
Analysis of Mass Spectrometry

Data for Protein Identification

in Complex Biological Mixtures

by

Marina Spivak

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 2010

Leslie Greengard

c© Marina Spivak

All Rights Reserved, 2010

Acknowledgements

I thank my collaborators Jason Weston, William Stafford Noble and Michael

MacCoss for excellent supervision and friendship. I also thank my advisor

Leslie Greengard for help with writing this dissertation, as well as for valuable

scientific guidance and encouragement. Finally, many thanks to my parents

and friends for moral support during all the difficult years in graduate school.

iii

Abstract

Mass spectrometry is a powerful technique in analytical chemistry that was

originally designed to determine the composition of small molecules in terms

of their constituent elements. In the last several decades, it has begun to be

used for much more complex tasks, including the detailed analysis of the amino

acid sequence that makes up an unknown protein and even the identification of

multiple proteins present in a complex mixture. The latter problem is largely

unsolved and the principal subject of this dissertation.

The fundamental difficulty in the analysis of mass spectrometry data is

that of ill-posedness. There are multiple solutions consistent with the exper-

imental data and the data is subject to significant amounts of noise. In this

work, we have developed application-specific machine learning algorithms that

(partially) overcome this ill-posedness. We make use of labeled examples of

a single class of peptide fragments and of the unlabeled fragments detected

by the instrument. This places the approach within the broader framework of

semi-supervised learning.

Recently, there has been considerable interest in classification problems of

this type, where the learning algorithm only has access to labeled examples of

a single class and unlabeled data. The motivation for such problems is that in

many applications, examples of one of the two classes are easy and inexpensive

iv

to obtain, whereas the acquisition of examples of a second class is difficult and

labor-intensive. For example, in document classification, positive examples

are documents that address specific subject, while unlabeled documents are

abundant. In movie rating, the positive data are the movies chosen by clients,

while the unlabeled data are all remaining movies in a collection. In medical

imaging, positive (labeled) data correspond to images of tissue affected by

a disease, while the remaining available images of the same tissue comprise

the unlabeled data. Protein identification using mass spectrometry is another

variant of such a general problem.

In this work, we propose application-specific machine learning algorithms

to address this problem. The reliable identification of proteins from mixtures

using mass spectrometry would provide an important tool in both biomedical

research and clinical practice.

v

Contents

Acknowledgements iii

Abstract iv

List of Figures xi

List of Tables xxi

1 Introduction 1

2 Mass Spectrometry For Proteomics 6

2.1 Introduction . 6

2.2 Mass Spectrometry Pipeline 8

2.2.1 Tandem Mass Spectrometry (MS/MS) 9

2.3 From Spectra to Proteins . 11

2.3.1 Database Search . 15

vi

2.3.2 Target-Decoy Strategy 17

2.3.3 Q-value Estimation . 19

2.3.4 Peptide-Spectrum Match Verification: PeptideProphet

and Percolator . 22

2.3.5 Composing the Protein Set 24

2.4 Conclusion . 26

3 PSM Verification 29

3.1 Learning with Positive and Unlabeled Examples 31

3.1.1 Two-Step Strategy: First Step 32

3.1.2 Two-Step Strategy: Second Step 36

3.1.3 Fully Supervised Setting with Noisy Negatives 39

3.2 Algorithms for Mass Spectrometry 40

3.2.1 PeptideProphet . 40

3.2.2 Percolator . 43

3.3 Fully-Supervised Approach . 48

3.3.1 Motivation for Percolator Algorithm 48

3.3.2 Choosing Loss Functions in Fully Supervised Setting . 50

3.3.3 Supervised Learning Yields Performance Comparable to

Percolator . 55

3.4 Conclusion . 58

vii

4 Ranking 60

4.1 Previous Work: Review . 62

4.1.1 Optimizing Area Under the ROC Curve 62

4.1.2 OWA-based Optimization 63

4.1.3 ROC Optimization at a Single Point 66

4.1.4 Lambda Rank . 69

4.2 Algorithm for Direct Q-value Optimization: Q-ranker 71

4.2.1 Ordered Weighted Average(OWA) Operator 71

4.2.2 Loss Function Definition 72

4.2.3 Training Heuristics . 75

4.2.4 Weight Decay . 76

4.2.5 Use of Non-Linear Models 76

4.2.6 Algorithm . 77

4.2.7 Comparison of Algorithms Across Multiple Data Sets . 79

4.3 Conclusion . 89

5 Protein Identification 91

5.1 Previous Work . 93

5.1.1 ProteinProphet . 94

5.1.2 IDPicker . 95

5.2 The Algorithm: Protein Q-ranker 97

viii

5.2.1 Input . 99

5.2.2 PSM Scoring Function 100

5.2.3 Peptide Scoring Function 101

5.2.4 Protein Scoring Function 101

5.3 Training the Model . 102

5.3.1 Target-Decoy Protein Identification Problem 102

5.3.2 Loss Function . 106

5.3.3 Training the Model . 108

5.3.4 Reporting Final Results: Parsimony Rules 109

5.4 Results . 111

5.4.1 Data Set Description 111

5.4.2 Main Result . 113

5.4.3 Validation Against Alternative Experimental Techniques 116

5.4.4 Overlap between ProteinProphet and Protein Q-ranker 119

5.4.5 Length of Identified Proteins 122

5.4.6 Multitask Learning . 123

5.5 Conclusion . 126

6 Learning Parameters of Theoretical Spectrum Generation 128

6.1 Introduction . 128

6.2 Parameterizing the Theoretical Spectrum 130

ix

6.2.1 SEQUEST-style Search 130

6.2.2 Learning the Theoretical Spectrum Peak Heights . . . 132

6.2.3 Learning Model Parameters 134

6.3 Results . 136

6.3.1 Learning in the Context of Protein Identification . . . 137

6.4 Conclusion . 140

7 Conclusions and Future Work 145

Bibliography 148

x

List of Figures

2.1 Mass Spectrometry Pipeline. A protein population is pre-

pared from a biological source such as a cell culture. The pro-

teins are first separated from a mixed sample by means of an

SDS gel. They are then digested by a proteolytic enzyme such

as trypsin. The resulting peptides are loaded onto an HPLC

column coupled to a mass spectrometer. The peptides are ion-

ized before entering the mass spectrometer [Steen and Mann,

2004]. 8

2.2 Fragmentation of a Tetrapeptide Under the Collision

Dissociation [P. Hernandez and Appel, 2006]. At low colli-

sion energies, fragmentation mainly occurs along the peptide

backbone bonds, i.e N-C bond between amino acids. 12

xi

2.3 Idealized Set of b- and y- Ions due to Collision Dissocia-

tion. The expectation is that each molecule of a given peptide

will break in a single place, so that many molecules of the same

peptide will generate nested sets of fragments. The figure shows

the ions for peptide ABCDEFG. 12

2.4 Example of an Annotated MS Spectrum. The informa-

tion about the peptide sequence can be inferred from the mass

differences between the peaks [Jonscher, 2005]. 13

2.5 Example of Theoretical and Observed Spectrum. The-

oretical (A) and experimental (B) spectra for the peptide se-

quence DLRSWTAADTAAQISQ [Eng et al., 1994] 15

2.6 Q-value assignment. The ranking is induced by the discrimi-

nant function of a classifier. To assign a q-value to an example,

set the threshold such that all the examples ranking above it

are considered “accepted” by the classifier, and all those below

are considered “rejected”. 21

xii

3.1 Schematic Description of the Percolator Algorithm [Käll

et al., 2007]. Percolator first selects an initial set of positive

peptide-spectrum matches based on the SEQUEST cross-correlation

score. It then proceeds in an iterative manner: 1) learns an SVM

classifier; 2) re-assigns positive labels based on the discriminant

function scores. 45

3.2 Comparison Between Percolator and a Linear SVM.

Each panel plots the number of distinct peptides as a function

of q value. The series correspond to two different algorithms,

including variants of each that use 17 features and 37 features

(see table 3.1). 51

3.3 Three Types of Loss Function. Each panel plots the loss as

a function of the difference in the true and predicted label. The

squared loss L(f(x), y) = (f(x)− y)2 is often used in regression

problems, but also in classification [LeCun et al., 1998]. The

hinge loss L(f(x), y) = max(0, 1 − yf(x)) is used as a convex

approximation to the zero-one loss in support vector machines

[Cortes and Vapnik, 1995]. The sigmoid loss L(f(x), y) = 1/(1+

eyf(x)) is perhaps less commonly used, but is discussed in Mason

et al. [2000], Shen et al. [2003]. 53

xiii

3.4 Comparison of Loss Functions. Each panel plots the num-

ber of accepted peptide-spectrum matches for the yeast (A)

training set and (B) test set as a function of the q value thresh-

old. Each series corresponds to one of the three loss functions

shown in Figure 3.3, with series for Percolator and SEQUEST

included for comparison. 56

3.5 “Cutting” the Hinge Loss Makes a Sigmoid-like Loss

Called the Ramp Loss. Making the hinge loss have zero

gradient when z = yif(x) < s for some chosen value s effectively

makes a piece-wise linear version of a sigmoid function. . . . 57

4.1 Optimal ROC Curve for Q-value Threshold Optimiza-

tion. While ROC curve B may reflect better ranking perfor-

mance of a classifier on an entire data set, ROC curve A is

more desirable as an output of a q-value optimization proce-

dure. ROC curve A crosses the line defined by the specified

q-value threshold at a point that will give more true positives

with the same statistical confidence level. 61

xiv

4.2 Optimization of a Single Point on the ROC Curve A) On

ROC curve B, the target values of ρCA and ρCR correspond to

two distinct points on the curve. The goal of the algorithms in

[Mozer et al., 2002] is to find a classifier producing ROC curve A

such that the target values ρCA and ρCR correspond to a single

point on the curve. The first family of algorithms emphasizes

the examples lying between the two points on the ROC curve

B to arrive to a classifier with ROC curve A. (Alternatively

it de-emphasizes irrelevant examples.) B) The second family

of algorithms defines a constrained optimization problem which

maximizes the correct rejection (CR) rate while maintaining the

correct acceptance rate (CA) fixed to ρCA, for example. . . . 67

4.3 Comparison of PeptideProphet, Percolator and Q-ranker

on Training Set. Each panel plots the number of accepted tar-

get peptide-spectrum matches as a function of q value on the

training (trn) set. The series correspond to the three differ-

ent algorithms, including two variants of Q-ranker that use 17

features and 37 features. 82

xv

4.4 Comparison of PeptideProphet, Percolator and Q-ranker

on Testing Set. Each panel plots the number of accepted tar-

get peptide-spectrum matches as a function of q value on the

testing (tst) set. The series correspond to the three different

algorithms, including two variants of Q-ranker that use 17 fea-

tures and 37 features. 83

4.5 Comparison of Training Optimization Methods (Itera-

tion vs. Error Rate). The Q-ranker optimization starts from

the best result of sigmoid loss optimization achieved during the

course of training and continues for a further 300 iterations.

These results are on the training set. Note that for each q value

choice, Q-ranker improves the training error over the best result

from the classification algorithm. 84

4.6 Comparison of PeptideProphet, Percolator and Q-ranker

on Training Set in Terms of the Number Unique Pep-

tides Identified Over the Range of Q-values. Each panel

plots the number of unique real database peptides as a func-

tion of q value on the training (trn) set. The series correspond

to the three different algorithms, including two variants of Q-

ranker that use 17 features and 37 features. 86

xvi

4.7 Comparison of PeptideProphet, Percolator and Q-ranker

on Testing Set in Terms of the Number Unique Peptides

Identified Over the Range of Q-values. Each panel plots

the number of unique real database peptides as a function of

q value on the testing (tst) sets. The series correspond to the

three different algorithms, including two variants of Q-ranker

that use 17 features and 37 features. 87

5.1 Difference Between State-of-the-art Algorithms (A), and

the Algorithm Proposed in this chapter (B). Most algo-

rithms infer proteins from peptide-spectrum matches in two sep-

arate stages: PSM verification and then protein reconstruction.

This chapter proposes to accomplish both tasks simultaneously

by optimization at the protein level. 92

5.2 Four stages of the IDPicker Algorithm. Zhang et al.

[2007]: initialize, collapse, separate, reduce. 96

5.3 Protein Identification and Scoring Functions. The fig-

ure illustrates the association between different levels of protein

identification task and the scoring functions assigned to them

by the algorithm proposed in this chapter. 98

xvii

5.4 Peptide Counts in Four Data Sets. Peptide counts in data

sets used for experiments to test the performance of the Protein

Q-ranker algorithm (see description in section 5.4.1). 105

5.5 Comparison of ProteinProphet, IDPicker and Protein

Q-ranker and meanPL (mean pairwise loss). This figure

plots the number of true positive protein identifications as a

function of q-value threshold. 114

5.6 Comparison of ProteinProphet, IDPicker and Protein

Q-ranker. This figure plots the number of externally vali-

dated yeast proteins identified by Protein Q-ranker and Pro-

teinProphet as a function of q-value threshold. 118

5.7 Abundances of Proteins Identified by Protein Q-ranker.

The figure plots average protein abundance of the top n pro-

teins, as a function of n. Protein abundances are taken from

[Ghaemmaghami et al., 2003]. 119

5.8 Comparison of ProteinProphet and Protein Q-ranker.

This figure shows the overlap between proteins identified by

Protein Q-ranker and ProteinProphet at q-value threshold 0.01. 120

xviii

5.9 Performance of ProteinProphet, PeptideProphet and

Three Variants of Mean Pairwise Loss Training Each

panel plots the number of distinct peptides (top) or proteins

(bottom) as a function of the number of false positives. . . . 124

6.1 Theoretical and Experimental Spectra. This figure shows

an example of theoretical (a) and experimental (b) spectra for

the peptide sequence DLRSWTAADTAAQISQ [Eng et al., 1994].

Theoretical spectrum contains 3 types of peaks - main(b- or y-

ion) , flanking, neutral loss - and their intensities are arbitrarily

set to 50, 25 and 10 respectively. 131

6.2 Comparison of ProteinProphet, Protein Q-ranker and

meanPL (mean pairwise loss). This figure compares the

performance of meanPL (mean pairwise loss) and Q-ranker on

17-feature data set (table 5.1), with meanPL on 19-feature data

set (table 6.2). It plots the number of true positive protein

identifications as a function of q-value threshold. 141

xix

6.3 Validation of ProteinProphet, Protein Q-ranker and meanPL

(mean pairwise loss). This figure compares the performance

of ProteinProphet, Protein Q-ranker on 17-feature data set and

meanPL on 19-feature data set, when validated against alter-

native experimental methods. It plots the number of externally

validated protein identifications as a function of q-value threshold.142

6.4 Comparison of Proteins Identified by ProteinProphet

and meanPL on 19-feature Data Set. The figure shows

the overlap between proteins identified by meanPL and Pro-

teinProphet at q-value threshold 0.01. 143

xx

List of Tables

3.1 Features For Representing Peptide-Spectrum Matches

Used by the Percolator Algorithm [Käll et al., 2007]. . . 44

4.1 Q-ranker Successfully Optimizes the Specified Q value.

Each entry in the table lists the number of accepted peptide-

spectrum matches at a given q value threshold (column) ob-

tained by Q-ranker with 37 features when optimizing a specified

q value (row). Entries in boldface indicate the maximum value

within each column. Note that, for each data set, all diagonal

entries are in boldface. 88

5.1 Features Used to Represent Peptide-Spectrum Matches.

Each peptide-spectrum match obtained from the search is rep-

resented using 17 features for the Protein Q-ranker algorithm. 112

xxi

5.2 Comparison of Protein Identification Methods at a Q value

Threshold of 0.01. The table lists, for each of the four data

sets, the number of proteins identified at q < 0.01 by Protein-

Prophet (PP), Protein Q-ranker and IDPicker (IDP), as well as

the improvement provided by Protein Q-ranker relative to the

other two methods. 115

5.3 External Validation of Non-overlapping Proteins The ta-

ble shows the percentage of non-overlapping proteins identified

by Protein Q-ranker and ProteinProphet that were confirmed

by alternative experimental methods. 121

5.4 Averages Lengths of Proteins. The table records the aver-

age lengths of proteins below q-value threshold of 1% identified

by Protein Q-ranker and ProteinProphet. 122

6.1 Average Values of Ion Peak Heights. The table shows the

average values of the peak heights and their standard deviations

learned over 10 runs. 137

xxii

6.2 Extended Feature Set Used to Represent Peptide-Spectrum

Matches. Each peptide-spectrum match obtained from the

search is now represented using 19 features, because the fea-

ture XCorr in the original feature set (see 5.1) is replaced by 3

features: Pby, Pf and Pl (equations 6.5, 6.6 and 6.7). 139

xxiii

Chapter 1

Introduction

This dissertation addresses computational and algorithmic issues that arise in

the following general problem: given a complex protein mixture, identify the

proteins using mass spectrometry techniques.

The algorithmic procedures used for mass spectrometry data analysis are

closely tied to the specifics of the design of proteomics experiments. Proteins

in the mixture are first broken up into smaller pieces (peptides) to minimize

the effects of complicated protein chemistry. Then, the analysis of each peptide

using the mass spectrometer yields a spectrum (a set of peptide sub-sequences)

that represents a large portion of the full peptide sequence. The data analysis

task consists in interpreting the sequences contained in the spectra, by match-

ing the spectra to candidate peptides, and subsequently inferring the original

1

proteins from the resulting peptides (reviewed in [P. Hernandez and Appel,

2006, Steen and Mann, 2004]).

One of the major challenges in this procedure is the presence of high noise

content in the spectra. Therefore, an essential feature of a robust interpreta-

tion algorithm is the accurate evaluation of the quality of the matches between

spectra and peptides; that is, an estimate of the likelihood of the correctness

of a match. A lot of effort in the mass spectrometry community has been

devoted to building algorithms that discriminate between correct and incor-

rect peptide-spectrum matches [Keller et al., 2002, Choi and Nesvizhskii, 2008,

Käll et al., 2007, Ding et al., 2008, Spivak et al., 2009a].

A widely accepted approach is to generate an artificial set of incorrect

matches (i.e. negative examples) by creating matches to random peptide se-

quences that do not exist in nature [Moore et al., 2002, Klammer and MacCoss,

2006, Colinge et al., 2003]. The result is a proxy problem of discriminating

between the matches to real peptides and to the fake, randomly generated

peptides. One of the many assumptions of this approach is that matches to

fake peptides will have some properties in common with incorrect matches to

real peptides, since both came about by chance [Elias and Gygi, 2007]. In this

formulation, the matches to fake peptides have negative labels and are easy to

generate, while the labels of the matches to real peptides are to be assigned,

2

i.e. the matches to real peptides are unlabeled.

Chapter 2 of this dissertation is concerned with an overview of the methods

involved in the protein mixture analysis. It outlines the experimental details

of applying mass spectrometry techniques to complex biological molecules like

proteins. It then describes some of the methods involved in the interpretation

of the resulting data, emphasizing the approaches used in our work either as

pre-processing steps or as benchmark algorithms.

The next two chapters discuss the algorithmic framework involved in learn-

ing with examples of a single class and unlabeled examples. Most algorithms

designed for these situations build a classifier that attempts to minimize the

number of misclassified examples over the whole data set [Zhang and Zuo,

2008]. However, in many problems, it is not enough to find a general discrim-

inant function that classifies examples as belonging to a certain class; ordered

rankings with high precision at the top of the list are much preferred [Usunier

et al., 2009]. In our context, matches between peptides and spectra can be

selected by ranking them based on a discriminant function and retaining the

best instances, based on a statistical threshold [Storey and Tibshirani, 2003].

The top-scoring examples are of particular interest since they are likely to be

correct.

In our work, we propose an algorithm that directly optimizes the number

3

of peptide-spectrum matches relative to a user-specific statistical confidence

threshold. For this purpose, we define a loss function that allows a direct

optimization of a part of the ROC curve. This idea is useful in a variety of

ranking tasks, where the focus is on the top-scoring part of the whole data

set. The most common such application is document ranking [Usunier et al.,

2009].

In chapter 5, we build on this approach to develop an algorithm for protein

identification that exploits the structural information in the mass spectrometry

data that has generally been ignored by existing approaches. The overall

analysis of mass spectrometry proteomics data consists of a sequence of sub-

tasks:

1. Interpreting the sequences represented by spectra and matching them

up with peptides.

2. Evaluating the quality of these matches and optionally choosing a subset

of the best matches.

3. Inferring proteins from the peptide set by resolving the ambiguities

caused by the fact that multiple proteins share peptide sub-sequences

[Steen and Mann, 2004].

In most current approaches, each sub-task is solved by a stand-alone procedure

4

(for example, see for the first step Eng et al. [2008]; for the second step Keller

et al. [2002], Elias et al. [2004], Käll et al. [2007]; for the third step Nesvizhskii

et al. [2003], Zhang et al. [2007], Bern and Goldberg [2008]). By doing so,

the existing algorithms ignore higher-level information available at the protein

level.

We integrate most of these separate stages into a single optimization prob-

lem at the protein level, while remaining in the semi-supervised learning frame-

work with one labeled class mixed with unlabeled data. We define a single

discriminant function at the protein level and achieve improved results over

the benchmark algorithms [Nesvizhskii et al., 2003, Zhang et al., 2007]. In

addition, we use results from other experimental procedures to validate the

set of proteins we identify [Holstege et al., 1998, Ghaemmaghami et al., 2003].

In the process, we show that peptide and protein identification are coopera-

tive tasks and that solving the problem at the protein level achieves superior

results to relying on the peptide level alone, justifying our approach.

In the final chapter, we work toward integrating the spectra/sequence

matching problem into the protein-level formulation and present some open

problems in the field.

