
A Probabilistic Approach to

Geometric Hashing using Line Features

by

Frank Chee-Da Tsai

a dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 1993

Approved:

Professor Jacob T. Schwartz

Research Advisor

c Frank Chee-Da Tsai

All Rights Reserved, 1993.

Dedication

This dissertation is dedicated to Professor Jacob T. Schwartz for his invaulable advisory,

to my parents for their endless love and to Buddha, whose wisdom cheers me through the

dark patches of my life.

iii

Acknowledgements

My most sincere gratitude goes to my research advisor Professor Jacob T. Schwartz

for his generous guidance, without which this dissertation can not be possible. To whom,

I also owe the understanding of identifying research directions of scienti�c interest.

I would also like to express my gratitude to Professor Wen-Hsiang Tsai of National

Chiao-Tung University, Hsin-Chu, Taiwan, Republic of China. I took his course \Image

Processing" when I was an undergraduate senior. This is my �rst taste of applying com-

puter technology to the processing of images. After two-year R.O.T.C. military service

upon graduation, I came here to the Courant Institute in 1987 to further my study. Pro-

fessor St�ephane Mallat's \Computer Vision" course again intrigued my interest in the �eld

of image analysis.

Thanks are also due to Professor Jaiwei Hong, Professor Robert Hummel, Professor

Richard Wallace, Professor Haim Wolfson, Dr. Isidore Rigoutsos, Mr. Ronie Hecker and

Mr. Jyh-Jong Liu for various kinds of helps and discussions.

I also thank the sta�s in the Courant Robotics Laboratory, for the days we worked

together, especially Dr. Xiaonan Tan for her encouragement.

Finally, I thank my parents, truly and sincerely, for their patience, support and constant

encouragement throughout the work and my whole life.

iv

Abstract

One of the most important goals of computer vision research is object recognition.

Most current object recognition algorithms assume reliable image segmentation, which in

practice is often not available. This research exploits the combination of the Hough method

with the geometric hashing technique for model-based object recognition in seriously de-

graded intensity images.

We describe the analysis, design and implementation of a recognition system that can

recognize, in a seriously degraded intensity image, multiple objects modeled by a collection

of lines.

We �rst examine the factors a�ecting line extraction by the Hough transform and pro-

posed various techniques to cope with them. Line features are then used as primitive

features from which we compute the geometric invariants used by the geometric hash-

ing technique. Various geometric transformations, including rigid, similarity, a�ne and

projective transformations, are examined.

We then derive the \spread" of computed invariant over the hash space caused by

\perturbation" of the lines giving rise to this invariant. This is the �rst of its kind for

noise analysis on line features for geometric hashing. The result of the noise analysis is

then used in a weighted voting scheme for the geometric hashing technique.

We have implemented the system described and carried out a series of experiments on

polygonal objects modeled by lines, assuming a�ne approximations to perspective viewing

transformations. Our experimental results show that the technique described is noise

resistant and suitable in an environment containing many occlusions.

v

Contents

List of Figures ix

1 Introduction 1

1.1 Model-Based Object Recognition : 2

1.1.1 Problem De�nition : 2

1.1.2 Object Recognition Method : 3

1.2 Di�culties to Be Faced : 5

1.3 The Hashing Approach : 5

1.4 Overview of This Dissertation : 6

1.4.1 Line Extraction : 7

1.4.2 Line Invariants : 7

1.4.3 E�ect of Noise on Line Invariants : 7

1.4.4 Invariant Matching with Weighted Voting : : : : : : : : : : : : : : : 7

2 Prior and Related Work 9

2.1 Basic Paradigms : 9

2.1.1 Template Matching : 9

2.1.2 Hypothesis-Prediction-Veri�cation : : : : : : : : : : : : : : : : : : : 10

2.1.3 Transformation Accumulation : 11

2.1.4 Consistency Checking and Constraint Propagation : : : : : : : : : : 13

2.1.5 Sub-Graph Matching : 14

2.1.6 Evidential Reasoning : 15

2.1.7 Miscellaneous : 15

2.2 An Overview of Geometric Hashing : 17

vi

2.2.1 A Brief Description : 17

2.2.2 Strengths and Weaknesses : 19

2.2.3 Geometric Hashing Systems : 20

2.3 The Bayesian Model of Rigoutsos : 20

3 Noise in the Hough Transform 23

3.1 The Hough Transform : 23

3.2 Various Hough Transform Improvements : 25

3.3 Implementation and Measured Performance : : : : : : : : : : : : : : : : : : 27

3.4 Some Additional Observations Concerning the Accuracy of Hough Data : : 36

4 Invariant Matching Using Line Features 39

4.1 Change of Coordinates in Various Spaces : : : : : : : : : : : : : : : : : : : 39

4.1.1 Change of Coordinates in Image Space : : : : : : : : : : : : : : : : : 40

4.1.2 Change of Coordinates in Line Parameter Space : : : : : : : : : : : 40

4.1.3 Change of Coordinates in (�; r) Space : : : : : : : : : : : : : : : : : 41

4.2 Encoding Lines by a Basis of Lines : 42

4.3 Line Invariants under Various Transformation Groups : : : : : : : : : : : : 43

4.3.1 Rigid Line Invariants : 43

4.3.2 Similarity Line Invariants : 46

4.3.3 A�ne Line Invariants : 51

4.3.4 Projective Line Invariants : 55

5 The E�ect of Noise on the Invariants 60

5.1 A Noise Model for Line Parameters : 60

5.2 The Spread Function of the Invariants : 61

5.3 Spread Functions under Various Transformation Groups : : : : : : : : : : : 64

5.3.1 Rigid-Invariant Spread Function : 64

5.3.2 Similarity-Invariant Spread Function : : : : : : : : : : : : : : : : : : 65

5.3.3 A�ne-Invariant Spread Function : 67

5.3.4 Projective-Invariant Spread Function : : : : : : : : : : : : : : : : : : 69

vii

6 Bayesian Line Invariant Matching 74

6.1 A Measure of Matching between Scene and Model Invariants : : : : : : : : 74

6.2 Evidence Synthesis by Bayesian Reasoning : : : : : : : : : : : : : : : : : : : 76

6.3 The Algorithm : 77

6.4 An Analysis of the Number of Probings Needed : : : : : : : : : : : : : : : : 78

7 The Experiments 80

7.1 Implementation of A�ne Invariant Matching : : : : : : : : : : : : : : : : : 80

7.2 Best Least-Squares Match : 82

7.3 Experimental Results and Observations : 85

8 Conclusions 95

8.1 Discussion and Summary : 95

8.2 Future Directions : 96

A 98

B 100

Bibliography 102

viii

List of Figures

3.1 A comparison of the results of the standard Hough technique and our im-

proved Hough technique, when applied to an image without noise. : : : : : 28

3.2 A comparison of the results of the standard Hough technique and our im-

proved Hough technique, when applied to a noisy image. : : : : : : : : : : : 29

3.3 The twenty models used in our experiments. From left to right, top to

bottom are model-0 to model-19. : 30

3.4 Reading from top to bottom, left to right, (0) to (8) are image-0 with dif-

ferent noise levels corresponding to cases 0 to 8. : : : : : : : : : : : : : : : 32

3.5 Image-1 to Image-9 before noise is imposed. The same noise levels as for

Image-0 are applied during our experiments. : : : : : : : : : : : : : : : : : 33

3.6 The thicker line is with parameter (�; r). Projections of the pixels of this

line onto line (� + 90�; r) will disperse around the position r distant from

the origin. : 38

7.1 Experimental Example 1 : 87

7.2 Experimental Example 2 : 88

7.3 Experimental Example 3 : 89

7.4 Experimental Example 4 : 90

7.5 Experimental Example 5 : 92

7.6 Experimental Example 6 : 93

ix

Chapter 1

Introduction

One of the most important goals of computer vision research is object recognition. This

humanlike visual capability would enable machines to sense and analyze their environment

and to take an appropriate action as desirable.

We consider intensity-image techniques. Range data is usually harder to obtain. There

is also reason to believe that human vision emphasizes intensity images and that most

practical applications of computer vision can be tackled without range information [42].

Speci�cally, we consider the problem of 2-D (or, at 3-D) object recognition under vari-

ous viewing transformations. We are interested in (1) large model bases (more than ten

objects); (2) cluttered scene (low signal noise ratio); (3) high occlusion levels; (4) seg-

mentation di�culties. The current approaches to image segmentation generally produce

incomplete boundaries and extraneous edge indications. Therefore, any approach to object

recognition has to cope with segmentation defects. To work in environments containing

many occlusions, we impose minimal segmentation requirements | only positional infor-

mation of edgels is assumed to be available.

We will describe the analysis, design and implementation of a recognition system that

can recognize, in a seriously degraded intensity image, multiple objects which can be

modeled as collections of lines.

1

CHAPTER 1. INTRODUCTION 2

1.1 Model-Based Object Recognition

Recognition can be achieved by establishing correspondences between many kinds of pre-

dicted and measured object properties, including shape, color, texture, connectivity, con-

text, motion, or shading. Here, we will focus upon the problem of achieving spatial cor-

respondence. This is often prerequisite to examining correspondences along the other

dimensions.

Prior research [7,13] has indicated that a model-based approach to object recognition

can be very e�ective in overcoming occlusion, complication and inadequate or erroneous

low level processing. Most commercial vision systems are model-based ones, in which

recognition involves matching an input image to a set of prede�ned models of objects. A

key goal in this approach is to precompile a description of a known set of objects, then to

use these object models to recognize in an image each instance of an object and to specify

its position and orientation relative to the viewer.

1.1.1 Problem De�nition

Object recognition can be conceptualized in various ways. A brief survey of the literature

on this subject demonstrates this point [7,8,13]. Here, we adopt the de�nition given by

Besl and Jain [7].

Their de�nition is motivated by the observation of human visual capabilities. Two

main steps are involved. The �rst step is learning. When a new object is given, human

visual system gathers information about that object from many di�erent viewpoints. This

process is usually referred to as model formation. The second step is identi�cation.

The following de�nition of the single-arbitrary-view model-based object recognition prob-

lem is motivated by the above:

1. Given any collection of labeled solid objects, (a) each object can be examined as long

as the object is not deformed; (b) labeled models can be created using information

from this examination.

2. Given digitized sensor data corresponding to one particular, but arbitrary �eld of

view of the real world, given any data stored previously during the model formation

process, and given the list of distinguishable objects, the following questions must be

answered:

CHAPTER 1. INTRODUCTION 3

� Does the object appear in the digitized sensor data ?

� If so, how many times does it occur ?

� For each occurrence, (1) determine the location in the sensor data (image), (2)

determine the location (or translation parameters) of that object with respect

to a known coordinate system (if possible with given sensor), and (3) determine

the orientation (or rotation parameters) with respect to a known coordinate

system.

This problem statement allows the possibility of using computers to solve it; at any

rate the problem is clearly solvable by human beings.

1.1.2 Object Recognition Method

In most object-recognition systems, one can distinguish �ve sub-processes: image forma-

tion, feature extraction, model representation, scene analysis and hypotheses veri�cation.

Image Formation

This process creates images via sensors, which can be sensitive to a variety of signals like

visible spectrum light, X-rays, etc. As said, we will concentrate on intensity images.

Feature Extraction

This process acts on the sensor data and extracts relevant features. The geometric features

we are interested in might in principle be lines, segments, curvature extrema, curvature

discontinuities, conics and so on. But we will use lines exclusively.

Model Representation

This process converts models to the quantities which will be used to recognize them. This

process is closely related to the feature-extracting process, since the same features are

supposed to be extracted from a scene for matching.

Models based on geometric properties of an object's visible surfaces or silhouette are

commonly used because they describe objects in terms of their constituent shape features.

Although many other models of regions and images emphasizing gray-level properties (e.g.

CHAPTER 1. INTRODUCTION 4

texture and color) have been proposed, solving the problem of spatial correspondence is

often a prerequisite to their use. Thus, recognition of objects in a scene is always apt to

involve construction of a shape description of objects from sensed data and then matching

the description to stored object models.

A shape representation scheme usually involves at least two components:

1. the primitive units, e.g. vertices (0-dimension), curves and edges (1-dimension), sur-

faces (2-dimension, e.g. plane surface, quadratic surface) and volumes (3-dimension,

e.g. generalized cylinders);

2. the way those primitives are combined to form the object models.

Such a representation scheme must satisfy the following two criteria to be considered of

good quality:

1. Near-Uniqueness: Ideally each object in the world should have a limited number of

representations; otherwise, when image features are derived, there will be also many

choices of con�guration for each representation and thus increase the computational

complexity to match con�gurations of image features to model representations.

2. Continuity: Similar objects should have similar representations and very di�erent

objects should have very di�erent representations.

Scene Analysis

This process involves an algorithm for performing matching between models and scene

descriptions. This process is most crucial in an object recognition system and is the focus

of this thesis. It recovers the transformations the model objects undergo during the image-

formation process. Sometimes a quality measure can be associated with each model instance

detected; this measure can be used as a measure of belief for further decision making in

an autonomous system. We will classify basic matching techniques and review them in

chapter 2. The techniques we are interested in involve those allowing partial occlusion,

viewing distortion and data perturbation.

In this dissertation, we will focus on using the geometric hashing technique for match-

ing. The geometric hashing technique is very good as a �lter capable of eliminating many

candidate hypotheses as the identity of the objects [38].

CHAPTER 1. INTRODUCTION 5

Hypotheses Veri�cation

This process evaluates the quality of surviving hypotheses and either accepts or rejects

them. Usually an object recognition system projects the hypothesized models onto the

scene and the fraction of the model accounted for by the available scene signals is computed.

If this fraction is below a pre-set (usually obtained empirically) threshold, the hypothesis

fails veri�cation.

1.2 Di�culties to Be Faced

What makes the visual recognition task di�cult ? Basically, there are four factors:

1. noise, e.g. sensor noise and bad lighting conditions;

2. clutter, e.g. industrial parts occluded by akes generated in the milling process;

3. occlusion, e.g. industrial parts overlapping each other;

4. spurious data, e.g. presence of unfamiliar objects in the scene.

The amount of e�ort required to recognize and locate the objects increases when these

four factors become serious. In dealing with these four factors, we have to consider three

problems [13]:

1. What kind of \features" should and can be reliably be extracted from an image in

order to adequately describe the spatial relations in a scene ?

2. What constitutes an e�ective representation of these features and their relationships

for an object model ?

3. How should the correspondence between scene features and model features be matched

in order to recover model instances in a complex scene ?

1.3 The Hashing Approach

In order to recognize 3-D objects in 2-D images, we must either perform a comparison

in 2-D or 3-D. Since it is easier to project 3-D models onto a 2-D image than it is to

CHAPTER 1. INTRODUCTION 6

reconstruct 3-D shapes from 2-D scenes, it is logical, in model-based vision, to perform the

comparisons in image space. If we simply project the 3-D models onto image space during

the recognition process, we must guess at the projection parameters, and incur the compu-

tational expense of multiple projections at run-time. If we precompute many projections,

then we potentially substitute many 2-D models for relatively fewer 3-D models.

A more e�ective method of performing object recognition was proposed by Schwartz

and Sharir [33]. The technique exploits the idea of hashing. By appropriately selecting a

hash function, dictionary operations1 can be performed in O(1) time on the average. By

hashing transformation invariants, instead of raw data subject to a viewing transformation,

the hash function \hashes" to a �xed \bucket" of the hash table before and after what-

ever viewing transformations are allowed. Thus object models can be represented by its

constituent geometric features, some appropriate subset of which is hashed and pre-stored

in the hash table in a redundant way. During recognition, the same hash operations are

applied to a subset of scene features and candidate matching model features are retrieved

from the hash table to hypothesize their correspondence.

This hashing technique trades space for time. We may even pre-compute many projec-

tions, substituting many 2-D models for relatively fewer 3-D models.

1.4 Overview of This Dissertation

In this dissertation, we consider highly degraded intensity images containing multiple ob-

jects. We emphasize use of four techniques:

� Use of an improved Hough transform to detect line features in a noisy image;

� Use of geometric invariants derived from line features under various viewing trans-

formations;

� Use of the e�ect of line feature statistics on the perturbation analysis of invariants

computed;

� Use of a Bayesian reasoning as the basis for line feature matching.

1consisting of \insert", \delete" and \member" operations [1].

CHAPTER 1. INTRODUCTION 7

1.4.1 Line Extraction

In noisy scenes, the locations of point features can be hard to detect. Line features are

more robust and can be extracted by the Hough transform method with greater accuracy.

Thus we choose lines as the primitive features to be used.

In chapter 3, we �rst briey review the Hough transform technique for detecting line

features. Then we point out several factors that adversely a�ect the performance of the

method and propose several heuristics to cope with those factors to improve the perfor-

mance.

A series of experiments relating to this point are presented.

1.4.2 Line Invariants

In chapter 4, we �rst examine the way in which coordinate changes act on various spaces

of potential interest for recognition. This allows us to de�ne a method of encoding a line

using a combination of other lines in a way invariant under suitable geometric transfor-

mations. Potentially interesting transformations considered include rigid, similarity, a�ne

and projective transformations.

1.4.3 E�ect of Noise on Line Invariants

In chapter 5, we model the statistical behavior of line parameters detected by the Hough

transform in a noisy image using a Gaussian random process with mild assumptions. We

analyze the statistics of the computed invariants and show that these have a Gaussian

distribution in a �rst order approximation.

Analytical formulae for various transformations including rigid, similarity, a�ne and

projective transformations are given.

1.4.4 Invariant Matching with Weighted Voting

In chapter 6, we use the result of chapter 5 to formulate a Bayesian maximum likelihood

pattern classi�cation as the basis of weighted voting scheme for matching line features by

Geometric Hashing.

We have implemented a system that makes use of these ideas to perform object recogni-

tion, assuming a�ne approximations to more general perspective viewing transformations.

CHAPTER 1. INTRODUCTION 8

Both synthesized and real images were used in experiments. Experimental results are given

in chapter 7. It is seen that the technique is noise resistant and usable in environments

containing many occlusions.

Chapter 2

Prior and Related Work

Numerous techniques have been proposed for object recognition. A brief survey and clas-

si�cation of those techniques is given below. These techniques are not independent of each

other; most vision systems combine several of them.

We divide the analysis into three sections. The �rst section examines object recognition

using various classical schemes, and the second two sections discuss the background and

existing work in the �eld of geometric hashing. In this thesis, we study the Hough transform

methods, discussed in section 2.1.3 and geometric hashing described in section 2.2. Our

work directly builds upon the Bayesian weighted voting scheme of Rigoutsos, which we

describe in section 2.3.

2.1 Basic Paradigms

2.1.1 Template Matching

Template matching involves matching an image to a stored representation and evaluating

some �t function.

According to their exibility, templates can be classi�ed into four categories [14]:

� Total templates require an exact match between a scene and a template. Any dis-

placement or orientation error of pattern in the scene will result in rejection.

� Partial templates move a template across the scene, computing cross-correlation fac-

tors. Points of maximum cross-correlation values are considered as locations where

9

CHAPTER 2. PRIOR AND RELATED WORK 10

the desired pattern appears; multiple matches against the scene is thus possible.

� Piece templates represent a pattern by its components. Usually the component tem-

plates are weighted by size and scored against a prototype list of expected features.

This method is less sensitive to distortions of the pattern in the scene than the more

limited techniques listed above. The subgraph matching technique described later

can be viewed as an extension to this technique.

� Flexible templates are designed to handle the problems of scene deviations from pro-

totypes. Starting with a good prototype of a known object, templates can be para-

metrically modi�ed to obtain a better �t until no more improvement is obtained.

(This technique has been successfully applied to the sorting of chromosome images.)

A di�culty is that exible approaches tend to be more time-expensive than rigid

approaches.

Most of these template matching techniques apply only in two-dimensional cases and have

little place in three-dimensional analysis, where perspective distortion comes into play.

One can store a dense set of tessellations of possible views, but this results in enormous

computational time in matching. For basic techniques of template matching, see [15].

2.1.2 Hypothesis-Prediction-Veri�cation

The hypothesis-prediction-veri�cation approach is among the most commonly-used tech-

niques in vision systems. It combines both bottom-up and top-down paradigms.

Hypotheses are generated bottom-up among structures in a geometric hierarchy, from

structures of edges to curves, from structures of curves to surfaces, and from structures

of surfaces to objects. Predictions work top-down from object models to images. Once

a hypothesis has been made, predictions and measurements provide new information for

identi�cation.

Many such schemes use geometric features such as arcs, lines and corners to construct

model representations. These features are usually portions of the object's boundary.

In the HYPER system [4], both model and scene are represented in the same way

by approximating the boundary with polygons. The ten longest segments are chosen as

so-called privileged segments which are the focus features used to detect a prospective

CHAPTER 2. PRIOR AND RELATED WORK 11

correspondence (hypothesis) between object models and the scene. Using this correspon-

dence, a transformation can be computed and nearby features are sought (prediction). The

privileged segments, together with their nearby features, are combined to compute a new

transformation. Then the veri�cation step follows.

Veri�cation is often accomplished using an alignment method. Usually there is a trade-

o� between the hypothesis generation stage and the veri�cation stage. If hypotheses are

generated in a quick-and-dirty manner, then the veri�cation stage requires more e�ort. If

we want the veri�cation stage to be less pains-taking, then more reliable features have to

be detected and more accurate hypotheses produced.

