
Building an Automatic

Phenotyping System of

Developing Embryos

by

Feng Ning

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

September 2006

Yann LeCun

c© Feng Ning

All Rights Reserved, 2006

The publication will age with the author.

Dedicated to my wife, Karen, who delights my life

and

my parents, Yuanlai Ning and Liangfang Zhang, who give me

life and strength.

iv

Acknowledgements

I sincerely thank my adviser professor Yann LeCun. I am indebted of courage

and support from him in the long journey of exploring the unknown and

discovering my inner identity.

I would to thank all the people I am working with. Special thanks to

the thesis committee members who spend their valuable time reviewing my

thesis.

Last but not the least, the staff in the CS department provide a great

environment for my study and work. I appreciate their efforts.

v

Abstract

This dissertation presents a learning-based system for the detection, identi-

fication, localization, and measurement of various sub-cellular structures in

microscopic images of developing embryos. The system analyzes sequences of

images obtained through DIC microscopy and detects cell nuclei, cytoplasm,

and cell walls automatically. The system described in this dissertation is the

key initial component of a fully automated phenotype analysis system.

Our study primarily concerns the early stages of development of C. Ele-

gans nematode embryos, from fertilization to the four-cell stage. The method

proposed in this dissertation consists in learning the entire processing chain

from end to end, from raw pixels to ultimate object categories.

The system contains three modules: (1) a convolutional network trained

to classify each pixel into five categories: cell wall, cytoplasm, nuclear mem-

brane, nucleus, outside medium; (2) an Energy-Based Model which cleans up

the output of the convolutional network by learning local consistency con-

vi

straints that must be satisfied by label images; (3) A set of elastic models of

the embryo at various stages of development that are matched to the label

images.

When observing normal (wild type) embryos it is possible to visualize

important cellular functions such as nuclear movements and fusions, cytoki-

nesis and the setting up of crucial cell-cell contacts. These events are highly

reproducible from embryo to embryo. The events will deviate from normal

behaviors when the function of a specific gene is perturbed, therefore allow-

ing the detection of correlations between genes activities and specific early

embryonic events. One important goal of the system is to automatically

detect whether the development is normal (and therefore, not particularly

interesting), or abnormal and worth investigating. Another important goal

is to automatically extract quantitative measurements such as the migration

speed of the nuclei and the precise time of cell divisions.

vii

Contents

Dedication iv

Acknowledgements v

Abstract vi

List of Figures xi

List of Appendices xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Automatic Phenotyping System 4

1.3 Structure of the Thesis . 9

1.4 Conventions . 9

2 The Convolutional Network Module 11

2.1 Convolutional Network . 11

viii

2.2 Convolutional Network Module 17

2.3 Summary . 30

3 Related Work 33

3.1 Probabilistic Approaches . 34

3.2 Sampling Methods . 39

3.3 Contrastive Divergence Learning 45

3.4 Factor Graph . 47

3.5 Summary . 52

3.6 Appendix: A Mini Introduction to Markov Chain 52

4 EBM Module 55

4.1 Overview . 55

4.2 The Submodules of the EBM 61

4.3 The Approximate Coordinate Descent Algorithm 66

4.4 Empirical Study . 68

4.5 Summary . 69

5 Elastic Fitting Module 72

5.1 Introduction . 72

5.2 Overview of Deformable Models for Template Matching 73

5.3 The Elastic Model . 75

ix

5.4 Summary . 83

6 Conclusion 84

6.1 Contributions . 84

6.2 Future Work . 85

Appendices 89

Bibliography 105

x

List of Figures

1.1 Snapshots of the early development stages of a wild type

C.elegans embryo obtained through DIC microscopy. 3

1.2 The architecture of the entire automatic system, along with a

high level description of data flow through the modules. . . . 8

2.1 The Convolutional Network architecture. The feature map

sizes indicated here correspond to a 41×41 pixel input image,

which produces a 1× 1 pixel output with 5 components each.

Applying the network to an Nx×Ny pixel image will result in

output maps of size (Nx − 40)× (Ny − 40). 16

2.2 Sample input images. 18

2.3 Input preprocessing. Left: raw image; right: preprocessed

image. 20

xi

2.4 Generation of M1 and M2 labels. The ground truth label im-

age (GT) is assumed unknown. The human-produced labels

may contain error and inconsistencies. The M1 label image is

produced by making the boundary 3 pixel wide so as to encom-

pass the ground truth, whereas the M2 label image is derived

from the human produced labels by removing all boundary

pixels. 21

2.5 Comparison of raw images and different labels. (a) raw image;

(b) human labels; (c) M1 labels; (d) M2 labels. 22

2.6 The pixelwise error rates for (a) M1 and (b) M2. x-axis: num-

ber of epochs of training; y-axis: pixelwise error rates (in per-

centage). 26

2.7 The per-category training error analysis. x-axis: number of

epochs of training. The error rate for category-i is defined as

1−
all windows predicted as label i with ground truth label i

all windows with ground truth label i
28

xii

2.8 The convolutional network module in action. (a) top: raw

input image; bottom: pre-processed image; (b) state of layer

C1; (c) layer C3; (d): layer C5; (e): output layer. The five

output maps correspond to the five categories, respectively

from top to bottom: nucleus, nucleus membrane, cytoplasm,

cell wall, external medium. The properly segmented regions

are clearly visible on the output maps. 29

2.9 Pixel labeling produced by the convolutional network module.

Top to bottom: input images; label images produced by the

network trained with M1 labels; label images produced by the

M2 network Because each output is influenced by a 41 × 41

window on the input, no labeling can be produced for pixels

less than 20 pixels away from the image boundary. 31

2.10 The M1, M2 predictions on testing images 32

3.1 Comparison of several modeling methods on a simple, 3-

variable scenario. 51

4.1 Modeling the local constraints. Top-left: consistent configu-

ration, low energy assigned; bottom-left: non-consistent con-

figuration, high energy assigned. 57

4.2 The loss function. 58

xiii

4.3 The architecture the Energy-Based Model. The image marked

“input labeling” is the variable to be predicted by the EBM.

The first layer of the interaction module is a convolutional

layer with 40 feature maps and 5× 5 kernels operating on the

5 feature maps from the output label image. The second layer

simply computes the average value of the first layer. 63

4.4 The activation function g(u) = 1 − 1
1+u2 used in the EBM

feature maps. 65

4.5 Results of EBM-based clean-up of label images on 5 train-

ing images. From left to right: input image; output of M2

convolutional network; output of M1 convolutional network;

cleaned-up image by EBM. 70

4.6 Results of EBM-based clean-up of label images on 5 testing

images. The format is the same as in figure 4.5. 71

5.1 Matching deformable templates with Colored Self-Organizing

Maps. Each deformable template is specified by coloring a

regular lattice of nodes. The lattice is then aligned with the

cell component labels derived from the image. 75

xiv

5.2 Meta-templates: (a) Fertilization has just occurred. (b) The

maternal pronucleus migrates to the posterior area and a

pseudo-cleavage furrow forms. (c) The pronuclei fuse. (d)

The cell divides unequally to produce two cells. (e) The two

cells further split into four cells. 78

5.3 Constructing a meta-template using phenotype information. . 79

5.4 Transforming a meta-template and fitting it to a label image 80

5.5 Calculating the forces for template deformation 81

A.1 Screenshot of the CellSmartGui, the GUI front-end of CellS-

mart application. 91

B.1 TemplateSmart and its two front-ends. 93

B.2 Screenshot: overlaying a T4 template on a label image. 94

B.3 Screenshot: fitting a T4 template to a label image. 94

C.1 The sample patches, from Berkeley segmentation dataset. . . 97

C.2 The network architecture for training. We use stride = 8. . . . 98

C.3 The kernels learned after 100 epochs. 99

C.4 The energies on training data, epoch 1. 100

C.5 The energies on training data, epoch 100. 100

C.6 The network architecture for inference. We use stride = 1. . . 101

xv

C.7 Denoising in action. Patches are shown every two steps. Or-

der: top to down, then left to right. 102

C.8 The pepper image, with c = 20 Gaussian noise. PSNR = 22.40.103

C.9 The pepper image, denoised after 500 steps. PSNR = 27.73. . 104

xvi

List of Appendices

Appendix A

CellSmart

89

Appendix B

TemplateSmart

92

Appendix C

Image denoising using EBM

95

xvii

Chapter 1

Introduction

1.1 Motivation

One of the major goals of biological research in the post-genomic era is to

characterize the function of every gene in the genome. One particularly

important subject is the study of genes that control the early development of

animal embryos. Such studies often consist in knocking down one or several

genes and observing the effect on the developing embryo, a process called

phenotyping.

As an animal model, the nematode C.elegans is one of the most amenable

to such genetic analysis because of its short generation time, small genome

size, and availability of a rapid gene knock-down approach, RNAi (RNA

interface) [FXM+98].

1

Since the completion of the C.elegans genome sequence and identifi-

cation of its roughly 20, 000 protein-coding genes in 1998 [con98], exten-

sive research has been done on analyzing how these genes function in vivo.

Early embryonic events provide a good model to assess specific roles genes

play in a developmental context. Early C.elegans embryos are easily ob-

servable under a microscope fitted with Nomarski Differential Interference

Contrast (DIC) optics. When observing normal (wild type) embryos it

is possible to visualize important cellular functions such as nuclear move-

ments and fusions, cytokinesis and the setting up of crucial cell-cell con-

tacts. These events are highly reproducible from embryo to embryo and

deviate from normal behaviors when the function of a specific gene is de-

pleted [GEO+00, PSM+00, PSM+02, ZFK+01], allowing the association of a

gene’s activity with specific early embryonic events.

A typical experiment consists in knocking down a gene (or a set of genes),

and recording a time-lapse movie of the developing embryo through DIC

microscopy. Figure 1.1 shows a few frames extracted from the movie of a

normally developing C. elegans embryo from the fusion of the pronuclei to

the four-cell stage.

Using RNAi, several research groups have gathered a large collection of

such movies. Many of these movies depict cellular behaviors in the early

embryos that deviate from the wild type, and some show dramatic prob-

2

Figure 1.1: Snapshots of the early development stages of a wild type C.elegans

embryo obtained through DIC microscopy.

lems during embryonic development. Although initial analysis of the movies

have been performed by hand, automating the analysis of the cellular behav-

iors would augment our ability to process the large amounts of data being

currently produced, and could reveal more subtle quantitative defects that

cannot be detected by manual analysis.

One important classification task is to automatically detect whether the

development is normal (and therefore, not particularly interesting), or ab-

normal and worth investigating. Another important task is to automatically

extract quantitative measurements such as the number of cells, the relative

positions of the cell nuclei, the time between each cell division, etc... Ulti-

mately, one may want an automated system for classifying the movies into a

number of known scenarios of normal or abnormal development.

3

1.2 Automatic Phenotyping System

We will present our automatic system, which focuses on the detection, iden-

tification, and measurement of various objects of interests in the embryo,

namely the cell nuclei, cytoplasms, and cell walls, from sequences of images

obtained through DIC microscopy. The system described in this thesis is

the key component of a fully automated analysis system under development.

The present study primarily concerns the early stages of development, from

fertilization to the four-cell stage.

Although the development of C. elegans embryos is the subject of numer-

ous studies from biologists, there have been very few attempts to automate

the task of analyzing DIC image sequences. The most notable exception is

the work of Yasuda et al. [YBO+99], which describes a computer vision ap-

proach to the detection the nuclei and cell walls. Their method is based on

the combination of several types of edge features. Because DIC microscopy

images are very noisy and anisotropic, the method produces a large num-

ber of false positives (e.g. areas falsely detected as cell nuclei) that must be

manually corrected. One conclusion from this work is that DIC images are

not easily analyzed with commonly-used feature detectors. In this paper,

we propose to rely on machine learning methods to produce a more reliable

image segmentation system.

4

Learning methods have been used for low-level image processing and seg-

mentation with some success over the last few years. A notable example is

the object boundary detection system of Martin et al. [MFTM01, MCM04].

Closer to our application is the detection and classification of sub-cellular

structures in fluorescence microscopy images. Machine learning and adap-

tive pattern recognition methods have been widely applied to this problem

in a series of influential work [BMM98, HM04]. These systems rely on the

time-honored method of extracting a large number of carefully engineered

features, while using learning methods to select and exploit these features.

The method proposed in this thesis consists in learning the entire pro-

cessing chain from end to end, from raw pixels to ultimate object categories.

The system is composed of three main modules.

