapdoor soundness with respect to the function f(d,m) := m.

Of course, our efficient GUC-secure commitment protocol has two phases. The commit phase

is essentially identical to the ZK protocol in Section 5.2, except that Step 5 has been modified.

The reveal phase is entirely new.

Theorem 5.9. The protocol described above GUC-emulates the Fcom functionality in the secure-

channels model, with security against adaptive corruptions (with erasures).

Proof of Theorem 5.9. The proof is analogous to that of our zero-knowledge protocol, but entails

some minor changes that include the partial trapdoor soundness requirement for Π. Rather than

recapitulate all the details of the proof in Section 5.2, we will merely sketch changes to the proof

here.

The main difference is that a slightly more specialized argument is needed to prove that I6

is indistinguishable from I5. In I6, the simulator now uses the trapdoor extractor Etd during the

commit phase (when S is corrupted) to extract a value m to pass to the ideal functionality. Later,

during the reveal phase, S may open the commitment κ inconsistently as (d̂, m̂), where m̂ 6= m;

we want to argue that this happens with only negligible probability, using the partial trapdoor

soundness property for Π, relative to the function f(d,m) := m. Suppose to the contrary that the

adversary succeeds in making such an inconsistent opening with non-negligible probability, even

though R accepted the conversation (a, c, z) in the Ω-protocol. Then, relying upon the binding

property of the IBTC scheme (applied to the commitment κ′), we can rewind the adversary to

get a second accepting conversation (a, c′, z′), where c′ 6= c, also with non-negligible probability

170

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

Protocol DOC

Protocol DOC proceeds as follows, with party S committing a message m to party R (in
the shared Ḡacrs hybrid model):

Commit Phase:

1. R computes ρ1
$← Φ, forms a commitment κ1 = ComS(d1, ρ1), and sends κ1

to S.
2. S computes ρ2

$← Φ and sends ρ2 to R.
3. R first verifies that ρ2 ∈ Φ, and then sends the opening (d1, ρ1) to S.
4. S verifies that (d1, ρ1) is a valid opening of κ1, and that ρ1 ∈ Φ.

Both S and R locally compute ρ← ρ1 · ρ2.
5. S generates a commitment κ = ComR(d,m), and then initiates the Ω-protocol

Π, in the role of prover, using its witness (d,m).
S computes the first message a of that protocol, forms the commitment κ′ =
ComR(d′, a), and sends κ and κ′ to R.

6. R sends S a challenge c for protocol Π.
7. S computes a response z to R’s challenge c, and sends (d′, a, z) to R.
S then erases the random coins used by Π.

8. R verifies that (d′, a) is a valid opening of κ′ and that (a, c, z) is an accepting
conversation for Π, and then outputs (receipt, sid, S,R) if so.

Reveal Phase:

1. S sends the opening (d,m) to R, who verifies that (d,m) is a valid opening of
κ and outputs (reveal, sid, S,R,m) if so.

Figure 5.3: Protocol DOC for realizing Fcom in the Ḡacrs shared hybrid model, given a partial
trapdoor sound dense Ω-protocol Π for proving knowledge of an IBTC decommitment. In par-
ticular, partial trapdoor soundness must hold with respect to the function f(d,m) = m (i.e., it
is enough for the trapdoor extraction procedure to output the committed value, rather than the
entire opening of the commitment).

171

5.4 Efficient Number-theoretic Instantiations

(this follows directly from the Reset Lemma of [10]). The partial trapdoor soundness property

will guarantee that the rewinding extractor Erw, applied to these two conversations, will yield

an opening of κ of the form (d,m). Now we have two openings of κ, (d̂, m̂) and (d,m), where

m̂ 6= m, which breaks the binding property of the IBTC scheme — a contradiction.

5.4 Efficient Number-theoretic Instantiations

Here we outline a collection of related number-theoretic constructions that can be used to in-

stantiate the protocols of Section 5.2 and Section 5.3.

While the generic Ω-protocol construction of Section 2.3.2 will certainly yield much more

efficient protocols than those of Chapter 4 (at least for languages with efficient Σ-protocols)

we would like to get an even more efficient protocol that avoids the cut-and-choose paradigm

altogether. In this section, we briefly show how we can obtain such a protocol for GUC-secure

commitments. Unlike the commitment scheme in Section 4.3.2, which could only commit single

bits, the GUC commitment scheme described in Section 5.3 can be used to commit to values in

a much larger set. Moreover, because of the special algebraic structure of the scheme, the GUC

commitment protocol of Section 5.3 can be instantiated in such a way as to enable combination

with other, well-known protocols for proving properties on committed values (e.g., the that

product of two committed integers is equal to a third committed integer).

To achieve these goals, we need an IBTC scheme that supports an efficient Ω-protocol. As

outlined in Section 2.4 (based on a variation of an idea in [46]), to build an IBTC scheme one can

use any secure signature scheme, along with an Augmented Σ-protocol for proof of knowledge of a

signature on a given message. Here, the “message” to be signed will be an identity ID . Assuming

the Augmented Σ-protocol is HVZK, we can turn it into a commitment scheme, as follows. For a

conversation (a, c, z), the commitment is a, the value committed to is c, and the decommitment

is z. To commit to a value c, one runs the HVZK simulator. The trapdoor for a given ID is a

signature on ID , and using this signature, one can generate equivocable commitments just by

running the actual Σ-protocol.

For our purposes, we suggest using the Waters’ signature scheme [84]. Let G and H be

172

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

groups of prime order q, let e : G → H be an efficiently computable, non-degenerate bilinear

map, and let G∗ := G \ {1}. A public reference parameter consists of random group elements

g1,g2,u0,u1, . . . ,uk ∈ G, a description of a collision-resistant hash function H : {0, 1}∗ →

{0, 1}k, and a group element h1. A signature on a message m is a pair (s1, s2) ∈ G × G, such

that e(s1, ũ−1
m) · e(s2,g1) = e(h1,g2), where ũm := u0

∏
bi=1 ui and H(m) = b1 · · · bk ∈ {0, 1}k.

Waters signature is secure assuming the CDH for the group G. With overwhelming probability,

the signing algorithm will produce a signature (s1, s2) where neither s1 nor s2 are 1, so we can

effectively assume this is always the case.

To prove knowledge of a Waters signature (s1, s2) ∈ G×G on a message m ∈ {0, 1}∗, we may

use the following protocol. The prover chooses w1, w2 ∈ Z∗q at random, and computes s̄1 ← s1/w1
1

and s̄2 ← s1/w2
2 . The prover then sends s̄1 and s̄2 to the verifier, and uses a standard Σ-protocol

to prove knowledge of exponents w1, w2 ∈ Zq such that γw1
1 γw2

2 = γ where γ1 := e(s̄1, ũ−1
m),

γ2 := e(s̄2,g1), and γ := e(h1,g2).

The identity-based commitment scheme derived from the above Σ-protocol works as follows.

Let ID ∈ {0, 1}∗ be the identity, and let m ∈ Zq be the message to be committed. The com-

mitment is computed as follows: s̄1, s̄2
$← G∗, d1, d2

$← Zq, γ1 ← e(s̄1, ũ−1
ID), γ2 ← e(s̄2,g1),

γ ← e(h1,g2), γ̄ ← γd11 γd22 γm. The commitment is (s̄1, s̄2, γ̄).

A commitment (s̄1, s̄2, γ̄) ∈ G∗ × G∗ × H is opened by revealing d1, d2,m that satisfies the

equation γd11 γd22 γm = γ̄, where γ1, γ2, γ are computed as in the commitment algorithm, using the

given values s̄1, s̄2.

The trapdoor for such a commitment is a Waters signature on the identity ID . Using such

a signature, one can just run the Σ-protocol, and open the commitment to any value. The

commitment will look the same as an ordinary commitment, unless either component of the

signature is the identity element, which happens with negligible probability.