In alignment by Huttenlocher and Ullman [30,31], they consider a�ne approximations

to more general perspective transformations, using alignments of triplets of points. Models

are processed sequentially during recognition. For each model, an exhaustive enumeration

of all the possible pairings of three non-collinear points of the model and the scene is

exercised. Thus the alignment method heavily relies on veri�cation. As a transformation

is determined by the correspondence of model and scene features, the model is transformed

and aligned to superimpose the image. Veri�cation of the entire edge contour, rather than

just a few local feature points, is then performed to reduce the false alarm rate. To cope

with the high computational cost of the veri�cation stage, a hierarchical scheme is used:

Starting with a relatively simple and rapid check, they eliminate many false matches, and

then conclude with a more accurate and slower check.

To sum up, the hypothesis-prediction-veri�cation cycle relates scene images to object

models and object models to scene images step by step with re�nement in each step.

Note also that any scheme using the \hypothesis-prediction-veri�cation" paradigm can

be tailored to a parallel implementation by using the overwhelming computing power to

generate a great number of hypotheses concurrently and do veri�cations concurrently.

2.1.3 Transformation Accumulation

Transformation accumulation is also called pose clustering [50] or the generalized Hough

transform [5], which is characterized by a \parallel" accumulation of low level pose evi-

dences, followed by a clustering step which selects pose hypotheses with strong support

from the set of evidences.

This method can be viewed as the inverse of template matching, which moves the model

CHAPTER 2. PRIOR AND RELATED WORK 12

template around all the positions of the scene and directly computes a value (usually cross-

correlation) as a measure of matching. Transformation accumulation, instead of trying all

possible positions of the model in the scene, computes which positions are consistent with

model features and scene features. Moreover, its use of all of the evidences without regard

to their order of arrival can be advantageous when there are occlusions.

The features used to generate pose hypotheses can be of high level or low level. If the

level of features used are high enough, much less computational e�ort is required for the

accumulation stage. However, the trade-o� is that higher level features are usually more

di�cult to extract.

The major problem of this technique usually lies in ensuring that all visible hypotheses

are considered within acceptable limits of storage and computational resources. However,

as computer power continues to grow while its cost continues to drop, this problem has

been growing steadily less signi�cant.

In the generalized Hough transform [5], the transformation between a model and the

scene is usually described by a set of transformation parameters. For example, four param-

eters are needed for the case of two-dimensional similarity transformations: two parameters

for translation; one parameter for rotation; one parameter for scaling. Each transforma-

tion parameter is quantized in the so-called Hough space. The scene features vote for

these parameters which are consistent with the pairings of these scene features and hy-

pothesized model features. One problem of the generalized Hough transform is the size

of the Hough space. In terms of two-dimensional cases, we face three-dimensional Hough

space for rigid transformations; four-dimensional Hough space for similarity transforma-

tions; six-dimensional Hough space for a�ne transformations.

Tucker et al. [53] use local boundary features to constrain an object's position and

orientation, which is then used as the basis for hypothesis generation. Their system takes

advantage of the highly parallel processing power of the Connection Machine [26] to gener-

ate numerous transformation hypotheses concurrently and verify them concurrently. The

number of processors required for each model is equal to the number of features of the

model. Each scene feature participates, in parallel, independently in each processor to

match model features for generating transformation hypotheses, which, after veri�ed, are

used for evidence accumulation for voting for the pose transformation of the object.

CHAPTER 2. PRIOR AND RELATED WORK 13

Thompson and Mundy [52] describe a system for locating objects in a relatively uncon-

strained environment. The availability of a three-dimensional surface model of a polyhedral

object is assumed. The primitive feature used is the so-called vertex-pair, which consists

of two vertices: one is characterized by its position coordinate; the other, in addition to

position coordinate, includes two edges that de�ne the vertex. This feature serves as the

basis of computing the a�ne viewing transformation from the model to the scene. Through

the voting in the transformation space, candidate transformations are selected.

A common critique about this paradigm lies in that as the scene is noisy, the accu-

mulation of \evidences" contributed by random noises can possibly result in false alarms.

Grimson and Huttenlocher [22] give a formal analysis of the likelihood of false positive

responses of the generalized Hough transform for object recognition. However, we can use

this paradigm as an early stage of processing (i.e., as a �lter), followed by a scrutinized

veri�cation stage.

2.1.4 Consistency Checking and Constraint Propagation

Many model-based vision schemes are based on searching the set of possible interpretations,

which is usually combinatorially large.

As in other areas of arti�cial intelligence, making use of large amounts of world knowl-

edge can often lead not only to increased robustness but also to a reduction in the search

pace that must be explored during the process of interpretation. It is usually possible to

analyze a number of constraints or consistency conditions that must be satis�ed to make

a correct interpretation. E�ective application of consistency checking or propagation of

constraints during searching can often prune the search space greatly.

Lowe [41] emphasizes the importance of viewpoint consistency constraint, which re-

quires that the locations of all object features in an image be consistent with the projection

from a single viewpoint. The application of this constraint allows the spatial information

in an image to be compared with prior knowledge of an object's shape to the full degree

of available image resolution. Lowe also argues that viewpoint-consistency plays a central

role in most instances of human visual recognition.

Grimson [20] extended his previous work RAF [23] to handle some classes of parame-

terized objects. He approaches the recognition problem as a searching problem using the

CHAPTER 2. PRIOR AND RELATED WORK 14

so-called interpretation tree. Since this search is inherently an exponential process, he an-

alyzed a set of geometric constraints based on the local shape of parts of objects to prune

large subtrees from consideration without having to explore them.

The relaxation labeling technique (e.g. [51,54]) is yet another example of this type.

Many visual recognition problems can be viewed as constraint-satisfaction problems. For

example, when labeling a block-world picture, a relaxation algorithm iteratively assigns

values to mutually constrained objects using local information alone in such a way that

ensures a consistent set of values for which no constraints are violated. The values assigned

to the objects by relaxation algorithms can be discrete or probabilistic. In the former case,

discrete levels are assigned to objects, while in the latter case, a level of certainty (or

probability) is attached to each label. Relaxation algorithms can proceed in a parallel-

iterative manner, propagating matching constraints in parallel.

2.1.5 Sub-Graph Matching

Both object models and scene images can be expressed by graphs of nodes and arcs. Nodes

represent features (usually geometric structures) detected and arcs represent the geometric

relations between these features, e.g. [11]. The task then reduces to �nd an embedding or

�tting of a model in a description of the scene.

Since a model contains both local and relational features in the form of a graph, match-

ing depends not only on the presence of particular boundary features but also on their

interrelations (e.g. distance). The requirement for successful recognition is that a su�cient

set of key local features have to be visible and in correct relative positions, which may

allow for a speci�ed amount of distortion. For example, Bolles and Cain [10] proposed the

use of a hierarchy of local focus features for model representation. Once the local focus

features have been detected, nearby features are predicted and searched for in the scene.

If the best focus features are occluded, the second best focus features are used.

An advantage of this technique is its robustness to relative occlusion and distortion.

Computational ine�ciency can be a drawback, since graph-matching or subgraph isomor-

phism procedures have to be executed. E�ective strategies to reduce the time complexity

are therefore required. In [10], once an occurrence of the best focus feature is located, the

system simply runs down the appropriate list of nearby features and a transformation is

computed, followed by a veri�cation step. Thus exploration of the whole relational graph

CHAPTER 2. PRIOR AND RELATED WORK 15

is avoided. Barrow and Tenenbaum [6] proposes use of a hierarchical graph-searching

technique which decomposes the model into independent components.

2.1.6 Evidential Reasoning

Evidential reasoning is a method for combining information from di�erent sources of ev-

idence to update probabilistic expectations. The attractive feature of using evidential

reasoning for computer vision is that it allows us to combine information of varying reli-

ability from many sources, even though no particular item of evidence is by itself strong

enough for recognizing a particular object.

For example, SCERPO by Lowe [40] is a search-based matching system. As to the

search space of SCERPO, two major components are involved: (1) the space of possible

viewpoints; (2) the space of selecting one model from the model database. Lowe tackles

the �rst component by perceptual organization and suggests that the second component

be treated by a technique of evidential reasoning. Each piece of evidence contributes

to the presence of a certain object or objects, which quantitatively can be described by a

probabilistic expectation. The combining of evidences thus can be quantitatively described

by combining probabilistic expectations. The probability ranking is constantly updated to

reect new evidence found. For example, as soon as one object is recognized, it provides

contextual information which updates the rankings and aids in the search process. Ranking

and updating may take time; however, as the list of possible objects increases, cost of the

evidential reasoning may be amortized and its use becomes more important.

To sum up, evidential reasoning may deserve serious consideration to be incorporated

into a system under development. It shows promise for carrying out the objective of

combining many sources of information, including color, texture, shape and prior knowledge

in a exible way to achieve recognition.

2.1.7 Miscellaneous

Dual Models

If partial visibility problem is to be attacked, a recognition system using global features

alone can not be feasible. Only local features can be used in the matching procedure in

order to cope with overlapping parts and occlusions. One is free to choose di�erent local

CHAPTER 2. PRIOR AND RELATED WORK 16

features such as points, lines, curves, etc., or their combinations as the matching features,

according to the nature of the objects in the model base. However, two factors of repre-

sentation, completeness and e�ciency, have to be taken into consideration. Completeness

of representation suggests rich enough features in order to enable discrimination between

similar objects; while e�ciency suggests using some minimal characteristic information to

match models again the scene (so that the inherent complexity of the matching algorithm

will be small).

A main drawback of representation by local features can be its incompleteness, since

objects usually can not be fully described by a set of local features alone. One way to cope

with this problem is to use both global and local feature representations: Local features

are used in the matching procedure; while the additional complete representation is used,

after the matching process, for veri�cation and further re�nement of the object localization

[4,10,19,31,36].

Dual Scenes

Object recognition algorithms usually fall into two categories { those using intensity images

and those using range data. However, we may use both of them as long as it helps.

For example, Kishon [34] combines the use of both range and intensity data to extract

3-D curves from a scene. These curves will be of a much higher quality than if they were

extracted from the range data alone. The combined information is also used to classify the

3-D curves as either shadow, occluding, fold or painted curves.

Abstracted Features

An abstracted feature is a feature which does not physically exist, but is inferred. For

example, in preparing a model representation for polygonal objects, we may extend non-

neighboring edges to obtain their intersection and use the contained angle as a feature.

Some more advanced applications of using abstracted features include the footprint of

concavity [37], the Fourier Descriptor used for silhouettes description of aircraft in [2] and

the representation of turning angle as a function of arc length used in [3,19,49].

CHAPTER 2. PRIOR AND RELATED WORK 17

Normalization

There are various reasons for the use of normalization.

In some cases, it is used to preserve certain properties. For example, in the probabilistic

relaxation labeling scheme, the accumulated contributions from neighboring points have to

be normalized so that the updating rule results in a probability (i.e., a value in [0::1]).

In other cases, it can be viewed as a technique for removing some uncertain factors. For

example, suppose we use Fourier Descriptor to describe the boundary of an object. In order

for such representation insensitive to the variations as changes in size, rotation, translation

and so on, we have to perform the normalization operations such that the contour has a

\standard" size, orientation and starting point. By normalizing the Fourier component

F (1) to have unity magnitude, we remove the factor of scaling variation. Similarly, the

(s-�) graph (the representation of turning angle as a function of arc length) has to be

shifted vertically by adding an o�set to � so that the reference point on the contour is

somewhat a standard value, such as zero. Since the rotation of a contour in Cartesian

space corresponds to a simple shift in the ordinate (�) of the s-� graph, such normalization

process removes the factor of rotation [19].

Other good reasons to use normalization involve making some operations easier to

perform. For example, in performing point set matching, Hong and Tan [27] normalize

both point sets to their canonical forms �rst; then, their canonical forms are matched. After

normalization, the matching between two canonical forms reduce to a simple rotation of

one to match the other.

2.2 An Overview of Geometric Hashing

2.2.1 A Brief Description

The geometric hashing idea has its origins in work of Schwartz and Sharir [49]. Application

of the geometric hashing idea for model-based visual recognition was described by Lamdan,

Schwartz and Wolfson. This section outlines the method; a more complete description can

be found in Lamdan's dissertation [36]; a parallel implementation can be found in [46].

The geometric hashing method proceeds in two stages: a preprocessing stage and a

recognition stage. In the preprocessing stage, we construct a model representation by

CHAPTER 2. PRIOR AND RELATED WORK 18

computing and storing redundant, transformation-invariant model information in a hash

table. During the subsequent recognition stage the same invariants are computed from

features in a scene and used as indexing keys to retrieve from the hash table the possible

matches with the model features. If a model's features scores su�ciently many hits, we

hypothesize the existence of an instance of that model in the scene.

The Pre-processing Stage

Models are processed one by one. New models added to the model base can be processed

and encoded into the hash table independently. For each model M and for every feasible

basis b consisting of k points (k depends on the transformations the model objects undergo

during formation of the class of images to be analyzed), we

(i) compute the invariants of all the remaining points in terms of the basis b;

(ii) use the computed invariants to index the hash table entries, in each of

which we record a node (M; b).

Note that all feasible bases have to be used. In particular, all the permutations (up to k!)

of the k inputs used to calculate the invariants have to be considered. The complexity of

this stage is O(mk+1) per model, where m is the number of points extracted from a model.

However, since this stage is executed o�-line, its complexity is of little signi�cance.

The Recognition Stage

Given a scene with n feature points extracted, we

(i) choose a feasible set of k points as a basis b;

(ii) compute the invariants of all the remaining points in terms of this basis b;

(iii) use each computed invariant to index the hash table and hit all (Mi; bj)'s

that are stored in the entry retrieved;

(iv) histogram all (Mi; bj)'s with the number of hits received;

CHAPTER 2. PRIOR AND RELATED WORK 19

(v) establish a hypothesis of the existence of an instance of model Mi in the

scene if (Mi; bj), for some j, peaks in the histogram with su�ciently many

hits;

and repeat from step (i), if all hypotheses established in step (v) fail veri�cation.

The complexity of this stage is O(n)+O(t) per probe, where n is the number of points

extracted from the scene and t is the complexity of verifying an object instance.

2.2.2 Strengths and Weaknesses

At a glance, geometric hashing seems similar to the transformation accumulation tech-

niques discussed in section 2.1.3. However, the similarity lies only in the use of \accumu-

lating evidence" by voting. The techniques discussed in section 2.1.3 accumulate \pose"

evidence while geometric hashing accumulates \feature correspondence" evidence. The

former analysis always votes for parameters of transformations while the latter votes for

(model identi�er, basis set) pair, where transformation parameters can be computed when

the correspondence of scene feature set and model basis set is hypothesized.

Strengths

Most of the methods discussed in section 2.1 are search-based: Model features are searched

to match scene features and this search process goes through each model in the model base

sequentially. For example, the interpretation tree technique by Grimson [23] has inherent

exponential complexity by pairing each scene feature to each model feature combinatori-

ally. Geometric hashing greatly accelerates search of the model base by using a hashing

technique to select candidate model features to match scene features. This process is at

worst sublinear in the size of the model base.

Like the transformation accumulation techniques, geometric hashing's voting scheme

copes well with occlusion and with the fragility of existing image segmentation techniques.

The accumulation of evidence without regard to order makes parallel implementation easy.

Weaknesses

Errors in feature extraction will commonly lead to perturbation of invariants and degra-

dation of recognition performance, since perturbed invariant values are used to index the

CHAPTER 2. PRIOR AND RELATED WORK 20

hash table to retrieve candidate model features. Performance is similarly degraded by

quantization noise introduced in constructing the hash table. Thus use of point features

does not seem viable in a seriously degraded image, see [21].

The inherently non-uniform distribution of computed invariants in the hash table results

in non-uniform hash bin occupancy for uniformly quantized hash table [47]. This degrades

the index selectivity power of the hashing scheme used.

2.2.3 Geometric Hashing Systems

Since the introduction of the geometric hashing method by Wolfson and Lamdan, a num-

ber of subsequent applications and improvements have been developed at the Robotics

Research Laboratory of New York University and other research laboratories.

Gavrila and Groen [18] apply the hashing technique for recognition of 3-D objects from

single 2-D images. They determine limits of discriminability by experiments to generate

viewpoint-centered models.

Gueziec and Ayache [24] address the problem of fast rigid matching of 3-D curves in

medical images. They incorporate six di�erential invariants associated with the surface and

introduce an original table, where they hash values for the six transformation parameters.

Hummel and Wolfson [29] discuss both the object matching and the curve matching

by geometric hashing.

Flynn and Jain [17] use invariant feature and the hashing technique to generate hy-

potheses without resorting to a voting procedure. They conclude that this method is more

e�cient than a constrained search technique, for example, interpretation tree technique

[23].

Recently, the work of Rigoutsos develops geometric hashing by incorporating a Bayesian

model for weighted voting, which we describe in the next section.

2.3 The Bayesian Model of Rigoutsos

The thesis work of Rigoutsos [43] from 1992 considerably extends the capability of the

geometric hashing scheme.

To cope with the problem caused by the positional uncertainty of point features, a

Gaussian distribution is used to model the perturbation of the coordinate of the point. That

CHAPTER 2. PRIOR AND RELATED WORK 21

is, the measured values are assumed to be distributed according to a Gaussian distribution

centered at the true values and having standard deviation �. More precisely, let (xi; yi) be

the \true" location of the i-th feature point in the scene. Let also (Xi; Yi) be the continuous

random variables denoting the coordinates of the i-th feature. The joint probability density

function of Xi and Yi is then given by:

f(Xi; Yi) =
1

2��2
exp(�

(Xi � xi)
2 + (Yi � yi)

2

2�2
):

Using this error model, he formulates a weighted voting scheme for the evidence ac-

cumulation in geometric hashing. He uses a weighted contribution to the model/basis

hypothesis of an entry � in the hash space based on a scene point's hash � in the same

space, using a formula of the form

log[1� c+ A exp(�
1

2
(� � �)��1(� � �)t)];

where c and A are constants that depend on the scene density and � is the covariance

matrix in hash space coordinates of the expected distribution of � based on the error

model for (x; y), the feature point in the scene.

He shows that when weighted voting is used according to the above formula, the evi-

dence accumulation can be interpreted as a Bayesian a posteriori classi�cation scheme. He

shows that the accumulations are related to

log[Prob(HkjE1; � � � ; En)]

where the hypothesis Hk represents the proposition that a certain model/basis occurs in

the scene and matches the chosen basis, and Ei's are pieces of evidence given by scene

invariants.

The above formulation is implemented on a 8K-processor Connection Machine (CM-

2) and can recognize objects that have undergone a similarity transformation, from a

library of 32 models. The models used for experiments are military aircraft and production

automobiles. Features are extracted by using the Boie-Cox edge detector [9] and locating

the points of high curvature. The features are the coordinate pairs of these points [44].

In this thesis, we also make use of a Bayesian a posteriori maximum likelihood recog-

nition scheme based on geometric hashing. We use somewhat simpli�ed versions of the

formulae given by Rigoutsos. We make use of line features as opposed to point features.

CHAPTER 2. PRIOR AND RELATED WORK 22

However, we also assume a Gaussian perturbation model of the feature values, which in our

case implies an independent perturbation of the (�; r) variables. Since no reliable segmen-

tation is assumed to be available, we extracted our line features by means of an improved

Hough transform technique that operates on seriously degraded environments. Objects

modeled by lines that have undergone a�ne transformations are used for experiments. A

viewpoint consistency constraint is also applied to further �lter out false alarms.

Chapter 3

Noise in the Hough Transform

This chapter overviews the e�ect of noise on the Hough transform, which is used to detect

line features from an edge map.

We use a series of simulations to estimate the reliability and accuracy of the Hough

technique. By reliability we mean its ability to detect lines, while coping with occlusions

and additive noise; by accuracy we mean the deviation of detected line parameters from

their true values. Although much has been published in this question and theoretical

analyses have been given (see [22]), important questions on these two issues remains open

and simulation remains a revealing technique.

In section 3.1, we briey review the history and technique of the Hough transform.

Section 3.2 describes the factors that a�ect the performance of the Hough transform and

the way it can be improved. A series of simulations on images, covering a range of line

lengths, line orientations and line positions under increasing noise level (both positive and

negative noise) have been performed. Section 3.3 shows our experimental results, which

are summarized in section 3.4.

3.1 The Hough Transform

The well-known Hough technique was introduced by Paul Hough in a US patent �led in

1962. Hough's initial application was analysis of bubble chamber photographs of particle

tracks; such images contain a large amount of noise. Hough proposed to use ampli�ers,

delays, signal generators, and so on to perform what we now call the Hough transform in

23

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 24

an analog form.

A common digital implementation of the Hough transform applies the normal param-

eterization suggested by Duda and Hart [15] in the form

x cos � + y sin � = r;

where r is the perpendicular distance of the line to the origin and � is the angle between

a normal to the line and the positive x axis.

This normal parameterization has several advantages: r and � vary uniformly as the line

orientation and position change, and neither goes to in�nity as the line becomes horizontal

or vertical. It is easy to see that points on a particular line will all map to sinusoids that

intersect in a common point in Hough space and the coordinate (�; r) of that intersection

point gives the parameters of the line.