The first module is a trainable Convolutional Network, which

labels each pixel in a frame into one of five categories. The cate-

gories are: cell nucleus, nuclear membrane, cytoplasm, cell wall, and outside

medium. The main advantage of Convolutional Nets is that they can learn to

map raw pixel images into output labels, synthesizing appropriate intermedi-

ate features along the way, and eliminating the need for manually engineered

features. They have been widely applied to detection and recognition tasks

such as handwriting recognition with integrated segmentation (see [LBBH98]

for a review), hand tracking [NP95], face recognition [LGTB97], face detec-

5

tion [VML94, GD04, OML05], and generic object recognition [HLB04]. The

main advantages of Convolutional Networks is that they can operate directly

on raw images

The architecture of the convolutional network is designed so that each

label can be viewed as being produced by a non-linear filter applied to a

41×41 pixel window centered on the pixel of interest in the input image. This

convolutional network is trained in supervised mode from a set of manually

labeled images. The five categories may appear somewhat redundant: it

would be sufficient to label the nucleus, cytoplasm, and external medium

to locate the nuclear membrane and the cell wall. However, including the

boundaries as explicit categories introduces redundancy in the label images

that can be checked for consistency.

Ensuring local consistency is the role of the second module.

Since the label of each pixel is produced independently of the labels of neigh-

boring pixels, the predicted label image may indeed contain local inconsisten-

cies. For example, an isolated pixel in the outside medium may be erroneously

classified as nucleus. Since nucleus pixels must be surrounded by other nu-

cleus pixels or by nuclear membrane pixels, it would seem possible to clean up

the label image by enforcing a set of local consistency constraints. To imple-

ment this process, we used an energy based model (EBM) [TWOE03, YH05].

EBMs are somewhat similar to Markov Random Fields, and can be seen as

6

a sort of non-probabilistic Conditional Random Field [LMP01]. The EBM

used in the present system can be viewed a scalar-valued “energy” function

E(f(X), Y), where f(X) is the label image produced by the convolutional

net, and Y is the cleaned-up image. The EBM is trained so that when f(X)

is a predicted label image and Y is the corresponding “correct” (cleaned-up)

label image, the energy E(f(X), Y) will be smaller than for any other (“in-

correct”) value of Y . The cleanup process consists in searching for the Y

that minimizes E(f(X), Y) for a given f(X). This approach is related to the

relaxation labeling method [HZ87]. While learning methods have been used

to estimate the coupling coefficients in relaxation labeling systems [PR94],

the method used here is based on minimizing a new type of contrastive loss

function [YH05].

The third component of the system models the embryos and

their internal parts by matching deformable templates to the label

images. This module is used to precisely locate and count parts such as

cells nuclei, and cell walls. It is also used to determine the stage of develop-

ment of the embryo in the image. This technique is related to the classical

active contour method [KWT87, MT96], and very similar to elastic match-

ing methods based on the Expectation-Maximization algorithm as described

in [RWH96, BL94].

A preliminary version of the system presented in this thesis was published

7

Figure 1.2: The architecture of the entire automatic system, along with a

high level description of data flow through the modules.

in [NDL+05]. The system and methods described here contains a number of

significant differences with this earlier work:

• Both training data set and testing data set are more than 4x larger.

The complexity/capacity of the learning system was increased only

marginally. The additional training data suppressed the potential ef-

fects of increased complexity on overfitting. Our system shows better

reliability on testing data with great variability of image statistics.

• The learning/inference algorithms for the energy-based machine mod-

ule were revised for clarification and efficiency.

• The elastic templates were redesigned and the fitting algorithm was

updated accordingly.

8

1.3 Structure of the Thesis

The thesis is organized as described below. Chapter 1 gives the introduction.

Chapter 2, chapter 4, chapter 5 describe in depth the three modules of the

system: the convolutional network module, the energy-based machine mod-

ule, and the elastic fitting module, respectively. Both design and empirical

studies are presented in each of the chapters. Chapter 3 is a review of related

works. We put our research problem in a generic setting, where we consider

the inference of true labels from noisy observations. A series of frameworks

are represented, in a way that highlights their motivation and the relation-

ships between them. Chapter 6 gives an outlook for future work and outlines

several interesting direction where our work may be extended.

1.4 Conventions

Throughout this thesis, we use a, b, c to denote scalar variables and a,b, c

to denote multi-dimensional variables. For most parts of our discussion,

we focus on image data which have inherently a 2D matrix representation.

For example, for image x, we have a matrix xi,j : i = 1, .., m, j = 1, .., n.

If we assume natural ordering on the index, we can create a unique 1D

representation x1,1, x1,2, .., x1,n, x2,1, x2,2, .., xm,n. We do not explicitly state

which representation (1D or 2D) used in a particular formula, if self-evident

9

from the context.

ROI is a shorthand for region of interest. In the thesis, we refer to any

cell/nucleus or other cellular or cubcellular structure in an image as an ROI.

10

Chapter 2

The Convolutional Network

Module

We present the first module of our system, the convolutional network module.

This chapter is divided into two parts. The first part is an introduction of

the architectural design of the module. The second part is focused on the

empirical study, including the data preparation, the experiments and the

analysis of the results.

2.1 Convolutional Network

A Convolutional Network is a trainable system whose architecture is specifi-

cally designed to handle images or other 1D or 2D signals with strong local

11

correlations. A Convolutional Network can be seen as a cascade of multiple

non-linear local filters whose coefficients are learned to optimize an over-

all performance measure. Convolutional Networks have been applied with

success to a wide range of applications [LBBH98, NP95, LGTB97, VML94,

GD04, OML05, HLB04].

Convolutional Networks are specifically designed to handle the variabil-

ity of 2D shapes. They use a succession of layers of trainable convolutions

and spatial subsampling interspersed with sigmoidal non-linearities to ex-

tract features with increasingly large receptive fields, increasing complexity,

and increasing robustness to irrelevant variabilities of the inputs. The con-

volutional net used for the experiments described in this paper is shown in

figure 2.1.

Each convolutional layer is composed of a set of planes called feature maps.

The value at position (x, y) in the j-th feature map of layer i is denoted cijxy.

This value is computed by applying a series of convolution kernels wijk to

feature maps in the previous layer (with index i− 1), and passing the result

through a sigmoid function. The width and height of the convolution kernels

in layer i are denoted Pi and Qi respectively. In our network, the kernel sizes

are between 2 and 7. More formally, cijxy is computed as:

cijxy = tanh

(

bij +
∑

k

Pi−1
∑

p=0

Qi−1
∑

q=0

wijkpqc(i−1),k,(x+p),(y+q)

)

(2.1)

12

where p, q index elements of the kernel wijk, tanh is the hyperbolic tangent

function, i is the layer index, j is the index of the feature map within the

layer, k indexes feature maps in the previous layer, and bij is a bias. Each

feature map is therefore the result of a sum of discrete convolutions of the pre-

vious layer maps with small-size kernels, followed by a point-wise squashing

function. The parameters wijkpq and bij are all subject to learning.

Subsampling layers have the same number of feature maps as the convo-

lutional layer that precedes them. Each value in a subsampling map is the

average of the values in a 2 × 2 neighborhood in the corresponding feature

map in the previous layer. That average is added to a trainable bias, mul-

tiplied by a trainable coefficient, and the result is passed through the tanh

function. The 2 × 2 windows are stepped without overlap. Therefore the

maps of a subsampling layer are one half the resolution of the maps in the

previous layer. The role of the subsampling layers is to make the system

robust to small variations of the location of distinctive features.

Figure 2.1 only shows a portion of the network: the smallest portion

necessary to produce a single output label. Each output is influenced by a

41× 41 pixel window on the input. The full network can be seen as multiple

replicas of this network applied to all 41×41 windows stepped every 4 pixels

on the input image (more on this later). The window size was chosen so that

the system would have enough context information to make an informed

13

decision about the category of a pixel. For example, the local texture in the

nucleus region is often indistinguishable from that of the external medium.

Therefore, distinguishing nucleus pixels from external medium pixels can

only be performed by checking if the pixel is within a roughly circular region

surrounded by cytoplasm. Since the nuclei are typically less than 41 pixels

in diameter, we set the window size to 41× 41 to ensure that at least some

of the nuclear membrane and the cytoplasm will be present in every window

containing nucleus pixels. Once the input window size is chosen, the choice of

the kernel size and subsampling ratio for each layer is quite constrained. The

first layer (marked C1) contains 6 feature maps with 7× 7 pixel convolution

kernel. The second layer (S2), is a subsampling layer with 2× 2 subsampling

ratios. The third layer (C3) uses 6 × 6 convolution kernels. Each of the 16

maps in C3 combines data from several maps in S2 by applying a separate

convolution kernel to each map, adding the results, and applying the sigmoid.

Each feature variable in C3 is influenced by an 18× 18 pixel window on the

input. Each C3 map combines input from a different subset of of S2 maps,

with a total of 61 individual kernels. Layer S4 is similar to S2 and subsamples

C3 by a factor of 2. Layer C5 comprises 40 feature maps that use 6 × 6

convolution kernels. There is one kernel for each pair of feature map in S4

and C5. The output layer contains five units, one for each category.

One key advantage of convolutional nets is that they can be applied to

14

images of variable size. Applying the network to a large image is equiva-

lent (but considerably cheaper computationally) to applying a copy of the

single-output network to every 41× 41 window in the input stepped every 4

pixel. More precisely, increasing the input size by 4 pixels in one direction

will increase the size C1 by 4 pixels, S2 and C3 by 2 pixel, and S4, C5, and

the output by 1 pixel. The size of the output in any dimension is therefore

(N − 36)/4, where N is the size of the input image in that dimension. Con-

sequently, the convolutional net produces a labeling for every 4× 4 block of

pixels in the input, taking information from a 41 × 41 window centered on

that block of pixels. Figure 2.1 shows the size of each layer when a 41× 41

pixel input is used and a single output vector is produced. Figure 2.8 shows

the result of applying the convolutional network to an image, which produces

a label image with 1/4 the resolution of the input. It would be straightfor-

ward to modify the method to produce a label image with the same resolution

as the input. However, we determined that the current application did not

require pixel-level accuracy.

Our task is to assign a label for each pixel on the image. Ideally, we should

build a Convolutional Network for each label produced, whose reception field

covers the entire image to utilize all information available. However, it is

not a good design in practice for several reasons: (1) the typical size of an

image is several hundred pixels per each dimension, it is inefficient to train

15

Figure 2.1: The Convolutional Network architecture. The feature map sizes

indicated here correspond to a 41× 41 pixel input image, which produces a

1 × 1 pixel output with 5 components each. Applying the network to an

Nx×Ny pixel image will result in output maps of size (Nx− 40)× (Ny− 40).

16

a Convolution Network with so large an input size; (2) To assign a label to

a pixel, nearby pixels are much more informative than remote pixels. It is

more economical to constrain ourselves to local neighborhoods, instead of the

entire image.

Our design is based on a Convolutional Network operating on image win-

dows. The typical size is 41×41 in our implementation, centered at the pixel

whose label is of interest. Our module also provides a scheme to obtain all

the windows from the images. For inference, we swipe the images one pixel

a time, so that we can infer labels for all pixels (excluding boundary). For

training, we add some policy for class balancing (see below).

2.2 Convolutional Network Module

2.2.1 Datasets and Training

Training images were extracted from 10 different movies of C. elegans em-

bryos. 20 frames were extracted from each movie, every 10 frames, for a

total of 200 frames. Testing images were extracted from another set of 5

movies. Similarly, 20 frames were extracted (separated by 10 frames) from

each testing movie, for a total of 30 frames. The sample frames were picked

every 10 frames in the movies so as to have a representative set covering the

17

various stages of embryonic development. See the following fig 2.2.1, where

we randomly (not necessarily ordered image frames by timestamp) show four

images for each movie in training and in testing. Image size varies and many

development stages are observed. Here we show the raw pixels instead of the

pre-processed (isotropic) pixels since the raw pixels are visually more vivid

to the human eye.

Figure 2.2: Sample input images.

18

Frames from different movies had different sizes, but were typically around

several hundred pixels. All images were 8-bit gray-scale. The movies were

stored in Apple Quicktime format, whose compression method introduces

some quantization and blocking artifacts in the frames. Working with com-

pressed video make the problem more difficult, but it will allow us to tap

into a larger pool of movies produced by various groups around the world,

and distributed in compressed formats.

Preprocessing

DIC images are not only very noisy, but also very anisotropic. The DIC

process creates an embossed “bas relief” look that, while pleasing to the

human eye, makes processing the images quite challenging. For example the

cell wall in the upper left region of the raw image in figure 2.8 looks quite

different from the cell wall in the lower right region. We decided to design

a linear filter that would make the images more isotropic, while preserving

the texture information. The linear filter used was equivalent to computing

the difference between the image and a suitably shifted version of it. A

typical resulting image is shown in figure 2.2.1. The pixel intensities were

then centered so that each image had zero mean, and scaled so that the

standard deviation was 1.0. An unfortunate side effect of this pre-processing

is that it makes the quantization artifacts of the video compression more

19

apparent. Better preprocessing will be considered for future embodiments of

the system. It should be emphasized that the purpose of this preprocessing

is merely to make the image features more isotropic. The purpose is not to

recover the optical pathlength, as several authors working with DIC images

have done [vvA97].