5

Chapter 2

Mass Spectrometry For

Proteomics

2.1 Introduction

Tandem mass spectrometry has been widely used for the analysis of individual

protein sequences as well as the sequences of multiple proteins in a mixture. It

replaced Edman degradation, a labor-intensive technique which required pu-

rification of a substantial amount of each protein, took many hours to complete

and failed if proteins were acetylated or had other post-translational modifi-

cations. The advantages of mass spectrometry are that it does not require

purification of each protein, has no problem identifying modified proteins and

6

takes minutes rather than hours to obtain sequence results [Steen and Mann,

2004].

Despite these advantages, mass spectrometry (MS) was not adopted in the

proteomics context until approximately 1980, although it had been invented

over a century ago and had been widely used in other tasks. One reason

for this is the complicated chemistry of whole proteins. Proteins are not all

soluble under the same conditions and many of the detergents used to handle

proteins interfere with MS because they ionize well and are in huge excess

relative to the proteins. In addition, rather than being interested in the mass-

to-charge ratio of whole protein molecules, the objective of proteomics is more

complex: to identify the constituent amino acid sequences of the proteins. At

the level of the whole molecule, it is difficult to determine which protein might

have given rise to a single measured mass. Finally, there was a fundamental

obstacle in biological mass spectrometry - namely, it was not known how to

transfer highly polar, completely non-volatile molecules with a mass of tens of

kilo-Daltons (kDa) into the gas phase without destroying them. This problem

was resolved by the invention of so-called ‘soft’ ionization techniques, such as

matrix-assisted desorption/ionization (MALDI) and electrospray ionization.

The inventor of the latter, John Bennett Fenn, received a share of the Nobel

Prize for chemistry in 2002 [Steen and Mann, 2004].

7

Figure 2.1: Mass Spectrometry Pipeline. A protein population is prepared

from a biological source such as a cell culture. The proteins are first separated

from a mixed sample by means of an SDS gel. They are then digested by a

proteolytic enzyme such as trypsin. The resulting peptides are loaded onto

an HPLC column coupled to a mass spectrometer. The peptides are ionized

before entering the mass spectrometer [Steen and Mann, 2004].

2.2 Mass Spectrometry Pipeline

Due to these challenges, a series of pre-processing steps shown on Figure 2.1

were invented. This includes the digestion of the proteins by proteolytic en-

zymes (trypsin, chymotrypsin, elastase) to yield shorter pieces (peptides) that

are subsequently sequenced. Although mass spectrometers can measure the

mass of intact proteins, the sensitivity of the mass spectrometer for proteins is

much lower than for peptides [Steen and Mann, 2004]. Mass spectrometry is,

in fact, most efficient at obtaining sequence information from peptides that are

up to 20 residues long. Digesting the whole protein into a set of peptides also

8

means that the physico-chemical properties of the protein, such as solubility

and “stickiness”, become irrelevant. It is for this reason that membrane pro-

teins are quite amenable to MS-based proteomics, while in many other areas of

protein science they are very difficult to work with because of their insolubility.

It is important to note that the resulting peptides are not introduced to

the mass spectrometer all at once. Instead, they are first separated on the

High Performance Liquid Chromatography (HPLC) column that is directly

coupled to the mass spectrometer. The peptides are eluted (i.e. removed)

from these columns using a solvent gradient of increasing organic content, so

that the peptides emerge in order of their hydrophobicity. This separation

step is crucial, since it is often assumed during the analysis that only a single

peptide species enters the mass spectrometer during each cycle.

When a peptide species arrives at the end of the column, it flows through

a needle. At the needle tip, the liquid is vaporized and the peptide is subse-

quently ionized by the action of a strong electric potential.

2.2.1 Tandem Mass Spectrometry (MS/MS) The pipeline described

so far only allows for the determination of the mass-to-charge ratio of the

whole peptide (called the precursor ion). To identify the proteins each peptide

belongs to, the sequence of the peptide is necessary. For this purpose, mass

9

spectrometers either have two different acceleration chambers or make two

runs for every peptide that arrives at the end of the HPLC columns. The

first run determines the mass-to-charge ratio of the precursor ion. During

the second run, gas phase peptide ions undergo collision-induced dissociation

(CID) with molecules of an inert gas such as helium or argon and get broken

into pieces. The result of this second run is a “spectrum” - that is, the masses

of a large number of smaller peptide fragments.

The dissociation pathways (i.e. how peptides break into pieces) are strongly

dependent on the collision energy, but the vast majority of instruments use low-

energy CID (< 100eV). At low collision energies, fragmentation occurs mainly

along the peptide backbone bonds, i.e the N-C bond between amino acids.

At higher energies, fragments generated by breaking internal C-C bonds are

also observed [Sadygov et al., 2004]. According to Roepstorff’s nomenclature

(Roepstorff and Fohlman,1984), ions are denoted as a, b, c when the charge is

retained on the N -terminal side of the fragmented peptide, and x, y, z when

the charge is retained on the C-terminal side (Figure 2.2).

Throughout the chromatographic run, the instrument will cycle through

a sequence that consists of obtaining a mass-to-charge ratio of the species

eluted from the HPLC column followed by obtaining tandem mass spectra of

the most abundant species of peptides. The concentration of the inert gas

10

involved in the collision is calibrated with the expectation that each molecule

of a given peptide will break in a single place. Therefore, peptides are expected

to dissociate into nested sets of fragments. If A,B,C,D,E,F and G represent

peptide’s full chain of amino acid residues, the peptide can dissociate into any

of the pairs of b, y ions shown in figure 2.3. Each break generates a b and a

y-ion, for example, ABC is expected to be complemented by DEF.

Finally, the processed MS/MS spectrum is composed of the precursor mass

and charge state, as well as of a list of peaks. Each peak is characterized by

two values: a measured fragment mass-to-charge ratio (m/z) and an intensity

value that represents the number of detected fragments [P. Hernandez and

Appel, 2006]. Since successive spectrum peaks should differ by one amino acid

and almost each naturally occurring amino acid has a unique mass, we can

deduce a peptide’s sequence by calculating the difference in mass between the

neighboring peaks (see Figure 2.4).

2.3 From Spectra to Proteins

The previous section described the motivation underlying the various process-

ing steps involved in mass spectrometry. They were invented to circumvent

the difficulties of working with complex protein mixtures while trying to learn

detailed sequence information about the sample, using only a device that mea-

11

Figure 2.2: Fragmentation of a Tetrapeptide Under the Collision Dis-

sociation [P. Hernandez and Appel, 2006]. At low collision energies, fragmen-

tation mainly occurs along the peptide backbone bonds, i.e N-C bond between

amino acids.

Figure 2.3: Idealized Set of b- and y- Ions due to Collision Dissociation.

The expectation is that each molecule of a given peptide will break in a single

place, so that many molecules of the same peptide will generate nested sets of

fragments. The figure shows the ions for peptide ABCDEFG.

12

Figure 2.4: Example of an Annotated MS Spectrum. The information

about the peptide sequence can be inferred from the mass differences between

the peaks [Jonscher, 2005].

13

sures mass-to-charge ratio of a molecule. A large number of challenges remain

in making optimal use of the raw data.

In principle, it is possible to determine “manually” the amino-acid se-

quence represented by a spectrum, by considering the mass difference between

neighboring peaks in a series. However, the difficulty lies in the fact that the

information in tandem-MS spectra is often not complete and that intervening

peaks, which might or might not belong to the series, can confuse the analy-

sis. The task is also complicated by substantial levels of noise in the spectra,

arising from the fact that the peptides can break at several bond locations,

and that some of the fragments might never be seen because they don’t ionize.

In addition, when considering large-scale protein screenings, it is unreasonable

to imagine manually interpreting tens of thousands of spectra arising from a

single experiment.

Therefore, computational methods are essential in inferring the peptides

and proteins that give rise to observed spectra. These methods first use

database search programs such as SEQUEST and CRUX to assign peptide

sequences to spectra. Because they produce a significant number of incorrect

peptide assignments, those results are validated in a second step using sta-

tistical approaches. The final task is to infer protein identities based on the

(presumably reliable) peptide assignments. This final task is complicated by

14

A) B)

Figure 2.5: Example of Theoretical and Observed Spectrum. Theoreti-

cal (A) and experimental (B) spectra for the peptide sequence DLRSWTAAD-

TAAQISQ [Eng et al., 1994]

the fact that many proteins share the same peptides.

2.3.1 Database Search SEQUEST [Eng et al., 1994] is a widely used

software package that matches spectra to peptide sequences. Since it relies on

full genomic sequence databases, it can only be used for organisms whose full

genomic sequence is known, allowing prediction of open reading frames and

protein sequences that can potentially exist in a cell of the organism.

The search algorithm relies on the fact that, given a peptide amino acid

sequence, most of the mass-to-charge ratios of the peaks generated by this

peptide can be predicted. (In contrast, the intensities of the peaks cannot be

predicted as easily). SEQUEST virtually digests each protein in the database

15

with the enzyme used during the mass spectrometry experiment and represents

each peptide by its theoretical spectrum (the algorithm assumes that peptides

preferentially fragment into b- and y-ions [Sadygov et al., 2004].) The b- and

y- ions in the series are assigned an intensity of 50, a window of 1 mass atomic

unit is assigned intensity 25, and water and ammonium losses are assigned

intensity 10 (see figure 2.5). These intensities have been chosen arbitrarily by

the authors of the database search algorithm [Eng et al., 1994].

The algorithm compares each observed spectrum to the theoretical spectra

obtained from the database using cross-correlation as a similarity measure

[Eng et al., 2008]:

XCorr(x, y) = R0 − (
τ=+75∑
τ=−75

Rτ)/151

where x, y are theoretical and experimental spectra and

Rτ =
∑

xiyi+τ

If the spectra are identical and can be aligned perfectly, only the first term, R0,

will contribute to the similarity measure. In all other cases, the contribution

from exact alignment of the spectra is measures against other possible align-

ments resulting from sliding the experimental spectrum against the theoretical

one.

The program ranks the candidate peptides of each individual spectrum

16

based on the cross-correlation (XCorr) measure and outputs several top matches.

One of the features of every existing database search algorithm is that it

will produce at least one peptide match for each spectrum, regardless of its

quality. However, there are several measurements that provide indications of

how good the match is. Some of the most important are:

1. Xcorr, the cross-correlation function computed by the SEQUEST algo-

rithm

2. δCn, the relative difference between first and second highest XCorr for

all peptides queried from the database for a given spectrum.

3. SpRank, a measure of how well the assigned peptide scored relative to

those of similar mass in the database, using a preliminary correlation

metric employed by the SEQUEST database.

4. The absolute value of the difference in mass between the precursor ion

of the spectrum and the assigned peptide.

2.3.2 Target-Decoy Strategy As most database search engines return

results even for “unmatchable” spectra, proteome researchers have devised

ways to distinguish between correct and incorrect peptide identifications. The

target-decoy strategy represents one such approach. The core idea behind this

17

strategy is that one can generate false peptide sequences (known not to be

in the sample), so that any matches to them must be incorrect [Moore et al.,

2002].

More precisely, one can shuffle [Klammer and MacCoss, 2006], reverse

[Moore et al., 2002] or apply Markov-chain processes [Colinge et al., 2003]

to the existing protein sequences in the database, creating a fake set of addi-

tional (decoy) sequences. Appending these decoy sequences to the set of real

(target) sequences results in a database that is, say, twice the size of the origi-

nal. MS/MS spectra are then searched against this single composite database

and several top matches are retained for each spectrum for subsequent anal-

ysis. Assuming the decoy sequences are clearly labeled, any matches to the

shuffled sequences are considered to be examples of incorrect matches and their

properties should give a sense of the statistics of incorrect matches to the real

database.

Major Assumptions of Target-Decoy Approach Despite the apparent

simplicity of this method, some controversy surrounds its successful applica-

tion. Therefore, it is important to note what assumptions are made when

using this strategy [Elias and Gygi, 2007].

• The target and decoy databases do not overlap, if we are to trust that

18

the matches to decoy sequences are incorrect. Therefore, the strategy

relies on the assumption that only a small fraction of all possible amino

acid permutations occur in nature.

• Decoy peptide-spectrum matches are generated in a manner that is not

trivially distinguishable from target peptide-spectrum matches.

2.3.3 Q-value Estimation The target-decoy strategy is an example of

a situation where the labels of only a single (in this case negative) class are

confidently assigned and the goal of the analysis is to assign a confidence

measure to the labels of the other (positive) class.

These types of problems are often encountered in large-scale biological

screening, where multiple independent events are tested against a null hy-

pothesis to discriminate real biological effects from noisy data. In microarray

experiments, the expression level of genes is tested against the background

signal [Storey and Tibshirani, 2003]. In mass spectrometry protein screen-

ing, potentially positive matches between spectra and peptide sequences are

tested for correctness against peptide-spectrum matches that are known to be

negative because they were generated randomly [Elias and Gygi, 2007].

A widely used approach to this task, both in microarray and proteomic

applications, is to assign each event a statistical confidence measure, a q-

19

value, designed to indicate how likely it is to be true when compared to the

null hypothesis. Matches below a certain user-specified q-value threshold are

considered statistically significant and are selected for further biological iden-

tification. In practical terms, a q-value threshold can be interpreted as the

proportion of significant events that will turn out to be false leads [Storey and

Tibshirani, 2003].

If we consider the problem of peptide-spectrum match validation in a clas-

sification framework, one possible approach to assigning q-values is as follows.

Given a set of peptide-spectrum matches, we provisionally assign labels to

them such that all the matches to the real (target) peptides receive labels of

the positive class and the matches to the shuffled (decoy) peptides receive la-

bels of the negative class. (Note that many of the positive label assignments

may be incorrect).

We then build a classifier and use the ranking induced by the discriminant

function to assign q-values (see figure 2.6). For each example in the ranked

list, set a threshold such that all the examples ranking above it are considered

“accepted” by the classifier, and all those below are considered “rejected”.

Then the q-value associated with this particular example is determined by the

fractions of positives and negatives found above this particular threshold:

q =
PFP
PTP

20

���� �����

���	���
����

Figure 2.6: Q-value assignment. The ranking is induced by the discriminant

function of a classifier. To assign a q-value to an example, set the threshold

such that all the examples ranking above it are considered “accepted” by the

classifier, and all those below are considered “rejected”.

where PFP is the probability of false positives (i.e. the fraction of negatives

that were identified as positives), PTP is the probability of true positives (i.e.

the fraction of positives that were correctly identified as positives). Given a

training set with Np positives and Nn negatives and supposing that np is the

number of positives identified correctly as positives and nn is the number of

negatives identified as positives, the q-value can be re-written as:

q =
nn
np
∗ Np

Nn

In this report, we extensively use the notion of a q-value threshold. Pro-

vided that each example has a q-value assigned to it, the position of such a

21

threshold in the ranked list identifies all the examples with q-values below

a certain specified value q as “accepted” by the classifier. The q-value de-

termining the position of the threshold provides a measure of confidence in

the positive examples found above it. Often, the goal of an algorithm is to

maximize the number of positive examples found above a particular q-value

threshold, provided that no over-fitting occurs.

2.3.4 Peptide-Spectrum Match Verification: PeptideProphet and

Percolator In any database search procedure, the score function that eval-

uates the quality of the match between an observed spectrum and a candidate

peptide plays two complementary roles. First, the function ranks candidate

peptides relative to a single spectrum, producing several top-scoring peptide-

spectrum matches (PSMs) for each spectrum. Second, the function ranks the

peptide-spectrum matches from different spectra with respect to one another.

This latter, absolute ranking task is intrinsically more difficult than the rela-

tive ranking task. A perfect absolute ranking function is by definition also a

perfect relative ranking function, but the converse is not true, because peptide-

spectrum match scores may not be well calibrated from one spectrum to the

next.

Several approaches have been developed to learn a peptide-spectrum match

22

scoring function from a single (real) data set. The expectation of these ap-

proaches is that, once determined, the discriminant function will generalize to

all the subsequent mass spectrometry data sets. Typically, the input to these

methods is the relative score of the peptide-spectrum match, as well as prop-

erties of the spectrum, the peptide and features representing the quality of the

match. PeptideProphet [Keller et al., 2002], for example, uses four statistics

computed by the SEQUEST database search algorithm mentioned in section

2.3.1 as inputs to a linear discriminant analysis classifier. The system is trained

from labeled correct and incorrect peptide-spectrum matches derived from a

purified sample of known proteins. Other approaches use alternative feature

representations or classification algorithms, such as support vector machines

(SVMs) [Anderson et al., 2003] or decision trees [Elias et al., 2004].

One drawback to these approaches based on building the scoring function

from a single data set is that they may not generalize well across different

machine platforms, chromatography conditions, etc. To combat this problem,

several algorithms adjust the model parameters with respect to each new data

set.

For example, the semi-supervised version of PeptideProphet [Choi and

Nesvizhskii, 2008] couples a fixed linear discriminant function (learned once

on a known data set) with a post-processor that maps the resulting unitless

23

discriminant score to an estimated probability. During this stage, the Peptide-

Prophet uses the EM algorithm and includes decoy peptide-spectrum matches

into the dataset, forcing them to belong to one of the probability distribu-

tions in the mixture model. The resulting probabilities are significantly more

accurate than probabilities estimated in an unsupervised fashion.

The Percolator algorithm [Käll et al., 2007] takes the semi-supervised ap-

proach one step further. Rather than using a fixed discriminant function and

employing semi-supervised learning as a post-processor, Percolator learns a

new discriminant function on each mass spectrometry data set. Percolator

uses an iterative, SVM-based algorithm, initially identifying a small set of

high-scoring target peptide-spectrum matches, and then learning to separate

these from the decoy matches. The learned classifier is applied to the entire

set, and if new high-confidence matches are identified, then the procedure is

repeated.

2.3.5 Composing the Protein Set After deriving a set of peptides up

to a certain q-value threshold, all the proteins that could account for these

peptides are collected. However, since a single peptide sequence can be mapped

to multiple proteins in a database (because of the existence of homologous

proteins, etc.), such naive protein assembly can substantially overstate the

24

number of proteins found in samples. Therefore, this protein list represents

the maximum possible number of proteins for this database search that could

explain the observed spectra.

The final stage of the analysis is to resolve the ambiguities of shared pep-

tides and to produce a minimal protein list accounting for the observed spectra.

This approach to the problem (i.e. parsimony) can be applied with varying lev-

els of stringency. ProteinProphet [Nesvizhskii et al., 2003] introduces weights

for the shared peptides; these weights determine how much each degener-

ate peptide will contribute to the probabilities of the proteins that contain

it. Thus, ProteinProphet does not output a minimal set of proteins because

each degenerate peptide is allowed to contribute to more than one protein it

matches.

In contrast, IDPicker [Zhang et al., 2007] and ComByne [Bern and Gold-

berg, 2008] both output a parsimonious protein set by assigning each degen-

erate peptide to only one protein. IDPicker starts with filtering the peptide-

spectrum matches based on user-specified q-value threshold using target-decoy

strategy. It then creates a bipartite graph of the remaining peptides and the

proteins containing them, identifies independent groups of proteins and applies

a greedy set-cover algorithm to each group to create a minimal protein set. In

this last step, each degenerate peptide is assigned in an arbitrary fashion to

25

exactly one of the proteins that contain it.

ComByne computes initial protein scores using all the peptide matches

and assigns each degenerate peptide to the highest-scoring protein. It then

computes the final protein score by incorporating retention time information

and taking into account the fact that some peptide identification corroborate

others of similar sequence.

2.4 Conclusion

This chapter gives a brief summary of the main algorithmic issues involved in

mass spectrometry data interpretation in the domain of proteomics. Despite

major progress in the field, the identification of the proteins in complex biolog-

ical mixtures using mass spectrometry techniques remains an open problem.

Some of the challenges are addressed in this dissertation.

One of the main observations in this work is that the dominant approach

to the problem of breaking up the data analysis into 3 separate stand-alone

steps - database search, peptide-spectrum match verification, protein set re-

construction - is not efficient since these three tasks are cooperative and the

solution to each could benefit from information about the solution to the oth-

ers. Chapters 5 and 6 are concerned with integrating these three tasks into a

single problem solved directly at the protein level.

26

When protein identification is considered in the target-decoy setting, it falls

into the category of semi-supervised problems with examples of a single class

and unlabeled examples. This general type of problems remain an open area

in machine learning research. In addition, while it is not clear that the mass

spectrometry algorithms were developed with full awareness of the general

developments in this domain, the analysis in Chapters 3 shows that mass

spectrometry algorithms fit well into the current machine learning framework

on this topic and possess many of the features of the general approaches to

the problem.

In addition, the overwhelming majority of the algorithms developed for

the problems with the examples of a single class and unlabeled examples are

concerned with building a classifier on the whole data set. However, in many

important applications, ranking with high accuracy at the top of the list is

preferable. Chapter 4 formulates a ranking loss function that allows to choose

the most relevant part of the list to optimize.

Finally, while both evaluation of the quality the peptide-spectrum matches

and protein reconstruction are crucial steps in mass spectrometry data analy-

sis, they can only use the information provided by the procedure that created

the matches, i.e. the database search. The state-of-the-art database search

algorithms contain many heuristic choices that were introduced by the original

27

developers of the software and were never examined further. This remains a

domain with many open questions, only one of them is addressed in Chapter

6.

28

Chapter 3

PSM Verification

As described in the previous chapter, each peptide analyzed during a mass

spectrometry run has its mass-to-charge ratio and a spectrum representing its

amino acid sequence associated with it. Then, several sub-problems remain

to be resolved in order to reconstruct the protein composition of the original

mixture. The first sub-problem involves associating spectra to the peptide se-

quences they represent. The second involves estimating the correctness of these

peptide-spectrum matches. The third consists in composing the final protein

set. This chapter and the next address the algorithmic issues of the second

sub-problem in the analysis pipeline: peptide-spectrum match verification in

the target-decoy setting.