In standard implementations of the Hough method, Hough space is quantized. Each

(xi; yi) is mapped to a sampled, quantized sinusoid. The detailed algorithm is as follows:

1. Quantize the 2-D Hough space (i.e., parameter space) between 0� and 180� for � and

�
1p
2
N to + 1p

2
N for r (N �N is the image size).

2. Form an accumulator array A[�][r], whose buckets are initialized to 0.

3. For each edgel (x; y) in the image, increment all buckets in the accumulator array

along the appropriate sinusoid, i.e.,

A[�][r] := A[�][r] + 1

for � and r satisfying r = x cos � + y sin � within the limits of the quantization.

4. Locate, in the accumulator array, local maxima, which correspond to collinear edgels

in the image (the values of the accumulator array provide a measure of the number

of edgels on the line).

We note that due to the quantization of Hough space and noise in the image, sinusoids

generated by points of the same line do not in general intersect precisely at a common point

in the Hough space. Much literature has addressed this problem by suggesting additional

processing (see [32] for a survey).

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 25

3.2 Various Hough Transform Improvements

Since the above straightforward implementation of the Hough transform needs improve-

ment in highly degraded environments [22], we have investigated the factors a�ecting the

performance of the technique and implemented and experimented on a series of variations

of the Hough transform.

Factors that adversely a�ect the performance (reliability and accuracy) of the Hough

transform include:

� Short lines inherently result in low peaks in Hough space H(�; r), which prevents the

detection of short lines relative to long lines.

� When r = x cos � + y sin � is rounded to pick a particular bucket in H(�; r) for a

speci�c �, fractional r information is lost and all subsequent computations are done

on the rounded r values.

� � is also sampled. If a line has an orientation �
0

, not exactly equal to any sampled

�, the points on the line, when mapped to Hough space, will not have identical r

values. Instead, their r values will spread out near the real r value.

� Using the coordinate (�; r) of the peak in Hough space as the line parameter limits

the precision of the parameters detected, since Hough space is quantized.

To strengthen the low peaks in Hough space which result from short lines present in

a source image (compared to the inherently high peaks which result from long lines), we

apply background subtraction by removing the contribution made to Hough space by edgels

along a long line after this long line has been detected. This method is attributed to Risse

[48]. To implement the idea, a global maximum in Hough space, say bucket (�; r), is

located; then its corresponding line in the image is identi�ed and all accumulator buckets

which were incremented during processing edgels lying along this line are decremented.

This algorithm di�ers from the algorithm described in the previous section in that instead

of detecting local maxima in the accumulator array as candidate lines in the image, it

detects lines one after one iteratively as follows:

while still more lines to be detected do

(�̂; r̂) := globalMax(accumulator A);

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 26

for each edgel (x; y) on line x cos �̂ + y sin �̂ = r̂ do

A[�][r] := A[�][r]� 1, for � and r satisfying r = x cos � + y sin �

end for

end while

Starting with this algorithm as the backbone, we improve it with weighted voting

to compensate the rounding error of r and achieve sub-bucket precision computing, as

described below.

To compensate for the rounding error of r, we distribute the Hough vote-increment

value (typically 1) over a region in Hough space. For example, suppose rexact = x cos � +

y sin � (i.e., before rounding) and ra and rb are consecutive values of sampled r in the Hough

space such that ra � rexact < rb. Then we increment H(ra; �) by an amount proportional

to rb� rexact and increment H(rb; �) by an amount proportional to rexact� ra. That is, we

distribute the increments linearly in two related buckets.

To compensate for the spreading of votes caused by the quantization of � and r, we

�nd the bucket (�; r) receiving the maximum number of votes, using a small window (3

by 3 in our implementation) centered around this bucket and compute the center of mass

over this small window to achieve sub-bucket precision in line parameter estimation.

Experiments on seriously degraded images show that this method is superior to other

variations of the Hough transform in the sense that more true lines and fewer spurious

lines are detected and estimated line parameters' accuracy is quite good.

In order to further reduce the number of spurious lines detected, we notice that the

Hough transform detects lines in a very global way. More precisely, it counts the number

of edgels which happen to lie on the same line, sparsely or densely, as the evidence of the

existence of a line. This di�ers from human visual recognition, which exhibits grouping by

proximity.

To further enhance our algorithm, we therefore use grouping by considering proximity

as follows.

To detect n lines in an image, we

1. apply the algorithm described above to detect a pre-speci�ed number, say

2n, of lines;

2. for each line (�i; ri) detected,

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 27

(a) go back to the image (edge map) and scan edgels (x; y)'s on the line

with a 1-D sliding window of appropriate size (depending on the image

resolution).

(b) if the number of edgels in the window is less than, say 1=3, of the

window size, take (x; y) to be a noise edgel which happens to lie on

the line (�i; ri).

(c) re-accumulate the evidence support for the line without counting the

noise edgels.

3. sort these lines by their new evidence support and select the top n from

among them.

The reason we simply select the top n from among 2n lines detected by our previous

algorithm is that our previous algorithm already has good performance, and we just want

to further remove spurious lines.

Figure 3.1 shows an example, comparing the result of the standard Hough technique

and our improved Hough technique. Figure 3.1(a) shows a synthesized image without noise.

It contains roughly 40 segments. Figure 3.1(b) shows the result of the standard Hough

analysis. 50 lines are detected. 17 true lines are missing. Also many of the true lines are

detected multiple times. Figure 3.1(c) shows the result by applying our improved Hough

technique without enhancement of using proximity grouping. Also, 50 lines are detected.

There is no missing true lines. Yet, since more lines are detected than are actually present

in the source image, a few true lines are detected multiple times. Figure 3.1(d) shows the

result by applying our improved Hough technique with proximity grouping enhancement.

Figure 3.2(a) shows the same image as in Figure 3.1(a), yet with serious noise. Figure

3.2(b) to Figure 3.2(d) are the correspondences of Figure 3.1(b) to Figure 3.1(d) . The

performance improvement over the standard Hough technique is much obvious.

3.3 Implementation and Measured Performance

In our implementation, we use �� = 1 (1 degree) and �r = 1 (1 pixel) as the quantization

values for � and r in Hough space. This appears quite su�cient for our subsequent appli-

cations. Intuitively, smaller values of �� might give better precision but can result in the

spreading of peaks (recall that image is digitized so that the edgels of a line will not lie

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 28

(a) A test image without noise. It con-
tains roughly 40 segments.

(b) 50 lines are detected using the
standard Hough transform.

(c) 50 lines are detected using our
improved Hough transform without
proximity grouping.

(d) 50 lines are detected using our im-
proved Hough transform with proxim-
ity grouping.

Figure 3.1: A comparison of the results of the standard Hough technique and our improved
Hough technique, when applied to an image without noise.

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 29

(a) A test image with serious noise. It
contains roughly 40 segments.

(b) 50 lines are detected using the
standard Hough transform.

(c) 50 lines are detected using our
improved Hough transform without
proximity grouping.

(d) 50 lines are detected using our im-
proved Hough transform with proxim-
ity grouping.

Figure 3.2: A comparison of the results of the standard Hough technique and our improved
Hough technique, when applied to a noisy image.

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 30

precisely on a digitized line except when the line has orientation of 0�, 45�, 90� or 135�).

Similarly smaller values of �r give better precision but result in the spreading of peaks.

We have performed a series of experiments on synthesized images containing polygonal

objects, which are arbitrarily chosen from our model base (see Figure 3.3). (The same

images are used in our later experiments.)

model-0 model-1 model-2 model-3 model-4

model-5 model-6 model-7 model-8 model-9

model-10 model-11 model-12 model-13 model-14

model-15 model-16 model-17 model-18 model-19

Figure 3.3: The twenty models used in our experiments. From left to right, top to bottom
are model-0 to model-19.

Two kinds of noise are imposed in our experiments: positive and negative.

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 31

We generate negative noise by randomly erasing edgels from the object boundary. For

example, if we want 10% of the boundary to be missing (occluded), we scan along the

boundary of every object and erase the edgels whenever ran modulo 10 = 0, where ran

is a random number; similarly, if we want 20% of the boundary to be missing, we do the

same whenever ran modulo 5 = 0.

The positive noise we generate consists of random dot noise and segment noise. Random

dot noise is an additive dot noise whose position in the image is randomly selected; segment

noise is added by randomly selecting a position in the image and an orientation (from 0�

to 360�) for the segment then putting a line segment of length varying randomly from 0

to 7 pixels.

Simulations consider di�erent combinations of noise levels. The image size used in our

experiments is 256� 256. Figure 3.4 shows a sample scene (image-0) after application of

various noise levels. Other test images are shown in Figure 3.5. The same noise levels were

applied to them.

In the following, we show the result of experiments on ten images. The number of lines

we select is 70. Since more lines are detected than are actually present in the source image,

our experiments allow for spurious lines.

The following abbreviated table shows lines by the ranks of their votes, using *" to

represent lines actually present in the source image and \." to represent spurious lines.

Standard deviations of the � and r values and their covariances are also given; this data is

of signi�cance for design of the later recognition stage.

� case 0: no noise imposed on the image

image-0: ***.****.*..***.........
image-1: ******************************.*******************.**...*..*....**....
image-2: **.*..**.*..*...
image-3: ***......*.........*....
image-4: ****************.**********.****************.********...*..**.........
image-5: **.***.*...........*..*.*.
image-6: ***.*.*..*....
image-7: **.****...........
image-8: ***.**.*..*.....*...*.
image-9: ***..************.*.....*..*

�� = 1.398227 (degree) or 0.024404 (radian); �r = 1.672734 (pixel);

��r = 0.189464 (degree.pixel) or 0.003307 (radian.pixel).

� case 1: 10% negative noise, no positive noise

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 32

(0) Image-0 with no noise (1) Image-0 with 10%
negative noise and no pos-
itive noise

(2) Image-0 with 10%
negative noise and 200
pieces of positive noise

(3) Image-0 with 10%
negative noise and 400
pieces of positive noise

(4) Image-0 with 10%
negative noise and 800
pieces of positive noise

(5) Image-0 with 20%
negative noise and no pos-
itive noise

(6) Image-0 with 20%
negative noise and 200
pieces of positive noise

(7) Image-0 with 20%
negative noise and 400
pieces of positive noise

(8) Image-0 with 20%
negative noise and 800
pieces of positive noise

Figure 3.4: Reading from top to bottom, left to right, (0) to (8) are image-0 with di�erent
noise levels corresponding to cases 0 to 8.

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 33

Image-1 Image-2 Image-3

Image-4 Image-5 Image-6

Image-7 Image-8 Image-9

Figure 3.5: Image-1 to Image-9 before noise is imposed. The same noise levels as for

Image-0 are applied during our experiments.

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 34

image-0: **.*.***.*.*..............
image-1: ***************************************.***.****.....*.**...*.....*...
image-2: ***..*..*.......
image-3: **************************************.*******...***.*...*.*.......*..
image-4: ****************.*.***************..***.*..**.*.*.*............*...*..
image-5: ***.....*.*.*.**.....*
image-6: **..........
image-7: **.****....*.*......
image-8: **.*...*.*.*..*.....
image-9: ***********************************..***********************.*......*.

�� = 1.496886 (degree) or 0.026126 (radian); �r = 1.803655 (pixel);

��r = 0.244846 (degree.pixel) or 0.004273 (radian.pixel).

� case 2: 10% negative noise, along with 200 pieces of random dot noise and 200 pieces

of segment noise

image-0: ******************************.******.*.*........*..*..........*......
image-1: ***********************.*.******.********..**..*.*............*.*.....
image-2: ***************************************.***.*.***.*...***.....*.......
image-3: *************************************.*****.*.*..*......*.....*.......
image-4: *****************.*********.****.*.*.*....**.*..**...*......*...*.....
image-5: **************************************.********.**.*.....*...*....***.
image-6: ***.***.**.*.*..*..........*
image-7: **...**...**...*..***.*.
image-8: **************************************.**..***.*.*..*......*......*...
image-9: ******************************.*.*..********.***.*.*..*..*.......*.**.

�� = 1.656363 (degree) or 0.028909 (radian); �r = 2.059478 (pixel);

��r = 0.119053 (degree.pixel) or 0.002078 (radian.pixel).

� case 3: 10% negative noise, along with 400 pieces of random dot noise and 400 pieces

of segment noise

image-0: *****************.************..****.**......*.*.....*................
image-1: ***********************.*****..*********..**.......*...........*.....*
image-2: *********************************.*.***.***.*.***..........*........*.
image-3: *******************************.**..*.*..**...**.*.****..........**...
image-4: ****************.*********.*....****..*.*..*..*...............**....*.
image-5: *******************************.****.*.**..*.....*...*......*...*.**.*
image-6: *********************************.*.*****.*.*..**..........*..*.*....*
image-7: **********************************.*******.*****.**.....**.*......**..
image-8: **********************************...**.*..*.*.*......*...............
image-9: ***************************...*..*.*.**.*****.*.....*.......*........*

�� = 1.712783 (degree) or 0.029894 (radian); �r = 2.017484 (pixel);

��r = 0.217823 (degree.pixel) or 0.003802 (radian.pixel).

� case 4: 10% negative noise, along with 800 pieces of random dot noise and 800 pieces

of segment noise

image-0: *******************.***.***......****..*...*..........*..*.......*....
image-1: ****.**.**.**..*****.*.*..*.***.**.*....*..*.*....*..*..*.............
image-2: ***********.********.*..*...***..****.***.....*..............*.......*
image-3: *******.************.**.*.**.***...*....*.*..*.*......................
image-4: ************.*******....*.......*..******..*.............*....*....*..
image-5: ***************.***********.***......**..*........*............*......
image-6: ***************..*************..****..**.*..........*......*.........*
image-7: **************.***.*****.*****..***********.*.*...**..*...**.*.*...*..

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 35

image-8: ***************.********.****..***.*.****.*.*.....*..*................
image-9: ***********.**********.****..*.**...*.*..****.**.*..*...*..*...**.....

�� = 1.938883 (degree) or 0.033840 (radian); �r = 2.519878 (pixel);

��r = -0.357589 (degree.pixel) or -0.006241 (radian.pixel).

� case 5: 20% negative noise, along with no positive noise

image-0: ***.***...................
image-1: ********************************.***..******.**.*.*....**........*...*
image-2: **.***********.*..*.*....*......
image-3: ********************************.******.*.***..*.....**.*...*.*.*...*.
image-4: *********************.****.**.*****.**.******.**.*...........**...*...
image-5: **..*.....*.**.....*........
image-6: **.*..*.......
image-7: ************************************.***************.*.*.*..*......*..
image-8: **.*.......*........*.....
image-9: ******************.*.******.********.*.*..*******.***.**.*.*.*..*.*...

�� = 1.563745 (degree) or 0.027293 (radian); �r = 1.913004 (pixel);

��r = 0.219434 (degree.pixel) or 0.003830 (radian.pixel).

� case 6: 20% negative noise, along with 200 pieces of random dot noise and 200 pieces

of segment noise

image-0: *************.****************.*..**.*.*.*.*..*......................*
image-1: ******************************.*..***...**..**.*...........*.....*..*.
image-2: ****************************.*****.*.**.**.......**.....****.*........
image-3: **************************************.**.***.***.....*.......*...*...
image-4: *******************.****.***..**.***...***..........................*.
image-5: ***********************************.*.**.***..*....................*..
image-6: **********************.***************..***...**.*..*...**.....*.*.*.*
image-7: ******************************.****..***...****.*..*...*..*..*.*......
image-8: *********************************.**..*.**.***.*..........*...........
image-9: ***********.*****.*.******.**.*****...*...***......*......*..*.*.**.*.

�� = 1.754688 (degree) or 0.030625 (radian); �r = 2.144938 (pixel);

��r = 0.349338 (degree.pixel) or 0.006097 (radian.pixel).

� case 7: 20% negative noise, along with 400 pieces of random dot noise and 400 pieces

of segment noise

image-0: *********.*****************.*.***.*...*.......*...*............*....*.
image-1: **********************.*.**..**.*****..*.*.*****......................
image-2: *******************.**.*****..*...*.**.*....*..**.....................
image-3: ***************************.**.*.**......*.........**...*........*....
image-4: ******************..**..*..**..*****..**...*.*............*.*.........
image-5: *****************.************.**.*........***.*............*........*
image-6: **********************..*******.*********.......*.**....*.***..*..*...
image-7: ****************************.*.*.***.*.***..........**.*.*....*.**....
image-8: *********************..*******.*.*****.*..*..**...*..*.......*..*.....
image-9: ***************..*.**.*.*.***.**.**..****....*.*.*........*...*.*.....

�� = 1.880869 (degree) or 0.032827 (radian); �r = 2.397261 (pixel);

��r = -0.113044 (degree.pixel) or -0.001973 (radian.pixel).

� case 8: 20% negative noise, along with 800 pieces of random dot noise and 800 pieces

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 36

of segment noise

image-0: ***********.****.******...*.****..*.....*.*...........**......*..*....
image-1: ***..**.***.**.**.***.**..*.*.*.*.**...*.*.*.....*....................
image-2: ******.*.****.**.**........***....**.....*........**.**.....*.........
image-3: **********.****.*..*****..*.*.*..**..*.*........*.*...............*..*
image-4: *************.*.*.*.......*.*..*.....*.........*..***...*.*.........**
image-5: ********.**********.*****...*...*....*.*........*..**...........**.*.*
image-6: ****************...*.*********...*....*.**...*....*.......*.*.....***.
image-7: *************.***.***.*..*.*.***.**.**.***.*...*.........*.**.......*.
image-8: ******.******....*.*****..*.....*.*.*.*...*.*.....*....*.............*
image-9: ********..*******..**..*....**.**.*******...*.....*......*.....**.....

�� = 2.168774 (degree) or 0.037852 (radian); �r = 2.503542 (pixel);

��r = -0.396545 (degree.pixel) or -0.006921 (radian.pixel).

3.4 Some Additional Observations Concerning the Accu-

racy of Hough Data

For the case when there is no noise imposed, we can see that true lines dominate the front

of the list (those with high votes) and spurious lines are at the rear of the list. Note that

some of the true lines are detected multiply. This can happen when a line is slanting,

because its edgels become dispersed in ladder fashion,

and two parallel lines are often detected.

Negative noise is more devastating to the Hough transform than positive noise. Positive

noise, unless very intense, does not make true lines disappear; Negative noise subtracts

signals and can seriously a�ect the accuracy of the line parameters detected. This is

especially true of short lines with a small slope. For example, given negative noise the edge

map

can turn into something like

or

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 37

Indeed, our experiments showed that most of the undetected lines are slanting lines with

small slopes.

While background subtraction works well to remove bias in favor of long line segments

over short line segments, it in fact implicitly applies the principle of the-winner-takes-all. In

particular, when a long line segment intersects a short line segment, their intersection pixel

will be classi�ed as belonging to the long line segment and subtracted from the image after

the long line segment is detected. However, when these two line segments do not intersect

each other even though their extended lines do, the perceptual grouping technique we use

reduces this adverse e�ect.

In regard to accuracy, we observe that line length is the key role a�ecting the accuracy

of Hough transform results. The Hough transform works well to detect long line segments

even if the image is quite noisy. As line length decreases, noise a�ects the accuracy of the

Hough transform even more seriously.

When the center of a segment is far away from the projection of the origin onto the

extended line of the segment, the average error of r increases. This phenomenon can be

rationalized as follows (see Figure 3.6): Since our algorithm loops through �, we in fact

consider a line through the origin with slope angle � (i.e., with line parameter (�+90�; 0))

and project all the image edgels onto this line. If bucket (�; r) in Hough space is detected

with n votes, roughly n edgels are projected onto the line at positions roughly r distant

from the origin. With this viewpoint in mind, due to the quantization of images, if the

center of a line segment, with line parameter (�; r), is far away from the intersection point

of line (�; r) and line (� + 90�; 0), the projections (onto line (� + 90�; 0)) of the points of

that line segment disperse (on line (� + 90�; 0)) around the position r distant from the

origin (except when the orientation of the line segment is 0�, 45�, 90� or 135�.)

CHAPTER 3. NOISE IN THE HOUGH TRANSFORM 38

r

O

Projection of the Origin on the extended line

center of the segment

Figure 3.6: The thicker line is with parameter (�; r). Projections of the pixels of this line
onto line (� + 90�; r) will disperse around the position r distant from the origin.

Chapter 4

Invariant Matching Using Line

Features

The idea behind the geometric hashing method is to encode local geometric features in a

manner which is invariant under the geometric transformation that model objects undergo

during formation of the class of images being analyzed. This encoding can then be used in

a hash function that makes possible fast retrieval of model features from the hash table,

which can accordingly be viewed as an encoded model base. The technique can be applied

directly to line features, without resorting to point features indirectly derived from lines,

providing that we use some method of encoding line features in a way invariant under

transformations considered.

Potentially relevant transformation groups include rigid transformations, similarity

transformations, a�ne transformations and projective transformations, depending on the

manner in which an image is formed. Each of these classes of transformations is a sub-

group of the full group of projective transformations. Since a projective transformation

is a collineation (referring to p. 89 of [35]), all these transformations preserve lines. This

allows us to use line features as inputs to the recognition procedures.

4.1 Change of Coordinates in Various Spaces

Since we will represent line features by their normal parameterization (�; r), we show in

this section how the change of coordinates in image space by a linear transformation acts

39

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 40

to change of coordinates in (�; r)-space. This is preliminary to the invariant line encodings

exploited in its following sections.