As the opening of a commitment is essentially just a representation of a group element rel-

ative to three bases, there is a standard Σ-protocol for proving knowledge of an opening of a

given commitment. (It is easily verified that the protocol additionally satisfies the reverse state

construction property of Augmented Σ-protocols.) Moreover, using techniques from Camenisch

and Shoup [17], we can actually build an Ω-protocol for such a proof of knowledge, which avoids

the cut-and-choose paradigm.

173

5.4 Efficient Number-theoretic Instantiations

Garay et al [50] give an Ω-protocol for a very similar task, which could easily be adapted for

our purposes, except that the protocol in [50] does not satisfy the dense reference parameters

property, which is crucial for our construction of a GUC commitment. To appreciate the technical

difficulty, the MacKenzie et al. protocol is based on Paillier encryption, using an RSA modulus

N . The secret key for this encryption scheme is the factorization of N , and this is used as

“global” trapdoor to a CRS in their proof of security in the UC/CRS model. However, in the

GUC framework, we cannot have such a global trapdoor, which is why we make use of Camenisch

and Shoup’s approach.6

The Camenisch and Shoup approach is based on a variant of Paillier encryption, introduced in

Cramer and Shoup [33], which we call here projective Paillier encryption. While the goal in [17]

and [33] was to build a chosen ciphertext secure encryption scheme, and we only require semantic

security, it turns out their schemes do not require that the factorization of the RSA modulus N

be a part of the secret key. Indeed, the modulus N can be generated by a trusted party, who then

erases the factorization and goes disappears, and N can be used as a shared system parameter.

We can easily “strip down” the scheme in [17], so that it only provides semantic security. The

resulting Ω-protocol will satisfy all the properties we need to build a GUC commitment, under

standard assumptions (the Quadratic Residuosity, Decision Composite Residuosity, and Strong

RSA).

We now give the details of these constructions.

5.4.1 An Efficient IBTC Supporting an Ω-protocol

We present an efficient identity-based commitment scheme for which an efficient Ω-protocol for

proof of possession of an opening may be readily constructed.

Waters’ Signature Scheme

Our starting point is Waters signature scheme, which we review here. Let G and H be a groups

of prime order q, let e : G → H be an efficiently computable, non-degenerate bilinear map, and

6It should be noted that the “mixed commitments” of Damgard and Nielsen [35] also have
a very similar global extraction trapdoor, which is why we also cannot use them to build GUC
commitments.

174

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

let G∗ := G := {1}.

system parameters: a description of G, H, and e, along with

� random group elements g1,g2,u0,u1, . . . ,uk ∈ G,

� a description of a collision-resistant hash function H : {0, 1}∗ → {0, 1}k.

key generation: a random x ∈ Zq is chosen, h1 ∈ G is computed as h1 ← gx1 , and h2 ∈ G is

computed as h2 ← gx2 ; the public key is h1, the secret key is h2.

signing: to sign a message m ∈ {0, 1}∗, the hash H(m) = b1 · · · bk is computed (where each

bi ∈ {0, 1}), a random r ∈ Zq is chosen, and the signature (s1, s2) ∈ G×G is computed as

follows:

s1 ← gr1, s2 ← h2ũrm,

where

ũm := u0

∏
bi=1

ui.

verification: given a message m ∈ {0, 1}∗ and a signature (s1, s2) ∈ G × G, the verification

algorithm checks that

e(s1, ũ−1
m) · e(s2,g1) = e(h1,g2),

where ũm is as above.

The Waters signature is secure under the computational Diffie-Hellman (CDH) assumption

in G, together with the assumption that H is collision resistant.

5.4.2 Proof of Knowledge of a Waters Signature

To prove knowledge of a Waters signature (s1, s2) ∈ G × G on a message m ∈ {0, 1}∗, we may

use the following protocol:

The prover chooses w1, w2 ∈ Z∗q at random, and computes

s̄1 ← s1/w1
1 and s̄2 ← s1/w2

2 .

175

5.4 Efficient Number-theoretic Instantiations

The prover then sends s̄1 and s̄2 to the verifier, and uses a standard Σ-protocol to

prove knowledge of exponents w1, w2 ∈ Zq such that

γw1
1 γw2

2 = γ,

where

γ1 := e(s̄1, ũ−1
m), γ2 := e(s̄2,g1), and γ := e(h1,g2).

The details are as follows:

1. The prover chooses w1, w2 ∈ Z∗q at random, and computes

s̄1 ← s1/w1
1 and s̄2 ← s1/w2

2 .

Let

γ1 := e(s̄1, ũ−1
m), γ2 := e(s̄2,g1), and γ := e(h1,g2). (5.1)

The prover then chooses w̄1, w̄2 ∈ Zq at random, and computes γ̄ ← γw̄1
1 γw̄2

2 .

The prover sends the values

s̄1 ∈ G, s̄2 ∈ G, γ̄ ∈ H

to the verifier.

2. The verifier chooses a challenge c ∈ Zq at random, and sends c to the prover.

3. The prover computes

ŵ1 ← w̄1 − cw1 and ŵ2 ← w̄2 − cw2

and sends the values

ŵ1 ∈ Zq, ŵ2 ∈ Zq

to the verifier.

4. The verifier checks that

γŵ1
1 γŵ2

2 γc = γ̄,

where γ1, γ2, γ are as defined in (5.1).

It is easily verified that this Σ-protocol is HVZK (in fact, that it satisfies the stronger reverse

state construction property of Augmented Σ-protocols), at least with respect to signatures of the

176

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

form (s1, s2), where s1 6= 1 and s2 6= 1. Indeed, for such a signature, s̄1 and s̄2 are independent

and uniformly distributed over G∗, and the rest of the protocol may be simulated using standard

techniques. Since signatures output by the signing algorithm are of this form with overwhelming

probability, this is sufficient for our purposes.

Also, this Σ-protocol satisfies the special soundness property. Indeed, given two accepting

conversations with the same first flow, (s̄1, s̄2, γ̄), one obtains w1, w2 ∈ Zq such that

e(s̄1, ũ−1
m)w1 · e(s̄2,g1)w2 = e(h1,g2),

and since

e(s̄1, ũ−1
m)w1 = e(s̄w1

1 , ũ−1
m) and e(s̄2,g1)w2 = e(s̄w2

2 ,g1),

it follows that (s̄w1
1 , s̄w2

2) is a valid Waters signature on m.

An IBTC Scheme

The identity-based commitment scheme derived from the above Σ-protocol works as follows. Let

ID ∈ {0, 1}∗ be the identity to be associated with the commitment, and let m ∈ Zq be the

message to be committed. The commitment is computed as follows:

s̄1, s̄2
$← G∗, d1, d2

$← Zq

γ1 ← e(s̄1, ũ−1
ID), γ2 ← e(s̄2,g1), γ ← e(h1,g2)

γ̄ ← γd11 γd22 γm

output (s̄1, s̄2, γ̄)

A commitment (s̄1, s̄2, γ̄) ∈ G∗ × G∗ × H is opened by revealing d1, d2,m that satisfies the

equation

γd11 γd22 γm = γ̄,

where γ1, γ2, γ are computed as in the commitment algorithm, using the given values s̄1, s̄2.

The trapdoor for such a commitment is a Waters signature on the identity ID . Using such

a signature, one can just run the Σ-protocol, and open the commitment to any value. The

commitment will look the same as an ordinary commitment, unless either component of the

signature is the identity element, which happens with negligible probability.

177

5.4 Efficient Number-theoretic Instantiations

As the opening of a commitment is essentially just a representation of a public group element

with respect to public bases, we can easily build a Σ-protocol for proving knowledge of an opening

of a given commitment. Indeed, we will show how to build an efficient Ω-protocol, where the

message m is trapdoor extractable.

5.4.3 An Efficient Ω-protocol for Proving Knowledge of a Representa-

tion

We begin by first reviewing the necessary number theoretic background and tools to be used in

the Ω-protocol.