To be more precise, we are given a set of observed spectra S = {s1, . . . , sNS}

29

and a database D of real (target) proteins, as well as a database D′ of shuf-

fled (decoy) proteins. We perform a database search against each database

separately or against a concatenated version of both databases. The search

produces a set of peptide-spectrum matches (PSMs). Denoting the set of

peptides as E = e1, . . . , eNE , the peptide-spectrum matches M are written

as pairs (ej, sk) ∈ M, each representing a match of peptide j to spectrum

k. Note that, in general, we may opt to retain a single best-scoring peptide

for each spectrum from target and decoy searches, or a small constant num-

ber of top-ranked matches per spectrum. We define a feature representation

x ∈ Rd for any given peptide-spectrum match pair (e, s). The task is to es-

timate which of the target peptide-spectrum matches are correct based on a

statistical confidence measure.

Since the matches against the decoy database are known to be incorrect

by design, they can confidently receive labels of the second class, y = −1.

The matches against the real database, on the other hand, cannot receive

confident labels of the first class, y = 1, and can be considered unlabeled data.

Therefore, we identify the problem setup as a special type of semi-supervised

setting [Chapelle et al., 2006] where only the examples of a single class have

confidently assigned labels, and the rest of the examples are unlabeled.

Several machine learning methods have been proposed to address the re-

30

sulting classification task of distinguishing between correct and incorrect peptide-

spectrum matches (PSMs). The two recent examples, PeptideProphet and

Percolator, fit well into the general algorithmic framework developed for this

type of semi-supervised problem reviewed in section 3.1. The analysis of these

algorithms shows that PeptdieProphet tends to make excessively strong as-

sumptions on the models it uses while Percolator fails to define a clear objec-

tive function it optimizes.

The next two chapters describe the following improvements to the state-

of-the-art mass spectrometry algorithms. (1) We consider the problem in

fully-supervised setting and propose a clear objective function, with intuitive

reasons behind its choice. (2) We use tractable nonlinear models instead of

linear models. (3) A method for directly optimizing the number of identified

spectra at a specified q value threshold is proposed.

3.1 Learning with Positive and Unlabeled Examples

This section focuses on the machine learning algorithms that are primarily rel-

evant to the mass spectrometry methods described in the subsequent sections.

One of the common approaches (reviewed in Zhang and Zuo [2008]) to learn-

ing in settings where only labeled examples of one class are available takes

a two-step strategy: 1) it identifies a set of reliable negative documents from

31

the unlabeled set; 2) it then builds a set of classifiers by iteratively applying a

classification algorithm and then selecting a good classifier from the set [Liu

et al., 2003, 2002, Li and Liu, 2003, Yu et al., 2002]. An alternative approach

is to revert to the fully-supervised setting and to reformulate the problem as

that of learning with high one-sided noise, treating the unlabeled set as noisy

negative examples. For example, biased SVM method [Liu et al., 2003] directly

uses the asymmetric cost formulation of the SVM algorithms for this purpose.

3.1.1 Two-Step Strategy: First Step

Bayes Classifier (BC) To identify reliable negative examples among the

unlabeled data, Liu et al. [2003] build a two-class Bayes classifier and use it to

assign labels of the negative class to some of the unlabeled examples, which

are then used in the second step. (The positives are the examples of the first,

labeled class).

The Bayes classifier is a generative model, because it makes an assumption

that the data was generated from several classes by the following process: 1) a

class cj was chosen with probability P (cj); 2) an example xi was drawn from

the probability distribution of the examples belonging to this class, p(xi|cj).

Then by Bayes’ rule, the probability that some example xi ∈ X belongs to

32

class cj is given by

P (cj|xi) =
P (cj)p(xi|cj)∑
cr∈C P (cr)p(xi|cr)

(3.1)

where C = {cj} is a set of possible classes. For classification purposes, a newly

presented example xi is assigned to the class with the highest value of P (cj|xi).

Building a Bayes classifier involves estimating the model parameters using

empirical data. It requires choosing a family of probability distributions to

represent each class, p(xi|cj), and determining the parameters of these distri-

butions. In addition, class probabilities P (cj) must be estimated.

A common approach to probabilistic model parameter estimation is the

maximum likelihood principle. Based on a generative model with parameters

θ, the likelihood of an example xi ∈ X is

Pθ(xi) =
∑
cr∈C

Pθ(cr)pθ(xi|cr) (3.2)

And the likelihood of all the examples in the data set is

Pθ(X) =
∏
i

Pθ(xi) (3.3)

The maximum likelihood principle suggests setting the parameters θ of the

generative model such that the likelihood Pθ(X) is maximum.

For example, assuming that a labeled data set is available and that pθ(xi|cj)

are modeled as Gaussian distributions, the maximum likelihood estimates will

33

amount to determining the mean and variance of the training data belonging to

each class. The class probabilities Pθ(cj) are given by the ratio of the number

of examples of this class to the total number of examples [Bishop, 1995].

If the labels are not available or are not confidently assigned, it is possible

to maximize the likelihood of a data set without recourse to labels using the

EM algorithm [Dempster et al., 1977]. The EM assumes that the data was

generated by a mixture model

Pθ(xi) =

|C|∑
j=1

Pθ(αj)pθ(xi|αj) (3.4)

where αj are the component probability distributions in the mixture. Pro-

vided that the training data complies with this assumption, the algorithm will

recover the parameters of the mixture model in an unsupervised setting.

The parameters of the mixture model determined by the EM procedure

can be used to build a Bayes classifier, by setting the probabilities of classes to

equal the probabilities of the mixture components and the probability distri-

butions in the mixture to represent the distributions of examples in the classes.

However, this step cannot occur in an unsupervised setting, since some labeled

examples are required to determine the correspondence between the compo-

nents of the mixture model and classes [Nigam et al., 2000].

When the data set is composed of the examples of a single class and un-

labeled examples, the two-class Bayes classifier can be build in either fully-

34

supervised setting, by assigning all the unlabeled data provisional labels of the

second class, or in unsupervised setting, by ignoring all the labels. Once the

parameters of the Bayes classifier are estimated, the reliable negative set is

composed of only those unlabeled examples that are classified as belonging to

the second class (i.e. P (c2|xi) ≥ P (c1|xi)).

Spy Technique Due to potentially high levels of noise in the unlabeled data,

both fully-supervised and unsupervised settings for Bayes classifier parameter

estimation may give suboptimal results. There are attempts to ensure that

the final set of negatives is in fact reliable. For example, the Spy technique

[Liu et al., 2002] first selects 10% − 15% of the positive examples randomly

and adds them to the unlabeled set. It then proceeds to use EM algorithm

for the mixture of two Gaussian distributions. It initializes the first Gaussian

with the remaining positive examples and the second Gaussian with mixed -

10% of the chosen positives and unlabeled - examples.

To select the reliable negative set after the EM, it contrasts the a posteriori

probabilities P (c2|xi) of the positive “spies” with the a posteriori probabilities

of the unlabeled examples and chooses those most likely to be true negatives.

In effect, the “spies” play a role of the testing set and indicate that the EM

gave reasonable results.

35

Rocchio Technique An alternative approach to identifying a reliable neg-

ative set is Rocchio method used in Roc-SVM algorithm [Li and Liu, 2003].

Building a Rocchio classifier is achieved by constructing a prototype vector ~Cj

for each class.

~Cj = α
1

|Cj|
∑
x∈Cj

x

||x||
− β 1

|X | − |Cj|
∑

x∈(X−Cj)

x

||x||
(3.5)

where X = {x1...xn} is the set of examples, |X | is the total number of ex-

amples in the data set, |Cj| is the number of examples in class j, α and β

are parameters. During classification, the method uses the cosine similarity

measure to compute how close each test example xi is to each prototype vector.

Then the approach to identifying the reliable negative examples is the same

as above: use the Rocchio classifier to classify the unlabeled data. The exam-

ples that are classified as negatives are considered reliable.

3.1.2 Two-Step Strategy: Second Step The second step in the family

of the two-stage algorithms occurs in the semi-supervised setting. The positive

examples receive the labels of the first class, yi = 1, the negatives, identified

reliably during the first step, receive labels of the second class, yi = −1, the

rest of the unlabeled examples remain without labels.

Building Bayes Classifier in Semi-Supervised Setting. The S-EM al-

gorithm [Liu et al., 2002] builds a Bayes classifier again during the second

36

stage, this time in a semi-supervised setting.

The parameter estimation again occurs based on the maximum likelihood

principle. When the data set is composed of labeled L and unlabeled U sets

of examples, the likelihood of the whole data set 3.3 can be rewritten as

Pθ(X) =
∏
i∈L

Pθ(xi, ci)
∏
j∈U

Pθ(xj) =
∏
i∈L

[
Pθ(ci)Pθ(xi|ci)

] ∏
j∈U

[∑
c

Pθ(c)Pθ(xj|c)
]
.

(3.6)

While the standard EM procedure occurs in unsupervised setting, the informa-

tion about the labels associated with some of the examples can be introduced

into the algorithm[Nigam et al., 2000]. First, the parameters of the mixture

model are initialized based only on the labeled data. Since the initial param-

eter values strongly influence the course of the EM procedure, the additional

information contained in the labeled data is significant. Second, during the

E step of the EM algorithm, the labeled examples are fully assigned to the

mixture components corresponding to the class labels set during initialization,

(i.e. Pθ(cj|xi) = 1, where i ∈ L and cj corresponds to the class label of xi).

The unlabeled data is treated in a standard fashion during the E step.

However, the accuracy of the resulting Bayes classifier is still dependent

on the fact that the data should comply with the assumptions made by the

parameter estimation algorithm:

• the data was indeed generated by a mixture model

37

• there is a one-to-one correspondence between mixture components in the

model and classes given by the labels (i.e. αj in equation 3.4 correspond

to some cj in equation 3.1).

The EM can suffer strongly from the misfit between the model assumptions

and the data. For example, if the mixture components do not correspond to

classes, the presence of unlabeled data can harm the classifier performance.

One of the approaches to control for this problem is to model each class with

multiple mixture components instead of a single mixture component [Nigam

et al., 2000].

Iterative Application of SVM The Roc-SVM technique [Li and Liu, 2003]

constructs a reliable negative set from unlabeled data using Rocchio technique.

It then applies SVM classifier iteratively and re-assigns the negative labels in

the process. During the construction of the set of SVM classifiers, the current

classifier is applied to the unlabeled data and those examples classifying as

negative contribute to the new set of negatives. These new labels are then

used in the next iteration that builds the next SVM classifier.

This approach is not restricted by many of the assumptions necessary to

build Bayes classifiers, since SVM classifiers are based on more flexible dis-

criminative (rather than generative) models. However, it may suffer from the

38

fact that both the first and the second step of the two-step procedure just

described are ill-posed problems. If the set of reliable negatives identified dur-

ing the first step is inaccurate, it may strongly bias the subsequent solutions.

Moreover, the same problem may arise when finding each new classifier in the

series, since the algorithm re-labels the unlabeled set based on the current

discriminant function in order to find the next one.

3.1.3 Fully Supervised Setting with Noisy Negatives This family

of methods transforms the problem of learning with examples of one class

and unlabeled data into learning with high one-sided noise by treating the

unlabeled set as noisy negative examples.

Biased SVM For example, Liu et al. [2003] propose a Biased SVM (B-

SVM) method which directly uses the asymmetric cost formulation of the

SVM algorithm. This approach allows noise (or error) in both positive and

negative label assignments and uses the biased SVM formulation with two

parameters, C+ and C−, to weight positive and negative errors differently.

Suppose the training set contains L positive examples and K negative

examples and yi is the label of the ith example. Then the problem formulation

is

Minimize :
1

2
wTw + C+

L∑
i=1

ξi + C−

K∑
i=1

ξi

39

Subject : yi(w
Txi + b) > 1− ξi, i = 1, ..., n

ξi ≥ 0, i = 1, .., n

The parameter values C+ and C− can be determined by cross-validation. In-

tuitively, it is preferable to give a big value to C+ and a small value to C−

because the unlabeled set, which is assumed to be negative, may also contain

positive data.

3.2 Algorithms for Mass Spectrometry

We now turn to the analysis of some of the state-of-the-art algorithms designed

to validate the correctness of the matches between peptides and spectra: Pep-

tideProphet and Percolator. As established earlier, the peptide-spectrum

match validation is an instance of the problem of learning with examples of

a single class and unlabeled examples, since the matches to shuffled database

peptides are confidently labeled, but the labels of the matches to the real pep-

tides remain to be assigned. The methods developed for the task fit well into

the algorithmic framework described above.

3.2.1 PeptideProphet PeptideProphet [Keller et al., 2002] builds a Bayes

classifier in the semi-supervised setting. It starts by determining the score of

each peptide-spectrum match based on 4 indicators of match quality produced

40

by the database search (SEQUEST): (1) Cross-correlation, XCorr; (2) δCn,

the relative difference between first and second highest XCorr for all peptides

queried from the database; (3) SpRank, a measure of how well the assigned

peptide scored relative to those of similar mass in the database, using a pre-

liminary correlation metric; (4) The absolute value of the difference between

the mass of the peptide that generated the spectrum (measured during the

mass spectrometry run) and the predicted mass of the assigned peptide in

the database. The score of the peptide-spectrum match is given by a linear

function

F (x1, x2, .., xS) = w0 +
S∑
k=1

wkxk (3.7)

The parameters w of the function F were learned once on a model data set of

known composition during the design of the algorithm. They are subsequently

applied to all the new data sets to be analyzed.

However, the model as such proved to be not robust. Due to varying

experimental conditions and the use of different mass spectrometry methods,

the properties of peptide-spectrum matches vary substantially among data

sets. Therefore, PeptideProphet also fits the parameters of Bayes classifier to

each new data set, using the scores for peptide-spectrum matches based on

the pre-defined function F :

P (c1|F (xi)) =
p(F (xi)|c1)P (c1)

p(F (xi)|c1)P (c1) + p(F (xi)|c2)P (c2)
(3.8)

41

where c1, c2 correspond to positive class containing correct matches and nega-

tive class containing incorrect matches. The probability distributions p(F |c1)

and p(F |c2) are modeled as Gaussians. Their parameters as well as prior prob-

abilities P (c1) and P (c2) are estimated using EM algorithm based on maximum

likelihood principle (see sections 3.1.1 and 3.1.2 for details).

While PeptideProphet is a very popular tool in the mass spectrometry

community, its main disadvantage is that it makes very strong assumptions

on the model:

1. Using a pre-defined score function F (x) that was learned on a small

data set containing only 19 known proteins assumes strong similarities

between mass spectrometry data sets. The designers of PeptideProphet

recognize this as a weakness, since the latest improved version of the

software includes an option that allows to heuristically adjust the original

parameters of F based on each newly presented data set [Ding et al.,

2008].

2. The probability distributions of correct and incorrect matches are mod-

eled as Gaussian distributions, whereas the real distributions vary vastly

among data sets.

3. The use of the EM algorithm for the estimation of the parameters of the

42

naive Bayes classifier implies the two underlying assumptions already

mentioned in Nigam et al. [2000]: (1) that the data comes from a mixture

model and (2) that the mixture model components correspond to classes.

3.2.2 Percolator In contrast to PeptideProphet, Percolator [Käll et al.,

2007] learns new parameters of the discriminant function for each new exper-

imental data set. The algorithm significantly expands the feature represen-

tation of peptide-spectrum matches, attempting to maximize the use of the

information provided by the database search (table 3.1). It then employs the

SVM-based two-step strategy [Li and Liu, 2003] described in the section 3.1.2.

It first selects an initial set of positive peptide-spectrum matches based on

the SEQUEST cross-correlation (XCorr) score (the negative set is confidently

labeled, since it is composed of matches to the shuffled database). This step

replaces the Rocchio technique in the Roc-SVM algorithm [Li and Liu, 2003].

This initial set of labeled examples is used to learn the first SVM classifier.

Then the algorithm proceeds in an iterative manner: (1) it ranks the entire

set of peptide-spectrum matches using the current SVM classifier and selects

a new set of positives; (2) it then trains the next SVM classifier.

The advantage of Percolator is that it relaxes many of the assumptions

made by PeptideProphet:

43

1 XCorr Cross correlation between calculated and observed spectra

2 ∆Cn Fractional difference between current and second best XCorr

3 ∆CL
n Fractional difference between current and fifth best XCorr

4 Sp Preliminary score for peptide versus predicted fragment ion values

5 ln(rSp) The natural logarithm of the rank of the match based on the Sp score

8 Mass The observed mass [M+H]+

6 ∆M The difference in calculated and observed mass

7 abs(∆M) The absolute value of the difference in calculated and observed mass

9 ionFrac The fraction of matched b and y ions

10 ln(NumSp) The natural logarithm of the number of database peptides within the specified m/z range

11 enzN Boolean: Is the peptide preceded by an enzymatic (tryptic) site?

12 enzC Boolean: Does the peptide have an enzymatic (tryptic) C-terminus?

13 enzInt Number of missed internal enzymatic (tryptic) sites

14 pepLen The length of the matched peptide, in residues

15–17 charge1–3 Three Boolean features indicating the charge state

18–37 A, ..., Y Counts of each of the 20 amino acids

Table 3.1: Features For Representing Peptide-Spectrum Matches

Used by the Percolator Algorithm [Käll et al., 2007].

44

−4 −3 −2 −1 0 1 2
−2

−1

0

1

2

3
Hypothetical Dataset

−4 −3 −2 −1 0 1 2
−2

−1

0

1

2

3
Initial Direction

−4 −3 −2 −1 0 1 2
−2

−1

0

1

2

3
New Direction

a) b) c)

Figure 3.1: Schematic Description of the Percolator Algorithm [Käll

et al., 2007]. Percolator first selects an initial set of positive peptide-spectrum

matches based on the SEQUEST cross-correlation score. It then proceeds in

an iterative manner: 1) learns an SVM classifier; 2) re-assigns positive labels

based on the discriminant function scores.

45

1. It uses a richer feature representation for peptide-spectrum matches (see

3.1).

2. It estimates the parameters of the discriminant function for each new

data set.

3. It uses more flexible linear models with larger number of adjustable pa-

rameters, in comparison to the Gaussian distributions, with 2 parameters

per class.

4. It takes a discriminative rather than generative approach to model esti-

mation. In other words, it does not attempt to model how each example

x occurred by modeling the probability distributions P (x|cj) and then

using them to estimate the a posteriori probabilities P (cj|x). Instead, it

solves an easier problem of estimating directly the discriminant function

which only predicts labels for testing set examples [Vapnik, 1995].

These advantages are corroborated by superior results of Percolator in com-

parison with PeptideProphet on the mass spectrometry data sets.

However, the disadvantages of the Percolator algorithm, as of all the

two-step approaches, is that they are largely heuristic. It is unclear what

exact loss function Percolator optimizes and whether the algorithm’s iterative

optimization process provably converges. As a result, the following problems

46

can arise:

1. The first step - identifying reliable examples of the second class - has

multiple solutions, since the unlabeled data may contain the examples

of many classes different from the first class, rather than a single “second”

class. Therefore, it is an ill-posed problem which will give highly varying

solutions depending on the algorithm used.

2. The second step - building a series of classifiers in the semi-supervised

setting- may fail for the same reason that the unlabeled data may turn

out to be very varied and noisy. The use of unlabeled data in the semi-

supervised setting is only beneficial if this data complies with the as-

sumptions made by the particular algorithm employed. If these assump-

tions do not hold, the use of unlabeled data may prove detrimental to

the classifier performance [Chapelle et al., 2006].

Far from being hypothetical issues, these undesirable effects are well observed

and the designers of the two-stage algorithms attempt to offer methods to

deal with these problems. For example, for the first step, S-EM algorithm [Liu

et al., 2002] proposes the Spy technique designed specifically to identify the

unlabeled examples that “differ most” from the positive set (see section 3.1.1

for details). The Roc-SVM algorithm [Li and Liu, 2003] makes a check that

47

after the second-step - fitting a series of classifiers - the final classifier performs

better than the first one, based on the original selection of the examples of the

second class from the unlabeled data.

3.3 Fully-Supervised Approach

Motivated by these arguments, we seek to define an objective function suitable

for dealing with noisy data sets such as mass spectrometry data sets, for exam-

ple. One possible approach is to solve the problem in semi-supervised setting

using TSVM algorithm [Vapnik, 1998]. Another possibility is to switch to the

noisy fully-supervised setting. Here we pursue the second alternative with the

motivation that non-linear TSVM algorithm takes longer to train than the

algorithms we use in the fully-supervised setting in our work. In general, many

semi-supervised algorithms scale as (L + U)3, where L and U are numbers of

labeled and unlabeled examples respectively [Weston, 2008], while standard

stochastic gradient descent in fully-supervised setting scales as L. However,

TSVM approach remains valid and we leave it as future work.

3.3.1 Motivation for Percolator Algorithm An obvious objective func-

tion formulation in the fully-supervised setting with noisy data already re-

ported in the literature is the biased SVM formulation. Indeed, Liu et al.

48

[2003] try all the possible combinations of the two-step techniques presented

in the literature and report that biased SVM gives superior results. It is easy to

hypothesize that the improved results of biased SVM come from the existence

of a clear objective function during the optimization procedure.

We test this conjecture by measuring the performance of the biased SVM

in a fully-supervised setting against the two-step semi-supervised algorithm,

Percolator, using a target-decoy search strategy (see section 2.3.2). For this

experiment, we use a collection of spectra derived via microcapillary liquid

chromatography MS/MS of a yeast whole cell lysate. These spectra were

searched using SEQUEST [Eng et al., 1994] against one target database and

two independently shuffled decoy databases, producing a collection of peptide-

spectrum matches. For our experiments, we use 17- and 37-feature represen-

tations for peptide-spectrum matches given in Table 3.1. For each ranking of

target peptide-spectrum matches, we use the corresponding collection of decoy

peptide-spectrum matches to estimate q values (Section 2.3.3).

