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The good life is one inspired by love and guided by knowledge.

- Bertrand Russell /1872 – 1970/, “What I Believe”
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Abstract

We propose a new framework for shape representation and scenery shape selection.

Various topics including figure/ground separation, shape axis construction, junction

detection and illusory figure finding will be discussed.

The model construction is inspired by the Gestalt studies. They suggest proximity,

convexity, symmetry, etc, as cues for figure/ground separation and visual organiza-

tion. By our distributed systems, we quantify those attributes for complete/partial

shapes and use them for shape evaluations and representations. In particular, the

shape convexity instead of other well-studied shape attributes such as the symmetry

axis or size, will be emphasized.

Two models are proposed. The decay diffusion process is applied in predicting fig-

ure/ground phenomenon, based on a convexity measure for figure/ground sharing the

same area. The orientation diffusion process, adopting orientation information on

shape boundaries/edges, will discuss the figure/ground separation or shape convex-

ity comparison for regions not owning the same size. A Kullback-Leibler convexity

measure is proposed, with a flexible scenario. Through a parameter, we are allowed

to choose between a size-invariant convexity measure or one with small-size prefer-
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ence. For convexity comparison of perfectly convex shapes, a preference of circles

over triangles will be given, as well as the preference of squares over rectangles.

These two models are also used in generating the symmetry information. In par-

ticular, the symmetry information suggested by the orientation process is computed

by only local operations. The junction information will be derived similarly, where

junctions are considered no more than “boundary axis points”.

Our framework, based on variational formulations will produce the static-state

results. The simulation is continuous, rely on no artificial binary thresholds. For

convexity measurement, other than the mathematical0-1 definition, we distinguish

between “more” or “less” convex shapes. For axis construction, we provide the in-

formation which continuously describes strength of the axes for natural axis pruning.

For junction detection, the transition from low-curvature or high-curvature curves to

curves with a discontinuous curvature will be seen.

The decay diffusion process, with help of the convexity/entropy measure will also

be applied in shape selection. Hence, our framework integrally combining many

different functions is useful as a universal low- to middle-level vision simulation.
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Chapter 1

Introduction

A goal in computer vision is to simulate human visual system with computer routines.

There are variations in the visual system among different individuals or even among

different occasions for the same individual. Thus, the general simulation must be de-

fined in a statistical sense. In general, the success of computer vision model is based

on some percentage of agreements between experiments in human visual system and

prediction of the computational simulation.

Statistics and Bayes Rule The performance of a visual system on a particular ex-

periment can be modeled as the outcome of a certain random variable. The random-

ness implies that, no outcome from any particular experiment will be essential as

testing data for our simulation. However, we pursue the general behavior for a group
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of random variables. Two cases can be studied. When we try to build a theory across

different individuals, our principle is to search the agreement between the prediction

of our simulation and majority of outcomes from human tests. In this case, one “di-

verse” human visual system can be treated as an “imperfect machine”. More likely,

we accept a weaker, the computational view. The simulation is the goal to find a

model with the help of so-calledmethod of undetermined parameters, waiting for the

hidden parameters owned by each individual to be filled in.

On the other hand, we can also pursue the theory built for a single individual

among different occasions. When the outcomes are sorted by time,learning is in-

volved.

One basic rule applied in the decision making process is the Bayes Rule. Based on

an observation recorded by the vector� x0, an objectA can be categorized as one of

k categoriesf!i; i = 1; :::; kg by investigating value of the conditional probabilityy

of !i onx0,

P (!ijx0) =
p(x0j!i)P (!i)

p(x0)
; (1.1)

where

p(x0) =
kX
i=1

p(x0j!i)P (!i): (1.2)

�A bold face will be used for vectors to distinguish from scalars.
yWe use an upper-caseP to denote the probability mass function and a lower-casep to

denote the probability density function.
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For a fixed observationx0, the result is decided by the conditional probabilityp(x0j!i)

and thea priori probabilityP (!i). Moreover, in the case whereP (!i) is a constant,

independent of the categories!i, we can adopt a more useful form,

P (!ijx0) / p(x0j!i) ; (1.3)

known as the maximum likelihood method. A larger conditional probabilityP (!ijx0),

called thea posterioriprobability suggests the decision “A belongs to the category

!i”. In the case where Eq. 1.3 can be assumed, we have a universal theory, indepen-

dent from the “time” and different individuals. When Eq. 1.3 is not applicable, for a

fixed individual, we look for an asymptotic result within a period, if there is any.

Let us discussP (!ijx0) for different applications. In high-level vision problems,

a decision may be made for guessing whether or not the object is a cat or a dog based

on some features in a given image. In low-level vision problems, the decision may

be the detection or not of a feature in a particular location of an image. Middle-

level vision makes the transition from a distributed (local) low-level information to a

more abstract, object oriented, perhaps symbolic representation. It may address the

problem of distinguishing between the figures and the background in images.

High-level x low-level vision In general, the concept of different level tasks in

human intelligence can be illustrated in Tab 1.1. The tasks in levelsn, n+1 andn+2
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Level Task

...

n + 8 Tasting baptism water sweeter than normal water

n + 7 Knowing “Path Finder” may not find the path

n + 6 Realizing he is your grandfather if your father calls him father

n + 5 Ignoring the ads on the web

n + 4 Reading text through a mirror

n + 3 Object recognition

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n + 2 Object detection

n + 1 Texture detection

n Detection of intensity difference

...

Table 1.1. The level of human tasks. The tasks above the dot line may not be

accomplished by using only the visual system. The level n+ 5 and the levels

below it are called the literal levels.
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may be accomplished by introducing only the visual system. The tasks in levelsn,

n+ 1 may be accomplished by applying only local considerations in images.

There are differences between low-level and high-level vision and we want to ex-

pand on this topic.

i In low-level vision many of the random variables, each associated with an im-

age feature, are defined everywhere in the image. In higher level vision, the

variables are more global (not defined everywhere in the image) and possibly

there are fewer variables than for the low-level vision case. Therefore, a vari-

able in the high-level vision is expected to have higher complexity than the

one in the low-level vision. It can lead to tough challenge for the high-level

simulation.

ii The distributions associated with low-level tasks are more ambiguous than for

high-level ones. One is expected to have, in general, more difficulties in decid-

ing whether there is a corner or not in an image location than to decide if there

is a face of a person in an image location. The distribution associated with face

recognition consists of so many different random variables (distributions) that

it is expected to be a much sharper/more peaked distribution (see Fig. 1.1).

iii There are more variations across human visual systems over the task-distributions

in the high-level vision than in the low-level vision. Someone that has never
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seen birds will have a very different high-level description/distribution of a

bird when seeing one, than most of us who have seen birds. High-level de-

scriptions/distributions are learned through experience and therefore have more

varieties according to individual experiences. In this way, it is easier to collect

consistent data for a low-level human task than for a high-level one.

iv The outcome from the high-level task usually overrides the outcome from the

low-level task when there is a conflict. If an edge-boundary is needed to com-

plete a face figure the high-level system will “see” the edge, even if no intensity

gradient exists.

v The high-level task will interact more strongly with other brain activities (other

types of intelligence), such as in speech or upon playing chess.

From low-level to high-level, figure-ground separation and visual organization

The middle-level vision is where the transition from low-level vision to high-level

vision occurs. It transforms a distributed (local) set of informations into a coherent,

object oriented, abstract, description of the world, but yet, without naming objects or

recognizing objects from past experience (memory). In our view, it is where local

properties are integrated into surfaces or objects. The choice of intergration is called

visual organization.
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(a) (b)

Figure 1.1. The figure/ground problem (adapted from [77]) and how it inter-

acts with low-level x high-level vision processes. (a) Wrangling rungs. Typi-

cally, humans perceive white or black as figure with equal probability. (b) Sara

Nader. A high-level knowledge is involved for making the decision to see a

woman face or a man playing saxophone. Each figure, (a) and (b), admit two

solutions as figure/background, but in (b) the solutions are more stable than

in (a), i.e., one does not keep switching from woman face to saxophonist as

often as in (a) from black to white.

Fig. 1.1 illustrates the task offigure/ground separation. The visual system chooses

one side of the edges as figure and as background for the other side. One can also

formulate it as aborder ownershipproblem [71] [72] [59]: given the complete de-

scription of the boundary contours, how does a system decide on which side of the

7



boundary is the surface that gives rise to that border? It is the simplest visual organi-

zation problem where the search of organization is equivalent to the binary selection

of F/G. As formulated by the border ownership problem, usually, we discuss the F/G

separation through pairs of experiments of inverse intensities, as in the convexity-

versus-symmetry images in Fig. 1.6(a1) & (a2). Without the contrast polarity, the

result of F/G is decided by geometry of the (partial) shapes. To describe the F/G

problem by Bayes Rule, we can assume a constanta priori probabilityP (!i) with

!i = �gure; ground in Eq. 1.1.

There is a case which the intensity edge is absent. The illusory curve in Fig. 1.2(a),

introduced by line-endings, will not be detected by any naive edge detector. For

the detection of the “Kanizsa square”z in Fig. 1.3(a), people believe that a global

consideration is necessary [39] [48] [19].

Vision as an inverse problem with the “simplicity” criteria The real world is

described and reasoned by our visual system and intelligence. The 3-D real world,

the sceneW, reflects lights and is projected to the image spaceI. Our description of
zIn principle, people can be trained to perceive up to 5 different visual organizations.

Besides those two demonstrated in Fig. 1.3(b) & (c), we have (3) a white square in front,

occluding white plane with 4 holes; (4) white plane with 4 holes occluding a white square in

the back and (5) plane with 4 holes of pecman shape.
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(a) (b) (c)

Figure 1.2. (a) The illusory curve (adapted from Schumann [79]). (b) Random

oriented dots with the suggestion of closure. (c) Constant intensity square

with 1-D linear gray from 100% black to 100% white in the background from

left to right, inspired by Shapley and Gordon [76]. The illusory gradient is

perceived inside the square without any support of intensity changes. In par-

ticular, the gradient is extended in the direction perpendicular to the square

boundaries.

the scene is an inverse process from the image to the scene.

W
f

 I :

We consider searching of the inverse off , the mappingI 7!W, to be the computer

vision research. Given a single image, the mappingW
f
7! I is considered not 1-

1. It is neither an onto mapping in the sense that the majority part ofI is with low

probability within the range off . Most images in the image space are just white

9



(a) (b) (c)

Figure 1.3. The Kanizsa square and two of its 3-D constructions. The human

visual system prefers the perceptual organization (b) which gives the white

square, 4 black circles and the background as three successive layers in the

scene rather than (c) which consists of only two layers, four pecmen and the

background. Each layer may contain one or more than one object.

noise. Real images, coming from real scenes, are clustered in a small subset of the

spaceI. The Kanizsa square in Fig. 1.3 shows us an example where a 3-D scene,

W1, with four (4) black pecmen and another one,W2, with a salient white square

occluding four (4) black circles in the back, both inW with f(W1) = f(W2) = I 2

I, butW1 6= W2. Other examples involving depth and lighting can be referred to the

discussion of visual organization and depth perceiving in [8] or Fig. 1.4.

We consider computer vision as searching for some mapping~f out fromf whose

inverse will bring a given imageI 2 I to a sceneW 2 W with W = ~f�1(I).

We need to mention that, first, various elements inI should be rejected from our

10



(a) (b) (c) (d) (e)

Figure 1.4. The various shapes with different depth interpretations. (a) is

usually seen as cuboid popped up. (b) & (c) suggest the assumption of nature

lighting effect which (b) looks like a bump and (c) looks like a dent. Without the

nature lighting effect, (d) & (e) suggest the preference of perceiving objects

as convex ones rather than concave ones. (b)-(e) are generated by changing

gray level linearly from 4 different directions.

discussion if they are out of the range off= ~f . Secondly, the selected scene by the

(computer) vision system may not be the “true” sceneWtrue that gave rise to the

imageI via the true projectionftrue; i.e.,I = ftrue(Wtrue) = ~f(W ).

The preference of one interpretation over others usually indicates an order between

the representative and other elements. For Bayesian models, the representatives can

be chosen by the Maximum A Posteriori (MAP) estimation [21]. Another seman-

tic description selects the “simplest” version among them as the representative. It

is known as the Law of Pr¨agnanz, introduced by Wertheimer [90]. Koffka [45] de-

scribed the law as:
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Of several geometrically possible organizations that one will actually occur

which possesses the best, simplest and most stable shape.

For the Kanizsa square, the law can be expressed by having less corners to account

for the square/4-circle interpretation than the 4-pecman one. In noisy images, a more

regular geometry is easier to describe as it costs less information (in a compression

sense) and so one produces methods of image restoration to identify the “simplest”

image representative of the noisy image.

For the search of the function~f , it is possible that the search is exponentially hard

on the size of the images which one wants to explain. The so-called “visual orga-

nization research” is introduced to describe the physical or semantic structure from

the 2-D input. Operationally, this information dramatically reduces the number of

combinatorial alignments needed for searching possible figures in the scene, from

exponential to polynomial [25]. The evidences of experiments on human visual sys-

tems imply that the “depth”x information is appropriate for such mission [56].

Occlusions The real world has occlusions occurring very frequently. Solving the

visual organization with occlusions requires selection and reduction between com-

binatorial choices (see Fig. 1.5). The occlusion suggests the depth change based on
xThe depth here can accept a weaker sense which indicates the relative depth between

pixels, rather than the absolute distance from the viewers.

12
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(a) (b) (c) (d) (e)

Figure 1.5. Various samples may introduce combinatorial explosion in the

identification process(adapted from Cooper [10]). (a) square identification,

and various objects violating the assumption of “flat objects” in 21
2
-D recon-

struction, from simple to difficult: (b) nonrigid, (c) broken, (d) self-occluded

and (e) self-occluded with cycles.

local interpretations. In the Kanizsa square image, and various examples in Fig. 1.6,

the line endings, T- (or L-) junctions, convexity, size or parallelism suggest informa-

tion beyond 2-D [39] [48] [63] [32] [8] [56] [92] [79]. These are local cues in images,

an additional step from local to global is necessary [48] [86] [27].

Some past works are stated here. Kumaran et al. [48] approached the organization

problem from considering the local (corner) configurations. To conquer the input

with discretization, a perfect corner detector was assumed, same as the assumption

made in Mumford [58] and Williams and Jacobs [91] for the occluded edge comple-

tion by Elastica, with the assumption of “good continuation” for edges. Also, all of

their works showed no intention of handling different scales of images. The work of

13



(a1) (a2) (b) (c)

Figure 1.6. The images contain more than 2-D information. (a1) (a2) the

figures Kanizsa illustrated the convexity as the dominant influence over the

symmetry for the F/G separation (adapted from Kanizsa [39]). Part (a2) is

provided to remove the polarity effect. (b) a pop-up circle shows the depth

change provided by the line endings. (c) the parallelism evokes the impres-

sion of contours lying on a 3-D surface (adapted from Witkin et al [92]).

Leung & Malik [50] combined theelastica[58] [16] and thenormalized cuts[78] to

solve the image partition problem for various images including real images, paint-

ings and synthesized images with subjective contours. But the concept of occlusion

is missing, hence no depth information can be derived from it. From a simulation

viewpoint, the works by Kumaran et al. [48] are closer to our visual system in the

sense of being able to reason more than one interesting organizations (see Geiger et

al. [19]). For example, the Kanizsa square has 5 different organizations where either

of them can be visualized actively.

14



Visual Organization, Figure/Ground, Shapes and Gestalt Laws We will consult

the Gestalt Laws [45] [46] [90] [8] for 2-D shapes and visual organization to sketch

the plan for salient figure selection. The Gestalt psychology is usually known by the

assertion “the whole is greater than the sum of its parts”. As we argued, the F/G

separation is the simplest example for the search of visual organization. It is the case

where the search of organization is equivalent to the binary selection from several

regions, which is also equivalent to investigation of the shape geometry. It is the

place where the Gestalt laws will be invoked.

The Gestalt laws says that proximity, convexity, similarity, good continuation, clo-

sure, relative size, surroundedness, orientation, symmetry are useful for F/G separa-

tion or visual organization construction [45] [46] [90] [8]. Our plan is first, construct

a model to quantify the Gestalt Laws for 2-D shapes and the quantified result will be

used in shape representations and evaluations. The salient surface is chosen based on

such information. In other words, we will design the shape representation with those

Gestalt laws included explicitly or implicitly.

1.1 Representation of Shapes

Our ultimate goal is to account for the Gestalt Laws of proximity (Ch. 2, 3), convexity

(Ch. 2, 3), good continuation (Ch. 5), closure (Ch. 5), relative size (Ch. 3), surround-

15



C2

C1

(a) (b1) (b2) (b3)

Figure 1.7. Shape representation and some Gestalt properties of shapes.

(a) a shape with its representation: the internal skeletons show its symmetry

axes. (b1) (b2) two shapes are convex if considered in coarse scales. (b3)

the shape considered to own high convexity by the definition of Rosin [70],

measuring difference of the shape area and the area of its convex hull.

edness (Ch. 2, 3), orientation (Ch. 3), symmetry (Ch. 4) to construct a model of

shapes. We are here studying the 2D shapes, with either closed or non-closed bound-

aries. The non-closed shapes are considered in the F/G simulation. That is, image

frames will not be treated as shape boundaries, inspired by the fact that the image

frames are usually perceived in front of F/G phenomenon with figure/background

extended in behind.

Convexity Kanizsa et al. [40] [39] have suggested that convexity is essential in

F/G judgment. Measuring the shape convexity is thus necessary. The mathematical
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definition of convexity says:

Definition 1.1.1 A region
 2 R2 is called a convex region if the line segment join-

ing any pair of pointsA;B 2 
 lies entirely in
. A region is called concave if it is

not convex.

This definition is binary: either a shape is or is not convex. For non-convex shape,

i.e., for concave shapes, there is no concept of being more or less convex. In the ex-

periments by Kanizsa and Gerbino [40] [39] (see Fig. 1.6(a1) & (a2)), all the shapes

are not convex, but perceptually they appear to be more or less convex. Thus, a

perceptual and continuous measure of convexity/concavity is requested. Voss [87],

Sklansky [81], Gaafar [17], and Kim et al. [43] have suggested various definitions of

convexity for discrete regions. But their proposed definitions are binary instead of

continuous ones, therefore not appropriate for our purpose.

An important issue on analysis of shapes is scale. In the case of convexity, fine

scale structures should not contribute too much in the final measure of shape convex-

ity (see Fig. 1.7(b1) & (b2)). Realizing this scale property will ensure the robustness

under micro perturbations of the boundary.