Number theory background

Let N be a positive integer.

� [N] denotes the set {0, . . . , N − 1};

� for a ∈ Z, a mod N denotes the unique integer x ∈ [N] such that a ≡ x (mod N);

� more generally, if a, b ∈ Z with b 6= 0 and gcd(b,N) = 1, (a/b) mod N denotes the unique

integer x ∈ [N] such that a ≡ xb (mod N);

� ZN denotes the ring of integers modulo N , and Z∗N the multiplicative group of units;

� for a ∈ Z, [a]N ∈ ZN denotes the residue class modulo N containing a.

The schemes we shall present below use as a system parameter an RSA modulus of the form

N = PQ, where P and Q are large, distinct, “strong primes,” i.e., primes of the form P = 2P ′+1

and Q = 2Q′ + 1, where P ′ and Q′ are odd primes. Define N ′ := P ′Q′.

Note that in all applications, no entity is required to know the factorization of N — not even

a simulator in a security proof. We assume N is generated by a trusted party who immediately

disappears, taking the factorization of N with it.

We shall make use of the two abelian groups Z∗N and Z∗N2 . We recall some basic facts:

� Z∗N is isomorphic to ZN ′ × Z2 × Z2;

� if jN := {[a]N : (a | N) = 1}, where (· | ·) is the Jacobi symbol, then this definition of jN

is unambiguous, and jN is a subgroup of index 2 in Z∗N ; observe that [−1]N ∈ jN ;

178

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

� the subgroup of squares (Z∗N)2 has index 2 in jN ; note that [−1]N /∈ (Z∗N)2;

� Z∗N2 is isomorphic to ZN × ZN ′ × Z2 × Z2;

� the special element w := [1 +N]N2 ∈ Z∗N2 has order N , and moreover, for each m ∈ Z, we

have wm = [1 +Nm]N2 ;

� if JN := {[a]N2 : (a | N) = 1}, then this definition of JN is unambiguous, and JN is a

subgroup of index 2 in Z∗N2 ; observe that [−1]N2 ∈ JN ;

� the subgroup of squares (Z∗N2)2 has index 2 in JN ; moreover, for all a ∈ Z, we have

[a]N2 ∈ (Z∗N2)2 if and only if [a]N ∈ (Z∗N)2; in particular, [−1]N2 /∈ (Z∗N2)2;

� the subgroup of Nth powers (Z∗N2)N has index N in Z∗N2 .

Now we state the intractability assumptions we will need:

� The Strong RSA assumption says that given a random h ∈ Z∗N , it is hard to find g ∈ Z∗N
and an integer e > 1 such that ge = h.

� The Quadratic Residuosity (QR) assumption says that it is hard to distinguish a random

element of jN from a random element of (Z∗N)2.

� The Decision Composite Residuosity (DCR) assumption says that it is hard to distinguish

a random element of Z∗N2 from a random element of (Z∗N2)N .

Another convenient fact is the uniform distribution on [N/4] is statistically indistinguishable

from the uniform distribution on [N ′]. Similarly, the uniform distribution on [N2/4] is statistically

indistinguishable from the uniform distribution on [NN ′].

Some consequences:

Lemma 5.1. Under the QR assumption, it is hard to distinguish a random element of JN from

a random element of (Z∗N2)2. Under the DCR assumption, it is hard to distinguish a random

element of (Z∗N2)2 from a random element of (Z∗N2)2N . Under the QR and DCR assumptions, it

is hard to distinguish a random element of JN from a random element of (Z∗N2)2N .

The proof of the preceding lemma is direct, and is left as simple exercise.

The following lemma is a simple generalization of a lemma appearing in Camenisch and Shoup

[17]:

179

5.4 Efficient Number-theoretic Instantiations

Lemma 5.2. Under the strong RSA assumption, given random elements h1, . . . , hk ∈ (Z∗N)2, it

is hard to find g ∈ Z∗N , along with integers c, d1, . . . , dk, such that

gc = hd11 · · · h
dk
k and c - di for some i = 1, . . . , k.

Projective Paillier Encryption

In [33], Cramer and Shoup proposed a variation of Paillier encryption [72]. Although their

motivation was completely different than ours (constructing a CCA2-secure encryption scheme),

it turns out that some the ideas can be utilized here. The same ideas were also used to similar

effect by Camenisch and Shoup in [17], although again, their motivation was somewhat different

than ours.

In a nutshell, we present a variation of Paillier encryption that is semantically secure under

the DCR assumption, and preserves essentially the same homomorphic properties of Paillier

encryption; however, unlike the original Paillier scheme, the scheme we present here has a dense

set of public-keys, in a sense corresponding to that of Section 2.3.2. Following the terminology

in Cramer and Shoup [33], let us call this scheme the Projective Paillier encryption scheme.

system parameters: in addition to the RSA modulus N (of the form described in §5.4.3), the

system parameters also include a random element

g ∈ (Z∗N2)2N ;

note that g has order dividing N ′, and this order is equal to N ′ with overwhelming proba-

bility;

recall that w := [1 +N]N2 ∈ Z∗N2 is the special element of order N ;

key generation: compute t $← [N/4] and h← gt; the public key is h and the secret key is t;

encryption: to encrypt a message m ∈ [N] using a public key h, the encryption algorithm runs

as follows:

r
$← [N/4], u← gr, v← hrwm;

the ciphertext is (u, v);

180

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

decryption: given a ciphertext (u, v) and a secret key t, the decryption algorithm computes

w′ ← v/ut;

if w′ is of the form [1 + Nm]N2 for some m ∈ [N], then the algorithm outputs m, and

otherwise, it outputs “reject.”

Lemma 5.3. Under the DCR assumption, the Projective Paillier encryption scheme is seman-

tically secure.

Proof. This follows from results in Cramer and Shoup [33]; however, we sketch the idea directly,

as follows. Suppose we encrypt a message m as (u, v) := (gr, hrwm), where r is chosen at random

from [N/4]. Certainly, we may instead choose r at random [N2/4] without affecting security.

Under the DCR assumption (see Lemma 5.1), we may instead choose h of the form gtws, where

s is chosen at random from [N], subject to gcd(s,N) = 1, without affecting security. Now

suppose we instead choose r at random from [NN ′], which also does not affect security. Writing

r = r0+N ′r1, we see that r1 is uniformly distributed over [N] and is independent of u = gr = gr0 .

But now the ciphertext perfectly hides m, since v = gr0tw(r0+N ′r1)s+m.

The Ω-protocol

We are now ready to describe our Ω-protocol Π for proving knowledge of a representation. Our

protocol works for any abelian group H of prime order q. The protocol will prove knowledge of

a representation relative to k bases, allowing trapdoor extraction of ` ≤ k of the exponents. In

our application to commitments based on Waters signatures, k = 3 and ` = 1.

In addition to a description of H, the system parameters for Π consist of the RSA modulus

N (as described in §5.4.3), along with the system parameter g ∈ (Z∗N2)2N used for Projective

Paillier encryption. Recall that w := [1 + N]N2 ∈ Z∗N2 is the special group element of order N .

In addition, the system parameters include random group elements

g0, g1, . . . , g` ∈ (Z∗N)2.

We need two more parameters, Bc and Bp. Here, Bc is a bound on the size of the challenge

space, and Bp is a “padding bound.” The property required is that 1/Bc and 1/Bp are negligible.

181

5.4 Efficient Number-theoretic Instantiations

In addition, we require that

BcBpq ≤ N/2 and Bc ≤ min{q, P ′, Q′}. (5.2)

The reference parameter generation algorithm for Π is the key generation algorithm for the

Projective Paillier encryption scheme. A reference parameter is a public key h ∈ (Z∗N2)2N for the

encryption scheme, and the corresponding trapdoor is the secret key t ∈ [N/4], where gt = h.