4.1.1 Change of Coordinates in Image Space

It is often easiest to work in homogeneous coordinates, since this allows projective trans-

formations to be represented by matrices.

A change of coordinates in homogeneous coordinates is given by

w
0 = Tw;

where w = (w1; w2; w3)t is the homogeneous coordinate before transformation, w0 =

(w
0

1
; w

0

2
; w

0

3
)t is the homogeneous coordinate after transformation and T is a non-singular

3 � 3 matrix. Note that T and �T, for any � 6= 0, de�ne the same transformation, since

we are dealing with homogeneous coordinates.

A point (x; y)t in image space is represented by a non-zero 3-D point w = (w1; w2; w3)
t

in homogeneous coordinate systems, such that

x =
w1

w3

and y =
w2

w3

;

where w3 6= 0. This representation is not unique, since �w, for any � 6= 0 is also a

homogeneous representation of (x; y)t.

Every non-singular 3�3 matrix de�nes a 2-D projective transformation of homogeneous

coordinates. Various subgroups of the projective transformation group are de�ned by

di�erent restrictions on the form of the matrix T.

4.1.2 Change of Coordinates in Line Parameter Space

A line in a 2-D plane can be represented by its parameter vector and is usually parame-

terized as

a1w1 + a2w2 + a3w3 = 0

or

a
t
w = 0;

where a = (a1; a2; a3)
t is the parameter vector of the line (note that a1 and a2 are not both

equal to 0) and w = (w1; w2; w3)
t is a homogeneous coordinate of any point on the line.

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 41

This representation is not unique, since �a, for any � 6= 0, is also a representation of the

same line.

A transformation T in image space changes the coordinate of every point w on a line

to w0 by w0 = Tw. Substituting w = T�1
w

0 in atw = 0, we get

a
t
T
�1
w

0 = 0

and hence

((T�1)ta)tw0 = 0;

or

a
0t
w

0 = 0; where a0 = (T�1)ta:

This shows that the change of the coordinate of the point in 3-D parameter space is

given by

a
0 = Pa:

where P = (T�1)t.

4.1.3 Change of Coordinates in (�; r) Space

Line features of an image are usually extracted by the Hough transform. A common

implementation of the Hough transform applies the normal parameterization suggested by

Duda and Hart[15], in the form

x cos � + y sin � = r;

where r is the perpendicular distance of the line to the origin and � is the angle between

a normal to the line and the positive x-axis.

This unique parameterization of lines relates to the preceding parameterization of lines.

Let F : R2 7! R
3 be a mapping such that

F((�; r)t) = (cos �; sin �;�r)t

If we restrict the domain of � to be in [0; �), then F�1 exists. De�ne another mapping

G : R3 7! R
2 by F�1 as

G((a1; a2; a3)
t) =

8><
>:
F
�1((a1p

a
2

1
+a

2

2

; a2p
a
2

1
+a

2

2

; a3p
a
2

1
+a

2

2

)t) if a2 � 0

F
�1((�a1p

a
2

1
+a

2

2

; �a2p
a
2

1
+a

2

2

; �a3p
a
2

1
+a

2

2

)t) otherwise

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 42

where a1 and a2 are not both equal to 0. Then

G((a1; a2; a3)
t) =

8>>>><
>>>>:

(tan�1(a2
a1
); �a3p

a
2

1
+a

2

2

)t if a2 > 0

(0; �a3
a1

)t if a2 = 0

(tan�1(�a2
�a1

); a3p
a
2

1
+a

2

2

)t if a2 < 0

where the range of tan�1 is in [0::�) and tan�1(1) = �

2
.

Then G maps a point a = (a1; a2; a3)
t in parameter space, where a1 and a2 are not

both equal to 0, to (�; r)t = G(a) in (�; r)-space such that

a1w1 + a2w2 + a3w3 = 0

and

cos � w1 + sin � w2 � rw3 = 0

de�ne the same line.

Let (�; r)t be the (�; r)-parameter de�ning a line (in fact, the line x cos � + y sin � =

r). Then F((�; r)t) = a, where a = (cos �; sin �;�r)t, is a point in parameter space. A

transformation P changes the coordinate of a to a0 = Pa in parameter space. Substituting

F((�; r)t) for a in a0 = Pa, we get

a
0 = PF((�; r)t)

and hence (�0; r0)t = G(a0) = G(PF((�; r)t)) de�nes the same line as a0 (or �a0, � 6= 0).

Thus a transformation of a point in parameter space results in the transformation of

(�; r)t in (�; r)-space. The change of coordinate of (�; r)t in (�; r)-space is given by

(�0; r0)t = H((�; r)t) (4:1)

where H = G �P � F.1

4.2 Encoding Lines by a Basis of Lines

To apply the geometric hashing technique to line features, we need to encode the features

in a manner invariant under the transformation group considered. One way of encoding is

1We abused the notation by using P(v) to denote Pv (matrix P multiplies vector v). We will continue
to use P(v) or Pv interchangeably when no ambiguity occurs.

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 43

to �nd a canonical basis and a transformation (in the transformation group under consid-

eration) that maps the basis to the canonical basis, then apply that transformation to the

line being encoded. For example, let T be a projective transformation that maps a basis

b to T(b). If P is the unique transformation such that P(b) = bc and P0 is the unique

transformation such that P0(T(b)) = bc, where bc is the chosen canonical basis, then we

have P = P0
�T and any other line l and its correspondence l0 = T(l) will be mapped to

P(l) by P and P0(l0) by P0 respectively. Since P0(l0) = P
0(T(l)) = P

0
� T(l) = P(l), this

is an invariant encoding[25].

Various subgroups of the projective transformation group require di�erent bases. We

discuss them in the following section and give formulae for the corresponding invariants.

Throughout the following discussion, we represent a line by its normal parameterization

(�; r) with � in [0; �) and r in R. If the computed invariant (�0; r0) has �0 not in [0::�), we

adjust it by adding � or �� and adjust the value of r0 by ipping its sign accordingly.

4.3 Line Invariants under Various Transformation Groups

4.3.1 Rigid Line Invariants

Any correspondence of two ordered pairs of non-parallel lines determines a rigid transfor-

mation up to a 180�-rotation ambiguity, and this ambiguity can be broken if we know the

position of a third line during veri�cation.

One way to encode a third line in terms of a pair of non-parallel lines in a rigid-invariant

way is to �nd a transformation P which maps the �rst basis line to the x-axis and maps

the second basis line to such that its intersection with the �rst basis line is the origin, and

then apply P to the third line.

A rigid transformation T in image space has the form

T =

0
@ R b

0 1

1
A =

0
BBB@

cos� � sin� b1

sin � cos� b2

0 0 1

1
CCCA ;

where R is the rotation matrix and b, the translation vector. This corresponds to the

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 44

parameter-space transformation P, de�ned by (c.f. section 4.1.2)

P = (T�1)t =

0
@ (R�1)t 0

�bt(R�1)t 1

1
A =

0
@ R 0

�bt
R 1

1
A ; (4.2)

so that

P
�1 = T

t =

0
@ Rt 0

b
t 1

1
A :

Let a line be parameterized as x cos � + y sin � � r = 0 and let two additional basis lines

be represented by their parameters a1 and a2, such that

a1 = (cos �1; sin �1;�r1)
t;

a2 = (cos �2; sin �2;�r2)
t;

which are to be mapped by P to

e1 = (cos
�

2
; sin

�

2
; 0)t = (0; 1; 0)t;

e2 = (cos'; sin'; 0)t = (C; S; 0)t:

Note that ' is �xed, though unknown. In this way, P maps the �rst basis line to x-axis

(or, y = 0) and the intersection of the two basis lines to the origin.

Since ax+ by+ c = 0 and �ax+ �by+ �c = 0, � 6= 0, represent the same line, we have

�1Pa1 = e1;

�2Pa2 = e2;

where �1 and �2 are non-zero constants. Equivalently,

P(�1a1; �2a2) = (e1; e2):

Then

(�1a1; �2a2) = P
�1(e1; e2)

=

0
BBB@

cos� sin � 0

� sin� cos� 0

b1 b2 1

1
CCCA

0
BBB@

0 C

1 S

0 0

1
CCCA

=

0
BBB@

sin� C cos�+ S sin �

cos� �C sin �+ S cos�

b2 C b1 + S b2

1
CCCA :

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 45

Thus

�1 =
sin�

cos �1
=

cos�

sin �1
=

b2
�r1

; (4.3)

�2 =
C cos�+ S sin �

cos �2
=
�C sin �+ S cos�

sin �2
=

C b1 + S b2
�r2

: (4.4)

From Eq. (4.4), we obtain

C = �2 cos(�2 + �); (4.5)

S = �2 sin(�2 + �); (4.6)

b1 =
��2r2 � S b2

C
(4.7)

and from Eq. (4.3), we have sin� sin �1 = cos� cos �1 and thus � = �

2
��1 or � = ��

2
��1.

When � = �

2
� �1, we have �1 = 1 and b2 = �r1. Substituting them and Eq. (4.5),

Eq. (4.6) in Eq. (4.7), we have b1 = �(r2 � r1 cos(�1 � �2))= sin(�1 � �2). Thus, from

Eq. (4.2) we obtain

P =

0
BBB@

sin �1 � cos �1 0

cos �1 sin �1 0

csc(�1 � �2)(r2 sin �1 � r1 sin �2) csc(�1 � �2)(�r2 cos �1 + r1 cos �2) 1

1
CCCA

When � = �

�

2
� �1, we have �1 = �1 and b2 = r1. Substituting them and Eq. (4.5),

Eq. (4.6) in Eq. (4.7), we have b1 = (r2�r1 cos(�1��2))= sin(�1��2). Thus, from Eq. (4.2)

we obtain

P =

0
BBB@

� sin �1 cos �1 0

� cos �1 � sin �1 0

csc(�1 � �2)(r2 sin �1 � r1 sin �2) csc(�1 � �2)(�r2 cos �1 + r1 cos �2) 1

1
CCCA

From section 4.1.3, the invariant (�0; r0)t of a line (�; r)t can be obtained from the basis

lines as follows

(�0; r0)t = H((�; r)t) = G(P(cos�; sin �;�r)t) = G(a0)

where

a
0 =

0
BBB@

� sin(� � �1)

cos(� � �1)

�r � r2 csc(�1 � �2) sin(� � �1) + r1 csc(�1 � �2) sin(� � �2)

1
CCCA ;

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 46

or

a
0 =

0
BBB@

sin(� � �1)

� cos(� � �1)

�r � r2 csc(�1 � �2) sin(� � �1) + r1 csc(�1 � �2) sin(� � �2)

1
CCCA ;

depending upon which P is used, and hence

�0 = tan�1(
cos(� � �1)

� sin(� � �1)
) = tan�1(

sin(� � �1 +
�

2
)

cos(� � �1 +
�

2
)
) = � � �1 +

�

2
;

r0 = r + r2 csc(�1 � �2) sin(� � �1)� r1 csc(�1 � �2) sin(� � �2);

or

�0 = tan�1(
� cos(� � �1)

sin(� � �1)
) = tan�1(

sin(� � �1 �
�

2
)

cos(� � �1 �
�

2
)
) = � � �1 �

�

2
;

r0 = r+ r2 csc(�1 � �2) sin(� � �1)� r1 csc(�1 � �2) sin(� � �2):

We may store each encoded invariant (�0; r0) redundantly in two entries of the hash

table, (�0; r0) and (�0;�r0), during preprocessing. Then we may hit a match with either

(�0; r0) or (�0;�r0) as the computed scene invariant during recognition. (Note that with

180o-rotation, the computed invariants should be (�; r) and (�+ �; r). However, we would

like to restrict � to be in [0::�), which makes the invariants to be (�; r) and (�;�r), where

� is in [0::�).)

4.3.2 Similarity Line Invariants

To determine a similarity transformation uniquely, we need a correspondence of a pair of

triplets of lines, not all of which are parallel to each other or intersect at a common point.

Without loss of generality, we may assume that the �rst basis line intersects the other

two basis lines. One way to encode a fourth line in a similarity-invariant way is to �nd a

transformation P which maps the �rst basis line to the x-axis, maps the second basis line

to such that its intersection with the �rst basis line is the origin and maps the third basis

line to such that its intersection with the �rst basis line has Euclidean coordinate (1; 0),

and then apply P to the fourth line.

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 47

A similarity transformation T in image space has the form

T =

0
@ sR b

0 1

1
A =

0
BBB@

s cos� �s sin� b1

s sin � s cos� b2

0 0 1

1
CCCA ;

where s is the scaling factor; R, the rotation matrix; b, the translation vector. This

corresponds to the parameter-space transformation P, de�ned by (c.f. section 4.1.2)

P = (T�1)t =

0
@

1

s
(R�1)t 0

�

1

s
b
t(R�1)t 1

1
A =

0
@

1

s
R 0

�

1

s
b
t
R 1

1
A ; (4.8)

so that

P
�1 = T

t =

0
@ sRt 0

bt 1

1
A :

Let a line be parameterized as x cos �+ y sin �� r = 0 and let three additional basis lines,

assuming the �rst line is not parallel to the others, be represented by their parameters a1,

a2 and a3, such that

a1 = (cos �1; sin �1;�r1)
t;

a2 = (cos �2; sin �2;�r2)
t;

a3 = (cos �3; sin �3;�r3)
t;

which are to be mapped by P to

e1 = (cos
�

2
; sin

�

2
; 0)t = (0; 1; 0)t;

e2 = (cos'1; sin'1; 0)
t = (C1; S1; 0)

t;

e3 = (cos'2; sin'2;� sin j�1 � �3j)
t = (C2; S2;� sin j�1 � �3j)

t:

Note that '1 and '2 are �xed, though unknown. Also note that since we �xed the third

component of e3 to be � sin j�1 � �3j < 0, '2 ranges within (��

2
; �
2
) (or, C2 > 0). In this

way, P maps the �rst basis line to x-axis; the intersection of the �rst basis line and the

second basis line to the origin; the intersection of the �rst basis line and the third basis

line to (1; 0)t.

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 48

Since ax+ by+ c = 0 and �ax+ �by+ �c = 0, � 6= 0, represent the same line, we have

�1Pa1 = e1;

�2Pa2 = e2;

�3Pa3 = e3;

where �1, �2 and �3 are non-zero constants. Equivalently,

P(�1a1; �2a2; �3a3) = (e1; e2; e3):

Then

(�1a1; �2a2; �3a3) = P
�1(e1; e2; e3)

=

0
BBB@

s cos� s sin� 0

�s sin� s cos� 0

b1 b2 1

1
CCCA

0
BBB@

0 C1 C2

1 S1 S2

0 0 � sin j�1 � �3j

1
CCCA

=

0
BBB@

s sin� sC1 cos�+ s S1 sin� sC2 cos�+ s S2 sin �

s cos� �sC1 sin�+ s S1 cos� �sC2 sin� + s S2 cos�

b2 C1 b1 + S1 b2 C2 b1 + S2 b2 � sin j�1 � �3j

1
CCCA :

Thus

�1 =
s sin�

cos �1

=
s cos�

sin �1

=
b2

�r1
; (4.9)

�2 =
s (C1 cos�+ S1 sin�)

cos �2

=
s (�C1 sin �+ S1 cos�)

sin �2

=
C1 b1 + S1 b2

�r2
; (4.10)

�3 =
s (C2 cos�+ S2 sin�)

cos �3

=
s (�C2 sin �+ S2 cos�)

sin �3

=
C2 b1 + S2 b2 � sin j�1 � �3j

�r3
: (4.11)

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 49

From Eq. (4.9), we have s sin� sin �1 = s cos� cos �1 and thus � = �

2
� �1 or � = ��

2
� �1.

From Eq. (4.10), we obtain

C1 =
�2

s
cos(�2 + �);

S1 =
�2

s
sin(�2 + �);

b1 =
��2r2 � S1 b2

C1

: (4.12)

From Eq. (4.11), we obtain

C2 =
�3

s
cos(�3 + �);

S2 =
�3

s
sin(�3 + �);

b1 =
��3r3 � S2 b2 + sin j�1 � �3j

C2

; (4.13)

and since C2

2
+ S2

2
= 1, we have �3 = �s.

When � = �

2
� �1, we have �1 = s and b2 = �sr1; when � = ��

2
� �1, we have �1 = �s

and b2 = sr1. In both cases, b1 in Eq. (4.12) and Eq. (4.13) must be consistent, we can

solve to get

�3 =
sin(�1 � �2) sin j�1 � �3j

r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2)
:

Since we require C2 > 0, we have �3 = s when �1 < �3 and � = ��

2
� �1 or �1 > �3 and

� = �

2
� �1; we have �3 = �s when �1 < �3 and � = �

2
� �1 or �1 > �3 and � = ��

2
� �1.

To summarize, we have four cases as follows:

� case 1 �1 < �3 (thus sin j�1 � �3j = � sin(�1 � �3))

{ case 1.1

� =
�

2
� �1;

s =
sin(�1 � �2) sin(�1 � �3)

r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2)
;

b1 =
s (�r2 + r1 cos(�1 � �2))

sin(�1 � �2)
;

b2 = �sr1;

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 50

{ case 1.2

� = �

�

2
� �1;

s = �

sin(�1 � �2) sin(�1 � �3)

r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2)
;

b1 = �

s (�r2 + r1 cos(�1 � �2))

sin(�1 � �2)
;

b2 = sr1;

� case 2 �1 > �3 (thus sin j�1 � �3j = sin(�1 � �3))

{ case 2.1

� =
�

2
� �1;

s =
sin(�1 � �2) sin(�1 � �3)

r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2)
;

b1 =
s (�r2 + r1 cos(�1 � �2))

sin(�1 � �2)
;

b2 = �sr1;

{ case 2.2

� = �
�

2
� �1;

s = �
sin(�1 � �2) sin(�1 � �3)

r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2)
;

b1 = �
s (�r2 + r1 cos(�1 � �2))

sin(�1 � �2)
;

b2 = sr1:

Note that case 1.1 and case 2.1 are identical and case 1.2 and case 2.2 are identical.

The transformationP derived from case 1.1 and case 1.2 are again identical. We conclude

that the above four cases result in

P =
1

D

0
BBB@

A sin �1 �A cos �1 0

A cos �1 A sin �1 0

(r2 sin �1 � r1 sin �2) sin(�1 � �3) �(r2 cos �1 � r1 cos �2) sin(�1 � �3) D

1
CCCA

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 51

where

A = r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2);

D = sin(�1 � �2) sin(�1 � �3):

From section 4.1.3, the invariant (�0; r0)t of a line (�; r)t can be obtained from the basis

lines as follows

(�0; r0)t = H((�; r)t) = G(P(cos �; sin �;�r)t) = G(a0)

where

a
0 =

1

D

0
BBB@

�A sin(� � �1)

A cos(� � �1)

(�r2 sin(� � �1) + r1 sin(� � �2)� r sin(�1 � �2)) sin(�1 � �3)

1
CCCA

and hence

�0 = tan�1(
A cos(� � �1)

�A sin(� � �1)
) = tan�1(

sin(� � �1 +
�

2
)

cos(� � �1 +
�

2
)
) = � � �1 +

�

2
;

r0 = (r2 sin(� � �1)� r1 sin(� � �2) + r sin(�1 � �2)) sin(�1 � �3)=jAj:

4.3.3 A�ne Line Invariants

To determine an a�ne transformation uniquely, we need a correspondence of two ordered

triplets of lines, which are not parallel to one another and do not intersect at a common

point.

One way to encode a fourth line in an a�ne-invariant way is to �nd a transformation

P which maps the three basis lines to a canonical basis, say x = 0, y = 0 and x + y = 1,

and then apply P to the fourth line.

An a�ne transformation T in image space has the form

T =

0
@ A b

0 1

1
A =

0
BBB@

a11 a12 b1

a21 a22 b2

0 0 1

1
CCCA ;

where A is the skewing matrix; b, the translation vector. This corresponds to the

parameter-space transformation P, de�ned by (c.f. section 4.1.2)

P = (T�1)t =

0
@ (A�1)t 0

�bt(A�1)t 1

1
A ; (4.14)

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 52

so that

P
�1 = T

t =

0
@ A

t 0

b
t 1

1
A

:

Let a line be parameterized as x cos �+ y sin � � r = 0 and let three additional basis lines

be represented by their parameters a1, a2 and a3, such that

a1 = (cos �1; sin �1;�r1)
t;

a2 = (cos �2; sin �2;�r2)
t;

a3 = (cos �3; sin �3;�r3)
t;

which are to be mapped by P to

e1 = (cos 0; sin 0; 0)t = (1; 0; 0)t;

e2 = (cos
�

2
; sin

�

2
; 0)t = (0; 1; 0)t;

e3 = (cos
�

4
; sin

�

4
;
�1p
2
)t = (

1p
2
;
1p
2
;
�1p
2
)t:

In this way, P maps the �rst basis line to y-axis; the second basis line to x-axis; the third

basis line to x+ y = 1.