Figure 2.3: Input preprocessing. Left: raw image; right: preprocessed image.

Labels

Each training and testing frame was manually labeled with a simple graphical

tool (CellSmartGui, see A) by a single person. Labeling the images in a

consistent manner is very difficult and tedious. Therefore, we could not

expect the manually produced labels to be perfectly consistent. In particular,

it is very common for the position nucleus boundary or the cell wall to vary

by several pixels from one image to the next.

Consequently, it appeared necessary to use images of desired labels that

20

Figure 2.4: Generation of M1 and M2 labels. The ground truth label image

(GT) is assumed unknown. The human-produced labels may contain error

and inconsistencies. The M1 label image is produced by making the boundary

3 pixel wide so as to encompass the ground truth, whereas the M2 label image

is derived from the human produced labels by removing all boundary pixels.

21

Figure 2.5: Comparison of raw images and different labels. (a) raw image;

(b) human labels; (c) M1 labels; (d) M2 labels.

22

could incorporate a bit of slack in the position of the boundaries. We used

a very simple method which consists in deriving two label images from each

human-produced label image. The process is described in figure 2.2.1 and

what really happen on a real image can be seen in figure 2.2.1. The first

image, called M1, is obtained by dilating the boundaries by one pixel on

each side, thereby producing a 3-pixel wide boundary. The second label

image, M2, contains no boundary labels. It is obtained by turning all the

nuclear membrane pixels into either nucleus or cytoplasm using a simple

nearest neighbor rule.

Training Set and Test Set

The simplest way to train the system would be to simply feed a whole image

to the system, compare the full predicted label image to the ground truth,

and adjust all the network coefficients to reduce the error.

This “whole-image” approach has two deficiencies. First, there are consid-

erable differences between the numbers of pixels belonging to each category.

This may cause the infrequent categories to be simply ignored by the learn-

ing process. Second, processing a whole image at once can be seen as being

equivalent to processing a large number of 41× 41 pixel windows in a batch.

Previous studies have shown that performing a weight update after each sam-

ple leads to faster convergence than updating the weights after accumulating

23

gradients over a batch of samples [LBBH98]. Therefore, we chose to break

up the training images into a series of overlapping 41× 41 windows that can

be processed individually. Overall, from the 200 frames in the training set,

9, 931, 780 windows (note: this is not the number of windows the trainer see

for each epoch, due to the frequency equalization, as described below) of size

41×41 pixels were extracted. To each such window was associated the desired

labels (for M1 and M2) of the central pixel in the window. Each pair of win-

dow and label was used as a separate training sample for the convolutional

network, which therefore produced a single output vector (a 1 pixel output

map). There were wide variations in the number of training samples for each

category. A quick estimate shows that there are about 10 times more win-

dows labeled as external medium than those labeled as nucleus. If we train

the module with data of such wide variations, the module will generate too

many false positives of external medium and false negatives of nucleus for

un-equalized data. However, we are more concerned about the precision of

locating nucleus than external medium. To correct these wide variations, a

class frequency equalization method was used. During one epoch, each sam-

ple labeled “external medium” was seen once, while samples from the other

categories were repeated c times, where c is constant within each category.

c is chosen to be inversely related to ratio of the number of windows of the

category and the number of windows of external medium. And we also cap

24

the maximum value of c to be 10.0 to avoid excessive long training time. It

is worthy to point out that if we have two schemes to label the same images

(e.g. use M1 and M2), c values will be different. As result, the corresponding

training time for one epoch can be different.

The network was trained to minimize the mean squared error between its

output vector and the target vector for the desired category. The target vec-

tors were [+1,−1,−1,−1,−1] for nucleus, [−1,+1,−1,−1,−1] for nucleus

membrane, [−1,−1,+1,−1,−1] for cytoplasm, [−1,−1,−1,+1,−1] for cell

wall, and [−1,−1,−1,−1,+1] for external medium. The training procedure

used a variation of the back-propagation algorithm to compute the gradi-

ents of the loss with respect to all the adjustable parameters, and used an

“on-line” version of the Levenberg-Marquardt algorithm with a diagonal ap-

proximation of the Hessian matrix to update those parameters (details of the

procedure can be found in [LBBH98]).

2.2.2 Results

The network was trained for 5 epochs on the frequency-equalized dataset for

two times, one with the M1 labels and another with the M2 labels. Each

epoch takes 45 and 30 hours on a 2.0 GHz Opteron-based server respectively.

We measured the following pixel-wise error rates, see figure 2.6. The training

25

error is measured on the frequency equalized training set. The test error is

measured on the non frequency equalized training or testing data set.

1 2 3 4 5
0.17

0.18

0.19

0.2

0.21

0.22

0.23

1 2 3 4 5
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

training error

test error
(on training images)

test error
(on testing images)

(a) M1

(b) M2

Figure 2.6: The pixelwise error rates for (a) M1 and (b) M2. x-axis: number

of epochs of training; y-axis: pixelwise error rates (in percentage).

Some remarks for fig 2.6:

• The error rates are lower in M2 than in M1, since M2 deals with 3-

category classification while M1 deals with 5-category.

• The training errors are the error rates we obtain from the training pro-

26

cess, by feeding the frequency-equalized windows to the machine. That

is why the error rates are different from the testing error on the training

images, where we do not adjust the frequency of the windows.

• The testing error rates are slightly lower on the testing images than on

the training images.

This may look suspicious at first sight. But overall, all the error rates

are quite similar and, stabilize after decreasing nicely. The lower error

rates can be the consequence of how we chose the training and testing

images. Currently we chose 10 movies randomly for training and the

remaining 5 for testing. However, the mechanical conditions of the DIC

microscope and the phenotyping process under observations are not

considered for the choice. So our arbitrary choice may not guarantee the

randomness. A more rigorous error analysis could be applied, such as

leave-one-out cross-validation. But it is very expensive for our problem

and, as we point out, the absolute error rate on individual windows is

somewhat removed from the ultimate system-level performance.

We also analyzed the per-category training error rates along with the

overall training error rates, see figure 2.7, We conclude that the training not

only decreases the overall training error rates, but also decreases the variance

27

of per-category error rates. This property is essential in the testing phase

since the data is highly imbalanced. It will be high undesirable if the trainer

minimizes only minimize some but not all per-category error rates.

1 2 3 4 5
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

1 2 3 4 5
0.023

0.024

0.025

0.026

0.027

0.028

0.029

0.03

0.031

0.032

(a)
Per−category

error
rates

(b)
Variance in per−category

error rates

category−1

category−4

category−0

category−2

category−3

overall

Figure 2.7: The per-category training error analysis. x-axis: number

of epochs of training. The error rate for category-i is defined as 1 −

all windows predicted as label i with ground truth label i
all windows with ground truth label i

It must be emphasized again that pixel-wise error rate is not a good

indicator of the overall system performance. First of all, many errors are

isolated points that can easily be cleaned up by post-processing. Second, it

is unclear how many of the errors can be attributed to inconsistencies in the

human-produced labels, and how many can be attributed to truly inaccurate

classifications. Third, and more importantly, the usefulness of the overall

28

system will be determined by how well the cells and nuclei can be detected,

located, counted, and measured.

Figure 2.8: The convolutional network module in action. (a) top: raw input

image; bottom: pre-processed image; (b) state of layer C1; (c) layer C3;

(d): layer C5; (e): output layer. The five output maps correspond to the

five categories, respectively from top to bottom: nucleus, nucleus membrane,

cytoplasm, cell wall, external medium. The properly segmented regions are

clearly visible on the output maps.

Figure 2.8 shows a sample image (top left), a pre-processed version of the

image (bottom left), and the corresponding internal state and output of the

convolutional network. Layers C1, C3, C5 and F6 (output) are shown. The

segmented regions of the five categories (nucleus, nuclear membrane, cyto-

plasm, cell wall, external medium) are clearly delineated in the five output

maps.

29

The labeling produced by the network for several sample images, from

training and testing data, shown in figure 2.9 and figure 2.10. The essential

elements of the embryos are clearly detected. The cell nuclei are correctly

labeled before, during, and after the fusion of the pro-nuclei. The cell wall

is correctly identified by the M1 network. However, the detection of new cell

walls created during cell division (mitosis) seems to be more difficult.

2.3 Summary

The main advantage of the convolutional network approach is that the low-

level features are automatically learned. A somewhat more traditional ap-

proach to classification consists of selecting a small number of relevant fea-

tures from a large set. One popular approach is to automatically generate a

very large number of simple “kernel” features, and to select them using the

Adaboost learning algorithm [VJ01]. Another popular approach is to build

the feature set by hand. This approach has been advocated in [CEW+04] for

the classification of sub-cellular structures. We believe that these methods

are not directly applicable to our problem because the regions are not well

characterized by local features, but depend on long-range context (e.g. a nu-

cleus is surrounded by the cytoplasm). This kind of contextual information

is not easily encoded into a feature set.

30

Figure 2.9: Pixel labeling produced by the convolutional network module.

Top to bottom: input images; label images produced by the network trained

with M1 labels; label images produced by the M2 network Because each

output is influenced by a 41 × 41 window on the input, no labeling can be

produced for pixels less than 20 pixels away from the image boundary.

31

Figure 2.10: The M1, M2 predictions on testing images

32

Chapter 3

Related Work

The task of inferring states Y from a set of observations X arises in

many fields, including computational linguistics (1D data) and image la-

beling/segmentation (2D data). Such inference tasks are often a useful pre-

processing step for higher level processing tasks. Our labeling problem can

be regarded as a special case, where labels are one-to-one correspondent to

the states.

This chapter serves as a review of related works and is organized as fol-

lows. Section 3.1 is an introduction to probabilistic approaches. Then we dis-

cuss the discriminative framework in section 3.1.3. Practical implementations

involve advanced sampling techniques and Contrastive Divergence learning,

an approximate learning scheme, which are the topics in section 3.2, 3.3.

Factor graph, a non-probabilistic framework. is discussed next in section 3.4,

33

in the context of graphical models.

3.1 Probabilistic Approaches

Probabilistic approaches model the probability distribution over X and Y.

The model is called generative when it models the joint probability, or the

conditional probability P (X|Y). The model is called discriminative if it di-

rectly models the conditional distribution P (Y|X). The two types of models

try to address a different aspect of the problem, but as we will see next, they

are closely related.

3.1.1 Generative Framework

In the generative framework, the joint probability P (Y,X) is the tar-

get of modeling. Using Bayes rule, the posterior over labels P (Y|X) ∝

P (Y,X) = P (X|Y)P (Y). P (Y) is commonly modeled as Markov Random

Field (MRF) [Li95] to incorporate local contextual information. For the sake

of tractability, the conditional probability P (X|Y) is often assumed factor-

ized P (X|Y) = ΠiP (Xi|Yi). Unfortunately, this assumption is generally

seen as too restrictive for modeling natural images [CB01, WL03].

It is worth noting that some authors have attempted to relax the assump-

tion that P (Y) is an MRF [PT00]. Instead, the joint (Y,X) is assumed to

34

be an MRF. However, the underlying difficulty is not resolved but merely

displaced.

3.1.2 Discriminative framework

The central idea of discriminative framework is to model P (Y|X) directly,

without modeling the joint probability. There are two immediate advantages

to the discriminative framework: (1) no efforts are made to model the states

P (Y); (2) no unwarranted assumptions of independence are made to factorize

the conditional distribution P (X|Y).

Modeling conditional distributions over complex structured objects has a

long history, which arguably started in the field of speech and handwriting

recognition (see [LBBH98, YH05] and references therein). The topic has seen

a resurgence of interest in the machine learning and natural language process-

ing communities recently [LMP01, Wal04] with the concept of Conditional

Random Field (CRF). An extension of CRF for image segmentation called

Discriminative Random Field (DRF) were introduced in [SM03]. It uses local

discriminative models to capture the class associations at individual sites as

well as the interactions in the neighboring sites on 2-D grid lattices.

In DRF, the conditional distribution is modeled as

p(Y|X) =
1

Z
exp(

∑

i∈S

Ai(xi,Y) +
∑

i∈S

∑

j∈Ni

Iij(xi, xj,Y))

35

where Ai and Iij are called association potential and interaction potential

respectively.

3.1.3 Training a Discriminative Models

In this section, we give the derivation of a general class of learning algorithm

for training a model that estimates P (Y|X,W). We place ourselves in a

more general setting than either CRFs or DRFs since we make minimal

assumptions about the form of the conditional probability distribution, and

its parametrization.

