
CONSTITUENT PARSING

BY CLASSIFICATION

BY

JOSEPH TURIAN

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE DEPARTMENT

COURANT INSTITUTE OF MATHEMATICAL SCIENCES

NEW YORK UNIVERSITY

SEPTEMBER 2007

I. DAN MELAMED

COPYRIGHT 2007 BY JOSEPH TURIAN

ALL RIGHTS RESERVED

Pur un kaminiku pasi,
Kun un viezijiku ’skontri.

Ali vedri vistia,
Tres yavizikas tenia en su mano,

Una d’avrir, una di sirar, una di kitar todu il mal.
Ben pura Yusef, ben pura adalai.

As I walked along a narrow street,
I met an old man.
In resplendent green, he was dressed,
Three keys he had in his hand,
One to open, one to close, and one to remove all harm.
May the sacrifice of Joseph, Lord, be accepted instead of mine.

Prekante: A Ritual Prayer for Curing

Chapter 8 of Ritual Medical Lore of Sephardic Women

Acknowledgments

1. Thank you to I. Dan Melamed for teaching me to be a scientist.

2. Thank you to Michael Collins, Ralph Grishman, Mehryar Mohri, and Satoshi Sekine
(my committee) for helping me make this dissertation stronger.

3. Thank you to Dan Bikel, Léon Bottou, Patrick Haffner, Yann LeCun, Adam Meyers,
Chris Pike, Cynthia Rudin, Wei Wang, the anonymous reviewers of earlier versions
of this work, and anyone whom I have forgotten for your helpful comments and
constructive criticism.

4. Thank you Dave Ferguson, Maxim Likhachev, and Wheeler Ruml for providing point-
ers into the search literature.

5. Thank you to the United States National Science Foundation for sponsoring this
research with NSF grants #0238406 and #0415933.

6. Thank you to Donald Knuth for TEX, Lesley Lamport for LATEX, and countless others
who built the system used to typeset this dissertation.

7. Thank you to Ben Wellington for writing your thesis at the same as me, for griping
with me, and for helping me stay sane.

8. Thank you to Jared Weinstein for never being too busy to answer my math questions.

9. Thank you to my parents for everything.

10. And thank you to Tiana. I love you.

iii

Abstract

We present an approach to constituent parsing, which is driven by classifiers induced to
minimize a single regularized objective. It is the first discriminatively-trained constituent
parser to surpass the Collins (2003) parser without using a generative model. Our primary
contribution is simplifying the human effort required for feature engineering. Our model
can incorporate arbitrary features of the input and parse state. Feature selection and fea-
ture construction occur automatically, as part of learning. We define a set of fine-grained
atomic features, and let the learner induce informative compound features. Our learning
approach includes several novel approximations and optimizations which improve the ef-
ficiency of discriminative training. We introduce greedy completion, a new agenda-driven
search strategy designed to find low-cost solutions given a limit on search effort. The infer-
ence evaluation function was learned accurately enough to guide the deterministic parsers
to the optimal parse reasonably quickly without pruning, and thus without search errors.
Experiments demonstrate the flexibility of our approach, which has also been applied to
machine translation (Wellington et al., 2006; Turian et al., 2007).

iv

Table of Contents

1 Introduction 1
1.1 Importance of parsing . 1
1.2 Some recent trends in parsing research . 8
1.3 This dissertation . 13

2 General Approach 15
2.1 Terminology . 15
2.2 Parsing logic . 16
2.3 Unary ordering . 17
2.4 Modeling . 18
2.5 Search strategy . 20

3 Search Strategy 23
3.1 Best-first search . 24
3.2 Greedy completion . 27
3.3 Additional optimizations . 29
3.4 Related work . 30

4 Learning 33
4.1 Introduction . 33
4.2 Minimizing the risk . 40

5 Optimizations and Approximations 53
5.1 Parallelization . 53
5.2 Sampling for faster feature selection . 56

6 Experiments 59
6.1 Data . 59
6.2 Logic . 61
6.3 Features . 65
6.4 Results . 69

v

7 Related Work 91
7.1 Modeling . 91
7.2 Training techniques for different models . 97

8 Conclusions 107

Bibliography 111

vi

List of Figures

1.1 An example of a parse tree augmented for information extraction 2
1.2 An example of a sentence semantically annotated for information extraction . . 3
1.3 A left-to-right partial parse, to be used for language modeling in speech recognition 4
1.4 An example input tree t and output summary tree s 5
1.5 A 2D multitree in English and transliterated Russian 6

2.1 Parses with different unary ordering . 17

3.1 An incorrect parse inference . 26
3.2 An example search space for a deterministic logic, depicted as a tree 26

4.1 An example of example generation . 37
4.2 An example state at which label bias could occur 38

6.1 An example of deterministic right-to-left bottom-up parsing 62
6.2 An example of non-deterministic bottom-up parsing 63
6.3 A candidate unary projection inference . 64
6.4 A candidate VP-inference, with head-children annotated 65
6.5 Parsing performance of the best-first parser as we vary the maximum number

of partial parses scored . 70
6.6 Number of partial parses scored to find the optimal solution, using best-first

and greedy-completion parsing, on each sentence 71
6.7 Accuracy on tuning data of parsers with different parsing strategies 75
6.8 Search effort required to parse a sentence in tuning data, as training progresses 76
6.9 Accuracy on tuning data of parsers trained using decision trees and decision

stumps . 79
6.10 Accuracy on training data of parsers trained using decision trees and decision

stumps . 80
6.11 Accuracy and number of non-zero parameters on tuning data of parsers trained

using `1 and `2 regularization . 83
6.12 Accuracy on tuning data of parsers trained using regularization and no regu-

larization during feature selection . 85

vii

6.13 Accuracy on tuning data of parsers trained using sample sizes of 100K and 10K 87
6.14 Experiments using learning rate η = 0.9 and 0.1 89

List of Tables

1.1 Examples of translation rules from Marcu et al. (2006) 7

6.1 Item groups available in the default feature set 66
6.2 POS tag classes, and the POS tags they include 67
6.3 PARSEVAL measures of the parsers . 73
6.4 Profile of a typical NP training iteration for the r2l model 78
6.5 Accuracy on test data . 90

List of Listings

3.1 Pseudocode for agenda-driven search over a directed search graph 25
3.2 Pseudocode for greedy-completion search over a directed search graph 28
4.1 Outline of the training algorithm . 50
6.1 Steps for preprocessing the data . 60

viii

§ First Chapter §

Introduction

Oh, get ahold of yourself.
Nobody’s proposing that we parse English.

Larry Wall

Natural language parsing is the task of transforming a sequence of tokens, which are typ-
ically words, into a structure that represents syntactic information, e.g. a parse tree or de-
pendency graph. There are different kinds of parsing, including shallow parsing (a.k.a. chunk-
ing), deep parsing, dependency parsing, constituent parsing, semantic parsing, and dis-
course parsing. Parsing is a structure prediction task, a task in which the output space
comprises structures. Examples of structure spaces include label sequences (e.g. for POS
tagging), trees (e.g. for constituent parsing), and DAGs (e.g. for non-projective depen-
dency parsing). What is structure, and how can one predict it? One clue comes from the
etymology of the word: “structure” derives from the Latin struere, meaning “to build”. A
structure can be built by performing a sequence of inferences, each of which determines
some part (item) in the eventual structure.1 Inferences can take into account not just the
input, but also previous decisions in the inference process (a.k.a. the parse history).

1.1 Importance of parsing

Parsing in natural language processing (NLP) is not an end-goal, but a means to an end.
Lay-people rarely care about a parse as the final output of an NLP application. However,
NLP practitioners may include parsing in the middle of a text processing pipeline. Inferred
syntactic information can be leveraged to improve the accuracy of higher-level textual
analysis. We provide some specific examples.

1 According to the Oxford English Dictionary, the word “parse” is apparently from the Latin pars, meaning
“part.”

1

1
.

I
n
t
r
o
d
u
c
t
i
o
n

Figure 1.1: An example of a parse tree augmented for information extraction. Example from Miller et al. (2000).

S

VP

. . .

VBD

said

per/NP

,

,

per-desc-of/SBAR-lnk

per-desc-ptr/SBAR

per-desc-ptr/VP

per-desc-r/NP

emp-of/PP-lnk

org-ptr/PP

org-r/NP

org/NNP

news

org’/NNP

ABC

TO

to

per-desc/NP

per-desc/NN

consultant

VBN

paid

DT

a

ADVP

RB

also

VBZ

is

WHNP

WP

who

,

,

per-r/NP

per/NNP

Nance

2

Importance of parsing

Figure 1.2: An example of a sentence semantically annotated for information extraction.
Example from Miller et al. (2000).

Nance who is also a paid toconsultant ABC News , said ...

person organization

,

person−descriptor

coreference employee relation

Information extraction

Miller et al. (2000) present an information extraction approach which infers augmented
parse trees that contain syntactic and semantic information. An example of an augmented
parse tree is shown in Figure 1.1. This tree corresponds to the semantic annotation shown
in Figure 1.2. In plain English (quoted from the third page of Miller et al. (2000)):

• “Nance” is the name of a person.

• “a paid consultant to ABC News” describes a person.

• “ABC News” is the name of an organization.

• The person described as “a paid consultant to ABC News” is employed by ABC
News.

• The person named “Nance” and the person described as “a paid consultant to ABC
News” are the same person.

Language modeling

Given some input Y , we wish to find the most likely output Ŵ , i.e.:

Ŵ = arg max
W

Pr(W |Y) (1.1)

By application of the Bayes rule:

= arg max
W

Pr(Y |W) · Pr(W)
Pr(Y)

(1.2)

= arg max
W

(Pr(Y |W) · Pr(W)) (1.3)

3

1. Introduction

Figure 1.3: A left-to-right partial parse, to be used for language modeling in speech
recognition. Constituents are annotated with their head-word. Example from Chelba and
Jelinek (1998).

contract/NP

contract/NNthe/DT

ended/VP

with/PP

loss/NP

of/PP

cents/NP

cents/NNS7/CDof/IN

loss/NP

loss/NNa/DTwith/INended/VBD after

The last line follows because Pr(Y) is fixed. One intuition behind this formulation comes
from communication theory, and is called the noisy-channel model (e.g. Brown et al.,
1992; Daumé III and Marcu, 2002): We assume that the source model generates source W
with likelihood Pr(W), which is then passed through a possibly noisy channel to generate
Y with likelihood Pr(Y |W). We are given only the output Y of the channel, and must
recover the most likely source W .

In many natural language tasks, given some input Y , the target output is a sequence
of words W (e.g. a sentence). In this case, the source model is a language model, which
assigns a probability to a sequence of words. Historically, language models have been based
solely on n-grams (Brown et al., 1992). However, n-gram language models cannot capture
long-distance dependencies, which motivates the use of syntactic structure in language mod-
eling. For different tasks requiring language modeling, we present examples of approaches
that incorporate syntax.

Language modeling for speech recognition

Chelba and Jelinek (1998) present a syntax-based language model that operates left-to-
right, allowing it to be integrated into the decoding of word lattices for speech recognition.
The authors present the example sentence: “the contract ended with a loss of 7 cents after
trading as low as 89 cents” and consider the likelihood of recognizing the word “after.” A
trigram language model would be limited to predicting “after” given “7 cents.” However,
much more informative is the word “ended.” Figure 1.3 shows the left-to-right partial parse
of the sentence up to “after.” This partial parse indicates that head-word “ended” is used

4

Importance of parsing

Figure 1.4: An example input tree t and output summary tree s. Example from Knight
and Marcu (2000, 2002).

G

A

D

e

B

R

d

Q

Z

c

C

b

H

a
=⇒

G

A

D

e

C

b

H

a

(t) (s)

in predicting “after.” The syntactic structure is able to capture long-range dependencies
between words, and ignore interceding words that are less relevant.

Language modeling for summarization

Summarization reduces the length of the input text, while maintaining as much information
as possible and generating coherent grammatical output. Knight and Marcu (2000, 2002)
propose two syntax-based approaches to sentence summarization. The first approach uses
a noisy-channel model, where the source and channel models are unlexicalized PCFGs.
Consider the example presented in Figure 1.4. t is a parsed version of the input sentence,
and s is a proposed summary tree. The source model gives the language-model probability
Pr(s), and it ensures that s is grammatical. Their language model uses unlexicalized PCFG
productions and bigram statistics over the yield. The channel model gives the probability
Pr(t|s) of transducing tree s into t, and it ensures coherence in expanding s into t. Their
channel model uses unlexicalized context-free transductions, e.g. Pr(A → C B D|A →
C D). In the second approach of Knight and Marcu (2000, 2002), they propose a history-
based method that extends a shift-reduce parser to include the “drop” operation. Daumé
III and Marcu (2002) proposes a noisy-channel approach to document (multi-sentence)
summarization. Their approach infers the syntactic structure and discourse structure over
the input. Less important syntactic and discourse units are dropped from the structure.

Machine translation

As stated earlier, Melamed (2004) and Melamed and Wang (2005) argue that machine
translation can be viewed as parsing in two dimensions. Figure 1.5 gives an example of

5

1. Introduction

Figure 1.5: A 2D multitree in English and transliterated Russian. Example from Melamed
and Wang (2005). The three representations are equivalent: (a) Every internal node is
annotated with the linear order of its children, in every component where there are two
children. (b,c) Polygons are constituents.

(a) ordinary tree view

[
S[1, 2]
S[2, 1]

]

[
NP

NP [2, 1]

]

[
N
N

]

[
PAS

]
[
Pasudu

]
[
DISH

]
[
dishes

]

[
D

]
[
the

]

[
V
V

]

[
MIT

]
[
moy

]
[
WASH

]
[
Wash

]

(b) parallel view

PAS

Pasudu

MIT

moy

WASH
Wash

DISH
dishes

D
the

S/S

N/N

NP/NP

V/V

(c) 2D view
dishesthe Wash

moy

Pasudu

NP

NV

WASH D DISH

PAS

MIT
V

NNP

S

S

6

Importance of parsing

Table 1.1: Examples of translation rules from Marcu et al. (2006). The LHS is the “syn-
tactified” target language phrase. The RHS is the source language phrase (Chinese, as
English glosses).

r1:
NP
NNS

astronauts
−→ ASTRO- -NAUTS

r2:

NP
NP
NNP

russia

CC

and

NP
NNP

france

−→ FRANCE AND RUSSIA

r3:

VP
PP
IN
NP:x0from

VBG

coming

−→ COMINGFROM x0

r4:
NP
VP:x1NP:x0 −→ x1 p-DE x0

r5:
NNP

france −→ FRANCE

r6:

NP

NP:x0

CC

and

NP
NNP

france

−→ FRANCE AND x0

r7:
NNS

astronauts −→ ASTRO- -NAUTS

r8:
NNP

russia −→ RUSSIA

r9:
NP

NNS:x0 −→ x0

r10:
PP
NP:x1IN:x0 −→ x0 x1

r11:
NP

NP:x2CC:x1NP:x0 −→ x0 x1 x2

r12:
NP

NNP:x0 −→ x0

r13:
CC
and −→ AND

r14:
NP

NP:x1
CC
andNP:x0

−→ x0 AND x1

r15:

NP
VP

PP

NP:x1
IN

from

VBG

comingNP:x0

−→ x1 COMINGFROM x0

7

1. Introduction

a 2-dimensional multitree in English and transliterated Russian. Syntax-based machine
translation approaches currently achieve state-of-the-art accuracy (Marcu et al., 2006).
Marcu et al. (2006) argue that purely phrase-based, i.e. non-syntactic, machine translation
approaches can induce good translation lexicons, but are poor at rearranging translated
phrases into grammatical output. They propose a probabilistic string-to-tree MT system
which uses translation rules that include syntax on the target side. Examples of these
rules are given in Table 1.1. r1 indicates that the Chinese phrase “ASTRO- -NAUTS” may
be translated into English as a noun phrase NP (NNS (astronauts)). r3 indicates that the
Chinese phrase “COMINGFROM” followed by some phrase x0 may be translated into a
VP (verb phrase) with x0 as an NP (noun phrase).

1.2 Some recent trends in parsing research

How does one build an automatic parser? Historically, parsers were constructed manually
based on grammarian-specified rules. Jelinek et al. (1994) explain:

Parser development [was] generally viewed as a primarily linguistic enterprise. A
grammarian examines sentences, skillfully extracts the linguistic generalizations
evident in the data, and writes grammar rules which cover the language. The
grammarian then evaluates the performance of the grammar, and upon analysis
of the errors made by the grammar-based parser, carefully refines the rules,
repeating this process, typically over a period of several years. (pg. 1 of 6)

Besides the enormous human effort required to craft such parsers, they generalize poorly
to broader domains and different languages. Magerman (1994) and Collins (1999) review
a number of these historical approaches.

The Penn Treebank

The Penn Treebank I was released mid-to-late 1991 (Collins, 1999, pg. 104), and it was
improved and re-released as the Penn Treebank II (Marcus et al., 1993; Taylor et al., 2003).
The development and public availability of these manually-parsed corpora (treebanks)
ushered in a new era in the development of automatic parsers:

• The parsing task could be defined unambiguously: given an input sentence from
the corpus, predict the tree in the treebank corresponding to this input sentence.
Magerman (1994) called this the “treebank recognition problem” because the parser
must predict the same tree that the treebank annotation scheme would generate.

• Treebanks allowed competing parsing techniques to be trained and evaluated under
identical conditions. Black et al. (1991) proposed the so-called PARSEVAL family of
measures for evaluating constituent parsers. They are based on computing the number

8

Some recent trends in parsing research

of constituents in the system’s proposed parse tree that match the gold-standard parse
tree in the treebank. These measures are labeled precision, labeled recall, and labeled
F-measure, henceforth abbreviated as Prec., Rec., and F1, respectively.

• Treebanks led to the decline of hand-crafted approaches and the rise of data-driven,
statistical, corpus-based techniques.

Early work on treebank-induced statistical parsing began with unlexicalized PCFG-
based approaches, with disappointing results (Collins, 1999, pg. 105). PCFGs were rejected
as having overly restrictive independence assumptions that render them insufficiently pow-
erful to model common linguistic phenomena. We examine subsequent trends in statistical
parsing. All of these trends were, in one form or another, designed to improve modeling
power and allow training with more powerful models. Because this dissertation is about
the treebank recognition problem and more generally supervised learning techniques for
structure prediction, rich but non-germane topics like unsupervised parsing methods and
computational grammar formalisms are beyond the scope of this discussion. Terminology
and more in-depth discussion are provided in Chapter 2 and Chapter 7.

History-based modeling and head annotation

Black et al. (1992, 1993) introduced two ideas to the parsing community that improve
modeling power: head annotation and history-based modeling. For each constituent node,
a certain subconstituent is determined to be representative in some sense. This subcon-
stituent is the head. The head-tag and head-word of a node is determined by recursively
selecting the head subconstituent until we reach a terminal node. History-based modeling
uses the chain rule to rewrite the probability of a sequence of parsing decisions as the
probability of the individual decisions, each conditioned on the previous decisions. In prin-
ciple this allows arbitrary information to be used in the model, including head information.
History-based modeling is described further in Section 2.4. It would be difficult to overstate
the impact of these contributions, and they are individually or together present in many
subsequent parsers.

Black et al. (1992, 1993) were restricted to using a history-based model with a hand-
crafted grammar. Jelinek et al. (1994) and Magerman (1994) improved on the work of
Black et al. (1992, 1993) by removing the hand-crafted grammar and instead using a
process that directly predicted treebank trees. Magerman (1995) scaled the techniques in
Jelinek et al. (1994) and Magerman (1994) to training and testing using the now-standard
WSJ portion of the Penn Treebank II (Marcus et al., 1993; Taylor et al., 2003). The WSJ
portion is the largest corpus in the treebank, with roughly 40,000 training sentences and
2,000 test sentences. Magerman (1995) presented the first results for parsing the WSJ that
are significantly more accurate than PCFGs. For all these techniques, parameters were
estimated using decision-trees with relative-frequency estimates at the leaves.

9

1. Introduction

The Collins models

Collins (1996) determined the information needed by a conditional model to improve ac-
curacy over the baseline established by Magerman (1995). These insights were later incor-
porated into the parsing models of Collins (1997, 1999, 2003), which surpassed the model
of Collins (1996). We will describe the key aspects of these later models in depth.

Each model is a generative model estimated using relative frequencies. Features were
based on head-word bigrams. There is special modeling for base noun phrases, which are the
most common constituent in the treebank. Constituents are generated by the model top-
down. If each inference were a complete top-down production, there would be an enormous
number of potential inferences at each decision point. This would make search slow, and
parameters estimated using relative-frequency would be unreliable because of data sparsity.
Instead, each inference produces one constituent. Given a parent node, the first inference
produces the head constituent. Subsequent inferences generate the sibling constituents to
the right from the head outwards, until a dummy STOP item is generated, and then to the
left from the head outwards, until a dummy STOP item is generated.

Collins presents three models, each with successively more conditioning information.
Model 1 makes strong independence assumptions, using only a portion of the history infor-
mation, because relative frequency estimation is very susceptible to sparse data problems.
Model 1 includes the so-called “distance measure,” which allows the model to prefer right-
branching structures, as well as modification of the most recent verb. Model 1 is extended to
Model 2 by modeling the complement/adjunct distinction, and subcategorization frames.
Similarly, Model 2 is extended to Model 3 by modeling traces and wh-movement. To apply
this approach to new languages and new domains, the re-parameterization process might
require substantial intuition and human effort on the part of the experimenter.

Log-linear models

Relative frequency estimation is an unsophisticated technique for parameter estimation.
It restricts the model to being a multinomial distribution over a discrete, finite set of
conditioning events. Overlapping features cannot be used in the modeling. This limitation
led to the rise of log-linear models estimated using maximum likelihood. The key advantage
of this machine learning technique is its ability to use overlapping features.

We follow Jansche (2005) in using the term “log-linear” models. These models are
sometimes also called “maximum-entropy” models in the NLP literature (e.g. Ratnaparkhi
et al., 1994; Berger et al., 1996; Ratnaparkhi, 1997, 1999; McCallum et al., 2000). However,
we avoid this term, because entropy can be maximized under a variety of constraints. For
example, in unregularized maximum entropy approaches, one constraint is added for each
feature to ensure that the expected values of the feature under the model and under the
training data are equivalent. Other work (e.g. Dud́ık et al., 2007) shows how regularization
can be introduced by maximizing entropy under relaxed constraints.

10

Some recent trends in parsing research

As far as we know, Ratnaparkhi et al. (1994) proposed the task of parse reranking as
well as the first log-linear model in the parsing literature. They performed parse reranking
using a global log-linear conditional model. The authors argue that the model should be
globally normalized. However, it was impractical for them to compute the normalization
term over all parses, so they instead normalized only over the top k parses.

Ratnaparkhi (1997, 1999) proposed a history-based parser that uses a locally-normalized
conditional log-linear model. Ratnaparkhi (1999) pointed out that other machine learning
techniques can be used for modeling the cost function in a history-based approach. Exam-
ple generation was performed offline. Parameter estimates were unregularized, save for the
use of frequency-based cutoffs on the features: features must occur at least 5 times in the
training examples.

Like Ratnaparkhi et al. (1994), Johnson et al. (1999) proposed parse reranking that uses
a globally-normalized conditional log-linear model. To avoid overfitting, their approach uses
a Gaussian prior (`2-regularization) rather than frequency-based cutoffs. One limitation
of the approach of Johnson et al. (1999) was that, to compute the partition function,
they enumerated all possible parses for a given sentence. This was problematic because
enumerating all such parses for a given sentence using a broad-coverage grammar can be
prohibitive. Since they do not actually consider the problem of inference, their work is
actually on parse reranking, and not full parsing. Geman and Johnson (2002), Miyao and
Tsujii (2002), and Johnson (2003) subsequently proposed techniques for training globally-
normalized conditional models for full parsing, which were used by Clark and Curran (2003,
2004, 2007)

Charniak (2000) proposed a local generative log-linear model. The model generates the
tree top-down in a manner similar to the models of Collins. For each constituent, the parser
first guesses the head-tag, and then the head-word, and then the expansion into further
constituents. Expansion is done using a Markov grammar: first guess the head, then each
left constituent sibling from the head out until a dummy STOP is generated, then each
right constituent sibling from the head out until a dummy STOP is generated. Although
in theory the model is locally normalized, in practice it was not. Because computation
of the normalization term is expensive, Charniak (2000) merely skipped this step during
parameter estimation. He used a variant of standard deleted interpolation for smoothing.
The approach of Charniak (2000) achieved state-of-the-art accuracy, surpassing the results
of Collins (1997). Like the approach of Collins, one limitation of the approach of Charniak
(2000) is that it requires manual feature selection. For this reason, generalizing it to other
tasks and languages may require significant human effort.

Large-margin methods

Collins (2004) analyzed various parameter estimation techniques through the lens of the
statistical learning theory. The margin of a model on a particular instance is a measure of
the distance between the score of the correct output and the score of all incorrect outputs.

11

1. Introduction

A model that has large margins for a large percentage of training examples will tend to
generalize accurately. For each training example, there can be an exponential number of
incorrect outputs. A structure prediction model induced under the large-margin principle
might have to satisfy exponential number of constraints. Subsequent work demonstrates
various techniques for solving this exponential-sized optimization problem. Taskar et al.
(2004a,b) and McDonald et al. (2005a,b, 2006) used independence assumptions to reduce
the optimization problem to a polynomial size. Taskar et al. (2004b), Tsochantaridis et al.
(2004, 2005), and Collins and Roark (2004) used inference to select subsets of constraints.

Using the entire history

In principle, sophisticated models can use information from the entire history when con-
sidering a parse decision. However, it is not obvious how to extract useful information from
a variable-length history. All previous approaches we have discussed use only manually-
defined feature sets that do not examine the entire unbounded history. Also, with the
exception of the early decision-tree-based parsers, they all work over the feature set pro-
vided and do not combine features in useful ways. However, the model could have access to
far more information were it to automatically combine fine-grained features in interesting
ways.