Since ax+ by+ c = 0 and �ax+ �by+ �c = 0, � 6= 0, represent the same line, we have

�1Pa1 = e1;

�2Pa2 = e2;

�3Pa3 = e3;

where �1, �2 and �3 are non-zero constants. Equivalently,

P(�1a1; �2a2; �3a3) = (e1; e2; e3):

Then

(�1a1; �2a2; �3a3) = P
�1(e1; e2; e3)

=

0
BBB@

a11 a21 0

a12 a22 0

b1 b2 1

1
CCCA

0
BBB@

1 0 1p
2

0 1 1p
2

0 0 � 1p
2

1
CCCA

=

0
BBB@

a11 a21
1p
2
(a11 + a21)

a12 a22
1p
2
(a12 + a22)

b1 b2
1p
2
(b1 + b2 � 1)

1
CCCA :

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 53

Thus

�1 =
a11

cos �1
=

a12
sin �1

=
b1
�r1

; (4.15)

�2 =
a21

cos �2
=

a22
sin �2

=
b2
�r2

; (4.16)

�3 =

1p
2
(a11 + a21)

cos �3
=

1p
2
(a12 + a22)

sin �3
=

1p
2
(b1 + b2 � 1)

�r3
: (4.17)

From Eq. (4.15), we obtain

a11 = �1 cos �1; a12 = �1 sin �1 and b1 = ��1 r1: (4.18)

From Eq. (4.16), we obtain

a21 = �2 cos �2; a22 = �2 sin �2 and b2 = ��2 r2: (4.19)

From Eq. (4.17), we obtain

a11 + a21 = �3
p
2 cos �3; a12 + a22 = �3

p
2 sin �3 and b1 + b2 � 1 = ��3

p
2 r3: (4.20)

Substituting Eq. (4.18) and Eq. (4.19) into Eq. (4.20), we have

�1 cos �1 + �2 cos �2 � �3
p
2 cos �3 = 0;

�1 sin �1 + �2 sin �2 � �3
p
2 sin �3 = 0;

�1 r1 + �2 r2 � �3
p
2 r3 = �1;

and hence

�1 = � sin(�2 � �3)=(r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2));

�2 = � sin(�3 � �1)=(r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2)):

Substituting �1 and �2 back to Eq. (4.18) and Eq. (4.19), we immediately obtain,

a11 = � cos �1 sin(�2 � �3)=(r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2));

a12 = � sin �1 sin(�2 � �3)=(r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2));

a21 = � cos �2 sin(�3 � �1)=(r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2));

a22 = � sin �2 sin(�3 � �1)=(r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2));

b1 = r1 sin(�2 � �3)=(r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2));

b2 = r2 sin(�3 � �1)=(r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2)):

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 54

Thus the transformation P in parameter space can be obtained from Eq. (4.14) as

P =

0
BBB@

A csc(�1 � �2) csc(�2 � �3) sin �2 �A csc(�1 � �2) csc(�2 � �3) cos �2 0

A csc(�1 � �2) csc(�1 � �3) sin �1 �A csc(�1 � �2) csc(�1 � �3) cos �1 0

csc(�1 � �2)(r2 sin �1 � r1 sin �2) � csc(�1 � �2)(r2 cos �1 � r1 cos �2) 1

1
CCCA
3�3

where

A = r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2):

From section 4.1.3, the invariant (�0; r0)t of a line (�; r)t can be obtained from the basis

lines as follows:

(�0; r0)t = H((�; r)t) = G(P(cos�; sin �;�r)t) = G(a0);

where

a
0 =

0
BBBBBBBBBBBBBB@

� csc(�1 � �2) csc(�2 � �3) sin(� � �2)

(r3 sin(�1 � �2) + r2 sin(�3 � �1) + r1 sin(�2 � �3))

� csc(�1 � �2) csc(�1 � �3) sin(� � �1)

(r3 sin(�1 � �2) + r2 sin(�3 � �1) + r1 sin(�2 � �3))

r1 csc(�1 � �2) sin(� � �2)� r2 csc(�1 � �2) sin(� � �1)� r

1
CCCCCCCCCCCCCCA

3�1

and hence

�0 = tan�1(A csc(�1 � �3) sin(�1 � �) csc(�1 � �2)=

A csc(�2 � �3) sin(�2 � �) csc(�1 � �2)); (4.21)

r0 =
1

�
(r1 csc(�1 � �2) sin(�2 � �)� r2 csc(�1 � �2) sin(�1 � �) + r); (4.22)

where

� =
q
csc2(�1 � �3) sin

2(�1 � �) + csc2(�2 � �3) sin
2(�2 � �) jA csc(�1 � �2)j;

A = r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2):

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 55

4.3.4 Projective Line Invariants

Although a projective transformation is fractional linear, one can well treat it as a linear

transformation by using homogeneous coordinates.

To determine a projective transformation uniquely, we need a correspondence of two

ordered quadruplets of lines and for each quadruplet, no three lines are parallel to one

another or intersect at a common point (thus no three points are collinear in parameter

space).

One way to encode a �fth line in a projective-invariant way is to �nd a transformation

P which maps the four basis lines to a canonical basis, say x = 0, y = 0, x = 1 and y = 1,

and then apply P to the �fth line.

A projective transformation T in image space has the form

T =

0
BBB@

a11 a12 a13

a21 a22 a23

a31 a32 a33

1
CCCA :

This corresponds to the parameter-space transformation P, de�ned by (c.f. section 4.1.2)

P = (T�1)t =
1

D

0
BBB@

a22a33 � a23a32 a23a31 � a21a33 a21a32 � a22a31

a13a32 � a12a33 a11a33 � a13a31 a12a31 � a11a32

a12a23 � a13a22 a13a21 � a11a23 a11a22 � a12a21

1
CCCA ; (4.23)

where

D = a11a22a33 + a12a23a31 + a13a21a32 � a11a23a32 � a12a21a33 � a13a22a31;

so that

P
�1 = T

t =

0
BBB@

a11 a21 a31

a12 a22 a32

a13 a23 a33

1
CCCA :

Let a line be parameterized as x cos � + y sin � � r = 0 and let four additional basis lines

be represented by their parameters a1, a2, a3 and a4, such that

a1 = (cos �1; sin �1;�r1)
t;

a2 = (cos �2; sin �2;�r2)
t;

a3 = (cos �3; sin �3;�r3)
t;

a4 = (cos �4; sin �4;�r4)
t;

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 56

which are to be mapped by P to

e1 = (cos 0; sin 0; 0)t = (1; 0; 0)t;

e2 = (cos
�

2
; sin

�

2
; 0)t = (0; 1; 0)t;

e3 = (cos 0; sin 0;�1)t = (1; 0;�1)t;

e4 = (cos
�

2
; sin

�

2
;�1)t = (0; 1;�1)t:

In this way, P maps the �rst basis line to y-axis; the second basis line to x-axis; the third

basis line to x = 1; the fourth basis line to y = 1.

Since ax+ by+ c = 0 and �ax+ �by+ �c = 0, � 6= 0, represent the same line, we have

�1Pa1 = e1;

�2Pa2 = e2;

�3Pa3 = e3;

�4Pa4 = e4;

where �1, �2, �3 and �4 are constants. Equivalently,

P(�1a1; �2a2; �3a3; �4a4) = (e1; e2; e3; e4):

Then

(�1a1; �2a2; �3a3; �4a4) = P
�1(e1; e2; e3; e4)

=

0
BBB@

a11 a21 a31

a12 a22 a32

a13 a23 a33

1
CCCA

0
BBB@

1 0 1 0

0 1 0 1

0 0 �1 �1

1
CCCA

=

0
BBB@

a11 a21 a11 � a31 a21 � a31

a12 a22 a12 � a32 a22 � a32

a13 a23 a13 � a33 a23 � a33

1
CCCA :

We have

�1 =
a11

cos �1
=

a12

sin �1
=

a13

�r1
; (4.24)

�2 =
a21

cos �2
=

a22

sin �2
=

a23

�r2
; (4.25)

�3 =
a11 � a31

cos �3
=

a12 � a32

sin �3
=

a13 � a33

�r3
; (4.26)

�4 =
a21 � a31

cos �4
=

a22 � a32

sin �4
=

a23 � a33

�r4
: (4.27)

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 57

From Eq. (4.24), we obtain

a11 = �1 cos �1; a12 = �1 sin �1 and a13 = ��1 r1: (4:28)

From Eq. (4.25), we obtain

a21 = �2 cos �2; a22 = �2 sin �2 and a23 = ��2 r2: (4:29)

From Eq. (4.26), we obtain

a31 = a11 � �3 cos �3; a32 = a12 � �3 sin �3 and a33 = a13 + �3 r3: (4:30)

From Eq. (4.27), we obtain

a31 = a21 � �4 cos �4; a32 = a22 � �4 sin �4 and a33 = a23 + �4 r4: (4:31)

Since Eq. (4.30) and Eq. (4.31) must be consistent, we have by substituting Eq. (4.28) in

Eq. (4.30) and Eq. (4.29) in Eq. (4.31),

�1 cos �1 � �2 cos �2 � �3 cos �3 = ��4 cos �4;

�1 sin �1 � �2 sin �2 � �3 sin �3 = ��4 sin �4;

�1 r1 � �2 r2 � �3 r3 = ��4 r4;

and hence

�1 =
C1

C4

�4; �2 =
C2

C4

�4 and �3 =
C3

C4

�4;

where

C1 = �r4 sin(�2 � �3) + r3 sin(�2 � �4)� r2 sin(�3 � �4);

C2 = �r4 sin(�1 � �3) + r3 sin(�1 � �4)� r1 sin(�3 � �4);

C3 = r4 sin(�1 � �2)� r2 sin(�1 � �4) + r1 sin(�2 � �4);

C4 = r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2):

Thus

a11 = cos �1
C1

C4

�4; a12 = sin �1
C1

C4

�4 and a13 = �r1
C1

C4

�4;

a21 = cos �2
C2

C4

�4; a22 = sin �2
C2

C4

�4; and a23 = �r2
C2

C4

�4;

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 58

a31= (cos �1
C1

C4

�cos �3
C3

C4

)�4; a32= (sin �1
C1

C4

�sin �3
C3

C4

)�4 and a33= (�r1
C1

C4

+r3
C3

C4

)�4:

The transformation P in parameter space can be obtained from Eq. (4.23) as

P = �1=C1C2C3�4

0
BBB@

p11 p12 p13

p21 p22 p23

p31 p32 p33

1
CCCA

where

p11 = C2(C1r2 sin �1 � C1r1 sin �2 + C3r3 sin �2 � C3r2 sin �3);

p12 = �C2(C1r2 cos �1 � C1r1 cos �2 + C3r3 cos �2 � C3r2 cos �3);

p13 = C2(C1 sin(�1 � �2) + C3 sin(�2 � �3));

p21 = C1C3(r1 sin �3 � r3 sin �1);

p22 = �C1C3(r1 cos �3 � r3 cos �1);

p23 = �C1C3 sin(�1 � �3);

p31 = C1C2(r1 sin �2 � r2 sin �1);

p32 = �C1C2(r1 cos �2 � r2 cos �1);

p33 = �C1C2 sin(�1 � �2):

From section 4.1.3, the invariant (�0; r0)t of a line (�; r)t can be obtained from the basis

lines as follows

(�0; r0)t = H((�; r)t) = G(P(cos �; sin �;�r)t) = G(a0)

where

a
0 = �1=C1C2C3�4

0
BBB@

ABC

DEF

GCF

1
CCCA

3�1

where

A = (r3 sin(�1 � �2)� r2 sin(�1 � �3) + r1 sin(�2 � �3));

B = (r4 sin(� � �2)� r2 sin(� � �4) + r sin(�2 � �4));

C = (r4 sin(�1 � �3)� r3 sin(�1 � �4) + r1 sin(�3 � �4));

CHAPTER 4. INVARIANT MATCHING USING LINE FEATURES 59

D = (�r3 sin(� � �1) + r1 sin(� � �3)� r sin(�1 � �3));

E = (r4 sin(�1 � �2)� r2 sin(�1 � �4) + r1 sin(�2 � �4));

F = (r4 sin(�2 � �3)� r3 sin(�2 � �4) + r2 sin(�3 � �4));

G = (r2 sin(� � �1)� r1 sin(� � �2) + r sin(�1 � �2));

and hence

�
0

= tan�1(DEF=ABC);

r
0

=
�GCF

p
(ABC)2 + (DEF)2

:

Chapter 5

The E�ect of Noise on the

Invariants

In an environment a�ected by serious noise and occlusion, line features are usually de-

tected using the Hough transform. However, detected line parameters (�; r)'s always de-

viate slightly from their true values, since in the physical process of image acquisition the

positions of the endpoints of a segment are usually randomly perturbed and occlusion also

a�ects the process of the Hough transform. As long as a segment is not too short, this in-

duces only slight perturbation of the line parameters of the segment. Thus it is reasonable

for us to assume that detected line parameters di�er from the \true" values by a small

perturbation having a Gaussian distribution.

In the following, we derive the \spread" of the computed invariant over hash space

from the \perturbation" of the lines which give rise to this invariant.

5.1 A Noise Model for Line Parameters

We make the following mild assumptions: The measured line parameters (�; r)'s of a set

of lines

1. are statistically independent;

2. are distributed according to a Gaussian distribution centered at the true value of the

parameter;

60

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 61

3. have a �xed covariance � =

0
@ �

2
�

��r

��r �
2
r

1
A.

More precisely, let (�; r) be the \true" value of the parameters of a line and (��;�R)

be the stochastic variable denoting the perturbation of (�; r). The joint probability density

function of �� and �R is then given by

p(��;�R) =
1

2�
p
j�j

exp[�
1

2
(��;�R)��1(��;�R)t]

and is centered around (�; r).

5.2 The Spread Function of the Invariants

In the following, we derive, from the perturbations of the basis lines and the line being

encoded, a closed-form formula of the perturbation of the invariants considered in the

preceding chapter.

We �rst introduce a lemma and a corollary derived from the lemma.

Lemma: Let X1; X2; :::; Xn have a multivariate Gaussian distribution with vector u of

means and positive de�nite covariance matrix �. Then the moment-generating function

of the multivariate Gaussian p:d:f: is given by

exp[vtu+
vt�v

2
]; for all real vectors of v:

Corollary: Let Yt = (Y1; Y2) such that Y = CX, where Xt = (X1; X2; :::; Xn) and

C =

0
@ c11 ::: c1n

c21 ::: c2n

1
A, a real 2�n matrix. Then the random variable Y is N(Cu;C�Ct).

Proof. The moment-generating function of the distribution Y is given by

M(v) = E(ev
tY) = E(ev

tCX) = E(e(C
tv)tX)

Applying the above theorem, we have

M(v) = exp[(Ctv)tu+
(Ctv)t�(Ctv)

2
]

= exp[vt(Cu) +
vt(C�Ct)v

2
]

Thus the random variable Y is N(Cu;C�Ct). Q.E.D.

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 62

Now, we go back to consider the perturbation of the invariant from the perturbation

of lines. In the preceding chapter, we have given formulae of the invariants (�0; r0)'s for

various transformations. These invariants are functions of the line being encoded, (�; r)t

and the basis lines, (�i; ri)ti=1;...;k:

(�0; r0)t = f((�; r)t; (�1; r1)
t; � � � ; (�k; rk)

t):

Equivalently we may rewrite the above equation as follows:

�0 = f 0((�; r)t; (�1; r1)
t; � � � ; (�k; rk)

t); (5.1)

r0 = f 00((�; r)t; (�1; r1)
t; � � � ; (�k; rk)

t): (5.2)

The exact forms of Eq. (5.1) and Eq. (5.2), together with the value of k (i.e., the number

of basis lines needed), depend on the viewing transformation under consideration and are

given in section 4.3.1, 4.3.2, 4.3.3 and 4.3.4 respectively.

Introducing perturbations of the line parameters (�; r)t and (�i; ri)
t
i=1;...;k results in a

perturbation of the computed invariant (�0; r0)t, having the following form:

�0 + ��0 = f 0((� + ��; r + �r)t; (�1 + ��1; r1+ �r1)
t; � � � ; (�k + ��k ; rk + �rk)

t); (5.3)

r0 + �r0 = f 00((� + ��; r+ �r)t; (�1 + ��1; r1 + �r1)
t; � � � ; (�k + ��k ; rk + �rk)

t): (5.4)

Expanding Eq. (5.3) and Eq. (5.4) in Maclaurin series and ignoring second and higher

order perturbation terms and then subtracting Eq. (5.1) and Eq. (5.2) from them, we have

��
0

=
@�0

@�
�� +

@�0

@r
�r +

kX
i=1

�
@�0

@�i
��i +

@�0

@ri
�ri

�

= c11�� + c12�r + c13��1 + c14�r1 + . . . + c1;2k+1��k + c1;2k+2�rk; (5.5)

�r0 =
@r0

@�
�� +

@r0

@r
�r +

kX
i=1

�
@r0

@�i
��i +

@r0

@ri
�ri

�

= c21�� + c22�r + c23��1 + c24�r1 + . . . + c2;2k+1��k + c2;2k+2�rk; (5.6)

where c11 = @�0=@�, c12 = @�0=@r, c21 = @r0=@�, c22 = @r0=@r, c1;i = @�0=@�i�2,

c2;i = @r0=@�i�2, for i = 3; 5; . . . ; 2k + 1, and c1;i = @�0=@ri�2, c2;i = @r0=@ri�2, for

i = 4; 6; . . . ; 2k+ 2.

Let (��;�R), (��i;�Ri)i=1;...;k and (��
0

;�R
0

) be stochastic variables denoting the

perturbations of (�; r), (�i; ri)i=1;...;k and (�
0

; r
0

) respectively. Eq. (5.5) and Eq. (5.6) can

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 63

be rewritten as

��
0

= c11��+ c12�R+ c13��1 + c14�R1 + . . . + c1;2k+1��k + c1;2k+2�Rk;

�R
0

= c21��+ c22�R+ c23��1 + c24�R1 + . . . + c2;2k+1��k + c2;2k+2�Rk:

Since p(��;�R) and p(��i;�Ri)i=1;...;k are Gaussian and independent, we have that

p:d:f: p(��;�R;��1;�R1; . . . ;��k;�Rk) is also Gaussian. More precisely,

p(��;�R;��1;�R1; . . . ;��k;�Rk)

= p(��;�R) p(��1;�R1) � � �p(��k;�Rk)

= (
1

(2�)k+1
q

j�̂j
) exp[�

1

2
V

t
�̂
�1
V]

where

V = (��;�R;��1;�R1; . . . ;��k;�Rk)
t

�̂ =

0
BBBBBBBBBBBB@

�2� ��r 0 0

��r �2r 0 0
...

. . .
...

...
. . .

...

0 0 �2� ��r

0 0 ��r �2r

1
CCCCCCCCCCCCA

(2k+2)�(2k+2):

Since

(��0;�R0)t =

0
@ c11 c12 . . . c1;2k+1 c1;2k+2

c21 c22 . . . c2;2k+1 c2;2k+2

1
AV;

from the above corollary, we can show that (��0;�R0) also has a Gaussian distribution

having p:d:f:

p(��0;�R0) =
1

2�
p

j�0j
exp[�

1

2
(��0;�R0)�0�1(��0;�R0)t] (5.7)

and covariance matrix

�
0 =

0
@ �2�0 ��0r0

��0r0 �2r0

1
A ;

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 64

where

�
2
�0 = (c211 + c213 + � � �+ c21;2k+1)�

2
� + (c212 + c214 + � � �+ c21;2k+2)�

2
r +

2(c11c12 + c13c14 + � � �+ c1;2k+1c1;2k+2)��r;

�2r0 = (c221 + c223 + � � �+ c22;2k+1)�
2
� + (c222 + c224 + � � �+ c22;2k+2)�

2
r +

2(c21c22 + c23c24 + � � �+ c2;2k+1c2;2k+2)��r;

��0r0 = (c11c21 + c13c23 + � � �+ c1;2k+1c2;2k+1)�
2
� +

(c12c22 + c14c24 + � � �+ c1;2k+2c2;2k+2)�
2
r +

(c11c22 + c13c24 + � � �+ c1;2k+1c2;2k+2 + c21c12 + c23c14 + � � �+ c2;2k+1c1;2k+2)��r:

Recall that in computing the invariant (�0; r0)t, we may adjust the value of �0 by adding

� or �� with the sign of r0 ipped accordingly such that �0 is in [0::�). If this is the case,

then the covariance matrix �0 must be adjusted by ipping the sign of ��0r0 .

5.3 Spread Functions under Various Transformation Groups

In the following subsections, we specialize the general result derived in the preceding section

to the various transformation groups considered earlier.

5.3.1 Rigid-Invariant Spread Function

From section 4.3.1, we have two sets of invariants (due to 180o-rotation ambiguity) for

rigid transformations as follows:

�0 = � � �1 +
�

2
;

r0 = r + csc(�1 � �2)(r2 sin(� � �1)� r1 sin(� � �2));

and

�0 = � � �1 �
�

2
;

r0 = r + csc(�1 � �2)(r2 sin(� � �1)� r1 sin(� � �2));

where (�; r) is the parameter of the line being encoded and (�i; ri)i=1;2 are the parameters

of the basis lines.