There are other works related to the issue of convexity. In Jacobs [36], Hutten-

locher et al. [35], convexity has been used as criterion for feature grouping. But their

works only select salient objects that are convex, and do not differentiate among con-
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cave or convex shapes in a continuous manner. In Weiss [89], convexity was used as

the criterion for F/G separation without considering the small-size preference for F/G

(see next paragraph). Besides, the regional consideration was left out. All of their

works can not account, nor aim to do so, for the Kanizsa and Gerbino experiments.

Also, the concept of scale was missing in those approaches. Results can be altered

by fine-scale perturbations.

In the research of shape analysis, various definitions of convexity was proposed for

shape decomposition. One approach is to examine the difference between a shape

and its convex hull. For instance, Rosin [70] used the area difference between the

shape and its convex hull to define a continuous convexity. In Held et al. [29], a

continuous measure of convexity, calledapproximate convexitywas defined based

on the fraction of region boundary coinciding with convex hull of the region. In

many cases, shape attributes like area and perimeter are not enough to specify the

shape properties. For the shape in Fig. 1.7(b3), the area difference between the shape

and its convex hull is small, therefore, own a high convexity by the definition of

Rosin [70]. We claim that missing of the internal axis information is the key for the

failure. The shape in Fig. 1.7(b2) will obtain a bad convexity measure in the sense of

approximate convexity by Held et al. [29].

18



(a1) (a2) (b)

Figure 1.8. F/G separation that uses “size” as the factor to decide figures from

background (adapted from Koffka [45]). (b) shows their edge sampling. By

the law of proximity, we can build the same prediction which says white/black

regions in (a1)/(a2) respectively tend to be perceived as figures rather than

background.

Size and Proximity A Gestalt law discussed by Koffka [45] suggests that smaller

objects are more easily perceived as figures. It gives the interpretation that size of a

figure has a dominant effect on the result of F/G, as shown in Fig. 1.8(a1) & (a2). This

law may be driven from the fact that usually in images, the objects of interest/focus

are smaller than the rest of the image (the background). This law is a very effective

rule and should be present on studying F/G separation.

Another simple law, but a very important one, is the Gestalt law of proximity. It

says that features in an image that are closer should be grouped together. A typical
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image example is given with set of black dots in white background and perceptually

the closer ones are grouped together.

We can relate these two laws by the following argument. Suppose we have smaller

objects in an image, once features such as edges are extracted, they will be grouped

by the proximity law. The border ownership problem will then be resolved. I.e.,

edges that belong to larger objects will give the ownership to smaller objects since

the latter ones will be grouped together. Then smaller objects become salient/figures.

One can see this effect in Fig. 1.8(b). Once the edges are extracted and grouped by

proximity, they will belong to the smaller width strips, and so smaller width strips

will be figures and the larger width strips will be the background.

Symmetry Axis and Symmetry Measure The symmetry axis was first introduced

by Blum [4] as thegrass firedescription. For a given curveC0(s) parametrized by

s, Kimia et al. [44] [80] extended the idea of Blum by giving a nice description of

shape and medial axis via the evolution equation

@tC = (�0 � �1�) ~N ;

C(s; 0) = C0(s) :

with ~N denotes the normal vectors in boundaries. The coefficients�0 and�1 were

used to produce the constant flow and the curvature flow respectively. The medial
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(a) (b) (c) (d) (e) (a) (b) (c) (d)

Figure 1.9. Similarity test suggests that similarity is not a metric (adapted

from Mumford [57]). It depends on the context which we are concerned. To

ask the most similar shape to the shape (b), we obtain the shape (a) in the

left group and end up with the shape (d) in the right group.

axis was created by various types of shocks. Sethian [73] also discussed the 2-D and

3-D flow propagations for shape description. Both of their works are based on the ge-

ometry fact provided by Gage et al. [18] and Grayson [22]. In addition, Liu et al. [52]

found the symmetry axis and SA-tree by using double parameterization on bound-

aries via a variational energy. Both of the boundary and the regional considerations

were made in their work. The approach with only the boundary consideration can

lead to inappropriate result. For instance, tiny perturbations on boundaries can make

a “matched neck” in a shape “mismatched” [57]. Other than the dynamic approach

used in Kimia et al. [44] [80], we pursue a framework in which a static state will be

considered and a map (a field) inside the shape will be computed. All measures will

be derived from it.

For shape comparison, we emphasize thatshape similarity is not a metric, which
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was discussed in Mumford [57]. First, the matching process between shapes is not

symmetric. If we sayA is similar toB, what we mean isB is some kind of prototype

in a category which includesA. Also, the similarity betweenA andB depends

strongly on contexts. E.g., in Fig. 1.9, by given a shape, we are asked to choose the

most similar one among others. In the experiment I(the left group), we are asked

the most similar one tob among others. In the experiment II(the right group),e is

removed and the same question is asked again. Many people reported thata is the

most similar one tob in the experiments I whiled is the most similar one tob in the

experiment II. It gives{

d(b; a) < d(b; c); d(b; d); d(b; e) and d(b; d) < d(b; a); d(b; c) :

A contradiction occurs. Therefore, to search for a universal concept of shape simi-

larity is not appropriate.

1.1.1 A Continuous Simulation

We consider the shape representation from a brand-new approach. We call it the

continuous simulation.

For the convexity measure, instead of using the binary definition adopted in mathe-
{Suppose there is a non-symmetric metric “d” and d(x; y) denotes the difference for “x

compared toy” (not vice versa).
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matics, we would like to search for a continuous version definition. By this definition,

we can discuss “more convex” shapes and “less convex” shapes, for two non-convex

ones. Our comparison will be meaningful even between two perfectly convex shapes.

For study of the symmetry axis, we would like to derive a new axis representation

of shapes. On this representation, more than giving the information telling a point is

on or off an axis, we would like to provide the information which can describe “how

likely” a point is on the axis or “how strong” this axis is.

We will also provide a way to detect junction features. For the junction detection,

we look for a representation which instead of giving a brutely1 or 0 declaration, will

provide the transition from low-curvature curves, high-curvature curves to curves

with discontinuous curvature.

1.1.2 A Global Simulation

In our simulation, we consider the shape information as a whole. For convexity

measurement, we would like to have the ability to discuss the coarse scale convexity.

For the symmetry axis, the information which we look for is based on a global

consideration. So a small axis coming from noise in fine scales shall not be confused

with main axes of the shape.

For the junction detection, we will not only concentrate on the finest scale fea-
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tures. We are also able to pick up junction features in coarse scales, with a stronger

declaration.

1.2 Problem Proposed

For a given single and still image, my proposed problems are

i How can we characterize 2D shapes via local computations and diffusion pro-

cesses where this characterization is particular useful in perceptual simulation?

ii How can the Gestalt studies help us in defining such shape characterization ?

iii How can we find one (or more than one) plausible organization(s) from an

image based on the study of 2-D shapes ?

For the first two topics, in Chapter 2 and Chapter 3, two models will be proposed,

called thedecay diffusion processand theorientation diffusion processso as two

measures called thedecay diffusion measureand theorientation diffusion measure.

The F/G separation and shape convexity will be discussed through these two mea-

sures. In Chapter 4, we use two ways, from the results of the decay process and the

orientation diffusion process to generate the shape axis. Also, junction information

can be derived from the result of orientation process. For the third topic, in Chapter 2

and 3, we use the result from shape analysis to predict the F/G. In Chapter 5, we

24



discuss salient shape selection and visual organization. We conclude our result and

sketch the future work in Chapter 6.
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Chapter 2

Convexity and Size in Figure/Ground

Separation

2.1 From Binary to Continuous Definitions

For a (compact) shape
 and its boundary set@
, we discuss the idea of convexity.

In mathematics, convexity is described by

tP1 + (1� t)P2 2 
 : 8t 2 [0; 1]; P1&P2 2 
 (2.1)

The condition of the definition can be changed to an equivalent one as8t 2 [0; 1],

8P1&P2 2 @
, checking only boundary points. Sometimes, only part of
 or @
 is

visible due to restriction of image frame. E.g., in Fig. 2.2, only
a is visible out of
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(a) (b)

Figure 2.1. The figures adapted from Kanizsa et al. [39] [40] to illustrate

the important role of convexity in F/G separation. Human results show the

black/white area in (a)/(b) respectively is more likely to be considered as fig-

ures.

a complete region
 with its partially visible boundary curves� � @
. A definition

similar to Eq. 2.1 can be formulated for the partial cases such as the region
a or its

partial boundary�. The equivalence argument between checking boundary points or

interior points can also be made.

The idea of convexity for F/G separation was proposed by Kanizsa et al. [39] [40]

in their convexity versus symmetry experiments. In Fig. 1.6(a1) & (a2) and Fig. 2.1,

the idea of “convexity” (other than symmetry) is proposed as the dominant criteria

for F/G decision. However, the convexity of these regions does not follow the mathe-

matical definition of convexity in the sense that most regions are considered concave.

Therefore we need a continuous version definition for convexity which allows us to

distinguish between “more” and “less” convex shapes. Various definitions will be

discussed.
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 sitting on two sides of the boundary @
. The regions 
, 
 and boundary

@
 may be only partially explored and end up with 
a, 
b and � respectively.

We measure convexity by shortest paths connecting two points through two

(partial) regions 
a and 
b separately.

Measuring convexity via shortest path

Let us analyze Fig. 2.2 and try to propose a continuous measure of convexity. We

have a rectangular frame, an imageI, divided into two regions
a and
b � I� 
a,

both with the same area (within the frame) and a common edge boundary�. Before

we can decide the border ownership problem, we assume� � 
a and� � 
b. Both

regions, if interpreted as shapes, are concave and yet, we perceive one region as more
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convex than the other.

We observe that in Fig. 2.2(a), length of the segmentP1P2 � 
a is shorter than

length of the curve]P1P2 � 
b. For pointsP3 andP4, the straight segmentP3P4 � 
a

connects two points in the convex side, but a longer path, the segmentsP3Q2 [

Q2P4 � 
b is chosen in the concave side. The smaller the angle\Q2 is, the bigger

the difference between the length of the two shortest paths (s.p.) in both regions.

The same is true for the case where (the integral of) curvature in the curve]P1P2 gets

larger. In Fig. 2.2(a), based on the evidence pointsP1 andP4, the region
a is more

convex than the region
b by owning the shorter pathP1P3P4 � 
a compared to the

pathP1Q1Q2P4 � 
b.

We then propose a definition of convexity as follow. The version which we will

give is for a complete shape
. A similar version for partial explored
a, 
b or� can

also be formulated similarly.

Definition 2.1.1 Given a shape
 and its boundary@
, we estimate the shortest

pathsp(Pi; Pj) between pair of pointsPi; Pj wheresp(Pi; Pj)�
 & Pi; Pj2@
. Its

length is denoted byEsp(Pi; Pj). Suppose@
 is parameterized by its arc length, we

define s.p. convexityas the integral of such distance over all pairs of points on@
,

CVsp1(@
) =

Z L

0

Z L

0

Esp(P (s1); P (s2)) ds1 ds2 ; (2.2)

whereL is length of@
. It can be normalized by the Euclidean distancekP (s1) �
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P (s2)k, which gives

CVsp2(@
) =

Z L

0

Z L

0

Esp(P (s1); P (s2)) ds1 ds2Z L

0

Z L

0

kP (s1)� P (s2)k ds1 ds2

: (2.3)

A rough estimation gives

CVsp1(@
) � ML2 ;

whereM denotes the maximum lengthEsp for pair of points in@
. For a per-

fectly convex shape
, M is its diameter. For the normalized version, we have

CVsp2(@
) = 1 for convex shapes, andCVsp2(@
) > 1 for concave shapes. It

provides a continuous definition of convexity. On the other hand, we can write a

variant of the definition which checks all points in
 instead of@
. We can also

consider the case when image frame exists. We compare convexity for two (partially

explored) regions
a and
b with a shared edge� by computing convexity of them

via either the boundary or the regional version of the definition.

Let us take a look at these measures. Suppose we sample@
 by N points, the

computation of these measures requiresO(N2) operations and it can not be paral-

lelized belowO(N) computations. One needs to verify, for each pointP (s(i)), all

the other pointsP (s(j))0s. Moreover, it assumes that the shape is given. I.e., it does

not provide an automatic way to extend this approach when shapes need to be de-

tected, e.g., the case of noisy images or illusory figures where the shape is not clear
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Figure 2.3. Shapes with different convexity, examined by CV�2. We have

CV�2(pseudo triangle) > CV�2(rounded triangle) > CV�2(circle) = 1 and

CV�2(pseudo triangle)! +1 as r0 ! 0.

or is partially broken.

Alternatively, we would like to develop a measure of convexity that is based on

a distributed system, based on local computations that can be added to yield global

measures. For that we invoke the machinery of diffusions processes and Markov

random fields.

Measuring convexity via curvature on boundary

We propose another version of the definition based on curvature information on

boundaries.

Definition 2.1.2 Given a shape
 and its boundary@
, parameterized by the arc
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lengths. The curvature convexityis given by

CV�1(@
) =
1

2�

Z L

0

j�(s)j ds; (2.4)

where� denotes curve curvature on@
. Or we can try a quadratic form�

CV�2(@
) =
L

4�2

Z L

0

j�(s)j2 ds: (2.5)

For shapes with smooth boundary, we haveCV�1(@
) = 1 for any convex shapes

andCV�1(@
) > 1 for concave shapes. For non-smooth boundaries where some

undefined curvature points were occurred, we can make them “curved” and compute

the convexity on the perturbed ones. It will be well-defined. It gives us

CV�1(circle) = CV�1(triangle) = 1 :

The second definitionCV�2 can only be discussed on smooth curves. For a circle of

arbitrary radius, we haveCV�2(circle) = 1. In fact,CV�2 is invariant under scaling.

For figures in Fig. 2.3, we have

CV�2(pseudo triangle) > CV�2(rounded triangle) > CV�2(circle) = 1 :

�A similar one calledaverage bending energy, normalized by the curve length instead,

was given byE(@
) = 1
L

R L
0 j�(s)j2 ds in Young et al. [93]. Our definition is made to be

size-invariant.
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The computation givesCV�2(rounded triangle) = 1+(l1+ l2+ l3)=2�r. So we have

CV�2(rounded triangle)! +1 if r! 0

CV�2(rounded triangle)! 1 if l1 + l2 + l3 ! 0 :

In fact, Young et al. [93] proved that circle shape will minimize the criteria, either

the curvature convexityCV�2 or their average bending energy, if the curve length is

fixed. It is possible to have a convex shape owning bigger measure ofCV�2 than a

concave shape.

Let us check how effective these measures are. First of all, both definitions are not

appropriate in the F/G problem, either for measuring convexity of complete regions


 & 
 or incomplete regions
a & 
b with shared edges on an image (Fig. 1.6(a1)

& (a2) and Fig. 2.1). Those regions will have the exact same value on both sides no

matter what we consider, the smoothed or non-smoothed versions. Again, we need to

know the shape before we can execute the computation involved in both definitions.

Compactness

We discuss a related criteria calledshape compactnessy, which has been discussed in

Bacus et al. [2], Green [23], Rosenfeld [69] and Bribiesca [7].
yIn Young et al. [93], the average bending energy, similar to the convexity definitionCV�2

was used to substitute the conventional definition of shape compactness.
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1 a2a

b

(a) CP = 2:917 (b) CP = 3:152 (c)

Figure 2.4. The Shape (a) is considered more compact than the shape (b),

suggested by the conventional shape compactness measure CP. (c) the

measure CP will not select the white regions over the black regions as fig-

ures.

Definition 2.1.3 Given a shape
 and its boundary@
. Its shape compactness is

defined by

CP(@
) =
j@
j2

4� � j
j
; (2.6)

with j@
j andj
j denoting perimeter and area of
 respectively.

A shape with smaller value is considered to be a more compact shape. It is a con-

tinuous definition with the similar behavior toCV�2 by the fact that the circle also

minimize the criteria withCP(circle) = 1 for any circle shapes. However, it is not

appropriate in vision applications as two significantly different shapes can own the

same measure [93] [7]. In Fig. 2.4, the shape (a) is considered to be more compact
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than the shape (b), if measured byCP. To apply this measure to F/G simulation,

it will not give a correct prediction. For example, we can design a F/G experiment

such as in Fig. 2.5(a) where both regions own the same area. It gives the same

compactness for both regions if only the edge boundaries are considered as shape

boundaries. If we do consider the image frame as part of the shape boundaries, we

will not select the white regions in Fig. 2.4(c) as the favored regions. Their mea-

sures areCPwhite = 4(a1 + b)2=(4�a1b) andCPblack = 4(a2 + b)2=(4�a2b). It gives

CPwhite > CPblack if b2 > a1a2 or b > a1; a2, which is the case in Fig. 2.4(c).

Namely, for this size/proximity experiment, we will collect a result against the per-

ceptual phenomenon, predicting black regions as figures. In fact, the area term is

assigned as the denominator. Therefore, larger regions will be favored given the

same perimeter. To accomplish the task of F/G separation, a measure with the

small-size preference is preferred, if a measure with size preference is offered. On

the other hand, the convexity definitionCVsp1, given by examining shortest paths

within shapes, is more appropriate than the shape compactnessCP, for deciding

F/G. Smaller shapes will be favored, with shorter shortest-paths.

U-convexity andV-convexity

Let us discuss two different types of convexity. In Fig. 2.2, the regionA andB

are considered different as on boundaries of the regionA (an arc or aU), curvature
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� = _�(s) (suppose orientation is parameterized by the arc lengths) shares the same

sign while boundaries ofB (an angle or aV) has curvature equal to0 except at the

angle peak. The first kind is called arc convexityor U-convexityand the second

kind is called angle convexityor V-convexity. We say that the convexity is concen-

trated on a single point on the boundaries withV-convexity (regionB) while it is

more uniformly distributed over the boundaries withU-convexity (regionA). It tells

one important difference between them. When a small aperture is randomly put on

these two kinds of boundaries, we have a better chance of knowing where the convex

side is by putting it on the boundaries withU-convexity than the boundaries withV-

convexity. We argue that this local suggestion makes theU-convexity more favorable

than theV-convexity. Another evidence of our argument comes from the experiments

provided by Stevens et al. [82] or Fig. 3.2. The concave cusp feature (more like own-

ing V-convexity) suggests that it is the background side rather than the figures. Also,

in the Kanizsa image in Fig. 1.6(a1), we do have similar number ofU’s (arcs) or

V’s (angles) for the black and white regions. Although, the perception provides the

preference of black regions (with moreU-convexity) as figures.