Henderson (2003) studied methods for inducing history representations. This work cul-
minated in the approach of Henderson (2004), which achieved state-of-the-art accuracy on
constituent parsing. The parsers in this work use one of two different probability models,
each of which are estimated using a recurrent neural network architecture called Simple
Synchrony Networks (SSNs). The history and lookahead (remaining words in the input)
are variable-length, but they are each compressed to a fixed-size hidden or intermedi-
ate representation. The hidden representation(s) and other conditioning information are
then used to compute probabilities. SSN training simultaneously learns the mappings from
variable-length representations to fixed-length representations and the mapping from the
fixed-length representation to a probability estimate. Titov and Henderson (2007a,b) used
a similar approach as Henderson (2003, 2004), but demonstrated an increase in accuracy
by using incremental sigmoid belief networks instead of SSNs.

In these works, the hidden representation is opaque, as it is difficult for an experimenter
to determine what information is present and what information is missing. The hidden rep-
resentation for the lookahead is constructed right-to-left, i.e. with the inductive bias that
words further from the current decision point are less important and are more likely to be
lost during compression. For this reason, it might be difficult to learn to preserve the last
few words of the sentence. Similarly, it might be difficult to learn cooccurrence features
over unbounded lookahead (“is the word ‘foo’ anywhere in the entire right context?”).
This example illustrates the potential difficulty in choosing an appropriate inductive bias
for the hidden representation mappings. It might be difficult to determine the quality of
and improve these mappings. In this dissertation, we demonstrate how to induce models

12

This dissertation

that can automatically use all available information from the history and input. One ma-
jor contribution is that features accessing arbitrary information are represented directly
without the need for an induced intermediate representation

Rerankers

Another interesting research direction has been parse reranking, a task originally proposed
by Ratnaparkhi et al. (1994). A pre-existing parser is used to generate candidate parse
trees for each input sentence. The parse reranker’s task is to determine the best candidate
parse. Parse rerankers do not need to perform inference to find the best solution, and
instead focus on crafting accurate tree cost functions. Insights gleaned from reranking
research might help improve the models of full parsers. The literature on parse reranking is
quite extensive, and includes Johnson et al. (1999); Collins (2000); Collins and Koo (2005);
Collins and Duffy (2002a); Shen et al. (2003); Charniak and Johnson (2005); and Kudo
et al. (2005).

1.3 This dissertation

In this dissertation, we examine the task of constituent parsing, i.e. predicting a labeled
tree over an unrestricted natural language string. Automatic parsing approaches have been
an object of study for almost half a century (Joshi and Hopely, 1996),2 yet state-of-the-art
constituent parsers struggle to exceed 90% accuracy. We believe that the reason for this
barrier is that parsing work has been too focused on taking approaches that work and
making them more powerful (e.g. unlexicalized PCFGs → lexicalized PCFGs) rather than
taking powerful approaches and making them work. Our overriding design principle is to
avoid reducing the upper-bound on accuracy achievable. With this in mind, we attempt to
automatically learn a cost function over all relevant information. In particular:

• We use the entire history in scoring parse decisions. As far as we know, all previous
approaches, save those of Henderson (2003, 2004) and Titov and Henderson (2007a,b),
have looked at information in a limited window. We use finer-grained information than
all previous approaches, and this information is automatically combined in ways that
improve the model’s discriminatory power. This information is included in the model
using a new machine learning technique that we develop.

• Most parsers employ local limits on search effort, e.g. beam pruning, whereas we
impose a global limit on search effort. In our experiments, our best model finds the
optimal solution for all sentences, i.e. the global limit is not exceeded and there are

2 Joshi and Hopely (1996) cite the Transformations and Discourse Analysis Project Reports #15 through
#19, 1959–60, University of Pennsylvania, which are available in the Library of the National Institute of
Science and Technology (formerly known as the National Bureau of Standards), Bethesda, MD.

13

1. Introduction

no search errors. As far as we know, no previous search-based parser has made this
claim. Moreover, our cost function is so refined that, on 80% of sentences, the greedy
solution is also the optimal one. A major contribution of our work is a cost-function
that is accurate enough to guide search to the optimal solutions with very little
perplexity.

Increasingly, emphasis has been placed on developing machine learning techniques to
induce accurate parsers using as little manual effort as possible. Nonetheless, most cur-
rent parsing approaches still require time-consuming feature engineering and task-specific
approaches. To address these problems, we propose a flexible, end-to-end discriminative
method for training parsers. The proposed parameter estimation technique is regularized
without ad-hoc smoothing or frequency-based feature cutoffs. The training regime can use
arbitrary information not only from the input, but also from the entire history. The learning
algorithm projects the hand-provided features into a compound feature space and performs
incremental feature selection over this large feature space. The core of the parser is a model
learned to optimize a single regularized objective. The resulting parser achieves higher ac-
curacy than a generative baseline, despite not using a generative model as a feature, not
having extensive hand-crafted features, and not using much language-specific information.

The layout of this dissertation is as follows: Chapter 2 introduces terminology and
our general approach to parsing, breaking down a parser into its major components: a
logic, which structures the search space of possible parser decisions; a cost function (or
model), which assigns weights to paths through the search space; and a search strategy,
which is an algorithm that determines how the parser explores the search space. Chapter 3
describes the search strategy used by the parser to find the minimum cost output tree.
Chapter 4 shows how we induce the inference cost function. Learning the cost function
(a.k.a. parameter estimation or training) involves choosing a cost function that has
the best generalization, i.e. that maximizes the expected value of the evaluation measure
on unseen inputs. Chapter 5 describes optimizations and approximations used to speed-up
training and to reduce memory consumption. Chapter 6 presents experiments and results.
Chapter 7 discusses related work. Finally, Chapter 8 summarizes the contributions of this
dissertation, as well as its limitations.

14

§ Second Chapter §

General Approach

For every problem there is one solution which is
simple, neat, and wrong.

H. L. Mencken

The proposed method employs the traditional AI technique of predicting a structure
by searching over possible sequences of inferences, where each inference predicts a part of
the eventual structure.

2.1 Terminology

The following terms will help to explain our work. A span (or bracket) is a range over
contiguous words in the input sentence. Spans cross if they overlap but neither contains
the other. A labeled constituent item (item or constituent, for short) is a (span, label)
pair. An item is either a terminal or a non-terminal:

• Each word corresponds to exactly one terminal item. This terminal item spans that
word, and is labeled by the part-of-speech (POS) tag of the word.

• A non-terminal item must have a non-terminal label, e.g. NP (“noun phrase”).

When we say that an item crosses another item, we are referring to a property of their
spans. A state is a set of items, none of whose spans may cross. The initial (or start) state
contains only terminal items, one for every word in the input. A final (or complete) state
is one that contains a non-terminal item labeled TOP whose span covers the input. When
unambiguous, we will also refer to a final state as a parse. An inference is a transition
between states, where the items in the antecedent (predecessor) state are a strict subset
of items in the consequent (successor) state. An inference should not be confused with
the inference process, which involves many inferences. The initial state has no incoming
transitions, and the final state(s) have no outgoing transitions. The search space is a

15

2. General Approach

directed acyclic graph containing as nodes the initial state and all states reachable from
the initial state. Edges in this graph are inferences.1 A path in this graph must begin at
the initial state. A complete path is one leading to a final state. A state S is correct with
respect to some gold-standard final state Ŝ iff Ŝ is reachable from S. A path is correct
iff it leads to a correct state. An inference is correct iff the consequent state is correct. We
view a parser as having three major components:

• a logic, which structures the search space of possible parser inferences,

• a cost function (or model), which assigns weights to paths through the search
space,

and

• a search strategy, which is an algorithm that determines how the parser explores
the search space.

This is similar to the anatomy proposed by Melamed and Wang (2005), who decompose a
parser into a grammar, a logic, a semiring, a search strategy, and a termination condition.
We assume that our logic implicitly includes specifies the termination condition via final
states. Our cost functions include the values produced by the grammar. In general, costs
can be combined in arbitrary ways, not just using semiring operators.

2.2 Parsing logic

The parsing logic (Melamed and Wang, 2005) is a set of constraints that structures the
search space for an arbitrary input sentence. A logic is deterministic (Marcus, 1980) if
each state in the search space can be reached by only one path. Section 2.1 gave several
task-specific constraints, e.g. a state cannot contain any two items with crossing brackets.
There are several other constraints we impose throughout this work:

• Each inference adds a single item to the antecedent state to obtain the consequent
state, so an inference is a (state, item) pair.

• A TOP item can be inferred only if the antecedent state contains some item spanning
the entire sentence.

• TOP items must span the entire sentence.

16

Unary ordering

Figure 2.1: Parses with different unary ordering.
(a) The gold standard parse. (b) Hypothetical parser output.

(a)

TOP

FRAG

ADVP

RB/ notRB/ Clearly

(b)

TOP

ADVP

FRAG

RB/ notRB/ Clearly

2.3 Unary ordering

In the previous sections, for clarity of exposition we have glossed over a problematic, but
important detail: unary projections. A constituent item in a state is a unary projection
(alternately, unary rewrite, or unary for short) if the state contains another item with
the same span.2 A unary chain is a sequence of unary projections, including the bottom-
most item. Trees in the Penn Treebank (Marcus et al., 1993; Taylor et al., 2003) give a
total vertical order over items with the same span. However, the standard PARSEVAL
evaluation measures ignore any ordering over same-span items (Black et al., 1991). For
example, if given the gold-standard parse in Figure 2.1(a) and the hypothetical parser
output in Figure 2.1(b), PARSEVAL would give the parser a score of 100%, even though
it inferred the FRAG and ADVP brackets in the wrong order.

We don’t know whether unary orderings in the treebank provide useful information or
whether they are a confounding variable. We opt to preserve the Penn Treebank information
and update the definitions given in Section 2.1: our states keep track of the order of same-
span items, and our inferences preserve the order of same-span item from the antecedent to
the consequent. As far as we know, this design decision is the same as that of all the other
parsers in the literature.3 The reason unary order is typically preserved might be that, for
most of these parsers, it is trickier to ignore unary orderings than to preserve them, but
this tendency should not be taken as evidence that preserving unary orderings is useful.

We note two properties that follow from the constraint that inferences preserve unary
ordering. First, a final state can be represented as a tree and a path can be represented

1 This view of parsing is in contrast to one in which the search space is a directed hypergraph, nodes are
items, and inferences are hyperedges, each of which have one or more antecedents (Gallo and Scutellà,
1999; Klein and Manning, 2001b).

2 The first item inferred with a particular span added to a state is typically not considered a unary. Only
the (subsequent) same-span items added thereafter are unaries.

3 For example, Taskar et al. (2004b) flatten all unary chains to a single order-preserving compound label,
e.g. TOP/FRAG/ADVP in Figure 2.1(a), thus ensuring that no two items in a state can have the same span.

17

2. General Approach

as a sequence of trees. Second, our definition of “correctness” is stricter than that of
PARSEVAL’s: Figure 2.1(b) is an incorrect state, since it does not match Figure 2.1(a).
Similarly, in the initial state of the sentence in Figure 2.1, the only correct inference would
be to add an ADVP spanning “Clearly” through “not”.

2.4 Modeling

Consider a sentence s and a parse p. More generally, s is an input and p is a complete output
structure. We wish to model the conditional probability Pr(p|s). p comprises a sequence of
individual items d1, . . . , d|p|, where each item dj belongs to a possibly infinite space D. For
notational convenience, define d0 as s. We then have:

Pr(p|s) = Pr(d1, . . . , d|p||d0) (2.1)

=
|p|∏

j=1

Pr(dj |d0, . . . , dj−1) (2.2)

Equation 2.2 follows from the chain rule, and is the essence of history-based modeling
(Black et al., 1992, 1993). Bikel (2004b, pp. 8–9) gives a more precise formal definition of
probabilistic history-based models, albeit with a very different exposition from ours. Note
that Pr(dj |d0, . . . , dj−1) = 0 if the items in the state are contradictory or in some other way
not licensed by the logic. We call d0, . . . , dj−1 the state (a.k.a. history) at the jth step
in the path. To be precise, the state is a set of items whereas the history is a sequence of
items. We assume that the order of the items in the history is not used in the modeling, and
ignore the distinction between state and history. We will abbreviate the state d0, . . . , dj−1

as Sj, where Sj ∈ 2D. Rewriting:

Pr(dj |d0, . . . , dj−1) = Pr(dj |Sj) (2.3)

We will use the abbreviation D(Sj) ⊆ D to mean all items at state Sj that are permitted
by the logic, i.e. d ∈ D(Sj) if and only if Pr(d|Sj) 6= 0.

Independence assumptions can be introduced into the model. For example, we can make
the Markov assumption that only the input and the last item affect the probability of the
current item:

Pr(dj |Sj)⇒ Pr(dj |d0, dj−1) (2.4)

The two most common reasons for introducing independence assumptions are as follows:

• Unsophisticated parameter estimation techniques, such as relative frequency estima-
tion, might not be able to use all the information in the history effectively.

• Independence assumptions might allow polynomial-time algorithms (e.g. dynamic

18

Modeling

programming) to find the maximum probability parse for a given sentence, or at
least to reduce the size of the search space.

However, we prefer not to restrict the information available to the model. In this disser-
tation, we develop automatic techniques for using all information in the history and show
that our models are able to use this information to avoid exploring most of the search
space.

If we want a true, non-deficient probability distribution over all complete output struc-
tures, we may impose the restriction that the sum of the probabilities of all items at a
given state sum to 1: ∑

d∈D(Sj)

Pr(d|Sj) = 1 (2.5)

This restriction corresponds to the assumption that one and only one item must be cho-
sen at this state. Typically, this restriction is implemented by normalization, hence the
name locally-normalized conditional models. Lafferty et al. (2001) argue that local
normalization can cause label bias. Instead of imposing the restriction in Equation 2.5, it
might be possible to avoid label bias in history-based models by estimating the likelihood
of each inference independently of the other inferences at the state. This allows several
good inferences to receive high probability at a good state, or perhaps all inferences to
receive low probability at a bad state. Label bias will be discussed further in Chapters 4
and 7. To avoid label bias, we do not impose the restriction in Equation 2.5.

An inference is a transition between states. We write ij ∈ D × 2D to mean the jth

inference, which adds item dj to state Sj. Rewriting:

Pr(dj |Sj) = Pr(ij) (2.6)

The search space is a DAG, where each node is a state and each edge is an inference. We let
I be the space of all inferences, and use the abbreviation I(Sj) ⊆ I to mean all inferences
at state Sj that are permitted by the logic. The difference between I(Sj) and D(Sj) is that
the former consists of inferences, while the latter consists of items.

Each inference contains all state information. Since the information in an inference
might be of variable length, one typically models the probability of an inference by first
transforming the inference into a fixed-length real-valued feature vector using feature ex-
traction function X : D×2D → R

|F |. F is a finite, perhaps high-dimensional, feature space
that indexes the entries of the feature vector. We will rewrite Pr(ij) as Pr(X(ij)) and:

Pr(p|s) =
|p|∏

j=1

Pr(X(ij)) (2.7)

19

2. General Approach

Instead of finding the parse with the highest conditional probability, we can find the parse
with the lowest negative log-probability:

arg max
p∈P (s)

Pr(p|s) = arg min
p∈P (s)

(− log Pr(p|s)) (2.8)

= arg min
p∈P (s)

− log

|p|∏
j=1

Pr(X(ij))

 (2.9)

= arg min
p∈P (s)

− |p|∑

j=1

log Pr(X(ij))

 (2.10)

where P (s) are the complete output structures over input s that are licensed by the logic.
We may even relax the restriction that our model is probabilistic, and instead use an
arbitrary cost function. We use the notation that C is the cost of a complete output
structure, and c is the cost of an individual inference. We assume that cost monotonically
increases along a path, i.e. c(ij) is always positive. Generalizing, we write:

C(p|s) =
|p|∑

j=1

c(X(ij)) (2.11)

We might abbreviate C(p|s) as C(p) when confusion is unlikely. We might also omit X
from the cost function for convenience. We let the cost function be parameterized by Θ:

CΘ(p|s) =
|p|∑

j=1

cΘ(X(ij)) (2.12)

Θ is a parameter vector which is chosen by training. We might refer to Θ as the model
when confusion is unlikely.

We can express arbitrary tree costs with the decomposition in Equation 2.12. For ex-
ample, all inferences can have cost zero until the last one. However, we usually prefer to
push cost as early as possible in the inference chain, to make search faster. Unlike most
approaches employed in NLP, the proposed method makes no independence assumptions:
Inference cost function cΘ can use arbitrary information not only from the input, but also
from the entire state.

2.5 Search strategy

Given input sentence s, let P (s) be the set of complete paths that are admitted by the
logic. The parser uses a search strategy to find p̂ ∈ P (s) with minimum cost CΘ(p) under
model Θ:

p̂ = arg min
p∈P (s)

CΘ(p) (2.13)

The parser then returns the parse (final state) of p̂.

20

Search strategy

Chapter 3 describes our search strategy, Chapter 4 discusses how we induce the inference
cost function, and Section 6.2 presents three different logics we use in our experiments.

21

§ Third Chapter §

Search Strategy

A cage went in search of a bird.

Franz Kafka

Given an input sentence s, the parser uses the search strategy to find a solution to
Equation 2.13. In general, the cost function cΘ can consider arbitrary properties of the
input and parse state. We do not know any tractable exact solution to Equation 2.13, such
as dynamic programming. Our parser finds an approximate solution using agenda-driven
search (e.g. Felzenszwalb and McAllester, 2007). The core data structure in this algorithm
is an agenda, which is a priority queue. In general, the agenda stores entire search paths
instead of single items. Since a deterministic logic defines a one-to-one correspondence
between paths and states (see page 16), the agenda of a deterministic parser can store
states instead of paths. We use the term partial parse to refer to the elements of the
agenda, regardless of whether they are paths or states. We define DΘ(p) as the agenda
priority of partial parse p under model Θ, also known as a figure-of-merit (Caraballo and
Charniak, 1998). The choice of DΘ determines the search strategy, i.e. the way that the
parser allocates search effort.

Parsers in the literature typically choose some local limit on the amount of search, such
as a maximum beam width (e.g. Ratnaparkhi, 1999; Collins and Roark, 2004; Henderson,
2004; Titov and Henderson, 2007a,b). The problem with traditional beam-search is that it
performs permanent pruning of nodes with an inadmissible technique (Zhou and Hansen,
2005). This leads to incomplete search, i.e. beam-search can have search errors and prune
the optimal solution. With an accurate cost function, restricting the search space using a
fixed beam width might be unnecessary. Instead, we impose a global limit on exploration
of the search space. Termination is controlled by a limit γ on the maximum number of
partial parses to score.

Listing 3.1 provides pseudo-code for agenda-driven search. The pseudo-code is for the
special case of search over a directed graph rather than for the more general case of search
over a directed hypergraph (a.k.a. and/or graph), in which consequent elements are gener-
ated by composing elements in the chart with the element most recently popped from the

23

3. Search Strategy

agenda. For this pseudo-code, see Figure 5 in Felzenszwalb and McAllester (2007). In our
algorithm, the parser maintains the best solution found thus far, initialized to no solution,
which has cost +∞. The agenda is initialized to contain the partial parse corresponding
to the initial state for input sentence s. At each step in the search, the parser pops the
highest priority partial parse from the agenda. As described on page 20, the cost of a path
monotonically increases as it is extended. If the cost of the partial parse exceeds the cost of
the current best solution, then no extension of this partial parse can beat the current best
solution, and we can stop exploring this partial parse. Otherwise, we find all expansions
that add a single item to this partial parse using I(p), as defined on on page 19. Expansions
that lead to a final state are checked to see if they beat the current best solution. If they
do, the current best solution is updated. Non-final expansions are added to the agenda,
with priority determined by DΘ. Search terminates either when the agenda is empty, in
which case the parser has found the optimal solution, or when the limit on search effort is
exceeded.

We experimented with two agenda-driven search strategies: standard best-first search,
and greedy completion, a search strategy that is novel as far as we know.

3.1 Best-first search

In best-first search, the priority DΘ(p) of a partial parse p is its negative cost −CΘ(p),
i.e. lowest cost partial parses are explored first. Because inference cost is non-negative,
the partial parse cost is an under-estimate of the total tree cost. It is common for search
strategies to employ of heuristic estimate of the cost of completing a partial parse. For
example, in A* search the agenda priority of a partial parse is based on adding a heuristic
completion cost under-estimate to the current cost of the partial parse thus far (Klein and
Manning, 2003a). Typically, heuristic completion costs consider information from outside
the item span. Since our costs can consider the entire context, they might already take
into account some information about completion cost. For example, since we can consider
arbitrary information from the state, including adjacent items, we can model context-
summary estimates (Klein and Manning, 2003a). In other words, the priority can estimate
the cost of completion, since the cost can be based on arbitrary information from the state
and input. For example, consider the incorrect inference shown in Figure 3.1. The verb
phrase (VP) should include the noun phrase (NP) and span “Go” through “home”. However,
if the model can examine only its descendants in evaluating an inference, then labeling “Go”
as a VP would be plausible and would not receive high cost. With the restriction that it
can examine only its descendants, the model would have insufficient information until it
reached state (b). At state (b), it would consider inferring items that span “Go” through
“home”, i.e. items that have the VP and the NP items as its children. The model would
finally have enough information to determine that it inferred the VP incorrectly and assign
high cost to subsequent inferences at state (b). Having less information available forces

24

Best-first search

Listing 3.1: Pseudocode for agenda-driven search over a directed search graph.

. Given sentence s, model Θ, and a limit γ on the number of partial parses to score,
1: procedure AgendaSearch(s, Θ, γ) . approximately solve Equation 2.13
2: p̂← ∅, where CΘ(∅) =∞ . The current best solution is failure,

. which has infinite cost
3: p← partial parse corresponding to the initial state of s
4: q.push(p, DΘ(p)) . The agenda q contains only the initial partial parse
5: workdone← 1 . We have scored only the initial partial parse
6: repeat
7: p← q.pop() . Retrieve the partial parse p with highest priority DΘ(p)
8: if CΘ(p) < CΘ(p̂) then . If p can lead to a solution that beats p̂,
9: Explore(p) . then explore p

10: until Done(γ)
11: return p̂ . Return the best solution found

12: procedure Explore(p) . Explore p by processing all its expansions
13: for each p′ ∈ I(p) do . Find all expansions, i.e. inferences permitted at p
14: if p′ does not lead to a final state then . Non-complete paths can be explored,
15: q.push(p′,DΘ(p′)) . so add p′ to the agenda q with priority DΘ(p′)
16: else . Complete paths don’t need to be put on the agenda,
17: if CΘ(p′) < CΘ(p̂) then . so just check if p′ is the new best solution
18: p̂← p′ . If so, update the current best solution found
19: workdone += |I(p)| . Increase the number of partial parses scored

20: procedure Done(γ) . Are we done parsing?
21: if q is empty then
22: return true . We have the optimal solution
23: else if workdone > γ then
24: return true . We have exceed the maximum amount of search effort
25: else
26: return false

25

3. Search Strategy

Figure 3.1: An incorrect parse inference. (a) The antecedent state. (b) The consequent
state.

(a)
VBP/Go

NP

NN/home
⇒ (b)

VP

VBP/Go

NP

NN/home

Figure 3.2: An example search space for a deterministic logic, depicted as a tree. (A
non-deterministic logic’s search space will be a DAG, not a tree.) The root of the tree is
the initial state. Instead of labelling inferences (edges) with their cost, states (nodes) are
labelled with the cost of the path from the root to that node. States are assigned unique
cost values so they can be identified by their cost. Final states are indicated in bold.

0

21

4 7 3

8 11 13 6 12

10

9

Best-first search would explore the states in the following order:
0 (new best solution 9), 1, 2, 3 (new best solution 6), 4. Return 6.

Greedy completion search would explore the states in the following order:
0 (new best solution 9), 1, 4 (new best solution 8), 2, 3 (new best solution 6). Return 6.

the model to defer assigning cost until later in the search. Any decision to assign cost is
irrevocable, so a model that has little information must be conservative in assigning cost.
Deferring cost assignment until later means more branching early during search, i.e. more
paths are considered plausible until more information is received later. In contrast, a model
that can examine the entire state can assign high cost to the inference in Figure 3.1, since
it can know that it is unlikely to have a VP followed by a sentence-final NP. A model with
more information can assign cost earlier, and thus invest less search effort in wild goose
chases. In this sense, the agenda priority can include information like the context-summary
estimates of Klein and Manning (2003a), which can be automatically learned when the
inference cost function is induced.

26

Greedy completion

3.2 Greedy completion

Traditional greedy search pursues the lowest cost expansion at each step. After a solution
is found, greedy search terminates. In greedy completion, traditional greedy search is
the inner loop and all expansion partial parses considered but not greedily pursued go on
the agenda. When traditional greedy search finds a solution or cannot proceed because it
cannot beat the current best solution, the inner loop terminates and there is a frontier
of expansion partial parses not explored during previous greedy searches. These frontier
partial parses form the agenda. Greedy completion picks the lowest cost partial parse in
the frontier and starts a new inner loop (iteration of greedy search) beginning at this
partial parse. Another perspective is that greedy completion is agenda-based search with a
particular priority: In greedy completion, the priority of a partial parse is its negative cost,
except that we always prefer any partial parse that was a consequent of the last partial parse
popped. Listing 3.2 provides more explicit pseudo-code for greedy completion. Figure 3.2
gives examples of best-first and greedy completion search.