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 65

Let (��;�R), (��i;�Ri)i=1;2 and (��
0

;�R
0

) be stochastic variables denoting re-

spectively the perturbations of (�; r), (�i; ri)i=1;2 and the computed invariant (�
0

; r
0

). From

section 5.2, we have

��
0

= c11��+ c12�R+ c13��1 + c14�R1 + c15��2 + c16�R2;

�R
0

= c21��+ c22�R+ c23��1 + c24�R1 + c25��2 + c26�R2:

Computing ci;j 's, we obtain,

c11 = 1, c21 = csc(�1 � �2)(r2 cos(� � �1)� r1 cos(� � �2)),

c12 = 0, c22 = 1,

c13 = �1, c23 = � sin(� � �2) csc
2(�1 � �2)(r2� r1 cos(�1 � �2)),

c14 = 0, c24 = � sin(� � �2) csc(�1 � �2),

c15 = 0, c25 = � sin(� � �1) csc
2(�1 � �2)(r1� r2 cos(�1 � �2)),

c16 = 0, c26 = sin(� � �1) csc(�1 � �2).

Thus we conclude that (��0;�R0) has a Gaussian distribution with p:d:f

p(��0;�R0) =
1

2�
p
j�j

exp[�
1

2
(��0;�R0)��1(��0;�R0)t]

and covariance matrix

� =

0
@ �2�0 ��0r0

��0r0 �2r0

1
A ;

where

�2�0 = 2�2� ;

�2r0 = (c2
21

+ c2
23

+ c2
25
)�2� + (1 + c2

24
+ c2

26
)�2r + 2(c21 + c23c24 + c25c26)��r;

��0r0 = (c21 � c23)�
2

� + (c22 � c24)��r:

5.3.2 Similarity-Invariant Spread Function

From section 4.3.2, we have the following formula for the invariant for similarity transfor-

mations:

�0 = = � � �1 +
�

2
;

r0 = sin(�1 � �3)B=jAj

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 66

and

A = r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2);

B = r2 sin(� � �1)� r1 sin(� � �2) + r sin(�1 � �2);

where (�; r) is the parameter of the line being encoded and (�i; ri)i=1;2;3 are the parameters

of the basis lines.

Let (��;�R), (��i;�Ri)i=1;2;3 and (��
0

;�R
0

) be stochastic variables denoting re-

spectively the perturbations of (�; r), (�i; ri)i=1;2;3 and the computed invariant (�
0

; r
0

).

From section 5.2, we have

��
0

= c11��+ c12�R+ c13��1 + c14�R1 + c15��2 + c16�R2 + c17��3 + c18�R3;

�R
0

= c21��+ c22�R+ c23��1 + c24�R1 + c25��2 + c26�R2 + c27��3 + c28�R3:

Computing ci;j 's, we obtain,

c11 = 1, c21 = r2 cos(� � �1)� r1 cos(� � �2)=jAj,

c12 = 0, c22 = sin(�1 � �2)=jAj,

c13 = �1, c23 = [(r2 cos(�1 � �3)� r3 cos(�1 � �2))B=A�

r2 cos(� � �1) + r cos(�1 � �2)]=jAj,

c14 = 0, c24 = [� sin(�2 � �3)B=A � sin(� � �2)]=jAj,

c15 = 0, c25 = [(r3 cos(�1 � �2)� r1 cos(�2 � �3))B=A+

r1 cos(� � �2)� r cos(�1 � �2)]=jAj,

c16 = 0, c26 = [sin(�1 � �3)B=A + sin(� � �1)]=jAj,

c17 = 0, c27 = (r1 cos(�2 � �3)� r2 cos(�1 � �3))B=(AjAj),

c18 = 0, c28 = � sin(�1 � �2)B=(AjAj).

Thus we conclude that (��0;�R0) has a Gaussian distribution with p:d:f

p(��0;�R0) =
1

2�
p
j�j

exp[�
1

2
(��0;�R0)��1(��0;�R0)t]

and covariance matrix

� =

0
@ �2�0 ��0r0

��0r0 �2r0

1
A ;

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 67

where

�
2

�0 = 2�2� ;

�2r0 = (c2
21

+ c2
23

+ c2
25

+ c2
27
)�2� + (c2

22
+ c2

24
+ c2

26
+ c2

28
)�2r +

2(c21c22 + c23c24 + c25c26 + c27c28)��r ;

��0r0 = (c21 � c23)�
2

� + (c22 � c24)��r:

5.3.3 A�ne-Invariant Spread Function

From section 4.3.3, the invariant for a�ne transformations has the following form:

�0 = tan�1(A csc(�1 � �3) sin(�1 � �) csc(�1 � �2)=

A csc(�2 � �3) sin(�2 � �) csc(�1 � �2));

r
0

= C=D

and

A = r3 sin(�1 � �2) + r2 sin(�3 � �1) + r1 sin(�2 � �3);

B = csc2(�1 � �3) sin
2(�1 � �4) + csc2(�2 � �3) sin

2(�2 � �4);

C = r1 csc(�1 � �2) sin(�2 � �)� r2 csc(�1 � �2) sin(�1 � �) + r;

D =
q
A2B csc2(�1 � �2);

where (�; r) is the parameter of the line being encoded and (�i; ri)i=1;2;3 are the parameters

of the basis lines.

Let (��;�R), (��i;�Ri)i=1;2;3 and (��
0

;�R
0

) be stochastic variables denoting re-

spectively the perturbations of (�; r), (�i; ri)i=1;2;3 and the computed invariant (�
0

; r
0

).

From section 5.2, we have

��
0

= c11��+ c12�R+ c13��1 + c14�R1 + c15��2 + c16�R2 + c17��3 + c18�R3;

�R
0

= c21��+ c22�R+ c23��1 + c24�R1 + c25��2 + c26�R2 + c27��3 + c28�R3:

Computing ci;j 's and writing E = csc(�1 � �3) csc(�2 � �3)=B, we obtain,

c11 = sin(�1 � �2)E;

c12 = 0;

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 68

c13 = � csc(�1 � �3) sin(� � �2) sin(� � �3)E;

c14 = 0;

c15 = csc(�2 � �3) sin(� � �1) sin(� � �3)E;

c16 = 0;

c17 = � csc(�1 � �3) csc(�2 � �3) sin(�1 � �2) sin(� � �1) sin(� � �2)E;

c18 = 0;

c21 = [�(cos(� � �1) csc
2(�1 � �3) sin(� � �1) +

cos(� � �2) csc
2(�2 � �3) sin(� � �2))C=B +

csc(�1 � �2)(r2 cos(� � �1)� r1 cos(� � �2))]=D;

c22 = 1=D;

c23 = [� csc(�1 � �2)(r2 cos(� � �1) + cot(�1 � �2)(r2 sin(� � �1)� r1 sin(� � �2)))�

C((r3 cos(�1 � �2)� r2 cos(�1 � �3))=A�

csc2(�1 � �3) sin(� � �1)(cos(� � �1) + cot(�1 � �3) sin(� � �1))=B)�

cot(�1 � �2)]=D;

c24 = [� sin(�2 � �3)AC � csc(�1 � �2) sin(� � �2)]=D;

c25 = [csc(�1 � �2)(r1 cos(� � �2) + cot(�1 � �2)(r2 sin(� � �1)� r1 sin(� � �2)))�

C((r1 cos(�2 � �3)� r3 cos(�1 � �2))=A�

csc2(�2 � �3) sin(� � �2)(cos(� � �2) + cot(�2 � �3) sin(� � �2))=B) +

cot(�1 � �2)]=D;

c26 = [sin(�1 � �3)C=A+ csc(�1 � �2) sin(� � �1)]=D;

c27 = [�C((r2 cos(�1 � �3)� r1 cos(�2 � �3))=A+

(cot(�1 � �3) csc
2(�1 � �3) sin

2(� � �1) +

cot(�2 � �3) csc
2(�2 � �3) sin

2(� � �2))=B)]=D;

c28 = [� sin(�1 � �2)C=A]=D:

Thus we conclude that (��0;�R0) has a Gaussian distribution with p:d:f

p(��0;�R0) =
1

2�
p
j�j

exp[�
1

2
(��0;�R0)��1(��0;�R0)t] (5.8)

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 69

and covariance matrix

� =

0
@ �

2

�0 ��0r0

��0r0 �
2

r0

1
A ;

where

�2�0 = (c2
11

+ c2
13

+ c2
15

+ c2
17
)�2� ;

�2r0 = (c2
21

+ c2
23

+ c2
25

+ c2
27
)�2� + (c2

22
+ c2

24
+ c2

26
+ c2

28
)�2r +

2(c21c22 + c23c24 + c25c26 + c27c28)��r;

��0r0 = (c11c21 + c13c23 + c15c25 + c17c27)�
2

� + (c11c22 + c13c24 + c15c26 + c17c28)��r:

5.3.4 Projective-Invariant Spread Function

From section 4.3.4, the invariant for projective transformations is as follows:

�
0

= tan�1(DEF=ABC);

r
0

=
�GCFp

(ABC)2 + (DEF)2

and

A = (r3 sin(�1 � �2)� r2 sin(�1 � �3) + r1 sin(�2 � �3));

B = (r4 sin(� � �2)� r2 sin(� � �4) + r sin(�2 � �4));

C = (r4 sin(�1 � �3)� r3 sin(�1 � �4) + r1 sin(�3 � �4));

D = (�r3 sin(� � �1) + r1 sin(� � �3)� r sin(�1 � �3));

E = (r4 sin(�1 � �2)� r2 sin(�1 � �4) + r1 sin(�2 � �4));

F = (r4 sin(�2 � �3)� r3 sin(�2 � �4) + r2 sin(�3 � �4));

G = (r2 sin(� � �1)� r1 sin(� � �2) + r sin(�1 � �2));

where (�; r) is the parameter of the line being encoded and (�i; ri)i=1;2;3;4 are the parameters

of the basis lines.

Let (��;�R), (��i;�Ri)i=1;2;3;4 and (��
0

;�R
0

) be stochastic variables denoting

respectively the perturbations of (�; r), (�i; ri)i=1;2;3;4 and the computed invariant (�
0

; r
0

).

From section 5.2, we have

��
0

= c11�� + c12�R+ c13��1 + c14�R1 + c15��2 +

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 70

c16�R2 + c17��3 + c18�R3 + c19��4 + c1;10�R4;

�R
0

= c21�� + c22�R+ c23��1 + c24�R1 + c25��2 +

c26�R2 + c27��3 + c28�R3 + c29��4 + c2;10�R4:

Computing ci;j 's, we obtain,

c11 = [(�r4 cos(� � �2) + r2 cos(� � �4))I=B +

(�r3 cos(� � �1) + r1 cos(� � �3))EF]=HK;

c12 = [sin(�2 � �4)I=B � sin(�1 � �3)EF]=HK;

c13 = [�(r4 cos(�1 � �3)� r3 cos(�1 � �4))I=C +

(r4 cos(�1 � �2)� r2 cos(�1 � �4))DF �

(r3 cos(�1 � �2)� r2 cos(�1 � �3))I=A+

(r3 cos(� � �1)� r cos(�1 � �3))EF]=HK;

c14 = [� sin(�3 � �4)I=C + sin(�2 � �4)DF �

sin(�2 � �3)I=A+ sin(� � �3)EF]=HK;

c15 = [�(�r4 cos(�2 � �3) + r3 cos(�2 � �4))DE +

(�r4 cos(�1 � �2) + r1 cos(�2 � �4))DF �

(�r4 cos(� � �2) + r cos(�2 � �4))I=B �

(�r3 cos(�1 � �2) + r1 cos(�2 � �3))I=A]=HK;

c16 = [sin(�3 � �4)DE � sin(�1 � �4)DF +

sin(� � �4)I=B + sin(�1 � �3)I=A]=HK;

c17 = [�(r4 cos(�2 � �3)� r2 cos(�3 � �4))DE +

(r4 cos(�1 � �3)� r1 cos(�3 � �4))I=C �

(r2 cos(�1 � �3)� r1 cos(�2 � �3))I=A+

(�r1 cos(� � �3) + r cos(�1 � �3))EF]=HK;

c18 = [� sin(�2 � �4)DE + sin(�1 � �4)I=C �

sin(�1 � �2)I=A� sin(� � �1)EF]=HK;

c19 = [�(�r3 cos(�2 � �4) + r2 cos(�3 � �4))DE +

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 71

(�r3 cos(�1 � �4) + r1 cos(�3 � �4))I=C +

(r2 cos(�1 � �4)� r1 cos(�2 � �4))DF �

(r2 cos(� � �4)� r cos(�2 � �4))I=B]=HK;

c1;10 = [sin(�2 � �3)DE � sin(�1 � �3)I=C +

sin(�1 � �2)DF � sin(� � �2)I=B]=HK;

c21 = [(r4 cos(� � �2)� r2 cos(� � �4))HAC +

(�r3 cos(� � �1) + r1 cos(� � �3))IEF]J=L3 +

[�r2 cos(� � �1) + r1 cos(� � �2)]CF=L;

c22 = [sin(�2 � �4)HAC � sin(�1 � �3)IEF]J=L3
�

sin(�1 � �2)CF=L;

c23 = [(r4 cos(�1 � �3)� r3 cos(�1 � �4))HAB +

(r3 cos(�1 � �2)� r2 cos(�1 � �3))HBC +

(r4 cos(�1 � �2)� r2 cos(�1 � �4))IDF +

(r3 cos(� � �1) + r cos(�1 � �3))IEF]J=L3
�

[r4 cos(�1 � �3)� r3 cos(�1 � �4)]GF=L+

[r2 cos(� � �1)� r cos(�1 � �2)]CF=L;

c24 = [sin(�3 � �4)HAB + sin(�2 � �3)HBC +

sin(�2 � �4)IDF + sin(� � �3)IEF]J=L3
�

sin(�3 � �4)GF=L+ sin(� � �2)CF=L;

c25 = [(�r4 cos(� � �2) + r cos(�2 � �4))HAC +

(�r3 cos(�1 � �2) + r1 cos(�2 � �3))HBC +

(r4 cos(�2 � �3)� r3 cos(�2 � �4))IDE �

(r4 cos(�1 � �2)� r1 cos(�2 � �4))IDF]J=L3
�

[r4 cos(�2 � �3)� r3 cos(�2 � �4)]GC=L+

[�r1 cos(� � �2) + r cos(�1 � �2)]CF=L;

c26 = [� sin(� � �4)HAC � sin(�1 � �3)HBC +

sin(�3 � �4)IDE � sin(�1 � �4)IDF]J=L3
�

sin(�3 � �4)GC=L� sin(� � �1)CF=L;

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 72

c27 = [�(r4 cos(�1 � �3)� r1 cos(�3 � �4))HAB +

(r2 cos(�1 � �3)� r1 cos(�2 � �3))HBC �

(r4 cos(�2 � �3)� r2 cos(�3 � �4))IDE +

(�r1 cos(� � �3) + r cos(�1 � �3))IEF]J=L
3
�

[�r4 cos(�2 � �3) + r2 cos(�3 � �4)]GC=L�

[�r4 cos(�1 � �3) + r1 cos(�3 � �4)]GF=L;

c28 = [� sin(�1 � �4)HAB + sin(�1 � �2)HBC �

sin(�2 � �4)IDE � sin(� � �1)IEF]J=L
3+

sin(�2 � �4)GC=L+ sin(�1 � �4)GF=L;

c29 = [(r3 cos(�1 � �4)� r1 cos(�3 � �4))HAB +

(r2 cos(� � �4)� r cos(�2 � �4))HAC +

(r3 cos(�2 � �4)� r2 cos(�3 � �4))IDE +

(r2 cos(�1 � �4)� r1 cos(�2 � �4))IDF]J=L
3
�

[r3 cos(�2 � �4)� r2 cos(�3 � �4)]GC=L�

[r3 cos(�1 � �4)� r1 cos(�3 � �4)]GF=L;

c2;10 = [sin(�1 � �3)HAB + sin(� � �2)HAC +

sin(�2 � �3)IDE + sin(�1 � �2)IDF]J=L
3
�

sin(�2 � �3)GC=L� sin(�1 � �3)GF=L:

and

H = ABC; I = DEF; J = GCF; K = (1 + I2=H2); L =
p
H2 + I2:

Thus we conclude that (��0;�R0) has a Gaussian distribution with p:d:f

p(��0;�R0) =
1

2�
p
j�j

exp[�
1

2
(��0;�R0)��1(��0;�R0)t]

and covariance matrix

� =

0
@ �2�0 ��0r0

��0r0 �2r0

1
A ;

CHAPTER 5. THE EFFECT OF NOISE ON THE INVARIANTS 73

where

�
2

�0 = (c2
11
+ c

2

13
+ � � �+ c

2

19
)�2

� + (c2
12
+ c

2

14
+ � � �+ c

2

1;10)�
2

r +

2(c11c12 + c13c14 + � � �+ c19c1;10)��r;

�
2

r0 = (c2
21
+ c

2

23
+ � � �+ c

2

29
)�2

� + (c2
22
+ c

2

24
+ � � �+ c

2

2;10)�
2

r +

2(c21c22 + c23c24 + � � �+ c29c2;10)��r;

��0r0 = (c11c21 + c13c23 + � � �+ c19c29)�
2

� + (c12c22 + c14c24 + � � �+ c1;10c2;10)�
2

r +

(c11c22 + c13c24 + � � �+ c19c2;10 + c21c12 + c23c14 + � � �+ c29c1;10)��r:

Chapter 6

Bayesian Line Invariant Matching

Our recognition scheme builds upon the geometric hashing method, as reviewed in chap-

ter 2, which also notes some weaknesses of the geometric hashing technique. Even when

we use an improved Hough transform to detect line features in a degraded image, we still

face the problem dealing with image noise and with the resulting problem of noise in the

invariants used for hashing.

To minimize these noise e�ects, we need to derive a theoretically justi�ed scheme for

weighted voting among hash bins. We show how a weighted voting scheme can be used to

cope with the problem. This is the aim of the probabilistic procedure which we now go on

to describe.

6.1 A Measure of Matching between Scene and Model In-

variants

In the geometric hashing method described in chapter 2, during recognition a computed

scene invariant is used to index the geometric hash table and tally one vote for the entry

retrieved. However, considering the presence of noise, a scene invariant can not exactly

hit the hash table entry where its matching model invariant is supposed to reside. Gavrila

and Groen [18] assume a bounded circular region around each hash bin and tally equal

vote for all the bins within the region centered around the bin being hashed. However,

our analysis of the noise e�ect on computed invariants in the preceding chapter shows

that the perturbation of an invariant has an approximately Gaussian distribution with a

74

CHAPTER 6. BAYESIAN LINE INVARIANT MATCHING 75

non-zero correlation coe�cient. This implies that the region of hash space that would

need to be accessed is an ellipse, instead of a circle, centered around the \true" value of

the invariant. Moreover, this perturbation also depends on the basis and the line being

encoded, which means that di�erent invariants should be associated with di�erent size,

shape and orientation of hash space regions for error tolerance.

The nodes in hash space that more \closely match" the value of the invariant should get

a higher weighted score than those which are far away, in a manner accurately representing

the behavior of the noise which a�ects these invariants. Let invs be a scene invariant and

let invMi
be a model invariant computed from a basis BMi

and a line lj of Mi. Bayes'

theorem [16] allows us to precisely determine the probability that invs results from the

presence of a certain [Mi; BMi
; lj]:

P ([Mi; BMi
; lj]jinvs) = P ([Mi; BMi

; lj])
p(invsj[Mi; BMi

; lj])

p(invs)

where

� P ([Mi; BMi
; lj]) is the a priori probability that Mi is embedded in the scene and

BMi
is selected to encode lj. We assume that all the models are equally likely to

appear and have the same number of features, which is a simpli�cation that could

be easily generalized. Thus P ([Mi; BMi
; lj]) is the same for all [model, basis, line]

combinations. (Note that this may not be quite true if the basis selection procedure

favors long bases instead of selecting bases randomly.)

� p(invsj[Mi; BMi
; lj]) is the conditional p:d:f: of observing invs given that Mi appears

in the scene with BMi
being selected and lj being encoded. It consists of two parts:

the spike induced by [Mi; BMi
; lj] and a background distribution.

� p(invs) is the p:d:f: of observing invs, regardless of which [Mi; BMi
; lj] induces it.

Assume that no two invariants of the same model and with a �xed basis locate near each

other in hash space (i.e., model features are distinct and separate; If more than one model

feature lands in approximately the same location, then the features should be coalesced

into a single feature), invs can be close to at most one model invariant. Thus, given invs,

the supporting evidence that Mi appears in the scene and the basis BMi
is selected is then

P ([Mi; BMi
])jinvs) � max

j
P ([Mi; BMi

; lj]jinvs)

CHAPTER 6. BAYESIAN LINE INVARIANT MATCHING 76

/
maxj p(invsj[Mi; BMi

; lj])

p(invs)
: (6.1)

6.2 Evidence Synthesis by Bayesian Reasoning

In the recognition stage, a certain scene basis Bs is probed and the invariants of all the

remaining features with respect to this basis are computed. Each invariant provides various

degrees of support for the existence of [Mi; BMi
] combinations, assuming Bs corresponds

to BMi
. If for every [Mi; BMi

] combination we synthesize support from all the invariants

and hypothesize the one with maximum support, we in fact exercise a maximum likelihood

approach to object recognition.