Our goal is to correctly identify as many target peptide-spectrum matches

as possible for a given q value threshold. Therefore, in Figure 3.2, we plot

the number of identified target peptide-spectrum matches as a function of the

q value threshold. To ensure a valid experiment, we split the target and decoy

peptide-spectrum matches into two equal parts. We train on the data set

49

composed of the first half of positives and negatives, and we use the second

half of the data as a testing set. The q value estimates are derived from the test

set, not the training set. This approach is more rigorous than the methodology

employed in Käll et al. [2007], in which the positive examples were used both

for training and testing. However, the similarity between Figure 3.2(A) and

(B) indicates that over-fitting is not occurring. Nonetheless, in subsequent

experiments, we retain a full separation of the training and testing sets.

Figure 3.2 shows that the conclusions by [Liu et al., 2003] that biased SVM

performs better than all the two-step algorithms do not hold for mass spec-

trometry data sets, since the two-step algorithm, Percolator, performs better

than the SVM classifier. We hypothesize that the data set is too noisy for the

SVM to handle: we expect 50–90% incorrect (negative) examples among the

matches to the target database. Therefore, to switch to the fully-supervised

setting, we would like to define a robust loss function capable of handling high

levels of noise in the data.

3.3.2 Choosing Loss Functions in Fully Supervised Setting Given

a set of examples (PSMs) (x1, ...xn) and corresponding labels (y1, ...yn), the

50

(A) Yeast trypsin trainset (B) Yeast trypsin testset

0 0.02 0.04 0.06 0.08 0.1

2000

3000

4000

5000

6000

7000

q−value

N
um

be
r

of
 u

ni
qu

e
pe

pt
id

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
SVM 17 features
SVM 37 features

0 0.02 0.04 0.06 0.08 0.1

2000

3000

4000

5000

6000

7000

q−value

N
um

be
r

of
 u

ni
qu

e
pe

pt
id

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
SVM 17 features
SVM 37 features

Figure 3.2: Comparison Between Percolator and a Linear SVM. Each

panel plots the number of distinct peptides as a function of q value. The series

correspond to two different algorithms, including variants of each that use 17

features and 37 features (see table 3.1).

51

goal is to find a discriminant function f(x), such that

f(xi) > 0 if yi = 1

f(xi) < 0 if yi = −1.

To find f(x) we first choose a parametrized family of functions and then search

for the function in the family that best fits the empirical data. The quality

of the fit is measured using a loss function L(f(x), y), which quantifies the

discrepancy between the values of f(x) and the labels y.

Initially, we consider the family of discriminant functions that are imple-

mented by a linear model:

f(x) =
∑
i

wixi + b (3.9)

The possible choices of weights define the members of the family of discrimi-

nant functions.

To find the function f(x) that best minimizes the loss L, we choose to

use gradient descent, so the loss function itself must be differentiable. This

requirement prevents us from simply counting the number of mistakes (misla-

beled examples), which is called the zero-one loss. Typical differentiable loss

functions include the squared loss, often used in neural networks [LeCun et al.,

1998], the hinge loss, which is used in support vector machines [Cortes and

Vapnik, 1995], and the sigmoid loss. These loss functions are illustrated in

52

−5 0 5
0

5

10

15

20

25

y−f(x)

||y
−

f(
x)

||2

−5 0 5
0

1

2

3

4

5

6

yf(x)

m
ax

(0
,1

−
yf

(x
))

−5 0 5
0

0.2

0.4

0.6

0.8

1

yf(x)

1/
(1

+
ex

p(
−

yf
(x

))
)

Figure 3.3: Three Types of Loss Function. Each panel plots the loss

as a function of the difference in the true and predicted label. The squared

loss L(f(x), y) = (f(x) − y)2 is often used in regression problems, but also

in classification [LeCun et al., 1998]. The hinge loss L(f(x), y) = max(0, 1 −

yf(x)) is used as a convex approximation to the zero-one loss in support vector

machines [Cortes and Vapnik, 1995]. The sigmoid loss L(f(x), y) = 1/(1 +

eyf(x)) is perhaps less commonly used, but is discussed in Mason et al. [2000],

Shen et al. [2003].

53

Figure 3.3.

In general, choosing an appropriate loss function is critical to achieving

good performance. Insight into choosing the loss function comes from the

problem domain. In the current setting, we can safely assume that a signifi-

cant proportion of the peptide-spectrum matches produced by a given search

algorithm are incorrect, either because the score function used to identify

peptide-spectrum matches failed to accurately identify the correct peptide, or

because the spectrum corresponds to a peptide not in the given database, to a

peptide with post-translational modifications, to a heterogeneous population

of peptides, or to non-peptide contaminants. Therefore, in this scenario, a

desirable loss function should be robust with respect to the multiple false pos-

itives in the data. In other words, a desirable loss function will not strongly

penalize misclassified examples if they are too far away from the separating

hyperplane. Considering the loss functions in Figure 3.3, the sigmoid loss is

the only function with the desired property: when yif(x) < −5 the gradient

is close to zero. The squared loss, on the other hand, has a larger gradient for

misclassified examples far from the boundary than for examples close to the

boundary, whereas the hinge loss penalizes examples linearly (it has a constant

gradient if an example is incorrectly classified). We therefore conjecture that

54

the sigmoid loss function given by

L(f(x), y) = 1/(1 + eyf(x)) (3.10)

should work much better than the alternatives.

We use stochastic gradient descent to optimize this loss function. We

update the parameters wk on iteration k as

wk = wk − γ∇wL(f(xk), yk) (3.11)

where γ is the learning rate [LeCun et al., 1998].

3.3.3 Supervised Learning Yields Performance Comparable to Per-

colator Figure 3.4 compares the performance of ranking by XCorr, Percola-

tor and a linear model trained using three different loss functions. As expected,

the sigmoid loss dominates the other two loss functions that we considered,

square loss and hinge loss.

In fact, the linear model with the sigmoid loss achieves almost identical

results to the Percolator algorithm. This concordance can be explained in the

following way. Percolator also uses a linear classifier (a linear SVM) with a

hinge loss function. However, on each iteration only a subset of the positive

examples are used as labeled training data according to the position of the

hyperplane. The rest of the positive examples that have a small value of yif(xi)

55

(A) Trainset (B) Testset

0 0.02 0.04 0.06 0.08 0.1
1000

2000

3000

4000

5000

6000

7000

q−value

N
um

be
r

of
 p

ep
tid

e−
sp

ec
tr

um
 m

at
ch

es
 id

en
tif

ie
d

Square Loss
Hinge Loss
Sigmoid Loss
Percolator
SEQUEST

Figure 3.4: Comparison of Loss Functions. Each panel plots the number

of accepted peptide-spectrum matches for the yeast (A) training set and (B)

test set as a function of the q value threshold. Each series corresponds to one

of the three loss functions shown in Figure 3.3, with series for Percolator and

SEQUEST included for comparison.

56

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

z

H
1

−3 −2 s=−1 0 1 2 3
−3

−2

−1

0

1

2

3

4

z

R
−

1

Figure 3.5: “Cutting” the Hinge Loss Makes a Sigmoid-like Loss

Called the Ramp Loss. Making the hinge loss have zero gradient when

z = yif(x) < s for some chosen value s effectively makes a piece-wise linear

version of a sigmoid function.

(i.e. are misclassified and are found far away from the decision boundary) are

ignored during training. Consequently, one can say that their gradient is

zero; hence, the hinge loss function is “cut” at a certain point so that it no

longer linearly penalizes mistakes beyond this point, as shown in Figure 3.5.

A cut hinge loss is effectively a piece-wise linear version of a sigmoid function.

Indeed, such a cut hinge loss has been used before and is referred to as a

ramp loss [Collobert et al., 2006]. By using a sigmoid loss function, we have

thus developed a method that explains the heuristic choices of the Percolator

algorithm but instead implements a direct, intuitive objective function.

57

3.4 Conclusion

This chapter considers the verification of the quality of the peptide-spectrum

matches in the context of learning with labeled examples of a single class and

unlabeled examples. It argues that some of the state-of-the-art algorithms

developed in the mass spectrometry setting follow a widely-used two-step ap-

proach: 1) identifying a set of reliable examples of the second class; 2) building

a series of classifiers in the standard semi-supervised setting, now using the ex-

amples of the first class and the reliable examples of the second class as a small

labeled set and leaving the rest of the examples unlabeled.

We argue that both stages in the two-step formulation are ill-posed prob-

lems. Since the unlabeled set may contain examples of many different classes

other than the first class, the resulting reliable examples of the second class

will heavily depend on the specific algorithm used for the purpose. Similarly,

the heterogeneous composition of the unlabeled set may interfere with the sec-

ond stage of building a series of classifiers, since it introduces high amounts of

noise that may interfere with learning.

In this chapter, we advocate considering this problem in a fully-supervised

setting, where all the unlabeled examples receive the labels of the second

class. An important benefit of using a fully-supervised approach is that it

allows to define a clear, intuitive objective function whose minimization is

58

known to converge. However, we discover that the objective function must be

chosen such that it is robust to high amounts of noise in the data and does

not penalize very strongly the misclassified examples found far from decision

boundary during training. Furthermore, the resulting classifier can be trained

with tractable nonlinear models. This property is used in the next chapter,

where we develop an algorithm to optimize a set of q-value thresholds of choice.

59

Chapter 4

Ranking

The approaches mentioned in the previous chapter search for a discriminant

function that makes the minimum number of classification errors on the whole

data set, while the ultimate goal of the analysis is to rank only the examples in

the vicinity of a single (or several) q-value thresholds specified by a user. This

latter task is equivalent to optimizing a part of the ROC curve corresponding

to the points close to the q-value threshold of interest.

Figure 4.1 shows two possible ROC curves corresponding to different clas-

sifiers. Both are feasible since they satisfy the monotonicity constraint: the

number of true positives does not decrease as the number of false positives

increases. If a target q-value threshold is chosen, it defines a line given by

q = PFP/PTP on the same graph. While ROC curve B may correspond to a

60

���

���

� �

�

�

�

Figure 4.1: Optimal ROC Curve for Q-value Threshold Optimization.

While ROC curve B may reflect better ranking performance of a classifier on

an entire data set, ROC curve A is more desirable as an output of a q-value

optimization procedure. ROC curve A crosses the line defined by the specified

q-value threshold at a point that will give more true positives with the same

statistical confidence level.

classifier with superior performance on the whole data set, ROC curve A is

more optimal for the final goal, since it will give more positives at the specified

q-value threshold. In the current work, we propose a family of loss functions

that are based on ordered weighted average (OWA) operators [Yager, 1988,

Usunier et al., 2009] and that are designed to allow directed optimization of

a part of an ROC curve. We then describe a method, Q-ranker, for directly

optimizing the number of identified peptide-spectrum matches at a specified

61

q value threshold. The ability to specify a desired statistical confidence thresh-

old a priori is useful in practice and leads to significant improvement in the

results over the algorithms that optimize the whole area under the ROC curve.

4.1 Previous Work: Review

4.1.1 Optimizing Area Under the ROC Curve A standard formula-

tion for solving the ranking problem is the ranking SVM [Herbrich et al., 1999,

Joachims, 2002], which can be stated as follows:

min||w||2 (4.1)

subject to

w>xi ≥ w>xj + 1, if yi = 1 and yj = −1 (4.2)

This algorithm re-orders the examples so that larger values of w>x correspond

to positive examples. Note that, compared to the classification problem, this

formulation no longer has a threshold b, because a class label is no longer

predicted, only an ordering.

Equivalently, we can rewrite this objective function as

∀i, j : yi = 1, yj = −1

min[||w||2 + C ∗
Np∑
i=1

Nn∑
j=1

max(0, 1− (f(xi)− f(xj)))] (4.3)

62

where C is a parameter that can be chosen by cross-validation. This ranking

formulation is equivalent to optimizing the area under the receiver operating

characteristic (ROC) curve [Hanley and McNeil, 1982], and hence would op-

timize all q values at once. The optimization tries to satisfy every pairwise

ordering constraint. Again, because we expect 50–90% of the positive exam-

ples to be false positives, this objective function will pay too much attention

to these examples.

If optimization of only a certain q value is desired, then reordering of ex-

amples far beyond the q value threshold point on either side of the boundary

will not have an effect on the q value of interest. It is more efficient to focus on

a subset of examples in the vicinity of the q value cut-off and seek to re-order

the examples specifically in this region.

Therefore, in the remainder of this section we focus on review of three

different approaches to optimizing parts of the ranked lists generated by sorting

examples based on the discriminant function of a classifier or, equivalently,

parts of ROC curves.

4.1.2 OWA-based Optimization Usunier et al. [2009] aim to address

tasks that require ranked lists with high precision at the top of the list. For

this purpose, they propose to optimize a class of loss functions based on an

63

ordered weighted average (OWA) operators [Yager, 1988] as an alternative

to the widely accepted pairwise loss which represents the mean over all the

incorrectly ranked pairs [Herbrich et al., 1999, Joachims, 2002].

Let α = (α1, ..., αn) be a sequence of n non-negative numbers such that∑n
j=1 αj = 1. The ordered weighted average (OWA) operator owaα associated

to α : Rn → R is defined as:

∀t = (t1, ..., tn) ∈ Rn, owaα(t) =
n∑
j=1

αjtσ(j) (4.4)

where σ ∈ Σn is a permutation of 1..n such that ∀j, tσ(j) ≥ tσ(j+1). An OWA

operator makes a weighted sum of tjs, such that the weight given to tj depends

on the position of tj in the list tσ(1) ≥ tσ(2) ≥ .. ≥ tσ(n). The max and mean

are special cases of OWA operators: for the max, set α1 = 1 and αj = 0 for

j > 1; for mean, set αj = 1
n

for all j.

The family of proposed ranking functions is defined as follows. Let αn ∈

[0, 1] be OWA weights complying with the condition above that
∑n

j=1 αj = 1

and, in addition, be non-increasing, α1 ≥ α2 ≥ .. ≥ αn ≥ 0. Given a set of

examples X = {x1..xN} and a vector of labels y, suppose that among these

examples there are Np positives x+
1 ...x

+
Np

and Nn negatives x−1 ...x
−
Nn

.

Define the rank of an observation x+ of the positive class in terms of all

64

the negative examples x−1 ...x
−
Nn

as

rank(x+) =
∑

j=1...Nn

I(f(x+ ≤ f(x−j)) (4.5)

where I is an indicator function. The rank of a positive example is the number

of negatives that scored above it in the ranked list.

The ranking error of a real-valued function f on all the positive examples

x+
1 ...x

+
Np

is then defined as

err(f,X ,y) =
1

Np

∑
i=1...Np

ΦNn(rank(x+
i)) (4.6)

where the function Φn(k), ∀k ∈ 0...n, is given by

Φn(k) =
k∑
j=1

αj. (4.7)

The function Φn(k) is an OWA operator applied to a vector z ∈ RNn with

entries zj = I(f(x+ ≤ f(x−j)), where x+ is some positive example, and x−j ,

∀j ∈ Nn are negative examples.

The claim is that using this function, it is possible to define errors that

focus more or less on the top of the list, since the penalty incurred by losing

in rank is Φn(k + 1) − Φn(k) = αk+1. However, we observe that the general

tendency of this class of ranking functions is to put all the positive examples

before all the negative examples in the ranking.

We hypothesize that the family of ranking functions defined above may not

have the desired property for noisy data sets: it does not allow to focus on a

65

particular part of the training set and to ignore or penalize less severely the

misclassified examples found far from the decision boundary. It will penalize

the misclassified examples either progressively or equally as they become more

distant from the decision boundary, depending on the choice of α.

4.1.3 ROC Optimization at a Single Point Mozer et al. [2002] pro-

pose several algorithmic alternatives to the problem that asks the classifier to

achieve a user-specified correct acceptance rate (CA rate), correct rejection

rate (CR rate) or both. This is equivalent to seeking to optimize a single point

on the ROC curve, since PCA is the same as the probability of true positives,

PTP , and the probability of false positives is given by PFP = 1−PCR. That is,

the task dictates finding a classifier with an ROC curve that contains a speci-

fied point (or a point optimally close to the specified one), possibly sacrificing

the ranking performance on the whole set.

The first algorithm involves training a series of classifiers, attempting to

achieve better CA and CR rates on each subsequent classifier (see figure 4.2A).

The strategy is to focus on the examples that lie between the thresholds ρCA

and ρCR corresponding to the specified values of CA and CR rates on the ROC

curve produced by the nth classifier; this is termed the emphasis approach.

The algorithm implementation defines a weighting for each example i based on

66

A) B)

���

���

� �

�

�

�

���

���

� �

�

�

�

Figure 4.2: Optimization of a Single Point on the ROC Curve A) On

ROC curve B, the target values of ρCA and ρCR correspond to two distinct

points on the curve. The goal of the algorithms in [Mozer et al., 2002] is to

find a classifier producing ROC curve A such that the target values ρCA and

ρCR correspond to a single point on the curve. The first family of algorithms

emphasizes the examples lying between the two points on the ROC curve

B to arrive to a classifier with ROC curve A. (Alternatively it de-emphasizes

irrelevant examples.) B) The second family of algorithms defines a constrained

optimization problem which maximizes the correct rejection (CR) rate while

maintaining the correct acceptance rate (CA) fixed to ρCA, for example.

67

the nth training classifier, λni . For the first classifier, λ1
i = 1. For subsequent

classifiers, λn+1
i = λni if example i is not in the region of emphasis, or λn+1

i =

κeλ
n
i otherwise, where κe > 1. In the deemphasis version of this algorithm,

again a series of classifiers are trained, but when training classifier n+ 1, less

weight is placed on the examples whose correct classification is unnecessary to

achieve the target CA and CR rates.

A different approach proposes to maximize the correct rejection (CR) rate

while maintaining the correct acceptance rate (CA) fixed to ρCA (see figure

4.2B). The CA and CR rates can be approximated with smooth differentiable

functions:

CA(w, t) =
1

|P |
∑
i∈P

σβ(f(xi,w − t)), (4.8)

CR(w, t) =
1

|N |
∑
i∈N

σβ(t− f(xi,w)) (4.9)

where P is the set of positives, N is the set of negatives and σβ is a sigmoid

function with scaling parameter β:

σβ(y) = (1 + e−βy)−1

which approximates the indicator variable I(f(xi,w − t) > 0).

Then the optimization problem is formulated such that CA is a constraint

and CR is a figure of merit.

maxPCR

68

subject to

PCA ≤ ρCA.

This constrained optimization problem is converted into an unconstrained

problem by Lagrangian multipliers method.

Potentially, this approach can be easily extended to the maximization of

true positives below a q-value threshold. The problem can be re-formulated

such that CR is a constraint and CA is a figure of merit. Since by definition of

q-value, qPTP = PFP , and PCA = PTP , PCR = 1− PFP , the new optimization

problem with constraints is

maxPTP

subject to

PFP ≤ qPTP .

4.1.4 Lambda Rank Burges [2005] and Burges et al. [2006] propose to

define ranking cost function implicitly in terms of its partial derivatives with

respect to each example. The motivation is that most of the ranking metrics

present special challenges during optimization. First, most of them are not

differentiable functions of their arguments and are replaced in practice with

more tractable smooth objective functions which do not adequately approx-

69

imate the final goal. Second, they all depend not just on the output of the

classifier for a single feature vector, but on the outputs of all feature vectors

in the training set.

In this situation, given the ranking produced on the current iteration by

the classifier being trained, it is much easier to specify how to change the

ranking for this particular instance to improve the desired objective. The

much more difficult task is to specify the objective function that would dictate

how to change the order for every possible instance of ranking occurring during

training to improve the desired objective on the next iteration.

Therefore, the approach is to define a loss function implicitly by way of

specifying its partial derivatives with respect to each example based on the

current ordering. In this approach, the gradients of the implicit cost function

C with respect to the score of the example at rank position j are given by

δC

δsj
= −λ(s1, l1, ..., sn, ln)

where s1...sn are the scores of the examples and l1...ln are their labels. Defining

an implicit cost function amounts to choosing suitable values of λj, which

themselves are specified by rules that depend on the ranked order (and scores)

of all the examples in the set.

The following restrictions hold on the choices of λ in order to ensure that

first, the corresponding cost C exists and second, C is convex. The first

70

condition if fulfilled if

δλj
δsk

=
δλk
δsj

,

in other words, the matrix Jjk = δλj/δsk must be symmetric. The second

condition is fulfilled if the Hessian of the cost function C (given by the same

matrix J) is positive semidefinite.

This approach allows to focus only on a certain part of the ranked training

set by steeply discounting the examples that occur low in the ranking and

thereby to optimize only the area under the part of the ROC curve.

4.2 Algorithm for Direct Q-value Optimization: Q-ranker

The LambdaRank algorithm [Burges et al., 2006] defines an implicit loss func-

tion that allows to focus on ranking the pairs of positive-negative examples at

the top of the sorted list during training. In this section, we define a family of

explicit loss functions serving the same objective.

4.2.1 Ordered Weighted Average(OWA) Operator To define the fam-

ily of loss functions, we make use of the Ordered Weighted Averaging (OWA)

operator [Yager, 1988]. Given a set of non-negative weights α such that∑n
j=1 αj = 1, OWA operator associated to α : Rn → R is defined as:

∀t = (t1, ..., tn) ∈ Rn, owaα(t) =
n∑
j=1

αjtσ(j) (4.10)

71

where σ is a permutation of 1..n such that ∀j, tσ(j) ≥ tσ(j+1). An OWA operator

makes a weighted sum of tjs, such that the weight given to tj depends on the

position of tj in the list tσ(1) ≥ tσ(2) ≥ .. ≥ tσ(n).

