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Abstract

Interactive rule-based expert systems, which work by “interviewing” their users,

have found applications in fields ranging from aerospace to help desks. Although

they have been shown to be useful, people find them difficult to query in flexible

ways. This limits the reusability of the knowledge they contain. Databases and

noninteractive rule systems such as logic programs, on the other hand, are queryable

but they do not offer an interview capability. This thesis is the first investigation

that we know of into query-processing for interactive expert systems.

In our query paradigm, the user describes a hypothetical condition and then

the system reports which of its conclusions are reachable, and which are inevitable,

under that condition. For instance, if the input value for bloodSugar exceeds 100

units, is the conclusion diabetes then inevitable? Reachability problems have been

studied in other settings, e.g., the halting problem, but not for interactive expert

systems.

We first give a theoretical framework for query-processing that covers a wide

class of interactive expert systems. Then we present a query algorithm for a specific

language of expert systems. This language is a restriction of production systems to

an acyclic form that generalizes decision trees and classical spreadsheets. The algo-

rithm effects a reduction from the reachability and inevitability queries into datalog

rules with constraints. When preconditions are conjunctive, the data complexity is

tractable. Next, we optimize for queries to production systems that contain regions

which are decision trees. When general-purpose datalog methods are applied to the
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rules that result from our queries, the number of constraints that must be solved is

O(n2), where n is the size of the trees. We lower the complexity to O(n). Finally,

we have built a query tool for a useful subset of the acyclic production systems. To

our knowledge, these are the first interactive expert systems that can be queried

about the reachability and inevitability of their conclusions.
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Chapter 1

A Query Paradigm for Interactive

Expert Systems

1.1 The General Query Problem

1.1.1 Motivation and Overview

In a commentary on the reasons why expert systems have not been as widely applied

as databases have, Feigenbaum remarked that whereas the knowledge in databases

can be utilized by many different applications, the knowledge in expert systems

tends to be bound up with specific application programs [35]. This comparative

lack of reusability in part is due to the rigid form of dialogue that these systems offer

to their users (and to application programs). Unlike databases, which let the user

question the system in active and creative ways, existing interactive expert systems

query the user according to a fixed logic, thereby reducing the user to the passive

role of answering questions and being told things. The flexible queryability of
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databases means that we can learn by posing research questions to the knowledge

they contain, but with existing interactive expert systems, this is not possible,

because they direct the course of the dialogue with the user.1

Ideally, we want a knowledge-based information system that can present its

knowledge in either of two complementary modes of operation: (1) a query mode,

where it can be flexibly queried as a database of expertise, and (2) a consultation

mode, where it provides a user-tailored dialogue to guide a non-technical through

the information it contains. In other words, we would like to have a queryable expert

system.

Existing knowledge-based information systems [36, 15] fall short of this two-sided

ideal. Databases [42, 46, 14, 21], and, more generally, declarative knowledge bases,

e.g., logic programs [37], are queryable but are not intended to query a user; existing

interactive expert systems [15] query a user, but are not queryable in flexible ways.

Non-interactive expert systems, which autonomously reach conclusions by directly

reading a knowledge base (e.g., offline weather prediction) are neither querying nor

queryable. Expert-assistant programs, such as the classic Dendral [15], provide a

toolbox of expertise-based functions, but the use of these functions is no more a

matter of flexible querying than is the use of the functions on a calculator.

Our goal is to explore conditions under which such a two-sided queryable system

systems is feasible, and to implement a proof-of-concept prototype. We must begin

by specifying what it means for an interactive expert system to be “queryable”.

Suppose that we have before us a particular interactive system, which, for the
1We use the generic term “expert system” to mean any machine programmed to emulate the

reasoning functions of human experts.

2



sake of illustration, we take to be a machine programmed with some specific rules

that enable it to function as a medical consultant on blood abnormalities. This

consultant works by prompting a doctor for a series of measurements about a

blood sample. Whenever anomalies are found, the system proceeds to pose a chain

of data-dependent questions to the doctor, in order to effect a diagnostic process

leading to diagnoses of probable illnesses and recommended courses of therapy.

We will formulate two types of queries about this system and the knowledge

that it contains: (1) which of the potential conclusions are still reachable by the

system if the user inputs are constrained to satisfy some formula? and (2) which

of the conclusions will necessarily be reached by the system, if the user inputs are

constrained to satisfy a formula? Here is an example of each type of query. First,

if the input value supplied for the parameter bloodsugar is under 20 units, then is

the conclusion diabetes still reachable? Second, if the input value for bloodsugar

exceeds 40 units, then must the conclusion diabetes inevitably be reached? Also, if

diabetes is reachable under the condition ‘bloodsugar < 20’, then we may ask for a

combination of input values that satisfies the condition and causes diabetes to be

concluded. We call such an input combination a witness to the reachability of the

conclusion under that condition.

We envision the query tool working in the following manner. The user (doc-

tor) poses a query in the form a hypothetical condition, as a formula such as

‘bloodsugar < 20’. Implicitly, the question is, given the logic of the rules encoded

in that system, what are the ramifications of the query formula? The query tool

will reply by grouping the conclusions into one of three categories, which indicate

three progressively stronger connections between the query condition and conclu-
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sion, namely, conclusions that are (1) unreachable under the query, (2) reachable

but not inevitable, or (3) inevitable. In other words, which conclusions are ruled

out, which are possible, and which are positively confirmed.2

These queries are, unfortunately, hard to solve by algorithmic methods, even

when posed to relatively simple systems. They are hard because they are “meta-

queries” that ask about the behavior of the system, which is regarded as a black-box

that maps input values to conclusions. Hence, even though the system may be a

simple mechanism, the queries pertain to the inverse of the mapping performed

by the system, and hence may be undecidable if the number of possible inputs is

infinite. To illustrate the difficulty, suppose that the system inputs two values x and

y, computes a polynomial function v = f(x, y), and then outputs the conclusion

‘output = v’. Now consider the query: is the conclusion ‘output = 0’ reachable if

‘x2 + y2 = 1’? This amounts to the question of whether the polynomial f has any

roots on the unit circle. Hence, reachability queries to simple systems can be as

difficult as determining the mutual satisfiability of algebraic equations.
2Of course, the answers to these queries are only as empirically reliable as the rules used to

program the system. The answers to the queries reveal the ramifications of the logic of the rules,

and hence they can be used to perform “sanity checks” on the reasonableness of the rules. To the

extent that the system is sound, the reachability of a conclusion indicates a real fact. If the system

is also complete, in the sense that it takes into account all possible causes of the conclusions in its

repertoire, then inevitability in the system indicates a real empirical relationship. For an example

of a complete expert system, we can envision a troubleshooting system that asks an engineer a

series of questions of the form “Is circuit component number N outputting an unexpected value?”,

and “Is component N physically defective?” in order to find the broken component and so repair

the system.
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These queries are undecidable for expert system languages that are Turing-

complete, or based on precondition formulas whose satisfiability is undecidable. In

our pursuit of a queryable expert system, we must search for simple yet useful

expert system languages. First, however, we need to define the “interactive ex-

pert systems” to which the query problem will apply, and then to give an exact

specification of this query problem.

1.1.2 A Generic Formal Model of Interactive Expert Systems

We adopt a functional view of expert systems, in which we abstract completely

from their internal mechanisms and language constructs, and instead regard them

solely from the point of view of their external behavior, i.e., regard them as “black-

boxes” that map user inputs into conclusions. We will now examine the form and

structure of these mappings.3

We will be applying the query problem to various classes of expert systems,

where each class contains the systems definable by some language L of programs.

Typically, the programs of L will be rule systems, but in the generic formal model

that we are about to present, we make few assumptions about the syntax of the

programs. L could be, for example, a standard imperative programming language

instead of a rule language. In this case, each member of L would be an imperative

program that is hard-coded to function as an interactive consultant. We will identify

the members of L with the systems s that they define. Here are the assumptions

about the systems s ∈ L, which together constitute our formal model for interactive
3The following formalism for interactive expert system was presented in [40], and will be

summarized in a table at the close of this passage.
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systems.

Question Variables Vs

For each system s ∈ L, we assume that there is a finite set of variables Vs, and

that each question posed by s takes the form of printing some text to the user and

then accepting an assignment to a variable in Vs. For instance, print “What is

the value for bloodsugar?” and then accept a value for bloodsugar from the user.

Thus, the variables Vs will serve as abstract representatives for the questions in the

vocabulary of the system s.

Derived Variables Ws

Let Ws be a finite set of variables, disjoint from Vs, which are called derived because

they are assigned values that are calculated by the system.

Conclusions Cs

We denote by Cs the set of conclusions that may be potentially asserted by s. The

conclusions Cs might be {diabetes,hypoglycemia, . . . }, in our medical example.4

4From a minimalist perspective, the constructs of derived variables Ws and conclusions Cs are

not both necessary, because: (1) the assertion of e.g. the conclusion diabetes can be modeled

by the assigning of true to the boolean derived variable diabetes, and (2) the assignment of z

to the derived variable w can be modeled by the assertion of the conclusion w = z. The usage

patterns that we find in practice, however, make it convenient to have a separate notation for the

conclusions. We will typically picture the assertion of conclusions in Cs as the final judgements

of the system, whereas the assignments to derived variables will express internal calculations that

the system uses to arrive at those judgements.
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The Domain of a Variable: domx

For each x ∈ Vs∪Ws, we define domx to be the domain of x, comprising the defined

values that can meaningfully be assigned to x. We let Ds ≡ ∪x∈Vs∪Wsdomx be the

union of all these domains, called the universe of discourse for s. Let ⊥ 6∈ Ds be a

symbol that stands for “undefined.”

Bindings Bs

At any moment in the course of a session with the system, the values assigned

to the variables are described by a binding b, which is a partial mapping from

Vs ∪ Ws into Ds, i.e., b : Vs ∪ Ws → Ds ∪ {⊥}. We use notation of the form

{pulse = 20, temp = 10} to represent the bindings. We denote the set of bindings

for s by Bs. A binding b is well-typed if b(x) ∈ domx ∪ {⊥}, for all x ∈ Vs ∪Ws.

Definition 1.1.1 (vars(b))

For a binding b : Vs ∪Ws → Ds ∪ {⊥}, define:

vars(b) = {v ∈ Vs ∪Ws | b(v) 6= ⊥}.

Attainable Bindings As

The course of a consultation session between user and system can be described as

the process of building up the “current” binding for the variables. Initially, this

binding is empty. Whenever the user assigns a value z to a variable v ∈ Vs, the

pair (v, z) gets added to the current binding. Whenever the system assigns z to a

variable w ∈Ws, the pair (w, z) gets added to the current binding.

We say that a binding b is attainable for s if it can actually occur as the current

binding in some session with s. For example, the empty binding {} is attainable
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for all s, because {} occurs as the current binding at the start of any session. Every

attainable binding is well-typed, but not all well-typed bindings are attainable. For

instance, if the system first asks the question “What is the pulse?” and then asks

“What is the temperature?”, then {pulse =20} and {pulse =20, temp =20} would

be attainable, but {temp = 20} would not be attainable. We denote the set of

attainable bindings for s by As.

The Conclusion Function says

Given the current attainable binding b, define says(b) ⊆ Cs to be the set of con-

clusions that are asserted by s given the data in b. Thus, says : As → 2Cs is the

mapping that expresses the conclusion function of the system.5

The Questioning Function asks

In the current attainable binding b, the variables in vars(b) represent the questions

that are already answered by the user. Also, in this binding, the system will pose a

set of questions to be answered by the user. Each of these questions is some variable

that is outside of vars(b). We denote the set of all these assignable variables by

ask s(b) ⊆ Vs − vars(b). By defining ask s(b) as a set of variables, we can model

“user-friendly” systems that allow the user to answer the posed questions in any
5At this stage we avoid any assumptions other than those implied by our definitions. In

particular, we do not assume anything about the monotonicity of the conclusion mechanism,

because this property can be introduced as a secondary distinction: that s is monotonic means

that b′ ⊇ b ⇒ says(b′) ⊇ says(b), where b′ ⊇ b means that the binding b′ is an extension of the

binding b. We cast as wide a net as possible in defining the problem. Once the problem is defined,

we will investigate cases that are solvable.
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desired order.

The Calculation Function calcs

Given the current attainable binding b, define calcs(b) : Ws → Ds ∪ {⊥} to be the

binding for Ws that contains the assignments to derived variables that are calculated

by s from the data in b. We assume that vars(calcs(b)) is disjoint from vars(b)—

because calcs(b) is intended to represent the calculations that can be performed but

have not yet been performed.6

Final Bindings Fs

We define an attainable binding b to be final if ask s(b) = {} and calcs(b) = {}.
When the current binding is final, the system asks no more questions and performs

no more calculations, and so the consultation session has ended. We denote the set

of final bindings for s by Fs ≡ {b ∈ As | ask s(b) = calcs(b) = {}}.
We summarize the behavior of the system s by the abstract procedure shown in

Figure 1.1. Finally, we use this procedure to give the following precise definition of

the attainable bindings.

Definition 1.1.2 (Attainable Bindings As) For a system s, we define As to be
6By defining says, ask s, and calcs as functions on bindings, we are tacitly assuming that the

mechanisms of s produce the same effects regardless of the order in which the assignments are

supplied by the user and by the system. What is actually produced during the course of a session

is a sequence of assignments. Our treatment could easily be generalized by replacing “binding”

with “sequence,” but we prefer to work with bindings, because they are declarative, and because

we believe that it is undesirable for an expert system to produce different answers from different

orderings of the same set of assignments.
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the set of bindings that can be assumed by b in the procedure in shown in Figure 1.1.

binding b = {} // the current attainable binding

while ask s(b) 6= {} OR calcs(b) 6= {}
if the user supplies value z for some v ∈ ask s(b) then

b(v) = z

endif

if ∃ (w, z) ∈ calcs(b) then

b(w) = z

endif

present the conclusions in says(b) to the user

end

Figure 1.1: Abstract Description of the Interactive System s

Definition 1.1.3 (Terminology for Interactive Expert Systems)

L — language of systems

s ∈ L — individual system

Vs — question variables for s

Ws — derived variables for s

domx — domain for variable x

Ds — universe of discourse for s

As — attainable bindings for s

10



Fs — final attainable bindings for s

Cs — potential conclusions for s

says : As → 2Cs — conclusion function for s

ask s : As → 2Vs — question function for s

calcs : As → (Ws → Ds) — calculation function for s

1.1.3 Formal Statement of the General Problem

We now give a formal statement of the query problem, using the terminology that

was summarized in Definition 1.1.3. For an illustration of the following definitions,

recall the query where the conclusion c is diabetes , and the query formula q is

‘bloodsugar < 20’.

For bindings b and formulas q, we write b |= q to mean b satisfies q, i.e., that q

evaluates to True in the environment given by b. For instance, {pulse =20, temp =

20} |= ‘pulse < 40’, because the formula is clearly True in this binding.7

Definition 1.1.4 (Reachable, Inevitable and Possible Conclusions)

For a system s ∈ L, recall from Definition 1.1.3 that Fs is the set of final bindings for

s. Then for each conclusion c ∈ Cs and query formula q, we pose these questions:
7In defining the relation b |= f , some attention needs to be given to the fact that b may contain

⊥ values. The full definition, to be given in the section called “Groundwork”, is based on the

intuitive notion of q successfully evaluating to True in b. To illustrate, {pulse =20} |= ‘pressure =

99 ∨ pulse < 40’, because the second disjunct successfully evaluates to True.
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• Is conclusion c reachable under condition q?

∃ b ∈ Fs : (b |= q) ∧ c ∈ says(b)

• Is conclusion c inevitable under condition q?

∀ b ∈ Fs : (b |= q)⇒ c ∈ says(b)

• Is conclusion c possible under condition q?

(∃ b ∈ Fs : (b |= q) ∧ c ∈ says(b)) ∧ (∃ b ∈ Fs : (b |= q) ∧ c 6∈ says(b))

We abbreviate these relations between formulas q and conclusions c with the

following terminology: c is q-reachable, q-inevitable, q-possible. The connections

between reachability, inevitability, and possibility are stated in the next two propo-

sitions.

Proposition 1.1.1 For a system s, and formula q, assume that ∃ b ∈ Fs such that

b |= q. Let R, I, P be, respectively, the sets of conclusions that are reachable,

inevitable, and possible under q. Then R is the disjoint union of I and P .

In words, reachable means possible or inevitable, and possible and inevitable

are mutually exclusive.8

The next proposition, which holds under all conditions, states that q-possibility

can be determined from q-reachability and q-inevitability, and so, for the technical

development, we may restrict our attention to q-reachability and q-inevitability.
8Since our definition of “possible” excludes inevitable, it really means “properly possible,” i.e.,

there are final conditions under which the conclusion arises, and there are final conditions under

which it does not arise. When there are no final bindings that satisfy q, then q is inconsistent with

the logic of the system, and we have the uninteresting result that no conclusions are reachable,

no conclusions are possible, and, vacuously, all conclusions are inevitable.
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Proposition 1.1.2

A conclusion is q-possible iff it is q-reachable but not q-inevitable.

Definition 1.1.5 (Witness Binding) If c is q-reachable, then we call a binding

b ∈ Fs such that b |= q and c ∈ says(b) a witness to the q-reachability of c.

We now give analogous definitions for the reachability, inevitability and possi-

bility of questions under a query.

Definition 1.1.6 (Reachable, Inevitable and Possible Questions)

For a system s ∈ L, variable v, and formula q, we say that the question associated

with v is:

• q-reachable if (∃ b ∈ Fs : (b |= q) ∧ b(v) 6= ⊥)

• q-inevitable if (∀ b ∈ Fs : (b |= q)⇒ b(v) 6= ⊥)

• q-possible if v is q-reachable but not q-inevitable

Although the querying of questions is important from the point of view of

the user and the interface program, for the purposes of analyzing and solving the

queries, we are fortunate in that without loss of generality we may focus our at-

tention exclusively on the querying of conclusions. We justify this claim by giving

a reduction of the problem of querying of questions in a system to the problem of

querying of the conclusions in a variant system. For a given system s, let s′ be the

variant system with the same conclusions as s, plus a set of “dummy” conclusions

which will stand for the questions. We construct s′ to be the same as s, with the

addition that whenever s poses a question, then s′ asserts the associated dummy
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conclusion. Then the queries about the questions in s are reducible to queries about

the dummy conclusions in s′.

Because the definitions of reachable, possible, and inevitable conclusions began

with the qualification “for a system s ∈ L,” it follows that for each language L

there is an associated case of the query problem. As shown in Figure 1.2, we can

visualize this case of the problem in the form of an ideal tool for answering the

queries associated with L. The tool accepts for inputs a description of system

s ∈ L, a conclusion c ∈ Cs, and a formula q, and outputs two bits of information,

viz., the reachability and inevitability of c under q.

-

-

-
-
-

q-reachability of c in Sp

q-inevitability of c in Sp

Would-be
Query Tool
for L

p
c
q

Figure 1.2: Graphical Representation of the Query Problem for Language L

The Bulk Form of the Query Problem

In practice, for a given query formula q, we may want to determine the reachabil-

ity/inevitability q of all the potential conclusions and questions of the system. For

example: Which diseases are inevitable under the condition that bloodsugar exceeds

a certain threshold? We call this the bulk form of the query problem, and specify it

as follows: for a system s and query formula q, partition the conclusions and ques-

tions of s into three categories of conclusions that are q-unreachable, q-possible,

and q-inevitable. Such queries can of course be answered by repeatedly calling an

algorithm that determines the reachability/inevitability of an individual question
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or conclusion, but there may be opportunities for optimization if the questions and

conclusions are based upon shared structures.

1.1.4 Features of a Query Tool

We now give a specification of the principal features of a query tool. It is an “ideal”

specification in the sense that, depending upon the complexity of the systems being

queried, the specified behavior may or may not be achievable.

The main function of a query tool is to accept a query from the user, and then

to present the conclusions and questions so as to reflect their status under the

query. The query specification has two parts: (1) an explicit user-supplied query

formula q, and (2) the assignments that comprise the current attainable binding

b. Whenever the user adds an assignment ‘v = z’ to the current binding, we will

interpret it as a constraint to be conjoined with the “extended query formula.”

Accordingly, we define the extended query formula q′ to be the conjunction q∧ (∧b)

of the user-specified query formula and the assignment constraints in the current

binding.

Thus, the assignments in b constitute an implicit query formula (∧b). The

formulas (∧b) define a special class of conjunctive queries, which we will call the

assignment queries. A conclusion c is reachable under the query formula (∧b) iff

there is a final extension of b that causes c, and it is inevitable under (∧b) iff all

final extensions of b cause c.

The query tool should classify the conclusions and questions according to their

status of being unreachable, possible, or inevitable under the extended query for-

mula. Unreachable questions and conclusions should be made invisible. Inevitable
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conclusions should be highlighted, and the user should be encouraged to read the

texts of these “positive conclusions.” Inevitable questions can be indicated as such.

The possible nodes may become unreachable, or may become inevitable, depending

upon how the user completes the current binding b. Only the existence of these

nodes should be indicated to the user, but, because they may turn out to be irrel-

evant, their contents should not be presented to the user. Their existence could be

indicated by listing the titles of the possible nodes, or just by reporting the number

of possible questions and the number of possible conclusions.

We also want the query formula q to function as an integrity constraint on

the input values supplied by the user. For instance, one of the conjuncts in q

might be the constraint ‘YourAge ≤ FathersAge’. For another example, suppose

that whenever the conclusion diabetes were generated, the system assigns true to

diabetesVar . If the query formula is set to ‘diabetesVar = true’, then we want it

to restrict the user inputs to just those values that lie on a path to the conclusion

diabetes.

The integrity constraint associated with q is the requirement that any final

binding producable by the user must satisfy q. Thus, as an integrity constraint,

the query formula filters down the set of final bindings that can be attained. This

filtering will be accomplished by using the extended query formula q′ to filter down

the set of answer choices for each variable v in ask(b). Specifically, the menu of

choices for v should be restricted to the values that v can assume in final bindings

that satisfy q′. Here is the formal specification of the requirement.

Definition 1.1.7 (choicess(v, q′)) For a system s, binding b ∈ As, variable v ∈
ask s(b), and formula q, we define the menu of choices for v under the extended
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query q′ ≡ q ∧ (∧b) as follows:

choicess(v, q′) ≡ {b(v) ∈ domv | b ∈ Fs & b |= q′}

If choices(v, q′) is empty, then the question v should be dropped from the display.9

Our last requirement is that the query tool should provide the following feature

for finding bindings that witness the reachability of conclusions. The user selects a

potential conclusion c, and then the system searches for a binding that witnesses the

reachability of c under the extended query formula q′. If the system finds a witness

binding, then the user can have the option of having the system automatically

append the witness to the current attainable binding. This will enable the user to

explore the further consequences of the witness binding. Finally, the system should

provide a mechanism for retracting the assignments in the witness binding.

1.1.5 Difficulty of the Problem

The general problem just presented, because it involves logical quantifications over

the generally infinite set of final bindings Fs, is difficult, in fact, generally unde-

cidable. We can trace two main sources of this complexity, each of which suffices
9Apart from the motivation that we offered for the requirement that q act as an integrity

constraint, we also show that it is a necessary requirement. If the user were allowed to select

a value z for v outside of choices(v, q′), then there would be no final bindings that satisfy the

new extended query formula q′ ∧ (v = z), and so the system would be in the uninteresting “dead

end” state where all conclusions and questions are unreachable. By restricting the menu to

choices(v, q′), we prevent the user from entering the dead-end state.
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to make the problem undecidable: complexity in the logic of the systems, and

complexity in the language of the query formulas.

Whenever the language L for writing the systems is Turing-complete, then the

query problem for L is undecidable. This is shown by the following simple reduction

from the Halting problem to the reachability query problem. Let r be a RAM

program, and let s ∈ L be a system that simulates the behavior of r. Let v1, . . . , vk

be the variables of s that initially hold the input values. Let s′ be the variant of s

that asserts the conclusion ‘halt’ whenever r reaches the halt state. Then it is easy

to see that r halts on input (z1, . . . , zk) iff ‘halt’ is reachable in s′ under the query

formula ‘v1 = z1 ∧ · · · ∧ vk = zk’.

We show that the query formulas are a source of undecidability, by reducing the

satisfiability of a formula q to an associated q-reachability problem. Let s be the

trivial system which has one variable for each variable in q, and which works by

inputting a value for each of the variables in V and then unconditionally asserting

the conclusion done. Since each of the variables in V is independently answerable,

the final bindings that comprise Fs are just the total, well-typed bindings for the

variables V . Now, that done is unconditionally asserted means precisely that for

all b ∈ Fs, done ∈ says(b). Hence, using the definition of q-reachability, we have

that:

done is q-reachable ⇔
∃b ∈ Fs : (b |= q) ∧ done ∈ says(b) ⇔
∃b ∈ Fs : (b |= q) ⇔
q is satisfiable

Since the satisfiability-testing of constraint formulas is undecidable, e.g., equal-
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ity constraints between polynomials over integer variables (“Diophantine equa-

tions”) [28], it follows that, with unrestricted query formulas, the reachability query

problem is undecidable.

Conclusion: We must restrict both the data language and the query formulas.

1.2 Queries to Production Systems

Henceforth, we will be concerned with the application of our query problem to

production systems, which are a well-known and widely used framework for writing

expert systems (see e.g. [15]). Here we describe the basic anatomy of a production

system.

Definition of Production Systems

A production system has three major components: (1) a set of production rules of

the form “if precondition then do action”, (2) a global working memory, which gets

tested by the preconditions of the rules and modified by the actions of the rules,

and (3) an interpreter, which determines the order in which to activate the rules

and performs the actions of the rules. In any given state of the working memory,

some subset of the rules will have preconditions that evaluate to True, and the

interpreter may have a “conflict resolution” mechanism for determining which of

these rules to activate. In essence, each rule is a restricted construct of an imperative

programming language: the precondition is a Boolean-valued expression, and the

action is a command.

Example 1.2.1 (Production Rules)
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• if pressure > 100 then input(temperature)

• if bloodsugar > 1000 then assert-conclusion(diabetes)

We can model each rule as a parallel process that continually monitors the shared

memory. Whenever the precondition of the rule becomes true, then this process

performs the action of the rule. The conflict resolution mechanism can then be

modeled as a master process that controls the synchronization of the processes for

the rules.10

Production systems can be broadly classified by the way in which the working

memory is organized. The classical form of production systems was a theoret-

ical model with a working memory consisting of a single string of symbols (of

unbounded length). The rules were string-rewriting “productions,” with precondi-

tions that tested for the presence of specific substrings, and actions that replaced

these substrings with new strings [11]. In the widely applied OPS5 system [15],

the working memory consists of a set of “object-attribute-value vectors,” which are

pairs consisting of an object and a property list for that object, e.g., (jim (’age

17 ’home NYC)). The preconditions of the OPS5 rules test for the existence of

vectors satisfying certain properties, and the actions include creating a new vector,

removing a vector, and updating a field within a vector. For our queries, we will

use binding-based production systems, where the memory consists of a fixed set of
10Thus, even though production rules bear a superficial resemblance to the rules that we find

in logic programs, since they both have antecedents and consequents, they are essentially differ-

ent. Production rules are imperative, and communicate through side-effects to a global working

memory. The rules of a logic program are declarative sentences, whose meaning has nothing to

do with a notion of state. We will discuss logic programs in the section on related work.
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variables and the contents of the memory is given by a binding for the variables.

In such a system, a logic formula can function as a precondition: it fires when it is

satisfied by the current binding for the variables.

Complexity of Queries to Production Systems

Production systems, in all the forms that we have described, are Turing-complete,

and thus our query problem is undecidable for them. We now outline the proof of

the Turing-completeness of the binding-based systems. The proof will illuminate

the ways we must restrict the systems in order to make the queries decidable.11

In binding-based production systems, there are two sources of system complex-

ity: the interactions between the rules, and the individual rules themselves. To

show the complexity due to the rule interactions, we will use a system of simple

rules to simulate a RAM program p. For each variable of p, we introduce a corre-

sponding variable in the working memory of the production system. Also, there is a

special variable in the working memory, called PC, that will simulate the program

counter of p. For each statement of p, located at address a, we have the following

production rule:

if PC = a then perform the action of p and update PC
11The Turing-completeness of the classical production systems is shown by using the string in

the working memory to simulate the tape of a Turing machine, and introducing one production for

each transition rule of the Turing machine [11]. A binding is a special case of the OPS5 memory

organization, and so the binding-based systems are a subclass of the OPS5 systems. Hence, our

proof of the Turing-completeness of binding-based systems will imply the Turing-completeness of

the OPS5 systems.
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Thus, the interactions between simple rules suffice to make the production rules a

Turing-complete language. The complexity stemming from a single rule is shown

by the single-rule system:

if precondition then assert-conclusion(satisfiable)

Here, the precondition is satisfiable iff the conclusion is reachable.

Conclusion: We will have to limit the individual rules, the interactions between

the rules, and the query formulas.

1.3 Insufficiency of Chaining Methods

The two standard algorithms for evaluating production systems, called forward

chaining and backward chaining [15], are methods which, in the way that they

are used for interactive expert systems, have the effect of driving the course of

individual consultation sessions between user and system.

There may be some confusion arising from the fact that reachability query-

ing is a backwards reasoning problem, in the sense that it asks about antecedent

conditions under which results are generated. As emphasized in [15], backwards

reasoning, which refers to the semantic level of the problem, is fully distinguishable

from backwards chaining, which is a specific low-level technique for processing the

symbols that represent the rules.

Now we can see why production-system backward chaining does not solve our

backwards reasoning problem. The reachability queries are backwards reasoning

problems in exactly the same way that the inverting of functions is a backwards
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reasoning problem. All of these backwards reasoning problems require a mathemat-

ical analysis of the particular subjects of the problem—i.e., the production systems,

or the functions—and may not be solvable. Backward chaining, on the other hand,

is just a heuristic which says that given the rule α→ β and the goal β, try to prove

α as a subgoal. Its unsuitability for our reachability queries is illustrated by the fact

that if the goal to be solved is a formula β, and there are no rules whose actions

can establish β, then the backward chaining production systems will prompt the

user to input specific values for the variables in β. Thus, the backward chaining is

merely determining the truth-value of β within the individual binding defined by

the user’s answer values.

Furthermore, there is no simple extension of backward chaining that will solve

the queries. To see this, consider a system with some rules of the form “if precon-

dition then input(x)”. The reachability of various conclusions will depend upon

the preconditions of these rules, yet these rules cannot be used in any effective

way by backward chaining. For instance, if the goal we are trying to prove is

a formula involving x, then the rule that inputs a value for x is unusable, be-

cause it reads an unspecified value from the console. Even harder to imagine is

how production-system backward chaining could be extended to cover the queries

about the inevitability of conclusions under a query condition.12

12We are not claiming that chaining algorithms in general cannot be applied to our query

problem, but rather, that the chaining algorithms for production rules do not solve the problem.

There are also chaining algorithms for systems of logic rules. But the logic rules have an entirely

different semantics than the production rules, because the former are declarative sentences and

the latter are imperative commands. Hence, the chaining algorithms for logic systems are not

applicable to the production rules.
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1.4 Groundwork in Logic and Constraints

Here we spell out some basic notions of logic and constraints, which we will use in

both our general theory of queries to expert systems and in the definition of the

particular systems that we intend to query. The central notion that we need is

that of a “constraint domain” (domain of constraints), which provides a convenient

packaging of a set of logic formulas along with a semantic interpretation for their

constituent symbols. (For a fuller treatment of constraint domains, see [17].) We

must begin with the following basic definitions from first-order logic.

A signature Σ is a set of predicate, function and constant symbols, each of

which has a definite degree (argument count).13 A Σ-term, is either a constant

in Σ, a variable, or the syntactic form f(t1, . . . , tk), where each ti is a Σ-term

and f ∈ Σ is a function symbol of degree k. An atomic formula over Σ is a

syntactic form p(t1, . . . , tk), where p ∈ Σ is a predicate symbol of degree k and

t1, . . . , tk are Σ-terms. A Σ-formula is either an atomic formula, or OP (f1, . . . , fk),

where each fi is a Σ-formula, and OP is a logical operator, such as conjunction ∧,

disjunction ∨, negation not, universal quantification ∀x, existential quantification

∃x, or implication→. We call a formula monotone if it is built with only conjunction

and disjunction operators. A Σ-expression is either a Σ-formula or a Σ-term.14 A

Our query algorithm will work by performing a non-obvious transformation from production

system queries to systems of first-order logic formulas. These formulas may in turn be converted

to datalog systems. Then we will have the option of applying datalog chaining algorithms to the

transformed systems.
13Constant symbols have degree zero, and are regarded as the function symbols of degree zero.
14Thus, terms are expressions that evaluate to domain-values, and formulas evaluate to truth-

values. In other contexts, e.g., spreadsheets, “formulas” are extended to cover terms as well, but
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Σ-sentence is a Σ-formula with no free variables, and a Σ-theory is a set of Σ-

sentences.

An interpretation I for Σ (a Σ-interpretation) consists of a universe of discourse

DX , and a mapping that sends each constant c ∈ Σ to a value cI ∈ D, each k-ary

function symbol f ∈ Σ to a k-ary operation f I on D, and each k-ary predicate

symbol p ∈ Σ to a k-ary relation pI on D.

A constraint domain X consists of a signature ΣX , an interpretation IX for

ΣX , and a set CX of ΣX-formulas called constraints. Also, there is a designated

set PX ⊆ CX of primitive constraints, and it is assumed that every member of

CX can be expressed as a conjunction of primitives in PX . Hence CX is closed

under conjunctions. Furthermore, we assume that CX is closed under existential

quantifications, and that quantifier elimination can be effectively performed. This

implies that satisfiability of the constraints is decidable.15

A constraint domain X has opposite predicates if for each predicate symbol p ∈
ΣX , there is an associated opposite predicate symbol p ∈ ΣX such that p(z1, . . . , zk)

is true in IX iff p(z1, . . . , zk) is false in IX . The constraint domains for our queryable

systems will be required to have opposite predicates.16

in logic we do not want to blur the distinction between truth-values and domain values. Hence,

we will stick to the restricted meaning of the word “formula.” This usage is implied whenever we

speak of e.g. x > y as an atomic formula.
15To determine the satisfiability of a constraint formula f , we apply the quantifier elimination

procedure to the existential closure ∃f . This procedure will produce a logically equivalent formula

f ′. Since it is logically equivalent to the variable-free formula ∃f , then f ′ must be variable-free

as well as quantifier-free. Hence, f ′ will either be true or false. In this way, the satisfiability of f

is determined.
16The assumption of opposite predicates does not represent a theoretical loss of generality,
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Example 1.4.1 (Rational Polynomial Comparisons)

• DX = the set of rational numbers

• ΣX = {constants for rational numbers; +,−,∗; =, 6=, ≥, >, ≤, <}

• IX = standard arithmetic interpretation of symbols in ΣX

• PX = atomic ΣX-formulas

For instance, 5x + 9y ≥ 20z2 is a constraint in this domain.17 This constraint

domain has the obvious pairs of opposite predicates, e.g., = and 6= are opposite.

In the next example, we restrict this constraint domain to the subdomain of linear

constraints.

Example 1.4.2 (Linear Rational Polynomial Comparisons)

Here everything is the same as in the preceding example, except that PX is restricted

to comparisons between linear ΣX-terms.

Our final example is a simple constraint domain whose formulas are useful for

data records.

Example 1.4.3 (Univariate Monotone Order Constraints (UMO))

because a given constraint domain without opposite predicates can always be extended by intro-

ducing, for each predicate symbol p, a new predicate symbol p for the opposite. On the other

hand, it may represent additional computational complexity, because the constraint-processing

methods must be able to operate on arbitrary conjunctions of constraints.
17In the setting of arithmetic, the word “term” covers 5x, but not 5x + 9y. We shall stick,

however, with the first-order logic terminology, where a term is any expression denoting a domain

value. Then, 5x + 9y is surely a term.
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• D = an ordered set

• ΣX = {constant symbols, =, 6=, <, ≥, >, ≤}

• IX = the interpretation of ΣX that expresses the ordering

• CX = the set of monotone formulas whose atomic constituents are comparisons

between a variable and a constant

Here is an example of a UMO constraint: ((Month < may)∨(Month = july))∧
(Y ear > 1900). This example illustrates the fact that the primitive constraints and

the conjunctions of primitives are not necessarily disjunction-free.

Given a constraint domain with opposite predicates, we may, without losing gen-

erality, simplify our technical development by restricting our attention to monotone

formulas. To do this, we use De Morgan’s laws to replace each boolean formula

by its negation-free equivalent.18 For instance, replace not(x = 1 ∧ y = 1) by

x 6= 1 ∨ y 6= 1. Here is the full definition.

Definition 1.4.4 (Equivalent Formula f+ and Opposite Formula f−)

For a boolean formula f , we define two associated monotone formulas, the negation-
18In the closing chapter, we will describe an alternative semantics for unary negations in the

presence of ⊥ values, and show how our negation-free query algorithm can be extended in a simple

way to cover this semantics.
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free equivalent f+, and the negation-free opposite f−, as follows:

(f1 ∧ f2)
+ = (f1)

+ ∧ (f2)
+

(f1 ∨ f2)
+ = (f1)

+ ∨ (f2)
+

(p(t1, ..., tk))
+ = p(t1, ..., tk)

(not(f))+ = (f)−

(f1 ∧ f2)
− = (f1)

− ∨ (f2)
−

(f1 ∨ f2)
− = (f1)

− ∧ (f2)
−

(p(t1, ..., tk))
− = p(t1, ..., tk)

(not(f))− = (f)+

We now define the satisfaction relation b |=I f between bindings b and formulas

f , in the context of the interpretation I. Informally, this means that f evaluates to

True under the interpretation of the symbols provided by I and b. If the binding

has ⊥ values that prevent f from evaluating to True, then the relation b |=I f does

not hold.