In order to synthesize support coming from di�erent invariants, we have the following

formula, based on a probability derivation using Bayes' theorem [12] :

P ([Mi; BMi
]jinvs1 ; . . . ; invsn)

P ([Mi; BMi
])

=
p(invs1 ; . . . ; invsn j[Mi; BMi

])

p(invs1 ; . . . ; invsn)

=
p(invs1 j[Mi; BMi

]) . . .p(invsn j[Mi; BMi
])

p(invs1 ; . . . ; invsn)
(assuming conditional independence)

=
1

p(invs1 ; . . . ; invsn)

P ([Mi; BMi
]jinvs1) p(invs1)

P ([Mi; BMi
])

. . .
P ([Mi; BMi

]jinvsn) p(invsn)

P ([Mi; BMi
])

=
p(invs1) . . . p(invsn)

p(invs1 ; . . . ; invsn)

nY

k=1

P ([Mi; BMi
]jinvsk)

P ([Mi; BMi
])

/
p(invs1) . . . p(invsn)

p(invs1 ; . . . ; invsn)

nY

k=1

maxj p(invsk j[Mi; BMi
; lj]

p(invsk)P ([Mi; BMi
])

(by Eq. (6.1))

=
1

p(invs1 ; . . . ; invsn)

nY

k=1

maxj p(invsk j[Mi; BMi
; lj]

P ([Mi; BMi
])

:

Thus

P ([Mi; BMi
]jinvs1 ; . . . ; invsn) /

nY

k=1

max
j

p(invsk j[Mi; BMi
; lj]); (6.2)

since p(invs1 ; . . . ; invsn) is independent of all the hypotheses and all P ([Mi; BMi
])'s are

identical.

CHAPTER 6. BAYESIAN LINE INVARIANT MATCHING 77

In the above derivation, we have assumed conditional independence among the invari-

ants, i.e.,

p(invs1 ; . . . ; invsn j[Mi; BMi
]) =

nY

k=1

p(invsk j[Mi; BMi
]);

which means that the expected probability distribution of a scene invariant invsk is inde-

pendent of the other scene invariants. The intuition for this conditional independence to

hold is that if the given invsk does not belong to the embedded model Mi, it has nothing

to do with [Mi; BMi
] and also other scene invariants; if the given invsk belongs to the em-

bedded model Mi, since geometric hashing applies transformation-invariant information,

invsk is destined to appear, given the hypothesis that BMi
is selected. Thus invsk is not

a�ected by other invariants. A more formal argument is given in [28].

In computing P ([Mi; BMi
]jinvs1 ; . . . ; invsn), we do not need to compute absolute prob-

abilities but only relative probabilities. Since the logarithm function is monotonic, we can

apply the logarithm to both sides of Eq. (6.2):

log P ([Mi; BMi
]jinvs1 ; . . . ; invsn) = logC +

nX

k=1

log max
j

p(invsk j[Mi; BMi
; lj]); (6.3)

turning products into sums.

6.3 The Algorithm

The pre-processing stage parallels our description of the preprocessing stage of the geomet-

ric hashing method reviewed in section 2.2. For a speci�c transformation group considered,

we use the formulae given in section 4.3 to compute the invariants. We also compute the

spread functions of these invariants using Eq. (5.7). Both pieces of information, together

with the identity of [model, basis, line], are stored in a node in the hash entry indexed by

each invariant. Understanding that the spread function is Gaussian, we store its covariance

matrix as a representation of the function. We note that each node records information

about a particular [model, basis, line] combination necessary for our recognition stage.

The hash table is so arranged that the position of each entry in fact represents a quantized

coordinate (�; r) of hash space. In this way, range query can be easily performed.

In the recognition stage, lines are detected by the Hough transform and a subset of

these lines are chosen as a basis for associating invariants with all remaining lines. Eq. (6.3)

CHAPTER 6. BAYESIAN LINE INVARIANT MATCHING 78

is used to accumulate support from all these invariants (logC term, which is common to

all the hypotheses, can be ignored). We note that a straightforward use of Eq. (6.3) runs

through all the [model, basis, line] combinations and thus the computational cost can be

immense. By exploiting the geometric hash table prepared in the pre-processing stage,

for each invariant invsk hashed into the hash space, we access only its nearby nodes. For

each node accessed, we credit log p(invsk j[Mi; BMi
; lj]) to the node, whose initial score

value is set to 0. In computing log p(invsk j[Mi; BMi
; lj]), the background distribution

function, compared with the spike induced by [Mi; BMi
; lj] is usually negligible. We will

use logarithm of Eq. (5.7) to approximate log p(invsk j[Mi; BMi
; lj]). Typically this Gaus-

sian p:d:f: falls o� rapidly. We thus approximately credit the same weighted score, log c,

to all those not in the neighborhood of the hash. Equivalently, we may instead credit

log p(invsk j[Mi; BMi
; lj])� log c to those nearby nodes accessed and keep intact those not

in the neighborhood. After all the invariants are processed, the support for all the [Mi; BMi
]

combinations are histogramed. The top few [Mi; bMi
]'s with su�ciently high votes are ver-

i�ed by transforming and superimposing the model onto the scene. A quality measure,

QM, de�ned as the ratio of visible boundary, is computed. If the QM is above a preset

threshold (e.g. 0.5), the hypothesis passes the veri�cation. (The veri�cation can proceed

in a hierarchical way by �rst verifying the existence of the basis and reject immediately if

the basis fails veri�cation.)

In the above process, each probe of a scene basis is hypothesized as an instance of a

particular basis of a certain model. It is possible that the scene basis probed does not

correspond to any basis of any model. In the following section, we give a probabilistic

analysis of the number of probes needed to detect all the instances in the scene.

6.4 An Analysis of the Number of Probings Needed

Let there be n lines in the scene, n = n1 + n2, where n2 lines are spurious. Let also there

be M model instances in the scene. Assuming that the degree of occlusion of each instance

is the same. Thus on average each model appearing in the scene has n1
M

lines.

The probability of choosing a scene basis, consisting of k features, which happens to

CHAPTER 6. BAYESIAN LINE INVARIANT MATCHING 79

correspond to a basis of a model is

p =
k�1Y

i=0

(
n1
M
� i

n� i
):

If we are to detect all M model instances at once, in the best case we have to probe

only M scene bases from the scene. This happens when each time a basis is probed, it

happens to correspond to a basis of a certain model and next time another basis is probed,

it corresponds to a basis of another model. However, the probability for this to happen is

pM , which is obviously small. The probability of detecting exactly i di�erent models after

t trials (i.e., among the t trials, t = i0+ i00; i0 � i probes cover bases of each of the i models

and i00 probes correspond to no bases of any model) is

pi =

0
@ t

i

1
A i! pi; i = 0; :::;M:

We may derive the lower bound of t by restricting pi � �, 0 � � � 1:

t(t � 1) � � �(t� i+ 1) � �=pi:

Thus,

ti > �=pi or t > i
p
�=p:

The probability that at least j di�erent models are detected is then

qj = 1�
j�1X
i=0

pi:

In practice, we have to try more probes than theoretically predicted, because some

probes, though corresponding to some model bases, are bad (e.g., too small, too big or too

much perturbed) bases and do not result in a stable transformation that transforms model

to properly �t its scene instance to pass veri�cation.

Chapter 7

The Experiments

In this chapter, we test our approach using both synthesized and real images. We choose to

implement the case of a�ne transformations. The group of a�ne transformations is a su-

pergroup of both rigid and similarity transformations. In addition, a�ne transformations

are often appropriate approximations to perspective transformations under suitable view-

ing situations (referring to p. 79 of [35]) and thus can be used in recognition algorithms as

substitutes for more general perspective transformations. It should be noted that a similar

approach can be applied to the cases of other transformations we discussed in chapter 4.

Implementation details, with experimental results, are presented in the following.

7.1 Implementation of A�ne Invariant Matching

To apply the procedure described in section 6.3 to the case of a�ne group, a triplet of

lines is necessary to form a basis. Eq. (4.21) and Eq. (4.22) in section 4.3.3 are used to

compute the invariant and the spread function of the invariant is given by Eq. (5.8) in

section 5.3.3. Our formulae involve many trigonometric evaluations. To accelerate the

process, a �ne-grained look-up table of trigonometric functions is pre-computed.

Considering numerical stability, we should avoid prevent using small bases or large

bases for invariant computing. In our implementation, we use 256 � 256 images. If any

side of the basis is less than 20 pixels or all sides of the basis is greater than 500 pixels, we

consider it infeasible.

The hash table is implemented as a 2-D array to represent the 2-D hash space. Since

80

CHAPTER 7. THE EXPERIMENTS 81

during recognition, we have to consider a neighborhood of a hash entry when it is retrieved,

the boundary of the hash table has to be treated specially: The �-axis of the 2-D hash

table should be viewed as round-wrapped with ip, since the invariant (�; r) is mathemati-

cally equivalent to (� � �;�r) (e.g., (179�; 2) is equivalent to (�1�;�2), thus neighboring,

say,(0�;�2)).

During evidence synthesis, care should be taken to prevent multiple accumulation of

weighted votes: For each probing of scene bases, each hash node, [Mi; bMi
; lj], should

receive a vote only once, since model feature lj can not match more than two scene features

simultaneously. We thus have to keep track of the score each hash node receives and take

only the maximum weighted score the node has received.

We also have to reject reexion cases. Reexion transformations form a subgroup of

a�ne transformations. However, a 2-D object, say a triangle with vertex-1; 2; 3 in clockwise

sequence, preserves this sequence, even its shape being seriously skewed when viewed

from a tilted camera. This problem is tackled by detecting the orientation (clockwise or

counterclockwise) of a basis by its cross product. Thus no such false match between scene

basis and model basis will be hypothesized.

Since we are dealing with highly occluded scenes, we have found that even if a hypoth-

esis has passed veri�cation (by verifying its boundary), it can still be a false alarm. By

the viewpoint consistency principle [41], the locations of all object features in an image

should be consistent with the projection from a single viewpoint. We may show that all

2-D objects lying on the same plane have an identical enlarging (or shrinking) ratio of

area, if viewed from the same camera, assuming approximation of a�ne transformations

to perspective transformations. The quantity of this ratio is j det(A)j, where A is the

skewing matrix of an a�ne transformation T = (A;b). We call it the skewing factor and

request that all the hypothesized instances have the same skewing factor. (Appendix-A

provides the formula for computing T from a correspondence of a scene basis and a model

basis.)

For each probe, after histograming of the weighted votes, the top few hypotheses are

veri�ed. If the veri�cation is successful, the skewing factor of the alleged instance is

computed and used to vote for a common skewing factor.

After su�cient number of bases are probed, which is determined by a statistical es-

timation procedure (see section 6.4), a global skewing factor, which is taken to be the

CHAPTER 7. THE EXPERIMENTS 82

j det(A)j with highest number of votes, is obtained. Those hypothesized model instances

voting for the global skewing factor are passed onto a disambiguation process which we go

on to describe below.

It is possible that a scene line is shared by many model instances, some of which are

spurious. We could re�ne the result by classifying the shared lines to belong to that model

instance most strongly supported by the evidence. One possible technique for disambigua-

tion is relaxation [54]. However, relaxation is a complicated process. Since each model

instance is associated with its quality measure, QM, as a measure of the strength of ev-

idence supporting its existence (this de�nition of QM favors long segments of a model

instance and is similar to that used in [4] with the same justi�cation). The following

straightforward technique proves to work well.

We maintain two data structures, a QM-bu�er and a frame-bu�er, of the same size

as the image. After initializing the QM -bu�er and the frame-bu�er, we process each

candidate model instance in an arbitrary order by superimposing the candidate model

instance onto the QM -bu�er, then tracing the boundary of the model instance. For each

position traced, if the QM of the current model instance is greater than that value stored

in the QM -bu�er, we write the id of this candidate model instance to the corresponding

position of the frame-bu�er and replace that value in the QM -bu�er by the current QM .

After all candidate model instances have been processed, we recompute the QM of

each candidate on the frame-bu�er by considering only positions with the same id as this

candidate. Those with the new QM 's less than a preset threshold (e.g. 0:5) are removed

from the list of candidate model instances.

7.2 Best Least-Squares Match

The transformation between a model and its scene instance can be recovered by the corre-

spondence of the model basis and the scene basis alone. However, scene lines detected by

the Hough transform are usually somewhat distorted due to noise. This results in distor-

tion in computing the transformation. Usually this distorted transformation transforms

a model to match its scene instance with basis lines matching each other perfectly while

the other lines deviating from their correspondences more or less. Knowledge of additional

line correspondences between a model and its scene instance can be used to improve the

CHAPTER 7. THE EXPERIMENTS 83

accuracy of the computed transformation. In this following, we discuss several methods to

minimize the errors.

Method 1

Treat each line as a point with coordinate (�; r) in (�; r)-space and minimize the squared

distance between (�; r) and its correspondence (�0; r0).

Discussion

The problem of this method is that � and r are of di�erent metrics. To minimize the squared

distance between a point (�; r) and its correspondence (�0; r0), we implicitly assume equal

weight on both � and r.

Method 2

To circumvent the problem caused by Method 1, we note that a line (�; r) can be uniquely

represented by the point (r cos �; r sin �), which is the projection of the origin onto the line.

To match line (�; r) to its correspondence (�0; r0), we try to minimize the squared distance

between (r cos �; r sin �) and (r0 cos �0; r0 sin �0).

Discussion

The drawback of this method is its dependency on the origin. The nearer the line is to the

origin, the more weight is on r (think of the special case when both lines pass through the

origin in the image).

Method 31

The models in a model base are usually �nite in the sense that though they are modeled

by lines, they in fact consist of segments. We can minimize the squared distance of the

endpoints of the transformed model line segments to their corresponding scene lines in

image space.

We derive in the following the closed-form formula for the case of a�ne transformations.

A similar technique can be applied for the cases of other transformation groups.

1suggested by Professor Jaiwei Hong.

CHAPTER 7. THE EXPERIMENTS 84

Speci�cally, assuming that we are looking for an a�ne match between n scene lines lj

and endpoints of n segments, uj1 and uj2, j = 1; . . . ; n, we would like to �nd the a�ne

transformation T = (A;b), such that the summations of the squared distances between

the sequence T(uj1) to lj and T(uj2) to lj , j = 1; . . . ; n, is minimized:

E = min
T

nX
j=1

(distance of T(uj1) and lj)
2 + (distance of T(uj2) and lj)

2:

Let line lj be with parameter (�j ; rj) and endpoints uji be (xji; yji); j = 1; . . . ; n and

i = 1; 2. Also let T = (A;b) such that

A =

0
@ a11 a12

a21 a22

1
A and b =

0
@ b1

b2

1
A :

Then

T(uji) = (a11xji + a12yji + b1; a21xji + a22yji + b2)
t

and

E = min
T

nX
j=1

((cos �j ; sin �j)T(uj1)� rj)
2 + ((cos �j ; sin �j)T(uj2)� rj)

2:

To minimize E, we have to solve the following system of equations:

@E

@a11
= 0;

@E

@a12
= 0;

@E

@a21
= 0;

@E

@a22
= 0;

@E

@b1
= 0 and

@E

@b2
= 0:

Since E is a quadratic function in each of its unknowns, the above is a system of linear

equations with six unknowns. We can rewrite it in the matrix form as follows. (See

Appendix-B for the expressions of mij and ni, i; j = 1; :::; 6.)
0
BBBBBBBBBBB@

m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m32 m33 m34 m35 m36

m41 m42 m43 m44 m45 m46

m51 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

a11

a12

a21

a22

b1

b2

1
CCCCCCCCCCCA

=

0
BBBBBBBBBBB@

n1

n2

n3

n4

n5

n6

1
CCCCCCCCCCCA

The six unknowns can be solved by Cramer's rule (see p.89 of [39]) as follows:

a11 = det(M1)= det(M); a12 = det(M2)= det(M);

a21 = det(M3)= det(M); a22 = det(M4)= det(M);

b1 = det(M5)= det(M); b2 = det(M6)= det(M);

CHAPTER 7. THE EXPERIMENTS 85

where M = [mij]i;j=1;...;6 and Mk = M with k-th column substituted by [ni]
t
i=1;...;6, for

k = 1; . . . ; 6.

Discussion

We could to do a weighted sum of the squared distances. More speci�cally, the two squared

distances provided by the endpoints of long segments get more weight than those of short

segments.

7.3 Experimental Results and Observations

We have done a series of experiments using synthesized images containing polygonal ob-

jects, which are modeled by line features, from the model base consisting of twenty models

shown in Figure 3.3. The way the synthesized images are generated has been explained in

section 3.3.

Figure 7.1, Figure 7.2 and Figure 7.3 show three examples of the experiments on syn-

thesized images. The perturbation of the lines detected by the Hough transform is obtained

from statistics of extensive simulations on images of di�erent levels of degradation. We

also did experiments on real images containing objects from the same model base, with

akes scattered on the objects. Two examples (Figure 7.5 and Figure 7.6) are shown with

best least-squares match using Method-3 discussed before.

Figure 7.1(a) shows a composite overlapping scene of model-0, 3 and 4 (note: model-0

appears twice), which are signi�cantly skewed. Figure 7.1(b) is the result of Hough analysis

applied to this scene. 50 lines were detected. The covariance matrix used for the deviation

of the detected lines from true lines was � =

0
@ 0:003384 �0:00624

�0:00624 2:5198

1
A. Figure 7.1(c)

shows the model instances hypothesized in the recognition stage. 5000 probes were tried.

Figure 7.1(d) shows the �nal result after disambiguation.

Figure 7.2(a) shows a composite overlapping scene of model-0, 1, 2, 4 and 9. Figure

7.2(b) is the result of Hough analysis applied to this scene. 60 lines were detected. The

covariance matrix used for the deviation of the detected lines from true lines is the same

as in Figure 7.1. Figure 7.2(c) shows the model instances hypothesized in the recognition

stage. 5000 probes were tried. Figure 7.2(d) shows the �nal result after disambiguation.

CHAPTER 7. THE EXPERIMENTS 86

Figure 7.3(a) shows a composite overlapping scene of model-1, 3, 4, 13 and 19. Figure

7.3(b) is the result of Hough analysis applied to this scene. 60 lines were detected. The

covariance matrix used for the deviation of the detected lines from true lines is the same

as in Figure 7.1. Figure 7.3(c) shows the model instances hypothesized in the recognition

stage. 5000 probes were tried. Figure 7.3(d) shows the �nal result after disambiguation.

(Note that model-19 was not detected, since half of its boundary is invisible.)

Figure 7.4(a) shows a composite overlapping scene of model-3, 12 and 15. Figure 7.4(b)

is the result of Hough analysis applied to this scene. 60 lines were detected. The covariance

matrix used for the deviation of the detected lines from true lines is the same as in Figure

7.1. Figure 7.4(c) shows the model instances hypothesized in the recognition stage. 5000

probes were tried. Figure 7.4(d) shows the �nal result after disambiguation.

Figure 7.5(a) shows a real image of model-0, 2, 3 and 4 with akes scattered. Figure

7.5(b) is the result of edge detection using Boie-Cox edge detector [9]. Figure 7.5(c) shows

the result of Hough analysis applied to this scene. 50 lines are detected. Figure 7.5(d)

shows the recognition result before disambiguation. Figure 7.5(e) shows the recognition

result after disambiguation. Figure 7.5(f) shows the result after best least-squares match.

Figure 7.6(a) shows a real image of model-1, 2 and 3 (note: model-3 appears twice)

with akes scattered. Figure 7.6(b) is the result of edge detection using also Boie-Cox edge

detector. Figure 7.6(c) shows the result of Hough analysis applied to this scene. 50 lines

are detected. Figure 7.6(d) shows the recognition result before disambiguation. Figure

7.6(e) shows the recognition result after disambiguation. Figure 7.6(f) shows the result

after best least-squares match.

When doing the experiments, in our �rst attempt we let the candidate model instances

vote for the global skewing factor without verifying them �rst. A wrong global skewing

factor was usually obtained. The reason involves: (1) The image is so noisy that there

are too many lines detected and irrelevant lines are often chosen as a basis; (2) An a�ne

transformation is so \powerful" that it is not di�cult to have an a�ne transformation that

maps a quadruplet of lines to another quadruplet of lines if some error tolerance is allowed.

Our algorithm was modi�ed to let only those veri�ed candidate model instances vote for

the global skewing factor. The trade-o� is that veri�cation takes greater computational

time.

We also found from the experiments that when doing probing, if the probed triplet

CHAPTER 7. THE EXPERIMENTS 87

(a) (b)

(c) (d)

Figure 7.1: Experimental Example 1

CHAPTER 7. THE EXPERIMENTS 88

(a) (b)

(c) (d)

Figure 7.2: Experimental Example 2

CHAPTER 7. THE EXPERIMENTS 89

(a) (b)

(c) (d)

Figure 7.3: Experimental Example 3

CHAPTER 7. THE EXPERIMENTS 90

(a) (b)

(c) (d)

Figure 7.4: Experimental Example 4

CHAPTER 7. THE EXPERIMENTS 91

(a) (b)

(c) (d)

CHAPTER 7. THE EXPERIMENTS 92

(e) (f)

Figure 7.5: Experimental Example 5

(a) (b)

CHAPTER 7. THE EXPERIMENTS 93

(c) (d)

(e) (f)

Figure 7.6: Experimental Example 6

CHAPTER 7. THE EXPERIMENTS 94

of lines happens to correspond to a basis of a certain model (i.e., a correct match), then

this [model, basis] pair usually accumulates the highest weighted score among all others.

If it does not rank the highest, the cause is usually due to insu�cient lines detected for

that particular model instance. However, its weighted vote is still among the highest few.

The high-voted false alarms (i.e., matching this scene basis to a wrong [model, basis]) are

usually rejected by veri�cation. We conclude that this weighted voting scheme is quite

e�ective.