In the next section and in Chapter 3, we proceed to construct two kinds of convex-

ity measure. Thedecay diffusion measureis derived by a process called thedecay

diffusion processand theorientation diffusion measureis from a process working on

the domain ofI � [0; 2�), called theorientation diffusion process. They are the 1st
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and 2nd order of Markov processes respectively. Those images and perceptual ex-

periments that we have discussed will be studied again under these measures. As we

have discussed, the measures that we will propose is based on a distributed system,

a highly-parallelizable algorithm. Besides, the frameworks should not be recognized

as having only the goal to derive the (convexity) measures for F/G prediction. Other

features of shapes, such as symmetry or junctions, can also be obtained as side re-

sults. It will be discussed in Chapter 4.

2.2 Decay Diffusion Process

We seek a computational model to measure convexity of a complete or partial shape


 or 
a in a continuous manner. Based on boundary input, the first step of our

framework is designed to generate a field insidez the shape while the value of each

point can be viewed as convexity on that point. The field calleddecay diffusion field

is derived by a leaking energy diffusion process where the discrete formulation can

link this process to a 2-D decay walk, starting from the boundaries (Appendix B). It

means that the computation during this part can be done locally through interactions

between adjacent pixels. A judgment of convexity, called convexity measure is given
zThe inside (or outside) means just one side of an closed contour, depending on where the

interesting part is. For a partial shape, the interesting region is restricted within the image.
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by computing (point-wise) entropy of the field belonging to
. A shape with a smaller

measure is called a more convex shape. More discussions will show that not only

convexity, but also size preference, will be caught by this measure. As we know,

both are important to F/G. From now on, we will not clearly distinguish a complete

shape
 from a partial one
a or @
 from � unless it is necessary to do so. We use


 and@
 throughout our formulation.

2.2.1 Decay Diffusion Process as Energy Minimization

Notations and Assumptions

Given a binary synthesized imageI � [0; A] � [0; B] � R2 with the characteristic

functionI(x) of the region
 as intensity function. The feature set of the image, is

given by the edge/boundary set@
 = fx 2 I : 9Nx s:t: I(x) 6= I(Nx)gwhereNx

is drawn from the neighborhood set of the pointx. A discretization in the Euclidean

grid gives four neighbors asNx = f(x1+1; x2); (x1�1; x2); (x1; x2�1); (x1; x2+1)g

for the pointx = (x1; x2). We record this edge set by its characteristic functione(x),

which is,

e(x) =

8>><
>>:

1 ; if x 2 @


0 : if x 2 
� @


(2.7)

Rest of the formulation is set related to this function (as well as the intensity function
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I). The input�0, also called the inducer or hypothesis function, is given by

�0(x) =

8>><
>>:

1 ; if x 2 @


0 : if x 2 
� @


(2.8)

The area of
 is recorded byj
j, andj@
j denotes length of the edge set.

Variational Formulation

We adopt a variational formulation in our framework. Solving of the decay diffusion

field is the minimization process on a given energy. The energy functional which we

are interested in is

Edecay(�j�0;
; �) =

Z



�(x) (�(x)� �0(x))
2 +M(x) kr�(x)k2 dx ; (2.9)

for a given input�0. The function� : 
 ! R is the field we need to evaluate. The

function�(x) in the first term (data fitting) is given by

�(x) =

8>><
>>:

Æ2(x) ; if x 2 @


� ; if x 2 
� @


(2.10)

whereÆ2(x) stands for the 2-D Dirac delta function s.t.
R
@

Æ2(x) dx = 1. A com-

plete definition can be found in Appendix A. In the discrete case, it is provided by

�(x) = 1=�;x 2 @
 for a small constant�, called the delta function coefficient(Ap-

pendix B). On the inside part of
, we choose�(x) = �, a small positive constant

called the decay coefficient. The functionM(x) in the second term (smoothness),
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called smoothness function is simply assigned asM(x) = 1 for the homogeneous

case.

The first part stands for fidelity to the input. The second part stands for the smooth-

ness assumption, minimizing square of the gradient valuekr�(x)k. Let us re-

organize the energy functional into two parts
 � @
 and@
 and write down its

Euler-Lagrange equation

��(x) = ��(x) ; x 2 
� @


�(x) = �0(x) ; x 2 @


(2.11)

where� = @xx + @yy is the Laplacian operator. When
 touches image frame, an

absorbing barrieris assumed for the boundary condition.

We solve the equation by the finite difference method which will be demonstrated

in Appendix B. The solution, written as��(x) is the decay diffusion field we need.

Practically, for the convexity comparison of two shared-edge regions within an im-

age, we solve the field for both regions
 andI � 
 simultaneously by discretely

assigning�0 = 1 and�1 to both sides of the edges. As for the original image

Fig. 2.5(a), we assign black/white color as�1=1 to pixels on both sides of the edges,

and assign50% gray or0 to pixels inI�@
 representing�0(x), so called the inducers

or the hypothesis function. A simple example of F/G image is shown in Fig. 2.5.

41



2.2.2 Entropy Criteria

In order to obtain a convexity measure, first, we convertx the field�1 � ��(x) � 1

into a probability distribution at each pixel, via a linear mapping

p�(x) =
1

2
(1 + ��(x)) : (2.12)

For a F/G problem,p�(x) can be treated as the probability of being in front (salient).

In Appendix B, we will give a random walk formulation to describe the solution��

as well as the probability fieldp�. As we will show in Appendix B,p�(x) is the

probability to reach any “figure inducers” before reach any “background inducers”,

for a walk starting atx. Either with or without broken edges, the probability to reach

“background inducers” can be greater than zero. The reason is that the walks stopped

in interior points will be considered having half of the probability contributing to

the “background part”, as it lacks of knowledge to commit. Therefore, it is natural

to characterize the region
 as the setfx : p�(x) � 0:5g andI � 
 as the setfx :

p�(x) < 0:5g. When two regions on both sides of edges are solved simutaneously, the

(discrete) pixels on the edges, wherep�(x) = 1=0 (or ��(x) = 1=� 1) is considered

as the strongest commitment to be salient/background respectively. The place with
xIt is possible to have��(x) � 0 as we are solving the field simultaneously on both sides

of the edges. Later when we introduce the mechanism of organization selection for illusory

figures, we have another case of��(x) � 0. Please see Chapter 5 for more discussion.
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p�(x) = 0:5 (or ��(x) = 0) stands for the place being neutral or non-commitant.

The criteria is given by calculating (point-wise) entropy of the shape
,

S(p�) = �
1

j
j

Z



p�(x) log p�(x) + (1� p�(x)) log(1� p�(x)) dx : (2.13)

A shape withsmallermeasureS is considered more convex. As we said, we can

substitute the sub-index of the summation by an equivalent conditionp(x) � 0:5. We

compute this measure for both regions
 andI�
, indicated byS andS respectively.

Conventionally,p�(x) = 1=0 is reserved for convex/concave side respectively and we

useS to denote the measure for convex side andS for concave side if the convex or

concave side can be easily distinguished. The sharper the diffusion, the closer to1=0

p�(x) for 
 / I� 
 is, the smaller the entropy we can obtain. The entropy is a point-

wise entropy or entropy of the region normalized by the area of
 in the discrete

case.

2.2.3 Convexity and Decay Coefficient

We analyze our model by the random walk formulation. In Appendix B, a discrete

form energy functional will be given and the process becomes a decay walk in 2-D.

From the random walk viewpoint, the solution��(x) is the summation of probability

carried by all the walks starting from inducers on boundaries (may be with different

weights) to the pixelx. The decay coefficient� controls how strong the decay effect
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Figure 2.5. (a) F/G image with two regions, one is convex and concave is

another. Both of them own the same area and the number of inducers. (b)

(c) the maps according to the typical hypothesis shown within the magnifier

in (a), with white/black/gray representing the salient/background/neutral as-

sumption respectively. We set � = 5 � 10�3; 1 � 10�4 in (b), (c) respectively.

The maps show the decay when it is away from the arc (stronger decay in

(b)). The entropy (convex/concave or S/S) for them are (b) 0:972=0:974 and

(c) 0:880=0:916. (d) the iso-contour (iso-��(x)) of (c). It shows how the diffu-

sion expands larger distance on the convex side.

is where particles are with the chance of�(x)=(�(x) + �(x;Nx)) to vanish{ after

each jump (Eq. B.15) or simply�=(�+4) for pixels not on the boundaries. A smaller

� creates less particle vanishing and more diffusion due to the fact that each walk can
{The function�(x;Nx) records number of neighbors for the pointx, when no edge block-

ing is assumed, we got a constant4, see Appendix B.
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remain for a longer period. The effect is illustrated in Fig. 2.5(b) and (c). The idea

why convexity is caught by our model can be presented in the following way. First

of all, random walks tend not to cross over boundaries. The chance of particles

vanishing on boundaries is given by1=(1 + ��(x;Nx)) with a small�. So we can

assume that the walks are more likely to visit the boundaries only once by choosing a

small enough�. Therefore, we can discuss walks in the convex side and the concave

side separately. For walks starting from boundary inducers to points in
 or I � 
,

shorter ones in the convex side will be accumulated which mean less decay while

longer ones will be chosen in the concave side (see Fig. B.1). In Fig. 2.5(d), it can be

seen that the convex side has wider iso-contour than the concave side, which means

a sharper diffusion and a smaller convexity measure.

Continuous Convexity Measure

To understand why our criterion gives a continuous convexity measure, we test our

measure on parallel pentagon images with various angles from�=6 to�. In Fig. 2.6(d),

the difference of the convexity measure gets bigger when the angle becomes smaller.

The diffusion results for angles equal to�=6 and5�=6 are shown in Fig. 2.6(a2) &

(b2) respectively. Smaller angles provide stronger intensities of diffusion.
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Figure 2.6. (a1) (b1) source images with angles of �=6 and 5�=6 and (a2)

(b2) their diffusion result (only middle parts are shown). The entropy val-

ues for (a2) and (b2) are 0:721 / 0:870 (convex/concave or S / S) and 0:944 /

0:950 respectively, with � = 1� 10�4. (c) The iso-contour with angle equal to

�=2 (complete map). (d) The difference between entropy for the convex and

concave regions as a function of the angle (“inverse of convexity”).

Figure/Ground Separation

Let us check the image of “convexity versus symmetry”, adopted by Kanizsa [39] in

Fig. 2.7(a), The result supports the idea proposed by Kanizsa, which tells us that the

black regions rather than white regions tend to be perceived as figures, and convexity
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(a) Original (a) Diffusion (c) Original

(b) Original

(b) Diffusion (c) Diffusion

Figure 2.7. F/G separation by the decay process, with the convexity and size

preferences. (a) the Kanizsa figure for the convexity-versus-symmetry ex-

periments. The entropy values are S=S = 0:546=0:560 for the black/white

regions respectively. Beware that we have more diffusion near the neck area.

(b) another F/G dominated by the figural convexity. The decay measure gives

the measure as S=S = 0:723=0:747, favoring the “shell” shapes, the white re-

gions. (c) The size preference is given by the measure of S=S = 0:220=0:602,

favoring the white/small strips.
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is the key for this phenomenon. Another example given in Fig. 2.7(b), prefers the

“shell” shapes. We discuss other properties of our model in the following sections.

2.2.4 Size and Proximity

As we mentioned, the idea of using size as a criteria for F/G separation is highly

related to the Gestalt law of proximity. In our model, as we can realize in the random

walk argument that proximity between the inducers of a shape and any points in

the shape is the key for large intensities of diffusion. So for the size preference

test in Fig. 2.7(c), without any effect of convexity, our model will prefer the white

regions which are the regions with smaller size. This is because the white regions

have inducers closer to each other, where inducers will support the diffusion in the

nearby regions before the particles vanish in an exponential decay. An extreme case

can be given by neglecting the smoothing in Eq. 2.9. We have��(x) = �0(x). The

convexity measure is given by

S(p�) =
j
j � j@
j

j
j
= 1�

j@
j

j
j
: (2.14)

A smaller area (or more number of inducers) will yield a smaller measure. It matches

our visual perception, a known fact proposed by Koffka [45].
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Size Invariance and Tuning of�

We would also like to discuss the relation betweensimilar shapes with different sizes.

It can be seen from the Euler-Lagrange equation in Eq. 2.11. In Eq. 2.11, for a scaling

of s from the shape
 to
0, we subsititutex by x0 = sx and let�0(x0) = �(x), also

�00(x
0) = �0(x). A new equation is obtained as

s2��0(x0) = ��0(x0) ; x0 2 
0 � @
0

�0(x0) = �00(x
0) : x0 2 @
0

(2.15)

It means that if we choose a new decay coefficient�0 = �=s2, we can collect a similar

field �0� to the original field�� with �0�(x0) = ��(x).

To speak of the convexity measure, we consider Eq. 2.13. For two probability maps

p� andq� with p�(x) = q�(x0) derived from�� and�0� on
 and
0 respectively, we

have

S(q�) =�
1

j
0j

Z

0
q� log q� + (1� q�) log(1� q�) dx0

=�
1

s2j
j
� s2
Z



p� log p� + (1� p�) log(1� p�) dx = S(p�) : (2.16)

Therefore, the same convexity measure can be obtained for both shapes if the decay

coefficient is carefully adjusted.
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Figure 2.8. (a) The point O, center of an inscribing circle of radius R has

an exponential decay as R getting bigger. (b1) & (b2) Profiles of the diffu-

sion field ��(x) at diameter of a circle shape when the decay coefficient is

assigned by � = 5 � 10�3 and � = 5 � 10�4 respectively. Their convexity

measures are S(b1) = 0:890 and S(b2) = 0:667.

2.2.5 The Speed of Decay

We would like to estimate speed of the decay in the decay process. For a shape
,

a pointO 2 
 with d(O; @
) = R, shown in Fig. 2.8(a), the decay inO can be

bounded by

��(O) � e�
p
�R
2 : (2.17)

For a circle shape, the decay in the circle centerO can be approximated by

e�
�R2

4 � ��(O) � e�
p
�R
2 : (2.18)

Profiles of the fields in the diameter are shown in Fig. 2.8(b1) & (b2). For a shape, this
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exponential decay weakens the possible description of its coarse scale structures. For

“highly convex” shapes with minor perturbations such as the shapes in Fig. 1.7(b1)

& (b2), an appropriate convexity measure should depend on not only fine scale con-

vexity, but more importantly, coarse scale convexity. To improve this, in next chapter,

the orientation measure will be introduced based on the orientation diffusion process.

2.2.6 Implementations

We choose the parameter set as the decay coefficient� = 5 � 10�3 and the delta

function coefficient� = 10�1. This set is fixed throughout all our experiments unless

different notification is given.

For the F/G problem, we design the input images with the same size in both of

the black and white regions. By doing this, we remove the size bias which may be

created in Eq. 2.14. Also, we would like to discuss the boundary condition with more

details.

Boundary Condition

As we mentioned, all experiments are tested under the assumption of absorbing bar-

riers for image frames, which has��(x) = 0 if x 2 @I. To be more careful, we can

choose the frame used for computation to be a little bigger than the image frame.

The principle is to choose a frame for computation big enough s.t. we can assume
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all walks going beyond the (computation) frame are likely to be stopped. So those

walks can be ignored in computation without losing too much precision for the final

measurement. When the image frame is extended, in Eq. 2.13, we use the criteria of

fx :p(x) � 0:5g=fx :p(x) < 0:5g to characterize figure/ground respectively.

In perception, this assignment is interpreted as the F/G phenomenon prevailing

below image frames with certain range. For an evidence, we can refer to Fig. 2.7(c)

where we can perceive a fatter strip near the boundaries in the right end.
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Chapter 3

Orientation Diffusion Process

The purpose of quantifying convexity of shapes was inspired by figure/ground sepa-

ration. Therefore, a convexity measure was pursued and applied to F/G problems. We

consider this measure a definition of shape convexity, with the small-size preference.

With the perceptual evidences provided by Kanizsa [39], this definition is useful for

the F/G problems, by providing F/G predictions statistically similar to the results

from our visual systems. Computationally, our model was designed in a distributed

system; hence, a highly parallelizable scheme can easily be obtained. Let us dis-

cuss how well this decay diffusion model can fit our goals from different viewpoints.

Again, we do not try to distinguish between partial or complete shapes. Although

as a measure to suggest F/G it is more likely to discuss partial shapes, while as an

abstract definition for shape convexity, we are interested more in the complete ones.
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(a1) (a2) (b2)

Figure 3.1. When we horizontally translate the boundaries in (a1), a copy of

Fig. 2.7(a1) to (a2), we have a different convexity judgment from the decay

model. The diffusion result of (a2) is in (b2) with the convexity measures

S=S = 0:588=0:515, predicting the white regions as figures, opposite to the

result for (a1) which gives S=S = 0:546=0:560, predicting the black regions

as figures. Nevertheless we did not perceive much difference between (a1)

& (a2) which has just pixels difference in location.

Figure/Ground Separation

From the F/G point of view, presumably, we can use the output from the decay model

to predict the answer of F/G. More precisely, based on the studies of the convexity

and size preferences of the decay measure in the last chapter, we should be able

to use the measure in F/G prediction if the F/G phenomenon in input images are

dominantly decided by these two factors. The remaining question is that, in the
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decay model, we need to check if these two are “well-balanced/normalized” as in

our visual systems. We design a simple experiment by horizontally translating the

boundaries of the convexity-versus-symmetry image in Fig. 3.1. Under the convexity

shape preference which yields the preference of black regions in (a1) as figures, the

knowledge of small shape preference also tells us the following phenomenon:

When we translate the boundaries via the direction of expanding/shrinking the

black/white regions respectively, we can expect the white regions will eventually be-

come the prevailing parts as figures rather than background.

This phenomenon can be seen either through our model or the experiments in our

visual systems (e.g. Stevens et al. [82]). For each of them, a “no difference” point

exists where both regions share the same preference there. So the succeeding ques-

tion is: Will they happen to be identical to each other? From Fig. 3.1(a1) to (a2), we

horizontally translate the boundaries for a few pixel distance. The result from the de-

cay model shows the result ofS=S = 0:546=0:560 for (a1) andS=S = 0:588=0:515

for (a2). It suggests a “black region preference” in (a1) and a “white region prefer-

ence” in (a2), opposite to our perceptual observation where we can hardly describe

the difference between them if one of them is hidden from the other. Namely, our

model is too sensitive to the size preference. It indicates a failure and we would like

to improve it by accounting for this observation.

In the new framework as well as the new convexity measure that will be proposed,
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a free parameter is provided and two no-difference points from the simulation and

our visual systems can be synchronized by tuning this parameter.