Definition 1.4.5 (The Value of a Term in a Binding, val I(t, b))

For a Σ-term t, Σ-interpretation I, and binding b, define:

val I(const , b) = const I

val I(var, b) = b(var)

val I(f(t1, . . . , tn), b) =



⊥, if val I(tj, b) = ⊥ for some j

f I(val I(t1, b), . . . , val I(tn, b)) otherwise
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Definition 1.4.6 (The Satisfaction Relation, b |=I f)

For a binding b, monotone Σ-formula f, and Σ-interpretation I, define:

b |= f1 ∧ f2 ⇔ (b |= f1) and (b |= f2)

b |= f1 ∨ f2 ⇔ (b |= f1) or (b |= f2)

b |= p(t1, . . . , tk)⇔ (val I(t1, b), . . . , val I(tk, b)) ∈ pI

1.5 Related Work

Parts of this thesis were published in summary form in [40]. A detailed exposition

of portions of the following survey is given in [39]. We will discuss four areas of

related work.

Thinksheet Expert Systems: They are based on acyclic production systems.

We will restrict them to obtain queryable expert systems.

Constraint Domains: Our algorithm gives a reduction from production-system

queries to conjunctive satisfiability problems. By combining it with conjunc-

tive solvers for specific constraint domains, we obtain instances of the algo-

rithm.

Constraint Logic Programming and Datalog+Constraints: These systems

can optionally be used for the satisfaction-testing phase of the query process-

ing.

Abductive Logic Programming: The problem of finding bindings that witness

the reachability of conclusions in an interactive system falls under the general
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heading of abductive reasoning problems. We touch upon abductive logic

programming, because it approaches an analogous problem for logic programs.

1.5.1 Constraint Logic Programming

Overview

This material on constraint logic programming is not necessary in order to un-

derstand our algorithm. Its relevance is that these techniques can be used as one

approach to solving the constraints generated by our algorithm.

Constraint logic programming (CLP) [17, 16, 6, 7, 18] is a generalization of

classical logic programming [37, 1, 25], whereby the equality constraints between

terms—e.g., father of(X)=father of(henry)—and their solution by unification algo-

rithms are replaced by generic constraint domains and their associated constraint-

processing methods. Van Hentenryck observed that this generalization has simpli-

fied the basic theory of logic programming, because the whole group of concepts

arising from the constraint domain of term equations, such as unification algo-

rithms and most general unifiers, which were originally presented at the center of

logic programming theory, are now ancillary topics that are handled in one sphere

of application of constraint logic programming [45].

A constraint logic program is a representation for knowledge that takes the form

of a theory of logic. The axioms of a constraint logic program are sentences called

“rules,” which may contain constraint formulas as constituents. Here is an example

of a constraint logic program that defines a collection of spatial relations.

Example 1.5.1 (Constraint Logic Program)
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square(R,X,Y) :- abs(X) = R, abs(Y) <= R.

square(R,X,Y) :- abs(Y) = R, abs(X) <= R.

%

diagline(R,X,Y) :- X >= 0, Y >= 0, X + Y = R.

%

diamond(R,X,Y) :- diagline(R,X,Y).

diamond(R,X,Y) :- diagline(R,X,Y1), Y1 = -Y.

diamond(R,X,Y) :- diagline(R,X1,Y), X1 = -X.

diamond(R,X,Y) :- diagline(R,X1,Y1), X1 = -X, Y1 = -Y.

%

squareTower(R,X,Y) :- R >= 1, square(R,X,Y).

squareTower(R,X,Y) :- R >= 1, R’ = .9 * R, squareTower(R’,X,Y).

%

diamondTower(R,X,Y) :- R >= 1, diamond(R,X,Y).

diamondTower(R,X,Y) :- R >= 1, R’ = .8 * R, diamondTower(R’, X, Y).

This example illustrates the fact that the syntax of constraint logic programs

is identical to the syntax of the classical logic programming language Prolog. The

difference is that CLP surpasses the very limited constraint-handling capabilities

of Prolog. We illustrate this difference with an example. If Prolog is given the

query ‘square(1, X, Y ) ∧X =Y ’, which asks for a point (X, Y ) on the intersection

of the unit square and the line through the origin with slope 1, it will fail with

the complaint that X and Y are uninstantiated. A CLP interpreter, on the other

hand, should be able to succeed and produce the answers ‘X = 1 ∧ Y = 1’ and
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‘X =−1 ∧ Y =−1’.

There are two types of formulas which can appear in the rules: constraints

belonging to the constraint domain, such as ‘abs(Y ) = R’, and program atomic for-

mulas, such as ‘squareTower(R∗0.9, X, Y )’, which have predicate symbols that are

not interpreted by the constraint domain. The meaning of these predicate symbols

is instead determined by the system of rules as a whole. The formulas at the heads

of the rules must be program atomic formulas. Typically, the predicate symbols

for the constraints are written in infix notation, while the program predicates are

written in prefix notation.

A rule is primitive if all the formulas in its body are constraints. For instance,

“square(R, X, Y ) ← abs(X) = R, abs(Y ) ≤ R” is primitive. Primitive rules gen-

eralize the “ground facts” (individual tuples) of classical logic programs, since the

ground facts are equivalent to primitive rules with equality constraints. For ex-

ample, the ground fact brother(john,henry) can be written as the primitive rule

brother(X, Y )← X = john, Y =henry .

The meaning of the logic program can be described by a mapping that sends

each program predicate of degree k to an associated relation of degree k. The

meaning of our example program is simple to understand. Namely, the relation for

square consists of all triples (R,X, Y ) such that (X,Y ) lies on the square of width

R centered at the origin; the relation for diamond is all triples (R, X, Y ) such that

(X, Y ) lies on the rotated square with corners at (0, R), (R, 0), (0,−R), (−R, 0); the

meaning of squareTower is all triples (R, X, Y ) where (X, Y ) lies on the union of

concentrically nested squares whose outer square has width R, and for which each

successive square is 90% of the size of its surrounding square, where the union has
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only one square of size greater than 1; and similarly for diamondTower, which has

a shrinking factor of 80%.

Here is an example query: which points are common to squareTower(99, X, Y )

and diamondTower(101,X, Y )? This query is given by the conjunctive goal formula

‘squareTower(99, X, Y ) ∧ diamondTower(101,X, Y )’. We view this goal formula

as a request for a usable representation for the set of (X,Y) pairs in the intersection.

The following construction shows that the problem of solving these queries is

subsumed by the general problem of determining the meanings of the program

predicates. Suppose that the goal formula is G1 ∧ · · · ∧Gm. Then introduce a new

predicate called result , and add the rule result(α1, . . . , αk) ← G1, . . . , Gm, where

α1, . . . , αk are the free variables in G1, . . . , Gm. So, for our example query, the rule

would be result(X, Y )← squareTower(99, X, Y ), diamondTower(101,X, Y ). Then

the relation that gives the meaning for the predicate result gives the answer to the

query.

In general, the meaning-relations for the predicates will contain an infinite num-

ber of points, and so we must look for constraint domains where the meanings of

the predicates will have a usable finite representation. In the CLP setting, it will

be natural to represent relations by sets of primitive rules, where each set of rules

will be interpreted to mean the union of all the points that are described by one of

the rules.

Example 1.5.2 The result of the query diagline(1,X,Y) can be represented by the

primitive rule:

result(X, Y )← X ≥ 0, X ≤ 1, Y = 1−X
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Even though the point-set for this rule is infinite, it is still directly usable,

because it expresses a function from the independent variable x ranging over [0,1]

to the dependent variable y.

Example 1.5.3 The answer to the query diamond(1,X,Y) ∧ Y≥ 0 is representable

by the two primitive rules:

result(X, Y )← X ≥ −1, X ≤ 0, Y = X + 1

result(X, Y )← X ≥ 0, X ≤ 1, Y = −X + 1

For an example where there is no useful constraint representation for the mean-

ing relations, consider the constraint logic programs over the domain of integer

polynomial equality constraints. Then an infinite point set can be represented by a

fact such as “result(X, Y )← 35∗X3+11∗Y 5+X ∗Y ∗Z = 0”, but such representa-

tions are unusable, because the satisfiability of such constraints is undecidable—and

hence we cannot expect to learn anything about the points in the solution sets.

Syntax

For a given constraint domain X, we now will define CLP(X ), the set of constraint

logic programs with constraints in X. Recall from Section 1.4 that X consists of

a triple (ΣX , IX , CX) where ΣX is a signature of predicate, function and constant

symbols, IX is a ΣX -interpretation, and CX is a collection of ΣX-formulas called

the constraints.

Let P be a set of “program” predicate symbols, and assume that P is disjoint

from ΣX . In our example, P = {square,diagline, . . . ,diamondTower}. Define a
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program atomic formula to be an atomic formula p(t1, . . . , tk), where p ∈ P , and

each ti is a ΣX -term, e.g., squareTower(R ∗ 0.9, X, Y ).

A rule of CLP(X ) is a formula of the form ∀(α1 ∧ · · · ∧ αx → β), where each

αi is either a program atomic formula or a constraint formula, and β is a program

atomic formula. A program of CLP(X ) is a set of CLP(X ) rules.

Semantics

Although the meaning of CLP(X ) programs is clear for simple examples—e.g., for

the program {square(X, Y )← abs(X) = 1, abs(Y ) = 1}, the meaning of square is

the relation {(x, y) | abs(x) = 1, abs(y) = 1}—we still need a formal definition of

the semantics because (1) the picture is more complex when the rules are recursive,

and (2) the correctness proofs for query algorithms will require a formal definition

of the meaning of a program.

A logic program is a theory, i.e., a set of declarative sentences, and we define its

meaning to be the set of facts that are logical consequences of this theory, where a

fact is an atomic formula p(c1, . . . , ck), such that each ci is a constant.19 I.e., for a

program T of CLP(X ), and a program predicate p, we define:

meaning(p) = {facts f s .t . T, IX |= f}

where T, IX |= f means that f is a logical consequence of the theory T and the

interpretation IX which the constraint domain X provides.20

19As a technical convenience, we assume that for each member d of the universe of discourse,

there is a constant cd whose interpretation is d. With this assumption, relations over the universe

of discourse can be represented by sets of facts.
20See e.g. [39] for a complete definition of the relation T, I |= f . Here is an informal definition,
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Query Algorithms

We will explain the query algorithms in terms of “rule trees,” which represent chains

of valid deductions. These trees will have constraints at their leaves, and derived

facts at their roots. For simplicity, we assume that all program atomic formulas are

in the form p(X1, . . . , Xk), where X1, . . . , Xk is a list of distinct variables. This

canonical form is easily obtained by introducing auxiliary equality constraints. For

example, p(3, abs(4)) can be replaced by the equivalent p(X1, X2)∧X1 = 3∧X2 =

abs(4).

For a program T of CLP(X ), a rule tree over T is a tree whose nodes are

formulas, where (1) the leaves are constraints in CX , (2) the internal nodes are

program atomic formulas, and (3) for each internal node I with children N1, . . . , Nk,

the formula ‘(N1 ∧ · · · ∧NK) → I’ is a substitution-instance of one of the rules of

T . If the tree has program atomic formula α at its root, and constraints β1, . . . , βn

at its leaves, then the primitive rule ∀(β1 ∧ · · · ∧ βn → α) is a logical consequence

of the program T and IX . The significance of such a derived rule for T is that we

can obtain facts that are consequences of T by calling a conjunctive solver with the

arguments β1, . . . , βn, and then, if the conjunction is satisfiable, asking the solver

to project the results onto the variables in α. Moreover, it can be shown that every

fact which is a logical consequence of T, IX can be obtained from some rule tree [39].

which should make the idea clear. The interpretation I specifies meanings for some of the symbols

appearing in T and f , and leaves others unspecified. That T, I |= f means that whenever I ′ is an

interpretation that extends I and all of the sentences of T are true in I ′, then f is also true in

I ′. For example, if A is the standard interpretation over the rationals for the arithmetic symbols,

and T is the theory {∀(abs(x) = 1 ∧ abs(y) = 1→ square(x, y))}, then T, A |= square(1, 1).
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Example 1.5.4 (Rule Tree for a CLP Query) Figure 1.3 shows the rule tree

for a query to the constraint logic program of Example 1.5.1. The query, R =

10∧ squareTower(R, X, Y ), asks for points on the tower of squares with radius 10.

Every internal node of the tree corresponds to an instance of one of the program

rules, e.g., ‘sqTow(R′, X, Y ) ← R′ ≥ 1 ∧ square(R′, X, Y )’ is a variant of one of

the rules. The derived primitive rule for this tree is obtained by conjoining all of

the leaves:

result(X, Y )← R = 10 ∧R ≥ 1 ∧R′ = .9R ∧R′ ≥ 1 ∧ abs(X) = R′ ∧ abs(Y ) ≤ R.

Put in simpler form, it is: result(X, Y ) ← abs(X) = 9 ∧ abs(Y ) ≤ 9. Hence it

follows that e.g. (−9, 7) belongs to that tower of nested squares.

result(X , Y )

R = 10
��

��
��

sqTow(R, X ,Y )
??

??
??

R ≥ 1
ooooooooo

R′= .9R sqTow(R′,X ,Y )
OOOOOOOOO

R′ ≥ 1
��

��
��

square(R′,X , Y )
??

??
??

abs(X ) = R′
��

��
��

abs(Y ) ≤ R′
??

??
??

Figure 1.3: Rule Tree for Query R = 10 ∧ squareTower(R,X, Y )

The two fundamental CLP evaluation algorithms, viz., so-called top-down and

bottom-up evaluation, can be pictured as methods that construct rule trees and

then call a constraint solver to extract solutions from the trees. In the bottom-up

evaluation, the rule trees are in effect constructed starting from leaves and ending
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with the root, and, in top-down evaluation, the construction starts from the root

and ends with the leaves.

In fact, what the algorithms construct is not the trees themselves, but the

primitive rules that are obtained from the leaves and roots of these trees. Therefore,

the complexity of the algorithms is not governed by the sizes of the trees per se, but

rather by the number of distinct constraints which label the leaves of these trees.21

Bottom-Up Evaluation

The bottom-up algorithm maintains a set F of derived primitive rules, which is

initialized to the primitive rules in the program T that is being evaluated. The

algorithm iterates the following sequence of steps, until no more rules can be added

to F :

1. Choose a rule α1, . . . , αk, β1, . . . , βk → Γ in T , with program atomic formulas

α1, . . . , αk, and constraints β1, . . . , βk

2. Choose instances i1, . . . , ik of primitive rules in F , such that the consequent

of ij is equal to αj , for j = 1, . . . ,k

3. Form the rule r′ := body(i1), . . . , body(ik), β1, . . . , βk → Γ

4. If the body of r′ is satisfiable, and it cannot be easily determined that r′ is

already implied by F , then add r′ to F . (One simple test is to see whether r′

21The rule tree in Figure 1.3 illustrates the fact that if the rules are recursive, then there may

be rule trees that are arbitrarily large. If the rules are nonrecursive, then the height of the trees

is bounded by the number of rules. The rules that will arise from translating our reachability

formulas into datalog will have a very specific, nonrecursive form, which will guarantee that the

sizes of the derived rules are linearly bounded by the size of the rule system.
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is a variant of a rule in F .)

Top-Down Evaluation

The top-down algorithm takes a goal formula g as its argument, and then attempts

to find a rule tree that proves the formula at its root. It is based on a simple

modification of the algorithm used by a classical pure prolog interpreter. The

change is that the MGU of the Prolog interpreter—i.e., the canonical form for a

conjunction of “Herbrand” equality constraints—is replaced by a domain-specific

representation for a conjunction of constraints. Specifically, the algorithm maintains

two data structures: (1) a set G of program atomic formulas, called “goals”, which

have yet to be expanded, and (2) a set of constraints C, represented in the form of

a conjunctive store.

G is initialized to be the singleton containing the root goal, and C is initialized

to hold the empty conjunction of constraints. At the end of the procedure—if it

succeeds—G will be empty, and C will be logically equivalent to the conjunction of

the leaves of a derived primitive rule with g at its root. The algorithm iterates the

following sequence of steps:

1. Remove a goal formula t from G

2. Find a variant α1 ∧ · · · ∧ αk ∧ β1 ∧ · · · ∧ βm → t, where the αi are program

atomic formulas and the βi are constraint formulas

3. Add α1, . . . , αk into G

4. Conjoin β1, . . . , βm into C

5. Put the new C into canonical form
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6. If C is inconsistent, then fail

1.5.2 Constraint Domains

The following material is not necessary in order to understand our algorithm, but

rather provides a survey of various constraint representations that can be used

for particular spheres of application of our algorithm. In the body of the thesis,

when we describe our implementation, we will also give the details of our constraint

representation.

We now describe some representations for conjunctions of various types of con-

straints X. A representation for the constraints of the domain X, when equipped

with methods for performing conjunctions, testing satisfiability and projecting onto

a set of variables, can serve as a basis for constraint logic programming.

Binding Equality Constraints

Here the constraints are conjunctions of formulas ‘var = const ’, e.g., ‘Month =

jan ∧Year =1998’. These formulas are equivalent to the records of finite relational

databases, i.e., the single-valued mappings from attributes to values. Hence the

record is the natural form of representation for such conjunctive formulas.

Difference Constraints

In this constraint domain, the primitive constraints are of the form x ≤k y, where x

and y are variables or constants, and k is a number which is called the “gap” value.

The meaning of the constraint is that the gap between x and y is at least k, i.e.,

that y − x ≥ k. For instance, J ≤4 S can express the fact that John is at least 4

40



years younger than Sam. A conjunction of these constraints can be represented by

a directed graph with one node for each variable and constant, and an edge from x

to y with label k for each of the conjuncts x ≤k y.

See [9] for an introduction, in a linear programming context, to difference con-

straints over real variables. See [32] for constraint-processing algorithms for differ-

ence constraints with integer variables and non-negative gap values. These algo-

rithms are implemented in a system described in [3].

Linear Arithmetic Constraints

A conjunction of linear equality constraints can be represented by a matrix in

canonical form, e.g. row-reduced echelon form, and conjunction and canonicaliza-

tion can be performed by Gaussian elimination [38]. For linear inequalities, the

vast field of linear programming algorithms is available [10, 33]. The constraint

logic programming systems CLP(R) [18] and Eclipse [13] use a simplex algorithm

for processing linear inequalities.

Term Equality Constraints

The combination of top-down evaluation with this constraint domain gives us a

classical logic programming interpreter [37, 1, 25]. The signature ΣX for the con-

straint domain is K∪ {‘=’}, where K is a set of function and constant symbols.

The universe of discourse is defined as the set of all variable-free K-terms. The

primitive constraints are equalities t1 = t2, where t1 and t2 are K-terms that may

have variables. This constraint domain thus has the peculiarity that the symbols

in K are used both in the construction of the members of the universe of discourse
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and in the constraint formulas which are interpreted over this universe of discourse.

Each function symbol f in K is interpreted as the operation on ground K-terms

which maps the ground terms g1, . . . , gn to the ground term f(g1, . . . , gn). For

instance, if K = {f, g, h, 2, 3}, then ‘f(X, g(Y )) = f(2, g(h(Z)))’ is a primitive

constraint which is satisfied by the binding {(X, 2), (Y, h(h(3))), (Z, h(3))}.
A most general unifier (MGU) for a conjunction φ of term equations is a canon-

ical representation in the form of a logically equivalent conjunction φ′ of term

equations. This form makes it easy to find solutions to φ, because it partitions

the variables into two categories: independent variables, which appear on the right

sides of the equations, and dependent variables, which appear on the left sides.

Specifically, the equations in an MGU are all of the form var = term, where var

appears in only one of the conjuncts of the MGU, and var does not occur in any

of the terms on the right sides.

It can be shown that if φ is satisfiable, then it has an MGU. An algorithm that

either computes an MGU for φ, or fails if φ is unsatisfiable, is called a unification

algorithm.

Finite-Domain Constraint Satisfaction Problems

The work [44] effectively introduced, CLP(Finite-Domains), constraint logic pro-

gramming over the (broad) domain of constraints in which each of the variables

has a finite domain of possible values. There, top-down expansion of the program

rules was combined with so-called “consistency techniques” for processing finite-

domain constraint satisfaction problems (CSPs) (see e.g. [24]), which are heuristics

for reducing the branching factor of the search for solutions to a constraint. Imple-
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mentations of CLP(Finite-Domains) include Eclipse [13] and CHIP [12].

The consistency techniques maintain a set of possible values that each variable

can assume, and, as new constraints get inferred or added to the constraint store,

inconsistent values may be removed from the sets. The sets are used by a back-

tracking search algorithm, which constructs bindings and tests to see if they satisfy

the constraints of the problem. Each instantiation produced by the search algo-

rithm effectively conjoins a new constraint var =const into the store. In this way,

the backtracking search, propagation of constraints, and reduction of domains are

tightly intertwined.

For instance, [44] shows how the 5-queens problem, which seeks to place 5 queens

on a five-by-five chessboard so that none can attack another, can be solved with

only two choices and no backtrackings. First, the problem is modeled as a CSP

with five variables X1, . . . ,X5, each taking values in {1, . . . , 5}; the value of Xi

indicates the row on which the queen in column i is placed. That no queen can

attack another is then expressed by a conjunctive constraint formula φ = ‘(X1 6=
X2) ∧ (X1 6= X3) . . . ∧ (X2 6= X1 + 1) · · · ’. All of the domains are initialized to

{1, . . . , 5}. Then the first choice is made: place the first queen in the first row, i.e.,

conjoin ‘X1 = 1’ into φ. This conjunction implies that 1 is no longer a valid value

for the other variables, and so their domains are reduced to {2, 3, 4, 5}. Further,

because of the diagonal attacks of the first queen, i can be removed from the domain

of Xi, for i = 2, . . . , 5. The domain of X2 is then {3, 4, 5}. Another choice is made:

X2 = 3. This has the effect of reducing the domains of X3 and X4 to single values,

and so they are each instantiated—without a choicepoint. Constraint propagation

then reduces the domain of X5 to a single value, and a solution is obtained.
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This is called a “constrain-and-generate” strategy, because it processes con-

straints before (and during) the search for solutions. In contrast, generate-and-test

is less efficient, because it processes the constraints only after a binding has been

fully constructed. Standard chronological backtracking is a weak form of constrain-

and-generate, since it checks partially constructed bindings to see if they falsify

the constraints—but, unlike the domain-reduction techniques, it does not use the

constraints to reduce the choices that will be made later in the search process.

1.5.3 Datalog with Constraints

Again, this material is not necessary to understand our algorithm, but the areas

surveyed have provided constraint-processing techniques that may be useful for an

implementation of the algorithm.

In this section we discuss an area of constraint databases22 that emerged out

of constraint logic programming: the theory and practice of finitely representable
22In the constraint database paradigm, a database is construed as the solutions to a collection

of formulas over a domain of constraints, the query as a small formula, and query-processing

as constraint-solving. In this reduction of database theory to applied, data-intensive logic, we

encounter issues which are not matters of pure logic but rather have to do with the processing

of database formulas, including (1) how to manage massive collections of formulas, (2) how to

minimize the number of accesses to the secondary storage on which the formulas reside, (3) how to

index the relations and objects described by the database formulas in order to accelerate the pro-

cessing of typical queries, and, more generally, (4) how and under what conditions can we perform

efficient logic-based queries? Two basic paradigms for constraint databases have emerged: con-

straint databases in the form of logic programs (“datalog+constraints”), and constraint databases

as systems of objects. See [2, 32, 14] for some reports on early prototypes and applications.
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relational databases[21].

Before the advent of constraint logic programming, there was a well-known

connection between classical relational databases and logic programming, viz., that

the “datalog” sublanguage of logic programs suffices to express both relational

databases and relational algebra queries over these databases. In classical datalog,

compound terms are disallowed, i.e., the arguments to the predicates are restricted

to being variables or constants. With these constructs, each record of a table t can

be represented by a primitive rule t(c1, . . . , ck) ← true, for constants c1, . . . , ck.

Hence, the whole database is representable by a set of such primitives. Also, the

relational algebra queries are representable by datalog rules, e.g., ‘p(X, Y,Z) ←
q(X, Y ), r(Y, Z)’ expresses a join of the relations q,r, and, ‘s(X, Z) ← p(X,Y, Z)’

expresses a projection of p onto two of its attributes.

The extension from classical to constraint logic programs leads to a corre-

sponding extension of datalog, by allowing constraints in the bodies of the rules.

Augmented with constraints, datalog becomes indistinguishable from general con-

straint logic programs. Nevertheless, because datalog+constraints evolved out of

a database context, with its emphasis on largeness of scale, indexing, etc., it still

connotes a particular perspective on constraint logic programs.

An important and natural database application of CLP—but not a privileged

application—is spatial constraint databases [?]. The spatial relations generally

contain infinite sets of points. For instance, our example CLP program on page 31

can be seen as database that describes a spatial configuration of nested squares

and diamonds. For a more realistic example, consider the infinite relation (Lati-

tude,Longitude,Continent). This relation itself is not finitely representable, but for
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practical purposes, the boundaries may be approximated by chains of line segments

Thus the regions are representable by unions of convex polyhedra. Since each con-

vex polyhedron is an intersection of half-planes, and a half-plane is the solution

set to a linear inequality, it follows that the whole region can be represented by a

disjunction of conjunctions of linear inequalities.

For finite relational databases, [4] established a theoretical model for the query

languages whereby each query expression is some syntactic form that determines

a transformation from input databases to output relations, i.e., an operation on

relations. All the various query languages, such as relational algebra, relational

calculus, and datalog rules, are then cast as languages for defining such relational

operations. This model requires the closure condition that the output from a query

has the same form as its inputs. A query expression which violates the closure

condition is called “unsafe.” The closure condition ensures that the queries are

composable and thus form an algebra. For finite relational databases this condition

means that the result of a query must be a finite relation. Negation in relational

algebra leads to unsafe queries over finite relational databases, because, if the uni-

verse of discourse is infinite, the complement of a finite relation is infinite [42].

This algebraic query model was generalized in [20, 21] to relations that are

finitely representable by disjunctive normal formulas.23 A transformation of rela-

tions is “safe” if for all input relations representable by DNF formulas, the trans-

formed relation is also representable by a DNF formula. If the formula for the

output relation is computable from the formulas for the input relations, we can
23I.e., relations that are the solution sets for disjunctions of conjunctions of constraints, such

as {(x, y) |(x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < y)}.
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then process the queries by working with these finite representations of the rela-

tions.

We now will use the “bottom-up” evaluation of constraint logic programs (c.f.

Section 1.5.1) to define a query algebra of disjunctive normal formulas [21]. The

DNF formulas will be represented by a set of primitive rules: each rule represents the

projection of its body onto its head, and the set of rules represents the disjunction

of these projected formulas. Now, recall that bottom-up evaluation produces a set

of derived primitive rules representing the facts that are logical consequences of

the program. A program P then determines the following query transformation of

sets of primitive rules: given a set of primitive rules Facts, form the program P ′ ≡
P ∪Facts , and then use bottom-up evaluation to compute the set of primitive rules

derivable from P ′. In this way, each program of CLP(X ) defines a transformation of

sets of primitive rules, i.e., a transformation of DNF formulas. Thus, each program

defines an operation in the query algebra. This generalizes the classical datalog

view of a logic program as defining a transformation of sets of ground facts [42, 43].

By extending the database constraint language to to include disequalities var 6=
const, relational algebra queries with unrestricted negations then become closed,

i.e., the safety problems of classical relational algebra simply disappear. On the

other hand, there are richer languages of constraints for which the closure condition

fails to hold for datalog queries, e.g., polynomial equality constraints.24

24Here is an example taken from [21]. Consider the program which contains the two rules

“transclosure(X, Y ) ← X = Y ”, and “transclosure(X, Y ) ← r(X, Z), transclosure(Z, Y )”. If the

input relation is given by the fact “r(X, Y ) ← Y = 2 ∗X”, then the meaning of transclosure is

the relation {transclosure(X, Y ) | Y = X ∗ 2i for some integer i}—which is not representable by

a finite set of primitive rules.
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1.5.4 Abductive Logic Programming

Abductive reasoning is a mode of plausible inference that uses a theory to “infer”

hypotheses that can explain observed facts [5, 19, 8]. In the words of [5], abduction

is the generation of explanations for what we see around us, e.g., given the theory

that drunk people cannot walk straight, and that Jack cannot walk straight, we

might hypothesize that Jack is drunk. I.e., from (a → b), and b, hypothesize a.

There may of course be other explanations, for instance, Jack is dizzy after a roller

coaster ride, and so abductive reasoning only provides plausible explanations.

As Charles Sanders Peirce observed in the 19th century, abduction is one mem-

ber of a triad of modes of reasoning that includes deduction and induction as well.

To illustrate, consider the following statements:

Fact: These marbles are from the box

Rule: All marbles in the box are white

Consequent: These marbles are white

The three modes of reasoning are:

Deduction: From the Fact and the Rule, conclude the Consequent

Induction: From the Fact and the Consequent, hypothesize the Rule

Abduction: From the Rule and the Consequent, hypothesize the Fact

Abductive logic programming [19] is the application of abductive reasoning to

the theories that are constituted by logic programs. Whereas in the ordinary,
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deductive use of logic programs, we seek the conclusions that follow from the facts

and rules of the program, in the abductive use, given some conclusions, we seek

sets of facts which, when combined with the program, imply those conclusions.

The approach described in [19] is as follows. Certain predicates are declared to

be “abductable,” which means that facts with these predicates are to be collected

as hypotheses instead of being proven through the rules. Specifically, if p is an

abductable predicate, and the goal p(α) is expanded by the (top-down) evaluation

process, then no attempt will be made to expand p(α) by means of the rules, but

instead p(α) will get added into the current set of hypotheses. If the computation

starting with the top-level goal g succeeds, then the set of facts collected in this

way, in combination with the rules of the program, provides a hypothesis that is

sufficient to prove g.

Our reachability query problem is an abductive reasoning problem for interactive

expert systems, since it seeks inputs that lead to given conclusions. Abductive logic

programming, however, cannot be applied to this problem, because it works in a

framework of declarative logic rules, whereas the systems that we want to query

use imperative production rules.

1.5.5 Thinksheet Expert Systems

The following account of the “thinksheet” systems is directly related work, because

we will be developing a query algorithm for a subclass fo these systems.

Thinksheet is a sublanguage of production systems which has been applied to

the organization of complex documents [26, 27, 34]. When organized as a thinksheet

production system, a complex document is able to “intelligently” query a user about
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information needs and then filter itself down to an appropriate subdocument.

Definition

The working memory of a thinksheet production system is organized as a finite set

of variables, each of which holds either a defined value or ⊥. Thus the memory

can be modeled as a binding. The actions of the rules are restricted to the forms

display(text), and var := expr . Furthermore, for each variable v, there is exactly

one rule that assigns to v in its action. Thus we can write these rule as “if precondv

then actionv”, and we speak of the precondition and action for v. Specifically, the

following three kinds of rules are admitted:

Question Rules: if precondv then v := accept input(domv)

Calculation Rules: if precondv then v := termv

Conclusion Rules: if precond c then display(text c)

where:

• domv is the set (menu) of possible answer choices

• accept input prompts the user for an input value—but does not block the

progress of the rest of the system

• termv is an expression not containing input statements

• textc is the text of conclusion c

The dependency graph of the rule-set is the directed graph with one node for

each variable, and an edge x → y whenever x occurs in the precondition or the

action of y. Finally, the dependency graph is required to be acyclic.
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When multiple questions have preconditions that evaluate to true, the system

allows the user to answer them in any order. This is accomplished by allowing all

the rules with true preconditions to fire simultaneously, i.e., by not using a conflict

resolution strategy, and by having the input statements accept values from the user

without blocking the rest of the system.

An interpreter for thinksheet production systems has been implemented as a

spreadsheet that is augmented with a precondition facility [26]. When all of the

preconditions are constant true, then the special case of a pure spreadsheet is ob-

tained. The preconditions extend the spreadsheet to include the functionality of

an interactive expert system, since, with preconditions, an input variable gets ac-

tivated only when its precondition is true, and so only the applicable are posed

to the user. By this mechanism, the extended spreadsheet provides a user-tailored

dialogue, and so it can function as an interactive consultant. Also, [26] describes

a form-based web interface to the thinksheet production rule interpreter.

Applications

The thinksheet production systems can express a diverse range of applications,

many of which fall under the heading of “decision DAGs.”

Example 1.5.5 Figure 1.4 shows a sketch of a decision DAG that functions as a

medical consultant, by asking a doctor about measurements of a blood sample, and,

in case of anomalies, leading the doctor through a diagnostic chain.

Each node of the graph represents a production rule, with question rules shown

as boxes and conclusion rules as ovals. The precondition of a node is drawn above
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it. For instance, the full rule the node Ulcer is: if Bleeding=yes then print “Ulcer?”

and accept a yes/no answer for the variable Ulcer. An edge v → w indicates that

v occurs in the precondition of w.

Initially, the only questions with preconditions evaluating to True are the roots,

and so these are the ones that are first answerable by the doctor. If the doctor then

supplies the value 50 for the variable Iron, then the question which prompts “Iron

is low. Evidence of bleeding?” becomes activated. If FolicAcid is then specified as

10, and the answer to “Evidence of bleeding?” is specified as No, then the question

“Malabsorption. Intestinal damage?” becomes activated, etc.

Example 1.5.6 Figure 1.5 shows a decision DAG for a lawyer’s strategy for cross-

examining a witness in a courtroom.

Decision DAGs generalize the familiar notion of decision trees. Whereas in

a decision tree, each non-root node has one parent, and the entry condition for

that node is a boolean function of the value assigned to the parent, in a decision

DAG, the nodes may have any number of parents, and the entry condition is a

function of all of the values at the parents. Specifically, a decision tree is a decision

DAG in which the precondition of each non-root variable v is an atomic formula

(p OP const), where p is the parent variable and OP is a comparison operator.25

This generalization from one to multiple parents leads to a qualitative change in

the semantics of the graphs. In a decision tree, since each internal node has a single
25Im this description of a decision tree, the internal nodes represent variables that are to be

assigned by the user. This covers as a special case the decision trees where each node is a boolean

test, if we regard each test as a question posed to the user, the results of which will get stored in

a boolean variable for that node.
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What is the
iron level?

What is the 
folic acid level?

iron < 100?

Iron is low.
Evidence of
bleeding?

Malabsorption
of Pentose
Sugar?

Ulcer?

folic < 100
bleeding=no &

What is the

Antibodies?

bleeding=yes malabs=yes malabs=yes

damage=yes &

iron>400
...

Diagnosis:
Gluten

Intolerance

Damage?
Intestinal

Level of Gluten

antibody > 25

Figure 1.4: Uses of Acyclic Production Systems: Decision DAGs
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Q: NotAgainQ: Menace

Q: KnowJoe Q: Gun Q: Trigger

Q: RecallJoe

Q: JoeTriggerQ: JoePicture

Q: JoeSays

C: Impeach C: Victory

Q:CrimeScene

See the next two figures for the contents and preconditions of these nodes.

Figure 1.5: Graph of the Trial Strategy Production System

parent, it is possible—and typical—to attach the entry condition for the node to

the incoming edge. This leads to a sequential, control-flow perspective on the tree,

where its behavior is visualized in terms of the execution of linear paths from the

root towards the leaves. When we generalize to allow multiple parents, it is no

longer meaningful to attach the precondition to a single incoming edge, and so the

path-based control-flow model breaks down. For instance, if the precondition of z
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Q: CrimeScene Were you at the corner of Warner and Tampa on the night of April 11,

1991?

Q: Gun Did you have a gun?

Q: JoePicture Here are pictures of you with Joe just before and after the crime oc-

curred. Now do you remember being with Joe?

Q: JoeSays Joe says you were there. Now do you remember?

Q: JoeTrigger Joe remembers that you pulled the trigger. Now, do you remember as

well?

Q: KnowJoe Here is a picture of the key witness Joe. Do you know this man?

Q: Menace Here is a picture of you and Joe together. Now do you remember who Joe

is?

Q: NotAgain Mr. Smith, you’ve already lied when you denied being at the crime scene.

Joe said that you pulled the trigger. Did you?

Q: RecallJoe Do you recall that Joe was with you?

Q: Trigger Did you pull the trigger?

C: Impeach Ladies and Gentlemen of the jury, the witness should have lost all credi-

bility.

C: Victory Ladies and Gentlemen of the jury, the witness has confessed to the crime.