In particular, we rely on the fact mentioned by Usunier et al. [2009] that

OWA operator with non-increasing weights, α1 ≥ α2 ≥ .. ≥ αn ≥ 0, is a

maximum over all permutations of tjs.

owaα(t) = max
σ∈Σn

n∑
j=1

αjtσ(j) (4.11)

This follow from the rearrangement inequality which states that for every

choice of real numbers

x1 ≥ x2 ≥ ... ≥ xn

and

y1 ≥ y2 ≥ ... ≥ yn

for every permutation σ ∈ Σn, we have

xσ(1)y1 + xσ(2)y2 + ...xσ(n)yn ≤ x1y1 + x2y2 + ...xnyn (4.12)

4.2.2 Loss Function Definition Given a set of examples X = {x1..xN}

and a vector of labels y, let Np and Nn be the number of positive and negative

examples in the set, x+
i and x−j represent ith positive and jth negative example,

Π(n) be the set of all possible permutations of integers 1, ..., n, and let c and

d be sets of non-increasing OWA weights for positive and negative examples.

72

Consider the quantity

max
ν∈Π(Nn)

Nn∑
j=1

dj max(0, 1− (f(x+
i)− f(x−ν(j)))) (4.13)

for any arbitrary positive example i. This formulation is equivalent to OWA

operator applied to a vector z ∈ RNn with entries zj = max(0, 1 − (f(x+
i) −

f(x−ν(j)))), where x+ is some positive example, and x−ν(j), ∀j ∈ Nn are negative

examples.

There can be several permutations ν that maximize the above formula (for

example if some djs are zero), but the permutation that arranges f(x−ν(j)) in

non-increasing order is always one of them. Moreover, this solution is inde-

pendent of the positive example i.

Now for all the positive examples,

E(f,X ,y) = min
σ∈Π(Np)

Np∑
i=1

ci max
ν∈Π(Nn)

Nn∑
j=1

dj max(0, 1− (f(x+
σ(i))− f(x−ν(j))))

(4.14)

The minimum over the permutations σ is reached for the permutation that

orders all the f(x+
σ(i)) in non-increasing order. This solution does not depend

on either j or ν.

Therefore, suppose that permutations σ and ν are chosen such that, given

the current parameters w of the function f , they arrange all f(x+
σ(i)) and all

73

f(x−ν(j)) in non-increasing order. Then the loss function is given by

E(f,X ,y) = min[

Np∑
i=1

Nn∑
j=1

cidj max(0, 1− (f(x+
σ(i))− f(x−ν(j))))] (4.15)

Now by choosing the non-increasing OWA weights c and d, we can select

arbitrary subsets of the best-ranking positives and negatives for training and

minimize E.

The function max(a, b) is differentiable everywhere, except when a = b.

However, stochastic gradient descent optimization will converge. Let L(x+,x−,w)

be

L(x+,x−,w) = max(0, 1− (f(x+)− f(x−))) (4.16)

where w are the parameters of f . Then, define the update of the parameters

wk on iteration k as follows

wk = wk − γH(x+
i ,x

−
j ,w) (4.17)

where γ is the learning rate and

H(x+
i ,x

−
j ,w) = cidj∇wL(x+

i ,x
−
j ,w) (4.18)

if L is differentiable at (x+
i ,x

−
j) and

H(x+
i ,x

−
j ,w) = 0 (4.19)

otherwise [Bottou, 1998].

74

4.2.3 Training Heuristics We introduce the following heuristics in order

to optimize this loss function.

1. Since the loss function associates weights with the position of positives

and negatives in a ranked list, it requires two sorting operations at each

step of the stochastic gradient descent. Instead, we sort the data set

after every epoch consisting of Np +Nn iterations.

2. For a given threshold t with tp and tn positive and negative examples

above it in the ranked list, we set ci = 1/tp for i ≤ tp and ci = 0 for

i > tp; dj are similarly defined in terms of tn. We then try several

different thresholds t and choose the threshold giving the best result for

the q-value of interest.

3. Once the threshold t and c, d are chosen, the loss function dictates

training only with examples that fall within the threshold. Instead, we

start by running the optimization algorithm with sigmoid loss function

described in section 3.3.2. We use the resulting discriminant function

parameters w as initialization each time a new threshold is chosen, as

further described in section 4.2.6.

75

4.2.4 Weight Decay In this work, we use the standard weight decay pro-

cedure, which optimizes the error function:

E ′ = E + µ
1

2

∑
i

w2
i

where w are all the weights of the discriminant function f(x) that we are

attempting to learn, µ is a weight decay parameter, and E is the original error

function given by the equation 4.15. Before final training of the network, we

perform a 3-fold cross-validation procedure to choose the learning rate γ and

the parameter µ.

4.2.5 Use of Non-Linear Models Having established in the previous

chapter that direct classification using a linear model performs as well as Per-

colator, we next consider a nonlinear family of functions implemented by two-

layer neural networks

f(x) =
∑
i

wihi(x), (4.20)

where hk(x) is defined as tanh((wk)>x + bk), and wk and bk index the weight

vector and threshold for the kth hidden unit. Because we are solving a ranking

problem in the nonlinear case, we do not have a final bias output.

We can choose the capacity of our nonlinear family of discriminant func-

tions by increasing or decreasing the number of hidden units of the neural

network. Based on preliminary experiments with the yeast training data set,

76

we chose the first layer to have five linear hidden units.

4.2.6 Algorithm The proposed algorithm is as follows (Algorithm 1). We

first find a general discriminant function f(x) using the classification algorithm

with sigmoid loss described in section 3.3.2. We then specify a q value to be

optimized and focus sequentially on several intervals in the ranked data set

chosen in the vicinity of the specified q value. In the course of training, we

record the best result for the specified q value after each epoch.

The selection of intervals is heuristic and in our case involves defining them

based on the results of the initial sigmoid loss training. We choose a set T of

q value thresholds 0 to 0.1 with a step size of 0.01; they are different from the

target q-values to be optimized and serve to define intervals in the ranked data

set for the algorithm to explore. The interval t to focus on at each cycle is set

to equal twice the number of peptide-spectrum matches up to the threshold

point.

The intervals tp and tn for positive and negative examples respectively

are determined based on the current interval t and are set to include all the

positives and negatives such that f(x+) ranks above t, i.e. rank(f(x+)) < t,

and f(x−) ranks above t, i.e rank(f(x−)) < t).

Q-ranker can be extended trivially to search for optimal solutions to several

77

Algorithm 1 The input variables are the training set X = {x1 . . .xN} of

peptide-spectrum match feature vectors, the corresponding binary labels y,

indicating which examples are targets and which are decoys, the set Q of

specified target q values, the set T of thresholds (or intervals on which the

algorithms focuses during each training cycle) and the number n of training

iterations for each cycle.
1: procedure Q-ranker(X ,y,Q, T , n)

2: w← initialize using sigmoid loss classification (section 3.3.2).

3: for qtarg ∈ Q do

4: for t ∈ T do

5: tp ← |{x ∈ X+|rank(f(x)) < t}|

6: tn ← |{x ∈ X−|rank(f(x)) < t}|

7: for i← 1 . . . n do

8: x+ ← chooseRandom(X+, tp) . Random pair of examples.

9: x− ← chooseRandom(X−, tn)

10: w← gradientStep(w, f(x+), f(x−)) . Update the weights.

11: end for

12: end for

13: Record best result on qtarg

14: end for

15: return (best w)

16: end procedure

78

q values at once by recording the best network for each of the specified q values

after each epoch. In all the experimental runs presented below, the set of target

q-values Q also serves as the set the attempted thresholds T , however, the two

sets can be different.

Q-ranker generalizes the ranking SVM formulation in two ways: (i) this

formulation is nonlinear (but does not use kernels); and (ii) if the interval t is

very large, then the algorithms are equivalent, but as the interval t is reduced,

our algorithm begins to focus on given q values.

4.2.7 Comparison of Algorithms Across Multiple Data Sets

Data sets We used four data sets previously described in Käll et al. [2007]

to test our algorithms. The first is a yeast data set containing 69,705 target

peptide-spectrum matches and twice that number of decoy peptide-spectrum

matches. These data were acquired from a tryptic digest of an unfractionated

yeast lysate and analyzed using a four-hour reverse phase separation. Through-

out this work, peptides were assigned to spectra using SEQUEST database

search with no enzyme specificity and with no amino acid modifications en-

abled. The next two data sets were derived from the same yeast lysate, but

treated by different proteolytic enzymes: elastase and chymotrypsin. These

data sets contain 57,860 and 60,217 target peptide-spectrum respectively and

79

twice that number of decoy peptide-spectrum matches. The final data set

was derived from a C. elegans lysate proteolytically digested with trypsin and

processed analogously to the yeast data sets.

Results To compare the performance of Q-ranker, Percolator and Peptide-

Prophet [Keller et al., 2002], we provided the same set of target and decoy

peptide-spectrum matches to each algorithm. For Percolator and Q-ranker,

we use 50% of the peptide-spectrum matches for training and 50% for testing.

PeptideProphet software does not provide the ability to learn model parame-

ters on one set of data and apply the learned model to the second; therefore,

PeptideProphet results are generated by applying the algorithm to the entire

data set. This difference gives an advantage to PeptideProphet because that

algorithm learns its model from twice as much data and is not penalized for

over-fitting.

We report results using either 17 or 37 features, as described in Table 3.1,

for both Percolator and Q-Ranker. Figures 4.3, 4.4 show the results of this

experiment, conducted using the four data sets described in Section 4.2.7.

Across the four data sets, Q-ranker consistently outperforms PeptideProphet

across all q value thresholds. At q values of 0.05 or 0.10 and using 17 features,

Q-ranker yields more accepted target peptide-spectrum matches than either

80

Percolator or PeptideProphet, whereas Percolator performs slightly better for

q < 0.01.

Theoretically, a nonlinear network could yield a larger benefit than a linear

model when the input feature space is increased, as long as the model does

not overfit. We therefore experimented with extending the peptide-spectrum

match feature vectors, adding 20 new features corresponding to the counts

of amino acids in the peptide. The results of running Q-ranker with these

extended vectors are shown in Figures 4.3 and 4.4, labeled “Q-ranker 37”.

Increasing the number of features gives a larger boost to the performance of

the nonlinear version of Q-ranker. After this extension, Q-ranker identifies

more spectra than either of the other algorithms, even at q < 0.01.

Therefore, we observe relatively large benefit provided by amino acid com-

position features. We hypothesize that this information allows the classifier to

learn to expect certain characteristics of a spectrum. For example, the pres-

ence of a proline implies a pair of high-intensity peaks corresponding to the

cleavage N-terminal to the proline; the presence of many basic residues leads

to more +2 ions, and the presence of many hydrophobic residues leads to more

singly charged +1 ions [Klammer et al., 2008]. However, previous experiments

with Percolator using amino acid composition features did not yield significant

performance improvements. The difference, in the current setting, is that we

81

Yeast trypsin trn Worm trypsin trn

0 0.02 0.04 0.06 0.08 0.1
2000

3000

4000

5000

6000

7000

8000

q−value

N
um

be
r

of
 p

ep
tid

e−
sp

ec
tr

um
 m

at
ch

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−rankder 37 features
Peptide Prophet Parametric

0 0.02 0.04 0.06 0.08 0.1
2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

q−value
N

um
be

r
of

 p
ep

tid
e−

sp
ec

tr
um

 m
at

ch
es

 id
en

tif
ie

d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−rankder 37 features
Peptide Prophet Parametric

Yeast elastase trn Yeast chymotrypsin trn

0 0.02 0.04 0.06 0.08 0.1
500

1000

1500

2000

2500

q−value

N
um

be
r

of
 p

ep
tid

e−
sp

ec
tr

um
 m

at
ch

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−rankder 37 features
Peptide Prophet Parametric

0 0.02 0.04 0.06 0.08 0.1
500

1000

1500

2000

2500

3000

3500

q−value

N
um

be
r

of
 p

ep
tid

e−
sp

ec
tr

um
 m

at
ch

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−rankder 37 features
Peptide Prophet Parametric

Figure 4.3: Comparison of PeptideProphet, Percolator and Q-ranker

on Training Set. Each panel plots the number of accepted target peptide-

spectrum matches as a function of q value on the training (trn) set. The

series correspond to the three different algorithms, including two variants of

Q-ranker that use 17 features and 37 features.

82

Yeast trypsin tst Worm trypsin tst

0 0.02 0.04 0.06 0.08 0.1
2000

3000

4000

5000

6000

7000

8000

q−value

N
um

be
r

of
 p

ep
tid

e−
sp

ec
tr

um
 m

at
ch

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−rankder 37 features
Peptide Prophet Parametric

0 0.02 0.04 0.06 0.08 0.1
2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

q−value
N

um
be

r
of

 p
ep

tid
e−

sp
ec

tr
um

 m
at

ch
es

 id
en

tif
ie

d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−rankder 37 features
Peptide Prophet Parametric

Yeast elastase tst Yeast chymotrypsin tst

0 0.02 0.04 0.06 0.08 0.1

600

800

1000

1200

1400

1600

1800

2000

2200

2400

q−value

N
um

be
r

of
 p

ep
tid

e−
sp

ec
tr

um
 m

at
ch

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−rankder 37 features
Peptide Prophet Parametric

0 0.02 0.04 0.06 0.08 0.1
500

1000

1500

2000

2500

3000

q−value

N
um

be
r

of
 p

ep
tid

e−
sp

ec
tr

um
 m

at
ch

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−rankder 37 features
Peptide Prophet Parametric

Figure 4.4: Comparison of PeptideProphet, Percolator and Q-ranker

on Testing Set. Each panel plots the number of accepted target peptide-

spectrum matches as a function of q value on the testing (tst) set. The series

correspond to the three different algorithms, including two variants of Q-ranker

that use 17 features and 37 features.

83

(A) Sigmoid loss classification (B) Q-ranker

0 50 100 150 200 250 300
1000

2000

3000

4000

5000

6000

7000

Iteration

N
um

be
r

of
 p

ep
tid

e−
sp

ec
tr

um
 m

at
ch

es
 id

en
tif

ie
d

q−value 0.0075
q−value 0.01
q−value 0.015
q−value 0.02
q−value 0.03

0 50 100 150 200 250 300
6200

6400

6600

6800

7000

7200

7400

7600

Iteration

N
um

be
r

of
 p

ep
tid

e−
sp

ec
tr

um
 m

at
ch

es
 id

en
tif

ie
d

q−value 0.0075
q−value 0.01
q−value 0.015
q−value 0.02
q−value 0.03

Figure 4.5: Comparison of Training Optimization Methods (Iteration

vs. Error Rate). The Q-ranker optimization starts from the best result of

sigmoid loss optimization achieved during the course of training and continues

for a further 300 iterations. These results are on the training set. Note that for

each q value choice, Q-ranker improves the training error over the best result

from the classification algorithm.

have used a more complex, nonlinear model. In general, a complex model has

more opportunity to improve over a simpler model if the feature space is rich.

Thus, although a simple linear model such as the one in Percolator cannot fully

exploit the richer, 37-dimensional feature space, the nonlinear model can.

Algorithm Indeed Optimizes for the q value of Interest Compared to

the classification approach with sigmoid loss described in the previous chapter,

84

Q-ranker yields more consistent training behavior when observed for any given

q value. To illustrate this phenomenon, we fix the interval t for the Q-ranker

algorithm and measure how it performs on various q-value thresholds in the

course of training. Figure 4.5A shows how the results for different specified

q values change during the course of training with the sigmoid loss classification

model. The number of peptide-spectrum matches over lower q value thresholds

(for example, 0.0075, 0.01) reach their peak early during training and then

become suboptimal, while the best results for higher q value thresholds take

longer to achieve. This means that during the course of training, different

q value thresholds are being optimized depending on the number of iterations.

In contrast, as shown in Figure 4.5B, the Q-ranker algorithm learns the best

decision boundary for a specified q value threshold and does not substantially

diverge from the best result during further training. This behavior indicates

that the algorithm in fact optimizes the desired quantity.

We further investigated the behavior of Q-ranker by measuring the perfor-

mance of networks trained for a specified q value threshold on other q values.

We focused on specified q values 0.01, 0.05 and 0.1. Table 4.1 shows that,

when all 37 features are employed, a network trained for a specified q value

is consistently better or equal to the performance on this q value, compared

with networks trained for other specified q values.

85

Yeast trypsin trn Worm trypsin trn

0 0.02 0.04 0.06 0.08 0.1

2000

3000

4000

5000

6000

7000

q−value

N
um

be
r

of
 u

ni
qu

e
pe

pt
id

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−ranker 37 features
SVM 17 features

0 0.02 0.04 0.06 0.08 0.1

500

1000

1500

2000

2500

3000

q−value

N
um

be
r

of
 u

ni
qu

e
pe

pt
id

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−ranker 37 features
SVM 17 features

Yeast elastase trn Yeast chymotrypsin trn

0 0.02 0.04 0.06 0.08 0.1

200

400

600

800

1000

1200

1400

1600

q−value

N
um

be
r

of
 u

ni
qu

e
pe

pt
id

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−ranker 37 features
SVM 17 features

0 0.02 0.04 0.06 0.08 0.1

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

q−value

N
um

be
r

of
 u

ni
qu

e
pe

pt
id

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−ranker 37 features
SVM 17 features

Figure 4.6: Comparison of PeptideProphet, Percolator and Q-ranker

on Training Set in Terms of the Number Unique Peptides Identified

Over the Range of Q-values. Each panel plots the number of unique real

database peptides as a function of q value on the training (trn) set. The

series correspond to the three different algorithms, including two variants of

Q-ranker that use 17 features and 37 features.

86

Yeast trypsin tst Worm trypsin tst

0 0.02 0.04 0.06 0.08 0.1
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

q−value

N
um

be
r

of
 u

ni
qu

e
pe

pt
id

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−ranker 37 features
SVM 17 features

0 0.02 0.04 0.06 0.08 0.1

500

1000

1500

2000

2500

3000

q−value

N
um

be
r

of
 u

ni
qu

e
pe

pt
id

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−ranker 37 features
SVM 17 features

Yeast elastase tst Yeast chymotrypsin tst

0 0.02 0.04 0.06 0.08 0.1

200

400

600

800

1000

1200

1400

1600

q−value

N
um

be
r

of
 u

ni
qu

e
pe

pt
id

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−ranker 37 features
SVM 17 features

0 0.02 0.04 0.06 0.08 0.1

200

400

600

800

1000

1200

1400

1600

1800

q−value

N
um

be
r

of
 u

ni
qu

e
pe

pt
id

es
 id

en
tif

ie
d

Percolator 17 features
Percolator 37 features
Q−ranker 17 features
Q−ranker 37 features
SVM 17 features

Figure 4.7: Comparison of PeptideProphet, Percolator and Q-ranker

on Testing Set in Terms of the Number Unique Peptides Identified

Over the Range of Q-values. Each panel plots the number of unique real

database peptides as a function of q value on the testing (tst) sets. The series

correspond to the three different algorithms, including two variants of Q-ranker

that use 17 features and 37 features.

87

Specified Yeast trypsin Worm trypsin Yeast elastase Yeast chymotrypsin

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

0.01 6072 7453 8360 5238 6412 7098 1615 2054 2395 2312 2843 3199

0.05 6032 7501 8426 5238 6419 7047 1615 2140 2561 2302 2844 3198

0.10 6030 7500 8430 5213 6418 7128 1615 2140 2561 2300 2830 3214

Table 4.1: Q-ranker Successfully Optimizes the Specified Q value.

Each entry in the table lists the number of accepted peptide-spectrum matches

at a given q value threshold (column) obtained by Q-ranker with 37 features

when optimizing a specified q value (row). Entries in boldface indicate the

maximum value within each column. Note that, for each data set, all diagonal

entries are in boldface.

So far we have focused on maximizing the number of spectra that had

a correct peptide assigned to them (i.e., the number of accepted peptide-

spectrum matches). It is conceivable that a given algorithm might be biased

in the types of peptides it can identify. In this case, the relative performance

of two peptide identifications could depend on whether we count the number

of accepted peptide-spectrum matches or the number of distinct peptides that

are identified from a set of spectra. Figures 4.6 and 4.7 demonstrate that this

bias is not occurring in our results: the relative performance of the algorithms

that we considered does not change significantly when we count the number

of distinct peptides identified.

88

4.3 Conclusion

Generally speaking, the goal of many tasks associated with the semi-supervised

problems with labeled examples of a single class and unlabeled data is to deter-

mine an accurate ranking on some specific part of the data set. For example,

in information retrieval tasks we prefer ranked lists with high precision at the

top of the list. Similarly, the desired outcome of shotgun proteomics experi-

ments is to identify as many peptide-spectrum matches as possible at a given

q-value threshold. However, all the algorithms reviewed in section 3.1, de-

signed mostly for document retrieval and web search applications, as well as

existing algorithms designed for proteomics settings (reviewed in section 3.2)

attempt to solve a classification rather than a ranking problem.

In this chapter, we directly address the problem of ranking in the vicin-

ity of a q-value threshold of interest. For this purpose, we define a family of

mostly differentiable ranking loss functions based on Ordered Weighted Aver-

age (OWA) operator. We use the observation made in the previous chapter

that a loss function applied to data sets with high amounts of noise should not

severely penalize examples that are far from the decision boundary. We sub-

sequently define a loss function that permits selective ranking of only some of

the positive-negative pairs at the top of the sorted list, rather than satisfying

all the pairwise constraints in a given data set. The experiments presented

89

in this chapter show that reformulating the problem as a ranking task, rather

than as a classification task, and optimizing for a q value threshold of interest

leads to better performance.

90

Chapter 5

Protein Identification

Typically, the problem of identifying proteins from a collection of tandem mass

spectra involves assigning spectra to peptides and then inferring the protein

set from the resulting collection of peptide-spectrum matches (PSMs).

Many algorithms designed for solving the second part, inferring the set of

proteins from the peptide-spectrum matches, break up the process into two

stages [Nesvizhskii et al., 2003, Alves et al., 2007, Zhang et al., 2007, Li et al.,

2008]. First, these methods attempt to assess the quality of the peptide-

spectrum matches, assigning to each match a score that measures its chance

of being correct. This step sometimes includes filtering the peptide-spectrum

matches to retain only those believed to be correct up to a given error rate.

