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Abstract

While authentication within organizations is a well-understood problem, tra-

ditional solutions are often inadequate at the scale of the Internet, where the

lack of a central authority, the open nature of the systems, and issues such as

privacy and anonymity create new challenges. For example, users typically es-

tablish dozens of web accounts with independently administered services under

a single password, which increases the likelihood of exposure of their credentials;

users wish to receive email from anyone who is not a spammer, but the open-

ness of the email infrastructure makes it hard to authenticate legitimate senders;

users may have a rightful expectation of privacy when viewing widely-accessed

protected resources such as premium website content, yet they are commonly

required to present identifying login credentials, which permits tracking of their

access patterns.

This dissertation describes enhanced authentication mechanisms to tackle

the challenges of each of the above settings. Specifically, the dissertation de-

velops: 1) a remote authentication architecture that lets users recover easily

in case of password compromise; 2) a social network-based email system in

which users can authenticate themselves as trusted senders without disclosing

all their social contacts; and 3) a group access-control scheme where requests

can be monitored while affording a degree of anonymity to the group member

iv



performing the request.

The proposed constructions combine system designs and novel cryptographic

techniques to address their respective security and privacy requirements both

effectively and efficiently.

v



Contents

Dedication iii

Abstract iv

List of Figures viii

1 Introduction 1

2 Coping with Password Compromise in Web Authentication 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The 2Schnorr Signing Protocol . . . . . . . . . . . . . . . . . . . 14

2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 E-Mail Authentication via Social Networks 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Motivating application: Re: . . . . . . . . . . . . . . . . . . . . 47

3.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Authentication and Privacy for Group Access Control 62

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Ad Hoc Anonymous Identification Schemes . . . . . . . . . . . . 71

4.4 Generic Construction . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Efficient Implementation . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 100

vii



List of Figures

2.1 The 2Schnorr signature protocol. Computations carried out by

the client are reported on the left; server-side computations ap-

pear to the right. m is the message being signed; the final signa-

ture is 〈r, s〉. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 A two-message signature protocol, for applications with a bounded

number of concurrent signature requests from the client. The

constants are computed as in Figure 2.1. . . . . . . . . . . . . . 27

2.3 SFS user-authentication architecture. . . . . . . . . . . . . . . . 35

2.4 Messages exchanged during the user-authentication process. The

authentication protocol between the agent and authd is opaque

to the core file system software. . . . . . . . . . . . . . . . . . . 37

2.5 Implementation of proactive signatures in SFS . . . . . . . . . . 37

2.6 Benchmarks for signing and verifying in the Rabin and Schnorr

signature schemes. End-to-end protocol shows user wait time for

complete authentication. . . . . . . . . . . . . . . . . . . . . . . 40

3.1 A fragment of a social network. Solid arrows represent trust

relationships; the dotted arrow highlights a pair of users for which

to verify social proximity. . . . . . . . . . . . . . . . . . . . . . . 51

viii



3.2 Data structures used for a hash-based proximity check between

a sender S and recipient R. . . . . . . . . . . . . . . . . . . . . 53

4.1 Oracles for the soundness attack game. DB denotes a database

storing user secret key/public key pairs, indexed by public key. . 75

4.2 The oracle for the anonymity attack game. . . . . . . . . . . . . 77

ix



Chapter 1

Introduction

In its basic form, authentication is a well-understood concept in information

security. Yet, many scenarios call for slight variations on the basic theme, where

existing solutions do not directly apply; new techniques need to be developed.

In the context of password-based user authentication, for example, users of-

ten reuse the same credentials (i.e., their passwords) when establishing accounts

with dozens of independently administered services. Under such circumstances,

a user whose password is compromised is unlikely to remember every place at

which she needs to update her login information. At best, recovery from com-

promise is a lengthy, manual process.

Based on work first published as [70], Chapter 2 describes an authentica-

tion mechanism that addresses these challenges for SFS, a secure, global file

system. To attain its goals, the system employs proactive two-party signatures,

a special kind of digital signatures, in which a private key is split between two

parties, both of whom must approve and participate in signing authentication

requests. This property enables a design in which an authentication server keeps

a signature log describing all network accesses performed on behalf of the user,
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which provides a valuable audit trail in case of a break-in. Moreover, proactive

two-party signatures allow private key shares to be updated, so that old shares

cannot be combined with new ones to sign messages or to recover the private

key.

While a number of proactive protocols have been proposed in the crypto-

graphic literature, they were all based on threshold schemes that cannot be

applied to the practically relevant two-party case. Our novel construction fills

this deficiency, providing a solution that is at the same time easy-to-implement

and cryptographically secure.

As another example, in spam-filtering systems, a legitimate sender wants to

authenticate himself to the recipient as a non-spammer. Leveraging an existing

social network, this type of authentication can be accomplished by demonstrat-

ing a short chain of social contacts connecting the sender to the recipient—

assuming that users do not maintain social relationships with spammers.