Definition of Convexity

In the decay model, a convexity measure favoring small size regions has been pro-

posed. If this measure is considered as a quantitative definition for shape convex-

ity, it is natural to ask for a size-invariant one. By adjusting the decay coefficient

� (Eq. 2.9, 2.10), it is possible to give the same measure from the decay process for

similar shapes with different sizes, according to Eq. 2.15 and Eq. 2.16. But the choice

of � needs region area as an input. In general, this knowledge is not available before

the whole shape outline is detected. So this adjustment is not preferable for images

containing illusory shapes, or noisy images. We would like to put it forward, with

more flexibility. We would like to construct a convexity measure with or without the

preference of small size regions.

In the next two sections, we will discuss some technical issues and see why the

decay diffusion model is not appropriate under such considerations.

U-convexity,V-convexity, Boundary Curvature and 2nd Order Transition

On boundaries, we examine two typical types of convexity, theV-convexity and the

U-convexity, defined in Sec.2.1 or Fig. 2.2. For the curves withV-convexity, the
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(a) (b)

Figure 3.2. The concave cusp feature serves as the cue for F/G separation

(adapted from Stevens et al. [82]). The result suggests that black/white re-

gions in (a)/(b) respectively are more easily to be perceived as figures.

B
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(a) (b)

Figure 3.3. concave cusp feature as the dominator for F/G, suggests the

white region as the most salient part. The orientation diffusion process, as

opposed to the decay diffusion process, will give a more stable result (see

Fig. 3.8).

57



convexity is concentrated on one peak of the boundaries, while for the ones with

U-convexity, the convexity is more uniformly distributed along the boundaries.

Perceptually, we say that theU-convexity is more preferred than theV-convexity.

As we argued in Sec. 2.1, if boundaries with both types are sampled through asmall

aperture, more likely, the F/G can be picked up from boundaries withU-convexity

than withV-convexity, for the reason that most areas (except the peak) inV-convexity

boundaries provide no clue for the F/G. For theU-convexity boundaries, F/G is more

likely to be decided in a small scope, and in a separated way. Namely, for theU-

convexity ones, we can decide the F/G by a small scope observation and by only

one of the numerous observations. It is important, for the reason that profiles pro-

jected from objects in the 3-D world are mostly partial, broken or occluded and more

collections of such local suggestions give a better chance to decide F/G efficiently.

Furthermore, the angle peaks/junctions inV-convexity regions sometime suggest a

potential visual organization movement. Different organization constructions lead to

different F/G choices and figural hypotheses can be assigned on either the convex

or concave side [48] [19] [32] [33] [34]. In various situations, junctions, the place

with theV-convexity, are produced by object overlapping seen through a particular

perspective, and hence, are of no physical significance. All these reasons show more

importance of theU-convexity than theV-convexity, and it may lead to the prefer-

ence of theU-convexity for F/G separation. It is true that information collected by
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a small aperture is local, sometime incompatible with other local decisions and can

be altered by a global consideration in visual organization construction. However,

we discuss the boundaries with only the “balanced” presence ofU-convexity andV-

convexity. In this situation, the F/G decision will be chosen favoring theU-convexity

rather than theV-convexity. It is exact the case in the convexity-versus-symmetry

image provided by Kanizsa [39] (Fig. 1.6(a1), (a2) or Fig. 3.1) where number of

U-convexity andV-convexity curves are similar.

Another similar evidence is provided by Stevens et al. [82]. In Fig. 3.2, they argue

that the concave cusp feature is the dominator for F/G. We tend to choose black area

as figures in (a) or white area as figures in (b). For a concave cusp (more like owning

theV-convexity) in Fig. 3.3, the white region (owning theU-convexity) will be the

favored part.

To speak of the decay diffusion model, a discussion can be made in the concave

cusp in Fig. 3.3(b). We draw a small circle at either the pointa or b with the same

radiusr. For the diffusion result, we say that the pointb gets better support on the

black side than the pointa on the white side because the circle centered inb covers

more inducers than the circle centered ina. This fact may lead a better result in the

black region than in the white region. A numerical evidence is shown in Fig. 3.8.

We can consider curves with theU-convexity andV-convexity from a different

view. Suppose the diffusion from boundaries are set to be oriented, i.e., the bound-
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ary inducers,�0 in Eq. 2.8 or Eq. 2.9 are oriented ones, depending on the bound-

ary normals and delivered by an oriented transition (a tendency to keep the previ-

ous orientations). In the curves withU-convexity, we can see diffusion comes from

neighboring points and “converging” with similar orientations while for the curves

with V-convexity, we either have no such “convergence” or have “convergence” from

non-adjacent neighboring inducers. A 2nd-order Markov chain will be used as the

transition mechanism to carry those normal information to form a regional descrip-

tion of shapes.

We are interested in another experiment which may be related to the discussion in

this section. In Fig. 1.2(c), an image generated by a square with constant intensity and

1-D linear0�100% gray on the background (inspired by Shapley et al. [76] where a

circle figure was used). The intensity difference on boundaries suggests the illusory

gradient inside the square, even no intensity change is provided. In particular, the

gradient is extended in the direction perpendicular to the square boundaries. We are

interested in what process can simulate this effect.

The Speed of Decay and Coarse Scale Structures

In Sec. 2.2.5, we estimated the speed of decay in the decay process. The decay is

exponential, therefore the field lose structures when it is far from inducers. For the

convexity measure, few structure in coarse scales will be considered. For convex
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shapes with fine-scale perturbations, such as Fig. 1.7(b1) & (b2), an appropriate con-

vexity measure should depend on not only fine scale convexity, but more importantly,

coarse scale convexity.

3.1 Orientation Diffusion in R2
� S

1

The new convexity measure based on an orientation diffusion process will be pro-

posed to improve the decay model in the following sense:

i. The new measure allows the flexibility of switching between measuring con-

vexity with or without size preference.

ii. The 2nd order Markov chain is used as the transition mechanism to simulate

the preference ofU-convexity overV-convexity.

iii. Fine scale protrusion, either convex or concave can only have minor contribu-

tion to the final measure.

iv. The measure can distinguish two perfectly convex shapes. The result shows a

simulation of the Law of Pr¨agnanz for 2-D shapes (described in Chapter 1 or

by Wertheimer [90] and Koffka [45]).

v. Many shape attributes, such as symmetry and junction feature can be naturally

obtained through computation of the measure.
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(a) (b1) (b2) (b3)

Figure 3.4. (a) an oriented particle moves from P0 to P1 with the orienta-

tion changed slightly. We say that the particle has its configuration changed

from (x; y; �) to (x + cos �; y + sin �; � +  ) as it goes from the point P0 to

P1. The shadow indicates possible trails the particle may choose, with dif-

ferent weights according to the deviation angle  . For a bell shape 
, we

show its hypothesis set, �0 in Eq. 3.2, by a vector representation s.t. �0(x; �)

is indicated by the vector in x with length �0 � 0, pointing to the direction

u� = (cos �; sin �). The 0-length vectors are indicated by dots. (b1) represents

�0(x; �) for x 2 @
, u� � nx � 0, where nx is the normal on x. Only the normal

directions are shown. Other parts of the hypothesis include: (b2) �0(x; �) = 0

for x 2 @
, u� � nx < 0, represented by vectors of length 0 (again, only those

with the orientations in the outward normal directions are shown); and (b3)

�0(x; �) = 0 for x 2 
 � @
, � 2 [0; 2�). The whole hypothesis set is given by

�0 = f(b1)g [ f(b2)g [ f(b3)g.
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We will discuss the first four topics in this chapter and postpone the fifth topic to the

next chapter.

The plan is designed similarly to the decay model. After a field is generated by

a process, we derive a measure by a point-wise computation. The new diffusion

process, called the orientation diffusion, augment the working space for diffusion

from the image spaceR2 toR2 � S1 with an additional dimension� � [0; 2�). The

idea of orientation diffusion can be illustrated in Fig. 3.4(a). Apart from the decay

diffusion which is considered as a random walk or a Brownian motionW (t) with the

property

The incrementW (t)�W (s) is independent ofW (s) : 8t � s

The walk carries no memory other than its location as it proceeds. The orientation

diffusion takes additional memory in the orientation dimension. With a known ori-

entation� at times, it is more likely to keep this orientation to the next status of

time t, up to some noise. In Fig. 3.4(a), a particle with the configuration(x; y; �)

at the times could end up with the next step of timet with a new configuration

(x + cos �; y + sin �; � +  ) where is created by noise. While the previous model

caught convexity by the support of two near points, we now catch convexity in a

different sense.The support of orientation diffusion is always from neighboring in-

ducers, unlike the support of decay diffusion which may come from two non-adjacent
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ones. E.g., in the diffusion map in Fig. 2.7(a) & (b) or Fig. 3.1(b2), results generated

by the decay process, we can find more diffusion near the neck area of the white

regions.

Some works have been done with models dealing with oriented data or working on

an oriented space. Tang et al. [85] collected the unary oriented information as input

and a process, called thedirection diffusionwas applied to the data regularization.

Some other works related to image regularization and segmentation by isotropic or

anisotropic diffusion can be referred to Weickert [88]. Mumford [58], William and

Jacobs [91] used an oriented process and applied the EulerElasticaof two oriented

sources (junctions) to complete occluded-curves. Unlike those works, our works

are derived from boundary input, and the result is recorded by a vector-bundle field

instead of a scalar or a vector field. Besides, our interests are concentrated on de-

scribing 2-D shapes, including deriving convexity measure, computing shape axis

and junction information.

3.1.1 Variational Formulation and Energy Functional

Notations

For a given region
 (represented by its boundaries@
) in an input imageI, either

partial or complete, we discuss its convexity. A set of useful information is collected
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as follows. For an intensity functionI(x), the oriented edge map

e(x; �) =
1

Me

����@I(x)@u�

���� 2 [0; 1]; x 2 @
 (3.1)

records the normalized magnitude of the intensity change at the pointx in the di-

rection ofu� = (cos �; sin �), namely, the (unsigned) directional derivative inu�,

normalized byMe = maxfj@I(x)=@u�j : x 2 I; � 2 �g, the largest directional

intensity edge in the imageI. Also, on@
, a hypothesis set is defined by

�0(x; �) =

8>><
>>:

e(x; �) ; if u� � n � 0 ^ x 2 @


0 ; if u� � n < 0 _ x 2 
� @


(3.2)

as inducers. On the boundary, the vectorn is the unit normal vector chosen with the

inward direction. Intuitively, we say a direction closer to the inward normal is in the

source mode, or otherwise, in thesink mode. That is, on boundaries, we prefer a value

of greater than/equal to0 for the orientations going inward/outward respectively. It

is a different design from the decay model. The positive inducers only occur in the

inward orientations. Finally, a field

�(x; �) : 
� �! R

will be evaluated by our orientation diffusion process.

We will use vector notation to “visualize”� (as well as�0), where�(x; �) will be

denoted by a vector atx with lengthj�(x; �)j, pointing to the direction�. All vectors

located atx form a vector bundle ofx.
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Local Hypotheses and Data Fitting

The field �(x; �) should take the local hypothesis value�0(x; �), where they are

available. In this case, they are available at all intensity edge points (points on@
)

according to their strengthe(x; �). I.e., we seek the�(x; �) which minimizes

Edata(�j�0) =

Z

��

�(x; �) (�(x; �)� �0(x; �))
2 dx d� ; (3.3)

where the function�(x) is given by

�(x; �) =

8>><
>>:

e(x; �) � Æ2(x) ; if u� � n � 0 ^ x 2 @


� ; if u� � n < 0 _ x 2 
� @


(3.4)

with the 2-D Dirac delta functionÆ2(x) s.t.
R
@


Æ2(x) dx = 1 (Appendix A). For a

non-smooth, a binary intensity functionI(x) valued inf0; 1g characterizing
, we

can assign the edge map by

e(x; �) = ju� � nj :

The directions perpendicular to boundaries are the one with the maximum value in

e(x; �), with either an inward (�0 = 1) or outward (�0 = 0) hypothesis.

For the homogeneous regions (where no intensity edge is present), the functions

�0(x; �) and�(x; �) are given by respectively assigning a local hypothesis of value

0 and a small constant strength0 < � � 1, known as the decay coefficient�. As

before, the coefficient� controls the decay effect of the energy when it is away from
�When this functional is analyzed as a Markov chain, the parameter� plays the role of
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the inducers (hypothesis set). A larger� has a stronger effect in bringing points away

from the intensity edges to take value0 (see Fig. 3.5(d) & (e)).

Smoothness

Propagation of the local hypothesis is done by adding a smoothness term that prefers

neighboring points with similar orientations to share similar values. For instance, in

Fig. 3.4(a), the vector in positionP0 with the orientation� and its neighborP1 with

the orientation�+ are encouraged to share similar values in�. A simple quadratic

form is applied here by minimizing

1

�

�X
 =��

M(x; �;  )(�(x+cos �; y+sin �; �+ )� �(x; �) )2 ;

for each pointx. A continuous form gives the smoothness functional as

Esmooth(�) =

Z

��

�
1

�

Z �

��

M(x; �;  )(cos � �x+sin � �y+ ��)
2d 

�
dxd� : (3.5)

The functionM(x; �;  ) is simply provided bycos( �
2k
), giving the cosine weight-

ing for the smoothness that concentrates particularly on small deviations. A more

complicated version of the functionM may also depend onx(non-homogeneous) or

�(anisotropic).

the decay parameter, or the probability of “vanishing”, of the random walk associated with

this functional.
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A new parameter is introduced,� 2 (0; �), called the deviation factory, control-

ling how likely moving particles will keep their orientations. Later in the discussion

of normalization between convexity and size, we can tune this factor to give a convex-

ity measure between a size-invariant one and a measure with small shape preference.

Energy Functional

The total energy functional is summation of the functionals Eq. 3.3 and Eq. 3.5,

E(�j�0) = Edata(�j�0) + Esmooth(�) : (3.6)

For Eq. 3.5, the functional within the bracket, calledH(�jx; �) can be rewritten by

H(�jx; �)

= (cos ��x + sin � �y)
2 �

1

�

Z �

��

M(x; �;  ) d 

+2��(cos � �x + sin � �y) �
1

�

Z �

��

 M(x; �;  ) d 

+��
2 �

1

�

Z �

��

 2M(x; �;  ) d 

= A (cos � �x + sin � �y)
2 + 2B ��(cos � �x + sin � �y) + C ��

2 : (3.7)

For the simplest case whereM(x; �;  ) = cos( �
2k
) 8x 2 
; � 2 �, we have

A = 4=�,B = 0 andC = 4�2

�
(1� 8

�2
). In this case, its Euler-Lagrange equation can

yWe avoid the degenerate case,� = 0, when the smoothness functional becomes

P
x;�M(x; �; 0)(�(x; �) � �(x+cos �; y+sin �; �))2, no longer depending on , and the

minimization process can be operated separately through different�’s.
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be given by

cos2� �xx + 2 sin � cos � �xy + sin2� �yy + �2(1�
8

�2
) ��� =

��

4
� ; (3.8)

with the boundary condition�(x; �) = �0(x; �), if (x; �) 2 @
 ��.

Numerically, the energy function is quadratic and the minimizer can be straightfor-

wardly obtained by rewriting Eq. 3.6 in matrix form and solving the matrix inverting

problem. The minimizer will be written as��(x; �). By the random walk formula-

tion, the result��(x; �) can be viewed as the expectation of�0 at the first vanishing

point of walks starting atx with orientation�. The vanishing is done by either hitting

the boundaries or decay along the walk. Equivalently, up to a constant, the result

can also be viewed as summation of all walks starting at boundary points, carrying

the value�0. Some examples of��(x; �) are shown in Fig. 3.5(a) & (b). Also,

Fig. 3.5(f1) shows the result among all orientations, by using the vector representa-

tion.

3.1.2 Kullback-Leibler Measure

Once the field��(x; �) is obtained, we can evaluate the convexity. First of all, from

the solution space
 � � to the image space
, we perform a vector summation

considering��(x; �) as a vector in the direction ofu� = (cos �; sin �) with length
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(f) (f1) (f2)

Figure 3.5. Results of orientation diffusion process by two presentations. (a)

�(x; y; 0), (b) �(x; y; 27
16
�), (c) maximum magnitude among all orientations, and

(d) (e) relative entropy D(PxkQ) (Eq. 3.12) with � = 0:1=j
j = 2:876 � 10�5

and � = 500=j
j = 0:144 respectively. The difference shows effect of the

energy decay. Larger � gives stronger decay and less diffusion. (f1) (f2)

Vector presentations. (f1) shows vector bundles and convexity vector �̂� for

part of the bell shape figure in (f). (f1) the vector bundles with choice of 8

orientations. We say the point A has a more balanced (symmetry) result

along different orientations than the bundle of the point B. (f2) the convexity

vector �̂�.
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��(x; �) (always non-negative),

�̂�(x) = �̂�cv(x) =

Z 2�

0

��(x; �)u� d� ; (3.9)

where direction of the resultant vector�̂�cv will be recorded by��, if it has non-zero

length. We shall usê�� to denote the resultant vectors if no confusion can be made.

Examples of the vector field̂��(x) can be seen in Fig. 3.5(b2). The idea is that this

vector summation will remove the symmetry information of the solution field, and

thus what is left is “convexity”. For example, the center of a circle is perfectly sym-

metric and will result in̂�� = 0 while other internal points will have the symmetry

removed and still produce evidence of convexity. In our approach, convexity works

on the complementary information as symmetry does. Detecting symmetry will be

done by investigating which coordinates have a vector summation yield zero value

(cancellations), while convexity examines the non-zero valued information of the

vector summation. Indeed, the convexity measure we propose measures how well

the “vector bundle” is accumulated around this summation vector. Let us be more

precise.

At a fixed locationx, for each pair of opposite orientations� and�+�, we compute

the net effect, called the map� �(x; �) by

� �(x; �) =
1

2
f��(x; �)� ��(x; � + �) + j��(x; �)� ��(x; � + �)jg

� �(x; � + �) =
1

2
f��(x; � + �)� ��(x; �) + j��(x; � + �)� ��(x; �)jg
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(a) (b)

Figure 3.6. A simple experiment used for F/G separation and its relative en-

tropy D(PxkQ). While right side is convex and left side is concave, we have

S=S = 0:605=0:671 respectively. Both regions are equally sized.