Figure 1.6: Text of Questions and Conclusions for the Trial
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CrimeScence: true

Gun: CrimeScene=yes or JoeSays=yes

JoePicture: RecallJoe=no

JoeSays: KnowJoe=yes or Menace=yes

JoeTrigger: RecallJoe=yes or JoePicture=yes

KnowJoe: CrimeScene=no

Menace: KnowJoe=no

NotAgain: CrimeScene=no and (Gun=no or Trig.=no)

RecallJoe: CrimeScene=yes and (Gun=no or Trig.=no)

Trigger: Gun=yes

Impeach: Menace=no or JoeSays=no or NotAgain=no or JoePicture=no or JoeTrig-

ger=no

Victory: NotAgain=yes or JoeTrigger=yes or Trigger=yes

Figure 1.7: Preconditions for the Nodes in the Trial

is x < y, then the edge from x to z in the graph does not indicate that we can “get

to z from x,” but the weaker statement that the condition for getting to z depends

in part upon x. The semantics of the graphs are therefore qualitatively richer than

that of decision trees.

An important application of decision DAGs is the organization of complex doc-

uments [26]. The DAGs can function as “smart documents” which ask the reader

a series of relevant questions (e.g., about personal data, or topics of interest) and

then filter themselves down to a report containing just the pertinent sections. To

see how a decision DAG can function in this way, we can picture the conclusions,
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which are presented at the leaves of the DAG, in the form of sections of text at-

tached to the leaves. The totality of these texts, along with the questions and

preconditions that connect them, constitute the smart document. As the reader

answers the questions, some of the leaves become false (their preconditions become

false), and some become true. The filtered report is obtained by composing all

the texts at the leaves with preconditions that evaluate to True. Thus, the DAG

functions as a complex document along with a semantic index—the connective logic

of the questions and preconditions—that helps to guide the reader to the relevant

portions of the document.

The general approach to writing such a DAG is to take the existing complex

document and (1) break it into sectional units, (2) determine the parameters which

will function as questions, (3) attach a precondition to each unit of text, which

serves to define the conditions under which the text is applicable, and (4) attach

preconditions to the questions, to specify when they are applicable. For instance, in

a smart document that presents the text of an insurance policy, a fragment might

contain the questions Q1 = “Are you married?”, Q2 = “What is your spouse’s in-

come?”, and a textual section T1 which describes the parts of the policy that apply

to holders whose spouses earn over $50,000; then we would have precondition(Q2)

= ‘Q1=yes’, precondition(T1) = ‘Q2 > 50,000’.

Such DAGs are particularly useful for large documents where readers are in-

terested in only a small portion of the document, i.e., where they read it in a

“non-linear” way, with a specific query in mind. Examples include legislation and

complex requirements documents. When I consult the social security law, for in-

stance, rather than reading the whole document, the query that I have in mind is
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“Which benefits apply in my case?” Ideally, after posing a handful of questions

about my personal circumstances, the DAG would filter itself down to a version of

the law as if it were written specifically for me.

In [26], the following applications of complex documents are described: immi-

gration law, Social Security benefits, and telecommunications requirements.

The Effective-Value Algorithm

Although this was not its stated intention, the “effective value” algorithm, based

on a 3-valued logic, which was presented in [26, 34], can function as a partial

decision procedure for assignment queries to acyclic production systems.26 The

thinksheet interpreter [26] uses the effective value algorithm to determine certain

questions and conclusions which are unreachable under the current binding, and

others which are inevitable; the former are made to vanish from the display, and the

latter are presented to the user. In this way, the system thus behaves in accordance

with the features of a query tool that we outlined in Section 1.1.4 for the restricted

case where the query formula is of the form var 1 = val1 ∧ · · · ∧ vark = valk .

The algorithm uses a logic of three truth-values that are ordered on a scale of

“definedness”:

False < Possible < True

Here is the key definition.

Definition 1.5.7 (eff s(e, b), Effective Value of an Expr. in a Binding)

For an acyclic production system s with universe of discourse D, an expression e,
26Recall from Section 1.1.4 that the assignment queries ask about the reachability/inevitability

of questions and conclusions under the query formula ∧b, where b is the current binding.
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and a binding b, define eff s(e, b) ∈ D ∪ {False, Possible, True} according to Fig-

ure 1.8.

eff : Expr × Binding → D ∪ {False, Possible, True}
eff (v, b) = if eff (precondv, b) = True then ; question var v

if b(v) ∈ domv then b(v) else Possible

else eff (precondv, b)

eff (w, b) = if eff (precondw, b) = True then eff (termw, b) ; derived var w

else eff (precondv, b)

eff (c, b) = cI ; constant c

eff (g(e1, . . . , en), b) = if ∃ i s .t . eff (ei, b) = False then False ; function

else if ∃ i s .t . eff (ei, b) = Possible then Possible ; or

else gI(eff (e1, b), . . . , eff (en, b)) ; predicate g

eff (φ1 ∧ φ2, b) = min(eff (φ1, b), eff (φ2, b))

eff (φ1 ∨ φ2, b) = max(eff (φ1, b), eff (φ2, b))

eff (not(φ), b) = neg(eff (φ, b))

Key:

D = universe of discourse

I = interpretation for constraint domain

False < Possible < True

neg exchanges True and False, and leaves Possible unchanged

Figure 1.8: Definition of Effective Value

By memoizing the effective values of the variables, the effective values of all the

variables and preconditions can be computed by a single traversal of the production

system. Further optimizations are described in [26] which incrementally maintain

the computed effective values when the current binding is changed by a single
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assignment from the user.

The significance of the effective-value algorithm for the processing of assignment

queries, which can be proven with some effort, is that for formulas f and attainable

bindings b: (1) eff s(f, b) = False ⇒ f is (∧b)-unreachable, and (2) eff s(f, b) =

True ⇒ f is (∧b)-inevitable.27 (Since our query algorithm works for a far more

general class of query formulas, and it is not based upon the thinksheet effective

value algorithm, we omit the proof of this statement.)

It is natural to wonder whether this 3-valued notion of effective value is solely a

technical device for a useful algorithm, or whether it has a deeper significance, i.e.,

does it express semantic principles with objective content? In [26], Piatko makes

some informal suggestions about an underlying semantics:

. . . false and possible represent meta-statements about a particular vari-

able . . . [if the effective value is false] it means that the value is unneces-

sary, or not applicable . . . [whereas] possible can represent a node value

that is undefined i.e. the node’s precondition may be true and thus it

is applicable, but no value has been assigned to it yet. This undefined

state is propagated to the other nodes that depend on this node, so they

too must have the [effective] value possible.

In this thesis, for our analysis for queries and development of a query algorithm,

we will not be using the notions of 3-valued logic and effective values. The reasons
27The incompleteness of the effective value algorithm for assignment queries follows from the

fact that, at least for special cases, the converses of these two implications are not true. For

instance, (1) the formula ‘x = x’ is inevitable under the empty binding, but eff (‘x = x’, {}) =

Possible 6= True, and (2) ‘x 6= x’ is unreachable, but eff (‘x 6= x’, {}) = Possible 6= False.
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are that (1) these constructions themselves need to be explained, and (2) since they

are predicated upon the internal structures of a particular kind of expert system—

the precondition formulas—they are not suitable as first concepts for our theory

of queries to generic expert systems. Instead, we take the notion of attainable

bindings as the point of departure. Nevertheless, as we show in the final chapter,

the theory that we develop in this thesis will also provide a partial explanation for

the meaning of the effective values.

1.6 The Expert Systems to be Queried

We now specify a restriction of the thinksheet production systems. This provides

the case of the query problem that we will solve in this thesis. In the general

thinksheet production systems, the preconditions and calculation expressions may

be arbitrary program fragments. To make the queries decidable, we limit the pre-

conditions to boolean formulas, and the calculation expressions to logic terms.

Furthermore, from this point until chapter 4, we assume that the preconditions are

monotone boolean formulas.

This class of production systems is still broad enough to cover the decision

DAGs, classical spreadsheets, and precondition-based expert system spreadsheets.

For instance, the examples we presented in Figures 1.4 and 1.5 are covered by this

language. Here is a complete, formal specification of the systems to be queried.

Definition 1.6.1 (Acyclic Production System) Let X be a constraint-domain

with opposite predicates. An acyclic production system s consists of a set of ques-

tion variables Vs, derived variables Ws, and conclusions Cs, plus a set of rules of
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the following forms:

Question Rules: if precondv then v := input(domv)

Calculation Rules: if precondw then w := termw

Conclusion Rules: if precond c then display(text c)

where:

1. There is exactly one question rule for each v ∈ Vs, one calculation rule for

each w ∈Ws, and one conclusion rule for each c ∈ Cs

2. ∀x ∈ Vs ∪ Ws ∪ Cs, precondx is a monotone ΣX-formula with variables in

Vs ∪Ws

3. for each v ∈ Vs, there is an associated formula indomv that it satisfiable and

has v as its only free variable

4. domv 6= {}, the domain of values assignable to v, is defined as the set of values

for v that satisfy indomv. For instance, a domain of {1,2} is represented by

the indom formula ‘v = 1 ∨ v = 2’, and a domain that equals the universe of

discourse is represented by ‘v = v’

5. termw is a ΣX-term with variables in Vs ∪Ws

6. for each w ∈Ws, we define indomw to be the constraint w = termw

7. G(s), the dependency graph for s, is defined as the directed graph over the

nodes Vs ∪Ws ∪ Cs, with an edge x→ y if x occurs in precondy or in termy

8. G(s) must be acyclic

62



Example 1.6.2 (Simple Acyclic Production System Sxyz)

Let Vs = {x, y}, Ws = {z}, Cx = {c}, and define the rules by the following table:

node n domn indomn precondn termn textn

x {−2,−1, 0, 1, 2} x = −2 ∨ · · · ∨ x = 2 true

y {−2,−1, 0, 1, 2} y = −2 ∨ · · · ∨ y = 2 x > 0

z z = x ∗ y y < 0 x ∗ y

c z = −2 ‘z is -2’

Here is the dependency graph:

x //

��?
??

??
??

? z // c

y

??�������

In this system, the conclusion c is unreachable under the query x + y = 0, and

a conclusion with precondition x = 2 would be inevitable under the query z = −4.

These systems work by maintaining a current binding b for the variables Vs∪Ws,

which is initialized to {}. Whenever a precondition is satisfied, then the rule fires.

If the rule is for question variable v, then the user is permitted to assign to v. If

the rule is for derived variable w, the system makes the assignment to w. We give

the exact definition as follows.

Definition 1.6.3 (Operational Description of the Acyclic Systems)
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For an acyclic production system s, and an attainable binding b ∈ As, define:

says(b) = {c ∈ Cs | (b |= precond c)}
ask s(b) = {v ∈ Vs | (b |= precondv) ∧ b(v) = ⊥}
calcs(b) = {(w, val(termw, b)) ∈Ws ×Ds | (b |= precondw) ∧ b(w) = ⊥}

We now give four examples of queries to the acyclic production systems.

Example 1.6.4 In the medical decision DAG shown in Figure 1.4, is the diagnosis

Gluten-Intolerance reachable under the condition ‘Iron = 100∨FolicAcid = 100’?

Example 1.6.5 In the trial strategy shown in Figure 1.5, is conclusion Victory

reachable if the witness says No to the question Gun?

Example 1.6.6 In the trial strategy, let pv be the precondition of the conclusion

Victory, and pi be the precondition of Impeach. Are there any inputs which lead to

the conclusion pv ∧ pi? This would indicate an error in the design of the system,

since Victory and Impeach were intended to be mutually exclusive outcomes.

Example 1.6.7 Let pi be the precondition of Impeach in the trial strategy DAG.

Under the query formula pi, is the conclusion formula ‘CrimeScene=no’ inevitable?

I.e., is the answer CrimeScene=no necessary in order to reach conclusion Impeach?

1.7 Issues with Negation

We now explain why negations in the preconditions pose some subtle complexities.

As we defined it, say(b) consists of all those preconditions p for conclusions such

that b |= p. But how are we to define the relation b |= p, in the case that p may

64



contain negations? More specifically, how are we to define the relation b |= not(f),

for a formula f? It would seem natural enough to define b |= not(f) to mean

not(b |= f), but when the bindings b may contain ⊥ values, this leads to anomalies.

For instance, suppose the precondition formula p is not(x = 0), and that the binding

b is the initial binding {}. Then b does not satisfy p, yet it doesn’t make sense for

not(x = 0) to be true when x still remains to be specified.

One approach is to say that, since ‘x = 0’ is ⊥ in the empty binding, then,

if we assume that the unary negation operator is “strict,” i.e., that not(⊥) = ⊥,

the evaluation of {} |= not(x = 0) should itself evaluate to ⊥, and so {} would

not satisfy not(x = 0). This approach is equivalent to replacing not(x = 0) with

x 6= 0, and, more generally, replacing each boolean formula f by its negation-free

equivalent f+, as per Definition 1.4.4. Thus, by viewing not(f) as an abbreviation

for the monotone formula f−, we get the strict negation operator within the simpler

framework of production systems with monotone preconditions. This approach

also has the advantage of simplifying the query problem to monotone production

systems. That is what we will do.

There is, however, no law of thought that prevents us from considering an alter-

native kind of negation that is not strict. There is no justification for the a priori

requirement that the logical operators be strict. In fact, as the following example

shows, ordinary disjunction behaves in a nonstrict manner. Suppose that Joe is 31

and single, and that he reads the following clause in a contract: if your spouse is

employed or you are over 20, then you are eligible for benefit X, i.e., if (spouseEm-

ployed or Age > 20) then benefit. The benefit clearly applies to Joe. Now, for Joe’s

case, the rule is tantamount to: if (⊥ or true) then benefit. Hence, (⊥ or true)
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must be true. Thus, since the ⊥ argument didn’t cause the disjunction to be ⊥,

disjunction is not strict. Still, of course, the burden of proof would remain on us

to show that a nonstrict negation operator is not an arbitrary formalism, i.e., that

it has an objective significance.

In a closing chapter, we will present a semantics for a non-strict negation op-

erator. Its implementation, however, comes at the cost of a more complicated

operational semantics. The theory that we will develop for analyzing queries to

the monotone systems will provide the basis for extending the theory and query

algorithm to cover preconditions with general boolean formulas.

1.8 Thesis Contribution

This thesis, parts of which were presented in [40], is, to our knowledge, the first

exploration into the subject of query-processing for interactive expert systems. The

paradigm we contribute is the problem of querying the knowledge in the rules that

the system uses to question a user. We single out the following useful kind of query:

Which conclusions are reachable, and which are inevitable, under a hypothetical

constraint on the user input? Although reachability problems have been widely

studied in other contexts, e.g., the halting problem, we believe this to be the first

investigation of reachability problems for interactive rule-based expert systems.

This query paradigm raises the challenge for researchers to find expert system

languages that will admit a reachability query algorithm.

Towards this aim, we present a theory of queries to a broad class of expert sys-

tems. We define these systems by a language-independent monotonity requirement
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on the questioning mechanism: once a question is posed by the system, then, even

if the user answers other questions, it should not be retracted until it is answered.

For these systems, we develop a logic semantics that is relativized to the content of

the knowledge-rules. In this semantics, we define a series of useful concepts, such

as the core of applicable assignments within a binding, the applicability and inap-

plicability of terms under a binding, and the relationships under which a binding

justifies the acceptance, or justifies the rejection, of a formula by the system. We

then use these concepts to re-express the queries in a form that may be conducive

to algorithmic solutions. This whole theory, which includes the semantic concepts,

and the analysis of queries, offers the benefit of language-independence. We hope

that this generic analysis may offer guidance for the discovery of query algorithms

for specific languages.

We have discovered one such algorithm, which we believe to be the first reach-

ability query algorithm for a language of interactive expert systems. The language

is a restriction of production systems to a simple acyclic form which has a diverse

range of applications. When the preconditions are conjunctive, the data complexity

of the algorithm, measured in units of constraints, is O(n2), where n is the size of

the input production system. We also give a query optimization for the frequently

occurring pattern of local decision trees in the rule systems. When general datalog

methods are used for the final, satisfaction-testing phase of the query algorithm,

the number of constraints that must be solved is O(n2), where n is the size of the

local trees. With our optimization, it is O(n). Finally, we have used the algorithm

to build a query tool for acyclic production systems. To our knowledge, they are

the first interactive expert systems that can be queried about their conclusions.
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Chapter 2

A Theory of Queries to Expert

Systems

In this chapter, we define the “regular” systems by a monotonicity requirement on

the question-asking mechanism, and then we proceed to analyze semantic notions

of logic, such as applicability and inapplicability, in the context of the rules of

an expert system. The regular systems include the acyclic production systems, for

which we will later give an effective query algorithm. The keys to understanding the

query algorithm will be given by the theorems, which we present at the culmination

of this chapter, about the nature of queries to regular systems.
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2.1 An Axiomatic Approach to the Theory of Expert Sys-

tems

Our theory of expert systems, which will take its basic terms from the generic

formal model presented in Section 1.1.2, is axiomatic (generic) because its basic

terms are fully abstracted from the internal mechanisms of the systems. Since this

kind of theory is built from terms that refer only to the external characteristics

of the systems, its results are independent of the languages used to program the

systems. This can lead to generality of results. Our query problem, for instance,

applies with equal validity to interactive expert systems written with production

rules as it does to systems written in BASIC. Furthermore, the generic concepts

may illuminate the essential characteristics of the systems. For instance, we may

take up the analysis of systems that have a monotonic conclusion function says.

For a well-known illustration of the benefits of the axiomatic approach, consider

the ordinary theory of real arithmetic [23]. This theory, which comprises the “field”

axioms that define the relations among the arithmetic operations, plus the axioms

for a complete total order, offers genericity, because the operands, i.e., the numbers,

are treated as an abstract data type. The axioms determine, up to isomorphism, all

of the properties of the real numbers. A constructive approach to real arithmetic,

in contrast, can be achieved with infinite models that satisfy the axioms, e.g., the

system of infinite decimal expansions. In many instances, the axioms can offer an

approach that is conceptually simpler than the model-based approach. For instance,

we often make deductions by repeated applications of the transitivity axiom on the

ordering, without referring to infinite decimal expansions. In this framework, we
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may attain generality of results by the natural method of analyzing subsets of the

axioms. For example, if we drop the completeness axiom, then we get a theory

whose results cover the rationals as well as the reals.

The axiomatic theory of “regular” interactive systems, which we present in this

chapter, is characterized by the axiom that any question posed by the system will

not be retracted until it is answered by the user. Our analysis of the regular systems

will yield both (1) useful concepts, such as generic definitions of applicability and

inapplicability, and (2) a theoretical generality that extends beyond the systems

for which this thesis provides a query algorithm. The extent of this generality, i.e.,

the class of programs which conform to the axioms of regular systems, is a topic

for further research.

2.2 Regular Expert Systems

We now introduce a notion of “regular” expert systems, which means, roughly, that

the specification of new information cannot cause a questions or computations to

be revoked by the system. The assumption of regularity has many ramifications,

and it will serve as the cornerstone of our query theory.

Definition 2.2.1 (Regular System)

Recall from the terminology on page 11 that As is the set of attainable bindings for

the system s. Then a system s is regular if both of the following conditions hold:

1. ∀ b, b′ ∈ As : b ⊆ b′ ⇒ (ask s(b) ⊆ vars(b′) ∪ ask s(b
′))

2. ∀ b, b′ ∈ As : b ⊆ b′ ⇒ (calcs(b) ⊆ b′ ∪ calcs(b
′))
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Thus, the regularity assumption means that (1) if a question is asked in an

attainable binding, then it will either be answered or asked in every attainable

extension of that binding, and (2) if a value is calculable in an attainable binding,

then it will either be calculated or calculable in every attainable extension. The next

proposition gives an alternative, algebraic characterization of the regular systems.

Proposition 2.2.1 A system s is regular iff the following two functions are mono-

tonic with respect to inclusions of bindings:

1. λb ∈ As . vars(b) ∪ ask s(b)

2. λb ∈ As . b ∪ calcs(b)

The next proposition shows that the acyclic production systems that we will

be querying—including the example decision DAGs that we have seen so far—are

regular systems.

Proposition 2.2.2

A production system where precondition formulas are monotone is a regular inter-

active system.

For purposes of comparison, we exhibit a system that is not regular.

Example 2.2.2 (A Non-Regular Interactive System) Suppose that:

1. Vs = {x, y}

2. Initially, x and y are answerable

3. If x is answered first, then y remains answerable
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4. If y is answered first, then the session terminates, i.e., ask becomes empty

Here is the formal specification for this system:

ask s(b) =




{x, y} if vars(b) = {}
{y} if vars(b) = {x}
{} if vars(b) = {y}
{} if vars(b) = {x, y}

This system fails to be regular because, starting from the initial binding, where

both variables are answerable, the answering of y causes the question x to be

revoked. Formally, let b = {}, and b′ be any attainable binding such that vars(b) =

{y}. Then b ⊆ b′, yet ask(b) = {x, y} is not a subset of ask(b′) ∪ vars(b′) = {y}.
Thus, the regularity condition does not hold, because x has been revoked in the

transition from b to b′.

This system illustrates the fact that in a non-regular system, a final binding

may not be maximal among the attainable bindings. For example, {y=1} is a final

binding that is properly contained in the attainable binding {x = 1, y = 1}. On

the other hand, in all systems—whether regular or not—the maximal attainable

bindings are final. This is because a non-final binding is by definition extendible,

i.e., non-maximal.

We now show that the regularity condition ensures that the maximal attainable

bindings coincide with the final bindings. The proof uses the following lemma,

which implies that in a regular system, if b and b′ are attainable bindings such that

b ⊆ b′, then there is an attainable sequence of assignments that converts b to b′.

Lemma 2.2.3 For a regular system s,
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∀ b, b′ ∈ As : (b ⊆ b′ ∧ b 6= b′)⇒ (ask s(b) ∩ vars(b′) 6= {}) or (calcs(b) ∩ b′ 6= {})

Proposition 2.2.4 For a regular system s,

∀ b ∈ As : b is maximal in As ⇔ b ∈ Fs

2.3 The Core of a Binding

We now show that in a regular system, every binding contains a “core” sub-binding

that constitutes the valid part of the binding. This core is obtained by removing

from the binding all of the assignments to inapplicable variables. For instance, in

a system s where the preconditions are realistic, we will have that:

cores({Married =no, SpouseAge =30}) = {Married =no}

We will prove that for regular systems, the core of a binding is well-defined, and

equals the maximum attainable sub-binding.

We now give an effective procedure for computing cores(b), which uses a simula-

tion of s on the data in b in order to produce the maximum attainable sub-binding.

The procedure can be described by the following experiment. We start a session

with s, and we use the data in b as a pool of assignments that may potentially

added to a binding that will be built up to be the core of b. Whenever s asks us for

the value for the question variable v, we check the value for v that is provided by b.

If b(v) is defined and belongs to the domain of v, then (1) we supply the b(v) as the

answer value for v, and (2) we add the pair (v, b(v)) to the core of b. Otherwise, we

supply no answer value for v, and leave the value of v in core(b) at ⊥. Whenever s

wants to assign the value z to a derived variable w, then we check the value b(w). If
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b(w) = z then we add the pair (w, z) into the core of b. Otherwise, we add nothing

into the core of b, and “prevent” the system from making that assignment. We now

give the formal definition.

Definition 2.3.1 (Core of a Binding, cores(b))

For a regular system s, and a binding b, define cores(b) ⊆ b according to the proce-

dure shown in Figure 2.1.

binding cores(binding b)

begin

binding b′ = {}
loop

if ∃ v ∈ ask s(b′) s .t . b(v) ∈ domv then b′(v) = b(v)

else if ∃ (w, z) ∈ calcs(b′) s .t . b(w) = z then b′(w) = b(w)

else break

end

return b′

end

Figure 2.1: The Core of a Binding in a Regular System

We will show that for regular systems, the core is well-defined. I.e., we show

that for regular systems, the non-determinism of the algorithm in Figure 2.1 doesn’t

affect the binding that it computes. We will need a lemma, which says that the

union of two “compatible” attainable bindings is itself an attainable binding.

Definition 2.3.2 (Compatible Bindings) Bindings b1, b2 are compatible if:
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∀v ∈ vars(b1) ∩ vars(b2) : b1(v) = b2(v)

Lemma 2.3.1 For a regular system s,

(b1, b2 compatible and b1, b2 ∈ As)⇒ b1 ∪ b2 ∈ As

I.e., the attainable bindings are closed under compatible unions.1

Corollary 2.3.2 For a regular system s and a binding b, within b there is a unique

maximal attainable sub-binding, viz., the union of the attainable sub-bindings of b,

∪{b′ ∈ As | b′ ⊆ b}.

Theorem 2.3.3 For a regular system s, cores(b) is uniquely defined, and it equals

the maximum attainable sub-binding ∪{b′ ∈ As | b′ ⊆ b}.

We have therefore succeeded in defining the core of applicable assignments

within a binding, using the operational logic of a regular system. We now state

some algebraic properties of the operator cores. The first proposition shows that the

fixpoints of the core operator (the bindings b such that b = cores(b)) are precisely

the attainable bindings.

Proposition 2.3.4 For a regular system s:

As = fixpoints(cores) = image(cores)

1On the other hand, the attainable bindings are not necessarily closed under compatible in-

tersections. Take for example the production system with variables {x, y, z}, where x and y have

precondition true, and z has precondition ‘x = 0 ∨ y = 0’. Consider the bindings {x=0, z =0}
and {y = 0, z = 0}, which are attainable and compatible. Their intersection, {z = 0}, is not

attainable.
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The next proposition shows that cores is a closure operator.

Proposition 2.3.5 The function cores is a downward closure operator, i.e., cores

is monotonic, decreasing and idempotent:

• b1 ⊆ b2 ⇒ cores(b1) ⊆ cores(b2)

• cores(b) ⊆ b

• cores(cores(b)) = cores(b)

The following definition gives a useful notation for the final extensions of the

core of a binding.

Definition 2.3.3 (Final Extensions Fs(b))

For a regular system s and binding b, define:

Fs(b) ≡ {b′ ∈ Fs | b′ ⊇ cores(b)}

Proposition 2.3.6 For a regular system s and binding b,

Fs(b) 6= {}

Proposition 2.3.7 For a regular system s and binding b,

b ∈ Fs ⇔ Fs(b) = {b}.

2.4 The Affirmation and Disaffirmation of Formulas

We now introduce a pair of logical relations between bindings b and formulas f that

is induced by a regular system s: a positive relation b |+==s f , called b affirms f , where
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the binding justifies the acceptance of the formula by the system, and a negative

relation b |−==s f , called b disaffirms f , where the binding justifies the rejection of the

formula by the system.

Definition 2.4.1 (Affirmation b |+==s f and Disaffirmation b |−==s f)

Recall from Definition 2.3.3 that Fs(b) is the set of final extensions of the core of

b. Then for a regular system s, formula f , and binding b, define:

b |+==s f ⇔ (∀ b′ ∈ Fs(b) : b′ |= f)

b |−==s f ⇔ (∀ b′ ∈ Fs(b) : b′ 6|= f)

Thus, b |+==s f says that f is satisfied by all of the final extensions of the core of

b, and b |−==s f says that f is satisfied by none of these final extensions. Intuitively,

b |+==s f means that the applicable assignments within b guarantee that f will even-

tually become satisfied, and b |−==s f means that these assignments guarantee that f

will never be satisfied in a final outcome. This is why we say that b |+==s f means the

data in the binding justifies the acceptance of the formula f by the system, and

that b |−==s f justifies the rejection of f by the system.

It may happen that a binding b neither affirms nor disaffirms a formula f . This

occurs when some of the final extensions of core(b) satisfy f and some do not satisfy

f . On the other hand, the next proposition states that a binding cannot both affirm

and disaffirm a given formula.

Proposition 2.4.1 For a regular system s and formula f ,

6 ∃b ∈ Bs s .t . (b |+==s f) ∧ (b |−==s f)

Example 2.4.2 Consider the system s with the two variables {M, SA}, where M

stands for the question “Are you married?” and SA for the question “What is
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your spouse’s age?”. Let M be a root question, and let SA have the precondition

‘M = yes’. Suppose that the formula f is ‘SA > 30’. Then we have the following:

binding b cores(b) b |+==s f b |−==s f status of f

1. {} {} No No indeterminate

2. {M =Yes, SA=50} {M =Yes, SA=50} Yes No affirmed

3. {M =Yes, SA=20} {M =Yes, SA=20} No Yes disaffirmed

4. {M =No} {M =No} No Yes disaffirmed

5. {M =No, SA=50} {M =No} No Yes disaffirmed

Explanation. Since this system has no derived variables, calcs maps every binding

to itself. Call the bindings in the first column b1, . . . , b5. Observe that b1, . . . , b4

are attainable, and b5 is unattainable. Bindings b2, b3 and b4 are final.

1. core(b1) is {}, and {} has final extensions that satisfy f (e.g., b2) and final

extensions that do not satisfy f (e.g., b3). Hence b1 is indeterminate.

2. core(b2) has just one final extension, namely, b2. Since b2 |= f , f is satisfied

in every final extension of core(b2). Hence b2 |+==s f .

3. core(b3) has just one final extension, namely, core(b3). Since core(b3) 6|= f , f

is unsatisfied in every final extension of core(b3). Hence b3 |−==s f .

4. b4 |−==s f , by the same argument as (3)

5. b5 |−==s f , by the same argument as (3)

We may distinguish between two contrasting modes of disaffirmation. In the

Example 2.4.2, whereas the formula ‘SpouseAge > 30’ is disaffirmed by the binding
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{Married =Yes, SpouseAge =20} because it is false, it is disaffirmed by the binding

{Married = No} because it is inapplicable. The notion of disaffirmed formulas

emphasizes the negative aspect common to these formulas: given the logic of the

rules, the system has grounds for rejecting all such formulas, because they can never

become true.

The next proposition shows that for final bindings, affirmation coincides with

satisfaction, and disaffirmation coincides with dissatisfaction.

Proposition 2.4.2 For a regular system s, binding b ∈ Fs, formula f , and con-

clusion c ∈ Cs:

1. b |+==s f ⇔ b |= f

2. b |−==s f ⇔ b 6|= f

3. b |+==s c⇔ c ∈ says(b)

4. b |−==s f ⇔ c /∈ says(b)

We will now extend the notation of affirmation and disaffirmation to include the

forms b |+==s c and b |−==s c, where c is a conclusion. The basic idea remains unchanged.

Definition 2.4.3 (Affirmation b |+==s c and Disaffirmation b |−==s c)

For a regular system s, conclusion c, and binding b, define:

b |+==s c⇔ (∀ b′ ∈ Fs(b) : c ∈ says(b
′)

b |−==s c⇔ (∀ b′ ∈ Fs(b) : c 6∈ says(b
′))
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To summarize, we have defined the relations b |+==s f and b |−==s f , which are anal-

ogous to the satisfaction and dissatisfaction relations b |= f , b 6|= f of first-order

logic. The difference is that with the affirmation and disaffirmation relations, the

binding and the formula are mediated by the rules of an expert system.

2.5 Applicable and Inapplicable Terms

We now define the concepts of the applicability, inapplicability, and possible appli-

cability of a term in a binding for a regular system. These definitions use a special

case of the affirmation and disaffirmation relations b |+==s f , b |−==s f .

Definition 2.5.1 (Applicable and Inapplicable Terms)

For a regular system s, binding b, and term t, define:

t is applicable in b if b |+==s (t = t)

t is inapplicable in b if b |−==s (t = t)

t is possibly-applicable in b otherwise

In words, a term is applicable in a binding when it is defined in every final

extension of the core of the binding, and it is inapplicable when it is undefined in

every final extension of the core. For the case of final bindings, it is easy to show

that this definition specializes to the following simple form: a term is applicable

in a final binding iff it is defined in that binding, and it is inapplicable iff it is

undefined.

Example 2.5.2 Consider the system s of Example 2.4.2, with variables {M, SA}
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for the questions Married and SpouseAge. Let t be the term SA + 3.

binding b cores(b) status of t

{} {} possibly applicable

{M =Yes, SA=50} {M =Yes, SA=50} applicable

{M =Yes} {M =Yes} applicable

{M =No} {M =No} inapplicable

{M =No, SA=50} {M =No} inapplicable

2.6 Analysis of Queries to Regular Systems

We now use the affirmation and disaffirmation relations to analyze the structure

of queries. Our first theorem shows that an algorithm capable of determining the

affirmability and disaffirmability of formulas and conclusions will provide a sufficient

basis for a reachability/inevitability query algorithm.

Theorem 2.6.1 For a regular system s, conclusion c, formula q and variable v,

• c is q-reachable ⇔ (∃ b ∈ B : b |+==s q and b |+==s c)

• c is q-inevitable ⇔ ( 6 ∃ b ∈ B : b |+==s q and b |−==s c)

• (b |+==s q and b |+==s c)⇒
each binding in Fs(b) witnesses the q-reachability of c

In words, c is q-reachable iff q and f are affirmable by the same binding, and c is

q-inevitable iff there is no binding in which q is affirmed and c is disaffirmed.2

2These statements are structurally analogous to the definitions of q-reachability and q-

inevitability. The significant difference is that whereas the original definitions refer to the ex-
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The next theorem strengthens the previous theorem, by a weakening of its

premises. Specifically, it defines a class of “sufficient approximations” to the af-

firmation and disaffirmation relations, and then shows that an algorithm capable

of determining affirmability/disaffirmability relative to one of these approximations

will still provide a sufficient basis for a query algorithm. It therefore identifies a

potentially larger class of algorithms that are capable of solving the queries.

Corollary 2.6.2 For a regular system s, suppose that P and N are relations be-

tween bindings b and formulas (and conclusions) f , such that the following condi-

tions hold:

• P (b, f)⇒ b |+==s f

• N(b, f)⇒ b |−==s f

• (b ∈ Fs and b |+==s f)⇒ P (b, f)

• (b ∈ Fs and b |−==s f)⇒ N(b, f)

Then for conclusions c, formulas q and variables v:

• c is q-reachable ⇔ (∃ b ∈ B : P (b, q) and P (b, c))

• c is q-inevitable ⇔ ( 6 ∃ b ∈ B : P (b, q) and N(b, c))

istence of final bindings that satisfy certain conditions, this theorem reformulates the problem in

terms of the existence of any bindings that meet the analogous conditions. Thus, we are relieved

of the complex requirement that the bindings be final. The complexity of the system, and of

the query problem, has been concentrated into the structure of the affirmation and disaffirmation

relations.
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• P (b, q) and P (b, c)⇒
each binding in Fs(b) witnesses the q-reachability of c

That completes our analysis of queries. In the next chapter, we will use Corol-

lary 2.6.2 to prove the correctness of our query algorithm for acyclic production

systems.
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Chapter 3

The Query Algorithm

We now present a reachability/inevitability query algorithm for acyclic production

systems.

3.1 The Query Algorithm

The query algorithm consists of (1) the mutually recursive functions poss(e) and

negs(e), shown in Figure 3.1, which compute, respectively, the positive and negative

reachability formulas for an expression e within a system s, and (2) the top-level

routine, shown in Figure 3.2, which uses poss and negs to construct particular

reachability formulas whose satisfiability indicates the answers to the queries. Also,

the algorithm for cores(b), given in Figure 2.1 of the previous chapter, is used in

the computation of the witness bindings.

The arguments to the top-level routine are the system s, the query formula

q, and a domain-specific constraint-solver x. Three methods of x are used: (1)

x .satisfiable(f ), which tests the satisfiability formula f , (2) x .solution(f ), which,
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for satisfiable f , produces a satisfying binding, and (3) x .project(vars, f ), which

projects the constraint f onto the variables vars . Each conclusion and question has

the following three attributes that are set by the algorithm: a boolean indicating

reachability, a boolean indicating inevitability, and an attribute that holds a witness

binding. For questions, the algorithm also sets an attribute that holds the answer

choices under the query.

The heart of the algorithm consists of the functions pos and neg .

Definition 3.1.1 (The Reachability Formulas poss(e), negs(e))

For an expression e and acyclic production system s, we name the formulas con-

structed in Figure 3.1 as follows. The formula poss(e) is the positive reachability

formula for e, and negs(e) is the negative reachability formula for e.

The maps posmap and negmap, which send variables to formulas, are used

in the functions pos and neg as an optimization that leads to a more compact

representation for the reachability formulas that are returned by pos and neg . These

maps ensure that for each variable x, the formulas pos(x) and neg(x) will get

computed at most once, and, when they are computed, pointers to them will be

kept in the map entries posmap(x) or negmap(x).1

Remark on the Use of Negations. The cases in the definitions that handle the

formulas ¬φ, are, at present, parts of the code that will not be executed, since we

have restricted the precondition and query formulas to be monotone. When we
1Later, in the section on complexity, we will prove that the resulting “dagification” of all the

formulas produced by the repeated calls to pos and neg, causes the total number of formula-nodes

to be linear in the size of the input production system plus the query formula.
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global posmap,negmap : Vars → Formulas // for memoization

function poss(e) : AcyclicSystem s × Expression e → Formula

begin

if e ∈ Vars and posmap(e) 6= ⊥ then return posmap(e)

result := case e of

true → true

false → false

φ1 ∧ φ2 → poss(φ1) ∧ poss(φ2)

φ1 ∨ φ2 → poss(φ1) ∨ poss(φ2)

¬φ → negs(φ)

p(t1, . . . , tn) → poss(t1) ∧ · · · ∧ poss(tn) ∧ p(t1, . . . , tn) (predicate)

f(t1, . . . , tn) → poss(t1) ∧ · · · ∧ poss(tn) (function)

c → true (constant)

v → poss(precondv,s) ∧ indomv,s (question var)

w → poss(precondw,s) ∧ poss(termw,s)∧ (derived var)

w = termw,s

if e ∈ Vars then posmap(e) := result

return result

end

function negs(e) : AcyclicSystem s × Expression e → Formula

begin

if e ∈ Vars and negmap(e) 6= ⊥ then return negmap(e)

result := case e of

true → false

false → true

φ1 ∧ φ2 → negs(φ1) ∨ negs(φ2)

φ1 ∨ φ2 → negs(φ1) ∧ negs(φ2)

¬φ → poss(φ)

p(t1, . . . , tn) → negs(t1) ∨ · · · ∨ negs(tn) ∨ poss(p(t1, . . . , tn))

86



querySystem(AcyclicSystem s, Formula q, Solver x)

begin

for each conclusion c ∈ Cs do

c.reachable := x.satisfiable(poss(q) ∧ poss(precond c,s))

c.inevitable := not(x.satisfiable(poss(q) ∧ negs(precond c,s)))

if c.reachable then

c.witness := cores(x .solution(poss(q) ∧ poss(precond c,s)))

endfor

for each question v ∈ Vs do

v .reachable := x.satisfiable(poss(q) ∧ poss(v))

v .inevitable := not(x.satisfiable(poss(q) ∧ negs(v)))

if v .reachable then

v .witness := cores(x .solution(poss(q) ∧ poss(v)))

v .choices := x.project({v}, poss(q) ∧ poss(v))

endfor

end

Figure 3.2: Top-Level of the Query Algorithm — Subroutines in Figure 3.1

later extend the operational semantics to include negations, then the algorithm as

we have now written it will also work correctly in the extended framework.