The energy function E(W,Y,X) is parameterized by a parameter vector

W. Without loss of generality, we pose that the conditional distribution is

the normalized exponential of an energy function (Gibbs distribution):

P (Y|X,W) =
e−βE(W,Y,X)

∑

Y′ e−βE(W,Y′,X)
. (3.1)

where β > 0 is user-chosen constant, akin to an inverse temperature.

The learning problem consists of finding the value of W that maxi-

mizes the (conditional) likelihood of the training data under the model.

This process is called Maximum Likelihood Estimation (MLE). Assuming

that the training samples (Xi,Yi) are drawn independently, the likelihood

of the training data is the product of individual likelihoods over samples

∏

i P (Yi|Xi,W).

36

Equivalently, the maximum likelihood estimate for W can be obtained by

minimizing the following function which is the negative log of the likelihood:

f(W) = −
1

mβ

m
∑

i=1

logP (Yi|Xi,W) =
1

m

∑

i

{E(W,Yi,Xi)+
1

β
log
∑

Y

e−βE(W,Y,Xi)}.

To minimize this loss function, we can use a gradient-based method. The

gradient of the loss with respect to the parameter vector is:

f ′(W) =
1

m

∑

i

{
∂E

∂W
(W,Yi,Xi) +

1

β

∂

∂W
log
∑

Y

e−βE(W,Y,Xi)}

=
1

m

∑

i

{
∂E

∂W
(W,Yi,Xi) +

1

β

−β
∑

Y
e−βE(W,Y,Xi) ∂E

∂W
(W,Y,Xi)

∑

Y′ e−βE(W,Y′,Xi)
}

=
1

m

∑

i

{
∂E

∂W
(W,Yi,Xi)−

∑

Y

e−βE(W,Y,Xi)

∑

Y′ e−βE(W,Y′,Xi)

∂E

∂W
(W,Y,Xi)}.

Plug in our definition 3.1 of the conditional probability:

f ′(W) =
1

m

∑

i

{
∂E

∂W
(W,Yi,Xi)−

∑

Y

P (Y|Xi,W)
∂E

∂W
(W,Y,Xi)}.

We introduce the empirical probability defined by the training data:

P 0(X,Y) =
1

m

m
∑

i=1

δ(X−Xi) · δ(Y −Yi).

where δ(·) is the Delta function. Now we see that P 0(Y|Xi) = δ(Y − Yi)

for every i.

Plug in the definition of the P 0 and P∞, we can write:

f ′(W) =
1

m

m
∑

i=1

{P 0(Yi|Xi)
∂E

∂W
(W,Yi,Xi)−

∑

Y

P (Y|Xi,W)
∂E

∂W
(W,Y,Xi)}

=
1

m

m
∑

i=1

{
∑

Y

P 0(Y|Xi)
∂E

∂W
(W,Y,Xi)−

∑

Y

P (Y|Xi,W)
∂E

∂W
(W,Y,Xi)}.

37

We arrive at a very insightful formula.

f ′(W) =
m
∑

i=1

{<
∂E

∂W
(W, ·,Xi) >P 0(Y|X) − <

∂E

∂W
(W, ·,Xi) >P∞(Y|X)}.

i.e the parameter updates should be proportional to the difference of

the expectation of ∂E
∂W

in two probabilities: The first one P 0(Y|X) is the

empirical probability for the training data, which in our case consist of a

delta function around the output for each training sample Yi. The second

one P∞(Y|X) is the distribution given by out model.

Estimating the second term is often intractable, because it involves a sum

(or an integral) over a all possible configurations of Y. Many approaches

to the problem use Markov Chain Monte Carlo methods to estimate the

second term of the gradient. Hence, we call the distribution the equilibrium

distribution, and use the notation P∞.

More specifically, there are two general approaches to estimating f ′(W),

which are the next topics in this chapter.

• Sample from P∞ approximately, so we have an estimate of < ∂E
∂W

>P∞.

A common way to do so is to construct a Markov chain and utilize

Markov chain Monte Carlo methods (MCMC). One popular approach,

when the space of Y is continuous, is Hybrid Monte Carlo methods.

38

• Replace the intractable distribution P∞ by some more amenable ap-

proximation. A recent proposal called Contrastive Divergence, consists

simply running MCMC for a fixed number of steps, instead of running

it until convergence. A key issue is that what we estimate is no longer

the gradient of f . Therefore, there is no guarantee that the parameter

updates will increase the likelihood.

3.2 Sampling Methods

This section presents various sampling methods that are useful to estimate

the gradient of the negative log likelihood.

for the sake of completeness, we give a short introduction to Markov

Chain methods at the end of this chapter.

One of the central goals of Monte Carlo (MC) method [G.S95, Mac03,

R.M93] is to approximate the expected value of some function h(Y) over a

probability distribution P (Y). We denote this expected value < h(Y) >P (Y).

Monte Carlo methods approximate this expectation by an average over a col-

lection of well-chosen discrete samples
∑

i h(Yi)P (Yi), where Y1,Y2, ...,Ym

is a sequence of samples drawn based on the knowledge of P . The unique

fact of Monte Carlo approximation is that

39

The absolute error decreases as 1√
m

, independently of the problem

size.

This error bound is valid without any specific knowledge of a particular

problem. This property is extremely attractive for research of image process-

ing, where very high dimensional problem space is common. For example,

an 256× 256 image is in 65536 dimensional space of pixels.

3.2.1 Markov Chain Monte Carlo

In high dimensional spaces, the high probability region is very small. (Such

claim can be quantified using the concept of typical set and proved in a

general setting, see [Mac03].) So it is wasteful to search for high probability

region from scratch every time. It is more economic to explore the space in

some systematic way so that the sampler will not leave the high probability

region once it is inside. Note that this has the consequence that the samples

are co-related instead of independent. But it does not matter since we only

use the samples to estimate the expectation. Markov-chain Monte-Carlo

(MCMC) utilizes a Markov chain to find the next state Yi+1 from current

state Yi via a transition matrix. The Hybrid Monte Carlo method moves the

sampler along the log-probability increasing direction (this will be discussed

40

in 3.2.2)

We assume the sampling space is finite with all states enumerated as

Y1,Y2, If we are given an initial distribution P (0) and a transition distri-

bution T (·, ·), we can define a sequence of distributions P t by:

P (t+1)(yi) =
∑

k

T (yi,yk)P
(t)(yj), for all t = 0, 1, 2..., ∀i, j.

The MCMC Algorithm

So far, we have introduced the necessary theoretical framework for MCMC

algorithms. For P to be sampled, we should construct a ergodic Markov

chain such that P will be the limit probability. A sampling from the limit

distribution can be obtained from a sample from initial distribution P (0)

(which can be arbitrary, based on the above theorem), then repeat transi-

tion for a large number of times. If we repeat n transitions and obtain y,

then y is actually sampled from P (n). The inequality in the fundamental the-

orem gives us an estimate of error of y and a sample from true distribution P .

The practical problem is how to construct the Markov chain, or how to

construct the transition distribution.

41

Metropolis-Hasting Algorithm

The Metropolis method [Mac03] is useful to get samples for P , where P is

hard to sample directly, but an approximate Q is easy to sample. It can be

a building block for the MCMC and HMC methods.

With current sample Y, The Metropolis method can generate the next

sample Y′ from P by:

Sample Y∗ from Q(Y∗;Y) and compute a = P (Y∗)Q(Y;Y∗)
P (Y)Q(Y∗;Y)

.

If a ≥ 1, we accept the new state: Y′ = Y∗. Otherwise, we accept

with probability a.

If rejected, we set Y′ = Y.

The efficiency of the Metropolis method depends on a, or, how close P

and Q are. If Q is similar to P , a will be closed to 1 most of time, so we obtain

a new state. Otherwise, we may need many runs of Metropolis method to

obtain one new sample, which leads to inefficiencies.

If the conditional probability of each component is known, Gibbs sam-

pling [Mac03] can be used to implement Metropolis-Hasting algorithm. As-

sume y is K-dimensional, Gibbs sampling is a scheme to generate Y′ from

old sample Y by the following K steps:

42

y′1 ∼ P (y1|y2, y3, y4, ..., yK)

y′2 ∼ P (y2|y
′
1, y3, y4, ..., yK)

y′3 ∼ P (y3|y
′
1, y

′
2, y4, ..., yK)

...

y′K ∼ P (yK|y
′
1, y

′
2, y

′
3, ..., y

′
K−1).

3.2.2 Hybrid Monte Carlo

The Hybrid Monte Carlo (HMC) method [Mac03, R.M93] is based on a

physical analogy. It is sometimes called the dynamical method because of

this analogy. The gradient of the potential energy of a physical system, with

respect to its spatial coordinates, defines the force that acts to change the

momentum hence the configuration of the system. When a physical system

is in contact with a heat source, it is also influenced by the source in certain

random fashion. These dynamical and stochastic effects together result in the

system visiting states with a frequency given by its canonical distribution.

Therefore, simulating the dynamics of such a physical system provides a way

of sampling from the canonical distribution.

When Y is a continuous variable, the HMC method is often more efficient

than simple Metropolis algorithms, mainly due to the fact that HMC avoids

43

the random walk behavior inherent in simple MCMC algorithm. We are

free to construct an artificial physical system for our problem (e.g. image

labeling) without any relation with a real physical system. We will continue

to use some terminology from physical only to keep the analogy.

We need one extra assumption on P so that HMC can be applied. Namely,

E should be differentiable with respect to Y.

HMC starts with augmenting state variable Y with momentum variable

V. The Hamilton is defined as H(Y,V) = E(Y)+K(V), where K(V) is the

kinetic energy as K(V) = 1
2
VTV. We update the states by alternating two

types of proposals. The first one randomizes V and keeps Y unchanged. The

second proposal changes both V and Y by simulating the Hamilton system

with the dynamics equations:

dY

dt
= V

dV

dt
= −

∂E

∂Y

We must discretize the above differential equations for computer imple-

mentation. A popular scheme is called leapfrog discretization, which preserves

the phase space volume and is also time reversible. The nice properties ensure

high precision and low rejection rates, which improve the overall performance

of HMC method. To be precise, the leapfrog scheme to advance the state

from time t to t + ∆t is:

44

V̂(t+
∆t

2
) = V̂(t)− ∆t

2
∂E
∂Y

(Ŷ(t)),

Ŷ(t+ ∆t) = Ŷ(t) + ∆tV̂(t + ∆t
2

),

V̂(t+ ∆t) = V̂(t + ∆t
2

)− ∆t
2

∂E
∂Y

(Ŷ(t+ ∆t)).

3.3 Contrastive Divergence Learning

Contrastive divergence learning [Hin02] is an approximate Maximum Likeli-

hood (MLE) learning method. To understand the approximation of learning

object, we need the concept of Kullback-Leibler (KL) divergence. KL diver-

gence measures the difference of two probabilities on the same data

KL(P ||Q) =
∑

Y

P (Y)log
P (Y)

Q(Y)
.

It is easy to show that maximizing the likelihood (MLE) is equivalent to

minimizing the KL divergence between the data distribution and the model

distribution KL(P 0||P∞). This can be easily verified by the following fact:

∂

∂W
KL(P 0||P∞) =<

∂E

∂W
>P 0 − <

∂E

∂W
>P∞

which is equal to the gradient of the negative log likelihood loss.

CD learning (for a finite integer m) uses a different objective

CDm = KL(P 0||P∞)−KL(Pm||P∞).

45

The distribution Pm is defined by running a Markov chain for m steps, start-

ing from data distribution P 0.

We expand the formula for CDm:

CDm =
∑

Y

P 0logP 0 +
∑

Y

(Pm − P 0)logP∞ −
∑

Y

PmlogPm.

Observing the first term is independent of W , we can calculate the deriva-

tive

∂CDm

∂W
=<

∂E

∂W
>P 0 − <

∂E

∂W
>P m −

∑

Y

∂Pm

∂W
(logP∞ − logPm).

The third term is hard to evaluate, but we can safely ignore in practice.

The weight update rule for CD learning therefore is

∆W ∝<
∂E

∂W
>P 0 − <

∂E

∂W
>P m .

Obviously, ifm→∞, we are back to MLE. However, the really interesting

CD learning comes with small m. In fact, [Hin02] suggests to use m = 1.

Along with reduced time to generate samples, samples from Pm tend out to

have lower variation than samples from P∞.

In appendix C, we present our un-published using contrastive divergence

to train an EBM to do image denoising. We can clearly see how the energy

profile changes.

46

3.4 Factor Graph

Factor graphs [KFL01] are a popular way to represent dependence and inde-

pendence relationships between variables. Factor graphs subsume Bayesian

nets and probabilistic graphical models. Our introduction below highlights

the relations between factor graphs, graphical models, and energy-based mod-

els.