= � �(x; �)� �(x; �) + �(x; � + �) ; (3.10)

where a cyclic boundary condition� = � + 2� is used. Note that equation (3.9) can

be rewritten as

�̂�(x) =

Z 2�

0

� �(x; �)u� d� :

The second step is to transform�(x; �) to P �(x; �) or simply Px(�), by a linear

transformation, similar to what we did for the decay model in Eq. 2.12. It is

P �(x; �) =
1

2
(1 + � �(x; �)) :

Unlike any previous work, we propose a Kullback-Leibler distance (or relative

entropy) to measure convexity. The mapPx(�) is compared to a Gaussian map inS1

(not normalized)

Q(�) =
1

1 + �N
exp(�

(� � ��)2

2�2
); �� � � � � (3.11)

72



where the center ofQ is located in the direction��, the direction of vector̂�� (here�

stands for standard deviation, not the diffusion field. It is set to2:0 throughout all the

experiments). A small positive constant�N is given to avoid the case ofQ(�) = 1.

The Kullback-Leibler distance, computed at every pointx, betweenQ(�) andPx(�)

is given by

D(PxkQ) =

Z 2�

0

Px(�) log
Px(�)

Q(�)
+ (1� Px(�)) log

1� Px(�)

1�Q(�)
d� : (3.12)

Intuitively, it measures the inefficiency of assuming that the distribution isQ(�)when

the real distribution isPx(�). That is, we assume the map inS1 has a sharp peak at

��. D(PxkQ) is always equal to or greater than0, and it can be greater than1. A

smaller measure means a better fit.

This measure is given for each pointx. To obtain a global measure of a shape, we

simply average this measure over the points on the figure, i.e., the final measure of a

shape
 is

S(Px) =
1

j
j

Z



D(PxkQ) dx ;

A shape with a smaller measure is considered more convex than others. A simple

example can be seen in Fig. 3.6 as a F/G experiment. We continue to useS to denote

the measure for background area.
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3.2 Convexity Measurement by 2nd Order Process

The process can be considered as a 2nd order Markov chain with memory of location

and orientation. Various studies suggest that the 2nd order Markov chain with the

help of Kullback-Leibler measure provides better convexity measurement than the

one derived from the decay process. We use numerous experiments to show the

difference between them. The result strongly depends on the appropriate choice of

�. But in this section, we will only sketch various experiments that we are interested

and their results. The results derived by using different�’s and their relations will be

discussed in Sec. 3.3. Other results are separated in different sections in rest of this

chapter. The comparison of two perfectly convex shapes are discussed in Sec. 3.4.

In Sec. 3.5, we discuss convexity of the shape with minor perturbations in the fine

scales. The implementation details are given in Sec. 3.6.

The first series is organized as F/G experiments. It includes the images with the

concave cusp feature in Fig. 3.3, inspired by Stevens et al. [82] and the convexity-

symmetry images adapted from Kanizsa [39]. Besides the F/G experiments, in the

second series of experiments, we compare convexity of different shapes. It is a

figure-to-figure rather than figure-to-ground comparison. The reason that we com-

pare “figure” to “figure” by this model instead of the decay model is because many

unnecessary attributes in the decay model such as size or symmetry preference have
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been removed here. Therefore, it is appropriate to mention “convexity measure” of

shapes as it solely owns the name now. The comparison can thus be applied to a

wider range. In most experiments, results from the decay model are provided for

comparison.

3.2.1 Figure/Ground Separation

We examine our measure using four prototypes, a simple arc in Fig. 3.6, the colon-

nade in Fig. 3.7, concave-cusp figures in Fig. 3.8 and the Kanizsa figures in Fig. 3.9.

Shapes with higher convexity win on all trials.

Arc For a F/G experiment of arc shape in Fig. 3.6, the measure is given byS=S =

0:605=0:671, favoring the white region.

Colonnade In the second series shown in Fig. 3.7, we test our measure in colonnade-

figure images. The result is consistent through images with different ratios of bk/wt

area. Also, we do observe the size effect from (a) to (c): the difference between

figures and background becomes less as black/white regions get smaller/larger re-

spectively.

Concave Cusp For concave-cusp images in Fig. 3.8(a) & (b), we apply both of the

decay diffusion and the orientation diffusion process as methods for F/G separation.
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(a) 0:520=0:587 (a1) (b) 0:522=0:585 (c) 0:525=0:583

Figure 3.7. Colonnade with boundaries translated through the horizontal

direction from (a), a size balanced one to (c), with white regions owning

the largest area. The relative entropy of (a) is shown in (a1). The differ-

enced between the measures in figure/ground get smaller from (a) to (c), as

black/white regions get smaller/larger. It shows the size/proximity preference

of the model.

The results show that the orientation diffusion is more capable of providing a correct

prediction than the decay diffusion process. For both images, the orientation mea-

sure predicts that white regions are favored over black regions which is not always

provided by the decay measure.

Convexity vs Symmetry For the Kanizsa images in Fig. 3.9(a3) where white re-

gions own the largest area compared to Fig. 3.9(a1) & (a2), the measure ofS=S =

0:490=0:497, predicts that the white regions (convexity) prevail as the figures over

the black regions (symmetry). This prediction cannot be derived by the decay model

which gives the measure ofS=S = 0:653=0:576, favoring the black regions (con-

cave and symmetry), a “wrong” prediction. The reason comes from the fact that the
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(a) (b)

(a1) (b1) (a2) (b2)

Figure 3.8. Images inspired by Stevens et al. [82] and their F/G predictions.

(a) (b) original images, (a1) (b1) results derived from the decay process and

(a2) (b2) results from the orientation process. Their convexity measures are

(a1) S=S = Swhite=Sblack = 0:692=0:716, (b1) S=S = 0:785=0:778 by the decay

model. The improved one from the orientation diffusion gives (a2) S=S =

0:507=0:566 and (b2) S=S = 0:556=0:561. Results provided by the orientation

process show more consistency, especially for the case when the feature

causing convexity gets weaker.

decay model is too sensitive to size and cannot provide a consistent prediction when

we move the edge boundaries horizontally, even if the change is small and beyond the

detection from our eyes. On the other hand, the oriented measure will give a correct

prediction consistently, with a slightly shift of the edge boundaries. More results and
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(a1) (a2) (a3) (b3)

Figure 3.9. Convexity measure for the Kanizsa figures (adapted from

Kanizsa [39]. (b3) gives the relative entropy of (a3). For (a3) which gives

the largest white space, the convexity measure is S=S = 0:490=0:497 by a

test of � = 0:1. When the boundaries are translated from (a1) to (a3) with

white regions getting bigger, the measure from the decay process shows

S=S = 0:653=0:576, a “wrong” prediction. Note that the decay diffusion pro-

cess will give more diffusion near the neck area while in this case, a bad

relative entropy will be given with help of the orientation process. More dis-

cussion related to size and the choice of � can be seen in Tab. 3.1.

discussions related to size and the choice of� will be given in Sec. 3.3.

3.2.2 Convexity Comparison of Shapes

For the figure-to-figure convexity comparison, our attention is turned to Fig. 3.10, a

convexity comparison between an imperfect ellipse (convex) and a bell shape (con-
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(a) � = 0:1 � = �=2 (b) � = 0:1 � = �=2

S = 0:432 S = 0:650 S = 0:449 S = 0:619

Figure 3.10. The level sets and the relative entropy for the (imperfect) ellipse

and the bell shape with the simulations of � = 0:4 and � = �=2. The prefer-

ence between the ellipse and bell switches as we goes from a small � to a

large �. A complete comparison of their convexity according to different �’s

will be shown in Fig. 3.12. Results from the decay model give Sellipse = 0:674

and Sbell = 0:607, by a simulation when � = 1 � 10�2. It gives the same

preference as we obtained from the orientation model by a large �.

cave). For a series with� set to be0:4, we haveSellipse = 0:432 < 0:449 = Sbell,

correspondent to our expectation. Results by assigning larger� as well as the discus-

sion of the choice of� will be provided in next section (Sec. 3.3.3 and Fig. 3.12).

We can easily find out that the measure derived from the decay process is not

appropriate for such arbitrary shape comparison. Besides the necessity of different

setting of� according to different sizes (Sec. 2.2.4), the decay model does not pro-
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(a) S = 0:714 (b) S = 0:800

Figure 3.11. A highly concave shape (a) is “more convex” than (b) a circle,

according to the measure from the decay process. The measure gives (a):

0:714 and (b): 0:800. Both shapes have the same area.

vide a clear meaning for shape convexity, which, for instance, says that a shape in

Fig. 3.11(a) is more convex than a circle in (b).

3.3 Convexity versus Size

In the Euler-Lagrange equation in Eq. 3.8, the deviation factor� serves as the diffu-

sivity in the orientation space�. In the random walk formulation, a larger� provides

more noise and less deterministic behavior in orientation when it moves from one

location to another neighboring location. A measure with small-size preference is

yielded in such a situation. On the other hand, a small� has more control in orien-

tation. The measure will have less size preference and be closer to ideal convexity

measure than the one given in the less-deterministic case. The most extreme case
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gives the size invariance measure, provided by letting� ! 0. It will be discussed

in Sec. 3.3.1. Results related to different choices of� will be studied in Sec. 3.3.2

for F/G separation and Sec. 3.3.3 for shape convexity comparison respectively. The

choice of� provides the flexibility of convexity measure between a size-invariant one

and the one with small size preference. It cannot be achieved by the decay measure.

3.3.1 Size Invariance by Letting�! 0

Let us analyze the case when� ! 0, where the walk is totally deterministic in

orientation. By taking the limit�! 0, the functional in Eq. 3.7 becomes

lim
�!0

H(�jx; �) =
4

�
(cos � �x + sin � �y)

2 : (3.13)

We want to examine the effect of shape scaling in this limit for the whole functional

in Eq. 3.6. After that, we study the scaling effect on the convexity measureS.

Given twosimilar shapes
 and
0 in an imageI, indicated by two characteristic

functions� and�0 s.t.�(x) = 1 or�0(x) = 1 if x 2 
 or
0 respectively, and�(x) =

0 or�0(x) = 0 otherwise. Under an appropriately chosen coordinate system, we have

�(x) = �0(rx) = �0(x0); 8x;x0 2 I. Given similar edge mapse(x; �) = e0(x0; �),

when�! 0 and�! 0, the decay term will vanish and we have

E(�0) = E(�) =

Z

��

Æ2 � e � (� � �0)
2 +

4

�
(cos ��x + sin ��y)

2 dx d� ; (3.14)
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if we assign�0(x0; �) = �(x; �). So the minimizer for either functional can be ob-

tained easily when the other one has been computed. Two minimizers are related by

��(x; �) = �0�(x0; �). Different orientations are worked independently here.

Let us discuss the scaling effect on the convexity measure. For two similar maps

��, �0�, we can obtain the similarity betweenPx andPx0 orD(PxkQ) andD(Px0kQ).

Therefore, for the convexity measure, we have

S(Px0) =�
1

j
0j

Z

0
D(Px0kQ) dx

0

=�
1

r2j
j
� r2
Z



D(PxkQ) dx = S(Px) : (3.15)

It is an ideal case where we can achieve a measure with no sensitivity to the size.

Examples in the discrete case can be found in Fig. 3.12 and Sec. 3.3.3. When� is

not zero, we need to set a smaller�0 = �=r2 to achieve the similarity��(x; �) =

�0�(x0; �).

3.3.2 Figure/Ground Separation in Convexity-Symmetry Image

We will use the Kanizsa figures in Fig. 3.9 to illustrate our points. As we have

discussed, the decay model cannot provide a consistent prediction when the area

ratio of different regions is changed, even though the change is small and beyond the

detection from our eyes. The orientation model will give a consistent prediction, with

a small shift of edge boundaries. The trick lies in the free parameter� which on one
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Series (Area) � = 0:1 � = 0:4 � = �=2 Remark

Convexity Measure by Orientation Diffusion (S=S)

(a1) (+0=� 0%) 0:487=0:502 0:490=0:499 0:560=0:570 size balanced

(a2) (+6=� 0%) 0:488=0:500 0:492=0:497 0:564=0:565

(a3) (+28=� 0%) 0:490=0:497 0:495=0:491 0:573=0:555

Convexity Measure by Decay Diffusion (S=S)

(a1) (+0=� 0%) 0:621=0:653 size balanced

(a2) (+6=� 0%) 0:638=0:635

(a3) (+28=� 0%) 0:671=0:597

Table 3.1. Kanizsa figures with various size ratios (Fig. 3.9), measured by

the orientation diffusion and the decay diffusion. The series from (a1) to (a3)

gives the white region area from small to large. Series (a1) has balanced size.

The result can be read from different viewpoints. For the orientation diffusion,

a smaller � gives a purer convexity measure and a larger �, meaning more

uncertainty in orientations in walks, will cause a stronger size preference.

The prediction for F/G is likely to be decided by convexity when � is small and

be decided by size/proximity when � is large. We can get convex predictions

for F/G when � � 0:1. The decay diffusion measure is pretty much a size

measure if we do not provide a size-balanced experiment.
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hand (small� or the extreme case with� = 0) gives a convexity measure without

considering small size preference and on the other hand (big�) gives a measure

with the size preference. In Tab. 3.1, we have series (a1), balanced area for black

and white regions, series (a2), larger white regions and (a3) white regions with the

largest area. Several pairs of comparisons can be studied. When� = 0:1, the purest

convexity measure among them, gives the expected answer with white in the front, for

all three cases. When� = �=2, a case blended with the most size preference among

them, white regions in (a1) & (a2) are preferred, but not for (a3) where the smaller

black regions are preferred. The case of� = 0:4 gives an intermediate transition.

For the perceptual simulation, suppose a case where F/G is decided by both of the

convexity and size preferences, we can tune the parameter� to obtain the appropriate

normalization of them, according to the preferences in human visual systems.

3.3.3 Convexity Comparison of Shapes and Tuning of�

We study our convexity measure for different shapes with the same or different sizes.

The source images are provided in Fig. 3.10. The imperfect ellipsesA1(large) &

A2(small) represent convex shapes, and the bell shapesB1(large) &B2(small) rep-

resent non-convex shapes with “strong proximity” in the neck area. For the choice

of �, a similar scenario is used as in the F/G separation experiments. When� is
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Relative Entropy for Various Shapes

ellipse A1:           area=3324
small ellipse A2: area=1682
bell B1:                area=3477
small bell B2:      area=1652

Figure 3.12. A comparison between shapes with different sizes and convex-

ity. Four curves listed in � = �=2, from top to bottom are for the (imperfect)

ellipse A1, bell B1, small ellipse A2 and small bell B2, shown in Fig. 3.10. A

measure with small � will pick shapes by convexity. A measure with large �

will pick shapes by size/proximity; therefore, either small sized shapes or the

bells which own strong proximity near the neck will be favored. When � = 0:1,

the case with the least size preference, the measures for all similar shapes

with different sizes will coincide with each other.
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small, we pick shape by convexity and when� is larger, we either pick the smaller

size shapes or pick the bell shape with stronger proximity. The details are shown in

Fig. 3.12.

Convexity comparison of shapes with the same sizeWhen two shapes share the

same size, we can easily pick up the ellipse as the more convex shape by choosing

� � 0:6. A large � will favor proximity and therefore pick the bell as the more

favorable shape. We haveSA1 < SB1 andSA2 < SB2 when� � 0:6.

Convexity comparison of shapes with any sizesTo make the measure capable to

be applied in a wider range, we compare shapes with different sizes, achieved by

using an even smaller� � 0:4. In this case, no size/proximity issues need to be

considered and the measure becomes a “convexity measure”. We haveSA1;SA2 <

SB1;SB2 if � � 0:4 is provided. The smallest� or � = 0:1 provides a measure

with the least sensitivity to the size. As we can see, the values of similar shapes with

different sizes are coincided to each other in this situation.

Large � and size/proximity preference When� is large, it is the case of diffusion

with low certainty in orientation. We will have the result favoring smaller size shapes,

as we haveSA2;SB2 < SA1;SB1. When similar size shapes are compared, a shape

with stronger proximity will prevail. Therefore, the bellB1 is favored over the ellipse
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l 2

1l

(a) (b) S = 0:437 (c) S = 0:420 (d) S = 0:417

Figure 3.13. (a) rectangle with ratio l1 to l2. (b) (c) (d) samples of different

ratios l2=l1 and the relative entropy D(PxkQ). The measures are (b) 0:437,

(c) 0:420 and (d) 0:417, given the parameter � = 0:1.

A1 andB2 is favored overA2, by having smaller measures.

3.4 Comparison of Convex Shapes and Prägnanz Law

We would like to discuss our convexity measure for convex shapes. That is, for

shapes that are categorized into one group, “convex shapes” by the mathematical def-

inition, our measure will give different judgment. We say that our measure has a pref-

erence of “simple shapes” which has been discussed by the Law of Pr¨agnanz [90] [45],

described in Chapter 1. The result is given by a simulation of� = 0:1. When a large

� is applied, we have the preference similar to the one provided by the decay model.
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3.4.1 From Rectangle to Square

In Fig. 3.13, we apply the model to a series of rectangles with ratio of side length

from 0 to 1. As shown in the experiments, the closer to square the rectangle is, the

better the convexity measure. A thin rectangle will get a good score by the decay

diffusion measure where more diffusion is promised by good proximity of opposite

sides. But this symmetry will be cancelled by the computation of Eq. 3.10.

This same preference can also be given by the shape compactnessCP, square of

perimeter divided by area, defined in Sec. 2.1. For a square with size lengtha and a

rectangle with size lengthsb andc, we have

CP(square) =
4

�
<

1

�
(2 +

b

c
+
c

b
) = CP(rectangle) if b 6= c :

3.4.2 From Triangle to Circle

In Fig. 3.14, we examine various regular shapes. Unlike the decay model giving

a measure with the preference from triangle to circle, this orientation model gives a

reverse order, prefers circle most, then, hexagon and triangle. By using the Kullback-

Leibler measure, diffusion from neighboring inducers withsimilar orientationswill

accumulate around��, direction of the resultant vector̂�� (Eq. 3.9); hence, giving a

good score. For a cross check, the square in Fig. 3.13(d) hasShexagon < Ssquare <

Striangle, falling between the triangle and hexagon. Remember that when a large� is
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(a1) S = 0:684 (b1) S = 0:787 (c1) S = 0:801

(a2) S = 0:422 (b2) S = 0:410 (c2) S = 0:407

Figure 3.14. The results by both of (1) the decay model and (2) the orientation

model for various regular shapes: square, hexagon and circle. (a1) (b1) (c1)

the diffusion maps from the decay diffusion process and (a2) (b2) (c2) the

relative entropy derived from the orientation process. We also show their iso-

contours for the triangle shape. Their measures from the decay model are

(a1) 0:684, (b1) 0:787, (c1) 0:801 and the orientation model gives the measures

as (a2) 0:422, (b2) 0:410 and (c2) 0:407 with � = 0:1, a reverse ordering. The

result by the orientation diffusion shows a simulation of the Law of Prägnanz

(described in Chapter 1). Note that the square in Fig. 3.13(d) falls between

triangle and hexagon. Their area is provided by (a) jtrianglej = 897, (b)

jhexagonj = 1361, and (c) jcirclej = 1469 (pixels).
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applied, we have the reverse preference, the same as the one provided by the decay

measure.