Irrespective of whether a formula f contain negations, the reachability formulas

poss(f) and negs(f) will always be monotone. The reason is simply that no negation

operators ¬ are introduced in the right-hand-side expressions of the functions pos
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and neg .2

Example 3.1.2 (Reachability Formulas for Sxyz)

We compute the positive and negative reachability formulas for the expression e

ranging over {x, y, z}, for the system Sxyz from Example 1.6.2. Here are the relevant

parts of Sxyz:

var v domv precondv termv

x {−2,−1, 0, 1, 2} true

y {−2,−1, 0, 1, 2} x > 0

z y < 0 x ∗ y

Here are the reachability formulas:

pos(x) = indomx = x ∈ {−2, . . . , 2}
pos(y) = pos(x) ∧ (x > 0) ∧ indomy = x ∈ {1, 2} ∧ y ∈ {−2, . . . , 2}
pos(z) = pos(y) ∧ (y < 0) ∧ z = xy = x ∈ {1, 2} ∧ y ∈ {−2,−1} ∧ z = xy

neg(x) = false = false

neg(y) = neg(x) ∨ (pos(x) ∧ x ≤ 0) = x ∈ {−2,−1, 0}
neg(z) = neg(y) ∨ (pos(y) ∧ y ≥ 0) = x ∈ {−2,−1, 0}∨

(x ∈ {1, 2} ∧ y ∈ {0, 1, 2})

The reachability formulas for the variables provide the data for answering all

the possible queries to the system. We illustrate with three queries to the system
2This was also true in the definition of the monotone equivalent formula f+ and the monotone

opposite formula f− (c.f. Definition 1.4.4). In fact, the cases in the definitions of poss(f) and

negs(f) for the boolean connectives ∧, ∨ and ¬ correspond exactly to the cases in the definitions

of f+ and f−.
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Sxyz. First, we answer them with informal arguments. Then we show that the pos

and neg formulas give the correct results.

Query 1: Is z = −2 reachable if x = 1?

Query 2: Is z = −2 reachable if x = −y?

Query 3: Is x = 2 inevitable if z = −4?

Answer 1: Yes, because the final binding {x = 1, y =−2, z =−2} satisfies both

the query and the conclusion.

Answer 2: No, because z is a product of two integers x, y, and −2 cannot be

expressed as a product of two integers with the same absolute value.

Answer 3: Yes, because in order for z = x ∗ y to be defined, x must be either 1 or

2, and y must be either −1 or −2, and so the condition that z = −4 implies

that x = 2.

Example 3.1.3 (Formal Analysis of Query 1)

Here, q = ‘x = 1’, and precond c = ‘z = −2’. To determine the q-reachability of c,

the algorithm constructs the formula:

(pos(q) ∧ pos(precond c)) =

((pos(x) ∧ x = 1) ∧ (pos(z) ∧ z = −2)) =

(x = 1 ∧ (x ∈ {1, 2} ∧ y ∈ {−2,−1} ∧ z = xy ∧ z = −2)) =

(x = 1 ∧ z = y = −2).

This is satisfiable, by the one binding b = {x =1, y =−2, z =−2}. The algorithm

then computes core(b) = {x = 1, y =−2, z =−2} = b, and so reports this binding
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as a witness to the q-reachability of c. This is correct, because b ∈ As, b |= q, and

c ∈ say(b).

Example 3.1.4 (Formal Analysis of Query 2)

Here, q = ‘x = −y’, and precond c = ‘z = −2’. To determine the q-reachability of

c, the algorithm constructs the formula:

(pos(q) ∧ pos(precond c)) =

((pos(x) ∧ pos(y) ∧ x = −y) ∧ (pos(z) ∧ z = −2)) =

(pos(z) ∧ x = −y ∧ z = −2) =

((x ∈ {1, 2} ∧ y ∈ {−2,−1} ∧ z = x ∗ y) ∧ x = −y ∧ z = −2) =

(x ∈ {1, 2} ∧ (z = −2 = −x2) ∧ · · · ).
This formula is unsatisfiable, and so the algorithm answers No to the reachability

query.

Example 3.1.5 (Formal Analysis of Query 3)

Here, q = ‘z = −4’, and precond c = ‘x = 2’. To determine the q-inevitability of c,

the algorithm constructs the formula:

(pos(q) ∧ neg(precond c)) =

(pos(z) ∧ z = −4 ∧ (neg(x) ∨ (pos(x) ∧ x 6= 2))) =

(pos(z) ∧ z = −4 ∧ pos(x) ∧ x 6= 2) =

(x ∈ {1, 2} ∧ y ∈ {−2,−1} ∧ z = x ∗ y ∧ z = −4 ∧ x ∈ {−2,−1, 0, 1}) =

(x = 1 ∧ y ∈ {−2,−1} ∧ z = x ∗ y = −4).

This formula is unsatisfiable, and so the algorithm answers Yes to the inevitability

query.
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3.2 The Reachability Formulas

Here we study the meanings of the pos and neg formulas constructed by the query

algorithm. We give theorems describing relationships between systems, expressions,

and the satisfying bindings for poss(e) and negs(e). This material will be used in

our correctness proof for the algorithm.

The next two theorems give non-procedural descriptions for the attainable and

final bindings.

Theorem 3.2.1 Recall from the terminology on page 11 that Vs is the set of ques-

tion variables for system s; Ws is the set of calculation variables; As is the set of

attainable bindings. Then, for an acyclic production system s,

b ∈ As ⇔ (∀x ∈ Vs ∪Ws : b(x) 6= ⊥ ⇒ b |= (indomx ∧ precondx))

Theorem 3.2.2 Recall from the terminology on page 11 that Fs is the set of final

bindings for system s. Then, for an acyclic production system s,

b ∈ Fs ⇔ ((∀ v ∈ Vs : if b |= precondv then b |= indomv else b(v) = ⊥) &

(∀w ∈Ws : if b |= prew then b(w) = val(termw, b) else b(w) = ⊥))

We will need the following notation As(b) for the attainable extensions of the

core of a binding.

Definition 3.2.1 (Attainable Extensions As(b))

For a regular system s and binding b,

As(b) ≡ {b′ ∈ As | b′ ⊇ cores(b)}
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The next theorem gives essential properties of the satisfying bindings for the

reachability formulas.

Theorem 3.2.3 For an acyclic production system s, binding b ∈ Bs, formula f ,

and term t:

• b |= poss(f)⇒ (∀ b′ ∈ As(b) : b′ |= f)

• b |= negs(f)⇒ (∀ b′ ∈ As(b) : b′ 6|= f)

• b |= poss(t)⇒ (∀ b′ ∈ As(b) : b′ |= (t = t)

• b |= negs(t)⇒ (∀ b′ ∈ As(b) : b′ 6|= (t = t)

In words, for a formula f and term t, (1) if a binding b satisfies pos(f), then f

is true in every attainable extension of the core of b, (2) if b satisfies neg(f), then f

is not satisfied in any of these extensions, (3) if b satisfies pos(t), then t is defined

in all the extensions, and (4) if b satisfies neg(t), then t is undefined in all of the

extensions. Since the final extensions Fs(b) are a subset of the attainable extensions

As(b), by a weakening of the this theorem, we obtain the following two corollaries.

Corollary 3.2.4 For an acyclic production system s, binding b, and formula f :

• b |= poss(f)⇒ b |+==s f

• b |= negs(f)⇒ b |−==s f

Corollary 3.2.5 For an acyclic production system s, binding b, and term t:

• b |= poss(t)⇒ t is applicable in b
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• b |= negs(t)⇒ t is inapplicable in b

In words, (1) the satisfying bindings for pos(f) cause f to be affirmed, (2) the

satisfying bindings for neg(f) cause f to be disaffirmed, (3) the satisfying bindings

for pos(t) cause t to be applicable, and (4) the satisfying bindings for neg(t) cause

t to be inapplicable.

The next theorem shows that for final bindings, the meaning of pos(f) coincides

with the meaning of f , and the meaning of neg(f) coincides with the meaning of a

negation of f .

Theorem 3.2.6 For an acyclic production system s, and final binding b ∈ Fs,

b |= poss(f)⇔ b |= f

b |= negs(f)⇔ b 6|= f

Corollary 3.2.7 For an acyclic production system s, and final binding b ∈ Fs,

b |+==s f ⇒ b |= poss(f)

b |−==s f ⇒ b |= negs(f)

Proof

Suppose b ∈ Fs. Suppose that b |+==s f . Then, since b is final, Fs(b) = {b}. Hence

b |= f . Hence, by Theorem 3.2.6, b |= poss(f). Similarly, b |−==s f ⇒ b |= negs(f). �

The last theorem shows how we can use the pos formulas to get the menu of

choices choices(v, q), as defined on page 17, for the variable v under the query q.

Theorem 3.2.8 For acyclic production system s, variable v ∈ Vs, and formula q:

choicess(v, q) = {b(v) | b ∈ B & b |= (poss(q) ∧ poss(v))}
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That concludes our analysis of the semantics of the pos and neg formulas. The

usefulness of these semantic results follows from the fact that the pos and neg

formulas are defined from constructive procedures.

3.3 Proof of Correctness

We now prove the correctness of the query algorithm. The proof is an application

of Corollary 2.6.2. Recall that this theorem gives conditions for relations P (b, f)

and N(b, f) to approximate affirmation b |+==s f disaffirmation b |−==s f , so that the

reachability/inevitability queries are reducible to questions of affirmability and dis-

affirmability relative to P and N .

In the proof, we will use the pos and neg formulas to define a pair of such

relations Ps and Ns for each acyclic production system s. Using the results of the

previous subsection, we will show that Ps and Ns conform to the conditions in the

premises of Corollary 2.6.2. The correctness of the query algorithm then follows as

an immediate consequence.

Theorem 3.3.1 The query algorithm shown on page 87 is correct.

Proof

Let s be an acyclic production system. For bindings b and formulas f , define

Ps(b, f) to be the relation b |= poss(f), and Ns(b, f) be the relation b |= negs(f).

Claim now that Ps and Ns satisfy the four premises of Corollary 2.6.2. The

first two premises, viz., that Ps(b, f) ⇒ b |+==s f and that Ns(b, f) ⇒ b |−==s f , are

stated in Corollary 3.2.4. The last two premises, viz., that for final bindings b,
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b |+==s f ⇒ Ps(b, f) and b |−==s f ⇒ Ns(b, f), are stated in Corollary 3.2.7. Hence, the

consequent Corollary 2.6.2 on page 83 holds.

We now use this consequent to justify the following actions of the query algo-

rithm.

1. The theorem says that c is q-reachable iff ∃b ∈ B : P (b, q) and P (b, c), i.e., iff

∃b ∈ B s .t . b |= pos(f) and b |= pos(precond c). This result justifies the first

step in the algorithm:

c.reachable := satisfiable(pos(q) ∧ pos(precond c))

2. The theorem says that c is not q-inevitable iff ∃b ∈ B : P (b, q) and N(b, c),

i.e., iff ∃b ∈ B s .t . b |= pos(f) and b |= neg(precond c). This result justifies

the second step in the algorithm:

c.inevitable := not(satisfiable(pos(q) ∧ neg(precond c)))

3. The theorem says that if ∃b ∈ B : P (b, q) and P (b, c), i.e., iff ∃b ∈ B s .t . b |=
pos(f) and b |= pos(precond c), then every final extension of core(b) witnesses

the q-reachability of c. This result justifies the third step in the algorithm:

if c.reachable then c.witness := core(solution(pos(q) ∧ pos(precond c)))

The next three statements, which set the attributes v.reachable, v.inevitable , and

v.witness , for a question variable v, have a similar justification. In order to make

the same argument work for these three statements, we need only to observe

that: (1) a question v is q-reachable/inevitable iff the conclusion v = v is q-

reachable/inevitable, and (2) pos(v = v) is the same formula as pos(v), and

neg(v = v) is the same formulas as neg(v).
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Finally, Theorem 3.2.8 on page 93 states that the menu of choices for v under

the query q, aka choicess(v, q), equals {b(v) | b ∈ B & b |= (poss(q) ∧ poss(v))}.
This result justifies the last step in the algorithm:

v.choices := project(v, pos(q) ∧ pos(v)

�

3.4 Answers to Selected Queries

Here are the answers to the queries that we presented at the end of Section 1.6.

1. Query: In the medical decision DAG on page 53, is the diagnosis GlutenIntol

reachable if ‘Iron = 100 ∨ FolicAcid = 100’?

Answer: No.

Reason: pos(Iron = 100 ∨ FolicAcid = 100) ∧ pos(GlutenIntol) is unsatisfi-

able, since the constraints Iron < 100 and FolicAcid < 100 are conjuncts

of pos(GlutenIntol). Here is an informal justification for this answer.

First, Iron = 100 ⇒ Bleeding is inapplicable ⇒ Malabsorption is in-

applicable ⇒ GlutenIntol is unreachable. Second, FolicAcid = 100 ⇒
Malabsorption is inapplicable ⇒ GlutenIntol is unreachable.

2. Query: In the trial strategy DAG on page 54, is conclusion Victory reachable

if the witness says No to the question Gun?

Answer: Yes.

Reason: pos(Gun = no) ∧ pos(precond victory) is satisfiable, by the binding

{CrimeScene =yes , Gun =no, RecallJoe =yes , JoeRemembers =yes}.
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3. Query:

In the trial strategy DAG, is the conclusion precond victory ∧precond impeach

reachable?

Answer: No.

Reason: pos(precond victory ∧ precond impeach) is unsatisfiable.

4. Query: In the trial strategy DAG, is the conclusion ‘CrimeScene = no’ in-

evitable under the query precond impeach?

Answer: No.

Reason: pos(precond impeach)∧neg(CrimeScene =no) is not unsatisfiable. For

instance, it is satisfied by {CrimeScene = yes , Gun = no, RecallJoe =

yes , JoePicture = no}. This is an attainable binding that satisfies the

precondition of Impeach but not the conclusion ‘CrimeScene =no’.

3.5 Complexity

Here we analyze the complexity of the query algorithm. The first question is how

to measure the complexity of queries.

Our algorithm performs a reduction from production-system queries into con-

junctive satisfiability problems. We will see that the time complexity of this re-

duction is linear in the number of constraints generated. We therefore measure the

constraint-complexity of the algorithm, defined as the aggregate size of the formulas

that the algorithm transfers to a conjunctive constraint solver. When we combine

the constraint-complexity with the complexity function for a specific constraint

solver, we will then obtain a specific time-complexity.
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The constraint-complexity of an individual query is a function of both the query

formula and the production system. As we saw in Section 1.1.5, production-system

queries are NP-hard with respect to the query formula. Hence we will follow the

standard practice of analyzing the data complexity of queries, i.e., the complexity for

arbitrary fixed query formulas, measured as a function of the size of the input data

object. By combining the notions of data complexity and constraint complexity,

we arrive at the following measure for our complexity analysis.

Definition 3.5.1 (Data Constraint-Complexity)

The data constraint-complexity of an algorithm is the aggregate size of the formulas

that it transfers to a conjunctive constraint solver, expressed as a function of the

size of the input production system.

We begin by analyzing the complexity of queries to general monotone production

systems, and then we specialize to the important and tractable case where the

preconditions are conjunctive.

3.5.1 Complexity of Queries to Monotone Systems

The following proposition, which shows the difficulty of queries to acyclic production

systems with monotone formulas, is proven by a direct reduction from SAT.

Proposition 3.5.1 For monotone acyclic production systems, the determination

of the q-reachability of a conclusion is NP-hard in the size of the system.

We now describe a graph that we will use to analyze the complexity of classes

of queries.

98



The Formula Graph for a Query

Each call to the top-level of the query algorithm leads to the construction of a

collection of pos and neg formulas that are to be tested for satisfiability. It would

be inefficient, however, to construct these formulas in isolation from each other,

because they will generally have many subformulas in common. These replications

arise from the recursive structure of the definitions of pos(e) and neg(e); whenever

the variable x appears in the expressions for y, then the reachability formulas for

x will occur as subformulas of the reachability formulas for y. For example, in the

reachability formulas for the system Sxyz, which we computed in Example 3.1.2

on page 88, we see that pos(x) occurs in pos(y), and pos(y) occurs in pos(z), and

similarly for the neg formulas.

Because of the memoing statements placed at the beginning of the functions pos

and neg on page 86, the algorithm does not construct multiple copies of the shared

subformulas. These statements ensure that for each expression e, the formulas

pos(e) and neg(e) are constructed at most once. In particular, for each variable

x, the formulas pos(x) and neg(x) are each constructed once. For an expression e

with free variables V , the formulas pos(e) and neg(e) are constructed “on top” of

the formulas {pos(x), neg(x) | x ∈ V }. Then the incremental cost of constructing

pos(e) and neg(e) is Θ(size(e)). Each top-level call to the query algorithm thus

results in the construction of a unified system of overlapping positive and negative

reachability formulas. We represent this system by the following DAG.

Definition 3.5.2 (The Formula Graph fg(s,q))

For each acyclic production system s and formula q, we use the execution of the
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top-level call to the query algorithm in Figure 3.2 to define a DAG with three kinds

of nodes: AND and OR nodes, which are analogous to logic gates, and constraint

nodes. The constraint nodes are the parentless roots of the graph, and the other

nodes each have two parents. The AND nodes are created by the execution of the

∧ operators in the right-hand-side expressions of the functions pos or neg, and the

OR nodes are created by the execution of the ∨ operators. The constraint nodes are

created by the evaluation of constraints, such as indomv and precondv, in the right-

hand-side expressions. As we explained in the previous paragraph, the memoing

statements in the algorithm ensure that for any subexpression e, there will be just

one node in fg(s, e) for poss(e), and just one node for negs(e).

Example 3.5.3 The figures on page 101 show a production system with variables

{x, y}, the positive and negative reachability formulas for the variables, and the

formula graph for this system of formulas.

The next proposition states that the size of the formula graph is linear in the

size of the production system plus the query.

Proposition 3.5.2

size(f(s, q)) = O(s + q)

Corollary 3.5.3 Since, for each system s and query formula q, the cost of con-

structing fg(s, q) is O(s + q), i.e., is linear, then the theoretical complexity of the

algorithm will be determined by the complexity of evaluating this formula graph. We

will analyze this complexity in the remainder of this section.
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A Simple Production System

var v precondv indomv pos(v) neg(v)

x true x = 1 ∨ x = 2 indomx false

y x = 1 y = 1 ∨ y = 2 pos(x) ∧ (x = 1) ∧ indomy neg(x)

(pos(x) ∧ (x 6= 1))

AND

OR AND

x != 1

x=1 y=1 or y=2

neg(y) pos(y)

false

neg(x)

x=1 or x=2

pos(x)

Figure 3.3: The Formula Graph
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Every node of the formula graph represents the formula that is obtained by

the recursive traversal which “forgets” the DAG structure: formula(AND(x,y)) =

formula(x) ∧ formula(y), formula(OR(x,y)) = formula(x) ∨ formula(y), and for-

mula(root(c)) = c. We may therefore apply any formula-related notion to the

nodes of the formula graph. For instance, we may speak of the satisfiability of a

node, and of its satisfying bindings.

DNF-Based Analysis of the Formula Graph

We now use the disjunctive normal expansions of the nodes in the formula graph in

order to bound the complexities of individual queries. We will represent the DNF

of each node f in the graph by an associated set of sets of constraints dnf (f), which

is taken to mean the disjunction of the conjunctions of the constraints.

Definition 3.5.4 (dnf(f)) For monotone formulas, define:

dnf (constraint) = {{constraint}}

dnf (f1 ∧ f2) = {t1 ∪ t2 : t1 ∈ dnf (f1), t2 ∈ dnf (f2)}

dnf (f1 ∨ f2) = dnf (f1) ∪ dnf (f2)

dnf (false) = {}

dnf (true) = {{}}

Example 3.5.5

dnf (x = 1 ∧ (y = 2 ∨ z = 3))) = {{x = 1, y = 2}, {x = 1, z = 3}}

In the framework of [21], a conjunction of constraints is viewed as a “generalized

tuple.” In this spirit, we define the tuples of f to be the members of dnf (f), where
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each such tuple is taken to represent the conjunction of its members. The following

easy proposition says that a formula is equivalent to the disjunction of its tuples.

Proposition 3.5.4 For a monotone formula f :

f ∼=
∨

t∈dnf (f)

∧
c∈t

c

The DNF is useful because (1) a conjunctive satisfiability tester can be applied

to each of the tuples in dnf (f) in order to determine the satisfiability of f , and

(2) conjunctive satisfiability testers exist for many useful constraint domains.3 The

size of dnf (f) therefore puts a bound on the constraint-complexity of testing the

satisfiability of f . The exponential blowup in the size of dnf (f) which occurs when

unrestricted combinations of disjunctions and conjunctions are allowed, e.g., CNF,

therefore expresses the NP-hardness of the satisfiability testing.

We now introduce a measure of the “disjunctive complexity” of a formula f ,

which will serve to put an upper bound on the number of tuples in the DNF

expansion of f .

Definition 3.5.6 (dc(f), the disjunctive complexity of f)

dc(constraint) = 1

dc(f1 ∨ f2) = dc(f1) + dc(f2)

dc(f1 ∧ f2) = dc(f1)× dc(f2)

Proposition 3.5.5 For a formula f :

|dnf (f)| ≤ dc(f)
3See our survey section on Constraint Domains.
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We now define a measure of the “weight” of a node x in the formula graph,

which is the size of the constraints in the “dagified” formula for x.

Definition 3.5.7 (weight(x))

For a node x in a formula graph g, define:

weight(x) = size(roots(g) ∩ ancestorsg(x))

The next proposition puts a bound on the sizes of the tuples.

Proposition 3.5.6 For a node x in the formula graph f(s, q) and a tuple t ∈
dnf (x):

|t| ≤ weight(x) ≤ size(s) + size(q)

3.5.2 Conjunctive Systems

We now analyze the complexity of queries to an important case of acyclic production

systems, viz., the conjunctive systems in which the preconditions are conjunctions

of primitive constraints. For example, our medical decision DAG on page 53 is

conjunctive.

Significance of Conjunctive Systems

Although not capable of expressing all the boolean relations, the conjunctions have

a special objective status, which gives a basis for a diverse range of applications
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of conjunctive production systems. One indication of this special status is the fact

that conjunction appears to be the default logical connective in natural language.

For example, when we speak of the cold, rainy night, this is understood to mean

cold and rainy, and when we say that the plane travels from Chicago to Dallas,

we mean that it starts in Chicago and it lands in Dallas. The root of the special

character of conjunctions is indicated by the derivation of the word itself: whereas

“dis-junction” means joined apart, “con-junction” means joined together.

Whenever we join things together, the constraint that describes the resultant

whole will be the conjunction of the constraints that describe the parts. For exam-

ple, in a circuit built from logic gates, each of the gates is described by a constraint

that relates the values at the input and output terminals, and the input-output

behavior of the whole circuit is described by the conjunction of these local con-

straints. Or, put into relational terms, the global relation between the values at

the connection points is the join of the relations for each of the gates.4

The most basic description of an object is a conjunction of its attributions.

That is the reason why the basic unit of relational databases, viz., the record

{attr1 = val1, . . . , attrk = valk}, is implicitly taken to mean the conjunction of

these attributions.
4Disjunctions arise from sources that are qualitatively different than the sources of conjunc-

tions. For instance, they can arise from abstractions, e.g., a thing is either an animal, a vegetable

or a mineral, and from states of uncertainty, e.g., my missing keys are either at home or at work.
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Complexity of Queries to Conjunctive Systems

The tractability of queries to conjunctive systems arises from the forms assumed

by the pos and neg formulas in these systems. The following proposition describes

the structure of the pos formulas for the variables in a conjunctive system.5

Proposition 3.5.7 For a conjunctive system s and a variable x:

poss(x) =
∧

y∈ancestors(x)

precondy ∧ indomy

Hence, as stated in the next corollary, in a conjunctive system, there is just one

tuple in the pos formula for any disjunction-free expression.

Corollary 3.5.8 For a conjunctive system s and disjunction-free expression e,

|dnf (poss(e))| ≤ 1

The following proposition and corollary show that, in a conjunctive system,

the structure of the query formula q places a bound—which is independent of the

system s—on the number of tuples in poss(q).

Proposition 3.5.9 For a conjunctive system s and a monotone formula q:

dc(poss(q)) = dc(q)

5We can prove an analogous but more complicated proposition for the neg formulas, but this

will not be needed in the proof of the complexity result.
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Corollary 3.5.10 For a conjunctive system s and a monotone formula q:

|dnf (poss(q))| ≤ dc(q)

The next theorem gives the complexity of queries to conjunctive systems.

Theorem 3.5.11 For a conjunctive system s and formula q, the data complexity

in units of constraints of querying the q-reachability and q-inevitability of all the

conclusions in s is O(n × w), where n = size(s) and w is the maximum weight of

a node in the formula graph. Since w is O(n), this complexity is O(n2).

3.6 Implementation

3.6.1 Methods for the Constraints

We now give constraint-processing methods for the low-cost but useful domain of

univariate monotone order (UMO) constraints.6 Recall that the primitive con-

straints of this domain are comparison-based monotone formulas with one free

variable, such as ‘Month = jan ∨Month > june’, and that these constraints suffice

for our medical and courtroom decision DAGs. In combination with our query al-

gorithm on page 87, and the DNF-based formula graph described in the previous

subsection, these constraint-processing methods provide the basis for a complete

query algorithm for acyclic production systems over the UMO constraint domain.

The methods needed for the DNF-based evaluation are: (1) a routine for con-

joining two conjunctions of primitive constraints, (2) a satisfiability test for con-
6See page 26 in the groundwork section.
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junctions of primitives, and (3) a routine to project a conjunction of primitives onto

a set of variables. Disjunctions, on the other hand, are not handled by the methods

for the constraint domain, but instead are handled by the constraint-independent

method of building sets of tuples.

We represent each UMO primitive by a variable and a sorted list of disjoint

intervals. For example, the constraint ‘Month = Jan ∨Month > June’ is rep-

resented by the variable Month and the interval-list [[Jan, Jan], (June, Dec]]. We

then represent a conjunction of primitives by a mapping that sends each of the

variables to its associated list of intervals. The meaning of the conjunction is the

Cartesian product of the respective sets of intervals.

We use the function shown in Figure 3.4 to conjoin two UMO primitives, i.e., to

“merge” two sorted interval-lists into an interval-list that represents their conjunc-

tion. The conjunction of two UMO tuples is then accomplished by componentwise

application of the conjunction function for primitives. The satisfiability-test for a

tuple is just the check for whether any of the interval-lists are empty. Finally, the

projection of a tuple onto a set of variables is accomplished by restricting the map

for the tuple to those variables.

Example 3.6.1 Suppose that x1 = [[1, 3], [4, 6]], and x2 = [[2, 5]]. Then the loop

begins by initializing i1 = [1, 3] and i2 = [2, 5]. Out of the six cases, the third is true:

i2.lower ∈ i1, i.e., 2 ∈ [1, 3]. Hence, result gets set to [i1 ∩ i2], i.e., result = [[2, 3]].

Also, x1 gets popped, so that now x1 = [[4, 6]].

On the second iteration, i1 = [4, 6], and i2 = [2, 5]. Then the sixth case is true:

i1.lower ∈ i2. So, result gets set to [[2, 3], [4, 5]]. Also, x2 gets popped, so that now

x2 = []. Since x2 is empty, result gets returned.
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conjoin(IntervalList x1, IntervalList x2)

result = []

loop

if x1 = [] OR x2 = [] then return result

Interval i1 = first(x1)

Interval i2 = first(x2)

if (i1 disjoint from and left of i2)

x1 = rest(x1)

else if (i1 ⊆ i2)

result = result + [i1]

x1 = rest(x1)

else if (i2.lower ∈ i1)

result = result + [i1 ∩ i2]

x1 = rest(x1) // the three symmetric cases:

else if (i2 disjoint from and left of i1)

x2 = rest(x2) ...

end

Figure 3.4: Function for Conjoining Primitive UMO Constraints

It is easily verified that all of these methods run in linear time. Therefore,

for conjunctive systems with UMO constraints, the O(n×w) constraint-complexity

that we proved in Theorem 3.5.11 is in fact an O(n×w) time complexity. We stress

that this conjunctive complexity result will apply to systems with preconditions like

‘(Month = jan ∨Month > june) ∧Year = 2000’, because these are conjunctions of
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primitive constraints.7

3.6.2 Conversion to Datalog

We now describe an optional modification to the output syntax of the query algo-

rithm, to make it generate the pos and neg formulas in the syntax of datalog rules.

This modification does not restrict the generality of the algorithm; is not restricted

to conjunctive systems. If it were implemented, then existing datalog systems could

be used for the satisfaction-testing phase of the query-processing.8 The key to un-

derstanding this “modification” is the fact that the formula graph constructed by

the query algorithm is already an implicit form of nonrecursive datalog system. To

show this, we now give the construction of the datalog system corresponding to a

formula graph. Let g be a formula graph over the variables {X1, . . . , Xk}. For each

node n in g, let pn be an associated predicate symbol. In the datalog system, the

program atomic formulas appearing in the heads and the bodies of the rules will all
7A simple optimization to the definitions of pos and neg is needed in order to get the stated

complexity result. As the definitions stand now, when pos is applied to the primitive (Month =

jan∨Month > june), the result is (pos(Month)∧Month = jan)∨(pos(Month)∧Month > june). We

don’t want pos and neg to “descend” into the primitive constraints, because then the disjunctions

can lead to a combinatorial blowup in the structure of the resultant formulas. The solution is

simple: use the equivalent formula pos(Month) ∧ (Month = jan ∨Month > june).

The general principle is to use the following optimization. For a monotone formula f where

all of atomic subformulas of f are comparisons between a fixed variable v and constants, use the

following identities: (1) pos(f) ∼= (pos(v) ∧ f), and (2) neg(f) ∼= neg(v) ∨ (pos(v) ∧ f−).
8In order to obtain an improvement in constant factors, rather than using an off-the-shelf

datalog system, in our implementation we have built a customized evaluator that works directly

on the logic graph.
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take the form pn(X1, . . . , Xk). The program atomic formulas will therefore differ

only by their predicate symbols pn. Hence a global meaning will be imparted to

the variables X1, ...,Xk, since Xi will always unify with itself.

For each node n in the formula graph, we now give the evident construction of

the set of datalog rules associated with n. First, if n is a root node labeled with

constraint c, then introduce the primitive rule:

pn(X1, . . . ,Xk)← c

Second, if n is an AND node with parents n1, n2, then introduce the rule:

pn(X1, . . . , Xk)← pn1(X1, . . . ,Xk), pn2(X1, . . . , Xk)

Third, if n is an OR node with parents n1, n2, then introduce the rules:

pn(X1, . . . , Xk)← pn1(X1, . . . , Xk)

pn(X1, . . . , Xk)← pn2(X1, . . . , Xk)

3.6.3 The Query Tool

Our query tool for acyclic production systems implements the specification for

query tools that we gave in Section 1.1.4 on page 15. It is implemented as a system

of objects written in about 7500 lines of C++, and compiled under g++. The

implementation platform is Solaris 5.6.

Overall Architecture

The tool consists of a query module, which implements the query algorithm pre-

sented in Section 3.1, plus the user-interface component of the Thinksheet system.
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As we described in Section 1.5.5, the Thinksheet system [26] consists of an inter-

preter for acyclic productions systems, along with various user-interfaces (spread-

sheet, CGI, and TCL). The thinksheet rule interpreter provides an API through

which the interface programs are informed of which questions and conclusions to

present to the user.

Our query tool is constructed by keeping the thinksheet interface program and

replacing the rule interpreter with a query module that implements the API pro-

vided by the rule interpreter. Through this connection, the query module is able

to direct the behavior of the user interface.

The input to the query tool consists of (1) a user-specified query formula q,

and (2) the current attainable binding b whose assignments were supplied at the

interface. As we specified in Section 1.1.4, the role of the query tool is to determine

and present the reachability/inevitability status of the conclusions and questions

in relation to the extended query formula q′ ≡ q ∧ (∧b). We recall from that

specification that (1) unreachable nodes should be hidden, (2) inevitable nodes

should be highlighted, (3) any question v which is asked should have for its menu

of choices the set choicess(v, q′). The totality of these requirements determines the

public methods that the query module must provide.

In the interactive version of the query tool, input and output take place through

a spreadsheet user interface (provided by the thinksheet system). When the spread-

sheet is controlled by the query module, its behavior conforms to the specifications

for a query tool that we presented in Section 1.1.4. In particular, each node of the

production system is presented at a cell of the spreadsheet. When the user issues

a query formula, the unreachable nodes are made to vanish from the display.
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Figure 3.5 shows a screendump of the spreadsheet interface, for the trial stragegy

production system that we presented on page 54. The picture shows the state of

the system just after the user has entered the query formula q shown in the bottom

window, viz., E2 = 2, which stands for the formula ‘Gun = yes ’. Under this query,

both of the conclusions Victory and Impeach are shown as Possible—since they

are q-reachable but not q-inevitable. Because there is only a single value for the

variable Gun that is consistent with this query, viz., 2, the system has automatically

instantiated it to 2. The questions CrimeScene and Trigger are shown in a different

color, in order to indicates that they are inevitable under this query. 9

The Query Module

The query module is implemented as a system of objects written in C++. The

design of the classes directly reflects the algorithms and data structures which we

have already presented: (1) the query algorithm, which constructs a formula graph

with distinguished pos and neg nodes, (2) the DNF-based evaluation of this graph,

and (3) the methods for processing the constraints the UMO domain. In general,

there is one software class for each kind of object referred to by the algorithms, e.g.,

a class for the formula graph, for the nodes of the formula graph, for the tuples and

for the constraint stores.

The query module is presented to the user-interface program as a “large object”

that encapsulates the formula graph. We now describe the methods of this object,

according to the following three phases of the query-processing: (1) the construction
9Recall that a question is inevitable under query q iff the question must be answered in any

final binding that satisfies q.
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Figure 3.5: The Spreadsheet Interface to the Query Tool
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of the formula graph, (2) the setting of the query formula and the processing of

assignments from the user, and (3) the reporting of the reachability/inevitability

status of the questions and conclusions.

Construction and Evaluation of the Formula Graph

The method build(System s), which takes a description of the acyclic production

system s as its argument, builds a formula graph by making repeated called to the

routines in Figure 3.1 on page 3.1: for each variable x, it constructs the formulas

poss(x) and negs(x), and for each conclusion c, it constructs poss(precond c) and

negs(precond c). In this process, the query module also builds up the maps posmap

and negmap, which serve as indicies to the distinguished nodes of the formula graph:

for each variable or conclusion y, the value of posmap[y ] is the node in the formula

graph for pos(y), and negmap[y ] is the node for neg(y).

The formula graph consists of a set of AND, OR and constraint nodes. These

formula-nodes are created by the evaluation of the conjunction and disjunction

operators in the right-hand-side expressions of the pos and neg routines. Each

AND and OR node contains a pointer to each of its parents. Attached to each

formula-node is a Store object, which holds a constraint-based representation for its

satisfying bindings. These Store objects are created by the DNF-based evaluation

which we described in Section 3.5.1.

Each Store is organized as a set of Tuples. Each Tuple represents a conjunction

of primitive constraints. The Tuple class is a virtual base class that provides the

following methods: (1) conjoin two Tuples, (2) test for satisfiability, (3) project

onto a set of variables, and (4) if one exists, find a satisfying binding. The system
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also provides an UmoTuple class that implements the Tuple specification for the

application domain of UMO constraints. The methods for this class were presented

in Section 3.6.1. The system maintains the invariant that all Tuple objects held

in the Stores are satisfiable. To enforce this invariant, whenever a new Tuple is

created, it is immediately tested for satisfiability, and, if unsatisfiable, is discarded.