Both greedy completion and best-first search are complete, i.e. guaranteed to return
the optimal solution, under two assumptions: there is no limit on the number of partial
parses scored, i.e. γ = ∞, and path cost is non-decreasing. The number of states in the
search space is exponential in the size of the input, so in general exact search (with γ =∞)
is intractable. However, with a finite limit on search effort, best-first search may return
poor solutions, or simply fail and return no complete path. At every point in time, greedy
completion tries to find the best solution (complete path) as early as possible, in case it
exceeds the limit on search effort. In this way, it attempts to progressively tighten the upper-
bound on the optimal solution cost as quickly as possible, which makes it an anytime
search algorithm. The observations made by Korf (1998) about depth-first branch-and-
bound also hold for greedy completion:

In [depth-first branch-and-bound], the cost of the best solution found so far
is always an upper bound on the optimal solution cost, and decreases until
it reaches the optimal cost. . . . While [depth-first branch-and-bound] never ex-
pands any node more than once, its overhead consists of expanding some nodes
whose cost exceed[s] the optimal cost. (pg. 9)

The intuition behind greedy completion is as follows: Since the problem solver is not re-
warded partial credit for incomplete solutions, greedy completion’s inner loop is motivated
by the overriding imperative to complete quickly the work it is doing (Step 9 in Listing 3.2).
Specifically, given a partial parse, the inner loop finds a solution from this partial parse as
soon as possible, tiebreaking at each step in favor of lowest-cost consequent partial parse
(Step 14 in Listing 3.2). In the outer loop (Steps 6–10 in Listing 3.2), greedy completion
must pick a new point in the search space to restart the greedy search process. Harvey and
Ginsberg (1995) write:

27

3. Search Strategy

Listing 3.2: Pseudocode for greedy-completion search over a directed search graph. This
algorithm is a special case of the agenda-based search algorithm (Listing 3.1 on page 25)
for a particular choice of priority DΘ. This pseudo-code explicitly describes how the search
space is explored.

. Given sentence s, model Θ, and a limit γ on the number of partial parses to score
1: procedure GreedyCompletion(s, Θ, γ) . approximately solve Equation 2.13
2: p̂← ∅, where CΘ(∅) =∞ . The current best solution is failure,

. which has infinite cost
3: p← partial parse corresponding to the initial state of s
4: q.push(p, -CΘ(p)) . The priority queue contains only the initial partial parse
5: workdone← 1 . We have scored only the initial partial parse
6: repeat
7: p← q.pop() . Retrieve the partial parse p with highest priority −CΘ(p)
8: if CΘ(p) < CΘ(p̂) then . If p can lead to a solution that beats p̂,
9: GreedilyComplete(p) . then greedily complete p

10: until Done(γ) . Done is given in Listing 3.1, Step 20
11: return p̂ . Return the best solution found

. Greedily complete p, storing all non-explored states along the way
12: procedure GreedilyComplete(p)
13: while p does not lead to a final state and CΘ(p) < CΘ(p̂) do
14: p̃← arg minp′∈I(p) CΘ(p′) . Find the lowest cost consequent inference,
15: for each p′ ∈ I(p) \ {p̃} do . and process every other consequent
16: if p′ does not lead to a final state then . Non-complete paths

. can be explored,
17: q.push(p′,−CΘ(p′)) . so add p′ to the agenda q with priority −CΘ(p′)
18: else . Complete paths don’t need to be put on the agenda,
19: if CΘ(p′) < CΘ(p̂) then . so just check if p′ is the new best solution
20: p̂← p′ . If so, update the current best solution found
21: workdone += |I(p)| . Increase the number of partial parses scored
22: p← p̃ . Greedily pursue the best choice
23: if p leads to a final state and CΘ(p) < CΘ(p̂) then . Check if p is the

. new best solution
24: p̂← p . If so, update the current best solution found

28

Additional optimizations

Chronological backtracking [to the deepest unexplored partial parse] puts a
tremendous burden on the heuristics [cost functions] early in the search and
a relatively light burden on the heuristics deep in the search. Unfortunately,
for many problems the heuristics are least reliable early in the search, before
making decisions that reduce the problem to a size for which the heuristics
become reliable. (pg. 2 of 7)

Greedy completion could backtrack chronologically to a deep but high-cost incomplete
partial parse, as done by depth-first branch-and-bound, but it instead assumes that high-
cost late-branching from a previous solution path is unlikely to produce a lower cost so-
lution. Instead, greedy completion assumes that it has at least sufficient time remaining
to greedily complete the incomplete partial parse of its choosing. So it backtracks to the
lowest-cost incomplete partial parse (Step 7 in Listing 3.2), hoping that it will find a tighter
upper-bound on the optimal solution cost, thus saving work in the long run.

3.3 Additional optimizations

We implemented two optimizations to the search algorithm in Listing 3.1:

• Assume the parser has a non-deterministic logic. As stated earlier, the agenda stores
paths, and several paths might lead to the same state. So we keep a chart of popped
paths. After we pop a path p (Line 7 in both listings), we check if the chart contains
a path leading to the same state as p whose cost is no greater than that of p. In this
case, exploring p would redo work at no less cost than before, so we skip p. This is
standard chart parsing, which collapses states with identical signatures.

• As stated earlier, the space complexity of best-first search and greedy completion is,
worst-case, exponential. If the limit on search effort γ is finite, space complexity is
O(γ). At any point during search, the agenda and chart need not store more than
γ partial parses total. We can save more memory by using the “bound” operation
of “branch-and-bound”. We “bound” by removing from the chart and agenda any
partial parse with cost higher than CΘ(p̂), the cost of the current best solution.

It is conceivable that with the global limit on search effort we might not find the optimal
solution. Nonetheless, we can determine if the solution returned by agenda-based search is
optimal. We will perform this test in our experiments (Chapter 6) to measure the efficacy
of our parsers’ searches. We are guaranteed at termination that the solution returned is
optimal if:

• cost is non-decreasing along the path to a complete structure,

• the cost of the solution is no greater than the cost of every partial parse on the agenda
at termination, and

29

3. Search Strategy

• the cost of the solution is no greater than the cost of every partial parse pruned.
Derivations are pruned when they are not inserted into the agenda because it was
full.

The proof is as follows: all solutions are either popped, led to by a partial parse in the
agenda, or led to by a partial parse that was pruned. Any solution popped was either the
solution returned, or it didn’t have lower cost. From the conditions above, any solution led
to by a partial parse in the agenda or by a partial parse that was pruned must have cost no
less than that partial parse, which is no less than the cost of the solution returned. Hence,
no solution has lower cost than the one returned.

3.4 Related work

It is common to see time-limited search tasks in which a complete solution is required, the
setting for which anytime search algorithms are designed. Examples of anytime search
algorithms include ARA* (Likhachev et al., 2004), ABULB (Furcy, 2004), and beam-stack
search (Zhou and Hansen, 2005). However, we have not seen an approach identical to greedy
completion proposed in the literature on search, speech, parsing, or machine translation.
Greedy completion can be viewed as a modification to greedy search that adds cost-sensitive
backtracking to make it a complete search algorithm.

Depth-first branch-and-bound is the closest approach we have found. Greedy completion
is a variant of depth-first branch-and-bound (Korf, 1998) for cost-minimizing search. The
difference is that after a solution is found or search cannot proceed, depth-first branch-and-
bound backtracks chronologically, i.e. to the deepest partial parse in the agenda. Greedy
completion backtracks to the minimum cost partial parse in the agenda. For this rea-
son, depth-first branch-and-bound has worst-case linear space complexity, i.e. O(depth ·
branching factor). Space-complexity is worst-case exponential for greedy completion, as
well as for best-first search.

More distantly related is beam-stack search (Zhou and Hansen, 2005), an anytime search
algorithm that adds backtracking to beam-search. This modification converts beam-search
into a complete search algorithm, one that can recover the optimal solution given sufficient
time. It is like breadth-first branch-and-bound, except that the beam width constrains
how many partial parses are stored at each layer. Jelinek et al. (1994) and Magerman
(1994, 1995) use a similar search technique, which they call multistack decoding. It too is
a modification of beam-search to allow backtracking, which means that partial parses are
not permanently pruned. This modification is included to avoid incompleteness.

Greedy completion is also similar to limited discrepancy search (Harvey and Ginsberg,
1995) generalized to arbitrary graphs (Furcy, 2004; Furcy and Koenig, 2005). A discrepancy
occurs when, at some state, the search algorithm explores a non-minimum-cost expansion,
i.e. is not greedy for a single decision. In limited discrepancy search, at the nth iteration, all
paths with n discrepancies are explored. In greedy completion search, at the nth iteration,

30

Related work

a single path is pursued that has the smallest new discrepancy from any previous path
explored.

Greedy completion is perhaps conceptually similar to the k-best parsing algorithm
of Huang and Chiang (2005). Their algorithm first finds the 1-best solution, and then
determines the remaining solutions using lazy backtracking.

Greedy completion should not be confused with “best-deepest best-first-search,” which
was proposed by Pemberton and Korf (1994a,b) for a restricted real-time search problem.
In real-time search, after a pre-determined number of partial parses have been scored, a
decision must be made: the problem solver must choose one of the children (consequents)
of the current root node (initial partial parse) and make this child the new root node.
The authors propose a real-time search strategy called “best-deepest best-first-search,” in
which agenda priority is negative cost, i.e. partial parses are explored according to a best-
first strategy. At decision time, the problem solver moves towards the deepest partial parse
explored, tiebreaking in favor of the lowest cost partial parse.

31

§ Fourth Chapter §

Learning

It especially annoys me when racists are accused
of “discrimination.” The ability to discriminate
is a precious facility; by judging all members of
one “race” to be the same, the racist precisely
shows himself incapable of discrimination.

Christopher Hitchens

4.1 Introduction

We introduce our basic approach to inducing the cost function. The cost function mea-
sures the compatibility between the input and some output. We define a family of cost
functions parameterized by Θ, a real-valued parameter vector, which has one element for
each feature f ∈ F . F is a finite, perhaps high-dimensional, feature space that indexes
the entries of the feature vector. During training, our goal is to choose a cost function
that has the best generalization, i.e. that maximizes the expected value of the evaluation
measure (a.k.a. true objective function) on unseen inputs. This process of choosing Θ
is also known as parameter estimation. Our evaluation measure for constituent parsing
is the PARSEVAL F1 (Black et al., 1991), which is based on the number of non-terminal
items in the parser’s output that match those in the gold-standard parse. We are given a
training set I. We use that training set and our prior knowledge about the problem (the
prior) to assess how well each cost function will generalize. This estimate of generalization
is called the expected risk function (risk, for short, or loss function). Training is an
optimization procedure for finding the cost function with minimum risk. The risk is also
referred to as the objective function, because it is the objective of the optimization pro-
cedure used during training. In this chapter, we use the term “objective” when we do not
need to distinguish between the true objective, e.g. 0-1 error in binary classification, and
the surrogate objective, e.g. exponential loss. A surrogate is minimized during training

33

4. Learning

because it might be easier to optimize than the true objective and/or it might be more
likely to generalize well because it can control for model complexity.

Expected risk

To ensure our risk function prefers cost functions that generalize well, it should balance the
fit of the model over the training set against model complexity. The risk function RΘ thus
typically includes two terms: the empirical (or unpenalized) risk LΘ, which is computed
over the training set, and a regularization (or penalty) term ΩΘ based on the prior:

RΘ(I) = LΘ(I) + λΩΘ (4.1)

For brevity, we may write RΘ(I) and LΘ(I) as RΘ and LΘ, respectively. The strength of the
regularizer is controlled by λ, the regularization penalty factor. For a given choice of λ, the
training procedure optimizes Θ to minimize the expected risk RΘ over training set I. The
regularization penalty factor is typically chosen by cross-validation, which maximizes
some objective function over held-out development data. Ideally we should optimize the
true objective during cross-validation, but if that is infeasible then we can optimize some
surrogate objective.

Empirical risk

Ideally, the empirical risk is identical to the true objective function. In practice, minimizing
the empirical risk might be difficult, so a common solution is to minimize a surrogate
objective. For example, in the case of binary classification, minimizing the zero-one error
is a combinatorial optimization problem that is known to be NP-hard. The exponential
loss and logistic loss are smooth, convex loss functions that bound the zero-one error
from above, and are commonly used surrogates for the zero-one error. Similarly, directly
minimizing the PARSEVAL F1 is quite tricky. Jansche (2005) shows how to maximize the
expected F1-measure of logistic regression models, but it is unknown to us how his method
can be applied to entire parse trees. We instead choose a different surrogate to minimize,
the statewise error. The statewise error is the likelihood that, at some correct state, the
minimum cost inference is incorrect. Minimizing the statewise error is also NP-hard, but
we could define a statewise margin and minimize the statewise loss. For example, let S be
a sample of correct states to be used for training. Then we could define the samplewise
unpenalized loss as:

LΘ(I) =
∑
S∈S

l(µΘ(I(S))) (4.2)

I(S) are all candidate inferences at S, as defined on on page 19. Under our logic (Sec-
tion 2.2), I(S) are all candidate inferences that add a single item to state S. µΘ(I(S)) is
some margin over those inferences. For example, the statewise margin might be the highest

34

Introduction

confidence assigned to any correct inference minus the highest confidence assigned to any
incorrect inference. l transforms the margin into a loss.

There is a practical difficulty in optimizing the statewise loss in Equation 4.2. Namely, a
state can contain all sorts of inferences, so we cannot partition the inferences and then par-
allelize training by optimizing each partition piece-wise. We will explain this optimization
in Section 4.2, and later return to it in Section 5.1. We opt to approximate the statewise
loss using a biased version of the examplewise loss:

LΘ(I) =
∑
i∈I

b(i) · l(µΘ(i)) (4.3)

In this equation, l is a margin-based examplewise loss function, which allows us to optimize
it piece-wise. Some training examples might be more important than others, so each is given
a bias b(i) ∈ R

+. This approximation is based on the intuition that, instead of learning to
rank the inferences at each state as in Equation 4.2, we can learn the harder problem of
classifying each inference in isolation into correct and incorrect, irrespective of the other
inferences at the same state.

Priors

A probabilistic interpretation of the penalty term λ · ΩΘ in Equation 4.1 is:

λ · ΩΘ = − log Pr(Θ) (4.4)

= − log

∏

f∈F

Pr(Θf)

 (4.5)

= −
∑
f∈F

log Pr(Θf) (4.6)

One common regularization approach is to apply a Gaussian prior distribution with
mean zero and variance σ2 to the parameters:

Pr(Θf) =
1

σ · √2π
· exp

(
−Θf

2

2σ2

)
(4.7)

which gives us:

λ · ΩΘ = − log Pr(Θ) = −
∑
f∈F

log

(
1

σ · √2π
· exp

(
−Θf

2

2σ2

))
(4.8)

=
∑
f∈F

Θf
2

2σ2
+ constant (4.9)

We can apply this prior by defining ΩΘ =
∑

f∈F Θf
2 and λ = 1/(2σ2). Since this prior

35

4. Learning

corresponds to adding an `2-norm penalty term to the risk, it is often referred to as `2-
regularization.

Another regularization approach is to apply a Laplacian (or double exponential) prior
distribution with mean zero and variance 2τ2 to the parameters:

Pr(Θf) =
1
2τ

exp
(
−|Θf |

τ

)
(4.10)

which gives us:

λ · ΩΘ = − log Pr(Θ) = −
∑
f∈F

log
(

1
2τ

exp
(
−|Θf |

τ

))
(4.11)

=
∑
f∈F

|Θf |
τ

+ constant (4.12)

We can apply this prior by defining ΩΘ =
∑

f∈F |Θf | and λ = 1/τ . Since this prior
corresponds to adding an `1-norm penalty term to the risk, it is often referred to as `1-
regularization. Tibshirani (1996) uses this penalty in the context of least squares regression.
Tibshirani (1996) calls his technique the “lasso” and notes that one of its advantages is
that it leads to sparse solutions. We shall show why in Section 4.2.

The training set

Our training set I consists of candidate inferences from the parse trees in the training data.
From each training inference i ∈ I we generate the tuple 〈X(i), y(i), b(i)〉. X(i) is a feature
vector describing i, with each element in {0, 1}. We will use Xf (i) to refer to the element
of X(i) that pertains to feature f. y(i) = +1 if i is correct, and y(i) = −1 if not. b(i) is
the bias of inference i.

The training data initially comes in the form of trees. These gold-standard trees are
used to generate training examples, each of which is a candidate inference: Starting at
the initial state, we randomly choose a complete path that leads to the (gold-standard)
final state. In the deterministic setting there is only one correct path. If parsing proceeds
non-deterministically then there might be multiple paths that lead to the same final parse,
so we choose one randomly. All the candidate inferences that can possibly follow each state
in this sequence become part of the training set. The vast majority of these inferences
will lead to incorrect states, which makes them negative examples. Figure 4.1 illustrates
example generation. The random correct path is shown in the left column. Each middle
and right cell shows the items that can be correctly and incorrectly inferred at the state in
the left cell, respectively. These inferences are the training examples generated by this tree.
Observe that at the initial state, it is incorrect to infer any item spanning just “The” with
a non-terminal label. In effect, there is an implicit correct inference spanning “The” with a
dummy label meaning “not a constituent”. This dummy label inference does not correspond

36

Introduction

Figure 4.1: An example of example generation, where the logic requires that items are
inferred non-deterministically bottom-up.

State Correct items to infer Incorrect items to infer
at this state at this state

The man leaves (NP, “The man”), (VP, “leaves”) (NP, “The”), (VP, “The”), . . . ,
(NP, “man”), (VP, “man”), . . .

⇓
NP

manThe leaves (VP, “leaves”) (NP “leaves”), (ADJP “leaves”), . . .
(NP “The man leaves”), . . .

⇓
. . .

to an outgoing transition (inference) to a subsequent state, only constituent label inferences
do. Predicting this dummy inference “dampens” the mass received by outgoing transitions,
as recommended by Lafferty et al. (2001). So if the parser ever transitions to an incorrect
state, which would normally be where label bias would arise, the model can predict “not
a constituent” for every span and have very low outgoing transition probability. For this
reason, we conjecture that our learning approach is not subject to label bias. Another
example of where label bias might occur is given in Figure 4.2. In this example, we are at
the incorrect state where the word “hair” has been labeled as a noun phrase (NP). This may
have occurred with relatively high probability because the NP decision was made without
considering any of the context. In isolation, “hair” could very well be a noun phrase.
The parser now might have to decide between different constituent labels spanning “The
hair.” However, no decision is correct besides backtracking. A locally-normalized model
would have to distribute the high probability mass among all subsequent (solid line) states,
despite the fact that it now knows that they are all low probability. Our model considers
each decision independently, so it would not have to assign mass to any of the subsequent
states. Voting against all subsequent (solid line) states is equivalent to transferring mass
to the dashed “not a constituent” state, which does not actually lead to any final state.

An advantage of this method of generating training examples is that it does not require
a working inference engine and can be run prior to any training. A disadvantage of this
approach is that it does not teach the model to recover from mistakes. Our training set is
identical to the inferences that would be scored during search using an oracle cost function.

37

4. Learning

Figure 4.2: An example state at which label bias could occur. A locally-normalized model
would have to distribute all probability mass from the state on the left to the subsequent
(solid line) states on the right.

The hair

The hair

The hair

The hair

The hair

.

.

.

[not a constituent]

TOP

NP

NP

NP

NP

NP

NP

VP

38

Introduction

The oracle cost function ĉ is:

ĉ(i) =

{
∞ if y(i) = −1.
0 if y(i) = +1.

(4.13)

If we wanted to improve accuracy by teaching the parser to recover from its mistakes, we
could use inference during example generation and iterate training. With a deterministic
logic, using the oracle cost function to generate training examples is similar to the first
iteration of SEARN (Daumé III et al., 2005, 2006). See Section 7.2 for more details.

Turian and Melamed (2005) observed that uniform example biases b(i) produced lower
accuracy as training progressed, because the induced classifiers minimized the error per
example. To minimize the error per state, we assign every training state equal value and
share half the value uniformly among the negative examples for the examples generated
from that state and the other half uniformly among the positive examples.

Scoring function

We induce a hypothesis hΘ(i), which is a real-valued inference scoring function. In the
present work, hΘ is a linear model (Collins, 2004) parameterized by vector Θ:

hΘ(i) = Θ ·X(i) =
∑
f∈F

Θf ·Xf (i) (4.14)

The sign of hΘ(i) predicts the y-value of i and the magnitude gives the confidence in this
prediction.

Equation 4.3 introduced the biased examplewise loss used during training. There are
many possible choices for the margin-based per-sample loss function l. In the present work
we use the log-loss (e.g Collins et al., 2002):

l(µΘ(i)) = ln(1 + exp(−µΘ(i))) (4.15)

where µΘ(i) is the margin of inference i:

µΘ(i) = y(i) · hΘ(i) (4.16)

Inference cost cΘ(i) in Equation 2.12 is l(µΘ(i)) computed using y(i) = +1, i.e.:

cΘ(i) = l(hΘ(i)) = ln(1 + exp(−hΘ(i))) (4.17)

So the inference cost cΘ(i) is the risk of treating i as a correct inference.
We pause here to situate our model in the literature. Haffner et al. (2005) study maxi-

mum entropy models for multiclass prediction under a variety of conditions:

39

4. Learning

• estimating joint vs. conditional vs. class-conditional distributions

and,

• treating output classes as exclusive vs. assuming independence between them.

If one makes an independence assumption between each class’s conditional probability,
and estimates them independently, then no normalization is necessary and estimators for
different classes can be induced in parallel. This specific model is a multiclass conditional
maxent model, reduced to binary using one-vs-all, and assuming that each binary response
is predicted independently. This conditional maxent model for binary classification is equiv-
alent to logistic regression. Jansche (2005) (citing Ratnaparkhi (1998, pg. 27)) also draws
this connection, pointing out that log-linear models for binary classification are equivalent
to logistic regression. Modulo choice of prior and our use of bias terms, we believe these
models are equivalent to ours. In other words, all these models make the assumption that,
for each span, each label’s probability is estimated independently.1 We speculate that this
independence assumption allows conditional log-linear models to avoid label bias. Ratna-
parkhi (1997, 1999) does not assume independence in his multi-class reduction, and hence
normalizes over the inferences at each state. For this reason, label bias occurs because
the mass that enters any state must be distributed among all outgoing states, with no
opportunity for dampening.

4.2 Minimizing the risk

We minimize the risk RΘ using a form of forward stagewise additive modeling, a procedure
Guyon and Elisseeff (2003) refer to as embedded feature selection. At each iteration in
training, we pick one or more parameters of the model to adjust (feature selection), then
adjust these parameters (model update).

Related work

In this section, we discuss the most closely related works on fitting additive models, and
on optimization using sequential updates. For a survey of the literature on boosting, see
Meir and Rätsch (2003). When we use the term base hypothesis or weak learner, these
can be arbitrary functions over the features in the inputs. In our setting, we impose the
restriction that each base hypothesis is a single feature, and each combined hypothesis is a
linear combination over the features (see Equation 4.14). Note that these features are not
merely atomic features over the input attributes, as we will explain later in Section 4.2.

1 This assumption is orthogonal to assuming that every feature is class-dependent. That assumption, in
conjunction with lack of normalization, allows risk minimization to be parallelized according to class
(Section 5.1).

40

Minimizing the risk

Schapire and Singer (1999)

This work extends AdaBoost to combinations of real-valued functions. They cast AdaBoost
as a method for minimizing the exponential loss over the training sample using a greedy
coordinate-wise search.

They show how to choose the sequential parameter updates for different types of base
hypotheses. In the general case, each parameter update can be found using a line-search. If
the range of each base hypothesis is in {−1, 0,+1}, the parameter update can be derived
analytically. Using this parameter update, they show how to induce decision trees with a
new splitting criterion as opposed to, say, the Gini index or an entropic function. Using
this new splitting criterion, greedily chosen splits directly minimize the exponential loss.

Because the models are unregularized, Schapire and Singer (1999) propose an ad-hoc
technique for smoothing predictions that limits their magnitude. We note that, even though
they normalize example weights at the beginning of every iteration, this only affects the
strength of the smoothing term, and would otherwise not affect the induced model. We
skip normalization in our approach because it is expensive and may interfere with the
regularizer.

Schapire and Singer (1999) also provide some generalization bounds, as well as gener-
alizing their training regime to multiclass, multilabel, and ranking scenarios.

Friedman et al. (2000)

Much of this work is devoted to understanding AdaBoost and situating it in statistics. This
work examines the then relatively poorly understood boosting technique, and explains it
in terms of well known statistical principles: additive modeling and maximum likelihood. It
also provides a good history of the early work on boosting. The authors re-derive AdaBoost
as a forward stagewise method for fitting an additive model using an approximation of the
binomial log-likelihood. They provide several motivations for the exponential loss (exp-
loss) used by AdaBoost, including:

• It is a differentiable upper-bound on the 0-1 loss (Schapire and Singer, 1999).

• The exponential loss is minimized at:

hΘ(i) =
1
2

log
Pr(y(i) = +1|X(i))
Pr(y(i) = −1|X(i))

(4.18)

where:

Pr(y(i) = +1|X(i)) =
1

1 + exp(−2 · hΘ(i))
(4.19)

and
Pr(y(i) = −1|X(i)) = 1− Pr(y(i) = +1|X(i)) (4.20)

41

4. Learning

The binomial log-likelihood (which is the log-loss) has the same population minimizer
as the exp-loss. The population minimizer is the choice of hΘ(i) that minimizes the
empirical risk. Also, around hΘ(i) = 0, the exp-loss and log-loss are equivalent up to
the second order in the Taylor expansion.