The shape compactnessCP will also give the same order of preference. As we

have discussed in Sec. 2.1, the shape compactness is not appropriate to be applied

in F/G problems. For balanced-sized regions, shape compactness will give the same

result if the image frame is not considered to be part of the shape boundaries. On the

other hand, larger regions will be selected, opposite to our perception, if we do con-

sider the image frame as part of the shape boundaries. The results created by different

considerations of the image frame will be discussed in Sec. 3.6.1. Another difference

between the shape compactness measure and the orientation diffusion measure is

that they have different considerations for structures in different scales. It will be

discussed in Sec. 3.5.

3.5 Coarse Scale Structures

The decay diffusion process is not appropriate to measure convexity of shapes with

small perturbations in fine scales as in Fig. 3.15 or Fig. 3.16. Due to the exponential

drop in the energy, the measure derived from the decay process catches only the

properties in fine scales. But for the shapes in (a1) and (a2), we are more interested

in the global properties which describe them as circles up to some noise on fine
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(a1) S = 0:404 (a2) S = 0:411 (a3) S = 0:425

Figure 3.15. Level sets of relative entropy for shapes with different convexity

in fine and coarse scales. (a1) circle, (a2) (imperfect) circle with concave

perturbations on its boundaries and (a3) concave shape. Their convexity

measures are (a1)=0:404 (a2)=0:411 and (a3)=0:425 with � = 0:1.

(a1) S = 0:723 (a2) S = 0:699 (a3) S = 0:609

Figure 3.16. Level sets from the decay process for shapes with different con-

vexity in various scales. Their convexity measures are (a1)=0:723 (a2)=0:699

and (a3) 0:609.
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0:404 0:406 0:411 0:425 0:437 0:440

Figure 3.17. Convexity measure for various shapes with different convexity in

different scales, from the most convex to the least convex one (� = 0:1).

scales. In Fig. 3.15, by the orientation process, the result shows (a1) a circle is more

convex than (a2) a circle with concave perturbation in fine scales. However, both of

them are more convex than the concave shape in (a3). It matches our expectation that

both of (a1) and (a2) are more convex than (a3) in coarse scales. Fig. 3.16 shows the

result generated by the non-oriented decay model. The result does not give the shape

convexity, if convexity is considered in coarse scales. We also study other various

shapes, which is shown in Fig. 3.17. The result shows a different preference from

preference given by the compactness.

3.6 Implementations

We choose the parameters as� = 0:4, � = 0:1=j
j, divided by the area of the region


 and the number of orientations is chosen to be32 unless different comments are
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made. The 2-D delta function is chosen in the same manner as we did in the decay

diffusion process and the delta function coefficient is chosen to be� = 10�5 � j@
j,

a constant normalized by the perimeter of
. The normalization of the parameters

� and � according to area and perimeter of
 respectively is not essential for the

convexity measurement. As we discussed in Sec. 3.3.1, a small enough� and� can

bring us to a measurement close to a size-invariance one. The standard deviation

used in the Kullback-Leibler measure is set to be2:0 all the times unless different

comment is given.

3.6.1 Boundary Condition and Shape Surroundedness

We adopt the absorbing barriers as boundary/frame condition throughout our sim-

ulations. We would like to give an example to illustrate how different choices of

boundary condition/shape surroundedness can lead to different judgment of salience.

In the image where size/proximity can dominately decide the F/G phenomenon

(e.g., Fig. 2.7 (c)) we can use the orientation measure to predict the “correct” F/G.

On the other hand, a different boundary/frame consideration can be made where

the image frame is also considered as inducer boundaries. The salience competi-

tion becomes the comparison between the (closed-) thinner rectangle shapes and the

(closed-) thicker rectangle shapes. The study in Sec. 3.4.1 suggests that the black
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thicker rectangles, closer to squares, will have a better convexity measure, therefore

provide a different answer. The preference of the white regions in our visual system

supports the first choice of boundary condition. It implies thatimage frames should

not be considered as part of the shape boundaries.

We would like to relate our models, either the decay model or the orientation

model, to the issue of shape surroundedness which is known to be one of the fac-

tors affecting the decision of salience. We can easily understand it from our models,

with or without the orientation consideration. It predicts that shapes with full sur-

rounded boundaries will have better/smaller measure than the ones without closed

boundaries.
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Chapter 4

Internal Shape Representation

4.1 Symmetry Information

To illustrate that internal shape representation is included in our diffusion models, we

compute shape axis. The idea that shape axis can be captured by our diffusion models

is not particularly new or surprising. For example, based on the work of Siddiqi and

Kimia [80] or Kimia et al. [44], we know that the diffusion process over shapes will

“meet” (yield shocks) at the symmetry axis. However, the results from our models,

based on variational approaches are provided in the static state. Therefore, the def-

inition of axis will no longer be decided by pairs of points, but a global property of

the boundaries. The term “shape axis” is used instead of “symmetry axis” or “medial

axis” to distinguish from the axis generally mentioned in the medial axis transform or

95



Maximum
Saddle
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Shape Axis

∗σ = constant

lower lower
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higher

Saddle

Figure 4.1. Shape axis picked in the surface S with its characteristic points.

The surface S � (x;���(x)) is derived from the decay process. The right

hand side shows its iso-contour near the saddle point.

Blum [4] [5]. This shape axis, for being derived by a global consideration, will give

more robust result (e.g., Fig. 4.8). We give two types of axis representations, provided

by result from the decay process and the orientation diffusion process. To compare to

other approaches, our concentration is not aimed at giving a sparse, graph-structured

axis or discussing matching between two sparse axes [51] [52]. Instead, we show the

axes computed by our models, and give a demonstration level discussion.

4.1.1 Symmetry by Traveling in��-surface

For a 2-D shape
, we will define the shape axis by examining the surfaceS �

f(x;���(x)) : x 2 
g in 3-D, with the result�� derived from the decay diffusion
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u L
x

(a) (b) (c)

Figure 4.2. (a) Shape mirror symmetric along the line L with L ? u at the

axis point x. (b) convexity will “push” axis toward the less-convex side. (c)

shape with fuzzy symmetry and its relatively smoother axis, compared to its

boundaries and the conventional symmetry axis.

process. Let us start from a shape
 in Fig. 4.2(a), which is mirror symmetric along

the lineL with L ? u atx for a unit vectoru. Apparently, the lineL should be (one

of) the axes of
. For the axis pointx 2 L, the decay diffusion result�� is expected

to have

��(x+ tu) = ��(x� tu) : (4.1)

Divide it by t and take the limitt! 0, we obtain

lim
t!0

��(x+ tu)� ��(x� tu)

t
= 0 ; , ��

u
(x) = 0 : (4.2)

It will be used as a necessary condition to judge if a pointx is on any axis of
. By

the principle of “value symmetry” in Eq. 4.1, we can predict that for a shape with

a more convex boundary on one side, as shown in Fig 4.2(b), the shape axis will
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appear near the less-convex side, if the axis does exist. It is because points in the

convex side will get stronger support from the boundary inducers (Sec. 2.2). This

fact makes the shape axis different from the conventional symmetry axis. We define

the shape axis setA to be the projection (to the planez = 0) of the curve setC where

each length-parametrized curveC(s) 2 C satisfies:

1. The curveC(s) is a curve going from one characteristic point to another char-

acteristic point onS. The set of characteristic points includes saddle points,

local maxima and junctions� .

2. At each pointx 2 C(s), in direction of the curve normaln, we have��
n
(x) = 0,

satisfying the necessary condition Eq. 4.2.

To meet the first condition, e.g., for the surface of a half sphere, we have only the

projected circle center as the “axis”. Because there is only one characteristic point

on the surface, the maxima in the middle. Before giving the algorithm to compute

the axis, let us discuss those characteristic points. The maximum is caught by

r�� = (��x; �
�
y) = 0 ;

with a positive Hessian matrixH s.t.

tTHt = tT

2
664 ��xx ��xy

��yx ��yy

3
775 t � 0 ; 8t 6= 0

�We mean the place onS where its projection onz = 0 forms a junction of
.
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with the row matrixtT denoting transpose oft = (u; v), the small change aroundx.

Similarly, we can find the minimum if we havetTHt � 0, 8t 6= 0. When either of

them happens for differentt’s, we find the saddle point or we can use the equivalent

criteria

det(H) = ��xx�
�
yy � ��xy

2 < 0 ;

evaluated at the pointx. In our algorithm,the junction information will be given as

an input.

We collect all axis points by traveling through the curves from a characteristic point

to another characteristic point. We choose the “uphill” direction. By the maximum

principle, the field�� will decay from the shape boundaries to interior part of the

shape (meaning(x;���(x)) will be rising from the boundaries). Therefore, the only

possible trials fitting the condition (1) are trials from a saddle point or a junction to a

maximum point or another saddle point. The algorithm to find the axes is therefore

given by an initial step and a recursive step:

i Find the maximum points and saddle points on the surfaceS.

ii Start from each saddle point and junction, we choose the most steepest uphill

direction to visit, until any maximum is reached.

2-D projection of these trails, including all the maxima and saddle points are called

the maximum shape axes or shape axes, opposite to those axes going downhill from

99



2

d1

d

� = 5� 10�3 � = 5� 10�4 � = 10�5 one point axis

d1=d2 = 1 1:10 1:16 1:19

Figure 4.3. Shape axis in various shapes, computed from the result of decay

diffusion with the axis superficially added on the decay field ��.

saddle points, called the minimum shape axes.

4.1.2 Results of��-surface Traveling Method

Some examples of the shape axis are shown in Fig. 4.3. In particular, for shapes

like circles, ellipses, rounded rectangles, we have only their center points considered

as the axes. In fact, all “rounded-border” convex shapes will have only the center

point considered as their axes, because no saddle points will be detected inside those
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shapes.

To compare the shape axis and the traditional medial axis, we can refer the shape

axes found in Fig. 4.3. In the first row, three shapes are designed by regular triangles

with upper angles substituted by their inscribing circles. Their axes found here are

lower than their medial axes which should stay in the middle of the shapes. We say

that the shape axis is “smoother” than the medial axis defined by Blum [4], especially

when the decay coefficient� is small. In Fig. 4.2(c), we have smoother axes than its

boundaries and medial axes.

4.1.3 Symmetry by Local Computation Method

We would like to define another set of shape axes by alocal computation method,

based on the result of orientation diffusion process. We would like to emphasize the

differences of this method from previous approaches.

i The axis information given by this method will not be binary represented.

Namely, instead of giving information to tell if a point is on an axis or not, we

compute a map to describe “how likely” a point is on an axis or how “strong”

the axis is.

ii We use a local computation technique to catch the shape axis. The axis will be

locally decided by the result from orientation process. Once the computation
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of the process is finished, the step to collect shape axes is relatively easier and

more robust than the approach used in other axis generators.

iii The junction feature considered as special axis points, will be collected by a

similar computation.

In our approach, the axis is shown by a continuous map. The continuous information

give us more clue to distinguish between main axis and minor axis. The minor axis

will be declared by a weak representation, e.g., the weak axis created by an obtuse

angle (first order shock) or a pair of weakly mirror-symmetric boundaries (higher or-

der shock) (Fig. 4.4 - 4.8). It provides a natural way of axis pruning if there is a need.

For the second topic, the robustness of our approach comes from two levels. The

local computation is robust, compared to, e.g., the traveling method used in the pre-

vious section. Because missing the detection of an axis point can prevent any further

exploration and miss an axis branch. Secondly, the robustness of our computation

comes from the fact that the shape axis computed by us are based on a global prop-

erty of the shape. We examine the effect of protrusion created on shape boundaries

in Fig. 4.8. The result show that we are able to deal with shape boundaries with small

protrusion (ignore), boundaries with large protrusion (surrender proportionally) with

a transition between them. The third topic as well as the junction detection will be

discussed in next section (Sec. 4.2).
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Local Computation Method

We take result from the orientation diffusion process to generate a map called sym-

metry map. In each point of the map, continuous other than binary information will

be provided for the declaration of shape axis. This information will be computed by

a local computation, opposite to the traveling method used in the previous section.

Let us examine the convexity vector�̂�(x) used in Eq. 3.9, derived by vector sum-

mation of the orientation field��(x; �). First, the vectors are normalized to unit

vectors, and the divergence of them is computed as the symmetry information. It is

��sym = div

�
�̂�

k�̂�k

�
: (4.3)

The idea why we use this quantity to represent the symmetry information can be

demonstrated in Fig. 4.4. Recall that��(x; �), up to a constant, can be viewed as

summation of the random walks starting at boundaries with inward orientations and

reachingx with the orientation� at certain time. The vector map̂��(x) recording

vector summation of��(x; �) is shown in Fig. 4.4(a). After normalization, only the

orientation part is memorized, which is in (b). We can view the shape axis as the

place with most sinkage in this unit-vector map. Compare to the shock language in

Siddiqi et al. [80] and Kimia et al [44], the axis is the place where diffusion meets

each other, after the meeting point, the direction of diffusion can turn with an abrupt

angle, as if certain “amount of substance” has disappeared. The result of Eq. 4.3 is
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(a) (b) (c) (d)

Figure 4.4. Symmetry information of the bell shape, by computing the diver-

gence of unitary �̂�, vector summation of �� in (c) or �̂�M , the maximum vector

of �� in (d), among all orientations.

shown in Fig. 4.4(c).

Let us also provide another similar criteria, by substituting the vector map�̂�(x)

in Eq. 4.3 with the maximum vector̂��M(x) of ��(x; �), among all orientations. That

is,

�̂�M(x) = ��(x; �M) � uM if ��(x; �M) = max
�2[0;2�)

f��(x; �)g ;

with uM = (cos �M ; sin �M ), and similarly

��symM = div

�
�̂�M
k�̂�Mk

�
: (4.4)

The correspondent result of��symM is shown in Fig. 4.4(d). The approach by com-

puting the maximum vector does provide more details. However, in general, it needs
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finer mesh (in orientation) or larger� to ease the quantization error.

4.1.4 Results of Local Computation Method

The results of shape axis, derived by computing the vector summation (Eq. 4.3) and

the maximum vector (Eq. 4.4) can be seen in Fig. 4.5 and Fig. 4.6 respectively. The

way we recognize the symmetry axis or shape axis is different from the traditional

views. Instead of producing the binary symmetry information, we provide a contin-

uous map to tell “how likely” a location stays on any axes or how “strong” this axis

is. To produce the common binary symmetry axis, we can do it through a threshold

step.

A Continuous Axis

By the continuous representation, we can distinguish the “strong axis” (shown in a

strong representation) from the “weak axis” (shown in a weak representation). This

representation naturally provides a way for axis-pruning if we want to remove the

axis created by noisy boundaries. In the circle shape, many sub-axes are produced,

but only the “point axis” in the center are considered as the main axis (e.g., check the

symmetry map in Fig. 4.7(b1)). In another example, we test an unbalanced star in

Fig. 4.7(a). With the stronger axes indicated by darker intensities, we obtain stronger

axes for sharper angles, as we expected. We can better understand this topic by a
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Figure 4.5. Shape axis �sym in various shapes, computed from result of the

orientation process, by using the vector summation result �̂�.

Figure 4.6. Shape axis �symM, computed from result of the orientation pro-

cess, by using the maximum vector �̂�M . A result of � = �=2 is applied.
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(a) (b1) (b2) (b3)

Figure 4.7. Shape axis with a continuous manner. (a) Sharper angles have

axes with stronger representations. (b1) - (b3) Circular boundaries have

many lighter sub-axes, compared to the axis point in the middle. The axis

has similar representation from (b1) to (b3), even the widths are different. We

choose the maximum vector �̂�M , and select the deviation factor � = �=2.

series of experiments from a triangle, square, hexagon to a circle. The triangle will

have three strongest axes. Then we have four axes for the square, but with a lighter

representation. After all, we end up the lightest (sub-)axes for the circle, except the

center.

As another example to illustrate the continuity of our information, we check the

hand shape in Fig. 4.6. We obtain stronger axes for the fingers, but weaker axes

linking from the finger-axes to center of the hand. Because the boundaries between

the fingers and the center are not well symmetric, compared to boundaries of the

fingers.
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(a) (b1) (b2) (b3)

Figure 4.8. Shape axis with protrusion on boundaries. We have the transition

from (b1) ignored, (b2) having “sub-axis” to (b3) disturbing the main axis by a

faction. The axis created by the protrusion can simply be pruned by a thresh-

old method, if the protrusion is considered as noise. In (b3), a pruning is

not appropriate because the main axis is affected. We choose the maximum

vector �̂�M , and select the deviation factor � = �=2 (Eq. 3.5).

In the next section, we study the effect of protrusions on boundaries. The result

can only be achieved by considering shape axis as a global feature of shapes.

Robustness and Effect Created by Protrusion

To see how protrusion or noise on boundaries can affect the shape axis, we study the

axes in Fig. 4.8. In (b1), the main axis stays the same as we perturb the boundaries

from (a) by a small protrusion. But a larger perturbation can (b2) eventually produce

a new axis or (b3) even change location of the main axis. As we said in the previous

section, the continuous representation provide a natural way to do the axis-pruning.

In this case, if only the main axis is needed, the axis created by the protrusion (noise)
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(a) (b) (c) (d)

Figure 4.9. Junction information ��junc. The black or white color is given due

to arbitrary choice of the direction for �̂� (for specifying inside or outside of

the boundaries).

can be removed by a simple threshold step.

4.2 Junction Detection

We consider junctions of shapes to be the special axis points. For a given shape
,

junctions are on the shape axes, and they should be on the boundaries, too. It is

described by

J � A \ @
 :

Follow this idea, it is natural to compute the junction information through the map

��junc = div (�̂�) : (4.5)

Without any normalization in Eq. 4.3, axis points located near the boundaries will
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(a) (b)

Figure 4.10. (a) Junction information with minor perturbation on boundaries.

(b) boundaries with high curvature parts. The result shows the ability of global

consideration for junction detection.

have strongest intensities of diffusion, possess longest length of�̂� and largest (or

smallest, depends on the choice of sign) divergence; therefore be caught as junctions.