Now let γ1, . . . , γk, γ ∈ H and w1, . . . , wk ∈ [q], where

γw1
1 · · · γ

wk
k = γ. (5.3)

The common inputs to the prover and verifier are the group elements γ1, . . . , γk, γ. The prover also

gets the tuple (w1, . . . , wk) as a witness. Our protocol will prove knowledge of values w1, . . . , wk ∈

[q] satisfying (5.3), with the values w1, . . . , w` being trapdoor extractable. More precisely, our pro-

tocol will satisfy the partial trapdoor soundness property relative to the function f(w1, . . . , w`) :=

(w1, . . . , wk).

The protocol Π runs as follows:

1. The prover computes

r1, . . . , r`, s
$← [N/4]

for i← 1 to `: ui ← gri , vi ← hriwwi
i

h← gs0g
w1
1 · · · g

w`
k

r̄1, . . . , r̄`, s̄
$← [BpBcN/4] \ [BcN/4]

w̄1, . . . , w̄k
$← [BpBcq] \ [Bcq]

γ̄ ← γw̄1
1 · · · γ

w̄k
k

for i← 1 to `: ūi ← gr̄i , v̄i ← hr̄iww̄i
i

h̄← gs̄0g
w̄1
1 · · · g

w̄`
k

and sends

{(ui, vi, ūi, v̄i)}`i=1, γ̄, h, h̄

to the verifier.

2. The verifier chooses a random challenge c ∈ [Bc].

3. The prover computes

182

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

for i← 1 to k: ŵi ← w̄i − cwi

for i← 1 to `: r̂i ← r̄i − cri

ŝ← s̄− cs

and sends

{ŵi}ki=1, {r̂i}`i=1, ŝ

to the verifier.

4. The verifier checks that

ŵi ∈ [N/2] for i = 1, . . . , `,

and verifies the following relations:

γ̄ = γc ·
k∏
i=1

γŵii , h̄ = hc · gŝ0
∏̀
i=1

gŵii ,

ūi = uci · gr̂i (i = 1, . . . , `), v̄i = vci · hr̂iwŵi (i = 1, . . . , `).

Analysis

In the attack game for partial trapdoor soundness, we assume an adversary has produced two

accepting conversations

{(ui, vi, ūi, v̄i)}`i=1, γ̄, h, h̄, c, {ŵi}ki=1, {r̂i}`i=1, ŝ,

{(ui, vi, ūi, v̄i)}`i=1, γ̄, h, h̄, c′, {ŵ′i}ki=1, {r̂′i}`i=1, ŝ
′,

where c 6= c′. Both conversations are fed into the rewinding extractor, while the first conversation,

together with the trapdoor t, is fed into the trapdoor extractor. Let us define

∆c := c′ − c, ∆wi := ŵi − ŵ′i (i = 1, . . . , k),

∆ri := r̂i − r̂′i (i = 1, . . . , `), ∆s := ŝ− ŝ′.

183

5.4 Efficient Number-theoretic Instantiations

From the verification relations, we have

|∆wi| < N/2 (i = 1, . . . , `) (5.4)

γ∆c =
k∏
i=1

γ∆wi
i , (5.5)

h∆c = g∆s
0

∏̀
i=1

g∆wi
i , (5.6)

u∆c
i = g∆ri (i = 1, . . . , `), (5.7)

v∆c
i = h∆riw∆wi (i = 1, . . . , `). (5.8)

We also know that |∆c| < Bc.

The rewinding extractor. Give two accepting conversations as above, since 0 < |∆c| < q, the

rewinding extractor may compute

wi ← (∆wi/∆c) mod q (i = 1, . . . , k).

From (5.5), it is clear that (w1, . . . , wk) is indeed a valid witness, i.e., γ =
∏k
i=1 γ

wi
i .

The trapdoor extractor. Given an accepting conversation as above, together with the trapdoor

t, the trapdoor extractor runs as follows:

for i← 1 to ` do

w′i ← (vi/uti)
2

if w′i = [1 +Nzi]N2 for some zi ∈ [N] then

zi ← (zi/2) mod N

if zi ≥ N/2 then zi ← zi −N // compute a “balanced” remainder

wi ← zi mod q

else

wi ← 0 // this is an error

Lemma 5.4. With the given rewinding and trapdoor extractors, under the Strong RSA assump-

tion, protocol Π satisfies the trapdoor f -extractable property, where f(w1, . . . , wk) := (w1, . . . , w`).

Proof. This follows the same line of reasoning as in Camenisch and Shoup [17]. Given two valid

conversation as above, as we already argued, the rewinding extractor always produces a valid

184

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

witness (w1, . . . , wk), where

wi := (∆wi/∆c) mod q (i = 1, . . . , k).

We want to show that the trapdoor extractor outputs (w1, . . . , w`) with overwhelming probability.

From the identity (5.6), with overwhelming probability, we have ∆wi/∆c ∈ Z for each i = 1, . . . , `.

This is where we use the Strong RSA assumption (see Lemma 5.2). Moreover, from (5.4), we

have |∆wi/∆c| < N/2 for each i = 1, . . . , `. From (5.7) and (5.8), and the relation h = gt, one

obtains (vi/u
t
i

w∆wi/∆c

)∆c

= 1 (i = 1, . . . , `).

Now, the group Z∗N2 has exponent 2NN ′, and since |∆c| < Bc ≤ min{P ′, Q′}, it follows that

gcd(∆c, 2NN ′) ∈ {1, 2}, which implies that(vi/u
t
i

w∆wi/∆c

)2

= 1 (i = 1, . . . , `).

This, together with the fact that |∆wi/∆c| < N/2, implies that the output of the trapdoor

extractor agrees with the output of the rewinding extractor.

The zero-knowledge simulator. Given a challenge c, the simulator runs as follows:

r1, . . . , r`, s
$← [N/4]

for i← 1 to `: ui ← gri , vi ← hri

h← gs0

r̂1, . . . , r̂`, ŝ
$← [BpBcN/4]

ŵ1, . . . , ŵk
$← [BpBcq]

γ̄ ← γc ·
∏k
i=1 γ

ŵi
i

h̄← hc · gŝ0
∏`
i=1 gŵii

for i← 1 to ` do

ūi ← uci · gr̂i , v̄i ← vci · hr̂iwŵi

The first flow of the simulated conversation is

{(ui, vi, ūi, v̄i)}`i=1, γ̄, h, h̄,

185

5.5 Reducing Round Complexity with Random Oracles

while the third flow is

{ŵi}ki=1, {r̂i}`i=1, ŝ.

Lemma 5.5. With the given simulator, under the DCR assumption, protocol Π satisfies the

special HVZK property.

Proof. This follows from the semantic security of Projective Paillier, and standard statistical

distance arguments.

Dense reference parameters. The set of reference parameters is suitably dense, in the sense

of Section 2.3.2. Namely, under the QR and DCR assumptions, a randomly generated public key

h is computationally indistinguishable from a random element of the subgroup JN of Z∗N2 ; this

follows from Lemma 5.1. Moreover, the set JN is efficiently recognizable (just evaluate a Jacobi

symbol) and the uniform distribution on JN is efficiently samplable; indeed, one may generate a

random element of JN as follows:

b
$← {0, 1}, r

$← Z∗N2

output (−1)br2

5.5 Reducing Round Complexity with Random Oracles

While our constructions for GUC zero-knowledge and commitments are efficient in both com-

putational and communication complexity, and the constant round complexity of 6 messages is

reasonable, it would be nice improve the round complexity, and possibly weaken the data erasure

assumption. In this section we address the question if such improvements are possible in the

random oracle (RO) model (see Section 2.2.4). We first remark that even the RO model, without

any additional setup, does not suffice for realizing GUC commitments or zero-knowledge (as per

the impossibility result of Section 4.2). Surprisingly, we can still obtain some additional efficiency

benefits by combining the ACRS and RO models. Ideally, we would like to obtain 2-message pro-

tocols in order to match the lower bound of Section 5.1. Indeed, we now show that it is possible

to achieve optimal 2-message ZK and commitment protocols in the GUC setting by combining

both the ACRS and RO setups. (Recall that the lower bound indeed extends to include this

case, so our protocols are round-optimal even for the combined ACRS and RO model.)