They then propose a new boosting method, LogitBoost, for fitting additive logistic
regression models by direct optimization of the binomial log-likelihood. This algorithm is a
greedy forward stagewise approach, and it uses Newton steps. An interesting aspect of the
algorithm is that, during the example reweighting stage at the beginning of each iteration,
the example weight wΘ(i) for inference i is:

wΘ(i) = Pr(y(i) = +1|X(i)) · Pr(y(i) = −1|X(i)) (4.21)

In other words, the weight of an example is independent of its y-value. Examples receive
high weight if they are close to the decision boundary, i.e. have low magnitude confidence.

Mason et al. (1999, 2000)

These works propose a general class of gradient descent algorithms called AnyBoost. Any-
Boost is a boosting technique for finding linear combinations of weak learners to minimize
arbitrary risk functionals. The risk functional need not depend on the margin.

AnyBoost works by iteratively picking the weak learner that maximizes the downward
decrease in the risk, i.e. its negative gradient. The authors present variants in which an `1

constraint is imposed on parameter values after each boosting iteration, as well as a variant
with an `2 constraint. Little guidance is provided in constructing weak learners.2

MarginBoost is a special case of AnyBoost under a set of commonly made assumptions.
In particular, MarginBoost assumes that the task is binary classification and that the risk
function in MarginBoost must be the sample average of some risk function of the margin.3

Under these assumptions, we can define a weight for each example based on the current
model parameters. The next boosting iteration proceeds by finding the weak learner that
minimizes the weighted error, which means that many off-the-shelf learner methods can
be used for creating the weak learner. The authors show that, with a convex risk function
such as the exp-loss and log-loss and a particular choice of parameter update, if the weak
learner minimizes the weighted error then the MarginBoost algorithm converges to the
global minimum of the risk. MarginBoost includes many popular voting methods, including
AdaBoost (Schapire and Singer, 1999) and LogitBoost (Friedman et al., 2000).

2 Note that their pseudo-code might incorrectly choose certain parameter values if the same base hypothesis
is picked in more than one iteration.

3 Modulo the bias term and not dividing through by the number of instances, Equation 4.3 is based on a
risk function of the margin. However, using a risk function based on only the margin precludes including
a model complexity penalty directly in the risk function (as we do in Equation 4.1).

42

Minimizing the risk

By treating the margin-based risk function as an upper-bound on the 0-1 error, the
authors derive a theoretically well-motivated risk function for MarginBoost:

l(µΘ(i)) = 1− tanh(λ · µΘ(i)) (4.22)

where λ is a parameter. This risk is non-convex and approaches the 0-1 risk for high values
of λ. DOOM II is a variant of MarginBoost.`1 that uses this risk function. The authors find
that this algorithm is more accurate than AdaBoost, especially when there is label noise
present.

Perkins et al. (2003)

This work focuses on the problem of using gradient descent in function space for regularized
risk minimization, i.e. formulations like ours (Equation 4.1) in which a model complexity
term is included explicitly in the risk. They discuss the motivation for such risk functions,
namely that minimizing an empirical, i.e. unregularized, risk can lead to overfitting. Like
our work, they focus on the binomial negative log-likelihood (a.k.a. log-loss) empirical risk.
They also discuss several common regularizers, including `0, `1, and `2, describing the
history of these regularizers, as well as their various properties and motivations.

They propose the so-called grafting algorithm for minimizing regularized risks. At each
iteration, a single feature is picked for parameter update, based on the gradient of the reg-
ularized risk with respect to this feature’s parameter. This feature is added to the working
set, and the parameters of all features in the working set are optimized using a paral-
lel update technique. Optimization stops when the regularized risk canned be decreased
any further. They describe grafting for linear models, as well as multi-layer perceptrons
(MLPs). For MLP grafting, each iteration adds either a new hidden unit or a new input
connection to an existing hidden unit.

For linear models, grafting is essentially a boosting algorithm that chooses a single
parameter to update based on the gradient of the regularized risk. The main difference is
that the default grafting procedure performs parallel updates over all working parameters,
whereas boosting uses sequential updates, i.e. only updating the single parameter chosen.

Riezler and Vasserman (2004) propose a k-best variant of grafting for minimizing the
`1-regularized log-loss. At each iteration, the k highest gradient features are added to the
working set. Parallel optimization is performed using a conjugate gradient routine. The `1

penalty might drive certain parameters to zero, especially if the k-best features overlap or,
worse yet, are redundant. For this reason, Riezler and Vasserman (2004) avoid numerical
instability by explicitly pruning these features from the working set.

43

4. Learning

Feature selection

We want to choose parameters that allow us to decrease the risk quickly. We define the
gain of a feature f as:

GΘ(I; f) = max(decrease in risk as we increase f ’s parameter value,
decrease in risk as we decrease f ’s parameter value,
decrease in risk if we leave f ’s parameter value unchanged)

(4.23)

Ideally, we could pick the parameters that will give the largest decrease in the risk when
we adjust them. For example:

• Schapire and Singer (1999) provide a decision-tree splitting criterion that directly
minimizes the unregularized exponential loss.

• Haffner et al. (2005) provide an analytic update that, for `1-regularized conditional
maxent models with binary features, is close to the optimum.

However, with most risk functions, it is not possible to analytically determine the amount
by which adjusting some parameter would reduce the risk. An alternative approach in this
case is the pick the features with the steepest gradients, i.e. we perform gradient descent in
function space (Mason et al., 1999, 2000; Perkins et al., 2003). To perform gradient descent
in function space, we specifically define GΘ(I; f) as follows:

GΘ(I; f) = max(lim
ε→0+

∂ −RΘ

∂Θf
(Θf + ε) ,

lim
ε→0−

∂ −RΘ

∂ −Θf
(Θf + ε) ,

0)

(4.24)

= max(− lim
ε→0+

∂RΘ

∂Θf
(Θf + ε) ,

lim
ε→0−

∂RΘ

∂Θf
(Θf + ε) ,

0).

(4.25)

The limits are taken from above and below, respectively. Even though risk is continuous,
it might not be continuously differentiable, so its gradient might not be defined for all
values of Θf . For example, the `1-penalty is continuous but has a gradient discontinuity at
Θf = 0. Equations 4.23–4.25 determine the gain function using three separate cases. This
analysis technique allows us to determine the gain for any continuous function, regardless
of whether it is continuously differentiable or not. We are not aware of previous work
on gradient descent in function space that has used this analysis technique. Mason et al.

44

Minimizing the risk

(1999) and Mason et al. (2000), for example, work only with continuously differentiable
cost functions. Perkins et al. (2003) and Riezler and Vasserman (2004) present `1-penalized
gain values for zero-valued parameters, but without any derivation. Our analysis technique
will be used to derive their gain values, as well as the gain for parameters that are non-zero.
If the gradient is continuous, i.e. if:

lim
ε→0+

∂RΘ

∂Θf
(Θf + ε) = lim

ε→0−

∂RΘ

∂Θf
(Θf + ε) =

∂RΘ

∂Θf
(Θf) , (4.26)

then we have:

GΘ(I; f) = max

(
−∂RΘ

∂Θf
(Θf) ,

∂RΘ

∂Θf
(Θf) , 0

)
(4.27)

=

∣∣∣∣∣∂RΘ

∂Θf
(Θf)

∣∣∣∣∣ . (4.28)

In other words, if the gradient of the risk is continuous and the gradient is not zero, then
there must be some direction that decreases the risk. The gain of the feature f is the
steepness of the gradient in the descent direction.

The gradient of the log-loss ∂LΘ
∂Θf

(Θf) is continuous (proof omitted), so we can rewrite
Equation 4.25 as:

GΘ(I; f) = max(− lim
ε→0+

∂(LΘ + λ · ΩΘ)
∂Θf

(Θf + ε) ,

lim
ε→0−

∂(LΘ + λ · ΩΘ)
∂Θf

(Θf + ε) ,

0).

(4.29)

= max(−∂LΘ

∂Θf
− λ · lim

ε→0+

∂ΩΘ

∂Θf
(Θf + ε) ,

∂LΘ

∂Θf
+ λ · lim

ε→0−
∂ΩΘ

∂Θf
(Θf + ε) ,

0).

(4.30)

To determine ∂LΘ
∂Θf

, the gradient of the unpenalized loss LΘ with respect to the parameter
Θf of feature f , we have:

∂LΘ(I)
∂Θf

=
∑
i∈I

∂l(i)
∂µΘ(i)

· ∂µΘ(i)
∂Θf

(4.31)

45

4. Learning

where:
∂µΘ(i)
∂Θf

= y(i) ·Xf (i) (4.32)

Using Equation 4.15, we define the weight of an example i under the current model as
the rate at which the examplewise loss decreases as the margin of i increases:

wΘ(i) =
∂(−l(i))
∂µΘ(i)

=
1

1 + exp(µΘ(i))
(4.33)

Recall that Xf (i) is either 0 or 1. Combining Equations 4.31–4.33 gives:

∂LΘ(I)
∂Θf

= −
∑
i∈I

Xf (i)=1

y(i) · wΘ(i) (4.34)

To determine the gradient of the penalty term, we consider several cases:

• If we are using the `1 penalty (ΩΘ =
∑

f∈F |Θf |) and Θf = 0, then we are at the
gradient discontinuity and we have:

lim
ε→0+

∂ΩΘ

∂Θf
(Θf + ε) = +1 (4.35)

lim
ε→0−

∂ΩΘ

∂Θf
(Θf + ε) = −1 (4.36)

which gives us:

GΘ(I; f) = max

(
−∂LΘ

∂Θf
− λ,

∂LΘ

∂Θf
− λ, 0

)
(4.37)

= max

(∣∣∣∣∣∂LΘ

∂Θf

∣∣∣∣∣− λ, 0

)
. (4.38)

This equation is equivalent to the gain presented, without derivation, by Perkins
et al. (2003) and Riezler and Vasserman (2004). To the best of our knowledge, the
preceding derivation is new. Observe that unless the magnitude of the gradient of
the empirical loss |∂LΘ(I)/∂Θf | exceeds the penalty term λ, the gain is zero and
the risk increases as we adjust parameter Θf away from zero in either direction. In
other words, the parameter value is trapped in a “corner” of the risk. In this manner
the polyhedral structure of the `1 norm tends to keep the model sparse (Riezler and
Vasserman, 2004). Dud́ık et al. (2007) offer another perspective, pointing out that `1

regularization is “truly sparse”: if some feature’s parameter value is zero when the
risk is minimized, then the optimal parameter value will remain at zero even under

46

Minimizing the risk

slight perturbations of the feature’s expected value and of the regularization penalty.
However, if the gain is non-zero, GΘ(I; f) is the magnitude of the gradient of the risk
as we adjust Θf in the direction that reduces RΘ.

• If we are using the `1 penalty and Θf 6= 0, then we have:

∂ΩΘ

∂Θf
(Θf) = sign(Θf) (4.39)

which gives us:

GΘ(I; f) =

∣∣∣∣∣∂LΘ

∂Θf
+ λ · sign(Θf)

∣∣∣∣∣ (4.40)

• If we are using the `2 penalty (ΩΘ =
∑

f∈F Θf
2), then we have:

∂ΩΘ

∂Θf
(Θf) = 2 ·Θf (4.41)

which gives us:

GΘ(I; f) =

∣∣∣∣∣∂LΘ

∂Θf
+ λ · 2 ·Θf

∣∣∣∣∣ (4.42)

The `2-regularization term disappears when Θf = 0, and so—for unused features—`2-
regularized feature selection is indistinguishable from unregularized feature selection.
The only difference is that the `2 penalty term reduces the magnitude of the optimal
parameter setting for each feature. This is why `2-regularization typically leads to
models where many features are active (non-zero).

Compound feature selection

Although hΘ is just a linear discriminant, it can nonetheless learn effectively if feature
space F is high-dimensional. Features encode information about the inference in question.
A priori, we define only a set A of simple atomic features (sometimes also called attributes
or primitive features), specified in Section 6.3.

Feature construction or induction methods are learning methods in which we induce
a more powerful machine than a linear discriminant over just the attributes, and the power
of the machine can be data-dependent. This is in comparison to non-linear methods whose
non-linearity is chosen a priori, such as is typical in choosing the network structure for
neural networks or the kernel for SVMs. Choosing network structure or a kernel to optimize
the objective typically requires significant human effort, and the goal of automatic feature
induction techniques is to reduce this effort.

Our learner induces compound features, each of which is a conjunction of possibly
negated atomic features. Each atomic feature can have one of three values (yes/no/don’t

47

4. Learning

care), so the compound feature space F has size 3|A|, exponential in the number of atomic
features. Each feature selection iteration selects a set of domain-partitioning features. The
domain is the inference space, i.e. the space of all possible inferences. Specifically, a set
of features F̃ partition the inference space iff:

• F̃ covers I:
∀i ∈ I,∃f ∈ F̃ s.t. Xf (i) = 1 (4.43)

and

• all pairs of features in F̃ are mutually-exclusive (or non-overlapping):

∀i ∈ I, f, f ′ ∈ F̃ , if Xf (i) = 1 and Xf ′(i) = 1 then f = f ′. (4.44)

In other words, for any inference i, there is a unique feature f in the partition F̃ such that
Xf (i) = 1, and Xf ′(i) = 0 for all other features. In this case, we say that i falls in f ’s
partition, and we write If to indicate all inferences that fall in f .

One way to choose a set of domain-partitioning compound features is through greedy
splitting of the inference space. This is the approach taken by decision trees, for some
particular splitting criterion. Since we wish to pick splits that allow us to reduce risk, our
splitting criterion uses the gain function. In particular, assume that we have two different
two-feature partitions of some subspace of the inference space. The features f1 and f2 are
one partition, and f1

′ and f2
′ are the other. Without loss of generality, we assume:

GΘ(f1) ≥ GΘ(f2), (4.45)
GΘ(f1

′) ≥ GΘ(f2
′), (4.46)

and
GΘ(f1) ≥ GΘ(f1

′). (4.47)

If GΘ(f2) ≥ GΘ(f2
′) then the first partition is preferable to the second because its gains

are no worse. For example, if we have:

GΘ(f1) = 5, GΘ(f2) = 3 (4.48)
and

GΘ(f1
′) = 4, GΘ(f2

′) = 2 (4.49)

then we should prefer partitioning using f1 and f2. However, consider the possibility that
GΘ(f2) < GΘ(f2

′). The choice of partitioning is less clear if:

GΘ(f1) = 5, GΘ(f2) = 2 (4.50)

48

Minimizing the risk

and
GΘ(f1

′) = 4, GΘ(f2
′) = 3 (4.51)

One possibility is to treat the goodness of each partition as, respectively, max(GΘ(f1), GΘ(f2))
and max(GΘ(f1

′), GΘ(f2
′)). Another possibility is to treat the goodness of each partition

as GΘ(f1)+GΘ(f2) and GΘ(f1
′)+GΘ(f2

′), respectively. Addition worked better in prelim-
inary experiments using `1 regularization, so we used it in our work. The work of Mason
et al. (2000) and Mason et al. (1999), who studied a related problem, motivate this choice
theoretically using a first-order Taylor expansion.

Model update

After we have selected one or more high-gain features, we update the model. Parallel up-
date methods can adjust the parameter values of overlapping features to minimize the risk.
Stage-wise or sequential update methods adjust the parameter values of non-overlapping
features to minimize the risk, each of which can be optimized independently, e.g. using line
search. Since domain-partitioning features are non-overlapping, we use sequential updates
to choose parameter values.

Boosting regularized decision trees

To summarize, our approach to minimizing the risk is divided into feature selection and
model update. Feature selection is performed using gradient descent in the compound
feature space through a greedy splitting procedure. Model update is performed using a
sequential update method.

Our specific implementation of this risk minimization approach is to boost an ensemble
of confidence-rated decision trees. This boosted ensemble of confidence-rated decision trees
represents Θ. We write ∆Θ(t) to represent the parameter values chosen by tree t, and for
ensemble T :

Θ =
∑
t∈T

∆Θ(t) (4.52)

Each internal node is split on an atomic feature. The path from the root to each node n in
a decision tree corresponds to a compound feature f, and we write ϕ(n) = f. An example i
percolates down to node n iff Xϕ(n) = 1. Each leaf node n keeps track of delta-parameter
value ∆Θϕ(n)(t). To score an example i using a decision tree, we percolate the example
down to a leaf n and return confidence ∆Θϕ(n)(t). The score hΘ(i) given to an example i
by the whole ensemble is the sum of the confidences returned by all trees in the ensemble.

Listing 4.1 presents our training algorithm. At the beginning of training, the ensemble
is empty, Θ = 0, and λ is set to ∞. We grow the ensemble until the risk cannot be further
reduced for the current choice of λ. So for some choice of penalty factor λ′, our model
is the ensemble up until when λ was decayed below λ′. We then relax the regularizer by

49

4. Learning

Listing 4.1: Outline of the training algorithm.

1: procedure Train(I)
2: ensemble← ∅
3: regularization parameter λ←∞
4: while not converged do
5: g ← maxa∈A(|∂LΘ/∂Θ∅|, |∂LΘ/∂Θa|, |∂LΘ/∂Θ¬a|) . Find the best

. unpenalized gain of any root split
6: λ← min(λ, η · g) . Maybe decay the penalty parameter

. so that training can progress
7: ∆Θ(t)← BuildTreeΘ(λ, I)
8: if RΘ+∆Θ(t) < RΘ + ε then . If we have reduced loss by some threshold
9: Θ← Θ + ∆Θ(t) . Then keep the tree and update the model

10: else . Otherwise, we have converged for this choice of λ
11: λ← η · λ . Decay the penalty parameter

12: procedure BuildTreeΘ(t, I)
13: while some leaf in t can be split do
14: split the leaf to maximize gain . See Equation 4.54
15: percolate every i ∈ I to a leaf node
16: for each leaf n in t do
17: ∆Θϕ(n)(t)← arg min∆Θϕ(n)(t)

(RΘ+∆Θϕ(n)(t)(Iϕ(n))) . Choose ∆Θϕ(n)(t) to
. minimize RΘ using a line search

18: return ∆Θ(t)

decreasing λ and continue training. We use the decay factor η = 0.9 as our learning rate.
In this way, instead of choosing the best λ heuristically, we can optimize it during a single
training run.

Each invocation of BuildTree has several steps. First, we choose some compound
features that will allow us to decrease the risk function. We do this by building a decision
tree, whose leaf node paths represent the chosen compound features. Second, we confidence-
rate each leaf to minimize the risk over the examples that percolate down to that leaf.
Finally, we append the decision tree to the ensemble and update parameter vector Θ
accordingly. In this manner, compound feature selection is performed incrementally during
training, as opposed to a priori.

The construction of each decision tree begins with a sole leaf node, the root node, which
corresponds to a dummy “always true” feature ∅. By always true, we mean that X∅(i) = 1
for any example i. We recursively split leaf nodes by choosing the best atomic splitting

50

Minimizing the risk

feature that will allow us to increase the gain. Specifically, we consider splitting each leaf
node n using atomic feature â, where

â = arg max
a∈A

[GΘ(I; f ∧ a) + GΘ(I; f ∧ ¬a)] (4.53)

Splitting using â would create children nodes n1 and n2, with ϕ(n1) = f ∧ â and ϕ(n2) =
f ∧¬â. We split node n using â only if the total gain of these two children exceeds the gain
of the unsplit node, i.e. if:

GΘ(I; f ∧ â) + GΘ(I; f ∧ ¬â) > GΘ(I; f) (4.54)

Otherwise, n remains a leaf node of the decision tree, and Θϕ(n) becomes one of the values
to be optimized during the parameter update step.

Parameter updates are done sequentially on only the most recently added compound
features, which correspond to the leaves of the new decision tree. After the entire tree is
built, we percolate each example down to its appropriate leaf node. As indicated earlier,
a convenient property of decision trees is that the leaves’ compound features are mutually
exclusive, so their parameters can be directly optimized independently of each other. We
use a line search to choose for each leaf node n the parameter Θϕ(n) that minimizes the
risk over the examples in n.

51

§ Fifth Chapter §

Optimizations and

Approximations

Premature optimization is the root of all evil.

Donald E. Knuth

5.1 Parallelization

If we have some set of features that partition the inference space, the risk of each parti-
tion can be minimized independently, in isolation (as discussed in Section 4.2). For this
reason, we can perform piece-wise optimization of the risk, asynchronously in parallel. We
parallelized training by inducing 26 separate classifiers, one for each non-terminal label in
the Penn Treebank. These classifiers each independently optimize the examples that infer
items with a particular label. Consider the NP-classifier. It optimizes only those inferences
for which the feature “the item being inferred is labeled NP” holds. Call this feature a. The
NP-classifier only adjusts the parameters in Θ corresponding to compound features that
include a. The drawback of this approach is that it introduces data fragmentation. Only
parameters involving one of the aforementioned features can be adjusted. We cannot use
features that detect trends across labels.

Ratnaparkhi (1999)’s parser had three phases: POS tagging, chunking, and constituent
building. These were each trained in parallel, but Ratnaparkhi did not decompose the
training of the multiclass inferences within each phase. Clark and Curran (2003) and Clark
and Curran (2004) trained log-linear parsing models in parallel. However, their parallel
implementations required message passing because their loss function includes a normal-
ization term (partition function). Yamada and Matsumoto (2003) introduced the idea of
asynchronous parallelization for training of discriminative parsers. They partitioned train-
ing examples by the POS tag of the leftmost child. Sagae and Lavie (2005) and Turian and
Melamed (2005) simultaneously published results with parallelized discriminative training

53

5. Optimizations and Approximations

for constituent parsing. Sagae and Lavie (2005) parallelized examples using the same splits
as Yamada and Matsumoto (2003), whereas Turian and Melamed (2005) parallelized ac-
cording to the label of the constituent being inferred. Wellington et al. (2006) and Turian
et al. (2007) followed this approach and presented the first purely discriminative learn-
ing algorithm for translation with tree-structured models. One of the key factors in their
success was parallelizing training into 40,000 different classifiers, one for each word in the
source language.

Parallelization might not uniformly reduce training time because different classifiers
train at different rates. However, parallelization uniformly reduces memory usage because
each label’s classifier trains only on inferences whose consequent item has that label.

Calibration

The previous section described how to train each label classifier in isolation. One key
question remains: How do we calibrate the label classifiers with respect to F1, to choose
the overall parser?

In boosting an ensemble of decision trees, traditionally there is parameter T—the num-
ber of boosting iterations, i.e. the number of trees in the ensemble—which is typically
chosen through cross-validation: T is chosen as the value that minimizes error on a held-
out development set. One could imagine picking a single T , fixed across all labels. However,
there is little reason to believe a priori that the a good T for one label will be good for every
other label. Indeed, the different label classifiers train at different rates, so the relationship
between generalization accuracy and T varies across labels.

Trying all possible combinations of stopping points for different classifiers would be
prohibitive, as parsing is expensive. Instead, we tie the regularization penalty λ for each
classifier. During cross-validation, we vary λ and parse all the different classifiers trained
through this λ. We choose the value of λ that maximize F1 on development data. The down-
side of this approach is that it implicitly assumes that each different label has the same
noise level, and hence should have the same regularization penalty factor. This assumption
is demonstrably false. Magerman (1995) found that annotation of PRT (particle) was in-
consistent, and introduced the convention of converting PRT to ADVP (adverbial phrase) in
preprocessing. The exploratory data analysis in Turian and Melamed (2006a) finds that,
of all the common labels, annotation of ADVP and ADJP is particularly inconsistent. This
discussion points towards another weakness of our approach: We apply the same strength
prior to all features. Perkins et al. (2003) note that certain features might warrant stronger
regularization than others. For example, they suggest that the constant offset term should
be unregularized. This parameter corresponds to the root’s “always true” feature. This fea-
ture is so common that its parameter value will be nearly identical regardless of whether
we regularize it or not. Perkins et al. (2003) offer no more advice about how to choose dif-
ferent regularization terms for different features. It might be inappropriate to assume that
compound features have the same weight prior. We could potentially penalize compound

54

Parallelization

features in proportion to their length. In this case, we would have no prior on the constant
offset term.

There is another possible calibration technique that does not require tying the reg-
ularization penalty for different classifiers. Classifier penalty are chosen to optimize the
statewise error, which is a surrogate of the PARSEVAL F1. Computing the statewise error
is significantly faster than computing the PARSEVAL F1, which requires parsing.

To summarize, the reasons we can parallelize training are:

• Examples are generated prior to training, independent of the model. In comparison,
generating training examples using a working parser is an inherently sequential step.
However, parallel training could be occasionally punctuated by sequential example
generation.

• During training itself, risk minimization can be asynchronously parallelized because
the examplewise-loss can be decomposed and optimized piece-wise.

and

• The regularization penalty factor λ is used at the end of training to calibrate the
classifiers with respect to F1. Since we tie using the regularization parameter, cross-
validation cannot happen asynchronously.

We don’t know how to parallelize training of ordinary boosting where the risk is not
explicitly regularized and there is no penalty factor, because we don’t know a good criterion
on which to calibrate.

55

5. Optimizations and Approximations

5.2 Sampling for faster feature selection

Building a decision tree using the entire example set I can be expensive. This is especially
true if the training set and atomic feature space are large enough that the atomic feature
matrix does not fit in memory. The atomic feature matrix caches the value of X(i) for
example training example i. If the atomic feature matrix is not stored in memory, then
decision tree building will require repeated feature extraction, which is expensive. Paral-
lelization uniformly reduces memory usage by the classifiers, but not enough so that the
atomic feature matrix fits in memory.

Feature selection can be effective even if we don’t examine every example. Since the
weight of high-margin examples can be several orders of magnitude lower than that of
low-margin examples (Equation 4.33), the contribution of the high-margin examples to the
unpenalized loss gradient (Equation 4.34) will be insignificant. Therefore, we can ignore
most examples during feature selection as long as we have a good estimate of the gradient
of the unpenalized risk, which in turn gives a good estimate of the gain (Equation 4.30).