Next, these methods infer the protein set from the peptides obtained from the

91

A) B)

Peptides

Proteins

PSMs

Peptides
PSMs

Peptides

Proteins

Figure 5.1: Difference Between State-of-the-art Algorithms (A), and

the Algorithm Proposed in this chapter (B). Most algorithms infer pro-

teins from peptide-spectrum matches in two separate stages: PSM verification

and then protein reconstruction. This chapter proposes to accomplish both

tasks simultaneously by optimization at the protein level.

previous step (see figure 5.1A).

When the goal of a shotgun proteomics experiment is to identify proteins,

rather than peptides, we propose to skip the intermediate peptide identification

step entirely, moving directly from a collection of peptide-spectrum matches

to a predicted set of proteins (see figure 5.1B). We use a target-decoy search

strategy, searching each spectrum against a database of real (target) proteins

92

and shuffled (decoy) proteins. We then train a supervised learning algorithm

to induce a ranking on the combined set of target and decoy proteins, learning

the parameters of the model so that the top of the ranked list is enriched with

target proteins.

The advantage of this approach is that we can directly optimize the de-

sired quantity—for example, the number of proteins identified at a specified

error rate. The alternative approach first solves a related problem, fitting a

statistical model to the peptide-spectrum match and then to protein data sets.

This latter approach may be more challenging and typically requires making

assumptions about peptide-spectrum match and protein distributions that are

not known and that may vary substantially between data sets. In addition,

our algorithm does not filter any peptide-spectrum matches at any stage of

the analysis, with the motivation that even low scoring PSMs can carry in-

formation about a protein’s presence when considered in the context of other

PSMs belonging to this protein.

5.1 Previous Work

Here we describe the algorithms that are used as benchmarks for the results

presented in this chapter. These algorithms take as input peptide-spectrum

matches and the scores, derived from algorithms such as PeptideProphet (see

93

description in section 3.2), indicating the correctness of these matches. The

goal of these algorithms is to resolve the ambiguities of shared peptides and

to produce a minimal protein list accounting for the observed spectra. The

approach to this problem (i.e. parsimony rules) vary in stringency among

algorithms. ProteinProphet [Nesvizhskii et al., 2003] assigns partial weight of

shared peptides to proteins containing them. IDPicker [Zhang et al., 2007]

uses more stringent parsimony rules stating that only a single protein will get

the full weight of each shared peptide.

5.1.1 ProteinProphet ProteinProphet [Nesvizhskii et al., 2003] computes

probabilities that each protein was present in the sample based on the pep-

tides assigned to the spectra using each peptide as independent evidence. The

input to the algorithm is a list of peptides along with probabilities that they

were correctly identified; these probabilities are produced by the companion

program PeptideProphet.

The probability Pr that a protein r was present is given in terms of the

set of identified peptides er = e1...eNr contained in this protein’s sequence and

the probabilities of these peptides p(e1)...p(eNe). The algorithm computes the

probability that at least one peptide assignment is correct:

Pr = 1−
∏
i

(1− p(ei))

94

As written, this formula ignores the ambiguities arising from proteins sharing

peptides, since it assigns a full weight of each peptide to every protein con-

taining it. Therefore, for every peptide ei that belongs to a set of K proteins

(R = r1...rK), the algorithm introduces a set of weights wi, 0 ≤ wik ≤ 1 that

indicate what portion of the peptide will contribute to the score of the kth

protein in this set:

wik =
Prk∑K
j Prj

Based on this formulation, the protein with the highest probability Prk among

the K other members of the set will get the biggest contribution of the peptide

ei to its score.

Then the probability of a protein Pr, taking into account that each of its

peptides could belong to other proteins is given by

Pr = 1−
∏
i

(1− wirp(ei))

The model learns the peptide weights iteratively using an EM-like algorithm:

1) peptides are apportioned to proteins using current weights and protein

probabilities are determined; 2) new sets of weights are re-calculated.

5.1.2 IDPicker While ProteinProphet assigns peptides partially to the

proteins containing them, IDPicker uses more conservative strategy of assign-

95

a) b)

c) d)

Figure 5.2: Four stages of the IDPicker Algorithm. Zhang et al. [2007]:

initialize, collapse, separate, reduce.

ing the full peptide to a single protein containing it. Therefore, it produces the

minimal list of proteins which can be accounted for by the peptides identified

by selection of the higher quality peptide-spectrum matches.

IDPicker models the protein-peptide relationship as a bipartite graph and

uses graph algorithms to identify protein clusters with shared peptides and

to derive the minimal list of proteins. The algorithm proceeds in four stages

illustrated on figure 5.2: initialize, collapse, separate and reduce.

1. The peptide identification data is represented as a bipartite graph that

includes 2 sets of vertices: protein vertices and peptide vertices. There

is an edge between protein and peptide vertices if the peptide sequence

could be matched to the protein sequence.

96

2. Those proteins that are connected to exactly the same peptide vertices

are indiscernible from each other and are collapsed to form meta-proteins.

3. The next step finds independent proteins which do not have any peptides

in common. This is accomplished by depth-first search to find connected

components. The result is a set of independent subgraphs.

4. To create a list of meta-proteins that are necessary to explain the ob-

served spectra, the algorithms generates a minimal set of meta-proteins

for each cluster using greedy set-cover algorithm. At each stage, it itera-

tively chooses a meta-protein vertex that connects to the largest number

of peptide vertices.

5.2 The Algorithm: Protein Q-ranker

In this section, we address directly the problem of identifying a set of proteins

that can explain the observed spectra by defining a model of proteins based

on their peptide-spectrum matches. The main features of the model are the

following. The model consists of three score functions, defined with respect

to peptide-spectrum matches (PSMs), peptides and proteins (see Figure 5.3).

The peptide-spectrum match score function is a nonlinear function of the 17

input features; the function is defined by a two-layer neural network with three

97

PSMs

Peptides

Proteins

Figure 5.3: Protein Identification and Scoring Functions. The figure

illustrates the association between different levels of protein identification task

and the scoring functions assigned to them by the algorithm proposed in this

chapter.

hidden units. The score function of a peptide is the maximum score of the

matches associated with it, and the score function of a protein is a normalized

sum of its peptide scores. The normalization factor |N(r)| is defined as the

number of peptides that occur in protein r, assuming enzymatic cleavages. The

method uses the theoretical number of peptides, rather than the number of

observed peptides, because the theoretical peptide number implicitly supplies

an additional piece of information: how many peptides appear in the protein

but have not been matched by any spectrum. This information allows to

penalize longer proteins, which are more likely to receive random matches

during the database search procedure.

98

We then learn a protein score function that performs well on the target-

decoy training task using a simple iterative update procedure (Algorithm 2).

During training, the weights of the neural network that define the peptide-

spectrum match score function are optimized, because the PSM score is part of

the protein score calculation. These weights are the only adjustable parameters

of the learning task.

We will now discuss the model in more detail.

5.2.1 Input We are given a set of observed spectra S = {s1, . . . , sNS}

and a database D of target and decoy proteins (mixture) against which we

perform a database search. The search produces a set of peptide-spectrum

matches (PSMs). Denoting the set of peptides as E = e1, . . . , eNE , the peptide-

spectrum matches M are written as pairs (ej, sk) ∈ M, each representing a

match of peptide j to spectrum k. Note that, in general, we may opt to

retain the single best-scoring peptide for each spectrum, or a small constant

number of top-ranked matches per spectrum. Each of the identified peptides

ek belongs to one or more proteins, leading to a set of proteins R = r1, . . . , rNR

that cover the set of peptides. R includes every protein in D that has at least

one identified peptide (i.e. the maximal set of proteins that can explain the

observed spectra).

99

For our algorithm, we define a feature representation x ∈ Rd for every

peptide-spectrum match pair (e, s). Our particular choice for this feature

representation, which is described in table 5.1, contains a variety of scores of

the quality of the peptide-spectrum match, as well as features that capture

properties of the spectrum and properties of the peptide.

5.2.2 PSM Scoring Function We now define the score of a peptide-

spectrum match to be a parametrized function of its feature vector x. We

choose a family of nonlinear functions given by two-layer neural networks:

f(x) =
HU∑
i=1

wOi hi(x) + b, (5.1)

where wO ∈ RHU are the output layer weights for the HU hidden units, and

hk(x) is the kth hidden unit, defined as:

hk(x) = tanh((wH
k)>x + bk), (5.2)

where wH
k ∈ Rd and bk ∈ R are the weight vector and threshold for the kth

hidden unit. The number of hidden units HU is a hyperparameter that can

be chosen by cross-validation. Throughout this work, we use a fixed value of

3 hidden units. In preliminary experiments, we observed that 3 or 4 hidden

units provided approximately the same performance, whereas using 5 hidden

units led to evidence of over-fitting.

100

5.2.3 Peptide Scoring Function A single peptide can have several spec-

tra matching to it, since during the database search, several spectra can choose

the same peptide as their best match. For each distinct peptide we would like

to rank the likelihood that it has been matched correctly. We define the score

of a peptide as the maximum score assigned to any of its peptide-spectrum

matches:

g(ej) = max
sk:(ej ,sk)∈M

f(xjk) (5.3)

where (ej, sk) ∈M is the set of peptide-spectrum matches assigned to peptide

ej and xjk is the feature representation of the match between peptide ej and

spectrum sk. We take the max over the matches for each peptide because of the

argument presented in [Nesvizhskii et al., 2003] that many spectra matching

the same peptide are not an indication of the correctness of the identification.

5.2.4 Protein Scoring Function Finally, the score of a protein is defined

in terms of the scores of the peptides in that protein as follows:

F (r) =
1

|N(r)|α
∑

e∈N ′(r)

g(e) (5.4)

where N(r) is the set of predicted peptides in protein r, N ′(r) is the set of

peptides in the protein r that were observed during the MS/MS experiment,

and α is a hyperparameter of the model. The set N(r) is created by virtually

digesting the protein database D with the protease used to digest the protein

101

mixture for the mass spectrometry experiment.

The motivation for this protein score function is the following. The sum of

the scores of all the peptides identified during the database search is used to

estimate the accuracy of the protein identification. Dividing by a function of

the predicted number of peptides is designed to correct for the number of the

peptides not identified during the database search. Setting α = 1 penalizes

the failure to observe the predicted peptides linearly, whereas setting α < 1

punishes larger sets of peptides to a lesser degree - for example, this can be

used if not all peptides in a protein are observable. In our results we use the

fixed value α = 0.3, after selecting it in validation experiments.

5.3 Training the Model

5.3.1 Target-Decoy Protein Identification Problem We propose to

use a target-decoy training strategy for proteins. Previously, target-decoy

learning has been employed successfully to discriminate between correct and

incorrect peptide-spectrum matches produced by a database search algorithm

[Käll et al., 2007, Spivak et al., 2009b], but has never been employed at the

protein level.

A database is composed of real (target) and shuffled (decoy) proteins which

are virtually digested into peptides for the purpose of matching spectra to

102

them. We search each spectrum against a database of target peptides and

decoy peptides. The target proteins that contain the matched target peptides

are labeled as positive examples for training, decoy proteins containing the

matched decoy peptides are labeled as negative examples.

The target-decoy strategy allows to re-formulate the original problem in

a more tractable way. Originally, the goal is to determine the correct pro-

teins among all the proteins identified by the matches to real sequences in the

database. Instead, we solve a proxy problem of discriminating between target

and decoy protein matches. Given a set of proteins r1...rn and correspond-

ing labels y1...yn, the goal is to choose the parameters w of the discriminant

function F (r), such that

F (ri) > F (rj) + 1 if yi = 1 and yj = −1.

Checking that the Assumptions Behind Target-Decoy Strategy Ap-

ply. In general, using the target/decoy distinction as a proxy for the cor-

rect/incorrect distinction depends upon the assumption that incorrect matches

to the real sequences in the database are distributed similarly to the matches

to the shuffled database sequences (which are, by definition, incorrect). There-

fore, we do not want to introduce any bias in the decoy matches that would

make them trivially distinguishable from all the real matches.

103

We control for this effect by using target-decoy competition [Elias and Gygi,

2007]. Elias et al. paper argues against matching each spectrum separately to

a target and then a decoy database. Instead, it advocates using a concatenated

target-decoy database for search. It argues that without competition, decoy

sequences that partially match to high quality MS/MS spectra may often

receive elevated scores relative to other top-ranked hits, suggesting that high

filtering thresholds need to be applied.

In addition, they believe that in the situation when target and decoy

databases are composed such that they generate different distributions for a

certain feature (for example, XCorr), regardless of the quality of the spectrum

being matched, separate matching will necessarily introduce bias. Concate-

nating these two databases will eliminate this problem.

Therefore, we search each spectrum against a concatenated target and

decoy database and then select N top-scoring peptide-spectrum matches for

each spectrum (N is specified by the user, we chose 3), irrespective of whether

the peptides are targets or decoys.

It is also possible to introduce a bias making targets and decoys trivially

distinguishable at the protein level, as was noted in [Käll et al., 2007]. We

explicitly check that this is not happening by plotting the histogram of pep-

tide counts in target and decoy proteins. Figure 5.4 verifies that the peptide

104

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281
0

200

400

600

800

1000

1200

1400

1600

1800

Peptide Counts

N
um

be
r

of
 P

ro
te

in
s

Counts of Peptides in Proteins: Predicted

targets
decoys

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281
0

200

400

600

800

1000

1200

Peptide Counts

N
um

be
r

of
 P

ro
te

in
s

Counts of Peptides in Proteins: Predicted

targets
decoys

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281
0

100

200

300

400

500

600

700

800

900

1000

Peptide Counts

N
um

be
r

of
 P

ro
te

in
s

Counts of Peptides in Proteins: Predicted

targets
decoys

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Peptide Counts

N
um

be
r

of
 P

ro
te

in
s

Counts of Peptides in Proteins: Predicted

targets
decoys

Figure 5.4: Peptide Counts in Four Data Sets. Peptide counts in data

sets used for experiments to test the performance of the Protein Q-ranker

algorithm (see description in section 5.4.1).

counts are similarly distributed. This check is crucial for any protein-level

score function. If there is a significant difference in distributions of peptide

counts in target and decoy proteins, they may introduce a bias allowing trivial

separation between target and decoy proteins that does not reflect accurately

the quality of peptide-spectrum matches belonging to them.

105

5.3.2 Loss Function To find the parameters w of the function F (equa-

tion 5.4), we search for the function in the family that best fits the empirical

data. The quality of the fit is measured using a loss function defined in terms

of F , the set of training proteins R and associated labels y. The role of the

loss function is to quantify the discrepancy between the values of F (ri) and

the true labels yi.

Similarly to the problem of peptide-spectrum match verification, the main

goal is to achieve optimal pairwise ranking in the vicinity of a given q-value

threshold. Therefore, we use the pairwise loss function that preferentially

optimizes the performance at the top of the ranked list (see section 4.2.2).

Here we briefly repeat the definition of the loss function from section 4.2.2.

Given a set of protein examples R = {r1..rR} and a vector of labels y, let

Np and Nn be the number of negative and positive examples in the data set,

r+
i and r−j represent ith positive and jth negative protein example, and Π(n)

be a set of all possible permutations of integers 1, ..., n. Suppose that the

permutations σ ∈ Π(n) and ν ∈ Π(n) are such that, given the current weights

w of the function F , they arrange all F (r+
σ(i)) and all F (r−ν(j)) in non-increasing

order. Then we seek to minimize

E(F,R,y) = min[

Np∑
i=1

Nn∑
j=1

cidj max(0, 1− (F (r+
σ(i))− F (r−ν(j))))] (5.5)

where the OWA weights c and d are such that ∀i, ci, di ≥ 0,
∑

i ci = 1 and

106

∑
i di = 1 and c1 ≥ c2 ≥ .. ≥ cn ≥ 0, d1 ≥ d2 ≥ .. ≥ dn ≥ 0, i.e. c and d are

non-inscreasing.

The choice of the weights c and d allows to focus on top parts of the ranked

data set during training. We set a threshold t to indicate the most interesting

part of the ranked data set, and we let the thresholds tp and tn be the counts

of positive and negative proteins such that F (r+) and F (r−) rank above the

threshold t, i.e. rank(F (r+)) < t and rank(F (r−)) < t. The OWA weights

are then set to ci = 1/tp for i ≤ tp and to ci = 0 for i > tp; dj are similarly

defined in terms of tn.

Clearly, if the threshold t = NR, the total number of examples in the data

set, the loss function is equivalent to the mean pairwise loss

E(F,R,y) =
1

Np

Np∑
i=1

1

Nn

Nn∑
j=1

max(0, 1− (F (r+
i)− F (r−j))) (5.6)

which optimizes the ranking performance on the whole set. In the subsequent

discussion, we will refer to the loss function given by equation 5.6 as “meanPL”

(mean pairwise loss) optimization and to the loss function given by equation

5.5 as “Protein Q-ranker”, by analogy to the previous chapter.

We train the parameters w of F using stochastic gradient descent. As

discussed in section 4.2.3, we make several heuristic choices to optimize the

loss function given by the equation 5.5. First, we perform the sorting operation

at each epoch consisting of |R| iterations, instead of sorting at every gradient

107

step. Second, we choose heuristically several thresholds t to optimize and select

the best resulting parameters w. Finally, we train the meanPL loss (mean

pairwise loss) function that optimizes all the pairwise constraints first and use

the resulting parameters w to initialize the model for each new threshold t.

5.3.3 Training the Model The training proceeds as follows (Algorithm 2).

We first find a discriminant function F (r) using the meanPL (mean pairwise

loss) given by equation 5.6, which optimizes the whole area under the ROC

curve. We then focus sequentially on several thresholds t in the ranked data

set. The selection of thresholds is heuristic and in our case involves 1/2 and

1/4 of the whole training set.

During training, we draw a protein pair of positive and negative examples

at random from the interval given by the specified threshold and determine

their scores based on the scores of the peptides contained in them. Because

the parameters w of the peptide-spectrum match scoring function f(x) (equa-

tion 5.2) change during training, the scores of all peptide-spectrum matches

belonging to the peptides are recalculated, and a max operation is performed

each time a protein is drawn. Then we make a gradient step if the pair is

misranked and the loss function is differentiable at this point (see details in

section 4.2.2). In the course of training, we record the best result for the speci-

108

fied q value after each epoch. The output is the protein ranking function F (r)

(equation 5.4) with best performance on the target q-value threshold and a

ranked list of proteins, sorted by score.

5.3.4 Reporting Final Results: Parsimony Rules As described in

section 5.1, the approaches to dealing with peptides that appear in several

proteins differ in strigency. ProteinProphet [Nesvizhskii et al., 2003] partially

assigns the weight of each shared peptide to all the proteins that contain this

peptide. IDPicker [Zhang et al., 2007, Ma et al., 2009], on the other hand,

assigns each shared peptide to a single protein among those contianing this

peptide.

In our work, during training stage, we assign each peptide fully to all the

proteins. However, when reporting results, we assign each shared peptide only

to a single protein among those to which this peptide belongs.

More specifically, our approach to resolving the ambiguities is as described

in Zhang et al. [2007]. 1) We merge all proteins that contain a common

set of identified peptides into a single meta-protein, and count it as a single

protein in all the reported results. 2) We identify proteins whose peptides are

completely contained in another protein, and report only the larger protein.

3) For proteins sharing only a portion of their peptides, each such peptide

109

Algorithm 2 The input variables are the training set of target and decoy

proteins R, the corresponding binary labels y, the target q value, the set T of

tentative thresholds and the number n of training iterations.
1: procedure Protein Q-ranker(R,y, qtarg, T , n)

2: w← initialize using meanPL (mean pairwise loss, equation 5.6).

3: for t ∈ T do

4: tp ← |{r ∈ R+|rank(F (r)) < t}|

5: tn ← |{r ∈ R−|rank(F (r)) < t}|

6: for i← 1 . . . n do

7: r+ ← chooseRandom(R+, tp) . Randomly select a pair of examples.

8: r− ← chooseRandom(R−, tn)

9: Compute F (r+), F (r−) given by equation (5.4).

10: w← gradientStep(w, F (r+), F (r−)) . Update the weights.

11: end for

12: end for

13: Record best result on qtarg

14: return (w)

15: end procedure

110

is assigned to a single one of these proteins in a greedy fashion. The other

proteins receive the scores based only on the remaining peptides.

5.4 Results

We compared ProteinProphet [Nesvizhskii et al., 2003], IDPicker 2.0 [Zhang

et al., 2007, Ma et al., 2009] and our algorithm using four previously described

data sets [Käll et al., 2007].

5.4.1 Data Set Description The first data set consists of spectra ac-

quired from a tryptic digest of an unfractionated yeast lysate and analyzed

using a four-hour reverse phase separation. Peptides were assigned to spectra

using the Crux implementation of the SEQUEST algorithm [Park et al., 2008],

with tryptic enzyme specificity and with no amino acid modifications enabled.

The search was performed against a concatenated target-decoy database com-

posed of open reading frames of yeast and their randomly shuffled versions.

The top three peptide-spectrum matches were retained for each spectrum.

For the purposes of training the model described in section 5.2, the peptide-

spectrum matches are represented by 17-feature vectors given in table 5.1.

The next two data sets were derived in a similar fashion from the same

yeast lysate, but treated using different proteolytic enzymes, elastase and chy-

111

1 XCorr Cross correlation between calculated and observed spectra

2 ∆Cn Fractional difference between current and second best XCorr

3 ∆CL
n Fractional difference between current and fifth best XCorr

4 Sp Preliminary score for peptide versus predicted fragment ion values

5 ln(rSp) The natural logarithm of the rank of the match based on the Sp score

6 ∆M The difference in calculated and observed mass

7 abs(∆M) The absolute value of the difference in calculated and observed mass

8 Mass The observed mass [M+H]+

9 ionFrac The fraction of matched b and y ions

10 ln(NumSp) The natural logarithm of the number of database peptides within the specified m/z range

11 enzN Boolean: Is the peptide preceded by an enzymatic (tryptic) site?