186

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

We achieve our goal by simply applying the Fiat-Shamir heuristic [49] to our efficient zero-

knowledge and commitment protocols, replacing the first three and last three messages of each

protocol with a single message.

More specifically, given a random oracle H, we transform our zero-knowledge protocol as

follows. The first message is sent by the verifier, who generates the values κ1 from Step 1 of

the protocol and (d1, ρ1) from Step 3 of the protocol as usual, and then sends (κ1, d1, ρ1) to the

prover. Both the prover and the verifier will set ρ2 ← H(κ1) and compute ρ accordingly. The

second message is then sent by the prover, who computes κ′ as in Step 5, sets the challenge

c ← H(κ′), and computes the (d′, a, z) as in Step 7. The prover then sends (κ′, d′, a, z) to the

verifier, and verification is done in the obvious manner. The changes to the commitment protocol

are entirely analogous. Also, note that the only erasure required by our protocols now occurs

entirely during a single local computation, without delay – namely, during the computation of the

second message, an entire run of protocol Π is computed and the randomness used to generate

that run of Π is then immediately erased.

The proof of security for the modified protocols is virtually unaltered by the use of the Fiat-

Shamir heuristic, except that we must make slight alterations in our reduction techniques. In

particular, observe that the GUC simulator S uses identical simulation strategies, and does not

need to have access to a transcript of oracle queries, nor does it require the ability to “program”

oracle responses. However, we will still need to use these properties of the random oracle model

– but only in the proof of security (to prove that the environment cannot tell apart the real and

the ideal worlds).

Theorem 5.10. The protocols obtained by applying the Fiat-Shamir heuristic to protocols DOZK

and DOC in the combined Ḡacrs and Ḡro shared hybrid model yield 2-message GUC-secure realiza-

tions of Fzk and Fcom (respectively), in the adaptive corruption model with erasure of ephemeral

data.

Proof. Since the proof of security is only minimally impacted by the use of the Fiat-Shamir

heuristic, we will only sketch the changes here.

For both protocols, we observe that the simulation strategies remain entirely unchanged

(except that now, we must view the messages in Step 2 and Step 6 of the protocols as originating

187

5.5 Reducing Round Complexity with Random Oracles

from the random oracle instead of the verifier/recipient, and we need not concern ourselves with

adaptive corruptions during the protocol except between Step 4 and Step 5). However, make the

following alterations to the proof of simulation indistinguishability.

First, for both protocols, we will alter the reduction which proves that I3 is indistinguishable

from I2. Namely, instead of the rewinding technique of Lemma 4.1, we will employ the technique

used for proving the security of the Fiat-Shamir heuristic as applied to signature schemes [49].

Namely, it is possible to rewind the experiment and “reprogram” the oracle query, after hav-

ing seen a single valid opening of the first flow (input to the oracle). After such a rewinding,

the adversary can be expected to reuse the same “first flow” (with reference to the original,

untransformed protocol) and still give a valid opening of the commitment with non-negligible

probability. Indeed, this is how signature forgeries are obtained when proving the security of

Fiat-Shamir based signature schemes by reduction forgery (see the “forking lemma” in [77]). In

our case, this means it is still possible to reduce the task of distinguishing I3 from I2 to the HVZK

property of Π – since we may “rig” the output of the first flow (so that it yields the challenge

ρ sent to the reduction) by seeing the adversary open the commitment in the “first flow” once,

then rewinding it and programming the corresponding random oracle query appropriately.

The remainder of the proof proceeds identically for zero-knowledge protocol DOZK. However,

we still need to make one further modification to the proof in the case of the commitment protocol

DOC. Namely, the reduction to partial trapdoor soundness of the Ω-protocol (unlike ordinary

trapdoor soundness) must output two accepting transcripts of the Ω-protocol that share the same

first flow. Here again, we may apply the same reduction technique used to prove the security of

signatures based on the Fiat-Shamir heuristic. With non-negligible probability, this allows us to

rewind the adversary to the point where it queried the oracle for the commitment to the “first

flow” of Π, and reprogram it so that we learn a second valid response for a different challenge

(but still with the same “first flow”). Thus, having obtained two valid transcripts with the same

first flow via rewinding the adversary, the reduction can proceed as before.

We stress that since the GUC modeling of a random oracle (accurately) allows the oracle to

be accessed directly by all entities – including the environment – the aforementioned observation

188

5 Efficient Protocols for Commitments and Zero-Knowledge Proofs

that S itself does not require a transcript of all oracle queries, nor the ability to program oracle

responses, is crucial for deniability. It was already observed in [73] that deniable zero-knowledge

simulators must not program oracle queries. However, we observe that even using a “non-

programmable random oracle” for the simulator is still not sufficient to ensure truly deniable

zero-knowledge. In particular, if the modeling allows the simulator to observe interactions with

the random oracle (even without altering any responses to oracle queries), this can lead to attacks

on deniability. In fact, there is a very practical attack stemming from precisely this issue that

will break the deniability of the protocols proposed in [73] (see Section 3.2.1). Our GUC security

modeling precludes the possibility of any such attacks.7

Of course, unlike the model of [73], we superimpose the ACRS model on the RO model,

providing all parties with implicit secret keys. This bears a strong resemblance to the model

of [60], which employs the following intuitive approach to provide deniability for the prover P :

instead proving the statement, P will prove “either the statement is true, or I know the verifier’s

secret key”. Indeed, our approach is quite similar in spirit. However, we achieve a much stronger

notion of deniability than that of [60]. Our zero-knowledge protocols are the first constant

round protocols to simultaneously achieve straight-line extractability (required for concurrent

composability) and deniability against an adversary who can perform adaptive corruptions.

7Similarly, the modeling of [59] also rules out such attacks. However, their protocols make
use of special hardware based “signature cards” and require more than 2 rounds. They also do
not consider the issue of adaptive corruptions at all.

189

Conclusion

In this thesis, we introduced the Generalized Universal Composability (GUC) framework for

modeling the security requirements of network protocols. Along with the GUC framework, we

also introduced the Augmented Common Reference String (ACRS) setup model, which facilitates

the implementation of secure network protocols. As one would naturally anticipate when any

novel security models are introduced, our models suggest many potential avenues to explore for

future advancements and refinements. In our concluding remarks, we discuss some of the many

challenges that still lie ahead.

Future directions for the GUC framework.

At its core, the GUC framework aims at enabling the realization of ideal cryptographic tasks

without any loss of the innate security properties of the task (for instance, loss of deniability).

While we show a general feasibility result for realizing a very large class of tasks, it is important

to understand that there are still some limitations inherent within the class of tasks that we

consider in this work.

For instance, we only concern ourselves with realizing tasks that allow the adversary to

arbitrarily schedule the delivery of outputs (since, after all, most communications networks do

not provide timeliness or delivery guarantees). Yet, there are some circumstances where such

behavior is undesirable in the extreme. The prototypical example arises in the context of contract

signing: two parties who each wish to exchange a digital signature on a contract if and only if

the other party also signs. In such a scenario, it would be unfair if one party were to receive

the protocol output (a signed contract) while the other party fails to receive the protocol output

– no matter how “secure” the protocol for computing the signed contract might be. Therefore,

an important direction for the GUC security framework is the addition of fairness requirements.

Following in the footsteps of works such as [15, 1, 4], one possible approach for supporting such

fairness requirements is to employ the services of an “optimistically offline” trusted third party.