We use this map to guide us finding junctions. Some results are given in Fig. 4.9.

Either the darkest or brightest area can be considered as the location of junctions.

As we can observe, the sharper the angle is, the stronger the intensity we can derive

(e.g., Fig. 4.9(b)). The quantization effect does not have any major contribution to

our result.

4.2.1 Junction as a Global Property of Shapes

In our approach, junction feature is considered as a global attribute. We consider two

cases where the junctions will not be located on the boundaries.
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When the boundaries have minor perturbations, we can still collect correct infor-

mation even if only the junction feature in the coarsest scale is needed. In Fig. 4.10(a),

our approach provides correct detection for a triangle with noisy boundaries. The

perturbations, if there is any, can create only “minor” junctions.

In our approach, we do not consider junction feature as a binary information. In-

stead, we provide the transition from curves with low curvature to high curvature,

and eventually become discontinuous. In Fig. 4.10(b), a rounded square is tested,

and an easied junction information is obtained.
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Chapter 5

Visual Organization

5.1 Introduction

Discovering perceptual organizations is understood as the transition from low-level

vision to high-level vision. Without the help from object naming, pixels are formed

as surfaces abstractly or symbolically during this process. The illusory figures, such

as the Kanizsa square shows an example where the intensity edges are not the only

information matters for such intergration, but also geometry of the edges. Fig. 5.1

(a1) gives another example of illusory figures. The open edges around the empty

space show cues for occlusions, implying the surface completion with a triangle in

the middle. To describe this choice of completion, first of all, the triangle border

gives a good (linear) continuation. Secondly, unlike the figure given in (a2), the
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(a1) (a2) (b1) (b2)

Figure 5.1. (a1) (a2) Illusory triangle, adapted from Kanizsa [39]. (a1) a figure

with open edges showing tendency to closure while (a2) a figure with closed

edges showing no tendency to amodal completion. (b1) Kanizsa square and

a similar figure in (b2), but no salient square is perceived.

figure/ground interpretation is consistent with such surface interpretation. Namely,

border ownerships of the edges in (a2) implies that those outer shapes should be

considered as self-sufficient ones instead of being occluded by the single triangle in

the middle. In general, on edges, binary choices, to be on top or on bottom, can be

made and the whole selection set is called an organization for surfaces. To speak of

junctions, we may have more interpretations, such as in Fig. 5.2 (Kumaran et al. [48],

Geiger et al. [19]). The choices or interpretations we made on edges or junctions are

called hypotheses.

Our organization reconstruction is based on a diffusion process going from local

to global. Sparse information assigned on feature points, called hypothesis is taken
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Figure 5.2. Each L-junction (corner) locally suggests five (5) possible salient

surface interpretations. Note that (b) and (c) give L- to T-junction transition,

suggesting three surface layers, with the hat of the T as the salient one. (e)

removes the junction from the salient surface.

as the input. This is the place we can freely make assumptions of figure/ground.

Afterwards, we decide the visual organization based on evaluation of output of the

process. A winner organization is suggested by a winner hypothesis which gives the

best evaluation. In the following section, we discuss the method for organization

reconstruction. A perfect feature detection scheme is assumed.

Numerous computational models have been proposed to construct the illusory

figures. Ullman [86], Heitger & Heydt [28], Guy & Medioni [27], Grossberg &

Mingolla [26], Kellman & Shipley [42], Mumford [58], Parent & Zucker [64] and

Williams & Jacobs [91] have built models to catch illusory contours, associated

with various scenarios to describe the “good continuation” between occluded/broken

curves. Brady & Grimson [6] and Nitzberg & Mumford [60] have used the surface
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reconstruction formulation to describe the salient/occluded surfaces. Besides the con-

struction of the illusory contours/surfaces, our model provides a reason to describe

why the illusory effect happens in one case instead of others by a surface/regional

description.

5.2 L-junctions and Prior Distribution of Hypotheses

The idea of picking correct visual organization is inspired by the Kanizsa square.

However, we do not perceive the similar phenomenon for another similar figure,

the four-crosses in Fig. 5.1 (b2). The key to make this difference comes from the

smooth curve preference for surface reconstruction. We consider an organization

picking scheme with such preference. In particular, on surface contours, L-junctions,

T-junctions and their interpretations will be studied.

For a given imageI, we build the bridge between sparse data and global decision

by the decay diffusion process used in Sec. 2.2. A discrete version which has been

discussed in Appendix B is examined here. We have the hypothesis choice basis

H = f�1; 0; 1g ;

with 1 and�1 represent foreground and background respectively and0 is the neutral

hypothesis indicating an ignorance. Each edge feature� is assigned by such local
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decision as

�! a(�) 2 H : 8� 2 �

A hypothesis set for the whole imageI is the setfa(�) : � 2 �g, for a given (edge)

feature set� � I. In particular, we separate the feature set to be two parts as� =

�A [ �O with the set�A=�O to be the set of assigned/ignored feature respectively.

The energy functional is given similar to Eq. B.4, Eq. B.5 and Eq. B.6 as,

Edecay(�j�0) = Edata(�j�0) + Esmooth(�) ;

trying to minimize the data fitting and the smoothness functionals. However, new

setting of the function�0 is given by

�0(x) =

8>><
>>:

a(x) ; if x 2 �A

0 : if x 2 I� �A

(5.1)

as well as a new function of� given by

�(x) =

8>><
>>:

1

�
; if x 2 �A

0 : if x 2 I� �A

(5.2)

The decisions on edges are given by either assigning opposite choices as1 and�1

on both sides of the edges representing figure and ground or assigning0 meaning an

ignorance. For the Kanizsa square, various hypotheses can be made. Some examples

can be found in Fig. 5.3(b1) & (c1), with b/w representing�0 = �1=1 respectively.

The hypotheses we particularly interested are those with consistent assignment in
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(a) Original Top Occluded

(b1) H1 (1st layer) (b2) Diffusion S1 = 0:531 (b3) Threshold

(c1) H1 (2nd layer) (c2) Diffusion S2 = 0:215 (c3) Threshold

Figure 5.3. Kanizsa Square image with its optimal organization of the top

surfaces (white is salient, grey is the 2nd layer and black is the 3rd layer);

and occluded layers (amodal completions). (b1) (c1) The winner hypotheses

consist of two sets of edge assignments. On each edge, black/white or gray

represents �0 = �1=1 or 0 respectively. (b2) (c2) the result of diffusion,

showing the map �� and (b3) (c3) threshold, given by selecting �� > 0. We

have the organization criteria O = (0:531 + 0:215)=2 + 4� = 0:653, with � =

0:07.

118



neighboring edgesexcept those neighbors crossing the edges. However, we do al-

low more freedom in the assignment of junctions, by adopting the interpretations of

junctions in Fig. 5.2.

For each hypothesis set, a diffusion result can be derived, called��. By the same

linear transform used in Eq. 2.12, we find the probability mapp�.

Zero Energy Decay For the function�(x) in Eq. 5.2, we mainly follow the choice

made in Geiger et al. [19] where the decay coefficient� is chosen to be0, no energy

decay throughout our discussions and experiments in this chapter.

Modal, Amodal Completion and Multiple Surfaces

After the process, a surface is collected by those pointsx with p�(x) > 0:5, called

the salient surface. Usually, scenes contain more than one surface. We will obtain all

of them by consecutively applying the above procedure. Namely, after the removal

of a surface, the “used/not ignored” features�A where�0 6= 0 will be removed

as well, and another hypothesis set can be assigned for those “not used/ignored”

features�O = � � �A. Multiple surfaces can be found in such manner. We have

� =
SS

s=1�s for a S-surface reconstruction with the assigned feature�A = �s in

the s-th surface reconstruction. For the Kanizsa square, two surfaces (three layers,

including the background) can be formed in Fig. 5.3(b3) & (c3). The top row shows
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the typical multiple-surface reconstruction.

Prior Distribution of Hypothesis

The prior distribution for shapes suggests smooth contours. Therefore, a favored hy-

pothesis set should be the one with more cancellation of L-junctions. That is, on L-

junctions, we assign non-zeroa(�) on both sides of the peak in different steps of sur-

face reconstructions. Thus the L-junctions become T-junctions, such as in Fig. 5.2(b)

or (c). We evaluate such movement by the cost

C1(fa(�)g) = �#(L-junction! T-junction) :

Because number of L-junctions from the input is fixed, the previous criteria can be

substituted by another equivalent one as

C(fa(�)g) =
SX
s=1

#L-junctions(p�s) ;

counting number of L-junctions for the resultp�s on the surfaces. The criteriaC and

C1 are just a constant away from each other. A smaller one gives a higher preference.

Entropy of Visible Surfaces

To give the decision for the best organization, we also compute the (normalized)

entropy for allS surfaces by

S(fa(�)g) = �
1

S

SX
s=1

1

Ns

X
x2
s

p�s(x) log p
�
s(x) + (1� p�s(x)) log(1� p

�
s(x)) ; (5.3)
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whereNs = j
sj denotes number of pixels in thes-th surface
s.

Organization Criteria

Our final organization criteria is the sum of both criteria

O(fa(�)g) = �C(fa(�)g) + S(fa(�)g) ;

for a parameter�. For instance, the hypothesis yielding the original Kanizsa image

will haveO = �C(fa(�)g) + 0 = 12� because we have a closed-door diffusion.

The parameter� balances both terms can be decided empirically by the following

experiment (Fig. 5.4).

For the Kanizsa square, one set of hypothesesH0 can be given by the original

setting, suggesting the original four pecmen as the (only) salient surfaces. Another

set of hypothesesH1, the typical hypothesis set suggests (1) a salient square and (2)

four occluded circles on the back. The human experiments suggest that for Kanizsa

images, salience of the square decreases as we move those four pecmen away from

each other as those from Fig. 5.4(a) to (c). Empirically, we can obtain the transition

point where the hypothesisH0 andH1 yield the same preference. This situation can

be described by

4� + S� = 12� , � = S�=8 ;

whereS� is the entropy value of configuration of the transition point (perception
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(a) r = 9=10 (b) r = 9=23 (c) r = 9=36
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Figure 5.4. A sequence of Kanizsa Square images with different ratios of

r = R=L, where R is the radius of the circles, and L is the distance between

inducers. The graph shows the entropy S versus r for the Kanizsa square.

We crudely estimated that the change in perception from the organization

where the square is on top to the one where the four pecmen on top occurs

for r = 9=17 = 0:53.
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Original Top Occluded

Hypothesis S1 = 0:265 Threshold Hypothesis S2 = 0:433 Threshold

Figure 5.5. Four crosses image and its typical surface reconstruction. This

reconstruction is suggested by the winning hypothesis set HD consists of

three-layer reconstruction. The 1st layer (left) and the 2nd layer (right) give

strips crossing each other. The organization criteria gives O = 2:589. Note

that the larger (not the smaller) rectangles are salient because of the lower

entropy.

wise). We crudely choose� = 0:07 and this setting is used throughout all of our

experiments. The hypothesis set producing thesmallestorganization criteria will be

the winning hypothesis.
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Layer1 Layer2

Hypothesis Threshold Hypothesis Threshold

HA � 1 S1 = 0:495 HA � 2 S2 = 0:130

HB � 1 S1 = 0:711 HB � 2 S2 = 0:422

HC � 1 S1 = 0:0 - - - - - -

Figure 5.6. Four crosses image with its various organizations based on the

hypothesis HA, HB, HC and HD(in Fig. 5.5). Number of L-junctions for the

hypothesis HA, HB, HC and HD are (1st layer+2nd layer) (4 + 36 = 40), (32+

0 = 32), (48+ 0 = 48) and (16+ 16 = 32). The organization criteria O(fa(�)g)

are 3:113, 2:807, 3:360 and 2:589, making the winner to be the hypothesis HD.

The second voted hypothesis is the hypothesis HB while the illusory square,

hypothesis HA has a lower score. HC contains only two layers while others

contain three layers.
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5.2.1 Experiments

We use two images, the Kanizsa square and the four-cross image in Fig. 5.5 to illus-

trate our ideas. The perceptual difference in these two images leads to two different

surface reconstructions. For the Kanizsa image, a salient square in the middle is ob-

served easily, but no such phenomenon exists in the four-cross image. We argue that

the preference of smooth contours gives such phenomenon. An organization which

is built on contours with less L-junctions or less high curvature points will be chosen.

Let us evaluate this by our organization criteria.

In Kanizsa image, the typical hypothesis set gives the salient square, and simul-

taneously8 L-junctions are removed in such movement. On the other hand, for the

four-cross image, the hypothesis set giving a salient square in the middle is not the

most favorable one, compared to another hypothesis set which yields more L-junction

cancellations (Fig. 5.5). Consider various hypotheses in Fig. 5.5 and Fig. 5.6, either

hypothesisHA where a single square is in front orHB where9 squares are pro-

duced will both give bad organization criteria. The best organization is given by

the hypothesisHD, giving crosses as pairs of strips crossing each others. A total of

16 L-junctions are removed by this hypothesis. Its organization criteria is given by

O = (0:265 + 0:433)=2 + 32� = 2:589.

By our model, the Kanizsa square image is interpreted as three layers, a salient
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Original Top Occluded Top Occluded

H0 : a H0 : b

H2 H3

Figure 5.7. Kanizsa square image with its various surface reconstructions.

The hypothesis H0 : a is the hypothesis keeping the original input. H0 : b is

its dual hypothesis. Remember brightness represents salience. Their orga-

nization criteria are O(H0 : a) = 12� = 0:84, O(H0 : b) = 0:666 + 12� = 1:506

and O(H2) = O(H3) = (0:531 + 0:760)=2 + 4� = 0:926. The hypothesis H1 in

Fig. 5.3 suggests the best organization by its evaluation O(H1) = 0:653.

square, four (black) circles and background consecutively. The organization criteria

is given byO = (0:531 + 0:215)=2 + 4� = 0:653. There are other organizations

(Fig. 5.7), but with larger/worse organization costs.
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5.2.2 Discussions

First of all, this approach is different from the approach by Kumaran et al. [48].

Each of their hypothesis set might produce2 dual hypothesis sets, figure/ground or

ground/figure in our set of organizations. Namely, no knowledge of F/G were consid-

ered in their context. The junction interpretations such as Fig. 5.2(a) and (d) were not

distinguished. Accordingly, while their computation of entropy is made throughout

all image space, we only compute entropy for the “visible surfaces”, i.e., points for

p� > 0:5.

To speak of minors of this approach. The organization criteria contain two parts,

entropy of the visible surfaces and the cost of L-junctions. More L- to T-junction

transformations can ease the cost of organization criteria and give good organization.

Therefore, this approach is highly relies on the input from a good junction detector.

In general, we should be able to pick up junctions or high-curvature points on images

without making artificial border between them.

Let us discuss complexity of this approach. To pick the best organization, we use a

brute force search. So number of the trials is exponential to the number of junctions.

Because junctions are the only place the hypothesis can be switched, based on our

assumption that only consistent hypothesis (in neighboring points on one side of the

edges) is considered.
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Chapter 6

Conclusion

We discussed the issues of figure ground separation, shape representation and per-

ceptual organization which are generally considered as low- to middle-level vision

problems. Two types of diffusion processes, the decay process and the orientation

process were defined, followed by two convexity measures. Our convexity measure-

ment was a support to the traditional1-0 convexity definition in mathematics which

separates shapes into two groups, “convex” and “concave” without any further de-

scriptions. The continuous manner in our convexity measures was established to

provide the transition from “highly convex” to “highly concave” shapes. Besides

convexity measuring, our processes were able to collect other shape information, in-

cluding symmetry and junction information.
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Decay Diffusion Process The decay process was used in particular for simulating

the F/G phenomenon. For a F/G image, when the size of regions and the number of

inducers were normalized to be the same, we predicted the “correct” answer corre-

sponding to the outcome from the majority of human tests.

Orientation Diffusion Process For the orientation process, a wider range of im-

ages have been tested. First, it could deal with F/G images with sizes of regions

not yet normalized to be the same. A brand new design of introducing a free pa-

rameter allowed us to surf between the size-invariant convexity measuring and the

convexity measuring with the small-size preference. Other than predicting the F/G

phenomenon, the model could be considered as a definition for shape convexity. The

shapes with either similar or not similar sizes could be compared to each other, by

the choice of a small parameter�. To discuss the perfectly-convex shapes which

was categorized as one group by the mathematical definition, our measure showed

the ability to distinguish between them. The study showed that the convexity mea-

sure based on the orientation process gave the scores of circles better than hexagons,

followed by squares and then triangles. Another series of experiment suggested the

preference of squares over rectangles. It could be understood as the simulation of

the Law of Prägnanz for 2-D shapes. A Kullback-Leibler distance was used as the

convexity measure.
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Internal Shape Representation Our diffusion processes could also be used to

compute the internal shape structure, generally known as the axis study. In our ap-

proaches, two so called “shape axes” have been defined, one from the decay diffusion

and the other from the orientation diffusion. We defined two operations generating

two types of axes. For the decay process, a traveling method on the 3-D surface

S � (x;���(x)) was used, based on the result��(x) derived from the process.

For the orientation process, a simple technique, called the local computation method

was used to collect the axes. In this case, we adopted a different point of view for

the axis finding. Instead of producing any binary axis information, we derived the

symmetry maps�sym and�symM to give suggestions for shape axes. Our approach

had many benefits. First, once the diffusion process was done, the computation, via

some local operations, was easier compared to other algorithms to find the symmetry

axis. Secondly, our shape axes were computed by a global consideration. Within a

shape, we could distinguish between strong axes and weak axes. When noise, such

as protrusion were added to the boundary, our result showed a continuous transition

from ignored, having minor axes to disturbing the main structure of the shape. Also,

the junction detection was discussed. To us, the junction feature was no more than

thespecial axis point, just those happened to be on the borders. Combine with the

convexity measuring, we tried to emphasize that our simulations has the goal to cover

wide range of the applications.
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6.1 Continuous Simulation based on Global Consid-

erations

In our simulations, based on the global considerations, we tried to remove the artifi-

cial assumptions generally used in many studies:

i For the convexity measuring, we did not draw the border between the convex

and concave shapes which was used in mathematics. Instead, we defined con-

tinuous convexity measures. They are more appropriate than the1=0 definition

in most vision applications.

ii For axis, we did not assume that the place was on or off the axes, instead, we

gave the map telling “how likely” the place was an axis point and how strong

the axis is. Therefore, we did not have to apply any additional heuristic or

non-heuristic algorithms to deal with the axis pruning or selection. The axes

generated by us had different weights themselves to guide the process.

iii For junctions, we did not distinguish between “discontinuous junctions” and

“high curvature junctions”. Instead, a map was derived and the threshold de-

cided later could be used to collect the information whatever fits to our appli-

cations.
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6.2 Shape Description and Shape Completion

In our approach, the partial and completed shapes were treated similarly. For the

perceptual organization problem, the same framework, the decay process and entropy

measurement used for the F/G separation, was applied to select the salient shapes.