Before building each decision tree we use priority sampling (Duffield et al., 2005) to
choose a small subset of the examples according to the example weights given by the current
classifier, and the tree is built using only this subset. We make the sample small enough
that its entire atomic feature matrix will fit in memory. To optimize decision tree building,
we compute and cache the sample’s atomic feature matrix in advance. Model update, in
which the decision tree leaves are confidence-rated, is performed using the entire training
set.

The priority sampling procedure to pick a sample S from I is as follows: Fix a sample
size |S| < |I|. We have |I| examples with weights wΘ(i1), . . . , wΘ(i|I|), computed as in
Equation 4.33. We independently draw |I| values β1, . . . , β|I| uniformly at random from
(0, 1]. The priority of the nth example is q(in) = wΘ(in)/βn, and the sample contains the
|S| examples with the highest priority. Let τ be the |S|+ 1th highest priority. Example
in in the sample has sample weight w̃Θ(in) = max(wΘ(in), τ), and any example not in
the sample has sample weight 0. Duffield et al. (2005) show that E[w̃Θ(in)] = wΘ(in). By
linearity of expectation, E[GΘ(S, f)] = GΘ(I, f) for any feature f . In other words, gains
computed over the sample are unbiased estimates of the gain computed over the entire
training set.

Even if the sample is missing important information in one iteration, the training
procedure is capable of recovering it from samples used in subsequent iterations. Moreover,
even if a sample’s gain estimates are inaccurate and the feature selection step chooses
irrelevant compound features, confidence updates are based on the entire training set and
the regularization penalty will prevent irrelevant features from having their parameters
move away from zero.

56

Sampling for faster feature selection

Related work on sampling in boosting

In the boosting by filtering framework (Freund, 1995), examples are sampled by weight.
Duffield et al. (2005, Section 1.3) examined classical sampling schemes, including over
50 schemes based on weight-sensitive sampling without replacement. They conclude that
they do not provide unbiased estimates of subset sums. It follows that the gain estimates
are biased in boosting by filtering approaches. Friedman et al. (2000, Section 9) propose
sampling by “weight trimming”, in which only the highest weight examples are used in
each iteration. This approach too gives biased gradient estimates.

Our use of priority sampling is different from stochastic gradient boosting (Friedman,
2002) in several respects. The sample used by Friedman (2002) is chosen uniformly at
random, without replacement, from the training set. The weights remain unchanged, so
the sample’s estimate of the risk gradient is biased. Friedman (2002) uses the sample not
only for feature selection, but also for model updates. As discussed in Section 5 of Turian
and Melamed (2006b), we cannot avoid using the entire example set for model updates.
Otherwise, our example weights will be incorrect, and the subsequent sample will be biased.
Friedman (2002) does not encounter this limitation because his sampling procedure does
not need the example weights.

As far as we know, Turian and Melamed (2006b) was the first work to use provably
unbiased estimates of the risk gradients for feature selection. Parallelizing training and
using sampling gave a 100-fold increase in training speed over the näıve approach, as
described by Turian and Melamed (2006b).

57

§ Sixth Chapter §

Experiments

Much of the excitement we get out of our work is
that we don’t really know what we are doing.

Edsger W. Dijkstra

6.1 Data

We trained and tested on ≤ 15 word sentences from the English Penn Treebank (Marcus
et al., 1993; Taylor et al., 2003). Our data splits are non-standard. Historically (Taskar et al.,
2004b; Turian and Melamed, 2006a), sections 02–21 were used for training, section 22 was
used for model selection (cross-validation), and section 23 was used for testing. However,
this partitioning does not allow us to evaluate the generalization of cross-validated models
to unseen data without re-using the test data. By convention, opening a new section of the
Penn Treebank is discouraged. We used the following data splits:

• Training comprised sections 02–21 minus 400 randomly chosen sentences, a total of
9353 sentences.

• “Tuning” comprised these 400 sentences, and was used for model selection during
cross-validation. We used 400 randomly sampled sentences rather than an entirely
different section of the Penn Treebank to avoid topic shift.

• Section 22 was used as development data, to determine the generalization of the
model selected over the tuning data. There were 421 sentences.

• Section 23 was used as the final test data, a total of 603 sentences.

We might be able to get higher accuracy by training on the entire training set. However, it
would limit our ability to run controlled experiments that evaluate generalization accuracy.
We have many models to pick between, one for each possible penalty factor λ. With many

59

6. Experiments

Listing 6.1: Steps for preprocessing the data. Starred steps are performed only when
parse trees are available in the data (e.g. not at test time).

1. * Strip functional tags and trace indices, and remove traces.
2. * Convert PRT to ADVP. (This convention was established by Magerman (1995).)
3. Remove quotation marks (i.e. terminal items tagged ‘‘ or ’’) (Bikel, 2004a). Anno-

tation of quotation marks is “at the very bottom of the pecking order.” (Bies et al.,
1995, pg. 54)

4. * Raise punctuationa (Bikel, 2004a).
5. Remove outermost punctuation.b

6. * Remove unary projections to self (i.e. duplicate items with the same span and
label).

7. POS tag the text using the tagger of Ratnaparkhi (1996).
8. Lowercase headwords.

a evalb ignores punctuation placement, so we might as well normalize it.

b As pointed out by an anonymous reviewer of Collins (2003), removing outermost punctuation might
discard useful information. Collins and Roark (2004) saw a LFMS improvement of 0.8% over their base-
line discriminative parser after adding punctuation features, one of which encoded the sentence-final
punctuation.

models, model selection to maximize F1 might “overfit” the cross-validation data (Ng,
1997). Turian and Melamed (2006a) observed a drop of 1.15% F1 from cross-validation
to test. This could be because of overfitting the cross-validation data, or because of topic
shift.

We evaluated our parser using the standard PARSEVAL measures (Black et al., 1991):
labeled precision, labeled recall, and labeled F-measure (Prec., Rec., and F1, respectively),
which are based on the number of non-terminal items in the parser’s output that match
those in the gold-standard parse. We computed the PARSEVAL measures using the 20060317
release of evalb, available at http://nlp.cs.nyu.edu/evalb/. Note that items labeled TOP
are not scored.

The correctness of a stratified shuffling test (Noreen, 1989, Section 2.7) has been called
into question (Michael Collins, p.c.), but we are not aware of any better significance tests for
observed differences in PARSEVAL measures. So we used stratified shuffling with 100,000
trials to test whether the observed F1 differences are significant at p = 0.05. We used an
implementation of stratified shuffling written by Dan Bikel (http://www.cis.upenn.edu/
~dbikel/software.html). We modified it to compute p-values for F1 differences.

60

Logic

Preprocessing

Data were preprocessed as per Listing 6.1. Our parser does not automatically infer terminal
constituents, i.e. part-of-speech tags. In principle, there is no reason we couldn’t train the
system to make terminal inferences as part of its parsing. However, that is beyond the scope
of this work, so to obtain POS tags we use the tagger described in Ratnaparkhi (1996).

6.2 Logic

Parsing strategies

To demonstrate the flexibility of our learning procedure, we trained parsers with three
different parsing strategies:

• left-to-right (l2r),

• right-to-left (r2l), and

• non-deterministic bottom-up (b.u.).

The non-deterministic parser was allowed to choose any bottom-up inference. The other
two parsers were deterministic: bottom-up inferences had to be performed strictly left-to-
right or right-to-left, respectively. An example of r2l parsing is shown in Figure 6.1. An
example of b.u. parsing is shown in Figure 6.2. B.u. could have pursued several different
paths to obtain the final tree, including the path shown in Figure 6.1. However, the r2l
parser has only a unique path to the final tree. If it were following the path in Figure 6.2, it
would have been prohibited from inferring “(NP the book)” because that inference is right
of “(NP him)”.

Additional validity restrictions on inferences

Besides validity restrictions for inferences imposed by the parsing task (Chapter 2) and the
parsing strategy (Section 6.2), we place several additional restrictions on inferences:

• There are l ·n2 possible (span, label) pairs over a frontier containing n items, where l
is the number of different labels. We reduce this to the O(l · 5n) inferences that have
at most five children. Only 0.57% of non-terminals in the preprocessed development
data have more than five children.

• To ensure the parser does not enter an infinite loop, no two items in a state can
have both the same span and the same label. Hence, if the inference is a unary
projection, we disallow it if it projects to an item with the same label as any unary
chain descendants. For example, if an SBAR was inferred as a parent of frontier item

61

6. Experiments

Figure 6.1: An example of deterministic right-to-left bottom-up parsing. POS tags in the
terminals are omitted.

I also gave to him a book
⇓

I also gave to him

NP

booka
⇓

I also gave to

NP

him

NP

booka
⇓

I also gave

PP

NP

himto

NP

booka
⇓

I

ADVP

also

PP

NP

himto

NP

booka
⇓

I

VP

NP

booka

PP

NP

himtogave

ADVP

also
⇓

NP

I

VP

NP

booka

PP

NP

himtogave

ADVP

also
⇓
...

62

Logic

Figure 6.2: An example of non-deterministic bottom-up parsing. POS tags in the termi-
nals are omitted. The final inference, TOP, is also omitted.

I also gave to him a book
⇓

I also gave to

NP

him a book
⇓

I

ADVP

also gave to

NP

him a book
⇓

I

ADVP

also gave to

NP

him

NP

booka
⇓

I

ADVP

also gave

PP

NP

himto

NP

booka
⇓

NP

I

ADVP

also gave

PP

NP

himto

NP

booka
⇓

NP

I

VP

NP

booka

PP

NP

himtogave

ADVP

also
⇓

S

VP

NP

booka

PP

NP

himtogave

ADVP

also

NP

I

63

6. Experiments

Figure 6.3: A candidate l-inference unary projection. l cannot be SBAR or S.

l

SBAR

S

VPNP

S, which in turn had been inferred as a parent of frontier items NP and VP, then this
SBAR cannot become the sole child of an SBAR item or an S item. This example is
depicted by Figure 6.3.

• Because we raise punctuation during preprocessing (Step 4 in Listing 6.1), no in-
ference can have punctuation as an outermost item. So, the leftmost and rightmost
frontier items spanned by the inference’s item must not be punctuation items.

Given these restrictions on candidate inferences, the r2l parsing strategy generated 40.1
million training examples, b.u. generated 43.9 million training examples, and l2r generated
32.4 million training examples. Bottom-up generates the most training examples because
all b.u. inferences at each state are permitted. l2r generates the fewest training examples
because of the right-branching tendency of English: After performing a correct far-right
inference, inferences to its left are subsequently prevented. In each of these training sets,
9598 are TOP-inferences. The rest are evenly distributed between the 25 different non-
terminal labels.

The main limitation of our work is that we can do training reasonably quickly only
on short sentences because a sentence with n words generates O(n) inferences per state ×
O(n) states per sentence = O(n2) training inferences total. Although generating training
examples in advance without a working parser is much faster than using inference (Collins
and Roark, 2004; Henderson, 2004; Taskar et al., 2004b), our training time can probably
be decreased further by choosing a parsing strategy with a lower branching factor. Like
our work, Ratnaparkhi (1999) and Sagae and Lavie (2005) generate examples off-line, but
their parsing strategies are essentially shift-reduce so each sentence generates only O(1)
inferences per state × O(n) states per sentence = O(n) training examples. Sagae and Lavie
(2005), for example, had only 1.5 million training examples total over the entire English
Penn Treebank training set.

64

Features

Figure 6.4: A candidate VP-inference, with head-children annotated.

VP (got)

Frontier −→ NP (He)VBD / got NP (trucks) ADVP (cheap)

PRP / He NP (trucks) CC / and NP (backhoe) RB / cheap

CD / three NNS / trucks DT / a NN / backhoe

6.3 Features

We define the atomic feature tests that can be performed on some candidate inference. A
note on terminology:

• The frontier of a state consists of the items with no parents yet.

• The children of a candidate inference are the frontier items below the item to be
inferred i.e. those items that would become the children of the non-terminal item
which we are considering adding to the state. For example, in Figure 6.4 the children
are “VBD/ got”, “NP (trucks)”, and “ADVP (cheap)”.

• The left and right context items are the frontier items to the left and right of the
children of the candidate inference, respectively. For example, in Figure 6.4 the first
item of left context (counting from the children out) is “NP (He)”, and there are no
right context items.

• The head child (sometimes also called the heir or the governor) of a candidate
inference is the child item chosen by English head rules (Collins, 1999, pp. 238–
240). Intuitively, the head child is the child item distinguished as being the most
informative. Following the head-child path to a terminal gives us an item’s head
word. For example, in Figure 6.4 the head child is “VBD/ got” and the head word is
“got”.

Our atomic feature set A contained features of the form “is there an item in group
J whose (label/headword/headtag/headtagclass) is X?”. The predicate headtagclass is a
supertype of the headtag. Given our compound features, these are not strictly necessary,
but they accelerate training. An example is “proper noun,” which contains the POS tags
given to singular and plural proper nouns. See Table 6.2. Possible values of X for each
predicate were collected from the training data. Possible values for J are given in Table 6.1.

65

6. Experiments

Table 6.1: Item groups available in the default feature set. Length features only use the
starred item groups.

• the first/last n child items, 1 ≤ n ≤ 4
• the first n left/right context items, 1 ≤ n ≤ 4
• the n children items left/right of the head, 1 ≤ n ≤ 4
• the nth frontier item left/right of the leftmost/head/rightmost child item, 1 ≤ n ≤ 3
• the nth terminal item left/right of the leftmost/head/rightmost terminal item dom-

inated by the item being inferred, 1 ≤ n ≤ 3
• the leftmost/head/rightmost child item of the leftmost/head/rightmost child item
• * the following groups of frontier items:

– * all frontier items
– * children items
– * left/right context items
– * non-leftmost/non-head/non-rightmost child items
– * child items left/right of the head item, inclusive/exclusive

• * the terminal items dominated by one of the item groups in the indented list above

All features are of this form, except for length features (Eisner and Smith, 2005). Length
features are of the form: “is the number of items in group J (equal to/greater than) n”, with
0 ≤ n ≤ 15. These feature templates gave rise to 1.13 million different atomic features. Our
features are fine-grained compared to entire context-free production rules. The compound
feature space, however, includes context-free rule features, as well as many of the features
used by Collins and Koo (2005) and Klein and Manning (2003b), among others. In future
work, we plan to try linguistically more sophisticated features (Charniak and Johnson,
2005) as well as sub-tree features (Bod, 2003; Kudo et al., 2005).

66

Features

Table 6.2: POS tag classes, and the POS tags they include. Based on Melamed (1995).

Class POS tags
CD CD

LS

CJ CC
,
:

D DT
PDT
PRP$
WDT

EOS .

IN IN
RP
TO

J JJ
JJR
JJS

N $
NN
NNS

NP NNP
NNPS

P EX
POS
PRP
WP
WP$

R RB
RBR
RBS
WRB

SCM ‘‘
’’
-LRB-
-RRB-

SYM #
SYM

UH UH

UK FW

VBG VBG

VBN VBN

V MD
VB
VBD
VBP
VBZ

67

Results

6.4 Results

To summarize, our default settings are as follows:

• Our search algorithm is greedy completion.

• The limit γ on the maximum number of paths to score during parsing is 100,000.

• We use `1-regularization.

• We perform feature selection over the compound feature space, not the atomic feature
space. I.e. we induce entire decision trees, not decision stumps.

• We use all the features given in Section 6.3.

• The sample size used during decision tree building is 100,000 examples.

• The learning rate η is 0.9.

We perform experiments that vary each of these choices in turn.

Search strategy: Best-first vs. Greedy completion

We compare the two search strategies described in Chapter 3, greedy-completion and best-
first search. We trained a b.u. model with `1-penalty parameter λ = 1. We use this model
to parse the development data, varying the search strategy and γ (the limit on search
effort). Figure 6.5 shows that, in the non-deterministic setting, best-first parsing does poorly
compared to greedy completion. If they do the same amount of work, greedy completion
finds a better solution on more than 60% of sentences. Moreover, best-first search frequently
can’t even find a solution in the time allotted. The non-deterministic parser can reach each
parse state through many different paths, so it searches a larger space than a deterministic
parser, with more redundancy. Best-first parsing flounders in the non-deterministic case
because it is more susceptible to spurious ambiguity than greedy completion: It prefers
to invest search effort finding different paths to low-cost states with few items, rather than
finding complete solutions.

With a deterministic logic, greedy completion might do more work during search than
best first. We trained l2r and r2l models with `1-penalty parameter λ = 1. For each of these
models, we measured the amount of search done to find an optimal solution using greedy
completion and best first. We compared the search effort of the two search strategies on
a per-sentence basis. Figure 6.6 shows that, in the deterministic case, greedy completion
requires only slightly more effort than best first search to find the optimal solution. Given
that greedy completion was more robust than best-first search, we use greedy completion
in the remaining experiments.

69

6. Experiments

Figure 6.5: Parsing performance of the best-first parser as we vary the maximum number
of partial parses scored. We parse the 421 sentences in the development data using the b.u.
parser trained with `1-penalty parameter λ = 1.
Best-first “beats” greedy completion if it find a solution whose cost is no more than the so-
lution found by greedy completion, scoring no more partial parses than greedy completion.
Otherwise, greedy completion has found a better solution given the current limit γ.

0%

20%

40%

60%

80%

100%

 10000 100000 1e+06
0%

20%

40%

60%

80%

100%

%
 s

en
te

nc
es

Maximum number of partial parses scored

Best-first parsing fails
Best-first beats greedy completion

70

Results

Figure 6.6: Number of partial parses scored to find the optimal solution, using best-
first and greedy-completion parsing, on each sentence. We parse the 421 sentences in the
development data using the (a) l2r and (b) r2l parsers trained with `1-penalty parameter
λ = 1. The parsers never needed to score more than 100,000 partial parses to find the
optimal solution, except for one sentence. This sentence was “For the moment, at least,
euphoria has replaced anxiety on Wall Street.” On this sentence, the best-first parser scored
323,497 partial parses, and greedy completion scored 323,703 (206 more). This sentence
also required the most effort by the l2r parser, and is the point in the upper-right of (a).

(a)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

P
ar

tia
l p

ar
se

s
sc

or
ed

 b
y

gr
ee

dy
 c

om
pl

et
io

n

(b)

 0

 20000

 40000

 60000

 80000

 100000

 0 20000 40000 60000 80000 100000

P
ar

tia
l p

ar
se

s
sc

or
ed

 b
y

gr
ee

dy
 c

om
pl

et
io

n

Partial parses scored by best-first search

71

6. Experiments

Cross-validated runs

In the following experiments, we plot the F1 of each parser on the tuning data as training
progresses. For each model, we cross-validated the penalty term λ by picking the value
that gave highest F1 on the tuning data. To measure generalization, we evaluated each
cross-validated model on our development set. These results are given in Table 6.3, as well
as measurements of the model sizes. Model sizes are presented using three measures:

• the number of compound feature types (non-zero parameters in the model),

• the number of decision trees built,

and

• the number of leaves over all trees (including those with zero delta-confidence).

Training time is roughly proportional to the number of leaves and all runs’ training time are
proportional to the number of leaves by the same constant factor, except where otherwise
stated.

72

R
e
s
u
l
t
s

Table 6.3: PARSEVAL measures of the parsers with λ chosen to maximize F1 on the tuning data. When not stated,
the parsing strategy is r2l. A shaded cell means that the difference between this value and that of the r2l parser
is statistically significant. The last three columns give measures of the size of the model: the number of compound
feature types (non-zero parameters in the model), the number of decision trees built, and the number of leaves over
all trees (including those with zero delta-confidence). The top section is given in exposition order, the bottom section
is sorted by F1 on the development set.

Tune Tune Tune Dev Dev Dev # # #
Run λ Rec. Prec. F1 Rec. Prec. F1 compounds trees leaves
r2l 0.1090 91.84 91.92 91.88 90.39 90.08 90.24 3957 4011 154590
b.u. 0.0714 91.54 91.46 91.50 89.45 88.69 89.07 5015 5071 209920
l2r 0.1168 90.39 91.44 91.18 88.80 88.91 88.86 4675 4737 192619
r2l (stumps) 0.1012 86.05 87.07 86.56 83.91 85.01 84.46 19421 53238 105079
b.u. (stumps) 0.1093 84.85 86.81 85.82 83.21 83.75 83.48 19708 57367 113474
l2r (stumps) 0.1178 86.14 87.89 87.01 83.88 84.86 84.37 20231 60489 119638
`2 0.6265 90.19 90.51 90.35 89.45 89.69 89.57 360371 832 367253
unreg gain 0.1868 91.57 91.68 91.63 89.51 89.20 89.35 2084 2240 1481574
10K sample 0.0370 92.01 91.69 91.85 89.86 88.92 89.39 6221 5175 242202
decay factor η =0.1 0.0036 91.60 91.65 91.63 89.69 89.29 89.49 7345 666 110526
r2l 0.1090 91.84 91.92 91.88 90.39 90.08 90.24 3957 4011 154590
`2 0.6265 90.19 90.51 90.35 89.45 89.69 89.57 360371 832 367253
decay factor η =0.1 0.0036 91.60 91.65 91.63 89.69 89.29 89.49 7345 666 110526
10K sample 0.0370 92.01 91.69 91.85 89.86 88.92 89.39 6221 5175 242202
unreg gain 0.1868 91.57 91.68 91.63 89.51 89.20 89.35 2084 2240 1481574
b.u. 0.0714 91.54 91.46 91.50 89.45 88.69 89.07 5015 5071 209920
l2r 0.1168 90.39 91.44 91.18 88.80 88.91 88.86 4675 4737 192619
r2l (stumps) 0.1012 86.05 87.07 86.56 83.91 85.01 84.46 19421 53238 105079
l2r (stumps) 0.1178 86.14 87.89 87.01 83.88 84.86 84.37 20231 60489 119638
b.u. (stumps) 0.1093 84.85 86.81 85.82 83.21 83.75 83.48 19708 57367 113474

73

6. Experiments

Parsing strategies: L2R vs. R2L vs. B.U.

We trained models with the default settings on page 69, but varying the parsing strategy.
Figure 6.7 shows the learning curves of parsers using three different parsing strategies: l2r,
r2l, and b.u. Of all three parser, l2r has the worst F1 on both tuning and development.
All its PARSEVAL measures are significantly lower than those of the r2l parser on the
development set. l2r does poorly because its decisions were more difficult than those of the
other parsers. If it inferred far-right items, it was more likely to prevent correct subsequent
inferences that were to the left. But if it inferred far-left items, then it went against the
right-branching tendency of English sentences. The l2r parser would likely improve if we
were to use a left-corner transform (Collins and Roark, 2004). The hypothesis that learning
a l2r model is more difficult than learning a r2l model is corroborated by the tree size
measurements given in Table 6.3. The r2l model requires less effort to train further (lower
λ).

Although agenda-driven search is not guaranteed to find the optimal solution to Equa-
tion 2.12 in polynomial time, in our experiments we found that it worked well in practice.
The number of states in the search space is exponential in the size of the input, so one
might worry about search errors. Nonetheless, in our experiments, the inference evaluation
function was learned accurately enough to guide the deterministic parsers to the optimal
parse reasonably quickly without pruning, and thus without search errors. For example,
on the tuning data we observed that 80.5% of the greedy solutions of the r2l model are
also optimal. By greedy solution, we mean the first solution found during greedy com-
pletion. Equivalently, the greedy solution is the one found by traditional greedy search
(see Section 3.2). However, search using the best b.u. model exceeded the search limit of
γ = 100, 000 and returned a sub-optimal solution for 75% of the sentences on the tuning
set. The best l2r and r2l parsers never exceed the limit and always returned the optimal
solution. The best l2r, r2l, and b.u. parsers scored an average of 4614.8, 5453.0, and 51878
paths for each sentence in the tuning data, respectively. For this reason, the b.u. model
took roughly an order of magnitude more time to parse. We also found that, as training
progresses and the models become more refined, the l2r and r2l parsers found solutions
faster. However, the b.u. parsing time remains relatively constant. This trend is shown in
Figure 6.8.

74

Results

Figure 6.7: PARSEVAL F1 accuracy on the tuning data of parsers with different parsing
strategies. (b) is a zoomed in version.

(a)

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

 0.01 0.1 1 10 100
74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

F
-m

ea
su

re

r2l
b.u.

l2r

(b)

86%

87%

88%

89%

90%

91%

92%

 0.01 0.1 1 10
86%

87%

88%

89%

90%

91%

92%

F
-m

ea
su

re

Regularization penalty factor lambda

r2l
b.u.

l2r

75

6
.

E
x
p
e
r
i
m
e
n
t
s

Figure 6.8: Mean search effort required to parse a sentence in the tuning data, as training progresses.

0

10000

20000

30000

40000

50000

60000

 0.01 0.1 1 10 100

M
ea

n
pa

rt
ia

l p
ar

se
s

sc
or

ed
 p

er
 s

en
te

nc
e

Regularization penalty factor lambda

b.u.
r2l
l2r

76

6. Experiments

Decision trees vs. Decision stumps

In our next experiment, we compare models induced over the compound feature space
with models induced over the atomic feature space. To learn the latter models, we in-
duced decision stumps, i.e. decision trees that cannot split any node deeper than the root.
Figure 6.9 shows the accuracy of these models on the tuning data as training progresses.
The F1 of each stumps model is at least 4% lower than that of the corresponding deci-
sion trees model. All three PARSEVAL measures were significantly higher for each model
compared to its stumps equivalent, both on tuning and development. The stumps models
even seem insufficiently powerful to model the training data, never surpassing 90% F1. (See
Figure 6.10.) This is not for want of training. Compared to building a full decision tree,
building a decision stump will take a negligible amount of time. According to the profile in
Table 6.4, each decision tree training iteration takes roughly 204.9/(204.9 − 127.6) = 2.65
times as long as each decision stump training iteration. So the best r2l stumps run has
trained roughly 53238/4011/2.65 = 5.01 times as long as the best r2l decision tree run,
57367/5071/2.65 = 4.27 times as long for l2r, and 60489/4737/2.65 = 4.82 times as long
for l2r. Our experiments show that our atomic features are powerful enough to learn the
training data only when compounded.