Under normal circumstances, when both parties manage to successfully complete a protocol,

the trusted third party is completely uninvolved. However, in the event that a communications

failure (malicious or otherwise) prevents one of the parties from learning the protocol output,

190

Conclusion

the trusted third party can step in to help resolve any unfair outcomes. Since unfair outcomes

are likely to be rare (barring intentional “denial of service” attacks), the nature of the burden

placed upon the trusted third party is only slightly greater than that of our ACRS setup entity

(see Section 2.2.2). Thus, if one is already using an ACRS setup entity, it may make sense

to combine the two roles. Due to subtle complications, a direct application of techniques from

previous works achieving fairness via optimistically offline trusted parties will not suffice in our

setting. Therefore, secure realization of tasks requiring fairness in the GUC framework remains

a challenging open problem.

In a similar vein, some tasks require security guarantees that can only be provided with spe-

cial corruption models. A prime example of such a task is electronic voting, which requires a

special security property often referred to as incoercibility. Incoercibility is closely related to

deniability. In the context of electronic voting, incoercibility requires that all parties running

the voting protocol must be incapable of producing any evidence of their voting strategy, even

when they willingly deviate from the protocol specification in order to do so. More generally,

incoercibility requires that even a party who is willing to deviate from the protocol cannot pro-

vide convincing evidence that a particular action was performed within a real protocol session

(as opposed to being simulated during a run of the ideal ideal protocol). This requirement stems

from concerns that an otherwise honest party might be “coerced” to deviate from the protocol

(either by threat of force, blackmail, or even bribery). On the other hand, the corruption models

used in this work assume that honest parties will never deviate from the protocol. One approach

to handling such security requirements is to introduce a new kind of corruption, referred to as

a coercion, which specifies the ways in which an honest (but coerced) party might deviate from

the protocol specification. In general, security against a coercion model allowing for arbitrary

protocol deviations seems impossible to achieve without the use of some trusted hardware or an

interactive trusted third party who actively participates in the protocol. Future directions for

research related to incoercibility include defining appropriate coercion models, properly classify-

ing the types of trusted parties and hardware that can be used to achieve incoercibility in said

models, and designing practical protocols for important tasks that require incoercibility (such as

voting).

At the other end of the security spectrum, it is also interesting to consider the most nat-

191

ural ways to model protocols that are inherently undeniable (perhaps even intentionally non-

repudiable). The prototypical example of an undeniable protocol is that of ordinary digital

signatures. While Canetti [21] showed that ordinary signature schemes are modeled by Fauth in

the original UC framework, we have argued that such modeling is undesirable. In particular, the

Fauth task itself is inherently deniable, and does not provide protocol designers making use of

Fauth with any indication that they might be leaving behind a long-lived (and non-repudiable)

digital signature of all authenticated messages sent by their protocol. Instead, we prefer to use

the more realistic modeling enabled by the GUC framework, which correctly rules out digital sig-

natures as a viable implementation of the deniable authentication functionality Fauth. However,

this leaves us with the question of how to naturally define the corresponding task of undeni-

able authentication that can be realized using digital signatures. The definitional issues for such

undeniable tasks entail many subtleties (for example, consider the mostly deniable task Fkeia

introduced in Section 3.3). Thus, the question of how best to model the security provided by

digital signatures (and other non-repudiable cryptographic protocols) in the GUC framework

must still be addressed.

Finally, we note that the GUC framework itself is still merely an abstraction of realistic

network behavior, and is consequently limited. Although the GUC model aims to provide a highly

realistic security notion, there remain many realistic phenomena that are not yet incorporated into

the framework. For instance, side-channel attacks, wherein an attacker is able to obtain secret

information via external means (rather than the communications network), are not modeled.

Similarly, the bandwidth limitations of the adversary and the underlying communications network

are not modeled. Indeed, these issues are related, since bandwidth limitations can be used in

order to minimize the impact of side-channel attacks. Such an approach is suggested by the

Bounded Retrieval Model (BRM) techniques introduced by [36]. Integrating the BRM into the

GUC framework can potentially yield protocols that remain GUC secure even in the presence

of (bandwidth-limited) side-channel attacks, and even after the party running the protocols has

suffered a security breach. Similar benefits might potentially be obtained by introducing other

realistic phenomena into the GUC framework. Explorations along such lines are a promising

approach for the development of more practical security notions, and possibly even more efficient

protocols.

192

Conclusion

Future directions for setup models.

There is also much room for additional research within the confines of the present formulation

of GUC security. For instance, the minimal setup assumptions that we give for realizing authenti-

cated channels require both a trusted “bulletin board” (for publishing public keys), and a trusted

ACRS setup entity. Alternatively, a full-fledged trusted certification authority – which verifies

that all parties who have public keys also possess corresponding secret keys – can be used. It is

conceivable that the same goal can be achieved using even more reasonable setup assumptions

than these.

On the flip side, perhaps the use of even stronger setup assumptions is warranted in order to

achieve more efficient implementations. For example, there is the “signature card” setup model

of [59], and the more general tamper-proof hardware model of [64] (which can be made more

realistic via our notion of shared functionalities). Much as our use of the random oracle model

in Section 5.5 enabled us to improve the efficiency of the protocols we propose there, the use of

stronger setup assumptions may enable other efficiency improvements. Provided that the cost

of implementing such setup models is outweighed by the resulting efficiency improvements, this

avenue of investigation may lead to many practical GUC-secure protocols.

Another reason to use stronger setup assumptions is our impossibility result for (deniable)

authentication in the PKI model, given in Section 3.2.2. While a Symmetric Key Infrastructure

(SKI) is much more costly to implement directly than a PKI, our result in Section 3.2.4 shows

that SKI setup supports an extremely efficient (and completely deniable) authentication protocol.

While the approach of using a one-time “mostly deniable” key exchange (formally defined using

Fkeia in Section 3.3) to implement the SKI via a PKI setup can considerably reduce the cost, it

also introduces a brief window of opportunity for the adversary to potentially break the deniability

property of the SKI setup phase. Ideally, a compromise might be found using a setup assumption

that is more practical than a direct implementation of SKI, and still does not require any window

of vulnerability where potentially undeniable communication occurs.

Of course, another important goal is to minimize the trust that parties are required to place

in the setup entity. For example, all the protocols we propose in this work have forward security

with respect to eventual corruption of the trusted setup entity (i.e., the security of past proto-

col executions is not harmed if the trusted setup entity is compromised). Further minimization

193

of the trust requirements for the setup entity is an important avenue for future investigation.

Alternatively, we can minimize the trust placed in any single setup entity by distributing trust

assumptions among several different entities. A practical approach to implementing such distri-

bution of trust for the ACRS setup is described in the remarks at the end of Section 2.2.2.

We also note that there are useful features of our setup assumptions that can be further

exploited for practical benefit. In particular, since the ACRS setup entity already possesses

“trapdoors” for all parties in the system, it naturally lends itself to the task of key escrow. In

a key escrow system, parties agree to share their secret keys with a trusted third party, known

as an escrow agent, with the understanding that the escrow agent will only release their secret

keys to authorized entities (e.g., to a law enforcement officer with a wiretap warrant). All

players participating in the system are required to share their actual secret keys with the escrow

agent, and typically this rule is enforced cryptographically. In our ACRS model protocols, the

individualized trapdoors provided to parties by the ACRS setup entity can only be used to violate

their own security (as is necessary for the purposes of conducting attack simulations). Therefore,

providing a trapdoor for party P to a law enforcement agent (who has a warrant) only enables

the agent to violate the security of P , and no one else. Additionally, by encoding time periods

into the party identities (which are each associated with an individualized trapdoor) it becomes

possible for the judge to issue warrants that automatically expire after a fixed amount of time.

The usefulness of the ACRS model in the context of key escrow suggests the development of

formal models for key escrow systems in the GUC framework.

Future directions for secure protocols.

While Chapter 5 provides some examples of efficient GUC-secure protocols for commitments and

zero-knowledge proofs, there are many other useful cryptographic tasks for which we lack practical

GUC-secure implementations. Indeed, here we have only scratched the surface of what is possible

and open questions abound. Even for the case of zero-knowledge and commitment schemes, our

efficient protocols require erasures, leaving open the problem of finding efficient protocols for

these tasks that do not require any erasure. Furthermore, our round-optimal constructions for

these tasks required the use of the random oracle model, and achieving round-optimality without

random oracles also remains an open problem.