12 enzC Boolean: Does the peptide have an enzymatic (tryptic) C-terminus?

13 enzInt Number of missed internal enzymatic (tryptic) sites

14 pepLen The length of the matched peptide, in residues

15–17 charge1–3 Three Boolean features indicating the charge state

Table 5.1: Features Used to Represent Peptide-Spectrum Matches.

Each peptide-spectrum match obtained from the search is represented using

17 features for the Protein Q-ranker algorithm.

motrypsin. The database search was performed using no enzyme specificity

and with no amino acid modifications enabled. The fourth data set is de-

rived from a C. elegans lysate digested by trypsin and processed analogously

to the tryptic yeast data set. The peptide-spectrum matches obtained from

the search were subsequently analyzed by Protein Q-ranker, ProteinProphet

and IDPicker.

112

5.4.2 Main Result We first present the results from training the discrim-

inant function F (r) using the meanPL (mean pairwise loss) given by the equa-

tion 5.6. Figure 5.5 shows the results of this experiment, conducted using the

four data sets described in Section 5.4.1. Mean pairwise loss training outper-

forms ProteinProphet and IDPicker on three out of four of the experimental

data sets.

These results indicate that optimizing directly at the protein level allows to

combine the information about the correctness of individual peptide-spectrum

matches into higher-level knowledge about the quality of all the matches be-

longing to the same protein. While the mean pairwise loss on the whole train-

ing set gives poor results when learned at the peptide-spectrum match level, it

performs much better when used at the protein level.

We explain the poor performance on the yeast data set digested with elas-

tase by the fact that elastase is a frequent cutter in comparison to trypsin and

chymotrypsin and that it is known to be less specific. Therefore, this data set

contains higher amounts of noise, which interfere with training of the mean

pairwise loss on the whole training set.

We then proceed to optimize the pairwise ranking loss at the top of the

ranked list given by equation 5.5 and achieve further improvement in results.

Figure 5.5 demonstrates that Protein Q-ranker successfully identifies more

113

Yeast trypsin Yeast elastase Yeast chymotrypsin Worm trypsin
T

ra
in

se
t

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

250

500

750

1000

1250

q value
po

si
tiv

e
pr

ot
ei

ns

0 0.025 0.05 0.075 0.10

100

200

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

300

400

500

600

700

T
es

ts
et

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

300

400

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

25

50

75

100

125

q value
po

si
tiv

e
pr

ot
ei

ns

0 0.025 0.05 0.075 0.10

25

50

75

100

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

ProteinProphet meanPL Protein Q-ranker IDPicker

Figure 5.5: Comparison of ProteinProphet, IDPicker and Protein Q-

ranker and meanPL (mean pairwise loss). This figure plots the number

of true positive protein identifications as a function of q-value threshold.

target proteins than ProteinProphet and IDPicker across a wide range of false

discovery rates and across all four data sets. At a q-value threshold of 1%, our

algorithm consistently identifies more proteins on all four data sets (see table

5.2).

ProteinProphet and IDPicker do not support training a model on one data

set and then applying the trained model to a separate data set. Therefore,

these results are at a disadvantage. Even when we split the data into four

114

Method PP Prot Q-ranker %>PP IDP %>IDP

Yeast trypsin trn 784 981 25% 585 40%

Yeast trypsin tst 283 306 8% 206 48%

Worm trypsin trn 334 482 44% 236 97%

Worm trypsin tst 126 172 36% 63 104%

Chymotrypsin trn 110 145 24% 52 170%

Chymotrypsin tst 36 51 40% 16 200%

Elastase trn 114 169 48% 70 140%

Elastase tst 48 57 18% 28 100%

Table 5.2: Comparison of Protein Identification Methods at a Q value

Threshold of 0.01. The table lists, for each of the four data sets, the number

of proteins identified at q < 0.01 by ProteinProphet (PP), Protein Q-ranker

and IDPicker (IDP), as well as the improvement provided by Protein Q-ranker

relative to the other two methods.

115

equal parts and train on only 3/4 of the data, Protein Q-ranker still performs

better on the held-out test set than ProteinProphet and IDPicker. Further-

more, Figure 5.5 provides evidence that Protein Q-ranker is not overfitting on

the training set, because the performance on the test set is similar to the per-

formance on the training set. In the following experiments we therefore adopt

Protein Q-ranker as our algorithm of choice (as opposed to mean pairwise

loss), and we compare it further to ProteinProphet and IDPicker.

5.4.3 Validation Against Alternative Experimental Techniques In

addition to target-decoy validation, we compared the ability of ProteinProphet,

IDPicker and Protein Q-ranker to recover proteins that had been identified

in yeast cells using alternative experimental methods. For this purpose, we

gathered a set of 1295 proteins whose presence in yeast cells during log-phase

growth is supported by three independent assays: (1) mRNA counts estab-

lished by microarray analysis [Holstege et al., 1998], (2) incorporating antigen

specific tags into the yeast ORFs and detecting the expression of the resulting

protein with an antigen, and (3) incorporating the sequence of green fluo-

rescent protein into the yeast ORFs and detecting the resulting fluorescence

[Ghaemmaghami et al., 2003].

However, these techniques are up to 100 times less sensitive than mass

116

spectrometry. Therefore, if a protein was identified by mass spectrometry as

well as mRNA or antibody analysis, it is highly likely to have been present in

the original lysate. On the other hand, if a protein was not detected by either

mRNA or antibody analysis, the mass spectrometry identification may still be

valid. The results obtained from ProteinProphet confirm this assertion. For

example, on the yeast data set digested with trypsin, 30 out of 300 training

set proteins that received probability 1 of being present in the ProteinProphet

analysis were not confirmed by either mRNA or antibody assays.

Therefore, for the purposes of validation, we assigned positive labels only

to the proteins from the real database that were also identified by the mRNA

or the antibody analysis, i.e. we used the union of proteins identified by the

two alternative methods. However, we still used shuffled proteins as examples

with negative labels (instead of assigning negative labels to the real proteins

that were not identified by either of the alternative methods).

Figure 5.6 shows that, across the three yeast data sets, Protein Q-ranker’s

sorted list of proteins is more highly enriched with these externally validated

proteins than ProteinProphet’s and IDPicker’s sorted lists. We also used the

abundance levels assigned to the proteins identified by antibody and GFP

tagging experiments [Ghaemmaghami et al., 2003] to investigate the extent to

which Protein Q-ranker scores correlate with protein abundance. Figure 5.7

117

Yeast trypsin Yeast elastase Yeast chymotrypsin

T
ra

in
se

t

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

300

400

500

600

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

T
es

ts
et

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

25

50

75

100

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

25

50

75

100

ProteinProphet Protein Q-ranker IDPicker

Figure 5.6: Comparison of ProteinProphet, IDPicker and Protein Q-

ranker. This figure plots the number of externally validated yeast proteins

identified by Protein Q-ranker and ProteinProphet as a function of q-value

threshold.

118

(A) Yeast trypsin (B) Yeast elastase (C) Yeast chymotrypsin

positive proteins

av
er

ag
e

ab
un

da
nc

e

1 101 201 301 401 501
0

1e+05

2e+05

positive proteins

av
er

ag
e

ab
un

da
nc

e

1 101 201 301 401 501
0

1e+05

2e+05

positive proteins

av
er

ag
e

ab
un

da
nc

e

1 101 201 301 401 501
0

1e+05

2e+05

Protein Q-ranker

Figure 5.7: Abundances of Proteins Identified by Protein Q-ranker.

The figure plots average protein abundance of the top n proteins, as a function

of n. Protein abundances are taken from [Ghaemmaghami et al., 2003].

shows that when target proteins are ranked by Protein Q-ranker score, the top

of the list is enriched with high-abundance proteins. This property, combined

with Protein Q-ranker’s ability to identify more target proteins at a fixed num-

ber of false positives, implies that Protein Q-ranker will successfully identify

more low-abundance proteins than ProteinProphet.

5.4.4 Overlap between ProteinProphet and Protein Q-ranker To

better understand the relationship between the proteins identified by Protein-

Prophet and Protein Q-ranker, we computed the overlap between the sets of

proteins identified as true positives by the two methods at a fixed number of

false positives (Figure 5.8). For all four data sets, ProteinProphet and Protein

119

Yeast trypsin Yeast elastase Yeast chymotrypsin Worm trypsin

T
ra

in
se

t

754228 31 9872 17 10046 11 294189 41

T
es

ts
et 27675 18 4414 5 3121 6 11063 17

ProteinProphet Protein Q-ranker Overlap

Figure 5.8: Comparison of ProteinProphet and Protein Q-ranker. This

figure shows the overlap between proteins identified by Protein Q-ranker and

ProteinProphet at q-value threshold 0.01.

120

Data set q-value Only Protein Q-ranker Only ProteinProphet

Yeast Trypsin Trn 0.01 38% 13%

Yeast Trypsin Tst 0.01 36% 11%

Yeast Chymotrypsin Trn 0.01 49% 37%

Yeast Chymotrypsin Tst 0.01 66% 40%

Yeast Elastase Trn 0.01 42% 22%

Yeast Elastase Tst 0.01 50% 45%

Table 5.3: External Validation of Non-overlapping Proteins The ta-

ble shows the percentage of non-overlapping proteins identified by Protein Q-

ranker and ProteinProphet that were confirmed by alternative experimental

methods.

Q-ranker identify many of the same proteins.

We further investigated the composition of the non-overlapping sets in the

yeast data sets identified by ProteinProphet and Protein Q-ranker by checking

them against the proteins established by the alternative experimental methods

described above. For all four data sets, the external validation more strongly

supports the Protein Q-ranker identifications than the ProteinProphet identi-

fications (see 5.4.4).

121

Data set q-value Protein Q-ranker ProteinProphet

Yeast Trypsin trn 0.01 524 562

Yeast Trypsin tst 0.01 578 627

Worm Trypsin trn 0.01 540 559

Worm Trypsin tst 0.01 458 530

Yeast Chymotrypsin trn 0.01 355 379

Yeast Chymotrypsin tst 0.01 359 371

Yeast Elastase trn 0.01 390 432

Yeast Elastase tst 0.01 359 367

Table 5.4: Averages Lengths of Proteins. The table records the average

lengths of proteins below q-value threshold of 1% identified by Protein Q-

ranker and ProteinProphet.

5.4.5 Length of Identified Proteins A general feature of protein iden-

tification algorithms is that they are more likely to successfully identify longer

proteins, simply because such proteins contain more peptides. Protein Q-

ranker is less biased against short proteins compared to ProteinProphet. The

average length of the proteins identified by both methods is 577 amino acids,

which is substantially longer than the average length of 451 amino acids across

all proteins in the database.

122

5.4.6 Multitask Learning The experiments presented thus far in this

chapter focused on optimizing a single value—the number of proteins identified

from a shotgun proteomics experiment. This approach contrasts with previous

applications of machine learning to this task [Anderson et al., 2003, Keller

et al., 2002, Elias et al., 2004, Käll et al., 2007, Spivak et al., 2009a], which

optimize at the level of peptide-spectrum matches or peptides. In general,

selecting one optimization target or the other will depend on the goal of the

proteomics experiment. However, in some applications, it may be desirable

to simultaneously achieve high levels of peptide and protein identification.

In such applications, we can perform joint optimization on both the protein

and peptide levels. We use multi-task learning [Caruana, 1997], training the

protein and peptide ranking tasks in parallel using a shared neural network

representation.

For the multi-task learning, we use the mean pairwise (meanPL) loss on

the whole training set given by the equation 5.6 for both proteins and peptides.

For a single pair of positive protein example r+ and negative protein example

r−, the loss function is

Lprot(r
+, r−) = max(0, 1− (F (r+)− F (r−))) (5.7)

where F (r) is given by the equation 5.4. For a single pair of positive peptide

123

Training Set Test Set
P

ep
ti

d
es

q-value

tr
ue

 p
os

iti
ve

 u
ni

qu
e

pe
pt

id
es

0 0.01 0.02 0.03 0.04 0.051376

2376

3376

4376

false positive peptides

tr
ue

 p
os

iti
ve

 u
ni

qu
e

pe
pt

id
es

0 0.01 0.02 0.03 0.04 0.05452

702

952

1202

1452

P
ro

te
in

s

q-value

tr
ue

 p
os

iti
ve

 p
ro

te
in

s

0 0.01 0.02 0.03 0.04 0.05 0.060

250

500

750

1000

1250

q-value

tr
ue

 p
os

iti
ve

 p
ro

te
in

s

0 0.01 0.02 0.03 0.04 0.05 0.060

100

200

300

400

Peptide/ProteinProphet multi-task meanPL

proteins only meanPL peptides only meanPL

Figure 5.9: Performance of ProteinProphet, PeptideProphet and

Three Variants of Mean Pairwise Loss Training Each panel plots the

number of distinct peptides (top) or proteins (bottom) as a function of the

number of false positives.

124

example e+ and negative peptide example e−, the loss function is

Lpep(e
+, e−) = max(0, 1− (g(e+)− g(e−))) (5.8)

where g(e) is given by equation 5.3. Finally, the loss function for multi-tasking

experiments is defined as

Lmulti = Lprot(r
+, r−) + Lpep(e

+, e−) (5.9)

The training follows the procedure described in Collobert and Weston [2008]:

1) select next task; 2) select a random pair of training examples for this task;

3) update the neural net for this task by taking a gradient step; 4) Go to 1.

Figure 5.9 compares the performance of three variants of mean pairwise loss

training: optimizing protein identifications, optimizing peptide identifications

and jointly optimizing both. The methods are evaluated both at the protein

and peptide level. Comparing the multi-task and peptide-only training, we

see that multi-tasking gives improved performance on peptide level. The im-

provement in peptide-level ranking occurs because the protein ranking task

introduces higher-level information about the scores of all peptides belonging

to the same protein.

On the other hand, comparing the multi-task and protein-only training,

we see that improvements at the protein level are not significant. The reasons

are the frequency with which the protein-level and peptide-level tasks were

125

selected during training and the learning rates for the two tasks in these par-

ticular experiments. Different choices of task frequencies and learning rates will

produce more favorable results at the protein level (experiments not shown).

In general, choosing whether to optimize for peptide identification, protein

identification or both will depend upon the goal of the proteomics experiment.

5.5 Conclusion

In this chapter, we address directly the problem of identifying a set of proteins

that can explain the observed spectra. We use machine learning techniques to

solve this problem at the protein-level, yielding improved results in comparison

to previous methods. We are careful to rule out the possibility of introducing

a bias in our data set that can potentially arise when considering protein-

level score functions. We also make several checks to ensure that our protein

identifications not only meet statistical criteria, but are corroborated by other

analytical and experimental methods. Finally, we report on the overlap of the

identified proteins with the results of ProteinProphet [Nesvizhskii et al., 2003].

We explain the superior results of our method by the fact that protein,

peptide and PSM-level optimizations are cooperative tasks and the solution of

each task can benefit from the information about the solutions of the others.

Our multi-task experiments corroborate this assertion. We show that solving

126

the problem at the protein level achieves superior results at the peptide level

as well.

Due to integrating the information at the protein, peptide and PSM levels

into the learning procedure, we are able to achieve superior results even with

general pairwise loss functions that optimize the full area under the ROC curve,

whereas the learning at the peptide-spectrum match level was not tractable

using such simple objective functions. However, focused optimization of the

pairwise constrains only in the vicinity of a q-value threshold of interest proves

beneficial in both peptide-spectrum match and protein-level training.

127

Chapter 6

Learning Parameters of

Theoretical Spectrum

Generation

6.1 Introduction

The core problem in the analysis of shotgun proteomics data is to map each

observed spectrum to the peptide sequence that generated it. Methods for

solving this problem (reviewed in [Nesvizhskii et al., 2007]) can be subdivided

according to whether they take as input only the observed spectrum—de novo

methods—or take as input the observed spectrum and a database of peptides,

128

although the distinction between these two types of algorithms is sometimes

fuzzy. In this section, we focus on the latter, database search formulation of

the peptide identification problem.

Numerous previous efforts have applied machine learning methods of var-

ious types—linear discriminant analysis [Keller et al., 2002], support vector

machines [Anderson et al., 2003], neural networks [Spivak et al., 2009a], deci-

sion trees [Elias et al., 2004], etc.—as post-processors on the initial database

search. These methods typically integrate information across a given data set

and also integrate additional pieces of information that were not available to

the search engine.

In this work, we aim to integrate machine learning directly into the search

procedure. Rather than ranking peptides once with respect to a static score

function and then post-processing the results, we perform a learning procedure

that optimizes the score function used in the search itself.

The key idea behind the current work is to parameterize the model that

generates a theoretical spectrum from peptides in the database and then learn

the parameters of this model. The method requires that the database contain

a mixture of real (target) and shuffled (decoy) peptides and we use a learning

procedure to learn model parameters that rank targets above decoys. We

demonstrate that this optimization yields improved performance relative to

129

the baseline Q-ranker model at the protein level described in the previous

chapter.

6.2 Parameterizing the Theoretical Spectrum

6.2.1 SEQUEST-style Search SEQUEST’s theoretical spectrum gener-

ator converts a charged peptide string into a spectrum by identifying all prefix

and suffix ions (b-ions and y-ions), and generating six peaks for each ion (see

review on how the peptides break in section 2.2.1). The six peaks correspond

to

1. the primary peaks, with an m/z value based on the sum of the masses

of the amino acids in the corresponding b- or y-ion,

2. flanking peaks, occupying the 1-Da bins on either side of the primary

peak, and

3. three neutral loss peaks corresponding to loss of water, ammonia or

carbon monoxide.

SEQUEST assigns the primary peak a height of 50, flanking peaks heights

of 25 and neutral loss peaks heights of 10 (figure 6.1). Because only the relative

magnitudes of these peaks affect the calculation of XCorr between theoretical

130

a) b)

Figure 6.1: Theoretical and Experimental Spectra. This figure shows

an example of theoretical (a) and experimental (b) spectra for the peptide

sequence DLRSWTAADTAAQISQ [Eng et al., 1994]. Theoretical spectrum

contains 3 types of peaks - main(b- or y-ion) , flanking, neutral loss - and their

intensities are arbitrarily set to 50, 25 and 10 respectively.

131

and observed spectrum, this spectrum generator has two free parameters: the

relative height of the flanking peaks and of the neutral loss peaks.

The SEQUEST search routine can be summarized as follows. For a given

observed spectrum, the algorithm first identifies all database peptides whose

mass lies within a specified range of the inferred mass of the original pep-

tide that generated the spectrum. Next, for each candidate peptide in the

database, the search computes the XCorr function Ξ(t, s), where s is the

observed spectrum, t is the theoretical spectrum, and Ξ is given by

Ξ(t, s) =
N∑
i=1

tisi −
1

151

75∑
τ=−75,τ 6=0

N∑
i=1

tisi+τ (6.1)

The output is a ranking of candidate peptides according to Ξ for each observed

spectrum s.

Eng et al. [Eng et al., 2008] showed that SEQUEST-style cross-correlation

can be calculated efficiently:

Ξ(t, s) = tT ∗ s′ (6.2)

where

s′i = si − (
τ=75∑
τ=−75

sτ)/150 (6.3)

and s′ can be computed only once for each observed spectrum s.

6.2.2 Learning the Theoretical Spectrum Peak Heights We make a

simple observation that the SEQUEST scoring function (6.2) is a linear oper-

132

ator on the theoretical spectrum and post-processed version of the observed

spectrum given by (6.3). According to the SEQUEST model, the theoretical

spectrum t contains three types of peaks with different heights. Therefore,

the theoretical spectrum t can be represented as a weighted sum of three vec-

tors containing single type of ions with unit intensities: tby containing only b

and y ion peaks, tf containing only the corresponding flanking peaks and tl

containing only the neural loss peaks.

Then,

t = w1 ∗ tby + w2 ∗ tf + w3 ∗ tl (6.4)

where t, tby, tf , tl ∈ RN and N is the number of bins used to discretize the

observed and theoretical spectra. The weights w1, w2, w3 ∈ R are the model

parameters to be determined by the learning procedure. (To re-iterate, in the

SEQUEST algorithm, these weights are arbitrarily set to w1 = 50, w2 = 25,

w3 = 10.)

Let three products Pby, Pf and Pl be defined as

Pby = tTby ∗ s′ (6.5)

Pf = tTf ∗ s′ (6.6)

Pl = tTl ∗ s′ (6.7)

Since the cross-correlation is a linear operator, it can be represented in terms

133

of these three products and the parameters w = (w1, w2, w3) as

Ξ(t, s,w) = w1 ∗ Pby + w2 ∗ Pf + w3 ∗ Pl (6.8)

The products can be precomputed in advance.

The result is a parametrized expression for SEQUEST cross-correction

which can be optimized using simple gradient descent procedures, provided a

set of negative and positive examples and a loss function are available. More-

over, this approach can potentially be generalized to linear operators other

than that currently used in SEQUEST.

6.2.3 Learning Model Parameters Given the scoring scheme described

above, the goal of the learning procedure is to select the parameters of the

theoretical spectrum generation model, based on a given set of observed spectra

S = {s1, . . . , sNs} and a peptide database E = {e1, . . . , eNe}. For simplicity,

in this report, we assume that the charge state of each spectrum is known a

priori. Hence, for each spectrum, we can retrieve from the database a set of all

candidate peptides whose total mass is within a specified range of the precursor

mass of the spectrum. We denote the set of theoretical spectra derived from

candidate peptides for spectra S as T = {t1, . . . , tNt}.