The Stores provide three methods: disjunction, conjunction, and test for satis-

fiability. Two Stores are disjoined by forming the union of their respective sets of

Tuples. Two Stores are conjoined by forming the set of all conjunctions of pairs of

Tuples from the respective Stores (and discarding all of the unsatisfiable conjunc-

tions). The satisfiability test for a Store is therefore just the test for whether it

contains any Tuples.

The Store representing the solutions to a node in the formula graph is computed

by a lazy, memoized, bottom-up DNF-based evaluation. The store for a root node

in the formula graph can be computed once and for all, using the fixed constraint

that labels the node. When the Store of an OR node is requested, then if it has

already been computed, a pointer to the memoized Store is returned; otherwise,

the disjunction of the Stores at the parents is computed, memoized, and returned.

Requests for the Store of an AND node are handled similarly.

The satisfiability of a node in the graph can be tested by using the DNF-based

evaluation to obtain its Store, and then checking to see whether the store has any

Tuples. Nevertheless, since the satisfiability-test only requires one bit of informa-

tion about the Store—but not the whole Store itself—we should use the following

optimized procedure. Like the Store itself, we will memoize the satisfiability bit for

each of the nodes. When the satisfiability bit is requested, but has not yet been
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computed and memoized, then we do the following. First, if the Store is already

memoized, then the method uses the Store to report the satisfiability of the node.

Otherwise, if the node is an OR node, then the method calls the satisfiability-testing

methods of the parents, and returns True if either one is satisfiable. Otherwise, if

the node is an AND node, then the Store for the node can be partially constructed;

if ever one Tuple enters into the Store, then the routine can return immediately

and report that the node is satisfiable.10

Processing the Query The query module is given the user-specified query formula

q and the current attainable binding b. Recall that its function is to report on the

status of the questions and conclusions under the extended query formula q′ ≡
q ∧ (∧b). The query module is “lazy” in that it does not compute the status of

all the questions and conclusions when q′ is specified, but rather, it computes the

status of a node when requested to do so by the interface program.

In order to compute the status information for node n, the query module must

determine the satisfiabilities of the formulas pos(q′) ∧ pos(n) and pos(q′) ∧ neg(n).

Furthermore, if n is a question node and the menu of choices is requested for n,

then it must return the projection of pos(q′) ∧ pos(n) onto n.

The first step in processing the query, therefore, is to compute the solutions
10This optimized satisfiability-test is needed for the O(n×w) complexity result for inevitability

queries to conjunctive systems which we proved in Section 3.5.2. The inevitability queries to a

conjunctive production system give rise to disjunctive neg formulas. We are fortunate, however, in

that, for queries to conjunctive production systems, the only use of the OR nodes in the formula

graph is the satisfiability-test. Hence, using the optimization that we have just described, the

Stores for the OR nodes will never need to be constructed.
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to pos(q′), i.e., the solutions to pos(q) ∧ pos(∧b). The next proposition leads to a

useful optimization.

Proposition 3.6.1 For an acyclic production system s with monotone precondi-

tion, and an attainable binding b ∈ As, the formulas (∧b) and poss(∧b) are logically

equivalent.

Corollary 3.6.2 For an acyclic production system s with monotone preconditions,

and an attainable binding b ∈ As, the formulas poss(q
′) and poss(q) ∧ (∧b) are

logically equivalent.

Proof

Because pos(q′) = pos(q) ∧ pos(∧b) = pos(q) ∧ (∧b). �

This corollary shows that we can optimize the computation of pos(q′) by omit-

ting all the conjuncts pos(x) for variables x ∈ vars(b). These conjuncts are formally

part of the definition of pos(q′), but, since b is attainable, the preceding proposition

shows that they are already implied by the conjunct (∧b).

When the user enters a query formula q, the query module performs the call

poss(q). This leads to the construction of new nodes in the formula graph. The

query module keeps a pointer to the node for pos(q), because its solutions will be

needed to answer all subsequent requests from the interface program.

Reporting Back to the Interface Program When the query module is asked

about the status of a production-system node n, it proceeds as follows. The nodes

for pos(n), neg(n) and pos(q) are already present in the formula graph. So, in order
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to compute the satisfiability of pos(q′)∧pos(n), the query module temporarily builds

a conjunction node for pos(q)∧ (∧b)∧ pos(n), and similarly, it builds a conjunction

node for pos(q) ∧ (∧b) ∧ neg(n). It then calls the satisfaction-testing methods of

these nodes, and uses the resulting two bits of information to report the status, as

per the code on page 87. If the menu of choices for a variable v is requested, then

the projection method of the temporary pos node is called. If a witness binding is

required, then the findSolution method of the temporary pos node is called, and

then the core of the solution binding is computed and returned.11

Optimizations to Reduce the Amount of Constraint-Processing

We now give two propositions that identify circumstances under which the query

module can compute the status of a question or conclusion without having to eval-

uate the associated pos and neg nodes.

Definition 3.6.2 (Status of a Node Under a Query) For an acyclic produc-

tion system s, formula q, and question v ∈ Vs, define the status of n under q to be

the triple (r, i, c), where

• r is a bit indicating the q-reachability of v

• i is a bit indicating the q-inevitability of v
11We can show that, in a monotone system, for any formula f , if b is a binding that satisfies

pos(f), then any minimal satisfying sub-binding of b is attainable. Hence, a minimal satisfying

binding for pos(f) is a witness to the reachability of f . Furthermore, for our UMO implementation,

we can show that all bindings produced by the findSolution method are minimal. Therefore, for

our UMO implementation, we do not need to call the core algorithm.
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• c = choicess(v, q) is the menu of choices for v under q

(Recall that choicess(v, q) was defined on page 17.) For a conclusion c ∈ Cs, define

the status of c under q to be the pair of bits (r, i).

Proposition 3.6.3 For a monotone acyclic production system s, let b ∈ As be

an attainable binding. Let q be a formula. Let q′ be the extended query formula

q ∧ (∧b), and suppose that pos(q′) is satisfiable. Let n be a node in s that is

not a descendent of any of the variables in ancestors(FV (q)) ∪ vars(b). Then:

status(n, q′) = status(n, true).

Thus, if n is not a descendant of any of the ancestors of q, then q has no effect

on the status of n. Hence, if we compute the solutions to pos(n) and neg(n) once

and for all, then to determine the status of n, we need only conjoin the current

binding into these pre-computed solutions and then test for satisfiability. Also, for

such n, the propagation-based effective value algorithm described in Section 1.5.5

can be used to estimate the status of the node.

The next proposition gives an optimization for the circumstance where the user

makes a new answer choice.

Proposition 3.6.4 For an acyclic production system s, let b ∈ As be an attainable

binding. Let q be a formula. Let v be a variable in ask(b), and assume that v is not

an ancestor of any variable in q. Let x be a value in domv, and let b′ be the binding

b ∪ {(v, x)}. Then:

n /∈ descendents(v)⇒ status(n, q ∧ (∧b′)) = status(n, q ∧ (∧b))
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In other words, the status of these nodes n does not need to be recomputed

when the user makes an answer choice for v.

3.7 Optimization for Local Decision Trees

Here we give an optimization for reachability queries that exploits a natural and fre-

quent pattern in the input data: production system that contain local regions that

are decision trees. By means of a simple mechanism, we get a lower tree-processing

complexity than would be obtained using general-purpose datalog algorithms for

the satisfiability-testing phase of the query-processing.

The crux of this improvement is not that we are “beating” datalog algorithms per

se, but rather that: (1) the translation that we presented from production-system

queries into datalog rules gives rise to a very specific form of datalog systems, and

(2) for the purposes of solving the reachability queries, we need only the solutions to

a specific subset of the predicates. Generic datalog algorithms, which are not aware

of these special forms, will compute more information than we need to solve our

problem. Hence we are able to develop a tailored algorithm that is asymptotically

faster.

Local Trees

A local tree in a directed acyclic graph G is a tree-shaped subgraph, which we define

as follows. A tree node is a node that has one parent. A local tree T = {r} ∪ T ′

is a set of nodes where (1) r ∈ G is called the “local root” of T , (2) T ′ is a set of

tree-nodes, and (3) for each x ∈ T ′, there is exactly one path in G from r to x. For
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an acyclic production system s, define a local decision tree to be a set of nodes that

is a local tree in the dependency graph for s, such that all of the tree nodes have

conjunctive preconditions.

Example 3.7.1 In the medical decision DAG on page 53, there are three maximal

local subtrees:

1. The root FolicAcid, by itself

2. The root IronLevel , its two children, and the node Ulcer

3. Malabsorption, IntestinalDamage, and AntibodyLevel

Local decision trees are a natural and frequent pattern. In one style of produc-

tion system, for instance, the system consists of a decision tree along with a set of

conclusions, with preconditions that are disjunctions of constraints on the leaves of

the tree, that function to summarize the outcome of a session with the tree.

A Measure for the Complexity of Tree-Processing

For purposes of comparing algorithms, we now define a measure for the tree-

processing complexity of a query algorithm. The idea is to fix a query formula

and the parts of a production system that are not tree nodes, and then to measure,

in units of constraints, the complexity of queries as a function of the aggregate size

of the local trees. Formally, define the skeleton of an acyclic production system

to be the set of nodes that have multiple parents, and define two systems to be

tree-equivalent if their skeletons are identical. For a given query algorithm, a class

of tree-equivalent systems, and a query formula, there is a complexity function that
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relates the size of the input systems to the maximum number of primitive con-

straints that will be passed to the constraint solver. If all of these functions are

O(f), then we say that the tree-complexity of the algorithm is O(f); if any of them

are Ω(f), then we say that the tree-complexity is Ω(f).

Tree-Complexity of the Queries using Generic Datalog Methods

Here will put a lower bound on the tree-processing complexity of our reachability

query algorithm when generic datalog evaluation methods[22, 29, 30, 31, 41, 21, 32,

17]—top-down, bottom-up and hybrid—are used for the satisfiability-testing. In

the worst case, for systems with large unbalanced local trees, we now will give easy

arguments to show that the worst-case tree-processing complexity is quadratic.

We base our explanation upon an extreme case, which will put the general

principal into relief. Once we understand the quadratic behavior in this case, then

the quadratic behavior for all systems with large unbalanced local trees trees will

become immediately clear.

Consider the degenerate case of a tree that consists of a linear chain of variables

v1, . . . , vn, along with the corresponding preconditions p1, . . . , pn. Let V be short-

and for the vector (v1, . . . , vn) of all the variables. Let Q be all of the constraints

in pos(q). Here are the datalog rules for the q-reachability queries:

r1(V ) :- p1, Q.

r2(V ) :- p2, r1(V ).

...

rn(V ) :- pn, rn−1(V ).

Then, the variable vi is q-reachable iff the datalog query ri(V ) succeeds.
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When a bottom-up evaluator is called to solve these rules, the evaluator will

annotate each predicate with the canonical-form conjunctive tuples that represent

its solution set. The purpose of the canonical-form is to support subsequent oper-

ations, such as conjunctions and projections, as quickly as possible. In particular,

inconsistent tuples—which contribute nothing to the solution sets—are detected

and discarded immediately. General result: after bottom-up evaluation is com-

pleted, each predicate ri is decorated with the canonical-form representation for

the conjunction Q ∧ p1 ∧ . . . ∧ pi. Conclusion: the size of the output of bottom-up

evaluation is quadratic.12

To solve our problem using a top-down evaluator, we would make repeated

calls to the evaluator, for each of the goals ri(V ). Each time that we call ri(V ),

then the recursive mechanism of top-down evaluation causes all of the constraints

Q, p1, . . . , pi to be collected and conjoined. Hence, the total running-time is Ω(n2),

in the worst-case.13

12One might wonder about the proposed canonical form in which we just store the pair (pi, x),

where x is a pointer to this same canonical form for Q ∧ p1 ∧ · · · ∧ pi−1. This form amounts

to using the syntaxtic formulas themselves as the canonical form. But this form would not be

used in practice, because the conjunctive formulas are unbounded in size, even when there are

a small number of variables and the individual constraints are small. Furthermore, the running

time would still be Ω(n2), because the satisfaction-test performed by the evaluator would then

require examining a chain of constraints.
13What about a scheme where the interpreter saves some information from the call to ri(V ),

in order to accelerate the running time of subsequent calls? In general, this approach is called

top-down evaluation with memoing—a hybrid scheme that combines aspects of top-down and

bottom-up evaluation. For our specific datalog systems, the thing that could be be saved up

from the call to ri(V ) is the conjunctive tuple that gives the solution to ri. Then, using this
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It is easy to see, now, that we have in fact proven the following, more general,

result: using generic datalog evaluation methods, the cost of evaluating a node in

a tree is Ω(w), where w is the weight of the node in the graph, i.e., the sum of

the sizes of the preconditions of its ancestors. Hence, for these reachability queries,

their overall complexity is Θ(n×w), where w is the mean weight of the tree nodes.

Therefore, their worst-case behavior, Ω(n2), is achieved on classes of production

systems that contain fully unbalanced local decision trees. We summarize in the

following proposition.

Proposition 3.7.1 Using generic datalog methods for satisfiability testing,

the worst-case tree-complexity of reachability-query testing is Ω(n2).

The Optimization

Our algorithm is a modified bottom-up evaluation, that constructs the canonical-

form tuples only for the datalog predicates that arise from production-system nodes

which are outside of the local decision trees. For the predicates arising from the

tree nodes, we don’t need the canonical-form tuples in the final result, but just the

results of their satisfiability test. Hence, for these predicates, our algorithm can use

incremental operations that update a global constraint store.

Specifically, we optimize the DNF-based, bottom-up evaluation of the formula

graph in the following manner. Whenever the bottom-up evaluation reaches the

memoization, we could make the top-down calls in the order r1(V ), r2(V ), etc. But notice now,

that with this modification, the evaluation has become indistinguishable from basic bottom-up

evaluation! (This identity only holds because the rules for the trees are conjunctive.) Hence, the

argument, given above, as to why bottom-up evaluation is Ω(n2), comes into force.
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root of a local tree, it is temporarily suspended, and the routine query tree shown

in Figure 3.6 is called to process the nodes in the local tree. When this routine

returns, the bottom-up evaluation is resumed.

The arguments to query tree are (1) the variable r at the root of the local tree

and (2) a constraint store posQ holding the tuples for pos(q). The routine starts

by initializing a global, mutable constraint store to hold the tuples for pos(q) ∧
pos(r). Then, for each child n of r with one parent, it calls the recursive subroutine

query subtree(n). The subroutine performs the following steps:

1. Conjoin the constraints for n into the global store

2. Determine the satisfiability of n and mark n accordingly

3. Recursively call the children of n that have one parent

4. Undo the effects of the conjunction operation

The correctness of the routine follows from the next proposition.

Proposition 3.7.2 For an acyclic production system s, let x be a variable in Vs ∪
Ws, and c a conclusion in Cs. Suppose that precond v and precond c are conjunctive

formulas. Then:

1. If x has only one parent p, then poss(x) = poss(p) ∧ precondx ∧ indomx

2. If c has only one parent p, then poss(c) = poss(p) ∧ precond c

(An important detail is how to compute the solutions to pos(q), which are

required prior to the modified bottom-up evaluation that we have just described.
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global Store cstore

query_tree(Variable r, Store posQ) ; r is root of local tree

begin

cstore := posQ ∧ pos(r).store()

for each child n of r that has one parent do

query_subtree(n)

end

query_subtree(Node n)

begin

if n is a conclusion then

cstore.conjoin(precondn)

else

cstore.conjoin(precondn ∧ indomn)

endif

n.reachable := cstore.satisfiable()

for each child m of n that has one parent do

query_subtree(m)

end

cstore.pop() ; undo the cstore.conjoin

end

Figure 3.6: Subroutine for Querying a Local Tree
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In order to obtain these solutions, we first marking all of the nodes that are ancestors

of pos(q), and then perform, on these nodes, the modified bottom-up evaluation

described above, using true as the value for the posQ argument.)

Proposition 3.7.3 The tree-complexity, measured in units of constraints, of the

optimized algorithm is O(n).

Proposition 3.7.4 We can provide methods for the UMO constraint domain, so

that, for classes of tree-equivalent systems where the individual rules are of bounded

size, the time-complexity of reachability queries is O(n).

Performance Experiments

Appendix B gives an experimental confirmation of the linear-time result that was

proven in Proposition 3.7.4.

Synposis of the Optimization

Whence our ability to optimize? In order to answer this concretely, suppose that

for each datalog rule ri(V ) which is used to express the reachability of a decision

tree node vi, that we introduce the following auxiliary datalog rule:

si() :- ri(V ).

The solution to the predicate si provides the one bit of information indicating the

satisfiability of ri, i.e., the reachability of node vi. (Note that we cannot simply

eliminate the rule for ri(V ), and replace it with si(), because ri(V ) is called by the

rules for the descendents of vi.)
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To solve the reachability query problem, we need just the solutions to the pred-

icates si. Because we don’t require the solutions to ri(V ) in the final output, we

are able to use efficient destructive operations when creating these solutions—the

tuples for ri(V ) will indeed exist in canonical form, but only momentarily, just

long enough for the satisfaction bit to be computed. Generic datalog evaluation

algorithms, on the other hand, which by definition must compute the solutions to

the ri predicates, are overkill for this application. Compared to these algorithms,

our algorithm produces less but sufficient information, and this is why it can run

more efficiently.

This datalog optimization is applicable because of a combination of special con-

ditions: (1) all predicates have the same arguments, (2) the rules in the tree consist

of a constraint and a call to a single parent, and (3) we need the results of eval-

uating just some of the rules. Furthermore, in order for it to yield an asymptotic

complexity improvement, the constraint domain must be simple enough that incre-

mental conjunctions can be performed in sublinear time with respect to the size of

the constraint stores.

Because of these conditions, the general significance of the optimization is not

as a contribution of general-interest to datalog methods. Rather, it is that in a new

context that we have created—queryable expert systems—the important problem

of reachability queries to local decision trees leads to a special datalog problem that

meets all of the conditions for our datalog optimization. Thus, for the satisfiability-

testing problem that arises from our theoretical solution to the reachability query

problem, it pays to use our tailored datalog algorithm in place of the normal,

general-purpose datalog algorithms.
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Chapter 4

Queries with Negation

In this chapter, we specify an operational behavior for acyclic production systems

with general boolean preconditions. Then we show that a query algorithm for these

systems can be obtained by a slight extension of the query algorithm for monotone

systems, which we presented in Chapter 3.

4.1 Systems with General Boolean Preconditions

We will define our operational semantics so that the precondition ¬f will become ac-

tivated whenever the formula f is rejected by the system, either on account of it be-

ing false, or inapplicable. For example, the precondition ¬(SpouseIncome ≤ 50000)

should fire either if SpouseIncome is defined and exceeds 50000, or if the user has

no spouse, in which case SpouseIncome is inapplicable. To repeat, the precondition

¬f should become active when f is rejectable—either false or inapplicable—in the

current attainable binding b. Here is an example application of negations in the

preconditions.
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Example 4.1.1 Recall the production system on page 54, which contains the strat-

egy that a prosecuting attorney plans to use when cross-examining the defendant

in a murder trial. Given that this attorney intends to win the case, there are only

two possible outcomes: the conclusion Impeach, indicating that the defendant has

given testimony which contradicts the evidence, and Victory, which indicates that

the defendant has confessed to the crime.

The attorney might want to verify that there are no loopholes in this strat-

egy, viz., that there is no complete set of answers that the defendant could provide

such that neither the conclusion Impeach nor Victory would be reached. To test

for this, an auxiliary conclusion called Loophole could be created, with precondition

¬precond victory ∧¬precond impeach . This precondition will become activated whenever

the conclusions Victory and Impeach are both rejected. Hence, the Loophole con-

clusion should be unreachable. This could be verified with a reachability query tool.

Furthermore, if there were a loophole, then a query tool should provide a binding

that produces the loophole. This binding will serve as a counterexample for use in

debugging the strategy.

Earlier, in Section 2.4, we gave a technical definition for the relationship b |−==s f

under which, assuming the rules of the system s, the formula f is rejectable on the

binding b. Recall that, for attainable bindings b, the meaning of b |−==s f is that all

final extensions b′ of b fail to satisfy f , i.e., b guarantees the unsatisfiability of f .

We would like to use this relation b |−==s f as the firing rule for the precondition f . In

order to do this, however, we must first extend the definition of satisfaction b′ |= f

to cover general boolean formulas f .
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Definition 4.1.2 (b |= f)

For a final binding b and a boolean formula f , define b |= f by taking the cases

for conjunction, disjunction and atomic formulas from Definition 1.4.6 on page 29,

and by defining:

b |= ¬f ⇔ b 6|= f

In other words, we extend the definition b |= f by adding the most natural way

of handling the case of a negated formula.1 Now, the relations b |+==s f and b |−==s f

are well-defined for general boolean formulas f . The following useful proposition is

immediate.

Proposition 4.1.1 For a regular system s, binding b, and boolean formula f ,

b |−==s f ⇔ b |+==s¬f

Hence, the principle that ¬f should fire under b just when b |−==s f is equivalent

to the condition that ¬f should fire whenever b |+==s¬f . Generalizing from this, we
1We restrict this extension of b |= f to just the final bindings, for the following reason. In

general, the ⊥ values in a binding indicate places where the binding is unspecified. For final

bindings b, however, since ask (b) = {}, the ⊥ values have a stronger meaning: they indicate places

where the binding cannot be specified. Assuming that the system allows the user to specify all

variables that are applicable, it follows that the ⊥ values in a final binding are inapplicable values.

Hence, the failure of a final binding to satisfy a formula indicates that the formula is either false

or depends upon inapplicable values, i.e., that it is rejectable.

For a simple illustration of the need for this restriction to final bindings, consider the empty

binding b0 = {}. Here, the ⊥ values do not indicate inapplicability, but merely that the values

are unspecified. Now, for any non-trivial formula f , we will have that b0 fails to satisfy f . But

we almost certainly do not want ¬f to fire in the empty binding, since the further specification

of values may make f become true!

132



arrive at the following specification of our desired operational mechanics.

Definition 4.1.3 (Firing Rule for Systems with Boolean Preconditions)

In the current attainable binding b, the precondition f should ideally fire whenever

b |+==s f . I.e., f should fire whenever its satisfaction is guaranteed by the current

binding.

We now turn our attention the the structure of the final bindings for these

idealized systems. The next definition, which expresses a necessary and sufficient

condition for a binding to be final in a monotone acyclic production system—

see Theorem 3.2.2—will provide a key concept for the analysis of general boolean

production systems.

Definition 4.1.4 (Solution Bindings Ss) For an acyclic production system s,

define the solution bindings for s, denoted by Ss, to be those bindings which satisfy

the following conditions:

1. ∀ v ∈ Vs : if b |= precondv then b |= indomv else b(v) = ⊥

2. ∀w ∈Ws : if b |= precondw then b(w) = val(termw, b) else b(w) = ⊥

The next proposition shows that, for boolean production systems with the ide-

alized firing rule, the final bindings coincide completely with the solution bindings.

The proof is based upon the fact that, for final bindings b ∈ Fs, we have that

b |+==s f ⇔ b |= f , and b |−==s f ⇔ b 6|= f .

Proposition 4.1.2 For a boolean system s conforming to Definition 4.1.3:

Fs = Ss
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Since the definitions of q-reachability and q-inevitability in s depend only upon

the final bindings Fs, the query problem for these ideal systems may be re-visualized

in terms of the solution bindings Ss. The conceptual advantage of this perspective

is that, whereas the final bindings are defined in a procedural way, the equivalent

solution bindings are defined in a purely declarative way, whereby each rule is seen

as a constraint on the solution bindings.

We now define the notion of a firing rule for boolean production systems that

approximates the ideal behavior in a way which is sufficient for the purposes of

querying.

Definition 4.1.5 (Final-Exact Systems)

An operational interpretation of a boolean production system s is said to be final-

exact, or exact for final bindings, if:

Fs = Ss

For a given syntactic specification s of a boolean production system, all of the

final-exact interpretations of s—including the ideal interpretation—are indistin-

guishable from the standpoint of the reachability/inevitability queries.

Although it is difficult to perfectly implement the idealized semantics—because,

for attainable bindings b, the determination of the relation b |+==s f makes a state-

ment about all of the final extensions of b—the firing rule used by the Thinksheet

systems [26] gives an operational interpretation that is final-exact. That firing

rule is the following: the precondition precondx will fire in binding b whenever
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eff s(precondx, b) = True, where the effective value function is defined in Figure 1.8

on page 59. Here is the formal statement of the claim.2

Theorem 4.1.3 For a general boolean system s with the effective-value-based firing

rule:

Fs = Ss

Also, as the next proposition shows, the thinksheet systems are regular.

Proposition 4.1.4 For a general boolean system s with the effective-value-based

firing rule: s is a regular interactive system.

4.2 The Extended Query Algorithm

In anticipation of this part of the thesis, the cases for negations were already written

into the query algorithm that we gave on pages 87 and 86. Specifically, these new

cases are: (1) poss(¬f) ≡ negs(f), and (2) negs(¬f) ≡ poss(f). We now claim that

with these additions, the query algorithm is also correct for systems with boolean

preconditions.
2In the introduction, we mentioned that our theory could help to clarify the meaning of the

effective-values. With some effort, the following relationships can be proven for thinksheet systems

s: for a binding b, formula f , and term t: (1) eff s(f, b) = True⇒ b |+==s f , (2) eff s(f, b) = False⇒
b |−==s f , (3) eff s(t, b) = True ⇒ b |+==s (t = t), (4) eff s(t, b) = False ⇒ b |−==s (t = t). We omit the

proof, because the next theorem is all that is required to show that our query algorithm is correct

for thinksheet systems.
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Theorem 4.2.1 The query algorithm shown on pages 87 and 86 is correct for

acyclic production systems with general boolean preconditions.

Example 4.2.1 We show how this extended algorithm solves the Loophole query

given in the example at the beginning of this chapter. Recall that the precondition

of Loophole is ¬precond victory ∧ ¬precond impeach , and that we want to test for the

reachability of this conclusion. For this, we compute the pos formula, as follows:

pos(precond loophole) = pos(¬precond victory) ∧ pos(¬precond impeach) =

neg(precond victory) ∧ neg(precond impeach).

By a routine calculation, it can be verified that this formula is unsatisfiable, and

hence the Loophole conclusion is unreachable.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

There is a dichotomy among existing computer-based information systems. On

the one hand, databases are open-ended in their ability to answer a potentially

unlimited number of questions from the user, but offer no guidance help a naive

user to navigate through the mass of information that they contain. The existing

interactive expert systems, on the other hand, do enter into a dialogue with the

user that is tailored to the user’s specific requirements, but the user is reduced

to the passive condition of answering questions and being told things. Ideally, we

would also like the user to be to assume an active role and ask the system about

the knowledge that it contains.

In this thesis, we began by defining a paradigm for queries to an interactive

expert system: Which conclusions are reachable, and which are inevitable, under

a query condition? For instance, is conclusion diabetes inevitable if the input for

bloodSugar exceeds 100? For general interactive systems, this problem is undecid-
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able.

Then we undertook a theoretical investigation of a large class of interactive

systems—the “regular” systems, which never retract a question once it has been

posed to the user—with an eye towards developing query algorithms for cases of

these systems. This led us to introduce a series of useful concepts, such as the

core of applicable assignments within a binding, the applicability of terms under a

binding, and the relationship b |+==s f under which a binding justifies the acceptance

of a formula by the system.

Then we chose a simple and useful language of acyclic production systems,

which are regular, and used these theoretical results to develop a working query

algorithm. We have implemented this algorithm in a working system. It is the

first interactive system we know of that can be queried about its conclusions. The

general significance of this queryable expert system is that, if we liken a typical

consultation system to a doctor who interrogates patients and makes diagnoses, we

can now ask the doctor some questions in order to learn something about medical

reasoning.

5.2 Future Work

New Languages and Algorithms: Our query paradigm raises the challenge for

researchers to find other languages and algorithms for queryable expert systems.

Typology of Acyclic Production Systems: It would be useful to develop a typol-

ogy of acyclic production systems and their applications. What kind of structures

in reality are well-modeled by the preconditions of an acyclic production system?
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How can we generalize from the structures in trial strategy system that we we

showed on page 54? Such systems may also, for example, be used for strategies

for convincing an opponent of the correctness of a theory, and handling anticipated

counterarguments. Note that the trial strategy system uses a very restricted lan-

guage of preconditions, involving just conjunctions and disjunctions of comparisons

of the form var = yes and var = no. Furthermore, it is structured in such a way

that whenever a node x is reached, there is a linear chain of answers that leads to

the precondition of x being satisfied.1 This suggests that “path-structured” systems

of preconditions are useful for certain classes of strategy applications.

By way of comparison, for relational databases, there is the well-developed

entity-relationship model, along with normalization theory, etc., that serves as a

guide for applications of relational databases. Systems with preconditions are more

subtle and complex than flat relational systems, so more effort is needed to analyze

the structures to which they apply.

Connections with Modal Logic? The operators b |+==s f , b |−==s f , and the formu-

las poss(f), negs(f) which we introduced have the flavor of modal operators that

assert that a formula f is “justified” and “dis-justified” by the data in a bind-

ing. Interestingly, the formulas poss(f) and negs(f) are expansions—relative to

the rules of s—that express the justification and dis-justification of f as formulas

within first order logic. Is there any meaningful connection here to modal logic? It

can be shown, for instance, that the formulas pos(pos(f)) and pos(f) are logically
1This wouldn’t be the case, for example, if the node x had the precondition y = yes ∧ z = yes ,

where y and z are roots. In this case, the binding {y = yes , z = yes} causes x to be reached, yet

the nodes {y, z} do not form a linearly ordered subgraph of the dependency graph.
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equivalent.

Queryable Relational Expert Systems: An interesting and useful class of acyclic

production systems are those in which the domains of the variables may be sets

and relations. In this case, the preconditions and answer terms involve membership

tests and relational algebra operations such as projection and selection. Such a

system, called Attman (attribute management system), is now under development

by Dennis Shasha, Eric Simon, et. al.

For an example application, consider an interactive catalog for a large depar-

ment store. The menu for the root node is presented as a table, the rows of which

represent the entries in the main catalog. For instance, a row might be: (majorcat-

egory=sportswear, minorcategory=summer). The user browses through this table,

and clicks on the rows of interest. The selected subtable then serves as the answer

value for the root node. The root node, therefore, is an input node, whose domain

is the powerset of the full relation. Subsidiary input nodes will, in a similar way,

present the tables for the various departments, and will have precondition such

as: sportwear is contained in the projection of the root node onto the attribute

majorcategory.

Suppose that in this application, there are several product tables, each of which

have an attribute color. It may be useful to get an overview of all of the colors

available overall. To do this, we can introduce a derived node, whose answer term

is the relational algebra operation that projects the respective tables onto color,

and then takes the union of all these projections. Then, if the user constrains color

to be blue or green, all of the rows for products that are neither blue nor green
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should disappear from the various menus throughout the system.

It seems to make sense to treat a node with a false precondition as representing

the empty table. In this way, for example, a product table with a false precondition

would contribute no rows to the derived color table. This represents a divergence

from the semantics that we have assumed in this thesis, because now the value

⊥—which we associate with a node whose precondition is false—is merged with

a specific domain value, viz., the empty table {}. As a consequence, the union

operator, which can appear in the answer terms, is nonstrict.

A research project is to develop a reachability/inevitability query algorithm for

such systems. Because the union operator is nonstrict, our semantic theory will

have to be reworked. It may make sense, for example, to define pos(x ∪ y) to be

pos(x) ∨ pos(y).

Theoretical Questions about Query Complexity There is a conflict between the

goals of the system being a powerful questioning agent and of it being efficiently

queryable: as the computational abilities of the rule language increase, the query-

ing problem become more difficult. These consideration leads to some interesting

theoretical questions. What are the maximally expressive consultation system lan-

guages that can be queried within a given complexity class? For a given class of

consultation system applications, what are the languages that have minimal query

complexity?
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Appendix A

Proofs

Proposition 1.1.1 For a system s, and formula q, assume that ∃ b ∈ Fs such that

b |= q. Let R, I, P be, respectively, the sets of conclusions that are reachable,

inevitable, and possible under q. Then R is the disjoint union of I and P .

Proof

First, claim that I ∩ P = {}. We prove this by showing that c ∈ P ⇒ c /∈ I.

Suppose c ∈ P . This means that ∃ b1, b2 ∈ Fs s .t . b1, b2 |= q, c ∈ say(b1), c /∈
say(b2). Hence ∃ b ∈ Fs s .t . b |= q and c /∈ say(b). Thus, it is not true that

(∀b ∈ Fs s .t . b |= q : c ∈ say(b)), i.e., it is not true that c is q-inevitable, i.e.,

c /∈ I.

Now claim that I ∪ P ⊆ R. First subclaim: I ⊆ R. Suppose c ∈ I. Then

∀b ∈ Fs s .t . b |= q : c ∈ say(b). Since, by assumption, ∃b ∈ Fs s .t . b |= q, it follows

that (∃b ∈ Fs s .t . b |= q and c ∈ say(b)), i.e., that c ∈ R. Second subclaim: P ⊆ R.

Suppose c ∈ P . Then ∃b1, b2 ∈ Fs, b1, b2 |= q, c ∈ say(b1), c /∈ say(b2). Hence c ∈ R.
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Now claim that R ⊆ I ∪ P . Suppose c ∈ R, i.e., ∃b ∈ Fs s .t . b |= q and

c ∈ say(b). We show that c ∈ I ∪ P by showing that c /∈ I ⇒ c ∈ P . Suppose that

c /∈ I, i.e., that ∃b′ ∈ Fs s .t . b′ |= q and c /∈ say(b). The combination of these two

existential statements says that c ∈ P . �

Proposition 1.1.2

A conclusion is q-possible iff it is q-reachable but not q-inevitable.

Proof

c is q-possible ⇔
∃b1, b2 ∈ Fs, b1, b2 |= q, c ∈ say(b1), c /∈ say(b2)⇔
(∃b1 ∈ Fs s .t . b1 |= q and c ∈ say(b1)) & (∃b2 ∈ Fs s .t . b2 |= q and c /∈ say(b2))⇔
c is q-reachable and c is not q-inevitable. �

Proposition 2.2.1 A system s is regular iff the following two functions are mono-

tonic with respect to inclusions of bindings:

1. λb ∈ As . vars(b) ∪ ask s(b)

2. λb ∈ As . b ∪ calcs(b)

Proof

Define:

f(b) = vars(b) ∪ ask s(b)

g(b) = b ∪ calcs(b).

Then by definition, s is regular means:
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• ∀b, b′ ∈ As : b ⊆ b′ ⇒ (ask s(b) ⊆ vars(b′) ∪ ask s(b
′))

• ∀b, b′ ∈ As : b ⊆ b′ ⇒ (calcs(b) ⊆ b′ ∪ calcs(b
′))

Also, f, g monotonic means:

• ∀b, b′ ∈ As : b ⊆ b′ ⇒ (vars(b) ∪ ask s(b) ⊆ vars(b′) ∪ ask s(b
′))

• ∀b, b′ ∈ As : b ⊆ b′ ⇒ (b ∪ calcs(b) ⊆ b′ ∪ calcs(b
′))

Hence, f, g monotonic ⇒ s is regular. Now suppose s is regular. Suppose

b, b′ ∈ As, b ⊆ b′. We must show that vars(b) ⊆ vars(b′) ∪ ask(b′), and that

b ⊆ b′ ∪ calcs(b
′). These propositions follow immediately from the fact that b ⊆ b′.

�

Proposition 2.2.2

A production system where precondition formulas are monotone is a regular inter-

active system.

Proof

Suppose b, b′ ∈ As, and b ⊆ b′. We must show that (1) ask(b) ⊆ vars(b′) ∪ ask(b′),

and (2) calc(b) ⊆ b′ ∪ calc(b′).

Part 1. Suppose that v ∈ ask s(b). This means that b |= precondv and b(v) = ⊥.

Since precond v is monotonic, b′ |= precondv. If b′(v) 6= ⊥, this means v ∈ vars(b′),

and so regularity holds. If b′(v) = ⊥, then, since b′ |= precondv, v ∈ ask s(b
′), and

so regularity holds.
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Part 2. Suppose that (w, x) ∈ calcs(b). I.e., b |= precondw, b(w) = ⊥, and

val(termw, b) = x 6= ⊥. Hence, FV (termw) ⊆ vars(b), and so FV (termw) ⊆
vars(b′). Thus, val(termw, b′) = val(termw, b) = x 6= ⊥.

Suppose first that b′(w) 6= ⊥. Since b′ is attainable, b′(x) = val(termw, b′).

Hence b′(w) = val(termw, b′) = val(termw, b) = x. So b′(w) = x, i.e., (w, x) ∈ b′,

and hence regularity holds. Now suppose that b′(w) = ⊥. Since precondw is

monotonic, b′ |= precondw. Since b′ |= precondw, b′(w) = ⊥, and val(termw, b′) =

x 6= ⊥, it follows that (w, x) ∈ calcs(b
′). Hence, the regularity condition holds. �

Lemma 2.2.3 For a regular system s,

∀ b, b′ ∈ As : (b ⊆ b′ ∧ b 6= b′)⇒ (ask s(b) ∩ vars(b′) 6= {}) or (calcs(b) ∩ b′ 6= {})

Proof

Suppose b, b′ ∈ As, b ⊆ b′, b 6= b′. Let [v1 = x1, . . . , vn = xn] be an attainable

assignment sequence such that {v1 = x1, . . . , vn = xn} = b′. Let k be the smallest

index such that vk 6∈ vars(b). Then {v1, . . . , vk−1} ⊆ vars(b). Let b0 = {v1 =

x1, . . . , vk−1 =xk−1}. Since b0 is the set of assignments in the attainable assignment

sequence [v1 = x1, . . . , vk−1 = xk−1], it follows that b0 ∈ As. Since vk = xk is an

assignment that can occur in state b0, then either (vk ∈ Vs and vk ∈ ask s(b0)) or

(vk ∈ Ws and (vk, xk) ∈ calcs(b0)).