194

Conclusion

Similarly, there is much room for progress in the area of deniable authentication. Although

we strongly conjecture that forward secure deniable authentication (and key exchange) protocols

in the PKI model are not possible even with erasures, the existence of erasure-based protocols is

not ruled out by the result of Section 3.2.2. Indeed, one possible method for achieving forward

secure deniable authentication might be to use a “key evolving” scheme, where the secret keys

of the parties are continually being updated and erased.

Finally, we note that perhaps the most important and challenging practical issue that has

yet be overcome regards the efficient implementation of private channels. In particular, the use

of non-committing encryption for privacy purposes seems unavoidable in the setting of adaptive

corruptions. Unfortunately, all currently known non-committing encryption schemes are highly

inefficient. Finding techniques to efficiently implement GUC-secure channels that are both au-

thenticated and private represents the last significant hurdle to many practical applications of

GUC-security.

195

Bibliography

[1] N. Asokan, M. Schunter, and M. Waidner. Optimistic Protocols for Fair Exchange. In Proc.

of ACM CCS, pp. 6–17, 1997.

[2] N. Asokan, V. Shoup, and M. Waidner. Optimistic Fair Exchange of Digital Signatures. Ex-

tended abstract in Proc. of Eurocrypt, 1998. In IEEE J. Selected Areas in Communications,

18(4), pp. 593–610, 2000.

[3] G. Ateniese and B. de Medeiros. Identity-based Chameleon Hash and Applications. In Proc.

of Financial Cryptography, 2004.

[4] F. Bao, R. H. Deng, and W. Mao. Efficient and Practical Fair Exchange Protocols with

Off-line TTP. In Proc. of IEEE Symp. Security and Privacy, pp. 77–85, 1998.

[5] B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure Computation Without

Authentication. In Proc. of Crypto, pp. 361–377, 2005.

[6] B. Barak, R. Canetti, J. Nielsen, and R. Pass. Universally Composable Protocols with

Relaxed Set-up Assumptions. In Proc. of FOCS, 2004.

[7] B. Barak and Y. Lindell. Strict Polynomial-time Simulation and Extraction. In SIAM J.

Comput., 33(4), pp. 783–818, 2004.

[8] B. Barak and A. Sahai. How To Play Almost Any Mental Game Over the Net - Concurrent

Composition via Super-Polynomial Simulation. In Proc. of FOCS, 2005.

[9] D. Beaver. Secure Multi-Party Protocols and Zero-Knowledge Proof Systems Tolerating a

Faulty Minority. In J. Cryptology, vol 4., pp. 75–122, 1991.

[10] M. Bellare and A. Palacio. GQ and Schnorr Identification Schemes: Proofs of Security

against Impersonation under Active and Concurrent Attacks. In Proc. of Crypto, 2002.

[11] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing

Efficient Protocols. In Proc. of ACM CCS, pp. 62–73, 1993.

196

BIBLIOGRAPHY

[12] M. Blum. How to Prove a Theorem So No One Else Can Claim It. In Proc. of the Interna-

tional Congress of Mathematicians, 1986.

[13] D. Boneh, and M. Franklin. Identity Based Encryption from the Weil Pairing. In Proc. of

Crypto, 2001.

[14] N. Borisov, I. Goldberg, and E. Brewer. Off-The Record Communication, or, Why Not to

Use PGP. In Proc. of WPES, pp. 77–84, 2004.

[15] H. Burk and A. Pfitzmann. Value Exchange Systems Enabling Security and Unobservability.

In Computers and Security, vol. 9, pp. 715–721, 1990.

[16] J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols. In Confer-

ence on Security in Communication Networks (SCN), 2002.

[17] J. Camenisch and V. Shoup. Practical Verifiable Encryption and Decryption of Discrete

Logarithms. In Proc. of Crypto, 2003.

[18] R. Canetti. Security and Composition of Multi-Party Cryptographic Protocols. In J. of

Cryptology, vol. 13, no. 1, winter 2000.

[19] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.

In Proc. of FOCS, pp. 136–145, 2001.

[20] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.

Cryptology ePrint Archive, Report 2000/067, revised edition from Dec. 2005. Available

at http://eprint.iacr.org/2000/067/.

[21] R. Canetti. Universally Composable Signature, Certification, and Authentication. In Proc.

of CSFW, p. 219, 2004.

[22] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively Secure Computation. In Proc.

of STOC, pp. 639–648, 1996.

[23] R. Canetti and M. Fischlin. Universally Composable Commitments. In Proc. of Crypto, pp.

19–40, 2001.

197

BIBLIOGRAPHY

[24] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In Proc.

of STOC, pp. 235–244, 2000.

[25] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited. In

Proc. of STOC, pp. 209–218, 1998.

[26] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally Composable

Password-Based Key Exchange. In Proc. of Eurocrypt, pp. 404–421, 2005.

[27] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-Box Concurrent Zero-Knowledge

Requires (Almost) Logarithmically Many Rounds. In SIAM J. Comput., 32(1), pp. 1–47,

2002.

[28] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure

Channels. In Proc. of Eurocrypt, 2002.

[29] R. Canetti, E. Kushilevitz, and Y. Lindell. On the Limitations of Universally Composable

Two-Party Computation Without Set-Up Assumptions. In Proc. of Eurocrypt, pp. 68–86,

2003.

[30] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-Party and

Multi-Party Secure Computation. In Proc. of STOC, pp. 494–503, 2002.

[31] R. Canetti and T. Rabin. Universal Composition with Joint State. In Proc. of Crypto 2003,

pp. 265–281, 2003.

[32] R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of Partial Knowledge and Simplified

Design of Witness Hiding Protocols. In Proc. of Crypto, pp. 174–187, 1994.

[33] R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen

Ciphertext Secure Public Key Encryption. In Proc. of Eurocrypt, 2002.

[34] I. Damgard and J. Nielsen. Improved Non-Committing Encryption Schemes based on a

General Complexity Assumption. In Proc. of Crypto, 2000.

198

BIBLIOGRAPHY

[35] I. Damgard and J. Nielsen. Perfect Hiding and Perfect Binding Universally Composable

Commitment Schemes with Constant Expansion Factor. In Proc. of Crypto, pp. 581–596,

2002.

[36] G. Di Crescenzo, R. Lipton, and S. Walfish. Perfectly Secure Password Protocols in the

Bounded Retrieval Model. In Proc. of TCC, 2006.

[37] M. Di Raimondo and R. Gennaro. New Approaches for Deniable Authentication. In Proc.

of ACM CCS, pp. 112–121, 2005.

[38] M. Di Raimondo, R. Gennaro, and H. Krawczyk. Secure Off-the-Record Messaging. In Proc.

of WPES, 2005.

[39] M. Di Raimondo, R. Gennaro, and H. Krawczyk. Deniable Authentication and Key Ex-

change. In Proc. of ACM CCS, pp. 400–409, 2006.

[40] W. Diffie and M. Hellman. New Directions in Cryptography. In IEEE Trans. on Information

Theory, vol. 22, no. 6, pp 644–654, 1976.

[41] Y. Dodis and S. Micali. Parallel Reducibility for Information-Theoretically Secure Compu-

tation. In Proc. of Crypto, pp. 74–92, 2000.

[42] D. Dolev, C. Dwork, and M. Naor. Non-malleable Cryptography. In SIAM J. Comput.,

30(2), pp. 391–436, 2000.

[43] C. Dwork and M. Naor. Zaps and their Applications. In Proc. of FOCS, 2000.

[44] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-knowledge. In Proc. of STOC, 1998.

[45] C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing Con-

straints. In Proc. Crypto, pp. 442–457, 1998.