Graphical models [JGJS98] have witnessed rapid advances in the past

decade. By definition, they are graphs associated with probabilistic seman-

tics. The nodes in the graph represent variables while the (lack of) edges

describe conditional (in-)dependences between variables. Visible nodes rep-

resent observations and the hidden nodes represent the unobserved causes or

effects. Training a graphical model consists in assigning high probability to

observations (i.e. observed configurations of visible variables); inference con-

sists in estimating the posterior distribution over variables to be predicted

given the value of observed variables. Depending on whether the edges are

directional or not, graphical models can be classified into two categories.

(1) Directed graphical models. 1 In such models, an edge y′ → y

means that y′ is a direct cause of y. The joint distribution over all the nodes

1We only consider the directed graphical models without loops. They are the most

simple but most popular ones. If a directed graphical model contains loops, the formula 3.2

is not necessarily valid.

47

y is given as

P (Y) = ΠiP (yi|pa(yi)). (3.2)

where pa(yi) are the parents of the node yi. In real world problems, it

may not be easy or necessary to identify the “causal” relationships of all the

nodes. The only situation in which we rely on causality is when we define the

joint distribution via conditional distributions. Bayes rule establishes that

P (Y|Y′) and P (Y′|Y) can be converted into one another. Conceptually,

there is no reason to favor one over the other.

(2) Undirected graphical models. A clique is defined as a totally

connected subset of nodes. Assume for any clique Yc in the graph, we have

a potential ψc(Yc). The joint distribution is

P (Y) =
1

Z
Πcψc(Yc).

where Z =
∑

c Πcψc(Yc) is the normalization constant, called the partition

function.

Directed graphical models can be converted into undirected ones by mor-

alizing.

(3) Factor graphs. The graph is bi-partite. The nodes are categorized

as variable nodes and function nodes. A “global” function of many variables

factors into a product of “local” functions. Compared to directed and undi-

rected graphical models, factor graphs decompose the interactions between

48

the variables more clearly. As result, a factor graph is more succinct to

express models where many relationships between variables are overlapping.

In the undirected graphical models, the joint distribution is defined via

products of un-normalized, local potentials. There is a deeper connection of

undirected graphical models and factor graphics. The (loopy) belief propaga-

tion algorithm [YFW01, YFW02, Teh03], which operates on graphical models

by “message passing”, can be translated directly to the “sum-product” al-

gorithm operating on factor graphs, since they ultimately express the same

factorization.

Factor graphs can expressed in the log-probability (the “energy”) space

where the global function is a sum of local functions. The two expressions are

equivalent and share same computational complexity. More specifically, the

“sum-product” algorithm is replaced by “max-sum” algorithm, by litterally

changing the words “sum”/“product” by “max”/“sum”.

The energy-based model (EBM, more details in next chapter) also works

in the “energy” space. EBM expresses many overlapping interactions between

the variables directly. For example, our system uses an EBM to express many

constraints on the same/overlapping neighborhood in an image. However,

EBMs are very different from factor graphs. EBMs are non-probabilistic

and do not involve any normalization. As consequence, we need a different

learning paradigm to train EBMs.

49

It is interesting to see how the models will express the (in-)dependence for

a very simple scenario, see figure 3.1, where the evolution from one model to

another is also suggested. We consider a scenario with only three variables

A, B and C. B depends on A and C depends on both A and B. Such

dependency is explicitly expressed as directed edges in the directed graphical

model. In contrast, it is not explicit in the undirected graphical model,

where we have a clique of size three. A factor is associated to each edge in

the factor graph, but no causal information available due to lack of direction

of the edges.

In the EBM, the local potential functions are associated to each pair of

nodes just as the factors in the factor graph, whose sum is the global poten-

tial function, no normalization involved. The edges in the EBM graphical

representation indicate the data flow (or, the order of calculation), not de-

pendency.

50

Figure 3.1: Comparison of several modeling methods on a simple, 3-variable

scenario.

51

3.5 Summary

In this chapter, we have discussed a lot of models, including both probabilistic

and non-probabilistic models. We do not pretend to provide an encyclopedic

review of all related work. Instead, we try to select and organize our material

to motivate the energy-based machine (EBM) approach, which we build our

second module upon.

3.6 Appendix: A Mini Introduction to Markov

Chain

In brief, a Markov Chain is a sequence of random variables Y1,Y2, ..., where

the past is irrelevant to predict the future, given the knowledge of the present

(Markov property). Formally, P (Yi+1|Yi) = P (Yi+1|Yi,Yi−1, ..,Y1). Cer-

tain Markov Chains can be described as finite state machine, where we can

define the transition matrix T , T (i, j) = P (Yk = i|Yk−1 = j). A distribution

π(y) is called invariant distribution if

π(yi) =
∑

k

T (yi,yk)π(yj), ∀i, j

A distribution π(Y) is called ergodic distribution if

P (t)(Y)→ π(Y), as t→∞, for any P (0)(Y)

52

Note that it is quite strong condition for a distribution to be ergodic,

because the above identity is required to hold for all P (0). In practice, there

are some necessary conditions for ergodic chains easy to verify. For example,

a Markov chain with reducible transition matrix cannot be ergodic. Also, if

a Markov chain has a periodic set, it cannot be ergodic.

The fundamental theorem ([R.M93], chapter 3) gives a sufficient condi-

tion for ergodic chain:

Theorem: If a homogeneous Markov chain on a finite space with

transition probabilities T (Y,Y′) has π as an invariant distribution

and

ν = minYminY′:π(Y′)>0T (Y,Y′)/π(Y′) > 0.

then the Markov chain is ergodic. Moreover, we have quantitative

bounds for convergence speed of the distribution and the expections:

A bound on the rate of convergence is given by

|π(Y)− P (n)(Y)| ≤ (1− ν)n

For any real valued function f ,

| < f >π − < f >P (n) | ≤ (1− ν)nmaxY,Y′ |a(Y)− a(Y′)|.

The significance of the fundamental theorem is apparent in the following

scenario. We are required to sample from π(Y), which may be complicated.

53

What we can do in practice is to construct a Markov chain and sample from

P (n) for certain n. The key issue is whether we know the samples from P (n)

are good enough to approximate the samples from π(Y). The fundamental

theorem sheds on on this issue.

54

Chapter 4

EBM Module

4.1 Overview

The previous chapter reviews related work on modeling labels on images. The

probabilistic models will inevitably require evaluate a partition function, the

normalization term which is a sum over all possible input configurations. The

computational inefficiency motivates the adoption of non-probabilistic meth-

ods. This chapter presents the Energy-Based Model (EBM) we implement.

EBM [TWOE03, YH05] associates a scalar energy to each configuration of

the input variables. Making an inference with an EBM consists in searching

for a configuration of the variables to be predicted that minimizes the energy.

EBMs have considerable advantages over traditional probabilistic models: (1)

there is no need to compute the partition functions that may be intractable;

55

(2) because there is no requirement for normalizability, the repertoire of

possible model architectures that can be used is considerably richer than

with probabilistic models.

Some of those local constraints are easy to formulate. For example, a

nuclear membrane pixel must be connected to other nuclear membrane pixels,

and must have a nucleus pixel on one side, and a cytoplasm pixel on the other

side. Traditionally, the interactions terms between the variables in the model

are encoded by hand. While some of the rules for our application could be

encoded by hand, we chose to learn them from data using the Energy-Based

Model framework.

Training an EBM consists in finding values of the trainable parameters

that associate low energies to “desired” configurations of variables (e.g. ob-

served on a training set), and high energies to “undesired” configurations.

With properly normalized probabilistic models, increasing the likelihood of

a “desired” configuration of variables will automatically decrease the likeli-

hoods of other configurations. With EBMs, this is not the case: making the

energy of desired configurations low may not necessarily make the energies

of other configurations high. Therefore, one must be very careful when de-

signing loss functions for EBMs. We must make sure that the loss function

we pick will effectively drive our machine to approach the desired behavior.

56

Figure 4.1: Modeling the local constraints. Top-left: consistent configura-

tion, low energy assigned; bottom-left: non-consistent configuration, high

energy assigned.

57

Figure 4.2: The loss function.

58

4.1.1 Loss Function

The energy function for EBM is a scalar E(W, Y, f1(X), f2(X))) where W is

the parameter vector to be learned, Y is the label image to be predicted using

the EBM, f1(X) is the label image produced by the M1 convolutional net-

work, and f2(X) the label image produced by the M2 convolutional network.

Each of the variables Y, f1(X), f2(X) are 3-D arrays of size 5 × Nx × Ny,

where Nx and Ny are the dimensions of the label images.

Before we write down any formula for the energy term and the loss func-

tion, we consider what they should look like.

First of all, the energy of desired configuration should be a stable minima.

[YH05] captures this idea as:

Necessary Condition on the energy:

E(W,Yi, f1(X
i), f2(X

i)) < E(W,Y∗, f1(X
i), f2(X

i))−m,

where Y∗ = argminY 6=YiE(W,Y,Xi).

We focus on a class of loss functions whose dependency on Xi only comes

through E. [YH05] states the sufficient condition that minimizing such loss

will drive the machine to find a solution that satisfies the above necessary

condition for energy, if such a solution exists.

59

Sufficient condition on the loss function:

The minima ofQ[Ey](E(W,Yi, f1(X
i), f2(X

i)), E(W,Y∗, f1(X
i), f2(X

i)))

are in the half plane

E(W,Y, f1(X
i), f2(X

i)) < E(W,Yi, f1(X
i), f2(X

i)) +m,

where the parameter [Ey] contains the vector of energies for all values of

Y except Yi and Y∗.

We use the following loss function, a version of generalized margin

loss [YH05]. Similar loss functions have recently been used in the some-

what different contexts of face detection and pose estimation [OML05], pose

and illumination-invariant generic object recognition [YH05], and face veri-

fication using trainable similarity metrics [CHL05].

L(W,Yi,Xi) = E(W,Yi, f1(X
i), f2(X

i))+c1e
−c2min

Y,Y 6=YiE(W,Y,f1(Xi),f2(Xi))

(4.1)

where c1 and c2 are user-specified positive constants, given training example

(Xi,Yi), where Xi is an input image and Yi a human-produced label im-

age. The overall loss function is the average of the above function over the

training set. The first term is the energy associated with the desired input

configurations (Yi, f1(X
i), f2(X

i)). Minimizing the loss will make this en-

ergy low on average. The second term is a monotonically decreasing function

60

of minY,Y 6=YiE(W,Y, f1(X
i), f2(X

i)), which can be seen as the energy of

the “best wrong answer”, i.e. the lowest energy associated with a Y that

is different from the desired answer Yi. Minimizing the loss will make this

energy large. Minimizing this loss function makes the machine approach the

desired behavior by making the energy of desired configurations low, and the

energy of wrong configurations found by our inference algorithm high.

4.2 The Submodules of the EBM

Operating the EBM consists in running the input image through the M1

and M2 convolutional networks, and clamping the f1(X) and f2(X) inputs

of the EBM to the values thereby produced. Then the Y input is initialized

with the value f2(X), and an optimization algorithm is run to find a value

of Y that locally minimizes E(W,Y, f1(X), f2(X))). The quantity at each

pixel location of Y, f1(X), and f2(X) is a discrete variable with 5 possible

values: nucleus, nuclear membrane, cytoplasm, cell wall, external medium.

A number of Markov-Chain Monte-Carlo (MCMC) methods were tested for

minimizing the energy, including simulated annealing with Gibbs sampling.

In the end, a simple “greedy” descent was used due to its nice property

of efficiency with effectiveness. The distinct feature of our problem is that

the labels are discrete, so continuous-variable based calculus cannot apply

61

straightforward. There are several workarounds, including (1) embed the

discrete space in a continuous space; (2) use real-valued confidence scores

from the convolutional layer to train EBM, instead of discrete-valued labels.

In short, the sites are updated sequentially and set to the configuration that

minimizes the energy, keeping the other sites constant.

The EBM is composed of two submodules or factors, as shown in fig-

ure 4.3. The overall energy is the sum of the energies produced by the two

factors.

The first factor is the association module A(Y, f1(X), f2(X)). The asso-

ciation module is fixed (it has no trainable parameter), and produces a high

energy if Y gets very different from f1(X) or f2(X). The output energy of

the association module is simply the average of those energies over all pixel

locations. A particular way we choose to design an association module is to

encode the function A(Y, f1(X), f2(X)) in the form of a 5×5×5 table which

contains the energies associated with each possible combination of values of

the variables Y, f1(X), and f2(X) at any particular pixel location. The items

in the table are statistics gathered from training data.