Case 1. Suppose that vk ∈ Vs and vk ∈ ask(b0). Since b0 ⊆ b, then by regularity,

ask(b0) ⊆ vars(b) ∪ ask(b). Since vk ∈ ask(b0), vk ∈ vars(b) ∪ ask(b). By construc-

tion, vk 6∈ vars(b). Hence, vk ∈ ask(b). Also, since vk ∈ vars(b′), it follows that

ask(b) ∩ vars(b′) 6= {}.
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Case 2. Suppose that vk ∈Ws and (vk, xk) ∈ calc(b0). Since b0 ⊆ b, by regularity,

calc(b0) ⊆ b ∪ calc(b). Since (vk, xk) ∈ calc(b0), (vk, xk) ∈ b ∪ calc(b). By con-

struction, vk 6∈ vars(b), and so (vk, xk) 6∈ b. Hence, (vk, xk) ∈ calc(b). Also, since

(vk, xk) ∈ b′, it follows that calc(b) ∩ b′ 6= {}. �

Proposition 2.2.4 For a regular system s,

∀b ∈ As : b is maximal in As ⇔ b ∈ Fs

Proof

It is always the case that (b is maximal ⇒ b is final), the simple reason that a

non-final binding is by definition extendible. Now we use the regularity assumption

to show that b not maximal ⇒ b not final.

Suppose that b ∈ As is not maximal in As, i.e., that for some b′ ∈ As, we

have that b ⊆ b′ and b 6= b′. Then by Lemma 2.2.3, (ask s(b) ∩ vars(b′) 6= {}) or

(calcs(b)∩ b′ 6= {}). In the first case, ask s(b) 6= {}, and so b is not final in s. In the

second case, calcs(b) 6= {}, and so b is not final in s. �

Lemma 2.3.1 For a regular system s,

(b1, b2 compatible and b1, b2 ∈ As)⇒ b1 ∪ b2 ∈ As

Proof

Suppose that b1, b2 ∈ As, and that b1, b2 are compatible. We proceed by induction

on the size of vars(b1)− vars(b2).

Base case: |vars(b1)− vars(b2)| = 0. So vars(b1) ⊆ vars(b2). Since b1 and b2 are

compatible, b1 ⊆ b2. Hence, b1 ∪ b2 = b2 ∈ As.
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Induction step:

Suppose that |vars(b1) − vars(b2)| = m > 0. Let [v1 = x1, . . . , vn = xn] be an

assignment sequence that attains b1, and let k be the smallest index such that

vk 6∈ vars(b2). Then {v1, . . . , vk−1} ⊆ vars(b2). Let b0 ⊆ b1 be the binding {v1 =

x1, . . . , vk−1 = xk−1}. Since b1 and b2 are compatible, b0 ⊆ b1, and vars(b0) ⊆
vars(b2), it follows that b0 ⊆ b2.

Since b0 is the set of assignments in the attainable assignment sequence [v1 =

x1, . . . , vk−1 = xk−1], it follows that b0 ∈ As. Since vk = xk is an assignment that

can occur in state b0, then either (vk ∈ Vs and vk ∈ ask s(b0)) or (vk ∈ Ws and

(vk, xk) ∈ calcs(b0)).

Case 1. Suppose that vk ∈ Vs and vk ∈ ask(b0). By regularity, since b0 ⊆ b2 and

vk ∈ ask(b0), then vk ∈ vars(b2) ∪ ask(b2). Since vk 6∈ vars(b2), then vk ∈ ask(b2).

Hence, b′2 ≡ b2 ∪ {(vk, b1(vk))} is attainable. Also, b′2 is compatible with b1, and

|vars(b1)− vars(b′2)| = |vars(b1)− vars(b2)| − 1 = m− 1. Therefore, by induction,

b1 ∪ b′2 ∈ As. Finally, b1 ∪ b′2 = b1 ∪ b2, and so we have shown that b1 ∪ b2 ∈ As.

Case 2. Suppose that vk ∈Ws and (vk, xk) ∈ calc(b0). By regularity, since b0 ⊆ b2

and (vk, xk) ∈ calc(b0), then (vk, xk) ∈ b2 ∪ calc(b2). Since vk 6∈ vars(b2), then

(vk, xk) 6∈ b2, and so (vk, xk) ∈ calc(b2). Hence, b′2 ≡ b2 ∪ {(vk, xk)} is attainable.

Since b1(vk) = xk = b′2(vk), and b1, b2 compatible, it follows that b1 and b′2 are

compatible. Furthermore, |vars(b1)− vars(b′2)| = |vars(b1)− vars(b2)| − 1 = m− 1.

Therefore, by induction, b1 ∪ b′2 ∈ As. Finally, b1 ∪ b′2 = b1 ∪ b2, and so we have

shown that b1 ∪ b2 ∈ As. �
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Definition A.1 (attsubs(b)) For a system s and binding b, let attsubs(b) = {b′ ∈
As | b′ ⊆ b}.

Corollary 2.3.2 For a regular system s and a binding b, within b there is a unique

maximal attainable sub-binding, viz., the union of the attainable sub-bindings of b,

∪{b′ ∈ As | b′ ⊆ b}.

Proof

The claim to be proven is that if s is regular, then the maximum member of

attsubs(b) is guaranteed to exist. All of the bindings in attsubs(b) are compat-

ible, since they are sub-bindings of the one binding b. Thus, by Lemma 2.3.1,

U ≡ ∪attsubs(b) ∈ As. Also, since U ⊆ b, then U ∈ attsubs(b). Hence U must be

the maximum member of attsubs(b). �

Theorem 2.3.3 For a regular system s, cores(b) is uniquely defined, and it equals

the maximum attainable sub-binding ∪{b′ ∈ As | b′ ⊆ b}.

Proof

The theorem claim is that: cores(b) = max (attsubs(b)). Let b0 be a binding returned

by one of the non-deterministic executions of the procedure for cores. Clearly, b0 is

attainable and b0 ⊆ b. Hence, b0 ∈ attsubs(b).

Claim: b0 is is maximal in attsubs(b).

Proof of Claim. Suppose b1 ∈ attsubs(b), and that b0 ⊆ b1. Then we have that

b0, b1 ∈ As, and b0 ⊆ b1 ⊆ b. We show that b0 is maximal by showing that b1 = b0.
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We will use the following contrapositive form of Lemma 2.2.3: (b0, b1 ∈ As,

b0 ⊆ b1, ask(b0) ∩ vars(b1) = {}, calc(b0) ∩ b1 = {}) ⇒ b1 = b0. Thus, given our

assumptions, if we can show that ask(b0) ∩ vars(b1) = calc(b0) ∩ b1 = {}, then it

will follow that b1 = b0 and we will be done.

Since the algorithm terminated with b0, it follows that:

(∀v ∈ ask s(b0) : b(v) 6∈ domv) & (∀(w, x) ∈ calcs(b0) : (w, x) /∈ b) (†)

Subclaim 1: ask(b0) ∩ vars(b1) = {}.
Proof. We prove this subclaim by showing that v ∈ ask(b0) ⇒ v /∈ vars(b1).

Suppose that v ∈ ask(b0). Then (†) implies that b(v) /∈ domv. Since b1 ⊆ b,

then either b1(v) = ⊥ or b1(v) = b(v). In either case, b1(v) /∈ domv. Since b1 is

attainable, b1(v) ∈ domv ∪ {⊥}. Hence b1(v) = ⊥, i.e., v 6∈ vars(b1).

Subclaim 2: calc(b0) ∩ b1 = {}.
Proof. We prove this subclaim by showing that (w, x) ∈ calc(b0) ⇒ (w, x) /∈ b1.

Suppose (w, x) ∈ calc(b0). Then (†) implies that (w, x) /∈ b. Thus, since b1 ⊆ b, it

follows that (w, x) 6∈ b1. �

Proposition 2.3.4 For a regular system s,

As = fixpoints(cores) = image(cores)

Proof

We show that image(cores) ⊆ As ⊆ fixpoints(cores) ⊆ image(cores).

149



1) image(cores) ⊆ As. This claim says that for all bindings b, cores(b) is attainable.

We’ve already shown that cores(b) is the maximum attainable sub-binding of b, so

a fortiori it is attainable.

2) As ⊆ fixpoints(cores). I.e., claim that: ∀b ∈ As : cores(b) = b. Proof: if

b is attainable, then clearly b is the maximum attainable sub-binding of b, i.e.,

b = cores(b).

3) fixpoints(cores) ⊆ image(cores). For any operator f , fixpoints(f) ⊆ image(f),

because: x ∈ fixpoints(f)⇒ f(x) = x⇒ x ∈ image(f). �

Proposition 2.3.5 The function cores is a downward closure operator, i.e., it is

monotonic, decreasing and idempotent:

• b1 ⊆ b2 ⇒ cores(b1) ⊆ cores(b2)

• cores(b) ⊆ b

• cores(cores(b)) = cores(b)

Proof

Monotonicity: We’ve shown that cores(b) = max (attsubs(b)), i.e., cores = max ◦
attsubs. Now, it is easy to see that attsubs is a monotonic function from bindings

to sets of bindings, and that max is a monotonic function on sets of bindings that

have maximum elements. Since cores is a composition of two monotonic functions,

it is itself monotonic.
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Decreasing Property: We’ve already shown that cores(b) is the maximum at-

tainable sub-binding of b, and so a fortiori cores(b) ⊆ b.

Idempotency:

The previous proposition showed that image(cores) = fixpoints(cores). Hence, since

cores(b) ∈ image(cores), then cores(b) ∈ fixpoints(b), i.e., core(core(b)) = core(b).

In other words, cores is idempotent.1 �

Proposition 2.3.6 For a regular system s and binding b,

Fs(b) 6= {}.

Proof

We’ve shown that cores(b) exists, and is attainable. Since every attainable binding

can be completed to a final binding, the set Fs(b) is nonempty. �

Proposition 2.3.7 For a regular system s and binding b,

b ∈ Fs ⇔ Fs(b) = {b}.

Proof

b ∈ Fs ⇒ b ∈ As ⇒ core(b) = b⇒ Fs(b) = {b′ ∈ Fs | b′ ⊇ b} = {b}.
Since Fs(b) ⊆ Fs, then Fs(b) = {b} ⇒ b ∈ Fs. �

Proposition 2.4.1 For a regular system s and formula f ,

6 ∃b s .t . (b |+==s f) ∧ (b |−==s f)

1In fact, it is easy to show that a function f is idempotent iff image(f) = fixpoints(f).
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Proof

By definition,

• b |+==s f ⇔ (∀b′ ∈ Fs(b) : b′ |= f)

• b |−==s f ⇔ (∀b′ ∈ Fs(b) : b′ 6|= f)

Since Fs(b) 6= {}, it is clear that these conditions cannot both be true. �

Proposition 2.4.2 For a regular system s, binding b ∈ Fs, formula f , and con-

clusion c ∈ Cs:

1. b |+==s f ⇔ b |= f

2. b |−==s f ⇔ b 6|= f

3. b |+==s c⇔ c ∈ says(b)

4. b |−==s f ⇔ c /∈ says(b)

Proof

Suppose that b ∈ Fs. Then Fs(b) = {b}. Now,

b |+==s f ⇔ (∀b′ ∈ Fs(b) : b′ |= f)⇔ b |= f

b |−==s f ⇔ (∀b′ ∈ Fs(b) : b′ 6|= f)⇔ b 6|= f

b |+==s c⇔ (∀b′ ∈ Fs(b) : c ∈ says(b
′))⇔ c ∈ says(b)
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b |−==s f ⇔ (∀b′ ∈ Fs(b) : c /∈ says(b
′))⇔ c /∈ says(b) �

Theorem 2.6.1 For a regular system s, conclusion c, formula q and variable v,

• c is q-reachable ⇔ (∃ b ∈ B : b |+==s q and b |+==s c)

• c is q-inevitable ⇔ ( 6 ∃ b ∈ B : b |+==s q and b |−==s c)

• (b |+==s q and b |+==s c)⇒
each binding in Fs(b) witnesses the q-reachability of c

Proof

Here we restate and then prove each of the three claim. The second claim is restated

in an equivalent form, by replacing the biconditional ¬α⇔ ¬β with the equivalent

α⇔ β.

Claim 1: (∃ b ∈ Fs : b |= q and c ∈ says(b))⇔ (∃ b ∈ Bs : b |+==s q and b |+==s c)

First suppose that b ∈ Fs, b |= q, and c ∈ say(b). By Proposition 2.4.2, b |+==s q, and

b |+==s c. To show the converse, suppose that for some b ∈ Bs, b |+==s q, and b |+==s c. This

means that (∀b′ ∈ Fs(b) : b′ |= q and c ∈ say(b′)). Since Fs(b) 6= {}, it follows that

(∃ b′ ∈ Fs : b′ |= q and c ∈ say(b′)).

Claim 2: (∃ b ∈ Fs : b |= q and c /∈ says(b))⇔ (∃ b ∈ Bs : b |+==s q and b |−==s c)

First suppose that b ∈ Fs, b |= q, and c /∈ say(b). By Proposition 2.4.2, b |+==s q, and

b |−==s c. To show the converse, suppose that for some b ∈ Bs, b |+==s q, and b |−==s c. This

means that (∀b′ ∈ Fs(b) : b′ |= q and c /∈ say(b′)). Since Fs(b) 6= {}, it follows that

(∃ b′ ∈ Fs : b′ |= q and c /∈ say(b′)).
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Claim 3: b |+==s q and b |+==s c⇒ ∀b′ ∈ Fs(b) : b′ |= q and c ∈ say(b′).

Suppose that for some b ∈ Bs, b |+==s q, and b |+==s c. This means that (∀b′ ∈ Fs(b) :

b′ |= q and c ∈ say(b′). I.e., all of the members of Fs(b) are witnesses to the

q-reachability of c. �

Corollary 2.6.2 For a regular system s, suppose that P and N are relations be-

tween bindings b and formulas (and conclusions) f , such that the following condi-

tions hold:

• P (b, f)⇒ b |+==s f

• N(b, f)⇒ b |−==s f

• (b ∈ Fs and b |+==s f)⇒ P (b, f)

• (b ∈ Fs and b |−==s f)⇒ N(b, f)

Then for conclusions c, formulas q and variables v:

• c is q-reachable ⇔ (∃ b ∈ B : P (b, q) and P (b, c))

• c is q-inevitable ⇔ ( 6 ∃ b ∈ B : P (b, q) and N(b, c))

• P (b, q) and P (b, c)⇒
each binding in Fs(b) witnesses the q-reachability of c

Proof

Claim 1. First suppose that c is q-reachable. Then by Theorem 2.6.1, for some

b ∈ B, b |+== q and b |+== c. Choose any b′ ∈ Fs(b). Then b′ |= q and c ∈ say(b′),

and, since b′ ∈ Fs, then b′ |+== q and b′ |+== c. Hence, by the theorem assumptions,
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P (b′, q) and P (b′, c). For the converse, suppose that for some b ∈ B, we have that

P (b, q) and P (b, c). Then, by the theorem assumptions, b |+== q and b |+== c. Hence, by

Theorem 2.6.1, c is q-reachable.

Claim 2. We prove the following: c is not q-inevitable ⇔ (∃ b ∈ B : P (b, q) and

N(b, c)).

First suppose that c is not q-inevitable. Then by Theorem 2.6.1, for some

b ∈ B, b |+== q and b |−== c. Choose any b′ ∈ Fs(b). Then b′ |= q and c /∈ say(b′),

and, since b′ ∈ Fs, then b′ |+== q and b′ |−== c. Hence, by the theorem assumptions,

P (b′, q) and N(b′, c). For the converse, suppose that for some b ∈ B, we have that

P (b, q) and N(b, c). Then, by the theorem assumptions, b |+== q and b |−== c. Hence, by

Theorem 2.6.1, c is not q-inevitable.

Claim 3. Suppose that c is q-reachable. Then the first half of the proof of Claim

(1) shows that each binding b′ ∈ Fs(b) is a witness to the q-reachability of c. �

Theorem 3.2.1 For an acyclic production system s,

b ∈ As ⇔ (∀x ∈ Vs ∪Ws : b(x) 6= ⊥ ⇒ b |= (indomx ∧ precondx))

Proof

By induction on the number of variables in s. Let Γs be the set of all bindings b

such that: ∀x ∈ Vs ∪Ws : b(x) 6= ⊥ ⇒ b |= (indomx ∧ precondx). Then the claim

to be proven states the following: As = Γs.

For n = 0, we have As = Γs = {{}}. Suppose that the claim is true for

systems with n − 1 variables, and suppose that the system s has n variables. Let
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z be a variable in s that is a leaf in the restriction of the dependency graph to

the variables. Let s0 be the system that is obtained by removing z from s. By

induction, As0 = Γs0 .

Claim 1: Γs ⊆ As

Choose b ∈ Γs. Let b0 = b− {(z, b(z))}. Then b0 ∈ Γs0 . Hence b0 ∈ As0 .

Suppose first that b 6|= precond z. Then, since b ∈ Γs, we have that b(z) = ⊥.

Hence b = b0 ∈ As0 . Hence, b ∈ As.

Now suppose that b |= precond z. Since b |= precond z, and z /∈ FV (precond z),

then b0 |= precond z. First suppose that z is an input variable. Since b ∈ Γs, then

b(z) ∈ domz ∪ {⊥}. This, combined with the fact that b0 |= z, implies that b ∈ As.

Now suppose that z is a calculated variable. Then, since b ∈ Γs, then b(z) = ⊥ or

b(z) = val(termz, b). This, combined with the fact that b0 |= z, implies that b ∈ As.

Claim 2: As ⊆ Γs

Choose b ∈ As. Let b0 = b− {(z, b(z))}. Then b0 ∈ As0. Hence b0 ∈ Γs0 .

Suppose first that b 6|= precond z. Since b ∈ As, and b 6|= precond z, then b(z) = ⊥.

Since b0 ∈ Γs0 , b 6|= precond z, and b(z) = ⊥, then b ∈ Γs.

Now suppose that b |= precond z. First suppose that z is an input variable. Since

b ∈ As, and b |= precond z, then b(z) ∈ domz ∪ {⊥}. This, combined with the fact

that b0 ∈ Γs0 , implies that b ∈ Γs. Now suppose that z is a calculated variable.

Since b ∈ As, and b |= precond z, then b(z) = ⊥ or b(z) = val(termz, b). This,

combined with the fact that b0 ∈ Γs0 , implies that b ∈ Γs. �
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Theorem 3.2.2 For an acyclic production system s,

b ∈ Fs ⇔ ((∀ v ∈ Vs : if b |= precondv then b(v) ∈ domv else b(v) = ⊥) &

(∀w ∈Ws : if b |= prew then b(w) = val(termw, b) else b(w) = ⊥))

The claim is equivalent to the statement that b ∈ Fs iff the following four

conditions hold:

1. ∀ v ∈ Vs : b |= precondv ⇒ b(v) ∈ domv

2. ∀w ∈Ws : b |= precondw ⇒ b(w) = val(termw, b)

3. ∀ v ∈ Vs : b 6|= precondv ⇒ b(v) = ⊥

4. ∀w ∈Ws : b 6|= precondw ⇒ b(w) = ⊥

Proof (⇐)

For a binding b, suppose that (1), (2), (3) and (4) are true. To show that b ∈ Fs,

we must show that b ∈ As, and that ask(b) = say(b) = {}.
To show that b ∈ As, the previous theorem shows that it is sufficient to prove

that: (∀x ∈ Vs ∪ Ws : b(x) 6= ⊥ ⇒ b |= (indomx ∧ precondx)). First suppose

that x ∈ Vs, and that b(x) 6= ⊥. Then by (3), b |= precondx. Hence, by (1),

bx ∈ domx. Thus b |= (indomx ∧ precondx). Now suppose that x ∈ Ws, and that

b(x) 6= ⊥. Then by (4), b |= precondx. Hence, by (2), b(x) = val(termx, b). Thus,

since b(x) 6= ⊥, then b |= indomx. Hence, b |= (indomx ∧ precondx). Therefore,

b ∈ As.

Next, from (1) it follows that for all v ∈ Vs : b |= precondv ⇒ b(v) 6= ⊥. Hence

ask(b) ≡ {v ∈ Vs | b |= precondv & b(v) = ⊥} = {}.
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Finally, claim that calc(b) ≡ {(w, z) : b |= precondw & z = val(termw, b) 6=
⊥ & b(w) = ⊥} = {}. To prove that calc(b) = {}, we show that b |= precondw ⇒
w /∈ vars(calc(b)). Suppose that b |= precondw. Then by (2), b(w) = val(termw, b).

Hence, w cannot belong to vars(calc(b))—because if it did, then we would have

that ⊥ = b(w) 6= val(termw, b). Thus, vars(calc(b)) = {}, and so calc(b) = {}. �

Proof (⇒)

Suppose that b ∈ Fs, i.e., that b ∈ As and ask(b) = calc(b) = {}. We now prove

that statements (1), (2), (3) and (4) are all true.

Since b ∈ As, then by the preceding theorem, for all x ∈ Vs ∪Ws: b(x) 6= ⊥ ⇒
b |= (indomx ∧ precondx). Choose x ∈ Vs ∪Ws. Then b 6|= precondx ⇒ b(x) = ⊥.

That proves statements (3) and (4).

To prove statement (1), choose v ∈ Vs. Since ask(b) ≡ {v ∈ Vs | b |= precondv &

b(v) = ⊥} = {}, it follows that b |= precondv ⇒ b(v) 6= ⊥. Furthermore, since b is

attainable, then b |= precondv ⇒ b(v) ∈ domv. Thus, statement (1) is proven.

To prove statement (2), choose w ∈Ws, and suppose that b |= precondw. Then,

since calc(b) ≡ {(w, z) : b |= precondw & z = val(termw, b) 6= ⊥ & b(w) =

⊥} = {}, it follows that val(termw, b) = ⊥ or b(w) 6= ⊥. We conclude the proof

by showing that this disjunction implies that b(w) = val(termw, b). First consider

the case where b(w) = ⊥. Then val(termw, b) = ⊥, and so b(w) = val(termw, b).

Now suppose that b(w) 6= ⊥. Then, since b is attainable, there is some attainable

sub-binding b0 ⊆ b in which b(w) was assigned: b(w) = val(termw, b0) 6= ⊥. From

this it follows that val(termw, b0) = val(termw, b), and so b(w) = val(termw, b). �
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We will use the following definition of the Height of an Expression in our in-

ductive proofs—it will serve as the rank function. Informally, (1) subexpressions

have smaller height than the expressions which contain them, and (2) a variable

has greater height than the expressions upon which it depends, viz., the precondi-

tion and answer expressions. That the height is well-defined will follow from the

acyclicity of the dependency graph.

Definition A.2 (Height of an Expression)

height : Expr → N

height(op(e1, e2)) = 1 + max (height(e1), height(e2))

height(const) = 1

height(v) = 1 + height(precondv)

height(w) = 1 + max (height(precondw), height(termw))

Theorem 3.2.3 For an acyclic production system s, binding b ∈ Bs, formula f ,

and term t:

• b |= poss(f)⇒ (∀ b′ ∈ As(b) : b′ |= f)

• b |= negs(f)⇒ (∀ b′ ∈ As(b) : b′ 6|= f)

• b |= poss(t)⇒ (∀ b′ ∈ As(b) : b′ |= (t = t)

• b |= negs(t)⇒ (∀ b′ ∈ As(b) : b′ 6|= (t = t)

Proof

We proceed by induction on the height of f . Our induction hypothesis is that all

four of the claims hold on all expressions of smaller height.
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Pos: Conjunction

b |= pos(f1 ∧ f2)⇒
b |= pos(f1) and b |= pos(f2)

†⇒
(∀ b′ ∈ A(b) : b′ |= f1) and (∀ b′ ∈ A(b) : b′ |= f2)⇒
(∀ b′ ∈ A(b) : b′ |= (f1 ∧ f2))

(†) by induction

Pos: Disjunction

b |= pos(f1 ∨ f2)⇒
b |= pos(f1) or b |= pos(f2)⇒
(∀ b′ ∈ A(b) : b′ |= f1) or (∀ b′ ∈ A(b) : b′ |= f2)⇒
(∀ b′ ∈ A(b) : b′ |= (f1 ∨ f2))

Pos: Negation

b |= pos(¬f)⇒
b |= neg(f)⇒
(∀ b′ ∈ A(b) : b′ 6|= f)⇒
(∀ b′ ∈ A(b) : b′ |= ¬f)

Pos: Atomic

b |= pos(p(t1, . . . , tk))⇒
b |= pos(t1) & . . . & b |= pos(tk) & b |= p(t1, . . . , tk)⇒
(∀ b′ ∈ A(b) : val(t1, b

′) 6= ⊥ & . . .& val(tk, b
′) 6= ⊥) & b |= p(t1, . . . , tk)

†⇒
val(t1, core(b)) 6= ⊥ & . . .& val(tk, core(b)) 6= ⊥ & b |= p(t1, . . . , tk)

‡⇒
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val(t1, b) = val(t1, core(b)) & . . .& val(tk, b) = val(tk, core(b)) & b |= p(t1, . . . , tk)

⇒ core(b) |= p(t1, . . . , tk)⇒
(∀ b′ ∈ A(b) : b′ |= p(t1, ..., tk))

(†) since core(b) ∈ A(b)

(‡) since b ⊇ core(b)

Pos: Function

b |= pos(f(t1, . . . , tk))⇒
b |= pos(t1) & . . . & b |= pos(tk)⇒
(∀ b′ ∈ A(b) : val(t1, b

′) 6= ⊥ & . . .& val(tk, b
′) 6= ⊥)⇒

(∀ b′ ∈ A(b) : val(f(t1, . . . , tk), b
′) 6= ⊥)

Pos: Constant

(∀ b′ ∈ A(b) : val(c, b′) = c 6= ⊥)

Pos: Input Variable

b |= pos(v)⇒
b |= pos(precondv) & b |= indomv ⇒
(∀ b′ ∈ A(b) : b′ |= precondv) & b |= indomv ⇒
core(b) |= precondv & b(v) ∈ domv

†⇒
(core(b))(v) = b(v) 6= ⊥ ⇒
(∀ b′ ∈ A(b) : val(v, b′) = b(v) 6= ⊥)

(†) since core(b) |= precondv, and b(v) ∈ domv, the computation of core(b) will
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accept the value b(v) as the value for (core(b))(v)

Pos: Derived Variable

b |= pos(w)⇒
b |= pos(precondw) & b |= pos(termw) & b |= (w = termw)⇒
((∀ b′ ∈ A(b) : b′ |= precondw) & (∀ b′ ∈ A(b) : val(termw, b′) 6= ⊥) &

b(w) = val(termw, b) 6= ⊥)

⇒
(core(b) |= precondw & val(termw, core(b)) 6= ⊥ &

b(w) = val(termw, b) 6= ⊥)

†⇒
(core(b) |= precondw & val(termw, core(b)) = val(termw, b) = b(w) 6= ⊥)

‡⇒
(core(b))(w) = b(w) 6= ⊥ ⇒
(∀ b′ ∈ A(b) : val(w, b′) 6= ⊥)

(†) since val(termw, core(b)) 6= ⊥, and b ⊇ core(b), then val(termw, core(b)) =

val(termw, b)

(‡) since core(b) |= precondw, and val(termw, core(b)) = b(w) 6= ⊥, then the com-

putation of core(b) will accept the value b(w) as the value for (core(b))(w)

Neg: Conjunction

b |= neg(f1 ∧ f2)⇒
b |= neg(f1) or b |= neg(f2)⇒
(∀ b′ ∈ A(b) : b′ 6|= f1) or (∀ b′ ∈ A(b) : b′ 6|= f2)⇒
(∀ b′ ∈ A(b) : b′ 6|= (f1 ∧ f2))
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Neg: Disjunction

b |= neg(f1 ∨ f2)⇒
b |= neg(f1) and b |= neg(f2)⇒
(∀ b′ ∈ A(b) : b′ 6|= f1) and (∀ b′ ∈ A(b) : b′ 6|= f2)⇒
(∀ b′ ∈ A(b) : b′ 6|= (f1 ∨ f2))

Neg: Negation

b |= neg(¬f)⇒
b |= pos(f)⇒
(∀ b′ ∈ A(b) : b′ |= f)⇒
(∀ b′ ∈ A(b) : b′ 6|= ¬f)

Neg: Atomic

b |= neg(p(t1, . . . , tk))⇒
b |= neg(t1) or . . . or b |= neg(tk) or b |= pos(p(t1, . . . , tk))⇒
(∀ b′ ∈ A(b) : val(t1, b

′) = ⊥) or . . . or (∀ b′ ∈ A(b) : val(tk, b
′) = ⊥) or

(∀ b′ ∈ A(b) : b′ |= p(t1, . . . , tk))

⇒
(∀ b′ ∈ A(b) : val(t1, b

′) = ⊥ or . . . or val(tk, b
′) = ⊥ or b′ |= p(t1, . . . , tk))⇒

(∀ b′ ∈ A(b) : b′ 6|= p(t1, . . . , tk))

Neg: Function

b |= neg(f(t1, . . . , tk))⇒
b |= neg(t1) or . . . or b |= neg(tk)⇒
(∀ b′ ∈ A(b) : val(t1, b

′) = ⊥) or . . . or (∀ b′ ∈ A(b) : val(tk, b
′) = ⊥)⇒
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(∀ b′ ∈ A(b) : val(t1, b
′) = ⊥ or . . . or val(tk, b

′) = ⊥)⇒
(∀ b′ ∈ A(b) : val(f(t1, . . . , tk), b

′) = ⊥)

Neg: Constant

b |= neg(c)⇒
b |= false ⇒
everything

Neg: Input Variable

b |= neg(v)⇒
b |= neg(precondv)⇒
(∀ b′ ∈ A(b) : b′ 6|= precondv)

†⇒
(∀ b′ ∈ A(b) : b′(v) = ⊥)⇒
(∀ b′ ∈ A(b) : val(v, b′) = ⊥)

(†) Since b′ is attainable

Neg: Derived Variable

b |= neg(w)⇒
b |= neg(precondw) or b |= neg(termw)⇒
(∀ b′ ∈ A(b) : b′ 6|= precondw) or (∀ b′ ∈ A(b) : val(termw, b′) = ⊥)

†⇒
(∀ b′ ∈ A(b) : b′(w) = ⊥)⇒
(∀ b′ ∈ A(b) : val(w, b′) = ⊥)

(†) By Theorem 3.2.1, for attainable b′, b′ 6|= precondw ⇒ b′(w) = ⊥. Also, the
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theorem implies that for attainable b′, val(termw, b′) = ⊥ ⇒ b′(w) = ⊥
�

Theorem 3.2.6 For an acyclic production system s, and final binding b ∈ Fs,

b |= poss(f)⇔ b |= f

b |= negs(f)⇔ b 6|= f

Proof (⇒)

Suppose b ∈ Fs. By Corollary 3.2.4, b |= poss(f) ⇒ b |+==s f , and by Proposi-

tion 2.4.2, b |+==s f ⇒ b |= f . Hence, b |= poss(f)⇒ b |= f . Similarly, b |= negs(f)⇒
b |−==s f , and b |−==s f ⇒ b 6|= f , and so b |= negs(f)⇒ b 6|= f . �

Proof (⇐)

We prove the following, more general proposition. For a binding b ∈ Fs, formula f ,

and term t

Claim:

• b |= f ⇒ b |= poss(f)

• b 6|= f ⇒ b |= negs(f)

• b |= (t = t)⇒ b |= poss(t)

• b 6|= (t = t)⇒ b |= negs(t)

The proof proceeds by induction on height(e). Our induction hypothesis is that

for all expressions of height less than k, both clauses of the Claim are true. We

break the proof into cases based on the form of e.
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Pos: Conjunction

b |= f1 ∧ f2 ⇒
b |= f1 and b |= f2

†⇒
b |= pos(f1) and b |= pos(f2)⇒
b |= pos(f1 ∧ f2)

(†) by induction

Pos: Disjunction

b |= f1 ∨ f2 ⇒
b |= f1 or b |= f2 ⇒
b |= pos(f1) or b |= pos(f2)⇒
b |= pos(f1 ∨ f2)

Pos: Negation

b |= ¬f ⇒
b 6|= f ⇒
b |= neg(f)⇒
b |= pos(¬f)

Pos: Atomic

b |= p(t1, . . . , tk)⇒
b |= (t1 = t1) & . . . & b |= (tk = tk) & b |= p(t1, . . . , tk)⇒
b |= pos(t1) & . . . & b |= pos(tk) & b |= p(t1, . . . , tk)⇒
b |= pos(p(t1, . . . , tk))
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Pos: Function

b |= f(t1, . . . , tk)⇒
b |= (t1 = t1) & . . . & b |= (tk = tk)⇒
b |= pos(t1) & . . . & b |= pos(tk)⇒
b |= pos(f(t1, . . . , tk))

Pos: Constant

b |= pos(c)⇔ b |= true ⇔ true

Pos: Input Variable

b |= (v = v)
†⇒

b |= (precondv ∧ indomv)⇒
b |= pos(precondv) & b |= indomv ⇒
b |= pos(v)

(†) since b ∈ As

Pos: Derived Variable

b |= (w = w)⇒
b |= (precondw ∧ indomw)⇒
b |= pos(precondw) & b |= termw & b |= indomw ⇒
b |= pos(precondw) & b |= pos(termw) & b |= indomw ⇒
b |= pos(w)
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Neg: Conjunction

b 6|= f1 ∧ f2 ⇒
b 6|= f1 or b 6|= f2

†⇒
b |= neg(f1) or b |= neg(f2)⇒
b |= neg(f1 ∧ f2)

(†) by induction

Neg: Disjunction

b 6|= f1 ∨ f2 ⇒
b 6|= f1 and b 6|= f2

b |= neg(f1) and b |= neg(f2)⇒
b |= neg(f1 ∨ f2)

Neg: Negation

b 6|= ¬f ⇒
b |= f ⇒
b |= pos(f)⇒
b |= neg(¬f)

Neg: Atomic

b 6|= p(t1, . . . , tk)⇒
b 6|= (t1 = t1) or . . . or b 6|= (tk = tk) or b |= p(t1, . . . , tk)⇒
b |= neg(t1) or . . . or b |= neg(tk) or b |= pos(p(t1, . . . , tk))⇒
b |= neg(p(t1, . . . , tk))
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Neg: Function

b 6|= f(t1, . . . , tk)⇒
b 6|= (t1 = t1) or . . . or b 6|= (tk = tk)⇒
b |= neg(t1) or . . . or b |= neg(tk)⇒
b |= neg(f(t1, . . . , tk))

Neg: Constant

b 6|= pos(c)⇒
b 6|= true ⇒
false ⇒
everything

Neg: Input Variable

b 6|= (v = v)
†⇒

b 6|= precondv ⇒
b |= neg(precondv)⇒
b |= neg(v)

(†) since b ∈ Fs

Neg: Derived Variable

b 6|= (w = w)
†⇒

b 6|= precondw or b 6|= termw ⇒
b |= neg(precondw) or b |= neg(termw)⇒
b |= neg(w)
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(†) since b ∈ Fs �

Theorem 3.2.8 For acyclic production system s, variable v ∈ Vs, and formula q:

choicess(v, q) = {b(v) | b ∈ B & b |= (poss(q) ∧ poss(v))}

Proof

First suppose that z ∈ choicess(v, q). This means that z 6= ⊥, and that ∃b ∈
Fs s .t . b |= q and b(v) = z. Since b ∈ Fs, and b |= q, then by Theorem 3.2.6,

b |= pos(q). Next, since b ∈ As, and b(v) 6= ⊥, then by Theorem 3.2.2, b |=
(indomv ∧ precondv). Since b ∈ Fs, and b |= precondv, then by Theorem 3.2.6,

b |= pos(precondv). Hence, b |= pos(precondv) ∧ indomv, i.e., b |= pos(v). Thus,

b |= pos(q) ∧ pos(v). Therefore z = b(v) belongs to the set on the right hand side

of the claimed equation.

Now suppose that z belongs to the set on the right side of the claimed equation,

i.e., that for some binding b, we have that b(v) = z, and b |= pos(q)∧ pos(v). Since

b |= pos(q), then by Corollary 3.2.4, b |+== q. Since b |= pos(v), then by the same

corollary, b |+==( v = v). Choose b′ ∈ Fs(b), i.e., let b′ be some final extension of the

core of b. Then, since b |+== q, we have that b′ |= q, and since b |+== (v = v), we have

that b′models(v = v), i.e., that b′(v) 6= ⊥. Therefore, b′(v) ∈ choicess(v, q).

Now, since b |= pos(v), then by Theorem 3.2.3, for every attainable extension

b′ of the core of b, b′ |= (v = v), i.e., b′(v) 6= ⊥. Hence, core(b)(v) 6= ⊥. Since

core(b) 6= ⊥, and core(b) ⊆ b and core(b) ⊆ b′, then core(b)(v) = b(v) = b′(v).