Table 6.4: Profile given in Turian and Melamed (2006b) of a typical NP training iteration
for the r2l model. The profile is given in seconds, and was measured using an AMD Opteron
242 (64-bit, 1.6Ghz).

Description mean stddev %
Priority sample 100,00 examples from the training set 1.5s 0.07s 0.7%
Extract and cache the atomic features of the sample examples 38.2s 0.13s 18.6%
Build a decision tree using the sample 127.6s 27.60s 62.3%
Percolate every training example down to a decision tree leaf 31.4s 4.91s 15.3%
Choose the delta-confidence for each leaf node (line-search) 6.2s 1.75s 3.0%
Total 204.9s 32.6s 100.0%

78

R
e
s
u
l
t
s

Figure 6.9: PARSEVAL F1 accuracy on the tuning data of parsers trained using decision trees and decision stumps.

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

 0.01 0.1 1 10 100
70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

F
-m

ea
su

re

Regularization penalty factor lambda

r2l
b.u.

l2r
l2r (stumps)
r2l (stumps)

b.u. (stumps)

79

6
.

E
x
p
e
r
i
m
e
n
t
s

Figure 6.10: PARSEVAL F1 accuracy on 400 training sentences of parsers trained using decision trees and decision
stumps.

70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

 0.01 0.1 1 10 100
70%

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%
F

-m
ea

su
re

Regularization penalty factor lambda

r2l
b.u.

l2r
l2r (stumps)
r2l (stumps)

b.u. (stumps)

80

6. Experiments

For the remaining experiments, we only use the r2l parsing strategy.

`1-regularization vs. `2 regularization

We induced `2-regularized decision trees. As noted on page 47, `2-regularized decision
trees are identical to unregularized decision trees, except the confidences at the leaves are
shrunk. The `1 model is quite sparse, averaging fewer than one non-zero parameter per
decision tree. The `2 model, on the other hand, has on average 360371/832 = 433 non-zero
parameters per decision tree. Figure 6.11(a) compares the accuracy of the `2-regularized
decision trees to the `1-regularized decision trees. We did not detect a significant difference
in the PARSEVAL measures between the two learning methods at λ = 0.6265 (the penalty
factor with the highest F1 point on the `2 curve). However, we were unable to proceed
further in testing with the `2-regularized models, as they did not fit in 2 GB of RAM. By
the time the penalty parameter reaches 0.1, which is where most of the runs converged,
the `2 model has over 535,000 non-zero compound features, over two orders of magnitude
more than the `1 model. Figure 6.11(b) shows how, as training progresses, the `2 model
grows more quickly in size than `1 model.

82

Results

Figure 6.11: As training of the `1 and `2 regularized models progresses,
(a) PARSEVAL F1 accuracy on the tuning data, and
(b) number of non-zero parameters (i.e. compound feature types).

(a)

86%

88%

90%

92%

 0.01 0.1 1 10
86%

88%

90%

92%

F
-m

ea
su

re

l1-regularization (default)
l2-regularization

(b)

100

1000

10000

100000

1e+06

 0.01 0.1 1 10 100

no

n-
ze

ro
 p

ar
am

et
er

s

Regularization penalty factor lambda

l2
l1

83

6. Experiments

Regularized feature selection vs. Unregularized

feature selection

Rosset et al. (2004) theoretically and empirically analyze boosting of the unregularized
logistic and exponential losses. They find that, in the separable case, as training progresses
the learned classifier maximizes the minimal `1-margin of the training data. Early stopping
can thus be viewed as a method for picking the regularization penalty factor. When boosting
these unregularized risks, care must be taken that model parameter values are not set too
high. For example, if no incorrect example falls in a particular decision tree leaf, +∞ is
the confidence for this leaf that minimizes the unregularized risk. To prevent risky high-
confidence parameter values, various forms of smoothing are applied to “slow” the learning
process. For example, Schapire and Singer (1999, Section 4.2) add a small amount of
example weight (in the sense of Equation 4.33) to both the correct and incorrect example
weight totals. Mason et al. (1999) propose AnyBoost.`1 and AnyBoost.`2, which perform
unregularized feature selection but impose an `1 and `2 constraint respectively on the
parameters during model updates. To simulate this sort of approach in our framework,
we boost unregularized decision trees by computing the leaf gain in Equation 4.30 using
λ = 0. Leaf confidences are picked, as before, to minimize the regularized risk. The training
curves are shown in Figure 6.12. Although we did not detect a significant difference of the
PARSEVAL measures on the tuning data, training with an unregularized gain was slower
than training with a regularized gain. As indicated by the leaf counts in Table 6.3, building
unregularized decision trees and subsequently regularizing them slows the learning process
by almost an order of magnitude compared to using an explicit regularizer throughout.
The best unregularized gain parser didn’t train to as low a λ as the default parser, but it
nonetheless built 1481574/154590 = 9.6 times as many leaves.

84

R
e
s
u
l
t
s

Figure 6.12: PARSEVAL F1 accuracy on the tuning data of parsers trained using regularization and no regularization
during feature selection.

86%

88%

90%

92%

 0.1 1 10
86%

88%

90%

92%
F

-m
ea

su
re

Regularization penalty factor lambda

regularized gain (default)
unregularized gain

85

6. Experiments

100K sample size vs. 10K sample size

We experiment with using a sample size of 10,000 examples for decision tree building (0.63%
of the training set), instead of the default sample size of 100,000 examples. As before, model
updates are performed using the entire training set. Figure 6.13 shows the accuracy of this
parser as training progresses. We did not detect a statistically significant difference in
the PARSEVAL measures of the two runs on the tuning data. The 100K sample run had
significantly higher F1 on the development data than the 10K sample run. At a λ of 0.1090
(the best λ on tuning for the model built with a sample size of 100K), the model built
with a sample size of 10K had 4349 compounds, 3672 trees, and 154630 leaves. Its decision
trees were less sparse than the model built with a sample size of 100K, 4349/3672 = 1.18
compounds per tree vs. 3957/4011 = .99 compounds per tree, respectively. The number
of leaves differed only by 40 in the two parsers at this λ. However, based on the profile
in Table 6.4, we estimate that the 10K sample run builds trees 3.68 times faster than the
100K sample run. The 10K sample run will take one-tenth the time in the “Extract” and
“Build” steps. 1.5 + 38.2/10 + 127.6/10 + 31.4 + 6.2 = 55.68 seconds per tree, versus 204.9
seconds per tree with a sample of 100K examples.

86

R
e
s
u
l
t
s

Figure 6.13: PARSEVAL F1 accuracy on the tuning data of parsers trained using sample sizes of 100K and 10K
for decision-tree building.

86%

88%

90%

92%

 0.01 0.1 1 10
86%

88%

90%

92%
F

-m
ea

su
re

Regularization penalty factor lambda

sample 100K (default)
sample 10K

87

6. Experiments

Learning rate η = 0.9 vs. η = 0.1

We experiment with a faster learning rate, η = 0.1. Figure 6.14(a) shows the accuracy of a
parser trained with η = 0.1. We did not detect a significant difference between the η = 0.1
and η = 0.9 runs, either on tuning or development, for any of the PARSEVAL measures.
The η = 0.1 model builds trees that are less sparse than those built with the slow learning
rate, 7345/666 = 11.03 compounds per tree vs. 3957/4011 = .99 compounds per tree,
respectively. As expected, with a faster learning rate the regularization penalty drops more
quickly, i.e. training occurs more quickly. Nonetheless, the aggressive learning rate model’s
learning curve shows no evidence of overfitting. One possible explanation is that numerical
issues mean that no progress is made in training once λ is very low, i.e. all model changes
are de minimis. However, Figure 6.14(b) indicates that the model complexity is increasing
as λ drops, so this explanation is refuted. Another possibility is that, even though progress
is being made in training, the classifiers are just picking very rare features which do not
actually occur in the held-out data. According to this argument, since the classifiers are
giving essentially the same scores to the inferences in the held-out data, the F1 curve does
not show the effects of overtraining. However, this response does not hold water either:
We compare the output sentences of the parsers on the tuning data at λ = 1.6 × 10−7

(the furthest reached during training) with λ = 3.61 × 10−3 (the best parser on tuning)
and found that 14.50% percent of sentences were different. Even between λ = 1.03× 10−6

and λ = 1.6 × 10−7, 2.25% percent of sentences were different. For two different models
to find different solutions to Equation 2.13 implies that the individual inference costs were
sufficiently different to affect the overall result. These experiments indicate that learning
without overfitting is, in fact, occurring. Like the original work on boosting which couldn’t
detect overfitting, we are baffled by this phenomenon.

88

Results

Figure 6.14: Experiments using learning rate η = 0.9 and 0.1.
(a) F1 accuracy on the tuning data of parsers trained using learning rate η = 0.9 and 0.1.
(b) `1-norm (i.e. ΩΘ not multiplied by λ) as training progresses of the parser trained using
learning rate η = 0.1.

(a)

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

 1e-07 1e-06 1e-05 1e-04 0.001 0.01 0.1 1 10 100
72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

F
-m

ea
su

re

learning rate = 0.9 (default)
learning rate = 0.1 (aggressive)

(b)

0

2000

4000

6000

8000

10000

12000

14000

16000

 1e-07 1e-06 1e-05 1e-04 0.001 0.01 0.1 1 10 100

Regularization penalty factor lambda

` 1
-n

or
m

89

6. Experiments

Table 6.5: Accuracy on test data (Section 23 of the English Penn Treebank), as reported
by Turian and Melamed (2006a).

% Recall % Precision F1

Bikel (2004a) 87.85 88.75 88.30
Taskar et al. (2004b) 89.10 89.14 89.12
r2l 89.26 89.55 89.40

Test results

To situate our results in the literature, we compared our approach to those reported by
Taskar et al. (2004b) for their discriminative parser, which were also trained and tested on
≤ 15 word sentences. The results reported by Taskar et al. (2004b) were not for a purely
discriminative parser. Their parser beat the generative model of Bikel (2004a) only after
using the output from a generative model as a feature. Unlike the previous experiments
in this chapter, the parser of Taskar et al. (2004b) was trained on the entire training set
(including the 400 sentences we call “tuning”) and they used the development set for model
selection, as described at the beginning of Section 6.1. Turian and Melamed (2006a) tested
the r2l model with this data split, and we report their results. We also compare our parser to
a representative non-discriminative parser (Bikel, 2004a), a “clean room” reimplementation
of the Collins (1997, 1999, 2003) parser with comparable accuracy. (Bikel, 2004a) is the
only non-discriminative parser that we were able to train and test under exactly the same
experimental conditions, including the use of POS tags from Ratnaparkhi (1996). Table 6.5
shows the results of these four parsers on the test set. The accuracy of our parser is at least
as high as that of comparable parsers in the literature.

90

§ Seventh Chapter §

Related Work

A good composer does not imitate; he steals.

Igor Stravinsky

In this section, we summarize empirical parsing techniques and structure prediction
techniques that have been applied to parsing. In Section 7.1, we describe different structure
prediction models. In Section 7.2, we discuss how different types of models have been
trained.

7.1 Modeling

In Equation 2.12, we gave the form of a history-based model with a generalized cost function
parameterized by Θ. That equation was:

CΘ(p) =
|p|∑

j=1

cΘ(X(ij)) (7.1)

Parse p comprises the individual inferences i1, . . . , i|p|. Feature extraction function X trans-
forms an inference into a fixed-length real-valued feature vector. Typically, cΘ non-linearly
transforms the feature-vector into a non-negative cost. Equation 7.1 is a local model, in
which cost is introduced at each decision step. Another common parsing approach is to use
a global model, where:

CΘ(p) = CΘ(X(p)) = CΘ

 |p|∑

j=1

X(ij)

 (7.2)

In other words, the global model accumulates feature counts over the entire parse, and only
then transforms them into a cost. We stress that most—if not all—parsing models can be
expressed using Equation 7.1, including global models and parse rerankers. We can express

91

7. Related Work

global models using Equation 7.1 by choosing the feature extraction function appropriately
and by assuming that only the final inference has non-zero cost. For parse rerankers, we
can posit a single inference that produces the entire tree.

Nearly all parsing models use the restrictions that Θ is a real-valued parameter vector
with the same dimensionality as the feature vectors and that:

cΘ(X(ij)) = c(Θ ·X(ij)). (7.3)

For a global model, this restriction is:

CΘ(X(p)) = C(Θ ·X(p)) (7.4)

A typical further restriction is that the model is log-linear, e.g.:

c(Θ ·X(ij)) = exp(Θ ·X(ij)) (7.5)
C(Θ ·X(p)) = exp(Θ ·X(p)) (7.6)

Certain works even assume that the model is linear:

CΘ(X(p)) = Θ ·X(p) (7.7)

For example, a PCFG can be represented as a linear model: Each feature f is a context-free
production, Xf (p) is the count of this production in the parse, and Θf is the negative log-
probability of the production. Taskar et al. (2004b) induce a linear model for unlexicalized
CFGs. Perceptron models, such as the averaged perceptron (Collins, 2002; Collins and
Roark, 2004), are also linear models. McDonald et al. (2005a,b, 2006) and McDonald and
Pereira (2006) describe linear models for dependency parsing.

There are some notable exceptions to the parsing model given in Equation 7.3:

• Henderson (2003, 2004) transforms a feature-vector into a cost using a neural network,
and Θ corresponds to the weights of the connections in the neural net. More specifi-
cally, the history and lookahead are variable-length, but they are each compressed to a
fixed-size hidden or intermediate representation. The hidden representation(s) and
other conditioning information are then used to compute probabilities. SSN training
simultaneously learns the mappings from variable-length representations to fixed-
length representations and the mapping from the fixed-length representation to a
probability estimate.

Titov and Henderson (2007a,b) extend this approach by using an incremental sigmoid
belief network (ISBN) to estimate the probabilistic model. The ISBN includes a latent
Bayesian model of the history. These works were published after the experiments in
Section 6.4 were conducted and published. Titov and Henderson (2007a,b) conduct
an experiment in which they train and test their approach on the ≤ 15 words sen-

92

Modeling

tences in the Penn Treebank using POS tags from the tagger of Ratnaparkhi (1996).
They select hyperparameters using a different development set than was used by
Taskar et al. (2004b) and us. Under these similar experimental conditions, Titov and
Henderson (2007a,b) report higher test set results than our approach. The advantage
of their approach is that it automatically induces the latent variable representation
of the history. They do not need to define any atomic features. They simply deter-
mine the structure of their graphical model, which encodes their inductive bias. The
disadvantage of their approach, which we discussed in Section 1.2, is that the latent
representation is opaque. It can be difficult to determine what information is present
and what information is missing. The choice of inductive bias can influence the latent
representation in subtle ways. We aware of no work on constituent parsing besides
these approaches and ours that attempt to use information from the entire state in
scoring parse decisions.

• Kernel approaches transform primal formulations of linear models into a dual for-
mulation and replace each dot product of feature vectors X(p) ·X(p′) with a kernel
function K(p, p′). We have not seen kernelized local models in the literature. In prin-
ciple, there is no reason why they cannot be used. The feature vector in a kernelized
model has as many entries as there are training examples. Each entry in the fea-
ture feature is the kernel value of the entry’s training example with respect to the
structure being scored. For example, when scoring p, the feature entry corresponding
to training example p′ is Xp′(p) = K(p, p′). The model is linear in this kernelized
feature vector. Many works that discuss approaches using linear models also present
kernelized versions of their models. For example, Collins and Duffy (2002a,b) apply
a subtrees-based tree kernel in the dual formulation of the perceptron algorithm.
Taskar et al. (2004a) and Tsochantaridis et al. (2004, 2005) also discuss how their
approaches can be kernelized.

Many parsers use probabilistic models. A joint (a.k.a. generative) model is one that
estimates the joint probability Pr(s, p) of a sentence s and a parse tree p. Estimating a joint
model using likelihood maximization can be quite expensive, since it requires computing
expectations over all sentences and their licensed parses, not just the sentences present in
the training data (Johnson et al., 1999). A conditional model is one that estimates the
conditional probability Pr(p|s) of a parse tree p given a sentence s. To ensure the model
estimates a true probability distribution, probabilistic models should be normalized. In
particular:

• a globally-normalized conditional model is one that normalizes over all parse trees
for a given sentence.

• a locally-normalized conditional model is one that normalizes over all inferences
permitted at a given state. Lafferty et al. (2001) argue that local normalization in

93

7. Related Work

structure prediction will lead to the so-called label bias problem. This is because
per-state normalization implies that all the mass received by a particular state will
be distributed among subsequent states, even if none of the subsequent states is
promising. LeCun et al. (2007, Section 6.1) also argue that local normalization will
incur label bias, writing that “every explicit normalization is another opportunity for
mishandling unforeseen events”. Ratnaparkhi (1997, 1999), McCallum et al. (2000),
Henderson (2004), and Titov and Henderson (2007a,b) all use locally-normalized
models, and hence should be subject to label bias. An example of label bias is given
in the text on page 37 describing Figure 4.2.

The log-linear versions of the above two models are normalized as follows:

• Globally-normalized conditional log-linear models:

Pr(p|s) =
1

Z(s)
exp(Θ ·X(p|s)) (7.8)

where the normalization term (a.k.a. partition function) is computed over all parses
P (s) for this sentence:

Z(s) =
∑

p′∈P (s)

exp(Θ ·X(p′|s)) (7.9)

• Locally-normalized conditional log-linear models:

Pr(dj |Sj) =
1

Z(Sj)
exp(Θ ·X(dj |Sj)) (7.10)

where the normalization term is computed over all decisions D(Sj) allowed at this
state:

Z(Sj) =
∑

d∈D(Sj)

exp(Θ ·X(d|Sj)) (7.11)

Independence assumptions in the model

Feature extraction function X may encode independence assumptions by ignoring infor-
mation from the inference. These assumptions allow the state space to be compressed by
collapsing inferences with the same signature, i.e. the same X-value. If for all inferences i
and i′ where i 6= i′ we have X(i) 6= X(i′), then feature extraction retains sufficient informa-
tion to discriminate between different inferences. In this case, no inferences are equivalent
from a modeling perspective. The state space cannot be compressed.

The most common independence assumption is that the history factorizes, i.e. that
the state can be decomposed into independent pieces. For example, we may assume that
the score of an inference is based only its descendants, i.e. on the items below it in the
state. Each inference rule that yields this item (the consequent) is based on combining a

94

Modeling

set of inferred items that are its immediate children (its antecedents). These immediate
children, in turn, preserve their respective descendant information. The inferred items are
nodes in a directed acyclic hypergraph, and each inference rule that yields an item is a
hyperedge from the antecedents to the consequent. This directed acyclic hypergraph is the
search space (Gallo and Scutellà, 1999; Klein and Manning, 2001b). This data structure is
alternately referred to as a packed chart (Geman and Johnson, 2002; Johnson, 2003), a
feature forest (Miyao and Tsujii, 2002), and an and/or graph (Miyao and Tsujii, 2002;
Felzenszwalb and McAllester, 2007). In an and/or DAG, the children of a conjunctive node
are disjunctive nodes and the children of a disjunctive node are conjunctive nodes.

Nearly all statistical parsers and structure prediction approaches have used indepen-
dence assumptions as a central design decision. In cases where very strong independence
assumptions are made, dynamic-programming may guarantee exact solutions. For example,
unlexicalized PCFG approaches (e.g. Taskar et al., 2004b) have worst-case time complexity
cubic in the length of the sentence. McDonald et al. (2005a,b, 2006) explore dependency
parsing approaches that use a first-order factorization, i.e. in which each edge’s score is
independent of the others. Under this assumption, non-projective dependency parsing is
quadratic and projective dependency parsing is cubic. However, once independence as-
sumptions are relaxed, parsing complexity increases and approximations must be made,
e.g. by introducing pruning into search. For example, the Collins model (Collins, 1997,
1999, 2003; Bikel, 2004a) generates parse tree nodes top-down. All non-head children are
conditioned on only the parent and the head child and a little more information, yet the
search algorithm is O(n5) without pruning. Second-order non-projective dependency pars-
ing is NP-hard, but even an approximate second-order approach is more accurate than the
exact first-order approach (McDonald and Pereira, 2006).

Independence assumptions do not necessarily guarantee exactness, except when they
are clearly implausible. For this reason, we believe that independence assumptions might
be unnecessary, and that their importance has been overstated. There are several problems
with independence assumptions:

• They may reduce the upper-bound on accuracy achievable.

• Crafting them appropriately might require substantial intuition and human effort.

• In complex search scenarios, powerful models might find better solutions with the
same search effort as less powerful models. Alternately, having more information
early on means more powerful models might require less search effort to find the
same solutions as less powerful models. We provide an example of this argument in
the text on page 24 describing Figure 3.1. Search effort is an even more important
consideration in synchronous parsing for machine translation. A synchronous parser
generalized from an ordinary parser based on dynamic-programming will have com-
plexity O(n6) in the length of the longer sentence in the source or target language
(Wu, 1997).

95

7. Related Work

Models used in the literature

Many early statistical parsing approaches use local probabilistic models that are estimated
using relative frequencies (Black et al., 1992, 1993; Jelinek et al., 1994; Magerman, 1994,
1995; Collins, 1997, 1999, 2003). Although in principle these models are supposed to be
locally normalized, their probabilistic models may be deficient (sum to less than 1) due to
smoothing. For example, Bikel (2004a) notes that the Collins models are deficient.

As far as we know, Ratnaparkhi et al. (1994) proposed the task of parse reranking as well
as the first log-linear model in the parsing literature. They perform parse reranking using a
global log-linear model. The authors argue that the model should be globally normalized.
However, it is impractical for them to compute the normalization term over all parses, so
they instead normalize only over the top k parses provided.

Ratnaparkhi subsequently proposed using locally-normalized conditional log-linear mod-
els for parsing (Ratnaparkhi, 1997, 1999). Charniak (2000) proposes a parsing approach
that uses a local conditional log-linear model. He describes the normalized version of the
model, but notes that normalization is the most expensive part of training. This sentiment
is reiterated by LeCun et al. (2007, Section 6.1). To avoid this expense during training,
Charniak (2000) merely omits computing the normalization constant. In this respect, the
model of Charniak (2000) is the most similar model to ours.

Johnson et al. (1999) use globally-normalized conditional models for parse reranking.
One limitation of their approach is that, to compute the partition function, they enumerate
all possible parses for a given sentence. This is problematic because enumerating all such
parses for a given sentence using a broad-coverage grammar can be prohibitively expensive.
The authors experiment with small enough training sets that explicit enumeration is fea-
sible, and candidate parses come from a packed chart that was provided to the authors by
Ron Kaplan and Hadar Shemtov at Xerox PARC. Johnson et al. (1999) experiment with
two corpora. The larger of the two has 980 sentences, 481 of which are ambiguous under
the grammar, giving 3169 parses of the ambiguous sentences and 227 features.

Lafferty et al. (2001) was the first work to show how to use globally-normalized condi-
tional models in structure prediction tasks that require inference. To overcome the presence
of label bias in MEMMs (McCallum et al., 2000), Lafferty et al. (2001) propose conditional
random fields (CRFs), a globally-normalized conditional model for sequence labeling. The
authors claim that CRFs can be generalized to stochastic CFGs. CRFs can condition on
arbitrary features of the input. One of the limitation of CRFs, however, is that they cannot
condition on arbitrary previous decisions, i.e. the history. This restrictive independence
assumption allows efficient training and decoding using dynamic-programming. Training
uses a variant of the forward-backward algorithm and decoding is done using the Viterbi
algorithm.

Geman and Johnson (2002), Miyao and Tsujii (2002), and Johnson (2003) subsequently
proposed similar techniques for training globally-normalized conditional models for parsing.
Their approaches crucially rely on independence assumptions that allow the search space

96

Training techniques for different models

to be represented compactly as a directed acyclic hypergraph (Gallo and Scutellà, 1999;
Klein and Manning, 2001b). The contribution of Geman and Johnson (2002), Miyao and
Tsujii (2002), and Johnson (2003) is not this data structure, but rather an algorithm for
efficient training of globally-normalized conditional models over this data structure. Like
with CRFs, training uses a variant of the forward-backward algorithm and decoding is done
using the Viterbi algorithm. Miyao and Tsujii (2002) argue that CRFs are a special case
of this approach for and/or graphs in which each conjunctive node has only one daughter.

Geman and Johnson (2002), Miyao and Tsujii (2002), and Johnson (2003) note that the
weaker the independence assumptions are, the larger the search hypergraph will be, and the
less efficient dynamic-programming during training and decoding will be. In the extreme
case where there are no independence assumptions, no inferences share the same signature
and no compression of the search space can occur. The contributions of Geman and Johnson
(2002) and Johnson (2003) are theoretical, and they do not report on experiments. Because
their approach has significant memory requirements, Miyao and Tsujii (2002) present ex-
perimental results on a relatively small data set: 868 sentences and 5,715 features, with
each sentence’s forest having an average of 17,412 nodes. This experiment requires 1.5 GB
of memory. Clark and Curran (2003, 2004, 2007) using the dynamic-programming based
techniques of Geman and Johnson (2002), Johnson (2003), and Miyao and Tsujii (2002) for
training globally normalized log-linear conditional models. By parallelizing training across
many computers with synchronization, i.e. message-passing, the authors are able to train
over larger data sets. Synchronization is needed to compute the normalization term. For
example, Clark and Curran (2003) perform an experimenting use 36,400 sentences and
243,603 features, with each sentence’s forest having an average of 52,000 nodes, requiring
30 GB of memory total.

7.2 Training techniques for different models

Training models for structure prediction typically involves optimizing loss functions that
express desiderata for good structure predictors. We will discuss common loss functions
below.