The idea is: if the M1 prediction is i, M2 prediction is j and the ground

truth label is k, then T (i, j, k) should be small. In this way, we should incur

less resistance to correct the label to k from M1/M2 predictions. In fact,

62

Figure 4.3: The architecture the Energy-Based Model. The image marked

“input labeling” is the variable to be predicted by the EBM. The first layer

of the interaction module is a convolutional layer with 40 feature maps and

5× 5 kernels operating on the 5 feature maps from the output label image.

The second layer simply computes the average value of the first layer.

63

we use a 5 × 5 × 5 table C to collect the counts how M1, M2 and true la-

bels are distributed on the training data. Then we build the table T by

T (i, j, k) = −logC(i, j, k), with the rationale that large value C(i, j, k) indi-

cates the true label is very likely k if M1 predicts i and M2 predicts j, so

we should assign a low penalty (to correct the label from i to k). Finally,

we scale and shift the values in T to meet some technical criteria: (1) the

magnitude of values in table T should be smaller than the magnitude of fluc-

tuation of output of interaction submodule. Otherwise, the effect of EBM

will be dominantly comes from the effect of the association module, which is

undesirable since T is still built from pixel-wise information without neigh-

borhood information. (2) T (i, i, i) = 0, which is the interpretation that there

should be no penalty if M1 and M2 both predict correct labels.

The second factor is the interaction module I(W,Y). The interaction

module implements the local consistency constraints and is trained from data.

The first layer of the interaction module is a convolutional layer with 40

feature maps and 5 × 5 kernels that operate on the 5 feature maps of Y.

The non-linear activation function of the units is of the form g(u) = u2

1+u2 .

This function and its derivatives are shown in figure 4.4. The idea behind

this activation function is that each unit implements a linear constraint on

the neighborhood of variables from which it takes inputs [TWOE03]. When

64

the input vector is near orthogonal to the weight vector, the output is near

zero, indicating that the constraint is satisfied. When the input vector has

a non-zero projection on the weight vector, the output is non zero. If the

constraint is strongly violated, the output will be near 1.0 (the asymptote).

The saturating asymptote ensures that only a “nominal price” will be paid

(in terms of energy) for violating a constraint [TWOE03]. The total output

energy of the interaction module is the average of the outputs of all the 40

feature maps over all positions.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

g’(u)

g(u)

g’’(u)

Figure 4.4: The activation function g(u) = 1− 1
1+u2 used in the EBM feature

maps.

65

4.3 The Approximate Coordinate Descent Al-

gorithm

The straightforward method to minimize the loss function

L(W,Yi,Xi) = E(W,Yi, f1(X
i), f2(X

i))+c1e
−c2min

Y,Y 6=YiE(W,Y,f1(Xi),f2(Xi))

is via gradient descent:

W′ ←W − η(∂E(W,Yi,f1(Xi),f2(Xi))
∂W

−c1c2e
−c2E(W,Y∗,f1(Xi),f2(Xi)) ∂E(W,Y∗, f1(X

i), f2(X
i))

∂W
).

where Y∗ = argminY,Y 6=YiE(W, y, f1(X
i), f2(X

i)). Global minima is in-

tractable to search in practice, so we will replace it by a local minima

Y∗ = argminY,Y near YiE(W,Y, f1(X
i), f2(X

i)).

The inference (from state Y[0]) is to find the minima:

Y∗ = argminY,Y 6=Y[0]E(W,Y, f1(X
i), f2(X

i)).

In practice, we iterate the following local search, starting from Y[0] = f1(X
i):

Y[t+ 1] = argminY,Y near Y[t]E(W,Y, f1(X
i), f2(X

i)).

When t is large enough, we end the iteration and set Y∗ = Y[t].

We now give the detailed strategy of searching the local minima of E

near some Y, which is the core routine for both training and inference. If

66

Y is a continue variable, the local minima can be defined as minima in a

neighborhood and gradient descent gives us an effective iterative method to

approach the local minima. But in our case, Y is a discrete variable so

that gradient does not make sense. Exhaustive search can find the exact

minima in the discrete domain, but the time cost grows exponentially so

practically it can only work for very low dimensions. To meet the challenge,

we design a method to approximate the minima via a greedy algorithm of

optimizing one coordinate at a time. So the time cost will be linear with

respect to the dimension of the problem. We work on label images generally

several hundred pixels in each dimension, so the label image is about 0.1

to 1.0 million dimension in the pixel space. The linear cost still proves to

be too expensive in such high dimensional space. So we make a further

approximation to significantly reduce the dimension of space, hence make

our local search algorithm reasonably fast.

The key observation for speed up is that

If f1(X
i)[j, k] = f2(X

i)[j, k], then f(Xi)[j, k] = f1(X
i)[j, k], for any

site (j, k) on the image, holds for both training and test data approx-

imately.

In fact, the violation was below 1% for training data, below 5% for test

data.

67

Since our goal is to correct wrong labels, we should focus on the sites

where the labels are wrong. With above observation, we can only focus

on the sites where M1 and M2 give different predictions. Empirical study

confirms that M1 and M2 agree on more than 90% sites, so we effectively

reduce the dimension of our search domain to sub-10% and it means a 10X+

speedup. In our implementation, we randomize the order of the coordinates

being searched.

4.4 Empirical Study

The training sets and test sets were the same as for the convolutional network

module training. Namely, we took the same 10 movies used in convolutional

net training, used the M1 and M2 predictions on them as input for EBM

training. We ran EBM inference on M1 predictions of both the 10 training

movies and the other 5 test movies. We trained EBM for 100 iterations,

which took about 30 hours on a 2.0 GHz Opteron workstation. The infer-

ence was pretty efficient. For each label image, we ran the inference for 500

iterations, which only took about one minute.

See figure 4.5, 4.6. The method does a good job at eliminating isolated

68

points that were erroneously labeled. The nuclei are clearly identifiable in

the resulting images. However, the method is a bit overzealous in cleaning

up cell wall pixels. Several legitimate cell wall pixels that were correctly

identified by the convolutional net were eliminated by the EBM. Our EBM

uses kernel size of 5× 5 so it is not designed to correct large region of wrong

labels.

4.5 Summary

In this chapter, we present the detailed design the energy-based module, for

the task of labeling clean-up. We start with some discussion on design of

the energy function and the loss function. Next we present the training and

inference algorithms and elaborate our efforts on effective local minimization

in discrete domain. We conclude this chapter by the empirical study results

to demonstrate the effectiveness of our design.

69

Figure 4.5: Results of EBM-based clean-up of label images on 5 training

images. From left to right: input image; output of M2 convolutional network;

output of M1 convolutional network; cleaned-up image by EBM.

70

Figure 4.6: Results of EBM-based clean-up of label images on 5 testing

images. The format is the same as in figure 4.5.

71

Chapter 5

Elastic Fitting Module

5.1 Introduction

The previous chapters discussed image analysis techniques to accurately seg-

ment images into cellular elements such as cell nucleus, nuclear membrane,

etc. Further processing steps are needed to transform the pixel-wise infor-

mation into the more global characteristics that are relevant to automatic

phenotyping. This chapter first discusses various methods we considered for

extracting information at such higher levels of abstraction and our specific

implementation based on one approach. Then, we represent the design of

our elastic fitting module.

72

5.2 Overview of Deformable Models for Tem-

plate Matching

When experts visually inspect the images, they observe the emerging orga-

nization of the multi-cellular organism. This information is often expressed

by drawing a sketch of the cell representing the relative shapes and positions

of the cells and their nuclei. When inspecting a movie, sequences of specific

events occurring over multiple frames are identified. Events can be global

(for instance, which cells divide and in what order) or very specific (for in-

stance, a visible feature that appears between two specific cells at a specific

time during the embryo development).

One possible approach consists in collecting sketches representing vari-

ous normal and abnormal stages of organism development, and using them

as a dictionary of deformable templates that can be aligned and matched

with each frame of the movies. Identifying the stage of development comes

down to finding the deformable template in the dictionary that best matches

the image under consideration. By aligning and fitting the template to the

images, we can extract the relative shapes and positions of the cells, the ori-

entation of the organism, and the identity of each individual cell. Deformable

templates also enforce global constraints that are not easily implemented by

local analysis. For example, the nucleus must lie roughly in the center of the

73

cell, the cell boundary must be a closed curve, etc.

Deformable template models have been used successfully in many prob-

lems, such as medical image processing [KWT87] and object matching in

video sequences [AZL96]. For a survey of active contour methods, see [MT96].

In principle, there are two different methods for matching label images

to deformable templates. The first method uses “sparse” elastic templates

that are matched to the label images by minimizing an energy function using

an efficient method reminiscent of the Expectation-Minimization algorithm

(EM), see [NDL+05]. The second method uses “dense” elastic templates that

are matched to the label images using an algorithm reminiscent of Kohonen’s

Self-Organizing Map algorithm (SOM, [Koh84]). Such dense templates may

contain finer levels of global information such as the precise position of the

cell boundaries. Fitting such models with the EM algorithm is prohibitively

expensive, and subject to local minima. Xu and Prince [XP97] claim that

complex contours may be identified more efficiently using dynamic algorithms

that do not derive from the optimization of an energy function. Interesting

active contour algorithms [AM93] are derived from the SOM method.

Figure 5.1 shows preliminary results obtained with a dense model using

Colored SOMs. Each deformable template is specified by assigning labels to

the nodes of a regular lattice [VKO97]. The lattice is then aligned with the

label images associated with each frame using a variant of Kohonen’s SOM

74

algorithm. Each iteration of the alignment algorithm picks a random image

pixel and locates the closest lattice node with the same label. This node

is then moved towards the location of the image pixel. Neighboring nodes

in the lattice are also moved in the same direction with an amplitude that

depends on their lattice distance to the node being considered. Step sizes

and neighborhood sizes are decreased slightly after each iteration.

Figure 5.1: Matching deformable templates with Colored Self-Organizing

Maps. Each deformable template is specified by coloring a regular lattice

of nodes. The lattice is then aligned with the cell component labels derived

from the image.

5.3 The Elastic Model

The dense model we discussed in the previous section does not incorporate

the a priori knowledge about the global structure. As a consequence, it is not

straightforward to interpret the fitting results to obtain useful knowledge of

the objects of interest. On the other hand, the sparse model, by definition,

75

is not capable of fitting the curved contours of objects accurately.

The model we implemented, which we refer to as the “elastic model”

from now on, borrows ideas from both dense and sparse models, to benefit

from both without suffering their drawbacks. In our model, a template is

composed of several sub-templates, in one-to-one correspondence with the

objects under observation. For example, if there are two cells in the image

and one of them contains a nucleus, we will have three objects and the

template will have three corresponding sub-templates. Each sub-template

is dense and is constructed by refining a sparse sub-skeleton. We refer to

the collection of all sub-skeletons from all sub-templates as the skeleton for

a template. The overall construction can be described in a more intuitive

way: the skeleton describes the topological information of the model and

each dense sub-template allows rich geometric information to be stored.

• Sparse sub-skeleton: a sub-skeleton is very similar to the template

we built in [NDL+05], which defines the nodes as well as the elastic

links among them to avoid collapse.

• The refinement: a sub-template is obtained by refinements to the

skeleton. More nodes are added using B-spline subdivision scheme, if

we view the nodes in the skeleton as the control points of a closed curve.

More links are added to associate the new nodes to the skeleton and

76

resist self-collapse when fitting. See figure 5.2 for a complete list of all

the templates we build.

5.3.1 Meta-templates

After fitting, a template will carry the information of the underlying label

image. In our model, all templates are obtained from a few meta-templates

by geometric transformation.

We use the special term meta- to indicate that they exist before any fitting

process. We provide 5 meta-templates in the current implementation, which

are built based on our knowledge of possible different phenotyping phases.

See figure 5.2 for all the meta-templates. We can find that the meta-templates

are like sketches of the correspondent images, but all metric information

ignored (size, orientation). The metric information will be recovered in the

fitting process. Figure 5.3 illustrates the procedure for building a meta-

template from scratch, assuming we create a meta-template for the phenotype

stage where there is one cell (C1) and one nucleus (K1).

5.3.2 Template Fitting

Matching images to the deformable templates can be achieved using the

Expectation-Maximization algorithm (EM).

77

Figure 5.2: Meta-templates: (a) Fertilization has just occurred. (b) The

maternal pronucleus migrates to the posterior area and a pseudo-cleavage

furrow forms. (c) The pronuclei fuse. (d) The cell divides unequally to

produce two cells. (e) The two cells further split into four cells.

78

Figure 5.3: Constructing a meta-template using phenotype information.

79

Previous work [GCR91] has applied spline-based models to hand-written

character recognition, using deformable splines whose control point positions

were optimized with the EM. Each spline was seen as the mean of a probabilis-

tic Gaussian model that could generate the “ink” of a character. Similarly,

[BL94] proposed a normalization method for handwritten words that used

EM to fit quadratic lines to key points on the trajectory of a pen writing a

word.