Hence, z = b(v) ∈ choicess(v, q). �
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Proposition 3.5.1 For monotone acyclic production systems, the determination

of the q-reachability of a conclusion is NP-hard in the size of the system.

Proof

We give a direct reduction from SAT. Let f be a conjunctive normal formula of

propositional logic, and let f ′ be a representation of f in predicate logic.2 Let

V = FV (f ′), and let s be a (trivial) system that has one question variable for each

v in V , each with true precondition. Then,

f satisfiable ⇔ f ′ satisfiable ⇔ f ′ reachable under query true

�

Proposition 3.5.2

size(fg(s, q)) = O(s + q)

Proof

The basis of this result, which states that the size of the formula graph is compact—

linear—in the size of the input system plus the query formula, is the memoization

that is performed with the maps posmap and negmap in the functions pos and

neg on page 86. These memoization statements ensure that for each variable x,
2To make such a representation, for each propositional constant zi, let xi be an associated

variable. Then replace each positive literal zi in f with the atomic formula ‘xi = 1’, and each

negative literal ¬zi with the atomic formula ‘xi = 0’. Thus, for example, if f is (z1 ∨¬z2)∧ (z2 ∨
¬z4), then f ′ would be (x1 = 1 ∨ x2 = 0) ∧ (z2 = 1 ∨ z4 = 0).
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regardless of how many times the variable x is used, there is just one node in the

formula graph for pos(x) and one node for neg(x).

For an expression e, it is easy to see that a call to either pos(e) or neg(e) leads

to a traversal of the structure of e, with one AND or OR node being constructed for

each node in the abstract syntax tree for e. Thus, for the formula e, there is in the

formula graph an embedded edge-reversed tree, isomorphic to e, that arises from

the call to pos(e), and another edge-reversed tree arising from the call to neg(e).

At the boundaries of these edge-reversed trees are either (1) constraints, which are

roots in the overall formula graph, or (2) pointers to nodes for pos(v) or neg(v), for

variables v occuring in e.

The construction of pos(v) or neg(v)—which is only performed once—therefore

results in the construction of of size(precond v) + size(termv) logic nodes that may

be “charged” to v. Similarly, for a conclusion formula f (or the query formula q),

the calls to pos(f) or neg(f) result in the construction of size(f) nodes that can

be charged to f . It is not hard to see that every node in the entire formula graph

will thus get charged to one of the variables, to one of the conclusions, or to the

query formula. Hence the total size of the logic graph is linear in the size of the

production system plus the query formula. �

Proposition 3.5.4 For a monotone formula f :

f ∼=
∨

t∈dnf (f)

∧
t
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Proof

By induction on the structure of f . For a tuple t, i.e., a set of constraints, define

as a shorthand t′ ≡ ∧
t.

Case 1: f = constraint c

∨
t∈dnf (f) t′ =

∨
t∈{{c}} t′ = {c}′ ∼= f

Case 2: f = f1 ∨ f2

∨
t∈dnf (f) t′ =

∨
t∈dnf (f1)∪dnf (f2) t′ = (

∨
t∈dnf (f1) t′) ∨ (

∨
t∈dnf (f2)

t′) ∼= f1 ∨ f2 = f

Case 3: f = f1 ∧ f2

∨
t∈dnf (f) t′ =

∨
t∈{t1∪t2 | t1∈dnf (f1), t2∈dnf (f2)} t′ =

∨
t1∈dnf (f1), t2∈dnf (f2) t′1 ∧ t′2 = (

∨
t1∈dnf (f1)

t′1) ∧ (
∨

t1∈dnf (f1)
t′1) = f1 ∧ f2 = f �

Proposition 3.5.5 For a formula f :

|dnf (f)| ≤ dc(f)

Proof

By induction on the structure of f .

Case 1: f = constraint c

|dnf (c)| = |{{c}}| = 1 = dc(c)

Case 2: f = f1 ∨ f2

|dnf (f1 ∨ f2)| = |dnf (f1) ∪ dnf (f2)| ≤ |dnf (f1)| + |dnf (f2)| ≤ dc(f1) + dc(f2) =

dc(f1 ∨ f2)
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Case 3: f = f1 ∧ f2

|dnf (f1 ∧ f2)| = |{t1 ∪ t2 | t1 ∈ dnf (f1), t2 ∈ dnf (f2)}| ≤ |dnf (f1)| × |dnf (f2)| ≤
dc(f1)× dc(f2) = dc(f1 ∧ f2). �

Proposition 3.5.6 For a node x in the formula graph fg(s, q) and a tuple t ∈
dnf (x):

|t| ≤ weight(x) ≤ size(s) + size(q)

Proof

Recall that weight(x) is the sum of the sizes of the constraints that are ancestors

of x in the formula graph.

Each tuple t ∈ dnf (x) is a set of constraints, and each of these constraints is

an ancestor of x in the formula graph. Hence |t| ≤ weight(x). Also weight(x) ≤
size(fg(s, q)) = O(s + q). �

Proposition A.1 For a term t:

pos(t) =
∧

x∈FV (t)

pos(x)

Proof

By induction on the structure of t. �

Proposition A.2 For a conjunctive formula f :

pos(f) = f ∧
∧

x∈FV (f)

pos(x)
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Proof

Case 1: f = f1 ∧ f2

pos(f1 ∧ f2) =

pos(f1) ∧ pos(f2) =

(f1 ∧
∧

x∈FV (f1)) ∧ (f2 ∧
∧

x∈FV (f2)
) =

f ∧∧
x∈FV (f) pos(x)

Case 2: f = atomic formula p(t1, . . . , tk)

pos(p(t1, ..., tk)) =

p(t1, ..., tk) ∧ pos(t1) ∧ · · · ∧ pos(tk) =

f ∧ (
∧

x∈FV (t1)
pos(x)) ∧ · · · ∧ (

∧
x∈FV (tk) pos(x)) =

f ∧∧
x∈FV (f) pos(x) �

Proposition A.3 In a conjunctive system s, for a variable x:

poss(x) = precondx ∧ indomx ∧
∧

y∈parents(x)

poss(y)

Proof

pos(x) =

pos(precondx) ∧ pos(termx) ∧ indomx =

precondx ∧ (
∧

y∈FV (precondx) pos(y)) ∧ (
∧

y∈FV (termx) pos(y)) ∧ indomx =

precondx ∧ indomx ∧
∧

y∈parents(x) pos(y)) �
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Proposition 3.5.7 For a conjunctive system s and a variable x:

poss(x) =
∧

y∈ancestors(x)

precondy ∧ indomy

Proof

Corollary to the previous proposition. �

Corollary A.4 For a conjunctive system s and a disjunction-free expression e,

dc(poss(e)) = 1

Proof

By induction on the height of the expression e.

Case 1: e = constraint c

dc(pos(c)) = dc(c ∧∧
v∈FV (c) pos(v)) =

∏
v∈FV (c) dc(pos(v))

†
= 1

dc(pos(f1 ∧ f2)) = dc(pos(f1))× dc(pos(f2)) = 1

Case 3: e = term t

dc(pos(t)) = dc(
∧

v∈FV (t) pos(v)) =
∏

v∈FV (t) dc(pos(v)) = 1

(†) by induction �

Corollary 3.5.8 For a conjunctive system s and disjunction-free expression e,

|dnf (poss(e))| ≤ 1
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Proof

By the preceding propositions, we have that |dnf (poss(e))| ≤ dc(poss(e)) = 1. �

Proposition 3.5.9 For a conjunctive system s and a monotone formula q,

dc(poss(q)) = dc(q)

Proof

Case 1: q = q1 ∧ q2

dc(pos(q1 ∧ q2)) = dc(pos(q1) ∧ pos(q2)) =

dc(pos(q1))× dc(pos(q2)) = dc(q1)× dc(q2) = dc(q1 ∧ q2)

Case 2: q = q1 ∨ q2

dc(pos(q1 ∨ q2)) = dc(pos(q1)) + dc(pos(q2)) = dc(q1) + dc(q2) = dc(q1 ∨ q2)

Case 3: q = constraint c

dc(pos(c)) = dc(c ∧∧
v∈ancestors(FV (c)) precondv ∧ indomv) =

∏
v∈ancestors(FV (c) dc(precondv) = 1 �

Corollary 3.5.10 For a conjunctive system s and a monotone formula q,

|dnf (poss(q))| ≤ dc(q)

Proposition A.5 For a conjunctive system s and formula q, the data complexity,

measured in units of constraints, of querying the q-reachability of all the conclusions

in s is O(n×w), where n = size(s) and w is the maximum weight of a node in the

formula graph. Since w is O(n), this complexity is O(n2).
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Proof

For reachability queries, the formulas that must be solved are all the pos(q)∧pos(y),

where y is either a variable or the precondition of a conclusion. This evaluation

can be performed in the following three phases: (1) evaluation of all nodes pos(x),

for variables x, (2) evaluation of pos(q), and (3) evaluation of all pos(q) ∧ pos(y).

We now show that the cost of each of these phases is O(n× w).

Phase 1: Evaluation of the pos(x) formulas

For variables x, we can perform the evaluation of the pos(x) formulas bottom-up,

starting at the roots and proceeding towards the leaves. By working this way, when

pos(x) is being evaluated, then, for each parent p of x, the solutions to pos(p) are

immediately available. Let |x| be the sum of the sizes of the expressions for x, i.e.,

|x| ≡ |precondx|+ |termx|+ |indomx|.
By Proposition A.3, pos(x) = precondx ∧ indomx ∧

∧
p∈parents(x) pos(p). Fur-

thermore, by Proposition 3.5.7, since the system is conjunctive, then there is just

one tuple in dnf (pos(p)), and, like all tuples in the system, its size is bounded by

w. Hence, the size of the formulas that will get passed to the conjunctive solver

is bounded by |precondx| + |indomx| + |parents(x)| · w. Since each parent p of

x is referenced by an instance of ‘p’ in either precondx or termx, we have that

parents(x) ≤ |x|. Hence, the incremental cost of evaluating pos(x) is bounded by

|x|+ |x| ·w = |x| · (w + 1). Summing over all variables x, the total cost is therefore

O(n× w).
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Phase 2: Evaluation of pos(q)

We do this evaluation after all of the tuples for pos(x) have been computed. Now,

it is easy to see that the formula pos(q) can be obtained from the formula q, by

replacing each constraint c with c ∧ ∧
x∈FV (c) pos(x). This is reflected by the fact

that the logic graph, there will be a “co-tree” (an edge-reversed tree) of AND and

OR nodes, which mirrors the structure of the abstract syntax tree for q. In this

co-tree, there is one root rc for each constraint c in q, and for each variable x in

FV (c), there is an edge from the node for pos(x) to the node rc. (So rc is not a

root in the whole graph, just a root locally, in relation to the co-tree.)

By the results of Phase 1, all of the solutions to the nodes pos(x) have been

evaluated. Hence, the incremental cost of evaluating pos(q) is just the cost of

evaluating the nodes in the co-tree that mirrors the structure of q. There are |q|
such nodes. In Corollary 3.5.10, we showed that the number of tuples in pos(q) is

bounded by dc(q). Now, since pos(q) is at the leaf of the co-tree, and since the

disjunctive complexity of the subformulas of pos(q) cannot exceed the disjunctive

complexity of pos(q), it follows that the aggregate number of tuples for all of the

nodes in the co-tree is bounded by |q| ·dc(q) ≡ cq. This value cq is a constant that is

independent of the size of the input production system. Since the size of each tuple

is bounded by w, the total size of the constraints passed to the solver is bounded

by cq · w. Hence the complexity is O(w).

Phase 3: Evaluation of the pos(q) ∧ pos(y) formulas

To determine the q-reachability of the node y, the tuple for pos(y)—there is only

one tuple, since the system is conjunctive—must be conjoined with each of the
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tuples in dnf (pos(q)). In Corollary 3.5.10, we showed that there are at most dc(q)

of these tuples. Hence, to solve pos(y), the size of the constraints transferred to

the solver is bounded by (w + w) · dc(q) = O(w). Thus, the total complexity is

O(n× w). �

Lemma A.6 For a conjunctive system s, variable x, and node y:

x ∈ ancestors(y)⇒ (negs(x) |= negs(y))

Proof

By induction on the distance from x to y, defined as the maximum length of a

path from x to y. For the base case, where the distance is zero, y is the same

as x, and we have that neg(x) |= neg(x). For the induction step, suppose that x

is a proper ancestor of y. We may write neg(y) = neg(precond y) ∨ neg(termy) =

((
∨

z∈FV (precondy) neg(z)) ∨ other stuff ) ∨∨
z∈FV (termy) neg(z).

Since x is a proper ancestor of y, then for some z ∈ FV (precondy)∪FV (termy),

we have that x is an ancestor of z. So, by induction, neg(x) |= neg(z). Hence,

neg(x) |= neg(y). �

Lemma A.7 Recall that for a formula f , the notation f− designates the opposite

formula. Then for a node n with conjunctive precondition c1 ∧ · · · ∧ ck:

neg(n) =


 ∨

v∈parents(n)

neg(v)


 ∨

∨
i=1,... ,k


c−i ∧

∧
v∈FV (ci)

pos(v)
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Proof

Follows by a simple induction on the number of conjuncts k. For k = 1, the

lemma just restates the definition of neg(n). The induction step uses the fact that

neg(n) = neg(c1 ∧ · · · ∧ ck) = neg(c1 ∧ · · · ∧ ck−1) ∨ neg(ck). �

Proposition A.8 For a conjunctive system s and formula q, the data complexity

in units of constraints of querying the q-inevitability of all the conclusions in s is

O(n×w), where n = size(s) and w is the maximum weight of a node in the formula

graph. Since w is O(n), this complexity is O(n2).

Proof

For inevitability queries, the formulas that must be solved are all the pos(q)∧neg(y),

where y is either a variable or the precondition of a conclusion. For this evaluation,

we make use of the following results that were computed during the evaluation of

the reachability queries: (1) the solutions to pos(q), and (2) the solutions to the

pos(x), for the variables x. In Proposition A.5, we showed that these results can

be computed with O(n× w) constraint-complexity.

We evaluate the formulas pos(q)∧neg(y) by a bottom-up traversal of the nodes y

in the dependency graph, which we modify by the following optimization: whenver

pos(q) ∧ neg(y) is found to be satisfiable, then for all descendents y′ of y, pos(q) ∧
neg(y′) is immediately marked as satisfiable. Then, for such y, the constraints for

pos(q) ∧ neg(y′) never need to be evaluated.

This optimization is justified as follows. Suppose that a binding b satisfies

pos(q) ∧ neg(y). Then b |= neg(y). Now, by Lemma A.6, which showed that
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neg(y) |= neg(y′), it follows that b |= neg(y′). Hence b |= pos(q) ∧ neg(y′).

Furthermore, we can arrange this optimization so that only O(n) time gets spent

traversing and marking the nodes pos(q) ∧ neg(y). Initially, all of these nodes get

marked as unsatisfiable. From that point on, the invariant is maintained that if a

node pos(q)∧ neg(y) is ever marked as satisfiable, then for all descendants y′ of y’,

pos(q) ∧ neg(y′) will be marked as satisfiable. Hence, when a node pos(q) ∧ neg(y)

is newly found to be satisfiable, then the traversal of the descendents y′ can stop

whenever a node pos(q) ∧ neg(y′) is encountered that has already been marked as

satisfiable by a previous traversal.

Now, assuming this optimization is in place, let us consider the cost of deter-

mining the satisfiability of pos(q) ∧ neg(y), where y has conjunctive precondition

c1 ∧ · · · ∧ ck. By Lemma A.7, pos(q) ∧ neg(y) =

pos(q) ∧




 ∨

v∈parents(y)

neg(v)


 ∨

∨
i=1,... ,k


c−i ∧

∧
v∈FV (ci)

pos(v)







Now, if for some parent v of y, we had that pos(q) ∧ neg(v) were satisfiable, then,

by the marking optimization that we just described, pos(q) ∧ neg(y) would have

been marked as satisfiable. Hence, if the formula pos(q) ∧ neg(y) is actually being

evaluated, then it must be the case that for all parents v of y, that pos(q)∧ neg(v)

is unsatisfiable. That being so, it follows that

pos(q) ∧ neg(y) = pos(q) ∧
∨

i=1,... ,k


c−i ∧

∧
v∈FV (ci)

pos(v)




Now fixed a tuple t in the solutions to pos(q), and let us bound the number of

constraints required to determine the satisfiability of t ∧ neg(y). Let ti be the ith

conjunction on the right-hand-side disjunction: ti = c−i ∧
∧

v∈FV (ci)
pos(v). Since
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each conjunct in ti arises from a free variable in ci, the number of conjuncts in ti is

bounded by |ci|. Hence, |ti| ≤ |ci|+ |ci| ·w = |ci| · (1+w), where w is the maximum

size of a tuple in the formula graph. Summing over all the tuples ti, for i = 1, . . . , k,

we get |precond i| · (1+w) as a bound. Now, each of these tuples must get conjoined

with t, and hence the cost associated with t∧ neg(y) is |precond i| · (w + 1 + w). By

Corollary 3.5.10, the number of tuples in pos(q) is bounded by dc(q), which is a

constant that is independent of the size of the input production system. Summing

over all nodes y, we then get a constraint complexity that is O(n× w). �

Theorem 3.5.11 For a conjunctive system s and formula q, the data complexity

in units of constraints of querying the q-reachability and q-inevitability of all the

conclusions in s is O(n × w), where n = size(s) and w is the maximum weight of

a node in the formula graph. Since w is O(n), this complexity is O(n2).

Proof

This follows as a corollary to the Propositions A.5, A.8, which we have shown in

this appendix. �

Lemma A.9 For a monotone formula f :

b |= pos(f)⇒ b |= f

Proof

By induction on the structure of f .
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Case 1: f = f1 ∧ f2

b |= pos(f1 ∧ f2)⇒ b |= pos(f1) & b |= pos(f2)⇒ b |= f1 ∧ f2

Case 2: f = f1 ∨ f2

b |= pos(f1 ∨ f2)⇒ b |= pos(f1) or b |= pos(f2)⇒ b |= f1 ∨ f2

Case 3: f = atomic

b |= pos(atomic)⇒ (b |= atomic ∧∧
v∈FV (atomic) pos(v)⇒ b |= atomic �

Lemma A.10 For a monotone acyclic production system s, an attainable binding

b ∈ As, and a monotone formula f :

• b |= f ⇒ b |= poss(f)

• b |= (t = t)⇒ b |= poss(t)

Proof

In the (⇐) part of the proof of Theorem 3.2.6, on page 165, we proved that for

final bindings b ∈ Fs, a stronger conclusion holds than what we claim here, viz., the

stronger conclusion that includes the statements that b 6|= f ⇒ b |= neg(f), and

that b 6|= (t = t)⇒ b |= neg(t). Now, for this lemma, we have a weaker hypothesis,

viz., that b ∈ As. Also, we have the restriction that all formulas are monotone.

Since all formulas are monotone, our claim here is a statement about only the pos

formulas. Inspecting the proof that starts on page 165, we see that the only place

that the assumption b ∈ Fs is made is in the analysis of the neg(x) formulas, for

variables x; in all the other cases, only the assumption that b ∈ As is used. Hence

the restriction of that proof to the pos cases proves the present lemma. �
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Proposition 3.6.1 For an acyclic production system s with monotone precondi-

tions, and an attainable binding b ∈ As, the formulas (∧b) and poss(∧b) are logically

equivalent.

Proof

Since (∧b) is a monotone formula, then by Lemma A.9, pos(∧b) |= (∧b). Claim now

that (∧b) |= pos(∧b) = pos(v1 = x1)∧· · ·∧pos(vk = xk) = (
∧

v∈vars(b) pos(v))∧(∧b).
Since (∧b) |= (∧b), this claim reduces to the claim that (∧b) |= ∧

v∈vars(b) pos(v).

To show this, suppose that for some binding b′, b′ |= (∧b). This means that b′ ⊇ b.

Choose a v ∈ vars(b). Then b |= (v = v). Hence, by Lemma A.10, b |= pos(v).

Hence, since pos(v) is a monotone formula, b′ |= pos(v). �

Proposition 3.6.3 For a monotone acyclic production system s, let b ∈ As be

an attainable binding. Let q be a formula. Let q′ be the extended query formula

q ∧ (∧b), and suppose that pos(q′) is satisfiable. Let n be a node in s that is

not a descendent of any of the variables in ancestors(FV (q)) ∪ vars(b). Then:

status(n, q′) = status(n, true).

Proof

Since status(n, f) has three components, this claim breaks down into three sub-

claims.

Claim 1: pos(q′) ∧ pos(n) satisfiable ⇔ pos(n) ∧ pos(true) satisfiable

I.e., pos(q ∧ (∧b)) ∧ pos(n) satisfiable ⇔ pos(n) satisfiable. By Proposition 3.6.1,
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this is equivalent to the claim that:

pos(q) ∧ (∧b) ∧ pos(n) satisfiable⇔ pos(n) satisfiable

One direction of this implication is immediate: (⇒).

Now, one of our initial assumptions states that

ancestors(n) ∩ (FV (q) ∪ vars(b)) = {}

Then, since FV (pos(n)) ⊆ ancestors(n), and FV (pos(q)) ⊆ ancestors(FV (q)), it

follows that FV (pos(n))∩FV (pos(q)∧(∧b)) = {}, i.e., FV (pos(n))∩FV (pos(q′)) =

{}. Now, by our initial assumptions, pos(q′) is satisfiable. Hence, if pos(n) is

satisfiable, then pos(q′) ∧ pos(n) is also satiafiable.

Claim 2: pos(q′) ∧ neg(n) satisfiable ⇔ neg(n) ∧ pos(true) satisfiable

The proof is obtained from the proof of claim (1) by replacing ‘pos(n)’ with ‘neg(n)’.

Claim 3: project({n}, pos(q′) ∧ pos(n)) = project({n}, pos(n))

This follows from the assumption that pos(q′) is satisfiable, and the fact, which we

showed in the proof of claim (1), that FV (pos(q′)) ∩ FV (pos(n)) = {}. �

Proposition 3.6.4 For an acyclic production system s, let b ∈ As be an attainable

binding. Let q be a formula. Let v be a variable in ask(b), and assume that v is not

an ancestor of any variable in q. Let x be a value in domv, and let b′ be the binding

b ∪ {(v, x)}. Then:

n /∈ descendents(v)⇒ status(n, q ∧ (∧b′)) = status(n, q ∧ (∧b))
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Proof

Since status(n, f) has three components, this claim breaks down into three sub-

claims.

Claim 1: pos(q ∧ (∧b′)) ∧ pos(n) satisfiable ⇔ pos(q ∧ (∧b)) ∧ pos(n) satisfiable

By Proposition 3.6.1, this is equivalent to the claim that:

pos(q) ∧ (∧b) ∧ (v = x) ∧ pos(n) satisfiable ⇔ pos(q) ∧ (∧b) ∧ pos(n) satisfiable

One direction is immediate: (⇒). Now we prove the converse by showing that:

v /∈ FV (pos(q) ∧ (∧b) ∧ pos(n))

First, since v ∈ ask(b), then v /∈ vars(b), and so v /∈ FV (∧b). Second, since

FV (pos(q)) ⊆ ancestors(FV (q)), and, by our assumptions, v /∈ ancestors(FV (q)),

then v /∈ FV (pos(q)). Finally, since n /∈ descendants(v), then v /∈ ancestors(n),

and FV (pos(n)) ⊆ ancestors(n), then v /∈ FV (pos(n)).

Claim 2: pos(q ∧ (∧b′)) ∧ neg(n) satisfiable ⇔ pos(q ∧ (∧b)) ∧ neg(n) satisfiable

The proof is obtained from the proof of claim (1) by replacing ‘pos(n)’ with ‘neg(n)’.

Claim 3: project({n}, pos(q ∧ (∧b′)) ∧ pos(n)) = project({n}, pos(q ∧ (∧b)) ∧ pos(n))

By Proposition 3.6.1, this is equivalent to the claim that:

proj (n, pos(q) ∧ (∧b) ∧ (v = x) ∧ pos(n)) = proj (n, pos(q) ∧ (∧b) ∧ pos(n))

This follows from the fact, which we showed in the proof of claim (1), that:

v /∈ FV (pos(q) ∧ (∧b) ∧ pos(n))
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Lemma A.11 For a monotone acyclic production system s and conjunctive for-

mula f , suppose that f has a single free variable p. Then:

poss(f) = poss(p) ∧ f

Proof

By induction on the structure of f . Suppose that FV (f) = {p}.
First, if f is an atomic formula, then pos(f) is by definition pos(p) ∧ f , and so

the claim holds. For the remaining case, suppose that f = f1 ∧ f2. Now, one of the

subformulas f1, f2 must have p as a free variable. Let us say that FV (f1) = {p}.
Then by induction, pos(f1) = pos(p) ∧ f1.

Now suppose that also FV (f2) = {p}. Then by induction, also pos(f2) ∧ f2.

Hence pos(f) = pos(f1) ∧ pos(f2) = pos(p) ∧ f1 ∧ f2 = pos(p) ∧ f . Now suppose

that FV (f2) 6= {p}. Since FV (f1 ∧ f2) = {p}, the only possibility then is that

FV (f2) = {}, i.e., f2 is either constant true or constant false. If f2 is true, then we

have: If f2 is false, then we have: pos(f) = pos(f1∧false) = false = pos(p)∧false =

pos(p) ∧ f . �

Proposition 3.7.2 For an acyclic production system s, let v be a variable in Vs,

and c a conclusion in Cs. Suppose that precond v and precond c are conjunctive

formulas. Then:

1. If v has only one parent p, then poss(v) = poss(p) ∧ precondv ∧ indomv

2. If c has only one parent p, then poss(c) = poss(p) ∧ precond c

188



Proof

By a direct application of the previous lemma:

pos(c) = pos(precond c) = pos(p) ∧ precond c

pos(v) = pos(precond v) ∧ indomv = pos(p) ∧ precondv ∧ indomv. �

Proposition 3.7.3 The tree-complexity, measured in units of constraints, of the

optimized algorithm is O(n).

Proof

Let C be a class of tree equivalent-systems. Recall that this means that for all

x, y ∈ C, that skel(x) = skel(y) ≡ skel(C), where the skeleton of a system is

defined as the fragment of a system which is obtained by removing all of the tree

nodes. Fix a query formula q. Let s ∈ C be an arbitrary member of C.

The optimized algorithm has two modes of operation: (1) for the non-tree nodes,

the normal, DNF-based bottom-up evaluation, and (2) for the tree nodes, the recur-

sive routine, which performs temporary destructive updates to a global constraint

store. In this proof, we will show that the constraint-complexity of the DNF-

evaluation is O(w), and the constraint-complexity of processing the tree nodes is

O(n). Since w ≤ n, that will prove that the overall constraint complexity is O(n).

Our first claim will show that the number of tuples in dnf (x), for nodes x ∈ s,

is O(1).

Claim 1: dc(poss(x)) = O(1), for all nodes x ∈ s

In order to prove this, we first define a system s′ by removing all the tree nodes from

s, and, for the non-tree nodes, replacing all references to tree nodes with references
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to the local roots of these trees. Specifically, for each node x ∈ s, define:

x is a root, or x has multiple parents

base(x) = base(p), if parents(x) = {p}.
base(x) = x, if parents(x) 6= 1|
Then define nodes(s′) = {x ∈ nodes(s) | |parents(x)| 6= 1}. Also, for each node

y ∈ s′, let f be the precondition of y in s and t be the answer term for y in s; then

define the precondition of y in s′ to be the formula that is obtained by replacing

each variable v in f by the variable base(v), and define the answer term to be the

term that is obtained by replacing each variable v in t by the variable base(v).

Now, since each node in s′ is one of the non-tree nodes in s, then the nodes of

s′ can be put into one-to-one correspondence with the nodes of skel(C). Hence,

the number of nodes in s′, and the size of s′, is O(1). Let k be a constant that

bounds the size of s′. Since there are only a finite number of systems that can

be constructed with under k symbols, there are only a finite number of possible

formulas pos(x), for nodes x ∈ s′. Hence, dc(poss′(x)) = O(1).

Now we claim that dc(poss(x)) = dc(poss′(base(x))—and this will serve to prove

our claim that dc(poss(x)) = O(1). We prove this claim by induction on the depth

of x in the dependency graph for s.

Case 1: x is a root in s

Then base(x) = x, and also base(x) is a root in s′; hence, the disjunctive complex-

ities dc(poss(x)) and dc(poss′(base(x))) are equal.

Case 2: x is a tree-node

Then base(x) = base(parent(x)).
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By induction, dc(poss(parent(x))) = dc(poss′(base(parent(x)))). Also, since x has

a conjunctive precondition, it is easy to see that dc(poss(x)) = dc(poss(parent(x))).

Hence, dc(poss(x)) = dc(poss′(base(x)).

Case 3: x has multiple parents

Then x is also a node in s′.

For an expression e, let varlist(e) be a listing of all of the occurrences of

variables in e, taken in a left-to-right traversal of e. Let dclists(e) be the list:

[dc(poss(v)) | v ∈ varlist(e)].

Now, it is not hard to see that dc(poss(x)) is a function of: precondx, termx,

dclists(precondx), and dclist s(termx).

By induction, for each p ∈ parents(x): dc(poss(p)) = dc(poss′(base(p))). Then,

since the expressions for x in s′ were obtained from precondx and termx by re-

placing each occurrence of p by the variable base(p), we obtain the result that

dclists(precondx) = dclists′(precondx) and dclists(termx) = dclists′(termx).

Conclusion: dc(poss(x)) = dc(poss′(x)).

Since we have shown that dc(poss′(x)) = O(1), it follows that dc(poss(x)) =

O(1).

Conclusion: as s ranges over all of the systems in C, and x ranges over all the

nodes in s, the number of tuples in poss(x) is O(1).

That concludes the proof of claim (1).

191



Claim 2: dc(poss(q)) = O(1)

For each variable v ∈ FV (q), claim (1) has shown us that dc(poss(v)) = O(1). Since

q is a fixed query formula, it is not hard to see that this implies that dc(poss(q)) =

O(1).

Claim 3: The work to process the non-tree nodes in s is O(w)

Since there is a one-to-one correspondence between the non-tree nodes and the

nodes in skel(C), the number of non-tree nodes is O(1). Also, as we showed in

claim (1), the number of tuples in pos(x), for non-tree nodes, is O(1). Hence the

total number of tuples for all of the pos formulas for the non-tree nodes is O(1).

Since each tuple results either from the conjunction of two tuples, or is a primitive

constraint at a root in the formula graph, then the number of tuples that were

passed to the solver to produce these O(1) tuples is also O(1). Hence, in order

to compute all the solutions to these pos(x), O(w) constraints were passed to the

solver.

After the tuples for the pos(x) formulas are computed, they must get conjoined

with the tuples for pos(q). By claim (2), the number of tuples in pos(q) is O(1).

Since there are O(1) tuples in all of the pos(x) formulas combined, then O(1)

tuples, each of size bounded by w+w, get passed to the solver in the computation

of pos(q) ∧ pos(x). Hence O(w) constraints get passed to the solver.

Claim 4: The work to process the tree-nodes in s is O(n)

Let T be the set of maximal local trees in s (where a local tree is maximal if

it is not a proper subset of another local tree). Since these trees are maximal, the
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root of each tree in T is a non-tree node, and hence is a node in skel(C). This

association from trees in T to nodes in skel(C) is one-to-one. Hence, the number

of maximal local trees is O(1).

Now, the modified bottom-up evaluation makes one call to the routine query tree

for each of the maximal local subtrees.3 Hence, query tree is called O(1) times.

When this routine is called for the local root node r, it initializes a mutable con-

straint store to hold the solutions to pos(q)∧pos(r). In claims (1) and (2), we have

shown that the number of tuples in pos(q) and pos(r) is O(1). Hence, O(1) tuples

of size w + w, i.e., O(w) constraints, must get transferred to initialize the global

constraint stores.

Finally, the work to process each tree-node x involves conjoining the constraints

for x, viz., precondx and indomx, into the mutable tuples in the global constraint

store. We have already shown that there are O(1) tuples in the global store. Hence,

the constraints for x have to be transferred to only O(1) tuples, and so the com-

plexity for processing x is O(|x|), where |x| is the sum of the sizes of precondx and

indomx. Summing over all the tree-nodes, we see that the constraint-complexity of

processing all the tree-nodes is O(n). �

Proposition 3.7.4 We can provide methods for the UMO constraint domain, so

that, for classes of tree-equivalent systems where the individual rules are of bounded

size, the time-complexity of reachability queries is O(n).

3Recall that this routine is called with the root of the local tree as argument, and returns after

the whole tree has been queried.
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Proof

For this proof, we use the notations for the class C of tree-equivalent systems, and

skel(C), for the skeleton of non-tree nodes for this class, as defined in the preceding

proof.

We now describe an organization for the UMO tuples that will support the

claimed O(n) tree-complexity. It is based upon the representation, which we pre-

sented in Section 3.6.1, on page 107, in which the UMO tuple t takes the form of

a mapping from variables to ordered lists of disjoint intervals. Recall that ordered

list of intervals t(x) is taken to represent a set of possible values for x, and that the

meaning of the whole tuple is the Cartesian product of these sets.

For the tuples that we use for the tree optimization, which should support a fast

method of incrementally conjoining a constraint into a tuple, we will implement

these maps as arrays of interval-lists. Accordingly, we assume a fixed enumeration

v1, . . . , vk of all the variables in the system. Then, for a tuple t, the array entry

t[i] will be the ordered list of disjoint intervals that gives the range of values for

variable vi.
4 Thus, to conjoin a constraint c on variable vi—where the constraint c

is expressed as an interval-list that limits the value for vi—we need only to replace

t[i] with the conjunction of t[i] and c. Since array access is performed in O(1) time,

the time complexity will then be determined by the complexity of conjoining two

of the interval-lists.

As we showed in Section 3.6.1, this conjunction can be performed in time that

is linear in the sizes of the interval-lists. Furthermore, the following claim shows
4As we showed in the proof on page 189, the number of such tuples—each of which has size

O(n)—is O(1).
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that the sizes of the components of the tuples is small.

Claim 1: For a formula f and a tuple t ∈ dnf (pos(f)): |t[i]| = O(1)

The proof will use our assumption that, for the class C of tree-equivalent systems,

the size of the individual rules is bounded by some constant k.

Let t be a tuple in pos(f). Recall that t[i] is a unary constraint on the variable

vi. Now there are three possible sources from which a constraint on vi can appear

in a tuple t: (1) from indomvi
, (2) from a literal constraint appearing in f , or (3)

from the precondition formula precond c, for a child c of vi. There are no other

formulas in the system that can contain an occurrence of vi.

In the following subclaim, we will prove that the number of such children c such

that precond c is conjoined in t[i] is O(1). When we combine this result with the

assumption that the precondition and indom formulas have bounded size, our claim

that the size of t[i] is O(1) will be proven.

Subclaim: the number of children c of vi such that precond c appears in t[i] is

O(1)

Proof.

Let us say that such children c are t-involved ; the subclaim is then that the number

of t-involved children of vi is O(1).

Let τ be a maximal local tree containing vi, and let c be a t-involved child of vi.

Since the precondition of c is conjoined in t, and t is a tuple in pos(f), then it is

not hard to see that there must be a path Γ from c to f in the dependency graph.5

5For this argument, we treat f as a node in the dependency graph, just as if it were a conclusion

node.
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Since f /∈ τ , there must be a node in Γ not belonging to τ . Let x be the first node

in Γ that does not belong to τ . So x has a parent p in τ . Define α(c) to be this

node p.

Now, since τ is maximal, x is not a tree node. Hence x ∈ skel(C) ∪ {f}.
Now, the variable p = α(c) appears somewhere in the formulas for x, and hence

α(c) ∈ FV (skel(C) ∪ {f}).
Now we argue that the mapping α, which sends t-involved children of vi into

FV (skel(C) ∪ {f}), is injective. To show this, suppose that c1 and c2 are distinct

t-involved children of vi. Since they are distinct children of the same node, the

descendents of c1 in τ and the descendents of c2 in τ are disjoint sets of tree-nodes.

Hence, since α(c1) is a descendent of c1, and α(c2) is a descendent of c2, then

α(c1) 6= α(c2). Thus, α is injective.

Since α is an injective mapping from t-involved children to FV (skel(C) ∪ {f}),
and since the number of variables in this set is O(1)—since skel(C)∪{f} is a finite

set of nodes that is fixed, as the systems s range over C—it follows that the number

of t-involved children of vi is O(1).

That concludes the proof of the subclaim.

Hence claim (1) is proven.

Claim 2: The time-complexity of processing the non-tree nodes is O(w)

As we showed in the proof of Proposition 3.7.3, the constraint-complexity of pro-

cessing the non-tree nodes is O(w). Since the UMO constraints can be conjoined

in linear time, it follows that the time-complexity of this processing is also O(w).
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Claim 3: The time-complexity of processing the tree nodes is O(n)

The cost of processing a single tree-node x is the cost of incrementally conjoining

the constraints precondx and indomx into the global constraint store, which holds

the solutions to pos(q) ∧ pos(p), where p is the parent of x. As we showed in the

proof of Proposition 3.7.3, the number of tuples in pos(q) ∧ pos(p) is O(1).