The method described above does not assume any grouping of features, which is ex-

pected to greatly expedite the recognition stage (at least for scene basis selection). Lowe

[40] �rst explicitly discussed the importance of grouping to recognition. However, if reliable

segmentation is not available, intelligent grouping seems di�cult. We note that in probing,

for a given selected basis that does not correspond to any of model bases, it may happen

that false alarms pass even the veri�cation because of high noise in the scene. However, we

point out here that statistically false alarms of such case disperse their votes for di�erent

skewing factors, while correct matches will accumulate their votes for the global skewing

factor.

Chapter 8

Conclusions

8.1 Discussion and Summary

Geometric hashing is often compared to the generalized Hough transform. The main

di�erence between them lies in the kind of \evidence" used for accumulation to generate

hypotheses. While the generalized Hough transform accumulates \pose" evidence in a con-

tinuous in�nite parameter space, geometric hashing accumulates \feature correspondence"

evidence within discrete �nite feature space of (model identi�er, basis set)'s. However, the

quantization problem exists not only in the generalized Hough transform technique. Ge-

ometric hashing implicitly transfers this problem to the preprocessing stage when making

decisions about the quantization of hash space of invariants.

Grimson and Huttenlocher [21] analyze the performance of geometric hashing a�ne-

invariant matching in the presence of noise on point features and give pessimistic predic-

tions. They assert that it is impossible to construct a sparsely populated hash table due to

the perturbation of the invariants computed from point features with uncertainty. Rigout-

sos and Hummel [45] incorporate additive Gaussian noise into the model and analytically

determine its e�ect on the computed invariants for the case where models are allowed to

undergo similarity transformations. They have shown promising results.

However, there has not been heretofore an exploration of line features and their perfor-

mance in seriously degraded intensity images. We have shown how the geometric hashing

technique can be applied to line features by exploring line invariants under various geo-

metric transformations, including rigid, similarity, a�ne and projective cases.

95

CHAPTER 8. CONCLUSIONS 96

We have also done an analysis of noise sensitivity. Formulae that describe the spread

of the computed invariants from the lines giving rise to these invariants are derived for

the above geometric transformations. The basic underlying assumption here is that the

perturbations of line features can be modeled by a Gaussian process. Since more image

points are involved in line features, lines can be extracted by our improved Hough transform

with good accuracy (small perturbation) even in seriously degraded images. This is the

�rst of its kind for noise analysis of line features for geometric hashing.

The knowledge about noise sensitivity of the invariants allows us to give a weighted

voting scheme for geometric hashing using line features. We have applied our technique for

the case of a�ne transformations, which cover both rigid and similarity transformations and

are often suitable substitutes for more general perspective transformations. It shows that

the technique is noise resistant and suitable in an environment containing many occlusions.

8.2 Future Directions

We end this dissertation with a brief discussion of possible directions for future research.

It is obvious that the recognition stage can be easily parallelized. We may assign each

basis to a processing element in a parallel computer, since each basis can be processed

almost independently or assign each hash node a processing element. Rigoutsos [43] discuss

a parallel implementation of geometric hashing with point features on the Connection

Machine [26], which is equipped with 16K�64K processors (for model CM -2). When the

number of processors simultaneously needed exceeded the maximum number of physical

processors in the machine, the machine can operate in a virtual processor mode. In this

mode, a single processor emulates the work of several virtual processors, by serializing

operations in time and partitioning the local memory associated with that processor.

With the advance of hardware techniques and the decrease of cost, parallel realization

of image processing algorithms has become more and more popular.

Another topic to be explored is the intelligent fusion of multiple feature types. Since

we assume no reliable segmentation is available, it seems that only line features can be

extracted and used as out primitive feature. However, if the image can be well segmented

and geometric features like points, segments, circles, ovals and so on can be reliably ex-

tracted, our technique can be helpful to design a suitable weighting function or to perform

CHAPTER 8. CONCLUSIONS 97

hierarchical �ltering by di�erent feature types. This may require evaluation criteria for

measuring the relative merit of di�erent feature types and can be application-dependent.

Recognition of non-at 3-D objects from 2-D images can also be a direction for exten-

sion.

A combined use of the transformation parameter space of the Hough transform and

the invariant hash space of geometric hashing may possibly lead to a recognition system

which can recognize parameterized objects.

Finally, the technique of \reasoning by parts" and the geometric hashing technique

can bene�t from each other. A complicated object usually can not be represented by

only one primitive feature type. It may be more suitable to represent di�erent parts of

an object by di�erent primitive feature types and recognize each part by the geometric

hashing technique using di�erent feature types.

Appendix A

Given a correspondence between pairs of triplets of lines in general position, the a�ne

transformation T = (A,b), where A is a 2 � 2 non-singular skewing matrix and b is a

2� 1 translation vector, can be uniquely determined such that T maps points of the �rst

triplet of lines to their corresponding points of the second triplet of lines.

Let the �rst triplet of lines be (�i; ri)
t
i=1;2;3 and the second triplet of lines be (�

0

i; r
0

i)
t
i=1;2;3.

We have the closed-form formula for T = (A,b) as follows:

A =
1

det

0
@ a11 a12

�a21 �a22

1
A ;

b =
1

det

0
@ �b1

b2

1
A ;

where

a11 = cos �3 csc(�
0

1
� �

0

2
) sin(�1 � �2)(r

0

1
sin �

0

2
� r

0

2
sin �

0

1
) +

cos �1 csc(�
0

2
� �

0

3
) sin(�2 � �3)(r

0

2
sin �

0

3
� r

0

3
sin �

0

2
) +

cos �2 csc(�
0

3
� �

0

1
) sin(�3 � �1)(r

0

3
sin �

0

1
� r

0

1
sin �

0

3
);

a21 = cos �3 csc(�
0

1
� �

0

2
) sin(�1 � �2)(r

0

1
cos �

0

2
� r

0

2
cos �

0

1
) +

cos �1 csc(�
0

2
� �

0

3
) sin(�2 � �3)(r

0

2
cos �

0

3
� r

0

3
cos �

0

2
) +

cos �2 csc(�
0

3
� �

0

1
) sin(�3 � �1)(r

0

3
cos �

0

1
� r

0

1
cos �

0

3
);

a12 = sin �3 csc(�
0

1
� �

0

2
) sin(�1 � �2)(r

0

1
sin �

0

2
� r

0

2
sin �

0

1
) +

sin �1 csc(�
0

2
� �

0

3
) sin(�2 � �3)(r

0

2
sin �

0

3
� r

0

3
sin �

0

2
) +

sin �2 csc(�
0

3
� �

0

1
) sin(�3 � �1)(r

0

3
sin �

0

1
� r

0

1
sin �

0

3
);

98

APPENDIX A. 99

a22 = sin �3 csc(�
0

1
� �

0

2
) sin(�1 � �2)(r

0

1
cos �

0

2
� r

0

2
cos �

0

1
) +

sin �1 csc(�
0

2
� �

0

3
) sin(�2 � �3)(r

0

2
cos �

0

3
� r

0

3
cos �

0

2
) +

sin �2 csc(�
0

3
� �

0

1
) sin(�3 � �1)(r

0

3
cos �

0

1
� r

0

1
cos �

0

3
);

b1 = r3 csc(�
0

1
� �

0

2
) sin(�1 � �2)(r

0

1
sin �

0

2
� r

0

2
sin �

0

1
) +

r1 csc(�
0

2
� �

0

3
) sin(�2 � �3)(r

0

2
sin �

0

3
� r

0

3
sin �

0

2
) +

r2 csc(�
0

3
� �

0

1
) sin(�3 � �1)(r

0

3
sin �

0

1
� r

0

1
sin �

0

3
);

b2 = r3 csc(�
0

1
� �

0

2
) sin(�1 � �2)(r

0

1
cos �

0

2
� r

0

2
cos �

0

1
) +

r1 csc(�
0

2
� �

0

3
) sin(�2 � �3)(r

0

2
cos �

0

3
� r

0

3
cos �

0

2
) +

r2 csc(�
0

3
� �

0

1
) sin(�3 � �1)(r

0

3
cos �

0

1
� r

0

1
cos �

0

3
);

det = r1 sin(�2 � �3) + r2 sin(�3 � �1) + r3 sin(�1 � �2):

Given the correspondence of the basis lines of a model object and its scene instance, we

can use the above formula to transform the boundary of the model object onto the scene

for veri�cation.

Appendix B

The components of the matrix for the system of linear equations for best least-squares

match are as follows:

m11 =
Pn

j=1 cos
2 �j (x2j1 + x2j2), m31 = 2

Pn
j=1 cos �j sin �j (x2j1 + x2j2),

m12 =
Pn

j=1 cos
2 �j (xj1yj1 + xj2yj2), m32 =

Pn
j=1 cos �j sin �j (xj1yj1 + xj2yj2);

m13 =
Pn

j=1 cos �j sin �j (x2j1 + x2j2), m33 =
Pn

j=1 sin
2 �j (x2j1 + x2j2),

m14 =
Pn

j=1 cos �j sin �j (xj1yj1 + xj2yj2), m34 =
Pn

j=1 sin
2 �j (xj1yj1 + xj2yj2),

m15 =
Pn

j=1 cos
2 �j (xj1 + xj2), m35 =

Pn
j=1 cos �j sin �j (xj1 + xj2),

m16 =
Pn

j=1 cos �j sin �j (xj1 + xj2), m36 =
Pn

j=1 sin
2 �j (xj1 + xj2),

m21 =
Pn

j=1 cos
2 �j (xj1yj1 + xj2yj2), m41 =

Pn
j=1 cos �j sin �j (xj1yj1 + xj2yj2),

m22 =
Pn

j=1 cos
2 �j (y

2

j1 + y2j2), m42 =
Pn

j=1 cos �j sin �j (y
2

j1 + y2j2),

m23 =
Pn

j=1 cos �j sin �j (xj1yj1 + xj2yj2), m43 =
Pn

j=1 sin
2 �j (xj1yj1 + xj2yj2),

m24 =
Pn

j=1 cos �j sin �j (y2j1 + y2j2), m44 =
Pn

j=1 sin
2 �j (y2j1 + y2j2),

m25 =
Pn

j=1 cos
2 �j (yj1 + yj2), m45 =

Pn
j=1 cos �j sin �j (yj1 + yj2),

m26 =
Pn

j=1 cos �j sin �j (yj1 + yj2), m46 =
Pn

j=1 sin
2 �j (yj1 + yj2),

m51 =
Pn

j=1 cos
2 �j (xj1 + xj2), m61 =

Pn
j=1 cos �j sin �j (xj1 + xj2),

m52 =
Pn

j=1 cos
2 �j (yj1 + yj2), m62 =

Pn
j=1 cos �j sin �j (yj1 + yj2),

m53 =
Pn

j=1 cos �j sin �j (xj1 + xj2), m63 =
Pn

j=1 sin
2 �j (xj1 + xj2),

m54 =
Pn

j=1 cos �j sin �j (yj1 + yj2), m64 =
Pn

j=1 sin
2 �j (yj1 + yj2),

m55 = 2
Pn

j=1 cos
2 �j , m65 = 2

Pn
j=1 cos �j sin �j ,

m56 = 2
Pn

j=1 cos �j sin �j , m66 = 2
Pn

j=1 sin
2 �j

100

APPENDIX B. 101

n1 =
Pn

j=1 cos �j rj(xj1 + xj2), n3 =
Pn

j=1 sin �j rj(xj1 + xj2),

n2 =
Pn

j=1 cos �j rj(yj1 + yj2), n4 =
Pn

j=1 sin �j rj(yj1 + yj2),

n5 = 2
Pn

j=1 cos �j rj , n6 = 2
Pn

j=1 sin �j rj .

Bibliography

[1] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algo-

rithms. Addison-Wesley, 1984.

[2] K. Arbter, W. E. Snyder, H. Burkhardt, and Hirzinger. Application of A�ne-Invariant

Fourier Descriptors to Recognition of 3-D Objects. IEEE Trans. on PAMI, 12(7):640{

647, 1990.

[3] L. P. Arkin, E. M .and Chew, D. P. Huttenlocher, K. Kedem, and J.S.B. Mitchell. An

E�ciently Computable Metric for Comparing Polygonal Shapes. Technical Report

TR 89-1007, Computer Science Dept., Cornell University, 1989.

[4] N. Ayache and O. D. Faugeras. HYPER: A New Approach for the Recognition and

Positioning of Two-Dimensional Objects. IEEE Trans. on PAMI, 8(1):44{54, 1986.

[5] D. H. Ballard. Generalizing the Hough Transform to Detect Arbitrary Shapes. Pattern

Recognition, 13(2):111{122, 1981.

[6] H. G. Barrow and J. M. Tenenbaum. Computational Vision. Prentice-Hall, 1981.

[7] P. J. Besl and R. C. Jain. Three-Dimensional Object Recognition. ACM Computing

Surveys, 17(1):75{154, 1985.

[8] T. O. Binfold. Survey of Model-Based Image Analysis Systems. The Int. J. of Robotics

Research, 1(1):18{64, 1982.

[9] R. Boie and I. Cox. Two Dimensional Optimum Edge Recognition using Matched

and Weiner Filter for Machine Vision. In Proc. of the IEEE Int. Conf. on Computer

Vision, 1987.

102

BIBLIOGRAPHY 103

[10] R. C. Bolles and R. A. Cain. Recognizing and Locating Partially Visible Objects:

The Local-Feature-Focus Method. The Int. J. of Robotics Research, 1(3):57{82, 1982.

[11] R. A. Brooks. Model-Based Three-Dimensional Interpretations of Two-Dimensional

Images. IEEE Trans. on PAMI, 5(2):140{149, 1983.

[12] E. Charniak and D. McDermott. Introduction to Arti�cial Intelligence. Addison-

Wesley, 1985.

[13] R. T. Chin and C. R. Dyer. Model-Based Recognition in Robot Vision. ACM Com-

puting Surveys, 18(1):67{108, 1986.

[14] P. R. Cohen and E. A. Feigenbaum (Eds.). The Handbook of Arti�cial Intelligence,

Vol. III. William Kaufmann, 1982.

[15] R. O. Duda and P. E. Hart. Use of the Hough Transform to Detect Lines and Curves

in Pictures. Communication of ACM, 15:11{15, 1972.

[16] R. O. Duda and P. E. Hart. Pattern Classi�cation and Scene Analysis. Wiley, 1973.

[17] P. J. Flynn and A. K. Jain. 3-D Object Recognition using Invariant Feature Indexing

of Interpretation Table. J. of Computer Vision, Graphics and Image Processing:

Image Understanding, 55(2):119{129, 1992.

[18] D. Gavrila and F. Groen. 3-D Object Recognition from 2-D Images Using Geometric

Hashing. Pattern Recognition Letters, 13(4):263 { 278, 1992.

[19] P. G. Gottschalk, J. L. Turney, and T. N. Mudge. E�cient Recognition of Partially

Visible Objects using a Logarithmic Complexity Matching Technique. The Int. J. of

Robotics Research, 8(6):110{140, 1989.

[20] W. E. L. Grimson. On the Recognition of Parameterized 2-D Objects. Int. J. of

Computer Vision, 2(4):353{372, 1989.

[21] W. E. L. Grimson and D. P. Huttenlocher. On the Sensitivity of Geometric Hashing.

In Proc. of the IEEE Int. Conf. on Computer Vision, pages 334{338, 1990.

[22] W. E. L. Grimson and D. P. Huttenlocher. On the Sensitivity of the Hough Transform

for Object Recognition. IEEE Trans. on PAMI, 12(3):255{274, 1990.

BIBLIOGRAPHY 104

[23] W. E. L. Grimson and T. Lozano-P�erez. Localizing Overlapping Parts by Searching

the Interpretation Tree. IEEE Trans. on PAMI, 9(4):469{482, 1987.

[24] A. Gueziec and N. Ayache. New Developments on Geometric Hashing for Curve

Matching. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition,

pages 703{704, 1993.

[25] Y. C. Hecker and R. M. Bolle. Invariant Feature Matching in Parameter Space with

Application to Line Features. Technical Report RC 16447, IBM T.J.Watson Research

Center, 1991.

[26] D. Hillis. The Connection Machine. MIT Press, 1985.

[27] J. Hong and X. Tan. Recognize the Similarity between Shapes under A�ne Trans-

formation. In Proc. of the IEEE Int. Conf. on Computer Vision, pages 489{493,

1988.

[28] R. Hummel and Rigoutsos I. Geometric Hashing as a Bayesian Maximum Likelihood

Object Recognition Method. Int. J. of Computer Vision. Currently under review.

[29] R. Hummel and H. Wolfson. A�ne Invariant Matching. In Proc. of the DARPA IU

Workshop, pages 351{364, 1988.

[30] D. P. Huttenlocher and S. Ullman. Object Recognition using Alignment. In Proc. of

the IEEE Int. Conf. on Computer Vision, pages 102{111, 1987.

[31] D. P. Huttenlocher and S. Ullman. Recognizing Solid Objects by Alignment with an

Image. Int. J. of Computer Vision, 5(2):195{212, 1990.

[32] J. Illingworth and J. Kittler. A Survey of the Hough Transform. J. of Computer

Vision, Graphics and Image Processing, 44:87{116, 1988.

[33] A. Kalvin, E. Schonberg, J. T. Schwartz, and M. Sharir. Two Dimensional Model

Based Boundary Matching using Footprints. The Int. J. of Robotics Research, 5(4):38{

55, 1986.

[34] E. Kishon. Use of Three Dimensional Curves in Computer Vision. PhD thesis,

Computer Science Dept., Courant Institute of Mathematical Sciences, New York Uni-

versity, 1989.

BIBLIOGRAPHY 105

[35] F. Klein. Elementary Mathematics from an Advanced Standpoint ; Geometry. Macmil-

lan, 1925.

[36] Y. Lamdan. Object Recognition by Geometric Hashing. PhD thesis, Computer Science

Dept., Courant Institute of Mathematical Sciences, New York University, 1989.

[37] Y. Lamdan, J. T. Schwartz, and H. J. Wolfson. Object Recognition by A�ne Invariant

Matching. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition,

pages 335{344, 1988.

[38] Y. Lamdan and H. J. Wolfson. On the Error Analysis of Geometric Hashing. In Proc.

of the IEEE Conf. on Computer Vision and Pattern Recognition, pages 22 { 27, 1991.

[39] S. Lang. Linear Algebra. Addison-Wesley, 1966.

[40] D. G. Lowe. Perceptual Organization and Visual Recognition. Kluwer, 1985.

[41] D. G. Lowe. The Viewpoint Consistency Constraint. Int. J. of Computer Vision,

1(1):57{72, 1987.

[42] D. G. Lowe. Three-dimensional Object Recognition from Single Two-dimensional

Images. Arti�cial Intelligence, 31:355{395, 1987.

[43] I. Rigoutsos. Massively Parallel Bayesian Object Recognition. PhD thesis, Computer

Science Dept., Courant Institute of Mathematical Sciences, New York University,

1992.

[44] I. Rigoutsos and R. Hummel. A Bayesian Approach to Model Matching with Ge-

ometric Hashing. J. of Computer Vision, Graphics and Image Processing: Image

Understanding. Currently under review.

[45] I. Rigoutsos and R. Hummel. Robust Similarity Invariant Matching in the Presence

of Noise. In Proc. of the 8th Israeli Conf. on Arti�cial Intelligence and Computer

Vision, 1991.

[46] I. Rigoutsos and R. Hummel. Massively Parallel Model Matching: Geometric Hashing

on the Connection Machine. IEEE Computer: Special Issue on Parallel Processing

for Computer Vision and Image Understanding, 1992.

BIBLIOGRAPHY 106

[47] I. Rigoutsos and R. A. Hummel. Implementation of Geometric Hashing on the Con-

nection Machine. In IEEE Workshop on Directions in Aut. CAD-Based Vision, 1991.

[48] T. Risse. The Hough Transform for Line Recognition: Complexity of Evidence Ac-

cumulation and Cluster Detection. J. of Computer Vision, Graphics and Image Pro-

cessing, 46:327{345, 1989.

[49] J. T. Schwartz and M. Sharir. Identi�cation of Partially Obscured Objects in Two

Dimensions by Matching of Noisy `Characteristic Curves'. The Int. J. of Robotics

Research, 6(2):29{44, 1987.

[50] G. Stockman. Object Recognition and Localization via Pose Clustering. J. of Com-

puter Vision, Graphics and Image Processing, 40:361{387, 1987.

[51] J. M. Tenenbaum and H. G. Barrow. A Paradigm for Integrating Image Segmentation

and Interpretation. In Proc. of the Int. Conf. on Pattern Recognition, pages 504{513,

1976.

[52] D. W. Thompson and J. L. Mundy. Three-Dimensional Model Matching from an Un-

constrained Viewpoint. In Proc. of the IEEE Int. Conf. on Robotics and Automation,

pages 208{220, 1987.

[53] L. W. Tucker, C. R. Feynman, and D. M. Fritzsche. Object Recognition using the

Connection Machine. In Proc. of the IEEE Conf. on Computer Vision and Pattern

Recognition, pages 871{878, 1988.

[54] S. W. Zucker, R. Hummel, and A. Rosenfeld. An Application of Relaxation Labeling

to Line and Curve Enhancement. IEEE Trans. on Computers, 26(4):394{403, 1977.