Figure 5.4: Transforming a meta-template and fitting it to a label image

However, an EM-like algorithm alone is not sufficient to provide robust

fitting, and is prone to becoming trapped into local minima. Also, the la-

bel images from EBM inference cannot be assumed to be very high quality.

Our solution is a semi-automatic template fitting scheme, which is shown in

figure 5.4.

Our fitting algorithm is composed of two components. The core compo-

nent of the algorithm is still elastic fitting based on EM. The other component

of our algorithm is setting up good starting location. As we explained be-

fore, starting EM from arbitrary location can be disastrous. Good starting

80

Figure 5.5: Calculating the forces for template deformation

81

location can be obtained by using certain prior knowledge, such as (1) expert

specified initial transformation of a meta-template; (2) history information

of fitting a previous frame in the same movie (temporal coherence).

EM is a frequently used method for data clustering and it alternates

between performing an E-step (expectation) and a M-step (maximization).

Our fitting problem can be phrased as finding “good” (the most “fitted”)

locations for the template nodes, given the labels for every pixel. This is

done by alternating the following two steps. The first step computes the

MLE estimates of the parameters in the system. The second step calculates

the “desired” location of the nodes. Unlike plain EM algorithm, we do not

update the location of the nodes to be exactly their “desired” locations.

Instead, we design forces dragging all the nodes to the desired locations, and

also introduce elastic forces to resist to any change of distance among the

nodes. Figure 5.5 explains how the forces are calculated. We update the

locations of the nodes by numerically simulating the system driven by the

forces.

5.3.3 An Application: Iterative Labeling

Elastic fitting module lays the foundation for global analysis. It can find

itself useself in other applications, for example, iterative labeling of large

82

image set. It can be time consuming and tedious to label a large image set

by hand, even with the help of CellSmart. In contrast, the iterative approach

can requires us label a few images and tweak other image labels. It works as

below:

• Label a small subset of the images by hand using the CellSmart GUI

front-end. Train the whole system with the subset of images and their

labels.

• Use the system trained on the subset to perform inference for all the

available data. TemplateSmart will create ROIs for all the data. We

are now ready to train the system again, but with all the data.

Since our system is first trained with a small dataset, the generated ROIs

are only approximate and adjustment by hand may be needed. However,

adjustment by hand should cost less time than labeling from scratch.

5.4 Summary

In this chapter, we explain the design of our elastic model, which is motivated

from both previous dense models and previous sparse models. We also give

an application of the elastic model.

83

Chapter 6

Conclusion

6.1 Contributions

This thesis describes an end-to-end, learning-based system for automatic C.

elegans embryo phenotyping. Our contribution is two-fold. First, we imple-

ment the system as described and measure the performance using a large

dataset created from genetic research. The system we implement is fully

functional and achieves satisfactory and robust results. Since the system is

highly modular, it is extensible and ready to be incorporated into a more

sophisticated phenotyping system. Second, we explore efficient, robust al-

gorithms for learning/inference in energy-based machines. We identify the

challenges in training an EBM in discrete, high-dimensional space. We pro-

pose the concept of slightly-perturbed labels and use them as guides in our

84

approximate coordinate descent learning algorithm.

6.2 Future Work

Building a fully automatic phenotyping system is the grand goal for future

research. To this end, there are several possible enhancements which can be

made to our system. We discuss two areas for future enhancements below,

with suggested approaches to make the enhancements.

6.2.1 Encoding Temporal Consistency

Building a fully automatic phenotyping system is the grand goal for future

research. To this end, there are several possible enhancements which can be

made to our system. Because the configuration of the embryo changes slowly

from frame to frame, it should be possible to improve the reliability of the

labeling system by processing several successive frames simultaneously. The

system described in this thesis could easily be modified so that a window of

a few successive frames could be fed to the convolutional network. Similarly,

the EBM could take multiple successive frames into account and encode

temporal as well as spatial consistency.

Building such a system will require modeling the sequential aspect of the

data. One technique being pursued involves the use of Hidden Markov Models

85

(HMM). Each known development scenario (normal or abnormal) can be as-

sociated with an HMM whose states represent the various stages of embryo

development. The emission probability model for each state is a mixture

model whose components are the deformable templates. Each deformable

template can be seen as a probability density model whose log-likelihood is

proportional the fitting energy of the deformable model. Classifying a movie

into one of the scenarios simply consists in finding the HMM that maximizes

the likelihood of the observed data. This can be performed with one of the

standard methods for HMM inference (the Viterbi algorithm, or the forward

algorithm).

6.2.2 Increasing System Efficiency

Machine learning, in addition to its statistical and theoretical aspects, must

also be concerned with efficient algorithms and practical implementations. In

our system, training is very computationally intensive. Some may argue that

though training is the most time consuming part, it is irrelevant since the

machine is trained off-line. However, efficiency issues can be critical if we look

ahead to: (1) meeting the demand from functional genetic study for a on-line

phenotyping system; (2) embedding our current system within a large-scale

86

system where it will be invoked multiple times, or fed with increased data

volume. There are several possible approaches, as suggested below.

Search for a better learning algorithm. Let us analyze the two

most significant training performance bottlenecks. For the first module, we

currently feed a huge number of windows to the learner. We do this for

two reasons: (1) to equalize for various categories; (2) to let the learner see

varieties in the input characteristics. However, considering the capability of

the kernels (only several thousand free parameters), we should be able to

achieve the same goal with reduced number of inputs.

The EBM module requires training in the discrete domain. We provide

our approximate coordinate descent algorithm as a solution. Many off-the-

shelf algorithms are valid only for training in the continuous domain, which

cannot be directly applied to our problem. Therefore our system performance

can be boosted if there is breakthrough.

Obviously, any breakthrough in this direction will boost the performance

of our system. Another approach would be to convert our EBM training

problem to the continuous domain, perhaps using confidence scores instead

of discrete labels.

Improve the performance of computing by code parallelization.

This is essentially a black box approach, because details of specific algorithms

do not matter. State-of-art computer systems are parallel systems (multi-

87

core, multi-CPU) that support high performance computing. Much machine

learning code, especially for “neuron operations”, is inherently parallelizable.

In particular, the most frequent operation in our system is to apply the same

kernel to multiple inputs, which can be done simultaneously without much

coordinating overhead. It will be interesting to develop parallel machine

learning libraries, esp. in LUSH. Such libraries will not only be beneficial to

our system, but for learning research at large.

88

Appendix A

CellSmart

Training our system requires the knowledge of true labels for the pixels of

the training images. The convolutional network uses the labels as targets for

supervised learning, while the EBM uses the labels as “ground truth”.

We designed and implemented a labeling tool to mark the cell wall/nucleus

wall on the embryo images. Labels for all pixels in the training images can be

obtained by the following steps. First, ROIs are labeled by hand and stored

with the help of the labeling tool. Then Bresenham’s line scanning algorithm

computes all the pixels which are labeled as cell wall/nucleus wall. Finally,

flooding algorithm is performed to determine the labels of all other pixels,

which can either nucleus, cytoplasm or exterior area.

In principle, any image processing software with free drawing capability

can be used, for example, the popular Java-based ImageJ [Ima], which is

89

open-source and cross-platform.

However, a major drawback of general-purpose drawing software is that it

is not designed to be efficient for our labeling purpose. The large number of

embryo images to be labeled imposed an efficiency requirement that warrants

our efforts to design and implement a custom tool, CellSmart, along with a

GUI front-end called CellSmartGUI. Both the tool and the front-end are

implemented in LUSH [lus].

CellSmart can read an image from disk, in any format supported by

LUSH, and store the labeled output in ROI file(s). Cell wall/nucleus wall is

approximately polygonal and we record the position of all the polyon vertices

in the ROI file. One image can correspond to multiple ROIs, hence corre-

spond to multiple ROI files, if there are more than one cell/nucleus in the

image.

CellSmartGUI is designed for efficient labeling. Since our images are

sequential images, usually decoded from a single movie, we provide buttons to

quickly switch to the next/previous images in a sequence of images, without

specifying the full file path. In the early development of the embryo, only up

to four cells and four nuclei can appear in an image. Therefore we provide

four buttons for the cells (C1 − C4) and four for the nuclei (K1 −K4). In

this way, the user can quickly access the predefined ROIs and label images

much more quickly than with a general-purpose drawing tool. See figure A.1

90

for a screenshot.

Figure A.1: Screenshot of the CellSmartGui, the GUI front-end of CellSmart

application.

91

Appendix B

TemplateSmart

Chapter 5 discussed the design of elastic template fitting module. Here we

introduce TemplateSmart, LUSH application we implemented for the mod-

ule. It reads all parameters (the meta-template loaded, the initial geometric

transformation applied on the meta-template, spring stiffness, number of EM

iterations, etc) from its front-end, runs the EM-based algorithm and writes

the result of fitting to disk files, in the same ROI format as in CellSmart.

There are two front-ends for TemplateSmart. One front-end is GUI-based,

called TemplateSmartGUI. The other is non-GUI, used for batch processing.

The relationship of TemplateSmart to its front-ends can be seen from fig-

ure B.1.

The TemplateSmartGUI front-end allows the user to control the fitting

process interactively, by tweaking the various system parameters. It will

92

Figure B.1: TemplateSmart and its two front-ends.

display the template overlayed on the label image, side-by-side with the input

image.

Below we show some sample snapshots of TemplateSmart in action. Fig-

ures B.2 and B.3 show the interface before and after fitting a T4 template.

The non-GUI front-end works as a driver program to run the fitting pro-

cess non-interactively. Instead of acquiring input from the user, it reads the

parameters from a disk file (the LUSH class TemplateSmartEnv wraps all the

parameters). A typical use case is that we run the fitting process multiple

times on the same image, with different sets of parameters. A higher level of

module will then calculate some measure of “fitness” to select the best fitted

template.

93

Figure B.2: Screenshot: overlaying a T4 template on a label image.

Figure B.3: Screenshot: fitting a T4 template to a label image.

94

Appendix C

Image denoising using EBM

We present our EBM-based image denoising study in this appendix. It serves

as a working example to demonstrate the power of Convergence Divergence

learning and the capability of EBM. As result, we feel justified to include the

section in the thesis, even it is not incorporated in the phenotyping system

we discussed.

As we discussed in chapter 4, training an EBM consists in finding values

of the trainable parameters that associate low energies to “desired” config-

urations of variables (e.g. observed on a training set), and high energies to

“undesired” configurations. This rationale is also valid for training an EBM

for image denoising. Being able to denoising rather than discriminating “de-

sired” configurations from “undesired” ones imposes one more requirement:

following energy-decreasing path (e.g. the gradient-descent path), the states

95

should be more and more denoised. This requirement is imposed on the en-

ergies of a sequence of states, not only on two states. EBM is trained using

Contrastive Divergence method for the sake of efficiency. A related research

can be found in the study of Field of Experts (FoE) [RB05]. In fact, the

FoE can be viewed as a specially designed EBM. Both the FoE and our EBM

are trained using Contrastive Divergence. However, there are still significant

difference between the two studies. For example, we use different strides for

training and inference.

The data

Our study uses the Berkeley segmentation dataset [BSD]. We build our

training dataset as 2000 patches of size 32× 32. The location and the image

id numbers of these patches are random. These patches are “positive” patches

that low energies should be assigned with.

96

Figure C.1: The sample patches, from Berkeley segmentation dataset.

97

The network

The energy module is a two-layer convolutional network. The first layer is a

convolution layer with 10 feature maps, each with a 8 × 8 trainable kernel.

The nonlinearity function is g(u) = 1 − 1/(1 + u2). The second layer is a

plain summation layer, whose output is the sum of all inputs of all feature

maps at all locations. We remark that our network is so far not uniquely

decided yet: we have the freedom to choose stride for the convolution layer.

In practice, we use stride = 8 for training and stride = 1 for inference.

C.0.3 Training the EBM

Figure C.2: The network architecture for training. We use stride = 8.

We use a simple margin loss:

L(W) =
∑

i

E(Xi) + (m−min‖Y−Xi‖≥δE(Y))+.

The margin is chosen to be m = 15 . The system is initialized with random

parameters. We train the system for 100 epochs via loss minimization using

gradient descent. The loss function above is modified by adding a penalty

term ν‖W‖L1 (ν = 1e−5) to encourage the decay of weights. The “negative”

98

state Y is obtained by Contrastive Divergence, running one Hybrid Monte

Carlo step which is composed of 30 Leapfrog steps. Overall acceptance is

above 85% during the training. We can see local patterns after training as

in figure C.3.

Figure C.3: The kernels learned after 100 epochs.

We examine how the energies associated with the training patches and the

noisy patches. We create 2000 noisy patches by adding Gaussian noise to the

ground truth image patches (noise level = 200 for pixel range [0, 255]). By

comparison of figure C.4 and figure C.5, we find that Contrastive Divergence

successfully adapt the energy surface to discriminate “positive” samples and

negative samples.