As far as we know, all globally normalized probabilistic models in the literature have
been optimized to maximize the likelihood of the gold-standard parse. This expresses the
desideratum that the correct parse receive high probability, and all other parses receive low
probability. As discussed in the previous section, as far as we know all globally-normalized
conditional log-linear structure prediction approaches impose restrictive independence as-
sumption that allow efficient training and decoding using dynamic-programming. Training
uses a variant of the forward-backward algorithm and decoding is done using the Viterbi
algorithm. Two other approaches, Ratnaparkhi et al. (1994) and Henderson (2004), approx-
imate the expectation using the k-best parses. Ratnaparkhi et al. (1994) use a globally-
normalized log-linear conditional model for reranking. In one experiment, Henderson (2004)

97

7. Related Work

train a globally-normalized joint model to maximize the conditional probability of each
gold-standard parse given its sentence.

For local models, we noted that early probabilistic models were estimated using relative
frequencies (Black et al., 1992, 1993; Jelinek et al., 1994; Magerman, 1994, 1995; Collins,
1997, 1999, 2003; Bikel, 2004a). These can be viewed as offline example generation tech-
niques because they do not require inference. Only local constraints are enforced at each
state. Most subsequent structure prediction approaches using local models including ours
have been trained using local constraints generated offline (Ratnaparkhi, 1997, 1999; Char-
niak, 2000; Henderson, 2004; Sagae and Lavie, 2005; Titov and Henderson, 2007a,b). These
approaches have all used deterministic logics. For a non-deterministic logic, we pick a sin-
gle correct path randomly. The general form of these local constraints is to enforce the
desideratum that at any correct state the local model will make the correct local decision
and stay on the correct path. For probabilistic models this corresponds to maximizing the
likelihood of the correct parse because the likelihood of each correct inference is maxi-
mized. An advantage of this method of generating training examples is that it does not
require a working inference engine and can be run prior to any training. A disadvantage
of this approach is that it does not teach the model to recover from mistakes. To more
explicitly describe the relationship between offline training example generation and what
occurs online, i.e. during inference at test time, observe that the parse decisions present
in the training set are identical to the inferences that would be scored by our search algo-
rithms using an oracle cost function.1 An oracle cost function assigns cost 0 to all correct
inferences and ∞ to all incorrect inferences.

There is a notable exception to the trend of local models being trained only under local
constraints selected offline. Henderson (2004) uses locally-normalized joint and conditional
models for parsing. He trains three types of parsers:

• A joint model trained under offline local constraints to maximize the joint probability
of the parses and sentences in the treebank.

• A conditional model trained under offline local constraints to maximize the condi-
tional probability of each gold-standard parse in the treebank given its sentence.

• A joint model trained to maximize the conditional probability of each gold-standard
parse in the treebank given its sentence. As in the global conditional models, this
requires computing an expectation over all parses for a given sentence. Henderson
(2004) estimates this expectation using the probabilities of the k-best parses under
the model and the probabilities of partial parses that were pruned during search for
the k-best parses.

1 For breadth-driven search algorithms, instead of cost-driven search algorithms like ours, this observation
may not hold. In general, the parse decisions generated by this offline technique are identical to the
inferences that would be scored by a greedy search algorithm using an oracle cost function.

98

Training techniques for different models

As far as we know, the work of Henderson (2004) presents the only structure prediction
experiments using both local and global training techniques for the same model. Unfortu-
nately, because his global training technique is compromised for the sake of efficiency, it is
difficult to make a direct comparison.

There is another family of approaches to training using inference, which has tradition-
ally been used for training distribution-free structure prediction models. Collins (2004)
analyzes various parameter estimation techniques through the lens of statistical learning
theory. In this framework, we assume that some fixed unknown distribution generates both
the training and test data, each point independently and identically distributed. The prob-
abilistic models we have considered are parametric models that attempt to model this
underlying distribution explicitly, either in a joint or conditional formulation. In the limit,
as training data increases to infinity, maximum-likelihood estimation chooses a model that
converges to the underlying distribution under the assumption the underlying probability
distribution is in the family of distributions being modeled. Distribution-free methods do
not make these assumptions. Principled distribution-free methods can nonetheless provide
theoretical guarantees on the generalization accuracy of a model. These guarantees are
based on the margin of the model. The margin of a model on a particular instance is a
measure of the distance between the score of the correct output and the score of all incor-
rect outputs. A model that has large margins for a large percentage of training examples
will tend to generalize accurately. For the 0-1 loss, Collins (2004) presents an optimization
problem with an exponential number of constraints: For each of the exponential number
of incorrect parses, it must be separated from the correct parse by a margin of at least
µ. He goes on to show how the perceptron algorithm can estimate parameters under this
optimization problem by using inference to choose only the single most-violating constraint
at each step. Other approaches using large-margin formulations have optimization prob-
lems with an exponential number of constraints. Parameter update is typically intractable
under all these constraints. However, inference can be used to select the most-violating
constraints, which are used for parameter update. We will discuss the work of Taskar et al.
(2004a,b) (Section 7.2), McDonald et al. (2005a,b, 2006) (Section 7.2), Tsochantaridis et al.
(2004, 2005) (Section 7.2), Collins and Roark (2004) (Section 7.2), and Daumé III et al.
(2005, 2006) (Section 7.2).

Taskar et al. (2004a,b)

Taskar et al. (2004a) describe a maximum margin method for estimating the parameters
of a Markov network. They focus on conditional Markov networks, a.k.a. CRFs (Lafferty
et al., 2001). Probabilistic graphical models compactly represent joint distributions over
elements of an output structure by assuming that interactions are local but not completely
independent. Maximum-margin methods have high accuracy, can be kernelized to use high-
dimensional features, and offer theoretical generalization guarantees. Taskar et al. (2004a)
propose so-called max-margin Markov networks (M3Ns), which are designed to have the

99

7. Related Work

advantages of both probabilistic graphical models and max-margin methods on structure
prediction problems.

Max-margin estimation for a particular structure loss function can be performed by
solving an optimization problem with a number of constraints based on the size of the
output space, which is perhaps exponential. This estimate comes with a theoretical bound
on generalization error. If we assume that elements in the output structure are not highly
inter-dependent and that the loss factorizes according to the dependencies in the output
structure, we can reformulate the primal problem as a dual formulation with a polynomial-
size formulation. This problem might be too large for conventional quadratic program (QP)
solvers, so instead Taskar et al. (2004a) performs coordinate descent using a structured
analogue of sequential minimal optimization (SMO). Violated Karush-Kuhn-Tucker (KKT)
conditions are found using inference.

Taskar et al. (2004b) extends the max-margin approach of Taskar et al. (2004a) to
unlexicalized CFGs. The approach forgoes a probabilistic interpretation, and instead en-
sures that the highest-scoring parse is the gold-standard parse. Like approaches based on
Markov models (McCallum et al., 2000; Lafferty et al., 2001; Taskar et al., 2004a), the
model can condition on arbitrary features of the input but not the output. Because parse
nodes are unlexicalized, a dynamic-programming solution is exact and requires cubic time.
We have discussed how dynamic-programming-based globally-normalized conditional mod-
els use variants of the inside-outside algorithm to compute expectations over all parses. The
parser of Taskar et al. (2004b) forgoes a probabilistic interpretation, is unnormalized, and
requires calculations of Viterbi trees only. On the downside, unlexicalized CFGs are not
powerful models. The globally-normalized conditional log-linear models are motivated by
the desire to use more powerful features. Trading modeling power for better estimation
can increase accuracy in the short-term, but might reduce the upper-bound on accuracy
achievable.

Taskar et al. (2004b) define a quadratic program in which each incorrect parse is sep-
arated from the gold-standard parse by a margin that is proportional to the loss, i.e. in-
correctness, of the incorrect parse. This program includes non-negative slack variables to
account for outliers. There are as many variables and constraints in the optimization prob-
lem as there are possible parse trees. However, Taskar et al. (2004b) place restrictions on
the features and the loss function that allow a clever factorization of the dual to polyno-
mial size. Taskar et al. (2004a) used this decomposition for sequences and other Markov
random fields, and Taskar et al. (2004b) extends this idea to CFGs. They assume that the
feature vector and loss function factorize according the same independence assumptions as
CFGs. The same decomposition can then be performed over the dual problem. The output
structure is composed of “parts.” There are two types of parts:

• Constituent items, i.e. labelled spans.

• Binarized context-free rule tuples, each the labels and spans of the parent and two
child items.

100

Training techniques for different models

These two types of parts are referred to as “edges” and “traversals,” respectively, in the
literature (Klein and Manning, 2001a). These parts are independent insofar as the features
and loss function are concerned. This restriction on the features and the loss allows the
dual to be factored to a polynomial size:

• The number of variables is cubic in the length of the sentence.

• The number of constraints is quadratic in the length of the sentence.

• The number of coefficients in the quadratic term of the objective is quadratic in the
number of sentences and dependent on the sixth power of the length of the sentence.

As in Taskar et al. (2004a), the dual is optimized using an online coordinate descent method
analogous to SMO. For each sentence, the best parse is found under the current model,
and the weights are adjusted.

McDonald et al. (2005a,b, 2006)

These works study the problem of unlabeled dependency parsing. Their work proceeds from
the desire for exact inference algorithms. Under the restrictive independence assumption
that the score of a dependency tree factors into the sum of scores over edges, unlabeled
dependency parsing reduces to the problem of finding the maximum spanning tree (MST)
in a directed graph. Inference complexity is O(n2) for 1-best non-projective dependency
parsing (O(n6) for k-best) and O(n3) for projective dependency parsing using a bottom-up
dynamic-programming chart parsing algorithm (+O(k log k) for k-best).

Following Taskar et al. (2004a,b), who use a dynamic-programming-based factorization
to decompose the optimization into a polynomial number of local constraints, these works
factor the dependency parsing optimization into one constraint per edge. This generates
a number of constraints quadratic in the length of the sentence. A quadratic number of
constraints is few enough that using inference for further constraint subset selection is not
necessary. At each iteration, for a given sentence the training algorithm performs an online
update to the weight vector. The update minimizes the changes to the weight vector under
the constraint that, for each node, the score for each correct incoming edge is separated
by a certain fixed margin from the score of each incorrect incoming edge. This formulation
assumes uniform loss for each incorrect edge. The final weight vector is an average of
intermediate weight vectors, which reduces overfitting (Collins, 2002).

Later work (McDonald and Pereira, 2006) argues that first-order factorization is a
very restrictive assumption. mth-order projective MST parsing has complexity O(nm+1)
for m > 1. However, second-order non-projective MST parsing is NP-hard, so McDonald
and Pereira (2006) devise a special-purpose approximate algorithm.

101

7. Related Work

Tsochantaridis et al. (2004, 2005)

Like the work of Taskar et al. (2004a,b), this parameter estimation technique for structure
prediction models uses the maximum-margin principle. The main contribution of this work
is generalizing max-margin formulations to arbitrary loss functions. Whereas Taskar et al.
(2004a,b) restricted the loss and features by assuming that it factorizes according to the
dependencies in the output structure, Tsochantaridis et al. (2004, 2005) place no such
restrictions on the loss function or features, allowing one to optimize the true objective
directly.

Tsochantaridis et al. (2004, 2005) consider linear models, which can be kernelized in
the dual formulation. They give three different types of margin maximization optimization
criteria:

hard-margin SVMs Maximize the margin by which the correct solution is separated
from every other solution. This can be represented as a quadratic program in which
the `2-norm of the weight vector is minimized while, for each incorrect output, en-
forcing the linear constraint that the correct output and this incorrect output are
separated by margin at least µ.

soft-margin SVMs Because the data might not be linearly separable, we can pay a
penalty for each margin violation using a slack variable. The authors present two
soft-margin formulations. In the first, margin violations are penalized using a linear
penalty term. In the second, margin violations are penalized using a quadratic term.

loss-sensitive SVMs This general case subsumes the hard- and soft-margin formulations.
The loss-sensitive SVMs come in two flavors:

slack rescaling Slack variables are rescaled by the loss incurred. This corresponds
to the intuition that high-loss margin violations should incur higher penalty
than low-loss margin violations.

margin rescaling Taskar et al. (2004b) proposes rescaling the margin to include
the Hamming loss into a max-margin formulation. Tsochantaridis et al. (2004,
2005) generalize this principle to arbitrary loss functions.

As with soft-margins, the authors present variations on the loss-sensitive SVMs that
penalize margin violations using a linear penalty term, as well as using a quadratic
term.

In all of the formulations, the number of margin constraints is proportional to the
number of incorrect outputs, which may be exponential. Although the optimization problem
may have exponential size, the authors propose a training algorithm that, under certain
conditions, finds arbitrarily good solutions to all the above SVM optimization problems in
a polynomial number of steps. The idea is to take advantage of the max-margin structure of

102

Training techniques for different models

the optimization problems. It can be shown that by explicitly satisfying an appropriately-
chosen polynomial-sized subset of the constraints, the solution will be sufficiently accurate,
i.e. all remaining constraints will be violated by no more than ε. A working set of constraints
is maintained for each training instance. By doing so, the authors “construct a nested
sequence of successively tighter relaxations of the original problem using a cutting plane
method.” (pg. 1462 of Tsochantaridis et al. (2005)) The relaxation of the problem is defined
by the current working set of constraints selected. The training algorithm iterates over the
training instances. For each training instance, it finds the most violated constraint under
the current model. The cost of violating this constraint is sensitive to the choice of loss
function and SVM formulation. If this constraint violation’s cost is at least ε higher than
the cost of violating each other constraint in the training instance’s working set, then
the new constraint is added to the training instance’s working set. This corresponds to
strengthening the primal problem by choosing a cutting plane that cuts off the current
primal solution. The model is optimized under the new constraints. The algorithm stops
when no constraints are added for any training instance, i.e. when no constraint is violated
by more than ε.

Observe that training requires inference to generate a working set of constraints. The
authors note that finding the most violating constraint might be the bottleneck in training,
requiring more time even than solving the relaxed QP. Additionally, finding the most
violating constraint might require modifying the inference algorithm. In the case of the
zero-one loss, the most violating constraint is given by the highest scoring incorrect output.
However, for other loss functions, the most violating constraint might not necessarily be
highest scoring incorrect output, and the inference algorithm might need to be extended.
The hidden difficulty in using arbitrary loss is that computing the most violating constraint
for this loss and SVM formulation might be difficult. We might have algorithms to find the
solution with maximum score, but it might be difficult to extend these algorithms to find
solutions with maximum cost under some choice of loss function and SVM formulation.
The authors present experiments where they estimate CFG parameters using SVMs that
maximize margins using the F1 loss. They use a variant of the Cocke-Younger-Kasami
(CKY) algorithm (e.g. Aho and Ullman, 1972, pp. 314–320) to find the most violating
constraint during training.

Collins and Roark (2004)

This parser’s model is a linear discriminant whose parameters are estimated using the aver-
aged perceptron algorithm (Collins, 2002). The parser attempts to find the Viterbi parse for
each sentence. The logic is incremental, left-to-right, over a tree transformed using a selec-
tive left-corner transform and flattened. This logic is deterministic. Cost is non-monotonic,
i.e. the cost of a partial parse might decrease as inferences are made during parsing. The
parser uses breadth-first search with a beam to prune unlikely parse candidates.

The training algorithm integrates search and learning. Learning optimizes with respect

103

7. Related Work

to the search strategy used at test time. Training requires inference for example generation.
In the standard perceptron update (Collins, 2002), for each sentence the algorithm finds
the highest-scoring solution under the current model and, if this solution is incorrect,
updates the parameters using an additive perceptron update. Tsochantaridis et al. (2004,
2005) show that this constraint selection technique is valid for minimizing the 0-1 loss in a
hard-margin SVM formulation. However, their theoretical guarantee might not apply when
perceptron update is applied. Perceptron updates minimize the 0-1 error, i.e. all trees that
do not match the gold-standard are treated as equally bad. The primary limitation of this
approach is that, unless the true evaluation measure is complete tree match and not F1,
training optimizes a loose approximation of the true evaluation measure. In particular,
many “gold-standard” trees in the treebank contain noise. For these trees, the perceptron
algorithm cannot learn to prefer incorrect solutions with high F1 to incorrect solutions with
low F1. The 0-1 loss is insensitive to the true loss.

Another limitation of the perceptron approach is that parameter estimates are unreg-
ularized. Collins and Roark (2004) use a small set of common features, so this might not
pose a problem in their experiments. However, if there are rare features, model parameters
could grow in magnitude until they overwhelm the influence of every other feature.

Because the inference step in training is very slow, Collins and Roark (2004) propose
two ad-hoc improvements to the training procedure: “early update” and “repeated use of
hypotheses.”

early update Consider the possibility that, after j words in the sentence have been pro-
cessed during search, a search error is made. We assume we mean the minimum such
j. If the beam does not contain the partial analysis of the gold-standard tree in-
volving the first j words because it has been pruned, a search error has occurred.
At this point, search is terminated. The incorrect partial analyses in the beam are
passed to the parameter estimation method. The parameter estimation method will
then perform perceptron update with respect to the highest-scoring incorrect partial
analysis.

The motivation for early update is as follows: If parameter update is performed over
complete incorrect analyses, then penalty attribution is distributed over all incorrect
decisions. However, given the specific search algorithm used in this work, correcting
incorrect decisions after a search error occurs cannot help the parser to find the
correct solution. Ideally, learning should attribute penalty as precisely as possible
to the decision(s) that incur loss. Since the perceptron minimizes the 0-1 error, the
earliest possible moment at which loss is definitely incurred is when there is a search
error, so that is where update focuses. As mentioned, this optimization is designed
specifically for the deterministic left-to-right logic and this particular search strategy.

Note that if noise in the gold-standard always prevents the model from advancing
further right in the analysis, information further to the right can never be learned.

104

Training techniques for different models

Early update makes an “enormous difference in the quality of the resulting model
(pg. 6 of 8)”, increasing F1 by roughly 2.5%.

repeated use of hypotheses Similarly to Tsochantaridis et al. (2004, 2005), Collins and
Roark (2004) cache the constraints generated for every sentence. Recall that early
update might generate several partial analyses for each sentence, only the highest-
scoring of which is used for each perceptron update step. The perceptron update is
applied for five passes over each sentence in turn to the most-violating constraint,
but no more than fifty times per sentence. These limits are imposed because the
perceptron algorithm only converges on linearly separable data, and outliers might
be linearly inseparable.

Daumé III et al. (2005, 2006)

This work proposes SEARN, a meta-algorithm that attempts to systematically improve
local models for structure prediction that use a deterministic logic. Like the approach of
Tsochantaridis et al. (2004, 2005), SEARN is applicable for any loss function and set of
features. It requires only a cost-sensitive learning algorithm for binary classification.

The outer loop of the training algorithm is as follows: At each iteration the policy is
a mixture of the optimal policy (the oracle cost function) and the learned policy (induced
cost function). At the first iteration of training, the policy is solely the optimal policy.
As training progresses, the influence of the optimal policy is degraded and the learned
policy receives increasing importance. The policy mixture is used to choose an output for
each training input. These outputs are used to generate cost-sensitive training examples.
There is one training example for each inference in each output. Its cost is the lower-bound
increase in loss due to choosing this inference. The learning algorithm is used to induce a
classifier over these cost-sensitive training examples. This new classifier is mixed in to the
policy. At the last iteration, the last classifier induced is returned.

The first iteration of SEARN is similar to the offline example generation technique used
by local structure-prediction models such as ours. SEARN can be viewed as a method of
iterating these training techniques to improve accuracy of local structure-prediction models
and to teach them how not to compound error by making reasonable decisions in incorrect
states.

105

§ Eighth Chapter §

Conclusions

Once the whole is divided, the parts need names.
There are already enough names.
One must know when to stop.
Knowing when to stop averts trouble.

Lao Tzu

This dissertation has presented a general approach to constituent parsing, which is
driven by classification. The advantage of our approach is its flexibility:

• It is simple to substitute in different parsing strategies.

• We used little language-specific linguistic information: only the head rules and the
POS tag classes.

• Our example generation technique does not require a working parser from which to
bootstrap, and can be performed entirely offline.

• The regularization penalty factor λ is optimized as part of the training process,
choosing the value that maximizes accuracy on a held-out tuning set. This technique
stands in contrast to more ad-hoc methods, which might require prior knowledge or
additional experimentation.

• The human effort is reduced for engineering powerful feature sets.

• Wellington et al. (2006) and Turian et al. (2007) applied our classification-driven
learning approach to machine translation and presented the first purely discriminative
learning algorithm for translation with tree-structured models. Our approach might
also be useful for other structure prediction problems.

Our primary contribution is simplifying the human effort required for feature engineer-
ing. Because approaches that reduce the amount of feature-engineering required are simpler
to apply to new tasks and new domains, we will discuss this contribution is more depth.

107

8. Conclusions

• Features can use arbitrary information from the state and input. Features that access
arbitrary information are represented directly without the need for an induced inter-
mediate representation (cf. Henderson, 2003, 2004; Titov and Henderson, 2007a,b).

• Feature selection and feature construction occur automatically, as part of learning.
There is no need for crafting model parameterizations / independence assumptions
that balance model power with the ability to estimate parameter values properly. We
defined a set of fine-grained atomic features, and let the learner induce informative
compound features. The atomic features need not be powerful in isolation.

• Even when building decision trees with many training examples and many splitting
features, `1 regularization keeps the models sparse. For this reason, no frequency-
based cutoffs are needed, and all words in the lexicon are used. On the other hand,
`2-regularized decision trees were too large to fit in memory.

• In short, we spent little time on feature engineering. We defined a feature template
and automatically extracted feature types from the training data that satisfied this
template. Yet we observed no overfitting, even when the learning rate was increased.
Our features used minimal linguistic cleverness. Nonetheless, our parser surpassed
the generative baseline. As far as we know, it is the first discriminative parser to
surpass the Collins (2003) model without using a generative model in any way.

Besides simplicity of feature engineering, our work provides some machine learning
contributions that improve the efficiency of discriminative training:

• Classifiers for different non-terminal labels can be induced independently and hence
training can be asynchronously parallelized. This is possible because the examplewise
loss decomposes, and can be optimized piece-wise. We calibrate our classifiers by tying
the regularization penalty factor λ across different classifiers.

• The regularization penalty factor λ is optimized it as part of the training process,
choosing the value that maximizes accuracy on a held-out tuning set. This technique
stands in contrast to more ad-hoc methods, which might require prior knowledge or
additional experimentation.

• Risk functions like the `1 penalty are continuous, but not continuously differentiable.
As far as we know, previous work on gradient descent in function space have either
worked with continuously differentiable cost functions (e.g. Mason et al., 1999, 2000),
or have not shown how to derive gain functions for risk functions of this type. We have
presented an analysis technique for performing gradient descent in function space to
minimize risk functions that are continuous but not continuously differentiable. We
are not aware of previous work on gradient descent in function space that has used
this analysis technique. We use this technique to derive the gain values given in
Perkins et al. (2003) and Riezler and Vasserman (2004).

108

• We show how gradient descent in function space can be regularized. Feature selection
is regularized by including the gradient of the penalty in the gain function. We show
how the penalty’s gradient can be included in the gain, even if the gradient is not con-
tinuous. We show that explicitly regularizing feature selection leads to faster training
than performing unregularized feature selection and then using regularization during
confidence-rating.

• Using our regularized gain function, we propose an algorithm for boosting decision
trees that incorporates `1 regularization during feature selection. As far as we know,
explicitly incorporating `1 regularization during compound feature selection is novel.

• The main engineering challenge in building this parser was fitting the training data
into memory. We introduce gradient sampling, which—in conjunction with parallelization—
increased training speed 100-fold. Our training method does feature selection more
quickly by using principled sampling to estimate unbiased risk gradients (Section 5.2).
As far as we know, performing feature selection using unbiased gradient estimates is
novel.

The resulting model at the core of the parser is a machine learned to optimize a single
regularized objective. It includes no generative model. The problems with using a generative
model include:

• It might be difficult to account for certain features in a generative story.

• Constructing a generative model for new tasks and new domains might be time-
consuming.

• Using a generative model introduces unregularized risk, thereby potentially decreas-
ing the potential upper-bound on achievable accuracy. A discriminative model can
use a generative model as a feature to achieve accuracy at least as high as the gener-
ative model (e.g. Collins and Duffy, 2002b; Collins and Roark, 2004). However, the
model complexity of the generative component might increase risk, thus reducing the
upper bound on achievable accuracy. Associating only a single parameter with the
entire generative model gives only coarse-grained control to the optimization pro-
cedure. The generative model includes many features, each of which is associated
with a generatively-tuned parameter. Taken as a whole, the parameter values of the
frequent features determine the influence of the generative model. However, we specu-
late that inaccurately estimated and/or poorly smoothed parameters associated with
infrequent features might introduce “hidden” model complexity.

Finally, we have introduced greedy completion, a new agenda-driven search strategy
designed to find low-cost solutions given a limit on search effort. Although agenda-driven
search is not guaranteed to find the optimal solution in polynomial time, we found that

109

8. Conclusions

it worked well in practice. The number of states in the search space is exponential in the
size of the input, and one might worry about search errors. However, in our experiments,
the inference evaluation function was learned accurately enough to guide the deterministic
parsers to the optimal parse reasonably quickly without pruning, and thus without search
errors. Our best model has such low perplexity that, on 80.5% of sentences, its completely
greedy solution is optimal. (The completely greedy solution is the one found using breadth-
first search with a beam width of 1.) This is in comparison to previous non-DP-based
discriminative parsers, which all used best-first search with pruning (Ratnaparkhi, 1999;
Henderson, 2004; Collins and Roark, 2004; Titov and Henderson, 2007a,b) or no search
at all (Sagae and Lavie, 2005). In the non-deterministic setting, greedy completion found
better solutions that best-first search in the allotted time.