Assigning labels to peptide-spectrum matches To create a data set for

training, we identify all candidate peptides for each spectrum and then assign

134

positive and negative labels to peptide-spectrum pairs based on the target-

decoy approach. For the target-decoy learning, we require that the search

is performed against a database comprised of a mixture of real (target) and

shuffled (decoy) peptides. We assign positive labels to matches to real peptides

(y = 1) and negative labels to matches to decoy peptides (y = −1).

Note that, with this labeling scheme, the vast majority of the positively

labeled peptide-spectrum matches are actually incorrect matches. This is be-

cause, in principle, only one candidate peptide among a set of target candidate

peptides is actually responsible for generating the observed spectrum. Thus,

similar to the problems solved by Percolator [Käll et al., 2007] and Q-ranker

[Spivak et al., 2009a], this problem is semi-supervised: the negative examples

are all truly negative, but the “positive” examples are more accurately de-

scribed as unlabeled, because the “positive” set actually consists of a mixture

of (mostly) negative examples and a few positive examples.

Loss Function We would like to choose the parameters w = (w1, w2, w3)

so that when the peptide-spectrum matches are ordered by the parametrized

correlation function described above, the top-ranked examples would have pos-

itive labels.

Let each peptide-spectrum match consist of observed spectrum s and the-

135

oretical spectrum t. Since the final goal is ranking, we choose a ranking loss

function: for each pair of positive and negative peptide-spectrum matches,

such that yj = 1, yk = −1 , we prefer that Ξ(tj, sj,w) > Ξ(tk, sk,w), i.e. the

positive example is scored higher.

E(S, T ,w) =
∑

s∈S,yi=1,yj=−1

max(0, 1− (Ξ(ti, si,w)− Ξ(tj, sj,w))) (6.9)

We use stochastic gradient descent to find the appropriate parameters w.

6.3 Results

For our experiments, we used the data sets described in section 5.4.1. We made

10 runs starting from random parameter values on each of the four described

data sets. During the training, we monitored the decrease in the objective

function (6.9) after each epoch, and stopped when the value of the objective

function from the previous epoch was less than that of the current epoch, i.e.

Ek−1 < Ek. In other words, the training stopped as soon as the objective

function did not decrease monotonically.

We recorded the average values of the learned parameters w, normalized

such that the height of the b and y-ion peaks remained 50 (since the heights

of the flanking and neutral loss peaks are defined relative to the height of the

main peaks). We also recorded the standard deviation over the 10 runs (table

136

Yeast trypsin Worm trypsin Yeast elastase Yeast chymotrypsin

mean std mean std mean std mean std

BY-ions 50.00 0.08 50.00 0.04 50.00 0.01 50.00 0.20

Flanking 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.00

Neut. loss 18.00 0.07 16.00 0.03 18.00 0.05 18.00 0.09

Table 6.1: Average Values of Ion Peak Heights. The table shows the

average values of the peak heights and their standard deviations learned over

10 runs.

6.1).

The training resulted in the following peak intensities for the model: b,y-

ions are 50, neutral loss peaks are 18, the flanking peaks are 0 (i.e. they are

random, do not carry useful information). This result makes sense because

flanking peaks are not based on the model of how peptides break, but are used

to account for the fact that mass spectrometry peaks can be wide and spread

into several bins.

6.3.1 Learning in the Context of Protein Identification We now use

the parametrization approach developed for the SEQUEST cross-correlation

function to modify the feature set for peptide-spectrum matches serving as

137

input to the protein-level learning algorithm described in the previous chapter.

In all the previous work, we represented peptide-spectrum matches as 17-

feature vectors given in table 5.1, one of these features is the value of the

cross-correlation function, XCorr. This set of features can be modified such

that the single XCorr feature is replaced with three products Pby, Pf and Pl.

The new feature set is given in table 6.2. Each peptide-spectrum match

obtained from the search is now represented using 19 features, because the

feature XCorr in the original feature set (see 5.1) is replaced by 3 features:

Pby, Pf and Pl (equations 6.5, 6.6 and 6.7).

For the experiments with the augmented feature set, we use the mean

pairwise loss that attempts to satisfy all the pairwise constraints in the training

set. In the previous chapter, we referred to this loss function as “meanPL”.

Figure 6.2 shows that, on all four datasets, meanPL with extended 19-feature

set achieves substantially better results than the same loss function on the

17-feature set, when trained at the protein level. Moreover, meanPL with

extended feature set achieves better or as good results as the algorithm that

optimizes the pairwise constraints preferentially at the top of the ranked list,

but uses the old 17-feature representation (i.e. the Protein Q-ranker algorithm

described in the previous chapter).

We also repeated the verification procedures reported in the previous chap-

138

1 Pby see equation 6.5

2 Pf see equation 6.6

3 Pl see equation 6.7

4 ∆Cn Fractional difference between current and second best XCorr

5 ∆CL
n Fractional difference between current and fifth best XCorr

6 Sp Preliminary score for peptide versus predicted fragment ion values

7 ln(rSp) The natural logarithm of the rank of the match based on the Sp score

8 ∆M The difference in calculated and observed mass

9 abs(∆M) The absolute value of the difference in calculated and observed mass

10 Mass The observed mass [M+H]+ calculated and observed mass

11 ionFrac The fraction of matched b and y ions

12 ln(NumSp) The natural logarithm of the number of database peptides within the specified m/z range

13 enzN Boolean: Is the peptide preceded by an enzymatic (tryptic) site?

14 enzC Boolean: Does the peptide have an enzymatic (tryptic) C-terminus?

15 enzInt Number of missed internal enzymatic (tryptic) sites

16 pepLen The length of the matched peptide, in residues

17–19 charge1–3 Three Boolean features indicating the charge state

Table 6.2: Extended Feature Set Used to Represent Peptide-

Spectrum Matches. Each peptide-spectrum match obtained from the search

is now represented using 19 features, because the feature XCorr in the original

feature set (see 5.1) is replaced by 3 features: Pby, Pf and Pl (equations 6.5,

6.6 and 6.7).

139

ter for the meanPL training with the new extended 19-feature set. Figure 6.3

shows that the identities of the proteins at the top of the ranked list produced

by meanPL on the 19-feature data sets were confirmed by alternative experi-

mental techniques. Finally, figure 6.4 shows that majority of the proteins iden-

tified by meanPL with 19-feature set were also identified by ProteinProphet.

6.4 Conclusion

There have been developed many quite sophisticated algorithms to enable pro-

tein inference from the peptide-spectrum matches, previously obtained from

the database search. But the database search itself has not benefited from the

same variety of machine learning techniques. However, it is conceivable that

a lot of information is lost during the database search due to heuristic choices

made at this step of the analysis.

The results presented in this chapter confirm that the limitations of the

theoretical spectrum generation during the database search are contributing to

the difficulties in protein identification. These results raise further possibilities

of making the model more flexible by allowing more types of peaks in the

theoretical spectrum and learning their intensities in the context of protein

identification. Another feasible direction is to explore various functions used to

match observed and theoretical spectra and to choose a more general family of

140

Yeast trypsin Yeast elastase Yeast chymotrypsin Worm trypsin

T
ra

in
se

t

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

250

500

750

1000

1250

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

300

400

500

600

700

800

T
es

ts
et

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

300

400

500

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

25

50

75

100

125

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

25

50

75

100

125

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

300

ProteinProphet meanPL 17 feat Protein Q-ranker 17 feat

meanPL 19 feat IDPicker

Figure 6.2: Comparison of ProteinProphet, Protein Q-ranker and

meanPL (mean pairwise loss). This figure compares the performance of

meanPL (mean pairwise loss) and Q-ranker on 17-feature data set (table 5.1),

with meanPL on 19-feature data set (table 6.2). It plots the number of true

positive protein identifications as a function of q-value threshold.

141

Yeast trypsin Yeast elastase Yeast chymotrypsin

T
ra

in
se

t

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

300

400

500

600

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

T
es

ts
et

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

100

200

q value

po
si

tiv
e

pr
ot

ei
ns

0 0.025 0.05 0.075 0.10

25

50

75

100

q value
po

si
tiv

e
pr

ot
ei

ns
0 0.025 0.05 0.075 0.10

25

50

75

100

ProteinProphet Protein Q-ranker 17 feat

meanPL 19 feat IDPicker

Figure 6.3: Validation of ProteinProphet, Protein Q-ranker and

meanPL (mean pairwise loss). This figure compares the performance

of ProteinProphet, Protein Q-ranker on 17-feature data set and meanPL on

19-feature data set, when validated against alternative experimental methods.

It plots the number of externally validated protein identifications as a function

of q-value threshold.

142

Yeast trypsin Yeast elastase Yeast chymotrypsin Worm trypsin

T
ra

in
se

t

803214 49 10357 13 10474 7 315276 20

T
es

ts
et 264106 12 4322 4 3337 4 11767 10

ProteinProphet meanPL 19 feat Overlap

Figure 6.4: Comparison of Proteins Identified by ProteinProphet and

meanPL on 19-feature Data Set. The figure shows the overlap between

proteins identified by meanPL and ProteinProphet at q-value threshold 0.01.

143

functions with adjustable parameters and learn these parameters on empirical

data sets.

144

Chapter 7

Conclusions and Future Work

In this dissertation, we address several issues relevant to protein identification

in complex biological mixtures using mass spectrometry data. First, we con-

sider the algorithmic framework for learning with examples of a single class

and unlabeled examples. We propose a ranking “loss” function designed for

this specific setting that produces orderings with high precision at the top of

the list. Second, we build on this approach to develop an algorithm for protein

identification that exploits the structural information in the mass spectrometry

data that has generally been ignored in existing approaches to the problem.

Finally, we use machine learning techniques to replace some of the heuris-

tic choices of scoring functions made in mass spectrometry algorithms with

parametrized functions that can be adjusted based on empirical data.

145

The current work opens several directions for future research. First, the al-

gorithms discussed in chapters 3-5 take as input the results of database search

which performs the crucial task of matching spectra to peptide sequences.

However, the state-of-the art database search algorithms make multiple heuris-

tic choices in their definition of the cross-correlation function used to measure

the similarity between observed and theoretical spectra. In chapter 6 of this

dissertation we use machine learning techniques to relax one of these choices

by adjusting the peak heights of the theoretical spectra that serve as one of

the inputs to the cross-correlation function. However, a more general approach

would be to choose a broader family of parametrized function and learn their

parameters based on empirical data.

Second, the discussion of the protein identification in chapter 5 highlights

the necessity of going beyond the standard training-testing set validation of

the results of the algorithms developed for this task. In this dissertation, we

used protein sets recognized by alternative experimental methods as expressed

in yeast cells to verify the proteins identified by our algorithm. However, pro-

teome screening using several experimental procedures is too labor-intensive

and expensive to be performed for every organism of interest. One possible

approach to validation problem is to simulate the results of mass spectrometry

runs and validate the results of the protein identification algorithms against

146

known protein sets used for simulation.

Finally, the current work addresses the algorithmic problems of learning

with labeled examples of a single class and unlabeled examples (reviewed in

Zhang and Zuo [2008]). In essence, all of the known machine learning ap-

proaches turn this problem into either supervised or semi-supervised learning

tasks and then apply standard classification algorithms. In every case the

solution will depend on the particular assumptions made during the formula-

tion of the two-class problem. It is reasonable to ask: how stable are these

solutions? The question represents a more general study of stability of algo-

rithms depending on the assumptions used in setting up the two-class learning

problem. This topic remains largely unexplored.

The incorporation of these ideas into biological data analysis is likely to

lead to important breakthroughs in mass spectrometry as well as other large

scale screening/classification techniques.

147

Bibliography

P. Alves, R. J. Arnold, M. V. Novotny, P. Radivojac, J. P. Reilly, and H. Tang.

Advancement in protein inference from shotgun proteomics using peptide

detectability. In Proceedings of the Pacific Symposium on Biocomputing,

pages 409–420, Singapore, 2007. World Scientific.

D. C. Anderson, W. Li, D. G. Payan, and W. S. Noble. A new algorithm

for the evaluation of shotgun peptide sequencing in proteomics: support

vector machine classification of peptide MS/MS spectra and sequest scores.

Journal of Proteome Research, 2(2):137–146, 2003.

M. Bern and D. Goldberg. Improved ranking functions for protein and

modification-site identifications. Journal of Computational Biology, 15:705–

719, 2008.

C. Bishop. Neural Networks for Pattern Recognition. Oxford UP, Oxford, UK,

1995.

148

L. Bottou. Online algorithms and stochastic approximations. In D. Saad, ed-

itor, Online Algorithms and Neural Networks. Cambridge University Press,

1998.

C. J. C. Burges. Ranking as learning structured outputs. In Proceedings of

the NIPS 2005 Workshop on Learning To Rank, 2005.

C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth

cost functions. In Proc. of Adv. in Neural Inf. Processing Syst., pages 193–

200, 2006.

R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-supervised Learning.

MIT Press, Cambridge, MA, 2006.

H. Choi and A. I. Nesvizhskii. Semisupervised model-based validation of pep-

tide identifications in mass spectrometry-based proteomics. Journal of Pro-

teome Research, 7(1):254–265, 2008.

J. Colinge, A. Masselot, M. Giron, T. Dessingy, and J. Magnin. OLAV: To-

wards high-throughput tandem mass spectrometry data identification. Pro-

teomics, 3:1454–1463, 2003.

149

R. Collobert and J. Weston. A unified architecture for natural language pro-

cessing: deep neural networks with multitask learning. In Proceedings of the

International Conference on Machine Learning, 2008.

Ronan Collobert, Fabian Sinz, Jason Weston, and Léon Bottou. Large scale

transductive svms. Journal of Machine Learning Research, 7:1687–1712,

2006.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:

273–297, 1995.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical

Society, 39:1–22, 1977.

Y. Ding, H. Choi, and A. Nesvizhskii. Adaptive discriminant function analy-

sis and reranking of MS/MS database search results for improved peptide

identification in shotgun proteomics. Journal of Proteome Research, 7(11):

4878–4889, 2008.

J. E. Elias and S. P. Gygi. Target-decoy search strategy for increased con-

fidence in large-scale protein identifications by mass spectrometry. Nature

Methods, 4(3):207–214, 2007.

150

J. E. Elias, F. D. Gibbons, O. D. King, F. P. Roth, and S. P. Gygi. Intensity-

based protein identification by machine learning from a library of tandem

mass spectra. Nature Biotechnology, 22:214–219, 2004.

J. K. Eng, A. L. McCormack, and J. R. Yates, III. An approach to correlate

tandem mass spectral data of peptides with amino acid sequences in a pro-

tein database. Journal of the American Society for Mass Spectrometry, 5:

976–989, 1994.

J. K. Eng, B. Fischer, J. Grossman, and M. J. MacCoss. A fast SEQUEST

cross correlation algorithm. Journal of Proteome Research, 7(10):4598–4602,

2008.

S. Ghaemmaghami, W. K. Huh, K. Bower, R. W. Howson, A. Belle, N. De-

phoure, E. K. O’Shea, and J. S. Weissman. Global analysis of protein exres-

sion in yeast. Nature, 425:737–741, 2003.

J. A. Hanley and B. J. McNeil. The meaning and use of the area under a

receiver operating characteristic (ROC) curve. Radiology, 143:29–36, 1982.

R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for

ordinal regression. In Proceedings of the Ninth International Conference on

Articial Neural Networks, pages 97–102, 1999.

151

F. C. P. Holstege, E. G. Gennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner,

M. R. Green, T. R. Golub, E. S. Lander, and R. A. Young. Dissecting the

regulatory circuitry of eukaryotic genome. Cell, 95:717–728, 1998.

T. Joachims. Optimizing search engines using clickthrough data. In ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),

pages 133–142, 2002.

K. R. Jonscher. Validating sequence assignments for peptide fragmentation

patterns: A primer in ms/ms sequence identification. Proteome Software,

June 2005.

L. Käll, J. Canterbury, J. Weston, W. S. Noble, and M. J. MacCoss. A

semi-supervised machine learning technique for peptide identification from

shotgun proteomics datasets. Nature Methods, 4:923–25, 2007.

A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold. Empirical statistical

model to estimate the accuracy of peptide identification made by MS/MS

and database search. Analytical Chemistry, 74:5383–5392, 2002.

A. A. Klammer and M. J. MacCoss. Effects of modified digestion schemes on

the identification of proteins from complex mixtures. Journal of Proteome

Research, 5(3):695–700, 2006.

152

A. A. Klammer, S. R. Reynolds, M. Hoopmann, M. J. MacCoss, J. Bilmes,

and W. S. Noble. Modeling peptide fragmentation with dynamic Bayesian

networks yields improved tandem mass spectrum identification. Bioinfor-

matics, 24(13):i348–i356, 2008.

Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In

G.B. Orr and K.-R. Müller, editors, Neural Networks: Tricks of the Trade,

pages 9–50. Springer, 1998.

Q. L. Li and B. Liu. Learning to classify text using positive and unlabeled

data. Proceedings of Eighteenth International Joint Conference on Aritificial

Inteligence, (IJCIA-03), 2003.

Y. F. Li, R. J. Arnold, Y. Li, P. Radivojac, Q. Sheng, and H. Tang. A Bayesian

approach to protein inference problem in shotgun proteomics. In M. Vingron

and L. Wong, editors, Proceedings of the Twelfth Annual International Con-

ference on Computational Molecular Biology, volume 12 of Lecture Notes in

Bioinformatics, pages 167–180, Berlin, Germany, 2008. Springer.

B. Liu, W.S. Lee, P.S. Yu, and X.L. Li. Partially supervised classification of

text documents. In Proceedings of the Nineteenth International Conference

on Machine Learning (ICML-2002), pages 387–394, Sydney, July 2002.

153

B. Liu, W.S. Lee, and Philip Y. Building text classifiers using positive and

unlabled examples. ICDM-03, pages 19–22, Nov. 2003.

Z.-Q. Ma, S. Dasari, M. C. Chambers, M. Litton, S. M. Sobecki, L. Zimmer-

man, P. J. Halvey, B. Schilling, P. M. Drake, B. W. Gibson, and D. L. Tabb.

IDPicker 2.0: Improved protein assembly with high discrimination peptide

identification filtering. Journal of Proteome Research, 2009.

L. Mason, P. L. Bartlett, and J. Baxter. Improved generalization through

explicit optimization of margins. Machine Learning, 38(3):243–255, 2000.

R. E. Moore, M. K. Young, and T. D. Lee. Qscore: An algorithm for evaluating

sequest database search results. Journal of the American Society for Mass

Spectrometry, 13(4):378–386, 2002.

M. C. Mozer, R. Dodier, M. D. Colagrosso, C. Guerra-Salcedo, and R. Wol-

niewicz. Prodding the roc curve: Constrained optimization of classifier

performance. In NIPS-2002, 2002.

A. I. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold. A statistical model

for identifying proteins by tandem mass spectrometry. Analytical Chemistry,

75:4646–4658, 2003.

A. I. Nesvizhskii, O. Vitek, and A. R. Aebersold. Analysis and validation of

154

proteomic data generated by tandem mass spectrometry. Nature Methods,

4(10):787–797, 2007.

Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M. Mitchell.

Text classification from labeled and unlabeled documents using EM. Ma-

chine Learning, 39(2/3):103–134, 2000.

M. Muller P. Hernandez and R. D. Appel. Automated protein identification

by tandem mass spectrometry: Issues and strategies. Mass Spectrometry

Reviews, 25:235–254, 2006.

C. Y. Park, A. A. Klammer, L. Käll, M. P. MacCoss, and W. S. Noble. Rapid

and accurate peptide identification from tandem mass spectra. Journal of

Proteome Research, 7(7):3022–3027, 2008.

R. G. Sadygov, D. Cociorva, and J. R. Yates, III. Large-scale database search-

ing using tandem mass spectra: Looking up the answer in the back of the

book. Nature Methods, 1(3):195–202, 2004.

X. Shen, G. C. Tseng, X. Zhang, and W. H. Wong. On (psi)-learning. Journal

of the American Statistical Association, 98(463):724–734, 2003.

M. Spivak, J. Weston, L. Bottou, L. Käll, and W. S. Noble. Improvements to

155

the percolator algorithm for peptide identification from shotgun proteomics

data sets. Journal of Proteome Research, 8(7):3737–3745, 2009a.

M. Spivak, J. Weston, M. J. MacCoss, and W. S. Noble. Direct maximization of

protein identifications from tandem mass spectra. Manuscript under review,

2009b.

H. Steen and M. Mann. The ABC’s (and XYZ’s) of peptide sequencing. Nature

Reviews Molecular Cell Biology, 5:699–711, 2004.

J. D. Storey and R. Tibshirani. Statistical significance for genome-wide studies.

Proceedings of the National Academy of Sciences of the United States of

America, 100:9440–9445, 2003.

N. Usunier, D. Buffoni, and P. Gallinari. Ranking with ordered weighted pair-

wise classification. In Proceedings of the 26th Annual International Confer-

ence on Machine Learning, pages 1057–1064, 2009.

V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,

1995.

V. N. Vapnik. Statistical Learning Theory. Adaptive and learning systems for

signal processing, communications, and control. Wiley, New York, 1998.

156

J. Weston. Large-scale semi-supervised learning. Proceedings of the NATO

Advanced Study Institute on Mining Massive Data Sets for Security, 2008.

R. R. Yager. On ordered weighted averaging aggregation operators in multi-

criteria decision making. IEEE Transactions on Systems, Man and Cyber-

netics, 18:183–190, 1988.

H. Yu, J. Han, and K. C.-C. Chang. Pebl: Positive example based learning

for web page classification using svm. Proc. Eighth Int’l Conf. Knowledge

Discovery and Data Mining, pages 236–248, 2002.

B. Zhang and W. Zuo. Learning from positive and unlabeled examples: A

survey. In 2008 International Symposiums on Information Processing, May

2008.

B. Zhang, M. C. Chambers, and D. L. Tabb. Proteomic parsimony through

bipartite graph analysis improves accuracy and transparency. Journal of

Proteome Research, 6(9):3549–3557, 2007.

157