[46] U. Feige. Alternative Models for Zero Knowledge Interactive Proofs. Ph.D. thesis, Weizmann

Institute of Science, Rehovot, Israel, 1990.

[47] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Based

on a Single Random String. In Proc. of FOCS, 1990.

199

BIBLIOGRAPHY

[48] U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds. In Proc. of

Crypto, pp. 526–545, 1989.

[49] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and

Signature Problems. In Proc. of Crypto, pp. 181–187, 1987.

[50] J. Garay, P. MacKenzie, and K. Yang. Strengthening Zero-Knowledge Protocols Using Sig-

natures. In Proc. of Eurocrypt, pp. 177–194, 2003.

[51] O. Goldreich, S. Micali, and A. Wigderson. How to Solve Any Protocol Problem. In Proc.of

STOC, 1987.

[52] O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing But their Validity

or All Languages in NP Have Zero-Knowledge Proof Systems. In J. of the ACM, 38(1), pp.

691–729, 1991.

[53] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Immoral

Majority. In Proc. of Crypto, 1990.

[54] S. Goldwasser and S. Micali. Probabilistic Encryption. In J. of Computer and Systems Sci.,

28(2), pp. 270–299, 1984.

[55] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof

Systems. In SIAM J. Comput., 18(1), pp. 186–208, 1989.

[56] J. Groth and R. Ostrovsky. Cryptography in the Multi-String Model. In Proc. of Crypto,

pp. 323–341, 2007.

[57] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A Pseudorandom Generator from Any

One-way Function. In SIAM J. Comput., 28(4), pp. 1364–1396, 1999.

[58] J. Herzog, M. Liskov, and S. Micali. Plaintext Awareness via Key Registration. In Proc. of

Crypto, 2003.

[59] D. Hofheinz, J. Muller-Quade, and D. Unruh. Universally Composable Zero-Knowledge Ar-

guments and Commitments from Signature Cards. In Proc. of MoraviaCrypt, 2005.

200

BIBLIOGRAPHY

[60] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs and Their Applica-

tions. In Proc. of Eurocrypt, 1996.

[61] S. Jiang. Deniable Authentication on the Internet. Available at

http://eprint.iacr.org/2007/082/.

[62] Y. Kalai, Y. Lindell, and M. Prabhakaran. Concurrent General Composition of Secure Pro-

tocols in the Timing Model. In Proc. of STOC, 2005.

[63] J. Katz. Efficient Cryptographic Protocols Preventing ‘Man-in-the-Middle’ Attacks. Ph.D.

Thesis, Columbia University, 2002.

[64] J. Katz. Universally Composable Multi-Party Computation Using Tamper-Proof Hardware.

In Proc. of Eurocrypt, 2007.

[65] J. Katz and R. Ostrovsky. Round-Optimal Secure Two-Party Computation. In Proc. of

Crypto, 2004.

[66] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party Com-

putation. In Proc. of FOCS, pp. 394–403, 2003.

[67] Y. Lindell. Bounded-Concurrent Secure Two-Party Computation Without Setup Assump-

tions. In Proc. of STOC, pp. 683–692, 2003.

[68] P. MacKenzie and K. Yang. On Simulation-Sound Trapdoor Commitments. In Proc. of

Eurocrypt, pp. 382–400, 2004.

[69] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Preliminary

version in Proc. of Crypto, 1991.

[70] M. Naor. Bit Commitment Using Pseudo-Randomness. In Proc. of Crypto, pp. 128–136,

1989.

[71] M. Naor. Deniable Ring Authentication. In Proc. of Crypto, pp. 481–498, 2002.

[72] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In

Proc. Eurocrypt, 1999.

201

BIBLIOGRAPHY

[73] R. Pass. On Deniabililty in the Common Reference String and Random Oracle Model. In

Proc. of Crypto, pp. 216–337, 2003.

[74] R. Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishonest Majority.

In Proc. of STOC, pp. 232–241, 2004.

[75] R. Pass and A. Rosen. Bounded-Concurrent Secure Two-Party Computation in a Constant

Number of Rounds. In Proc. of FOCS, pp. 404–413, 2003.

[76] B. Pfitzmann and M. Waidner. Composition and Integrity Preservation of Secure Reactive

Systems. In Proc. of ACM CCS, pp. 245–254, 2000.

[77] D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In Proc. of Eurocrypt,

pp. 387–398, 1996.

[78] M. Prabhakaran and A. Sahai. New Notions of Security: Achieving Universal Composability

Without Trusted Setup. In Proc. of STOC, 2004.

[79] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In

Proc. of Eurocrypt, 1999.

[80] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen Ciphertext

Security. In Proc. of FOCS, pp. 543–553, 1999.

[81] C. Shannon. Communication Theory of Secrecy Systems. In Bell Systems Technical Journal,

28(4), pp. 656–715, 1949.

[82] W. Susilo and Y. Mu. Non-Interactive Deniable Ring Authentication. In Proc. of ICISC,

pp. 386–401, 2003.

[83] W. Susilo and Y. Mu. Deniable Ring Authentication Revisited. In Proc. of ACNS, pp. 149–

163, 2004.

[84] B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In Proc. of Eu-

rocrypt, pp. 114–127, 2005.

[85] A. Yao. How to Generate and Exchange Secrets. In Proc. of FOCS, pp. 162–167, 1986.

202

BIBLIOGRAPHY

[86] A. Yao, F. Yao, Y. Zhao, and B. Zhu. Deniable Internet Key-Exchange. Available at

http://eprint.iacr.org/2007/191/.

[87] F. Zhang, R. Safavi-Naini, and W. Susilo. ID-Based Chameleon Hashes from Bilinear Pair-

ings. Available at http://eprint.iacr.org/2003/208/.

203

	Dedication
	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	Introduction
	The Generalized Universal Composability (GUC) Framework
	Overview of Generalized UC Security
	Details of the Generalized UC Framework

	Preliminaries and Tools
	Adversarial Models
	Corruption Models
	Security with Trusted Parties

	Global Setup Models
	Common Reference String (CRS) Model
	Augmented Common Reference String (ACRS) Model
	Public Key Infrastructure (PKI) Model
	The Random Oracle (RO) Model

	Honest Verifier Zero-Knowledge
	-Protocols
	-Protocols
	Constructing Augmented -protocols from One Way Functions
	Constructing -protocols from -protocols

	Identity-Based Trapdoor Commitments
	Constructing Identity-Based Trapdoor Commitments

	Specialized Encryption Schemes
	Dual Receiver Encryption (DRE)
	Non-Committing Encryption (NCE)
	Dense PRC Secure Encryption

	Deniability and Deniable Authentication
	Deniability and Full Simulatability
	Deniable Authentication
	Attacks on Deniability
	Impossibility of Deniable Authentication in the PKI Model
	Gap Between Static and Adaptive Corruptions
	Equivalence of Fauth to Shared Key Model

	A Mostly Deniable Key Exchange Protocol

	A Feasibility Result for Realizing General Functionalities
	Deniable Realizations of General Cryptographic Tasks
	Insufficiency of the Global CRS Model
	Realizing Fully Simulatable General Computation
	Global Setup with Minimal Interaction: The Augmented CRS Model
	GUC-Realizing Fcom Using the ACRS Global Setup
	High-level Description of Protocol UAIBC
	Details and Design of Protocol UAIBC
	Security Proof for Protocol UAIBC

	Efficient Protocols for Commitments and Zero-Knowledge Proofs
	A Lower Bound for Round Complexity
	Efficient GUC Zero-Knowledge in the ACRS Model
	Efficient GUC Commitments in the ACRS Model
	Efficient Number-theoretic Instantiations
	An Efficient IBTC Supporting an -protocol
	Proof of Knowledge of a Waters Signature
	An Efficient -protocol for Proving Knowledge of a Representation

	Reducing Round Complexity with Random Oracles

	Conclusion
	Bibliography