The main limitation of our work is that we can do training reasonably quickly only
on short sentences because a sentence with n words generates O(n2) training inferences.
Although generating training examples in advance without a working parser is faster than
using inference (Collins and Roark, 2004; Henderson, 2004; Taskar et al., 2004b), our train-
ing time can probably be decreased further by choosing a parsing strategy with a lower
branching factor. Like our work, Ratnaparkhi (1999) and Sagae and Lavie (2005) generate
examples off-line, but their parsing strategies are essentially shift-reduce so each sentence
generates only O(n) training examples.

110

Bibliography

Alfred J. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation and Compiling,
volume 1. Prentice-Hall, Englewood Cliffs, NJ, 1972. [103]

Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. A Maximum
Entropy approach to Natural Language Processing. Computational Linguistics, 22(1):
39–71, 1996. [10]

Ann Bies, Mark Ferguson, Karen Katz, Robert MacIntyre, Victoria Tredinnick, Grace Kim,
Mary Ann Marcinkiewicz, and Britta Schasberger. Bracketing guidelines for Treebank
II style Penn treebank project. Technical report, University of Pennsylvania, 1995. URL
citeseer.ist.psu.edu/bies95bracketing.html. [60]

Daniel M. Bikel. Intricacies of Collins’ parsing model. Computational Linguistics, 30(4):
479–511, 2004a. [60, 90, 95, 96, 98]

Daniel M. Bikel. On the parameter space of generative lexicalized statistical parsing models.
PhD thesis, University of Pennsylvania, Philadelphia, PA, USA, 2004b. [18]

Ezra Black, Steven Abney, Dan Flickenger, Claudia Gdaniec, Ralph Grishman, Philip Har-
rison, Donald Hindle, Robert Ingria Fred Jelinek, Judith Klavans, Mark Liberman, and
Tomek Strzalkowski. A procedure for quantitatively comparing the syntactic coverage
of English grammars. In Speech and Natural Language, 1991. [8, 17, 33, 60]

Ezra Black, Fred Jelinek, John Lafferty, David M. Magerman, Robert Mercer, and Salim
Roukos. Towards history-based grammars: using richer models for probabilistic parsing.
In Proceedings of the DARPA workshop on Speech and Natural Language, pages 134–139,
Morristown, NJ, USA, February 1992. Association for Computational Linguistics. [9, 18,
96, 98]

Ezra Black, Fred Jelinek, John Lafferty, David M. Magerman, Robert Mercer, and Salim
Roukos. Towards history-based grammars: Using richer models for probabilistic parsing.
In Proceedings of the Thirty-first Annual Meeting of the Association for Computational
Linguistics (ACL), pages 31–37, Morristown, NJ, USA, June 1993. Association for Com-
putational Linguistics. [9, 18, 96, 98]

111

Bibliography

Rens Bod. An efficient implementation of a new DOP model. In Proceedings of the Eleventh
European Chapter of the Association for Computational Linguistics (EACL), 2003. [66]

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C.
Lai. Class-based n-gram models of natural language. Computational Linguistics, 18(4):
467–479, 1992. [4]

Sharon Caraballo and Eugene Charniak. New figures of merit for best-first probabilistic
chart parsing. Computational Linguistics, 24(2):275–298, 1998. [23]

Eugene Charniak. A maximum-entropy-inspired parser. In Proceedings of the Applied
Natural Language Processing (ANLP) of the North American Chapter of the Association
for Computational Linguistics (NAACL), pages 132–139, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc. [11, 96, 98]

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and MaxEnt discrimi-
native reranking. In Proceedings of the Forty-third Annual Meeting of the Association for
Computational Linguistics (ACL), Morristown, NJ, USA, 2005. Association for Compu-
tational Linguistics. [13, 66]

Ciprian Chelba and Frederick Jelinek. Exploiting syntactic structure for language model-
ing. In Proceedings of the Thirty-sixth Annual Meeting of the Association for Compu-
tational Linguistics (ACL) and Seventeenth International Conference on Computational
Linguistics (COLING) 1998, pages 225–231, August 1998. [4]

Stephen Clark and James R. Curran. Log-linear models for wide-coverage CCG parsing.
In Proceedings of the Eighth Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 97–104, Morristown, NJ, USA, July 2003. Association for
Computational Linguistics. [11, 53, 97]

Stephen Clark and James R. Curran. Parsing the WSJ using CCG and log-linear models.
In Proceedings of the Forty-second Annual Meeting of the Association for Computational
Linguistics (ACL), 2004. [11, 53, 97]

Stephen Clark and James R. Curran. Wide-coverage efficient statistical parsing with CCG
and log-linear models. Computational Linguistics, 2007. To appear. [11, 97]

Michael Collins. Discriminative reranking for natural language parsing. In Pat Langley,
editor, Proceedings of the Seventeenth International Conference on Machine Learning
(ICML), pages 175–182, San Francisco, CA, USA, June–July 2000. Morgan Kaufmann
Publishers Inc. [13]

112

Michael Collins. Discriminative training methods for hidden Markov models: Theory
and experiments with perceptron algorithms. In Proceedings of the Seventh Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), 2002. [92, 101,
103, 104]

Michael Collins. Head-driven statistical models for natural language parsing. Computa-
tional Linguistics, 29(4):589–637, 2003. [iv, 10, 60, 90, 95, 96, 98, 108]

Michael Collins. Parameter estimation for statistical parsing models: Theory and practice
of distribution-free methods. In Harry Bunt, John Carroll, and Giorgio Satta, editors,
New Developments in Parsing Technology, volume 23 of Text, Speech and Language
Technology, chapter 2. Springer, 2004. [11, 39, 99]

Michael Collins. A new statistical parser based on bigram lexical dependencies. In Pro-
ceedings of the Thirty-fourth Annual Meeting of the Association for Computational Lin-
guistics (ACL), pages 184–191, 1996. [10]

Michael Collins. Three generative, lexicalized models for statistical parsing. In Proceed-
ings of the Thirty-fifth Annual Meeting of the Association for Computational Linguistics
(ACL), pages 16–23, July 1997. [10, 11, 90, 95, 96, 98]

Michael Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis,
University of Pennsylvania, 1999. [8, 9, 10, 65, 90, 95, 96, 98]

Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Thomas G.
Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, Proceedings of the Fif-
teenth Annual Conference on Neural Information Processing Systems (NIPS 14), Cam-
bridge, MA, 2002a. MIT Press. [13, 93]

Michael Collins and Nigel Duffy. New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron. In Proceedings of the Fortieth Annual
Meeting of the Association for Computational Linguistics (ACL), July 2002b. [93, 109]

Michael Collins and Terry Koo. Discriminative reranking for natural language parsing.
Computational Linguistics, 31(1):25–69, 2005. [13, 66]

Michael Collins and Brian Roark. Incremental parsing with the perceptron algorithm. In
Proceedings of the Forty-second Annual Meeting of the Association for Computational
Linguistics (ACL), 2004. [12, 23, 60, 64, 74, 92, 99, 103, 104, 105, 109, 110]

Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, AdaBoost and
Bregman distances. Machine Learning, 48(1–3):253–285, 2002. [39]

113

Bibliography

Hal Daumé III and Daniel Marcu. A noisy-channel model for document compression.
In Proceedings of the Fortieth Annual Meeting of the Association for Computational
Linguistics (ACL), pages 449–456, July 2002. [4, 5]

Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured prediction
as classification. In NIPS Workshop on Advances in Structured Learning for Text and
Speech Processing, 2005. [39, 99, 105]

Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured prediction.
Machine Learning, 2006. In submission. Available at http://pub.hal3.name/. [39, 99,
105]

Miroslav Dud́ık, Steven J. Phillips, and Robert E. Schapire. Maximum entropy density
estimation with generalized regularization and an application to species distribution
modeling. Journal of Machine Learning Research, 8:1217–1260, June 2007. [10, 46]

Nick Duffield, Carsten Lund, and Mikkel Thorup. Sampling to estimate arbitrary subset
sums. Available at http://arxiv.org/abs/cs.DS/0509026, 2005. [56, 57]

Jason Eisner and Noah A. Smith. Parsing with soft and hard constraints on dependency
length. In Proceedings of the Ninth International Workshop on Parsing Technologies
(IWPT), 2005. [66]

Pedro F. Felzenszwalb and David McAllester. The generalized A∗ architecture. The Journal
of Artificial Intelligence Research, 29:153–190, June 2007. [23, 24, 95]

Yoav Freund. Boosting a weak learning algorithm by majority. Information and Compu-
tation, 121(2):256–285, 1995. [57]

Jerome H. Friedman. Stochastic gradient boosting. Computational Statistics and Data
Analysis, 38(4):367–378, February 2002. [57]

Jerome H. Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: A
statistical view of boosting. The Annals of Statistics, 28(2):337–374, 2000. [41, 42, 57]

David Furcy and Sven Koenig. Limited discrepancy beam search. In Leslie Pack Kael-
bling and Alessandro Saffiotti, editors, Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI), pages 125–131. Professional Book Center,
July–August 2005. [30]

David A. Furcy. Speeding Up the Convergence of Online Heuristic Search and Scaling Up
Offline Heuristic Search. PhD thesis, Georgia Institute of Technology, December 2004.
[30]

114

Giorgio Gallo and Maria Grazia Scutellà. Directed hypergraphs as a modelling paradigm.
Technical Report TR-99-02, Università di Pisa, February 1999. [17, 95, 97]

Stuart Geman and Mark Johnson. Dynamic programming for parsing and estimation of
stochastic unification-based grammars. In Proceedings of the Fortieth Annual Meeting
of the Association for Computational Linguistics (ACL), pages 279–286, July 2002. [11,
95, 96, 97]

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157–1182, 2003. [40]

Patrick Haffner, Steven Phillips, and Rob Schapire. Efficient multiclass implementa-
tions of L1-regularized maximum entropy. Available at http://arxiv.org/abs/cs.
LG/0506101/, 2005. [39, 44]

William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Chris S.
Mellish, editor, Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI), pages 607–615. Morgan Kaufmann, August 1995. [27, 30]

James Henderson. Inducing history representations for broad coverage statistical pars-
ing. In Proceedings of the Human Language Technology Conference (HLT) of the North
American Chapter of the Association for Computational Linguistics (NAACL), pages
24–31, Morristown, NJ, USA, 2003. Association for Computational Linguistics. [12, 13,
92, 108]

James Henderson. Discriminative training of a neural network statistical parser. In Proceed-
ings of the Forty-second Annual Meeting of the Association for Computational Linguistics
(ACL), 2004. [12, 13, 23, 64, 92, 94, 97, 98, 99, 108, 110]

Liang Huang and David Chiang. Better k-best parsing. In Proceedings of the Ninth Inter-
national Workshop on Parsing Technologies (IWPT), 2005. [31]

Martin Jansche. Maximum expected F-measure training of logistic regression models.
In Proceedings of the Human Language Technology Conference (HLT) and Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 692–699, Mor-
ristown, NJ, USA, 2005. Association for Computational Linguistics. [10, 34, 40]

Frederick Jelinek, John Lafferty, David Magerman, Robert Mercer, Adwait Ratnaparkhi,
and Salim Roukos. Decision tree parsing using a hidden derivation model. In Proceedings
of the ARPA Workshop on Human Language Technology, pages 272–277, Morristown,
NJ, USA, March 1994. Morgan Kaufmann. [8, 9, 30, 96, 98]

Mark Johnson. Learning and parsing stochastic unification-based grammars. In Bernhard
Schölkopf and Manfred K. Warmuth, editors, Proceedings of the Sixteenth Conference

115

Bibliography

on Computational Learning Theory (COLT) and the Seventh Kernel Workshop, volume
2777 of Lecture Notes in Computer Science, pages 671–683. Springer, August 2003. [11,
95, 96, 97]

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, and Stefan Riezler. Estimators
for stochastic “unification-based” grammars. In Proceedings of the Thirty-seventh Annual
Meeting of the Association for Computational Linguistics (ACL), pages 535–541, June
1999. [11, 13, 93, 96]

Aravind K. Joshi and Phil Hopely. A parser from antiquity. Natural Language Engineering,
2(4):291–294, 1996. [13]

Dan Klein and Christopher D. Manning. Parsing with treebank grammars: empirical
bounds, theoretical models, and the structure of the Penn Treebank. In Proceedings
of the Thirty-ninth Annual Meeting of the Association for Computational Linguistics
(ACL), pages 338–345, Morristown, NJ, USA, July 2001a. Association for Computa-
tional Linguistics. [101]

Dan Klein and Christopher D. Manning. A∗ parsing: Fast exact Viterbi parse selection. In
Proceedings of the Human Language Technology Conference (HLT) of the North Amer-
ican Chapter of the Association for Computational Linguistics (NAACL), Morristown,
NJ, USA, 2003a. Association for Computational Linguistics. [24, 26]

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proceedings of
the Forty-first Annual Meeting of the Association for Computational Linguistics (ACL),
July 2003b. [66]

Dan Klein and Christopher D. Manning. Parsing and hypergraphs. In Proceedings of the
Seventh International Workshop on Parsing Technologies (IWPT). Tsinghua University
Press, October 2001b. [17, 95, 97]

Kevin Knight and Daniel Marcu. Statistics-based summarization — step one: Sentence
compression. In Proceedings of the Seventeenth National Conference on Artificial Intel-
ligence (AAAI) and Twelfth Conference on Innovative Applications of Artificial Intelli-
gence (IAAI), pages 703–710. AAAI Press / The MIT Press, 2000. [5]

Kevin Knight and Daniel Marcu. Summarization beyond sentence extraction: a proba-
bilistic approach to sentence compression. Artificial Intelligence, 139(1):91–107, 2002.
[5]

Richard E. Korf. Artificial intelligence search algorithms. In Mikhail J. Atallah, editor,
Algorithms and Theory of Computation Handbook, chapter 36. CRC Press, Boca Raton,
FL, 1998. [27, 30]

116

Taku Kudo, Jun Suzuki, and Hideki Isozaki. Boosting-based parse reranking with subtree
features. In Proceedings of the Forty-third Annual Meeting of the Association for Compu-
tational Linguistics (ACL), Morristown, NJ, USA, 2005. Association for Computational
Linguistics. [13, 66]

John Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Carla E. Brodley
and Andrea Pohoreckyj Danyluk, editors, Proceedings of the Eighteenth International
Conference on Machine Learning (ICML). Morgan Kaufmann, June 2001. [19, 37, 93,
96, 99, 100]

Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu Jie Huang. A
Tutorial on Energy-Based Learning. MIT Press, September 2007. [94, 96]

Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In Sebastian Thrun, Lawrence Saul, and Bernhard
Schölkopf, editors, Proceedings of the Seventeenth Annual Conference on Neural Infor-
mation Processing Systems (NIPS 16), Cambridge, MA, 2004. MIT Press. [30]

David M. Magerman. Natural language parsing as statistical pattern recognition. PhD
thesis, Stanford University, Stanford, CA, USA, February 1994. [8, 9, 30, 96, 98]

David M. Magerman. Statistical decision-tree models for parsing. In Proceedings of the
Thirty-third Annual Meeting of the Association for Computational Linguistics (ACL),
pages 276–283, June 1995. [9, 10, 30, 54, 60, 96, 98]

Daniel Marcu, Wei Wang, Abdessamad Echihabi, and Kevin Knight. SPMT: Statistical
machine translation with syntactified target language phrases. In Proceedings of the
Eleventh Conference on Empirical Methods in Natural Language Processing (EMNLP),
July 2006. [viii, 7, 8]

Mitchell P. Marcus. Theory of Syntactic Recognition for Natural Languages. MIT Press,
Cambridge, MA, USA, 1980. [16]

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large
annotated corpus of English: the Penn Treebank. Computational Linguistics, 19(2):
313–330, 1993. [8, 9, 17, 59]

Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus R. Frean. Functional gradient
techniques for combining hypotheses. In Alexander J. Smola, Peter Bartlett, Bernhard
Schökopf, and Dale Schuurman, editors, Advances in Large Margin Classifiers, chap-
ter 12. MIT Press, Cambridge, MA, USA, 1999. [42, 44, 49, 84, 108]

117

Bibliography

Llew Mason, Jonathan Baxter, Peter L. Bartlett, and Marcus R. Frean. Boosting algorithms
as gradient descent. In Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller, editors,
Advances in Neural Information Processing Systems 12 (NIPS 1999), pages 512–518.
The MIT Press, 2000. [42, 44, 45, 49, 108]

Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Maximum entropy Markov
models for information extraction and segmentation. In Pat Langley, editor, Proceedings
of the Seventeenth International Conference on Machine Learning (ICML), pages 591–
598, San Francisco, CA, USA, June–July 2000. Morgan Kaufmann Publishers Inc. [10,
94, 96, 100]

Ryan McDonald and Fernando C. N. Pereira. Online learning of approximate dependency
parsing algorithms. In Proceedings of the Eleventh European Chapter of the Association
for Computational Linguistics (EACL), pages 81–88, April 2006. [92, 95, 101]

Ryan McDonald, Koby Crammer, and Fernando C. N. Pereira. Online large-margin training
of dependency parsers. In Proceedings of the Forty-third Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pages 91–98, Morristown, NJ, USA, 2005a.
Association for Computational Linguistics. [12, 92, 95, 99, 101]

Ryan McDonald, Fernando C. N. Pereira, Kiril Ribarov, and Jan Hajič. Non-projective
dependency parsing using spanning tree algorithms. In Proceedings of the Human Lan-
guage Technology Conference (HLT) and Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 523–530, Morristown, NJ, USA, 2005b. Associa-
tion for Computational Linguistics. [12, 92, 95, 99, 101]

Ryan McDonald, Koby Crammer, and Fernando C. N. Pereira. Spanning tree methods for
discriminative training of dependency parsers. Technical Report MS-CIS-06-11, Univer-
sity of Pennsylvania, Department of Computer and Information Science, October 2006.
[12, 92, 95, 99, 101]

Ron Meir and Gunnar Rätsch. An introduction to boosting and leveraging, pages 118–183.
Springer-Verlag New York, Inc., New York, NY, USA, 2003. [40]

I. Dan Melamed. Statistical machine translation by parsing. In Proceedings of the Forty-
second Annual Meeting of the Association for Computational Linguistics (ACL), 2004.
[5]

I. Dan Melamed. Automatic evaluation and uniform filter cascades for inducing N -best
translation lexicons. In Proceedings of the Third ACL Workshop on Very Large Corpora
(WVLC), 1995. [67]

I. Dan Melamed and Wei Wang. Generalized parsers for machine translation. Technical
Report 05-001, Proteus Project, New York University, 2005. http://nlp.cs.nyu.edu/
pubs/. [5, 6, 16]

118

Scott Miller, Heidi Fox, Lance Ramshaw, and Ralph Weischedel. A novel use of statistical
parsing to extract information from text. In Proceedings of the Applied Natural Language
Processing (ANLP) of the North American Chapter of the Association for Computational
Linguistics (NAACL), pages 226–233, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc. [2, 3]

Yusuke Miyao and Jun’ichi Tsujii. Maximum entropy estimation for feature forests. In
Proceedings of the Human Language Technology Conference (HLT), March 2002. [11, 95,
96, 97]

Andrew Y. Ng. Preventing “overfitting” of cross-validation data. In Douglas H. Fisher,
editor, Proceedings of the Fourteenth International Conference on Machine Learning
(ICML), pages 245–253. Morgan Kaufmann, July 1997. [60]

Eric W. Noreen. Computer-Intensive Methods for Testing Hypotheses : An Introduction.
Wiley-Interscience, April 1989. [60]

Joseph C. Pemberton and Richard E. Korf. An incremental search approach to real-time
decision making. In Proceedings of the AAAI Spring Symposium on Decision Theoretic
Planning, pages 218–224, Menlo Park, California, March 1994a. AAAI Press. [31]

Joseph C. Pemberton and Richard E. Korf. Incremental search algorithms for real-time
decision making. In Kristian J. Hammond, editor, Proceedings of the Second International
Conference on AI Planning Systems (AIPS-94), pages 140–145. AAAI, June 1994b. [31]

Simon Perkins, Kevin Lacker, and James Theiler. Grafting: Fast, incremental feature
selection by gradient descent in function space. Journal of Machine Learning Research,
3:1333–1356, 2003. [43, 44, 45, 46, 54, 108]

Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In Proceedings
of the First Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 133–142, 1996. [60, 61, 90, 93]

Adwait Ratnaparkhi. A linear observed time statistical parser based on maximum en-
tropy models. In Proceedings of the Second Conference on Empirical Methods in Natural
Language Processing (EMNLP), 1997. [10, 11, 40, 94, 96, 98]

Adwait Ratnaparkhi. Maximum Entropy Models for Natural Language Ambiguity Resolu-
tion. PhD thesis, University of Pennsylvania, Philadelphia, PA, 1998. [40]

Adwait Ratnaparkhi. Learning to parse natural language with maximum entropy models.
Machine Learning, 34(1-3), 1999. [10, 11, 23, 40, 53, 64, 94, 96, 98, 110]

119

Bibliography

Adwait Ratnaparkhi, Salim Roukos, and R. Todd Ward. A maximum entropy model
for parsing. In Proceedings of the Third International Conference on Spoken Language
Processing (ICSLP) 1994, pages 803–806, September 1994. [10, 11, 13, 96, 97]

Stefan Riezler and Alexander Vasserman. Incremental feature selection of `1 regulariza-
tion for relaxed maximum-entropy modeling. In Proceedings of the Ninth Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2004. [43, 45, 46, 108]

Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum
margin classifier. Journal of Machine Learning Research, 5:941–973, 2004. [84]

Kenji Sagae and Alon Lavie. A classifier-based parser with linear run-time complexity.
In Proceedings of the Ninth International Workshop on Parsing Technologies (IWPT),
2005. [53, 54, 64, 98, 110]

Robert E. Schapire and Yoram Singer. Improved boosting using confidence-rated predic-
tions. Machine Learning, 37(3):297–336, 1999. [41, 42, 44, 84]

Libin Shen, Anoop Sarkar, and Aravind K. Joshi. Using LTAG based features in parse
reranking. In Proceedings of the Eighth Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 89–96, Morristown, NJ, USA, July 2003. Associ-
ation for Computational Linguistics. [13]

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. In
Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Proceedings of the
Seventeenth Annual Conference on Neural Information Processing Systems (NIPS 16),
Cambridge, MA, 2004a. MIT Press. [12, 93, 99, 100, 101, 102]

Ben Taskar, Dan Klein, Michael Collins, Daphne Koller, and Chris Manning. Max-margin
parsing. In Proceedings of the Ninth Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 2004b. [12, 17, 59, 64, 90, 92, 93, 95, 99, 100, 101, 102,
110]

Ann Taylor, Mitchell Marcus, and Beatrice Santorini. The Penn Treebank: An overview.
In Anne Abeillé, editor, Treebanks: Building and Using Parsed Corpora, chapter 1, pages
5–22. Kluwer Academic Publishers, 2003. [8, 9, 17, 59]

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, 58:267–288, 1996. [36]

Ivan Titov and James Henderson. Constituent parsing with incremental sigmoid belief
networks. In Proceedings of the Forty-fifth Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 632–639. Association for Computational Linguistics,
June 2007a. [12, 13, 23, 92, 93, 94, 98, 108, 110]

120

Ivan Titov and James Henderson. Incremental bayesian networks for structure predic-
tion. In Proceedings of the Twenty-fourth International Conference on Machine Learning
(ICML), pages 887–894, New York, NY, USA, June 2007b. ACM Press. [12, 13, 23, 92,
93, 94, 98, 108, 110]

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Sup-
port vector machine learning for interdependent and structured output spaces. In
Carla E. Brodley, editor, Proceedings of the Twenty-first International Conference on
Machine Learning (ICML). ACM, July 2004. [12, 93, 99, 102, 104, 105]

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large
margin methods for structured and interdependent output variables. Journal of Machine
Learning Research, 6:1453–1484, 2005. [12, 93, 99, 102, 103, 104, 105]

Joseph Turian and I. Dan Melamed. Constituent parsing by classification. In Proceedings
of the Ninth International Workshop on Parsing Technologies (IWPT), 2005. [39, 53,
54]

Joseph Turian and I. Dan Melamed. Advances in discriminative parsing. In Proceedings
of the Forty-fourth Annual Meeting of the Association for Computational Linguistics
(ACL), 2006a. [54, 59, 60, 90]

Joseph Turian and I. Dan Melamed. Computational challenges in parsing by classification.
In HLT-NAACL workshop on Computationally Hard Problems and Joint Inference in
Speech and Language Processing, 2006b. [57, 78]

Joseph Turian, Benjamin Wellington, and I. Dan Melamed. Scalable discriminative learning
for natural language parsing and translation. In Proceedings of the Twentieth Annual
Conference on Neural Information Processing Systems (NIPS 19), Vancouver, BC, 2007.
[iv, 54, 107]

Benjamin Wellington, Joseph Turian, Chris Pike, and I. Dan Melamed. Scalable purely-
discriminative training for word and tree transducers. In Proceedings of the Seventh
Conference of the Association for Machine Translation in the Americas (AMTA), August
2006. [iv, 54, 107]

Dekai Wu. Stochastic inversion transduction grammars and bilingual parsing of parallel
corpora. Computational Linguistics, 23(3):377–404, 1997. [95]

Hiroyasu Yamada and Yuji Matsumoto. Statistical dependency analysis with support vector
machines. In Proceedings of the Eighth International Workshop on Parsing Technologies
(IWPT), 2003. [53, 54]

121

Bibliography

Rong Zhou and Eric A. Hansen. Beam-stack search: Integrating backtracking with beam
search. In Susanne Biundo, Karen L. Myers, and Kanna Rajan, editors, Proceedings of
the Fifteenth International Conference on Automated Planning and Scheduling (ICAPS),
pages 90–98. AAAI, June 2005. [23, 30]

122