To improve the decay model used in the perceptual organization finding, we put

our future concentrations on:

i Adopt the orientation diffusion process in the perceptual organization finding.

The assumption of perfect junction detection will no longer be necessary.

ii Search for an efficient algorithm or approach to achieve the best organization.

iii Real image studies.
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Appendix A

2-D Dirac Delta function

In this section, we define the Dirac delta function in Eq. 2.10 and Eq. 3.4 used by the

decay process and the orientation process respectively. We state the orientation case

here. The case for the decay process is the same or simpler.

Let us assume an image defined byI � fx : x 2 [0; A]�[0; B]g and an orientation

set� � f� : � 2 [0; 2�)g. For a given closed region
 surrounded by its boundary

Ωα

Ωε

Figure A.1. A 2-D Dirac-delta function defined on 
. It is partitioned into two

regions 
� and 
� � 
� 
�.
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curve@
 (assuming@
 � 
), we define the 2-D Dirac-delta function. First of all,

let us partition the region
 into two parts
� and
� by �


� � fx : d(x; @
) � �g ;

and
� � 
� 
�. On
, a piecewise constant functionD is defined as

D(x) =

8>><
>>:

1=j
�j ; if x 2 
�

0 ; if x 2 
� � 
� 
�

wherej
�j indicates area of the region
�. We have

Z



D(x) dx =

Z

�

D(x) dx =

Z

�

1

j
�j
dx = 1 :

A 2-D Dirac-delta functionÆ2(x) or simply asÆ(x) is stated as

Æ(x) � lim
�!0

D(x) ;

and its integral is given by

Z



Æ(x) dx =

Z
@


Æ(x) dx � lim
�!0

Z



D(x) dx = 1 ; (A.1)

to make as if the limit and the integral sign can be exchanged from each other. Right

now, let us see this definition is meaningful to our applications.
�The distance functiond is defined asd(x; @
) = minfd(x;x1) : x1 2 @
g. The 2-D

Euclidean distance function is applied.
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For a binary input, an intensity functionI characterizing
, we define the hypoth-

esis function�0(x; �) as

�0(x; �) =

8>><
>>:

u� � n if u� � n � 0 ^ x 2 @


0 if u� � n < 0 _ x 2 
� @


and based on it, a function�(x; �) is defined by

�(x; �) =

8>><
>>:

�0(x; �) Æ(x) if u� � n � 0 ^ x 2 @


� if u� � n < 0 _ x 2 
� @


The operation “� ” denotes the conventional inner product inR2. The vectoru� and

n(x) respectively denote the unit vector(cos �; sin �) and the unit inward normal on

x 2 @
. For the case that a smooth intensity functionI(x) is available, we can define

�0(x; �) as

�(x; �) =

8>><
>>:

1
Me

���@I(x)@u�

��� Æ(x) if x 2 @


� if x 2 
� @


The constantMe is defined bymaxfj@I(x)
@u�

j : x 2 I; � 2 �g, evaluated on a compact

set. In either case, we would like to discuss the integral of�(x; �) on
��, for two

parts@
� � and(
� @
) ��. The inside part is

Z
(
�@
)��

�(x; �) dx d� = 2��j
j : (A.2)

The “border part” can be estimated by

Z
@
��

�(x; �) dx d� �

Z 2�

0

Z
@


1 � Æ(x) dx d� =

Z 2�

0

1 d� = 2�; (A.3)
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which gives an upper bound of the integral. Furthermore, let us assume, at each

pointx of the curve@
, the normal direction to the curve@
 is always the gradient

direction of the intensity functionI at pointx. The lower bound of the integral can

be given as by

Z
@
��

�(x; �) dx d� �

Z
@


Z �
2

��
2

mg cos � Æ(x) d� dx

= mg

Z
@


2Æ(x) dx = 2mg ; (A.4)

givenmg = minfkrI(x)k=Me : x 2 @
g, the (normalized) minimal value of

length of the gradient vectors on the boundary@
. We can assumemg > 0. It gives

0 <
R
@
��

�(x; �) dx d� � 2�. Therefore it is meaningful to include the data-fitting

integral in our variational functionals, as in Eq. 2.9 and Eq. 3.6.
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Appendix B

Decay Diffusion Process, Random

Walk and Discrete Settings�

To write down the discrete form of the energy functional either Eq. 2.9 or Eq.2.9,

first, let us discretize the information and represent the input data�0, the function

� and the diffusion field� as column vectors by the raster scanning order. That is,

for anM � N image as an index setI � fk = 1; � � � ; K = N �Mg containing the

shape
, the input vector is given by�0(k) : I ! f�1; 0; 1g and the function� is

�(k) : I ! f�; 1=�g for a small constant� called delta function coefficientwhere
�The conversation in this section will deal with the most general case happened in our

text. It covers discussions for Sec. 2.2 and Chapter 5. Also, we will continue to use the same

set of notations here in discrete case.
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1=� stands for the function value ofÆ2(x) if x 2 @
 in discrete case. We can even

make a more general case. A new functione(k; k0) records edge information with

the pixelk and one of its neighborsk0. To be precise, we set0 � e(k; k0) � 1

to be the intensity edge between pixelk andk0, normalized by the largest intensity

edge onI. Follow this, an overloaded discrete edge functione(k) can be defined as

e(k) = maxk02Nk
e(k; k0). We define a generalized�0 as

�0(k) =

8>>>>>><
>>>>>>:

e(k) ; if k 2 F (@
)

�e(k) ; if k 2 G(@
)

0 ; if k 2 I� @


(B.1)

whereF (@
) andG(@
) respectively indicate “figure” and “ground” side of the

edges@
, which sit on opposite sides of the edges. Also,

�(k) =

8>><
>>:

1

�
� e(k) ; if k 2 @


� : if k 2 I� @


(B.2)

The solution or the diffusion field is given as usual,

�(k) : I! R : k 2 I (B.3)

We write down the discrete decay diffusion energy functional (compare to Eq. 2.9)

by finite difference method as

Edecay(�j�0) = Edata(�j�0) + Esmooth(�) ; (B.4)
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where

Edata(�j�0) =
X
k2@


�(k)(�(k)� �0(k))
2 +

X
k 62@


� � �2(k) ; (B.5)

and

Esmooth(�) =
KX
k=1

X
k02Nk

(1� e(k; k0))(�(k)� �(k0))
2
: (B.6)

The Equivalence between Energy Minimization and Matrix Inversion

The solution to this equation can be derived by casting it into a matrix form, which is

Edecay(�j�0) = (�;D�)� 2(�;L�0) + C(�0) : (B.7)

where “( � , � )” denotes the inner product inRK. The diagonal matrix is given by

Lkk = �(k) and the symmetric and band limited matrixD has the following structure

i. The diagonal elementsDkk = �(k) + �(k;Nk) ,

ii. The non-zero off-diagonal elements areDkk0 = ��(k; k0) = �(1 � e(k; k0))

for k0 2 Nk,

for the edge functione(k; k0) with �(k;Nk) =
P

k02Nk
�(k; k0). Let us assume

�(k;Nk) > 0, 8k = 1; : : : ; K. We rewrite it as

Edecay(�j�0) = (� � ��;D(� � ��)) + C1(�0) ; (B.8)
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where�� is the solution of the equationD� = L�0. It tells that the minimum is

achieved when� = ��, where

�� = D�1L�0 : (B.9)

For a simple case where we consider only the computation on
 and the edge func-

tionse(k), e(k; k0) choose only binary numbers, this equation gives a discrete form

of Eq. 2.11. For a pixelk on@
, we have

�(k;Nk)�
X
k02Nk

�(k0) =
1

�
(1� �(k)) � 0 :

The left side is bounded, so we can make�(k) as close to1 as we want by choosing

a small enough�. The edge blocking occurred in Eq. B.6 does not play a role here.

Numerical Computation

We use the conjugate gradient method to compute the solution. This steepest descent

method is built directly on the energy Eq. B.7. For further reading about the conjugate

gradient method, please refer to [84] and [83].

B.0.1 Random Walk Formulation

The matrixD can be written as

D = D(I�Q) ; (B.10)
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with D being the diagonal matrix with elementsDkk = �(k) + �(k;Nk) (Dkk0 = 0

for k 6= k0). ThereforeQ must have four off-diagonals non-zero and positive i.e.,

Qkk0 =

8>><
>>:

�(k;k0)
�(k)+�(k;Nk)

; 8k0 2 Nk

0 : otherwise

(B.11)

Note that in each row ofQ, we have
PK

j=1Qij < 1 if the decay coefficient� > 0.

When� = 0, we can also directly prove that
P1

n=1Q
n is bounded, but we postpone

the proof till further discussions. The inverse ofD can be given by

D�1 =

 
1X
n=1

Qn

!
D�1 ; (B.12)

and so,

�� =

 
1X
n=1

Qn

!
g ; (B.13)

with g = D�1L �0, i.e.,gk =
�(k)
Dkk

� �0(k). We can thinkg as our “new” input data.

The matrixQ is the “transient” part of an “absorbing Markov chain”M, whereM

is

M =

2
664 1 0

R Q

3
775 ; (B.14)

with a1�K zero vector0 andR being aK � 1 matrix with elements

Rk = 1�
X
j

Qkj =
�(k)

�(k) + �(k;Nk)
; (B.15)
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so that
PK+1

j=0 Mij = 1, 8i. The stochastic matrixM is of sizeK + 1 byK + 1. It is

clear that

Mn =

2
664 1 0

R0 Qn

3
775 ;

whereR0 =
Pn

�=0Q
�R. M is an absorbing Markov chain in the sense that if one

starts with any states0, by successively applyingM, one ends up in the states�nal =

(1; 0; 0; :::; 0), i.e., s�nal = limn!1 s0M
n (we are applying the matrix to the vector

to the “left”). This is clear from the fact thatlimn!1Q
n = 0. This is whyQ is the

transient part ofM. The interpretation of the states = (�1; 0; :::; 0), is of “death” of

the random walk, since the random walk jumped to the zero-th coordinate that is not

a pixel in the lattice. Moreover, once it reaches the zero-th coordinate it never leaves,

i.e., s = (�1; 0; 0; ::::; 0) is an eigenstate ofM or sM = s (or equivalently, to the

“right” sT is an eigenstate ofMT , withMT sT = sT . This is the absorbing state.

Random Walk View

Let us clarify the random walk interpretation of the matrices.

(Qn)kj- probability that a random walk that started at pixelk will reach pixel

j in then-th step.

Rk- probability that a random walk will vanish at pixelk (move to the zero-th

state coordinate).
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R0
k = (

Pn

�=0Q
�R)

k
- probability that the random walk vanished at pixelk in

n steps.

(
P1

n=1Q
n)k;j-probability that the random walk started at pixelk and reached

pixel j in any number of steps.

The last statement gives a reason why
Pn

k=1Q
n is bounded no matter� is 0 or not.

To speak of the random walk interpretation, in one step, for example, the random

walk starting atk has probability non-zero,Qk;j =
�(k;j)

�(k)+�(k;Nk)
, to move to one of its

j 2 Nk neighbors and with probabilityRk =
�(k)

�(k)+�(k;Nk)
to be vanished. A random

walk path is a path which starts from the pixelk, travels around the image, ends up a

pixel j and vanishes there with probabilityRj. Thus, we conclude this section with

the random walk view interpretation of the solution�� (Eq. B.9 or Eq. B.13) :

The solution��(k) corresponds to the expected value of�0 at the first vanishing

point of the random walk starting at the pixelk.

The vanishing point can be either on the boundaries@
 or not on the boundary. The

probability of one pathWk starting atk, going throughk = k0; : : : ; kn and vanishes

atkn can be written as

P(Wk) = Rkn

n�1Y
i=0

Qki;ki+1 = Rkn

n�1Y
i=0

�(ki; ki+1)

�(ki) + �(ki; Nki)
: (B.16)

Usually, for the simple case wheree(k), e(k; k0) take only binary numbers, we can

expect that once a particle reach@
, it is likely to be vanished there if we choose
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small enough� to make the vanish probabilityRk = 1=(1 + ��(k;Nk)), k 2 @
 as

close to1 as we want. Thus, we can provide a simpler form forP(Wk) as

P(Wk) = Rkn

n�1Y
i=0

Qki;ki+1 �
n�1Y
i=0

Qki;ki+1 = (�+ 4)�n ; (B.17)

if the path touch boundary only once and vanishes there atkn. Under this approx-

imation, with or without edge blocking is no longer an issue. All the paths touch

boundaries more than once can simply be ignored as truncation of higher order terms,

compared to previous type walks. For other paths stopy atk 2 I�@
, i.e., the paths

never reach any part of the boundary, we have

P(Wk) = Rkn

n�1Y
i=0

Qki;ki+1 =
�

�+ 4
(�+ 4)�n : (B.18)

Keep remember that a smaller� provides less decay.

Let us run all the paths backward, and consider only the path starting from@
, we

can write another version of interpretation for��:

The solution��(k) correspond to the summation of probability of multiple source

random walks, where each random walk starts from a boundary pixeli 2 @
 and

arrives (not “stops”) atk. The walk carries the weightgi =
�(i)

�(i)+�(i;Ni)
� �0(i) or

yFor random walks, we will use “stops” and “arrives” at certain location to specify

whether we need to multiply the vanishing probability which only applied to the case of

stopped walks.
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for a simpler case asgi =
1

1+��(i;Ni)
from a pixeli 2 @
 (i.e., corners tend to weight

more).

When both sides
 andI � 
 are considered simutaneously, the weight carried by

those random walks can be either positive or negative depends on the sign of�0. The

calculation is therefore done by summing all those “signed probability”. Here the

summation cares only the walks starting from a boundary pixelk 2 @
. I.e., for the

simple case wheree(k), e(k; k0) take only binary values, under this interpretation,

we need to consider only those paths as in Eq. B.17 and paths as in Eq. B.18 can be

ignored, if we choose a small enough�.

Probability Interpretation

For the last two interpretations, we consider the solution as an expectation or a sum-

mation. It is interesting to view the result as a probability distribution. To see this,

we need a linear transform from� to p by

p(k) =
1

2
(1 + �(k)) ;

as we have used in Eq. 2.12. Let us discuss the case with� = 0 first, withp0(k) being

either1 or 0 for k 2 @
 (i.e., the inducers�0(k) = 1 / �1), assuminge(k) = 1,

8k 2 @
. Again, we assume that the walk hitting boundaries more than once will

vanish very likely and can be ignored. Therefore, the solutionp�, similar to��, is an
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expectation and can be written as

p�(k) = 1 �
X

i2F (@
);t

P(W (t) = i; stops ati jW (0) = k)

+ 0 �
X

i2G(@
);t

P(W (t) = i; stops ati j W (0) = k)

�
X

i2F (@
);t

P(W (t) = i; stops ati and visits@
 for the first time jW (0) = k)

= P(W visitsF (@
) before it visitsG(@
) jW (0) = k) (B.19)

asF (@
) andG(@
) indicating “figure” and “ground” side of the edges@
. We

can makep�(k) as close to the probabilityP(Wk visitsF (@
) beforeG(@
)) as we

want, if we choose small enough�,

When the decay coefficient� is not zero, we have an extra term

1

2
�
X

i2
�@
;t

P(W (t) = i; stops ati without touching@
 jW (0) = k) :

It is for the case where a walk stops at interior pixelsi 2 
 � @
. We can say

that for half of the chance, the location will be figure and will be background for the

other half of the chance, for it lacks of knowledge to commit. The same probability

interpretation forp� that we just described can stand still. We conclude it as

The solution0 � p�(k) � 1, derived by a linear transformation from1 � ��(k) �

1, is an approximation to the probabilityP(Wk visitsF (@
) before it visitsG(@
)).

The approximation can be as good as we want, if a small enough� is provided.

This interpretation suggests us to use the entropy criteria to measure the shape con-
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vexity, as we described in Sec. 2.2.2 or Eq. 2.12 & Eq. 2.13.

B.1 Decay Process and Convexity

Let us examine why our model can catch convexity. We will check the example

in Fig. B.1 where the regions
a and
b = I � 
a share a common boundary�.

A simpler version of the energy functional in Eq. B.4 wheree(k) ande(k; k0) take

only binary numbers will be discussed. For pixelsp andq, we usepq to indicate the

Euclidean distance between them. The shortest legal path betweenp andq within the

shape
a (or
b) is indicated byda(p; q) (or db(p; q)).

In Fig. B.1, given a source pixelp (along the boundary) and given a pixelq at the

convex side of the figure, there is a pixelq0 equally distant top (Euclidean distance)

in the concave side (There are many pixelsq0 with such property). In the concave

region the shortest legal walk betweenp and q0 traverse a distanced(p; q0) > pq0

while in the convex region, the shortest legal walk betweenp andq always traverse a

distanced(p; q) = pq = pq0.

By the result of random walk in last section, the contribution to the the final so-

lution ��(q) and��(q0) of the sourcep to q andq0 is directly dependent ond(p; q)

andd(p; q0) respectively. This is because with the decay term, only the pixels with

shorter distance can be reached by the random walk. The longer is the path to reach
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d(p, q) = pq

d(p, q’) > pq’

Concave

p

q’ q

Convex

bΩ aΩ

Figure B.1. Consider all the walks starting at the boundary pixel p. In the

concave region, the shortest random walk from p to q0 is given by d(p; q0) > pq0

while on the convex side, the shortest random walk to q is d(p; q) = pq =

pq0. The shorter are the random walks the more support is obtained by the

inducers, otherwise the random walks tend to decay. Thus, concave regions

get weaker response.

a pixel the more likely it will vanish (yielding the decay). More precisely, from the

Markov theory the probability of a particle vanishing when going in the shortest path

from p to q is exactly
Pd(p;q)

s=1 (Qs
p;a(s)Ra), where the sum is over all pixelsa in the

shortest path fromp to q, parameterized bys = 1; :::; d(p; q). Thus, the longer is the

path, the more terms in the sum overa, and the smaller is the probability to reachq.

Therefore, a pointq in a convex side will be reached by more random walks than a

point q0 in the concave side. This implies that��(q) will be more defined to 1 or -1
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(to figure or ground) than��(q0) and the entropy will satisfyS�(q) < S�(q0). Thus,

convexity is encouraged by the entropy criteria.
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