Let t be a tuple in pos(q) ∧ pos(p). Let tx be the constraints in t on x, and tp

be the constraints in t on p. In claim (1), we showed that |tx| = |tp| = O(1). Also,

by our initial assumptions, |precondx| = |indomx| = O(1). The update operation

involves replacing tx with tx ∧ indomx, and replacing tp with tp ∧ precondx. Since

t is implemented as an array, i.e., has O(1) access time, and since the conjunction

operation is performed in linear time, it follows that the time required for the

update is O(1).

Conclusion: the overall time-complexity is O(n) �

Proposition 4.1.1 For a regular system s, binding b, and boolean formula f ,

b |−==s f ⇔ b |+==s¬f

Proof

b |−==s f ⇔ (∀b′ ∈ Fs(b) : b′ 6|= f)⇔ (∀b′ ∈ Fs(b) : b′ |= ¬f)⇔ b |+==s¬f �

The following definition will be used to formulate a statement that the ⊥ values

appearing in a final binding have the same essential meaning as the truth value

False which may be returned by the effective-value function. The definition gives a

notation which we will use to equate such ⊥ values with False.
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Definition A.3 (∼=)

Define the equivalence relation ∼= by the following two specifications:

1. v ∼= v, for all domain values v

2. ⊥ ∼= False, and False ∼= ⊥

Lemma A.12 For a solution bindings b ∈ Ss, formula f , and term t:

b |= f ⇔ eff (f, b) = True

b 6|= f ⇔ eff (f, b) = False

val(t, b) ∼= eff (t, b) 6= Possible

Proof

We proceed by induction on the height of the expression (formula f or term t).

Our induction hypothesis is that all three claims hold for all expressions of smaller

height.6

Conjunction

b |= f1 ∧ f2 ⇔
b |= f1 and b |= f2 ⇔
eff (f1, b) = True and eff (f2, b) = True⇔
eff (f1 ∧ f2, b) = True

b 6|= f1 ∧ f2 ⇔
6We added the statement that eff (t, b) 6= Possible only for purpose of emphasis; it is is already

implied by statement that val(t, b) ∼= eff (t, b), since, by definition, the relation x ∼= y does not

hold if either x or y is possible.
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b 6|= f1 or b 6|= f2 ⇔
eff (f1, b) = False or eff (f2, b) = False⇔
eff (f1 ∨ f2, b) = False

Disjunction

The case is dual to the previous one.

Negation

b |= ¬f ⇔ b 6|= f ⇔ eff (f, b) = False⇔ eff (¬f, b) = True

b 6|= ¬f ⇔ b |= f ⇔ eff (f, b) = True⇔ eff (¬f, b) = False

Atomic Formula

b |= p(t1, . . . , tk)
†⇔

(val(t1, b), . . . , val(tk, b)) ∈ pI ‡⇔
(eff (t1, b), . . . , eff (tk, b)) ∈ pI ⇔
eff (p(t1, . . . , tk), b) = True

(†) where pI is the relation for p under interpretation I

(‡) By induction, val(ti, b) = eff (ti, b)

Negating both sides of the list equivalence, we get:

b 6|= p(t1, . . . , tk)⇔
eff (p(t1, . . . , tk), b) 6= True

†⇔
eff (p(t1, . . . , tk), b) = False

(†) Since, by induction, eff (ti, b) 6= Possible, then eff (p(t1, . . . , tk)) 6= Possible.
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Function

val(t1 + t2, b) = val(t1, b) + val(t2, b) ∼= eff (t1, b) + eff (t2, b) = eff (t1 + t2, b)

Constant

val(c, b) = c ∼= c = eff (c, b)

Input Variable

First suppose that b |= precondv. Then by induction eff (precondv, b) = True.

Also, since b is a solution binding and b |= precond v, then b(v) ∈ domv. Since

eff (precondv, b) = True, and b(v) 6= ⊥, then eff (v, b) = b(v) ∼= b(v)val(v, b).

Now suppose that b 6|= precondv. Then by induction eff (precondv, b) = False.

Also, since b is a solution binding and b 6|= precondv, then b(v) = ⊥. Since

eff (precondv, b) = False, then eff (v, b) = False ∼= ⊥ = val(v, b).

Derived Variable

First suppose that b |= precondw. Then by induction eff (precondw, b) = True. Also,

since b is a solution binding and b |= precondw, then b(w) = val(termw, b). Since

eff (precondw, b) = True, then eff (w, b) = eff (termw, b). By induction,

eff (termw, b) ∼= val(termw, b). Hence, eff (w, b) ∼= val(termw, b) = b(w) = val(w, b).

�

Proposition 4.1.2 For a boolean system s conforming to Definition 4.1.3:

Fs = Ss
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Proof

Claim: Fs ⊆ Ss

The key to this proof is the fact that, for final bindings b ∈ Fs and formulas f , we

have that b |= f ⇐⇒ b |+== f , and b 6|= f ⇐⇒ b |−== sf . Let b ∈ Fs be a final binding.

Suppose that v ∈ Vs is an input variable. If b |= precondv, then b |+==s precondv, and

so precond v should be active in binding b. Hence, since b is final, the user will have

been prompted for an input value for v, and so b |= indomv. If b 6|= precondv, then

b |−==s precondv, and so it is not true that b |+==s precondv. Hence precondv should not

have been activated in b, and thus b(v) = ⊥. A similar argument covers the case

where w ∈Ws is a calculated variable. Hence, b ∈ Ss.

Claim: Ss ⊆ Fs

Let b ∈ Ss be a solution binding. Then ask s(b) = {v ∈ Vs | b |+==s precondv, b(v) =

⊥} = {v ∈ Vs | b |= precondv, b(v) = ⊥} = {}. Also, calcs(b) = {(w, x) | w ∈
Ws, b |+==s precondw, b(w) = ⊥, x = val(termw, b) 6= ⊥} =

{(w, x) | w ∈ Ws, b |= precondw, b(w) = ⊥, x = val(termw, b) 6= ⊥} = {}. Hence,

since ask s(b) = calcs(b) = {}, we have that b ∈ Fs. �

Theorem 4.1.3 For a general boolean system s with the effective-value-based firing

rule:

Fs = Ss
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Proof

By induction on the number of variables in s. For n = 0, we have Fs = Ss = {{}}.
Suppose that the claim is true for systems with n − 1 variables, and suppose that

the system s has n variables. Let z be a variable in s that is a leaf in the restriction

of the dependency graph to the variables. Let s0 be the system that is obtained by

removing z from s. By induction, Fs0 = Ss0 .

Claim 1: Ss ⊆ Fs

Choose b ∈ Ss. Let b0 = b− {(z, b(z))}. Then b0 ∈ Ss0 . Hence b0 ∈ Fs0 .

Suppose first that b 6|= precond z. Then, since b ∈ Ss, we have that b(z) = ⊥.

Hence b = b0. Since b 6|= z, and z /∈ FV (precond z), then b0 6|= precond z. Since

b0 ∈ Ss0 , and b0 6|= precond z, then by Lemma A.12, eff (precond z, b0) = False. Since

b0 is final in s0, and eff (precond z, b0) = False, then b0 = b is final in s. I.e., b ∈ Fs.

Now suppose that b |= precond z. Since b |= precond z, and z /∈ FV (precond z),

then b0 |= precond z. Then, since b0 ∈ Ss0 , and b0 |= precond z, then by Lemma A.12,

eff (precond z, b0) = True. We consider the two cases of the form of z.

First suppose that z is an input variable. Then, since b ∈ Ss, we have that

b(z) ∈ domz. Since (1) b0 is attainable (in both s and s0), (2) eff (precond z, b0) =

True, and (3) b(z) ∈ domz, then b is attainable in s, i.e., b ∈ As. Furthermore,

since b0 ∈ Fs0, then ask s0(b0) = {v | b0(v) = ⊥ and eff (v, b0) = True} = {}. Hence

ask s(b0) = {}. Finally, since b(z) 6= ⊥, then z /∈ ask s(b). Hence, ask s(b) = {}, and

so b ∈ Fs.

Now suppose that z is a calculated variable. Then, since b ∈ Ss, we have

that b(z) = val(termz, b). Then, since z /∈ FV (termz), we have that b(z) =
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val(termz, b0). Since (1) b0 is attainable, (2) eff (precond z, b0) = True, and (3)

b(z) = val(termz, b0), then b is attainable in s, i.e., b ∈ As. Furthermore, since

b0 ∈ Fs0 , then calcs0(b0) = {(w, x) | b0(w) = ⊥ and eff (v, b0) = True and x =

val(termw, b0) 6= ⊥} = {}. So calcs(b0) = {}. Finally, since b(z) = val(termz, b),

then z /∈ vars(calcs(b)). Hence, calcs(b) = {}, and so b ∈ Fs.

Claim 2: Fs ⊆ Ss

Choose b ∈ Fs. Let b0 = b − {(z, b(z))}. Then b0 ∈ Fs0. Hence b0 ∈ Ss0 . Since

b0 ∈ Ss0 , then by Lemma A.12, eff (precond z, b0) ∈ {True,False}.
Suppose first that eff (precond z, b0) = False. Hence eff (precond z, b) = False.

Since b ∈ Fs, and eff (precond z, b) = False, then b(z) = ⊥. Since b0 ∈ Ss0 ,

and eff (precond z, b0) = False, then by Lemma A.12, b0 6|= precond z. Hence b 6|=
precond z. Since b0 ∈ Ss0, b 6|= precond z, and b(z) = ⊥, then b ∈ Ss.

Now suppose that eff (precond z, b0) = True. Then, since z /∈ FV (precond z), we

have that eff (precond z, b) = True. We consider the two cases of the form of z.

First suppose that z is an input variable. Since b ∈ Fs, and eff (precond z, b) =

True, then b(z) ∈ domz. Since b0 ∈ Ss0 , and eff (precond z, b0) = True, then by

Lemma A.12, b0 |= precond z. Hence b |= precond z. Since b0 ∈ Ss0, b |= precond z,

and b(z) ∈ domz, then b ∈ Ss.

Now suppose that z is a calculated variable. Since b ∈ Fs, and eff (precond z, b) =

True, then b(z) = val(termz, b). Since b0 ∈ Ss0 , and eff (precond z, b0) = True, then

by Lemma A.12, b0 |= precond z. Hence b |= precond z. Since b0 ∈ Ss0, b |= precond z,

and b(z) = val(termz, b), then b ∈ Ss. �
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Lemma A.13 For an expression e and bindings b, b′ ∈ As such that b ⊆ b′:

eff (e, b) 6= Possible⇒ eff (e, b′) = eff (e, b)

Proof

Suppose that b, b′ ∈ As, and that b ⊆ b′. We proceed by induction on the height of

the expression e.

Conjunction

eff (f1 ∧ f2, b
′) = eff(f1, b

′) ∧ eff (f2, b
′) = eff (f1, b) ∧ eff (f2, b) = eff(f1 ∧ f2, b)

Disjunction

eff (f1 ∧ f2, b
′) = eff(f1, b

′) ∧ eff (f2, b
′) = eff (f1, b) ∧ eff (f2, b) = eff(f1 ∧ f2, b)

Negation

eff (¬f, b′) = ¬eff (f, b′) = ¬eff(f, b) = eff (¬f, b)

Atomic Formula

eff (p(t1, . . . , tk), b
′) =

eff (t1, b
′) ∧ · · · ∧ eff (tk, b

′) ∧ ((eff (t1, b
′), . . . , eff (tk, b

′)) ∈ pI) =

eff (t1, b) ∧ · · · ∧ eff (tk, b) ∧ ((eff (t1, b), . . . , eff (tk, b)) ∈ pI) =

eff (p(t1, . . . , tk), b)

Function

eff (t1 + t2, b
′) = eff (t1, b

′) + eff (t2, b
′) = eff (t1, b) + eff (t2, b) = eff (t1 + t2, b)
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Constant

eff (c, b′) = c = eff (c, b)

Input Variable

We are given that eff (v, b) 6= Possible. First suppose that eff (v, b) = False. Then

eff (precondv, b) = False 6= Possible. Hence, by induction, eff (precond v, b
′) =

eff (precondv, b). Thus, eff (precondv, b
′) = False, and so eff (v, b′) = False =

eff (v, b).

Now suppose that eff (v, b) 6= False. Then, since our first assumption is that

eff (v, b) 6= Possible, it follows that eff (precondv, b) = True and that eff (v, b) =

b(v) ∈ domv. Since eff (precondv, b) = True 6= Possible, then by induction it fol-

lows that eff (precondv, b
′) = True. Also, since b(v) ∈ domv, and b ⊆ b′, then it

follows that b′(v) = b(v) 6= ⊥. Since eff (precondv, b
′) = True and b′(v) 6= ⊥, then

eff (v, b′) = b′(v). Hence, eff (v, b′) = eff (v, b).

Derived Variable

We are given that eff (w, b) 6= Possible. If eff (w, b) = False, then the proof from the

previous case shows that eff (w, b′) = eff (w, b).

Now suppose that eff (w, b) 6= False. Then, since our first assumption is that

eff (v, b) 6= Possible, it follows that eff (precondw, b) = True and that eff (w, b) =

eff (termw, b) ∈ domw. Hence, eff (termw, b) 6= Possible, and so by induction

eff (termw, b′) = eff (termw, b). Also, since eff (precondw, b) = True 6= Possible,

then by induction it follows that eff (precondw, b′) = True. Hence, eff (w, b′) =

eff (termw, b′) = eff (termw, b) = eff (w, b). �
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Proposition 4.1.4 For a general boolean system s with the effective-value-based

firing rule: s is a regular interactive system.

Proof

By the definition of regularity, we must show that:

b, b′ ∈ As, b′ ⊇ b⇒ ask(b) ⊆ vars(b′) ∪ ask(b′) and calc(b) ⊆ b′ ∪ calc(b′)

Here are the definitions of ask and calc for thinksheet systems:

ask(b) ≡ {v ∈ Vs | b(v) = ⊥ and eff (precondv, b) = True}
calc(b) ≡ {(w, x) | w ∈Ws, b(w) = ⊥, eff (prew, b) = True, x = val(termw, b) 6= ⊥}

Suppose v ∈ ask(b). Then b(v) = ⊥, and eff (precondv, b) = True. Hence,

since b′ ⊇ b, then by Lemma A.13, eff (precond v, b
′) = True. If b′(v) 6= ⊥, then

v ∈ vars(b′). On the other hand, if b′(v) = ⊥, then, since eff (precondv, b
′) = True,

it follows that v ∈ ask(b′). Combining these two cases, we have shown that v ∈
vars(b′) ∪ ask(b′).

Suppose (w, x) ∈ calc(b). Then b(w) = ⊥, eff (precondw, b) = True, and x =

val(termw, b) 6= ⊥. Hence, since b′ ⊇ b, then by Lemma A.13, eff (precondw, b′) =

True, and also x = val(termw, b′) = val(termw, b) 6= ⊥. Now, if b′(w) = ⊥, then,

since eff (precondw, b′) = True and x = val(termw, b′) 6= ⊥, then it follows that

(w, x) ∈ calc(b′). On the other hand, if b′(w) 6= ⊥, then, since b′ is attainable,

b′(w) = val(termw, b′) = x 6= ⊥, and so (w, x) ∈ b′. Combining these two cases, we

have shown that (w, x) ∈ b′ ∪ calc(b′). �

Lemma A.14 For expressions e and bindings b:

eff (e, b) = eff (e, core(b))
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Proof

We proceed by induction on the height of the expression e.

Conjunction

eff (f1 ∧ f2, b) =

eff (f1, b) ∧ eff (f2, b) =

eff (f1, core(b)) ∧ eff (f2, core(b)) =

eff (f1 ∧ f2, core(b))

Disjunction

Similar to the previous case.

Negation

eff (¬f, b) = ¬eff (f, b) = ¬eff (f, core(b)) = eff (¬f, core(b))

Atomic Formula

eff (p(t1, . . . , tk), b) =

eff (t1, b) ∧ · · · ∧ eff (tk, b) ∧ (eff (t1, b), . . . , eff (tk, b)) ∈ pI =

eff (t1, core(b))∧· · ·∧eff (tk, core(b))∧ (eff (t1, core(b)), . . . , eff (tk, core(b))) ∈ pI =

eff (p(t1, . . . , tk), core(b))

Function

eff (t1 + t2, b) =
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eff (t1, b) + eff (t2, b) =

eff (t1, core(b)) + eff (t2, core(b)) =

eff (t1 + t2, core(b))

Constaint

eff (c, b) = c = eff (c, core(b))

Input Variable

By induction, we have that eff (precond v, b) = eff (precondv, core(b)). First sup-

pose that eff (precond v, b) = eff (precondv, core(b)) = False. Then eff (v, b) =

eff (v, core(b)) = False. Now suppose eff (precondv, b) = eff (precondv, core(b)) =

Possible. Then eff (v, b) = eff (v, core(b)) = False. For the remaining case, suppose

that eff (precondv, b) = eff (precond v, core(b)) = True.

Suppose first that b(v) /∈ domv. Now, since core(b) is attainable, core(b)(v) ∈
domv ∪ {⊥}. Combining these facts with the fact that core(b) ⊆ b, it follows that

core(b)(v) = ⊥. Hence, eff (v, core(b)) = Possible = eff (v, b).

Suppose finally that b(v) ∈ domv. Then eff (v, b) = b(v).

Since eff (precondv, core(b)) = True, and core(b) is attainable, then either (1)

core(b)(v) ∈ domv, or (2) core(b)(v) = ⊥ and core(b) ∪ {(v, b(v))} is attainable.

But (2) is impossible, since core(b) is maximal in As, Hence core(b)(v) ∈ domv.

Therefore, since core(b) ⊆ b, it follows that core(b)(v) = b(v) ∈ domv. Hence,

eff (v, core(b)) = b(v) = eff (v, b).

Calculated Variable

By induction, we have that eff (precondw, b) = eff (precondw, core(b)). First sup-
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pose that eff (precondw, b) = eff (precondw, core(b)) = False. Then eff (w, b) =

eff (w, core(b)) = False. Now suppose eff (precondw, b) = eff (precondw, core(b)) =

Possible. Then eff (w, b) = eff (w, core(b)) = False. For the remaining case, sup-

pose that eff (precondw, b) = eff (precondw, core(b)) = True. Then eff (w, b) =

eff (termw, b), and eff (w, core(b)) = eff (termw, core(b)). Since, by induction

eff (termw, b) = eff (termw, core(b)), it follows that eff (w, b) = eff (w, core(b)). �

Lemma A.15 For bindings b and expressions e:

b |= pos(e)⇒ eff (e, b) /∈ {False, Possible}
b |= neg(e)⇒ eff (e, b) = False

Proof

We proceed by induction on the height of the expression e.

Conjunction

b |= pos(f1 ∧ f2)⇒
b |= pos(f1) and b |= pos(f2)⇒
eff (f1, b) /∈ {False, Possible} and eff (f2, b) /∈ {false, poss} ⇒
eff (f1, b) = True and eff (f2, b) = True⇒
eff (f1 ∧ f2, b) = True /∈ {False, Possible}

b |= neg(f1 ∧ f2)⇒
b |= neg(f1) or b |= neg(f2)⇒
eff (f1, b) = False or eff (f2, b) = False⇒
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eff (f1 ∧ f2, b) = False

Disjunction

The proof is dual to proof for the previous case.

Negation

b |= pos(¬f)⇒
b |= neg(f)⇒
eff (f, b) = False⇒
eff (¬f, b) = True

Similarly, b |= neg(¬f)⇒ eff (¬f, b) = False

Atomic Formula

b |= pos(p(t1, . . . , tk))⇒
b |= pos(t1) & . . . & b |= pos(tk) & b |= p(t1, . . . , tk)⇒
eff (t1, b) /∈ {False, Possible} & . . . & eff (tk, b) /∈ {False, Possible} & b |=
p(t1, . . . , tk)⇒
eff (p(t1, . . . , tk), b) /∈ {False, Possible}

b |= neg(p(t1, . . . , tk))⇒
b |= neg(t1) or . . . or b |= neg(tk) or b |= pos(p(t1, . . . , tk))⇒
eff (t1, b) = False or eff (tk, b) = False or eff (p(t1, . . . , tk), b) = True⇒
eff (p(t1, . . . , tk), b) = False
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Function

b |= pos(t1 + t2)⇒
b |= pos(t1) and b |= pos(t2)⇒
eff (t1, b) /∈ {False, Possible} and eff (t2, b) /∈ {False, Possible} ⇒
eff (t1 + t2, b) /∈ {False, Possible}

b |= neg(t1 + t2)⇒
b |= neg(t1) or b |= neg(t2)⇒
eff (t1, b) = False or eff (t2, b) = False⇒
eff (t1 + t2, b) = False

Constant

Always: eff (c, b) = c /∈ {False, Possible}
b |= neg(c)⇒ b |= false ⇒ everything

Input Variable

b |= pos(v)⇒
b |= pos(precondv) and b |= indomv ⇒
eff (precondv, b) = True and b(v) ∈ domv ⇒
eff (v, b) = b(v) /∈ {False, Possible}

b |= pos(v)⇒
b |= pos(precondv) and b |= indomv ⇒
eff (precondv, b) = True and b(v) ∈ domv ⇒
eff (v, b) = b(v) /∈ {False, Possible}
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Calculated Variable

b |= pos(w)⇒
b |= pos(precondw) and b |= pos(termw)⇒
eff (precondw, b) = True and eff (termw, b) /∈ {False, Possible} ⇒
eff (w, b) = eff (termw, b) /∈ {False,Possible}

b |= neg(w)⇒
b |= neg(precondw) or b |= neg(termw)⇒
eff (precondw, b) = False or eff (termw, b) = False⇒
eff (w, b) = False �

Lemma A.16 For an expression e and a binding b ∈ Fs:

eff (e, b) 6= False⇒ b |= poss(e)

eff (e, b) = False⇒ b |= negs(e)

Proof

We proceed by induction on the height of the expression e. Since b ∈ Fs, then by

Lemma A.12, we know that eff (e, b) 6= Possible.

Conjunction

eff (f1 ∧ f2, b) 6= False⇒
eff (f1 ∧ f2, b) = True⇒
eff (f1, b) = True and eff (f2, b) = True⇒
b |= pos(f1) and b |= pos(f2)⇒
b |= pos(f1 ∧ f2)
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eff (f1 ∧ f2, b) = False⇒
eff (f1, b) = False or eff (f2, b) = False⇒
b |= neg(f1) or b |= neg(f2)⇒
b |= neg(f1 ∧ f2)

Disjunction

The proof is dual to proof for the previous case.

Negation

eff (¬f, b) 6= False⇒
eff (¬f, b) = True⇒
(¬eff (f, b)) = True⇒
eff (f, b) = False⇒
b |= neg(f)⇒
b |= pos(¬f)

eff (¬f, b) = False⇒
eff (f, b) = True⇒
b |= pos(f)⇒
b |= neg(¬f)

Atomic Formula

eff (p(t1, . . . , tk), b) 6= False⇒
eff (p(t1, . . . , tk), b) = True⇒
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eff (t1, b) /∈ {False, Possible} and . . . and eff (tk, b) /∈ {False, Possible}
and (eff (t1, b), . . . , eff (tk, b)) ∈ pI †⇒
b |= pos(t1) and . . . and b |= pos(tk) and (val(t1, b), . . . , val(tk, b)) ∈ pI ⇒
b |= pos(t1) and . . . and b |= pos(tk) and b |= p(t1, . . . , tk)⇒
b |= pos(p(t1, . . . , tk))

(†) By Lemma A.12, for b ∈ Fs = Ss, we have that eff (ti, b) = val(ti, b)

eff (p(t1, . . . , tk), b) = False⇒
eff (t1, b) = False or . . . or eff (tk, b) = False or eff (p(t1, . . . , tk), b) = True⇒
b |= neg(t1) or . . . or b |= neg(tk) or b |= p(t1, . . . , tk)⇒
b |= neg(p(t1, . . . , tk))

Function

eff (t1 + t2, b) 6= False⇒
eff (t1, b) 6= False and eff (t2, b) 6= False⇒
b |= pos(t1) and b |= pos(t2)⇒
b |= pos(t1 + t2)

eff (t1 + t2, b) = False⇒
eff (t1, b) = False or eff (t2, b) = False⇒
b |= neg(t1) or b |= neg(t2)⇒
b |= neg(t1 + t2)

Constant

Since pos(c) = true, then always: b |= pos(c).
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eff (c, b) = False is impossible, since eff (c, b) = c.

Input Variable

eff (v, b) /∈ {False, Possible} ⇒
eff (precondv, b) = True and eff (v, b) = b(v) ∈ domv ⇒
b |= pos(precondv) and b |= indomv ⇒
b |= pos(v)

eff (v, b) = False⇒
eff (precondv, b) = False⇒
b |= neg(precondv)⇒
b |= neg(v)

Calculated Variable

eff (w, b) /∈ {False,Possible} ⇒
eff (precondw, b) = True and eff (termw, b) /∈ {False, Possible} ⇒
b |= pos(precondw) and b |= pos(termw)⇒
b |= pos(w)

eff (w, b) = False⇒
eff (precondw, b) = False or eff (termw, b) = False⇒
b |= neg(precondw) or b |= neg(termw)⇒
b |= neg(w) �

Corollary A.17
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For general bindings b and formulas f ,

b |= poss(f)⇒ b |+==s f

b |= negs(f)⇒ b |−==s f

Proof

Recall the definitions that: (1) Fs(b) ≡ {b′ ∈ Fs | b′ ⊇ core(b)}, (2) b |+==s f means

∀b′ ∈ Fs(b) : b′ |= f , and (3) b |+==s f means ∀b′ ∈ Fs(b) : b′ 6|= f .

Suppose that b |= poss(f). Then by Lemma A.15, eff s(f, b) = True. Hence,

by Lemma A.14, eff s(f, cores(b)) = True. Hence, since ∀b′ ∈ Fs(b) : core(b) ⊆ b′,

then by Lemma A.13, ∀b′ ∈ Fs(b) : eff s(f, b′) = True. Hence, by Lemma A.12,

∀b′ ∈ Fs(b) : b′ |= f . I.e., b |+==s f .

Now suppose that b |= negs(f). By definition, this means that b |= poss(¬f).

Hence, by the first part of the claim, which we have just proved, b |+==s¬f . This is

equivalent to the statement that b |−==s f . �

Corollary A.18 For formulas f and final bindings b ∈ Fs:

b |= f ⇒ b |= pos(f)

b 6|= f ⇒ b |= neg(f)

Proof

Suppose b ∈ Fs. Suppose that b |= f . Then, since b ∈ Fs = Ss, by Lemma A.12,

eff (f, b) = True. Hence, by Lemma A.16, b |= pos(f). Suppose that b 6|= f . Then,

since b ∈ Fs = Ss, by Lemma A.12, eff (f, b) = False. Hence, by Lemma A.16,

b |= neg(f). �
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Corollary A.19 For boolean production systems s, formulas f and final bindings

b ∈ Fs:

b |+==s f ⇒ b |= pos(f)

b |−==s f ⇒ b |= neg(f)

Proof

Follows from the previous corollary, and from the fact that for final bindings b,

b |= f ⇔ b |+==s f , and b 6|= f ⇔ b |−==s f , �

Lemma A.20 For boolean production system s, variable v ∈ Vs, and formula q:

choicess(v, q) = {b(v) | b ∈ B & b |= (poss(q) ∧ poss(v))}

Proof

First suppose that z ∈ choicess(v, q). This means that z 6= ⊥, and that ∃b ∈
Fs s .t . b |= q and b(v) = z. Since b ∈ Fs, and b |= q, then by Lemmas A.12

and A.16, we have that b |= pos(q). Next, since b ∈ Fs = Ss, and b(v) 6= ⊥,

then b |= precondv. Hence, by Lemma A.12, eff (precondv, b) = True, and so by

Lemma A.16, b |= pos(precondv). Since b ∈ As, then b |= indomv. Hence, b |=
pos(precondv) ∧ indomv, i.e., b |= pos(v). Thus, b |= pos(q) ∧ pos(v). Therefore

z = b(v) belongs to the set on the right hand side of the claimed equation.

Now suppose that z belongs to the set on the right side of the claimed equation,

i.e., that for some binding b, we have that b(v) = z, and b |= pos(q)∧ pos(v). Since

b |= pos(q), then by Corollary A.17, b |+== q. Since b |= pos(v), then b |= pos(v = v),

and so, by Corollary A.17, b |+== (v = v). Choose b′ ∈ Fs(b), i.e., let b′ be some

final extension of the core of b. Then, since b |+== q, we have that b′ |= q, and
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since b |+== (v = v), we have that b′models(v = v), i.e., that b′(v) 6= ⊥. Therefore,

b′(v) ∈ choicess(v, q).

Now, since b |= pos(v), then b |= pos(v = v). Hence, by Lemma A.15, eff (v =

v, b) = True. Hence, eff (v, b) ∈ domv. Hence, eff (v, b) = b(v) 6= ⊥. Also, by

Lemma A.14, eff (v, b) = eff (v, core(b)). Thus, eff (v, core(b)) = b(v) 6= ⊥. Since

eff (v, core(b)) 6= ⊥, it follows that eff (v, core(b)) = core(b)(v). Hence, core(b)(v) =

b(v) 6= ⊥. Since b′ ⊇ core(b), then b′(v) = core(b)(v) = b(v). Hence, z = b(v) =

b′(v) ∈ choicess(v, q). �

Theorem 4.2.1 The query algorithm shown on pages 87 and 86 is correct for

acyclic production systems with general boolean preconditions.

Proof

Syntactically, we have obtained the acyclic production systems from the monotone

systems by dropping the assumption that there are no negations in the precondi-

tions. The only change that we made to our query algorithm to accomodate this

generalization was to add two cases to the definitions of pos and neg , viz., that

pos(¬f) = neg(f), and neg(¬f) = pos(f).

Moreover, in this appendix, we have proved generalized versions of every one of

the theorems that was used in the proof of correctness for the monotone systems.

The starting point for these generalized theorems is that we extended the definition

of the satisfaction relation b |= f by adding the case that b |= ¬f means b 6|= f . This

immediately led to an extension of the definitions b |+==s f and b |−==s f , for boolean

formulas f .

Now, examining the proof of correctness for the monotone systems, given in
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Theorem 3.3.1 on page 94, we see that it uses only the following results: Corol-

laries 2.6.2, 3.2.4, 3.2.7, and Theorem 3.2.8. Corollary 2.6.2 holds for all regular

systems, and, as we showed in Proposition 4.1.4, the boolean production systems

under consideration are regular. For the rest, in this appendix we have proven these

exact same results in the generalized context boolean production systems s. Here

are the correspondences between the earlier proofs, and the generalized proofs in

the appendix:

• Corollary 3.2.4 = Corollary A.17

• Corollary 3.2.7 = Corollary A.19

• Theorem 3.2.8 = Lemma A.20

Therefore, the original proof of correctness, as it stands, also shows the correct-

ness of the generalized algorithm. �
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Appendix B

Optimization Experiments

Here we describe some experiments to confirm the theoretical result that we proved

in Proposition 3.7.4: when preconditions are univariate comparisons, our imple-

mentation has a tree-complexity for reachability queries that is linear in time.

Design of the Experiments

Our experiments are performed on production systems that contain (1) a large

internal decision tree, (2) a collection of root nodes, which are referenced by the

precondition at the root of the tree, and (3) a collection of conclusion nodes, called

fusion nodes, whose preconditions are disjunctions of constraints on the leaves of

the tree.

Notation:

n = total number of nodes

r = number of roots
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f = number of fusion nodes

p = number of parents per fusion node

Further Specifications:

1. The domains of the variables is fixed at {1,2,...,10}

2. The precondition at the root of the tree is a disjunction of two conjunctions

of constraints on the roots of the DAG

3. The query formula is a disjunction two univariate constraints on the leaves,

e.g., ‘v1 6= 2 | v3 > 9’

Example B.0.1 Figure B.1 shows an example of such a production system, where

n = 9, r = 2, f = 2, and p = 2.

For fixed values of n, f , p, and r, we wish to measure the time that the algorithm

takes to determine the reachability of all the nodes in the system. In order to do

this, we will treat the shape of the tree, and the specific constraints in the formulas,

as random structures. Our measurement for the data point (n, f, p, r) will be the

mean of all the query times for an associated set of randomly generated production

systems.

Generation of a Random Tree

In Section 3.7, we have shown that general-purpose datalog evaluation algorithms,

which compute more information than we need to solve our problem, attain their
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r1 r2

v0

v1 v2

v3 v4

f1 f2

Preconditions:

precond r1
= true

precond r2
= true

precondv0
= ((r1 > 2 ∧ r2 = 4) ∨ (r1 = 7 ∧ r2 6= 9))

precondv1
= (v0 = 1)

precondv2
= (v0 = 7)

precondv3
= (v2 > 5)

precondv4
= (v2 6= 4)

precondf1
= (v1 = 7 ∨ v3 = 5)

precondf2
= (v3 = 1 ∨ v4 = 2)

Figure B.1: Production System with a Local Tree (f = p = r = 2)
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worst-case complexity—quadratic—on trees that are unbalanced. We also proved

there that our algorithm has linear complexity, irrespective of the shape of the trees.

For purposes of comparing our algorithm with the others, therefore, we will force

the randomly generated trees to be unbalanced.1

Figure B.2 outlines the method that we use to generate the random trees. The

maximum branching factor of a node is fixed at four. The respective sizes of the

four subtrees are n1, n2, n3 and n4. These numbers are required to satisfy the

following constraints:

• ni ≥ 0

• n1 + n2 + n3 + n4 = n− 1

• n1 + n2 + n3 ≤ leftmax

where leftmax is a constant that controls the “rate of descent” of the unbalanced

tree.2 For these experiments, leftmax = 3.
1We can generally expect the worst-case behavior of any reachability query algorithm to be

attained on trees that are unbalanced, for the following reason. Let v0 be the local root of the

internal tree, and q the query formula. Let v0, v1, ..., vk be a path in the tree from v0 to vk. Then,

as we have shown previously, vk is q-reachable iff pos(q) ∧ pos(v0) ∧ precondv1
∧ indomv1 ∧ · · · ∧

precondvk
∧ indomvk

is satisfiable. Hence, the number of constraints involved in testing vk for

reachability is proportional to the depth of vk im the tree. Since the expected depth of a node

in a tree is maximized when the tree is unbalanced, it follows that unbalanced trees place the

greatest strain on a reachability query algorithm.
2The numbers n1, ..., n4 are chosen as follows. Let i1, i2 be two randomly chosen numbers in

{0, ..., leftmax}, and, renaming if necessary, assume that i1 ≤ i2. Then, let n1 = i1−0, n2 = i2−i1,

and n3 = leftmax − i2. Finally, let n4 = (n− 1)− (n1 + n2 + n3).
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node treegen(int n)

begin

if n = 0 then return NULL

root = new node

if n = 1 then return root

let n1,...,n4 be four randomly generated non-negative integers

such that (1) n1 + n2 + n3 + n4 = n-1

and (2) n1 + n2 + n3 <= leftmax

for i=1,...,4

if ni > 0 then

attach treegen(ni) as a subtree of root

return root

end

Figure B.2: Routine to Generate an Unbalanced Random Tree of Size n

Generation of a Random Constraint

We generate a random constraint on variable v by: (1) randomly choosing a com-

parison operators θ ∈ {=, 6=, >,<,≤,≥}, (2) and randomly choosing a number

c ∈ {1, ..., 10}, and (3) producing the constraint: v θ c. We prohibit this process

from generating either of the constraints ‘v < 1’, or ‘v > 10’, which are inconsistent

with the domain constraint on the variables.3

3This is reasonable because the loading process for the query system will easily detect such

inconsistent constraints, and simplify the preconditions by removing them. Moreover, it is impor-

tant to prohibit such constraints, for the following reason. If a precondition in a tree is false, then,
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The Main Experiment

All experiments were run on a Sun SPARC workstation. The central processor was

a 143 MHz UltraSPARC with 96 megabytes of main memory.

For each data point (n, f, p, r), we generated 160 random production systems

with associated query formulas, and computed the mean running time. The graph

in Figure B.3 shows four series of observations. In each series, the values of f , p

and r are fixed, while n ranges from 0 to 120,000.

Interpretation of the Results

Figure B.3 shows that there is a significant region where the running time is linear

in the size of the input. To see this clearly, one can cover up part of the graph

with a piece of paper oriented at about 45 degrees, perpendicular to the four curves

emanating from the origin. From the slopes of these lines, we see that the times

spent per node, in the linear zone, are, respectively, 11, 22, 31 and 72 microseconds,

as f=p=r ranges over 1,2,4,8.

The break from linear-time behavior occurs when disk paging begins. The mem-

ory usage of the program is θ(n), where the constant factor increases with f , p and

r. Therefore, the value of n at which the linearity breaks down—i.e., the point at

which virtual memory usage equals physical memory capacity—gets progressively

lower as the values of f , p and r increase.

trivially, all of its descendents in that tree are unreachable. Thus, by avoiding such constraints,

we press a reachability query algorithm towards its worst-case behavior.
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Figure B.3: Results of the Main Experiment

Auxiliary Experiments

In order to probe the dependence of the running time upon f , p and r, we ran a

series for each of these parameters. The dependences upon f , p and r are shown, re-

spectively, in Figures B.5, B.6, and B.4. Roughly speaking, disk paging is occurring
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in the last three data points of each of these curves.
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