Denoising an image patch

Denoising consists of energy minimization from the state of the noisy patch

Y0. We add a penalty term η‖Y−Y0‖2 to the energy to discourage any large

99

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

Energy comparison (v61, 0315−5pm): iter=1
red: positive; blue: negative(c=20)

Figure C.4: The energies on training data, epoch 1.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
6

8

10

12

14

16

18

20

Energy comparison(v61, 0315−5pm), iter=100
red:positive, blue: negative(c=20)

Figure C.5: The energies on training data, epoch 100.

100

Figure C.6: The network architecture for inference. We use stride = 1.

change from the noisy patch. This is necessary to avoid a trivial solution to

be found (e.g. a uniform background patch which is perfectly smooth and

natural but recover nothing from the original patch). We take η = 0.01 as

shown below. Figure C.7 shows the denoising process working on a particular

patch. We show the original noisy patch, then all the intermediate patches for

every two steps of denoising, up to 50 steps. We can see that high frequency

noisy are effectively abated while the major texture is preserved.

Denoising a whole image

Without changing the network, we can denoise a whole image. For example,

we pick out the famous “peppers” image from Berkeley Segmentation Dataset

and add Gaussian noise (noise level 20, for pixel range [0, 255]) to it, see

figure C.8. We run the inference for 500 steps to obtain the denoised image

in figure C.9. The original noise image has Peak-to-Noise-Ratio (PSNR)

value 22.40 and the denoised image has improved PSNR 27.73.

101

Figure C.7: Denoising in action. Patches are shown every two steps. Order:

top to down, then left to right.

102

Figure C.8: The pepper image, with c = 20 Gaussian noise. PSNR = 22.40.

103

Figure C.9: The pepper image, denoised after 500 steps. PSNR = 27.73.

104

Bibliography

[AM93] Arnaldo J. Abrantes and Jorge S. Marques. A common frame-

work for snakes and Kohonen networks. In Proceedings of the

1993 IEEE Conference on Neural Networks for Signal Process-

ing, pages 251–260, 1993.

[AZL96] A.K.Jain, Y. Zhong, and S. Lakshmanan. Object matching using

deformable templates. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 18(3):267–278, Mar 1996.

[BL94] Y. Bengio and Y. LeCun. word normalization for on-line hand-

written word recognition. In IAPR, editor, Proc. of the Inter-

national Conference on Pattern Recognition, volume II, pages

409–413, Jerusalem, October 1994. IEEE.

[BMM98] M. V. Boland, M. K. Markey, and R. F. Murphy. Automated

recognition of patterns characteristic of subcellular structures in

fluorescence microscopy images. Cytometry, 33:366–375, 1998.

105

[BSD] Berkeley segmentation dataset. http://www.eecs.berkeley.

edu/Research/Projects/CS/vision/grouping/segbe%nch/.

[CB01] H. Cheng and C. A. Bouman. Multiscale bayesian segmentation

using a trainable model. IEEE Transactions on Image Process-

ing, 10(4):511–525, 2001.

[CEW+04] C. Conrad, H. Erfle, P. Warnat, N. Daigle, T. Lorch, J. Ellen-

berg, R. Pepperkok, and R. Eils. Automatic identification of

subcellular phenotypes on human cell arrays. Genome Research,

14:1130–1136, 2004.

[CHL05] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a simi-

larity metric discriminatively, with application to face verificatio.

In Proc. of Computer Vision and Pattern Recognition Confer-

ence. IEEE Press, 2005.

[con98] The C. elegans Sequencing consortium. Genome sequence of the

nematode C. elegans: a platform for investigating biology. Sci-

ence, 11(282):2012–2018, Dec 1998.

[FXM+98] A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, and

C.C. Mello. Potent and specific genetic interference by double-

106

stranded rna in Caenorhabditis elegans. Nature, 391(6669):806–

811, Feb 1998.

[GCR91] G.E.Hinton, C.K.I.Williams, and M. Revow. Adaptive elas-

tic models for hand-printed character recognition. In Advances

in Neural Information Processing Systems (NIPS*1991). MIT

Press, 1991.

[GD04] Christophe Garcia and Manolis Delakis. Convolutional face

finder: A neural architecture for fast and robust face detection.

IEEE Transaction on Pattern Analysis and Machine Intelligence,

26(11):1408–1423, Nov 2004.

[GEO+00] P. Gonczy, C. Eheverri, K. Oegema, A. Coulson, S.J. Jones, R.R.

Copley, J. Duperon, M. Brehm, E. Cassin, M. Kirkham, S. Pich-

ler, K. Flohrs, A. Goessen, S. Leidel, A.M. Alleaume, C. Martin,

N. Ozlu, P. Bork, and A.A. Hyman. Functional genomic analysis

of cell division in C. elegans using RNAi of genes on chromosome

III. Nature, 408(6810):331–336, Nov 2000.

[G.S95] G.S.Fishman. Monte Carlo Concepts, Algorithms and Applica-

tions. Springer-Verlag, 1995.

107

[Hin02] G.E. Hinton. Training products of experts by minimizing con-

trastive divergence. Neural Comput., 2002.

[HLB04] Fu-Jie Huang, Yann LeCun, and Leon Bottou. Learning meth-

ods for generic object recognition with invariance to pose and

lighting. In Proceedings of CVPR’04. IEEE Press, 2004.

[HM04] K. Huang and R. F. Murphy. From quantitative microscopy to

automated image understanding. J. Biomed. Optics, 9(5):893–

912, 2004.

[HZ87] R. A. Hummel and S. W. Zucker. On the foundations of re-

laxation labeling processes, pages 585–605. Morgan Kaufmann

Publishers Inc., 1987.

[Ima] Imagej: Image processing and analysis in java. http://rsb.

info.nih.gov/ij/.

[JGJS98] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and

Lawrence K. Saul. An introduction to variational methods for

graphical models. Machine Learning, 1998.

[KFL01] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea

Loeliger. Factor graphs and the sum-product algorithm. IEEE

Transactions on Information Theory, 2001.

108

[Koh84] T. Kohonen. Self-Organization and Associative Memory (2nd

edition). Springer Verlag, Berlin, New York, 1984.

[KWT87] M. Kass, A. Witkin, and D. Terzopoulos. Snake: Active contour

models. International Journal of Computer Vision, 1(4):321–331,

1987.

[LBBH98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based

learning applied to document recognition. Proceddings of the

IEEE, 86(11):2278–2324, Nov 1998.

[LGTB97] Steven. Lawrence, C. Lee Giles, Ah Chung Tsoi, and Andrew

Back. Face recognition: A convolutional neural network ap-

proach. IEEE Transactions on Neural Networks, 8(1):98–113,

1997.

[Li95] S. Z. Li. Markov random field modeling in computer vision.

Springer-Verlag, 1995.

[LMP01] J. Lafferty, A. McCallum, and F. Pereira. Conditional random

fields: probabilistic models for segmenting and labeling sequence

data. International Conference on Machine Learning, pages 282–

289, 2001.

[lus] Lush. http://lush.sf.net.

109

[Mac03] Mackay. Information Theory, Inference, and Learning Algo-

rithms. Cambridge University Press, 2003.

[MCM04] D. Martin, C.Fowlkes, and J. Malik. Learning to detect natural

image boundaries using local brightness, color and texture cues.

Trans. on PAMI, 26(5):530–549, Jan 2004.

[MFTM01] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of hu-

man segmented natural images and its application to evaluating

segmentation algorithms and measuring ecological statistics. In

Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423,

July 2001.

[MT96] T. McInerney and D. Terzopoulos. Deformable models in medical

image analysis: a survey. Medical Image Analysis, 1(2):91–108,

Mar 1996.

[NDL+05] Feng Ning, Damien Delhomme, Yann LeCun, Fabio Piano, Léon

Bottou, and Paolo Emilio Barbano. Toward automatic pheno-

typing of developing embryos from videos. IEEE Transactions

on Image Processing, 2005.

[NP95] S. Nowlan and J. Platt. A convolutional neural network hand

tracker. In G. Tesauro, D. Touretzky, and T. Leen, editors, Ad-

110

vances in Neural Information Processing Systems 7, pages 901–

908, San Mateo, CA, 1995. Morgan Kaufmann.

[OML05] R. Osadchy, M. Miller, and Y. LeCun. Synergistic face detec-

tion and pose estimation with energy-based model. In Advances

in Neural Information Processing Systems (NIPS*2004). MIT

Press, 2005.

[PR94] M. Pelillo and M. Refice. Learning compatibility coefficients for

relaxation labeling processes. IEEE Trans. Pattern Anal. Mach.

Intell., 16(9):933–945, 1994.

[PSM+00] F. Piano, A.J. Schetter, M. Mangone, L. Stein, and K.J. Kem-

phues. RNAi analysis of genes expressed in the ovary of

Caenorhabditis elegans. Current Biology, 10(24):1619–22, Dec

2000.

[PSM+02] F. Piano, A.J. Schetter, D.G. Morton, K.C. Gunsalus, V. Reinke,

S.K. Kim, and K.J. Kemphues. Gene clustering based on rnai

phenotypes of ovary-enriched genes in C. elegans. Current Biol-

ogy, 12(22):1959–64, Nov 2002.

[PT00] W. Pieczynski and A.N. Tebbache. Pairwise markov random

fields and its application in textured image segmentation. Proc.

111

of 4th IEEE Southwest Symposium on Image Analysis and In-

terpretation, pages 106–110, Nov 2000.

[RB05] Stefan Roth and Michael J. Black. Fields of experts: A frame-

work for learning image priors. Proceedings of Computer Vision

and Pattern Recognition, 2005.

[R.M93] R.M.Neal. Probabilistic inference using markov chain monte

carlo methods. Technical report, University of Torento, 1993.

[RWH96] M. Revow, C. K. I. Williams, and G. E. Hinton. Using generative

models for handwritten digit recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 18, 1996.

[SM03] S.Kumar and M.Hebert. Discriminative fields for modeling spa-

tial dependencies in natural images. Neural Information Process-

ing System, 2003.

[Teh03] Yee Whye Teh. Bethe Free Energy and Contrastive Divergence

Approximations for Undirected Graphical Models. PhD thesis,

U.of Torento, 2003.

[TWOE03] Y. W. Teh, M. Welling, S. Osindero, and Hinton G. E. Energy-

based models for sparse overcomplete representations. Journal

of Machine Learning Research, 4:1235–1260, 2003.

112

[VJ01] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In Proceedings IEEE Conf. on Com-

puter Vision and Pattern Recognition, pages 511–518, 2001.

[VKO97] J. Vleugels, J. Kok, and M. Overmars. Motion planning using

a colored Kohonen network. International journal of neural sys-

tems, 8:613–628, 1997.

[VML94] R. Vaillant, C. Monrocq, and Y. LeCun. Original approach for

the localization of objects in images. IEE Proc. on Vision, Image,

and Signal Processing, 141(4):245–250, August 1994.

[vvA97] E. van Munster, L. van Vliet, and J Aten. Reconstruction of

optical pathlength distribution from images obtained by a wide-

field differential interference contrast microscope. Journal of Mi-

croscopy, 188(2):149–157, 1997.

[Wal04] H.M. Wallach. Conditional random fields: An introduction. Uni-

versity of Penslvania tech report, 2004.

[WL03] R. Wilson and C. T. Li. A class of discrete multiresolu-

tion random fields and its application to image segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 25(1):42–56, 2003.

113

[XP97] C. Xu and J. Prince. Gradient vector flow: A new external

force for snakes. In Proceedings of Computer Vision and Pattern

Recognition (CVPR ‘97), pages 66–71, San Juan, Puerto Rico,

June 1997. IEEE.

[YBO+99] T. Yasuda, H. Bannai, S. Onami, S. Miyano, and S. Kitano.

Towards automatic construction of cell-lineage of C. elegans from

Nomarski DIC microscope images. Genome Informatics, 10:144–

154, 1999.

[YFW01] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief

propagation. Advanced Neural Information Processing Systems,

13:689–695, 2001.

[YFW02] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free

energy approximations and generalized belief propagation algo-

rithms. Technical report, Mitsubishi Electric Research Labora-

tories, 2002.

[YH05] Y.LeCun and J. Huangfu. Loss functions for discriminative train-

ing of energy-based graphical models. NIPS, 2005.

[ZFK+01] P. Zipperlen, A.G. Fraser, R.S. Kamath, M. Martineez-Campos,

and J. Ahringer. Roles for 147 embryonic lethal genes on C.

114

elegans chromosom I identified by RNA interference and video

microscopy. EMBO Journal, 20(15):3984–3992, Aug 2001.

115