Discovering these chains requires sharing social information, which intro-

duces privacy concerns. Chapter 3 defines a privacy model for demonstrating

proximity in social networks [47]. Using insights from this modeling, we derive

efficient cryptographic protocols enabling parties to determine shared friends

while exposing minimal information about their social contacts. We then de-

scribe how to integrate these privacy mechanisms within an improved prototype

of the Re: (Reliable Email) white-listing system [50]. Compared with Re:’s

initial design, the cryptographic solution derived from this new privacy model

better addresses the system’s privacy goals, and avoids the computational bot-

tleneck due to Re:’s earlier use of a general-purpose privacy-preserving protocol.

A different flavor of authentication is at play in group access control: when
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accessing a group-protected object or service, a user only needs to authenticate

herself as a member of the relevant group. Controlled access to the resource is

thus enforced, while affording a degree of protection to the identity of the user

who “anonymously identifies” herself.

Chapter 4 introduces a cryptographic construction that allows participants

from a given user population to form ad hoc groups [39], and then prove member-

ship anonymously in such groups. Notably, this group-authentication protocol

takes time independent of the size of the ad hoc group, and gives rise to the

first constant-size, signer-ambiguous ring signature schemes. Key for the realiza-

tion of these new multi-user protocols was our development of a cryptographic

primitive, accumulator with one-way domain, on the line of previous work on

collision-resistant accumulators.
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Chapter 2

Coping with Password

Compromise in Web

Authentication

This chapter investigates proactive two-party signature schemes (P2SS) in the

context of user authentication. P2SS allows two parties—the client and the

server—jointly to produce signatures and periodically to refresh their sharing

of the secret key. The signature generation remains secure as long as both

parties are not simultaneously compromised between successive refreshes. We

construct the first such proactive scheme based on the discrete log assumption

by efficiently transforming the popular Schnorr’s signature scheme into a P2SS.

We also extend our technique to the signature scheme of Guillou and Quisquater

(GQ), providing two practical and efficient P2SSs that can be proven secure in

the random oracle model under standard discrete log or RSA assumptions.

We demonstrate the usefulness of P2SS (as well as our specific constructions)

with a new user authentication mechanism for the Self-certifying File System
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(SFS) [68]. Based on a new P2SS signature protocol we call 2Schnorr, the new

SFS authentication mechanism lets users register the same public key in many

different administrative realms, yet still recover easily if their passwords are

compromised. Moreover, an audit trail kept by a secure authentication server

tells users exactly what file servers an attacker may have accessed—including

even accounts the user may have forgotten about.

2.1 Introduction

In an ordinary two-party signature scheme, a private key is split between two

parties, both of whom must approve and participate in the signing of messages.

An attacker must compromise both parties to forge signatures on its own. How-

ever, the attacker has the entire lifetime of the public key to compromise each

of the two parties. Moreover, particularly in the two-party case, the parties’

roles may be asymmetric—for instance, a client may have the right to initiate

signatures of arbitrary messages, while a server’s role is simply to approve and

log what has been signed. In such settings, an attacker may well gain fruitful

advantage from the use of even a single key share, unless some separate mech-

anism is used for mutual authentication of the two parties. Finally, ordinary

two-party signatures offer no way to transfer ownership of a key share from one

party to another—as the old owner could neglect to erase the share it should

no longer be storing.

Proactive digital signatures allow private key shares to be updated or “re-

freshed” in such a way that old key shares cannot be combined with new shares

to sign messages or recover the private key. While a number of proactive sig-

nature protocols have been constructed, most existing protocols are threshold
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schemes designed for a variable number of parties. Because these threshold

schemes require a majority of participants to be honest, they do not scale down

to only two parties.

This chapter describes 2Schnorr, a proactive signature protocol specifically

designed for two parties. 2Schnorr is an efficient protocol that is easy to imple-

ment and produces digital signatures compatible with the Schnorr [75] signa-

ture scheme. In the random-oracle model, a three-message version of 2Schnorr

is provably secure against existential forgeries assuming only that discrete logs

are hard. For applications with bounded concurrency, such as user authen-

tication, a two-message version can also be proven secure under the stronger

one-more-discrete-log assumption. The technique we describe can equally well

be applied to the Guillou-Quisquater (GQ) [56] signature scheme to produce

two- and three-message 2GQ protocols based on the strong RSA and one-more-

RSA inversion problems, respectively. To avoid redundancy in the treatment,

though, this chapter concentrates only on Schnorr signatures.

proactive two-party signature schemes (P2SS) have a natural application to

the problem of user authentication, particularly in settings with many admin-

istrative realms. Within a large university, for example, it is not uncommon

for a user to have five or six different shell accounts on machines in separate

research groups. On the web, users typically establish accounts at dozens of

different sites over time. Under such circumstances, a user whose private key

or other credentials get compromised is unlikely to remember every place at

which he needs to update his login information. Some of the sites may even

be unavailable at the time the user tries to update them, at which point the

user may just give up on the problem until the next time he needs one of the

accounts.
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Using 2Schnorr, we built a user-authentication mechanism that addresses

these challenges for SFS [68]. SFS is a secure, global file system in which users

gain transparent access to files from many different administrative realms after

logging in with a single password. With the new authentication mechanism,

every user has an ordinary Schnorr public signature key on file wherever the

user has an account. The corresponding private key is split between the user

and an authentication server of the user’s choice. If the user’s password is

ever compromised, he can immediately block further unauthorized access to

all of his accounts by updating his password and private key halves on this

single authentication server. Moreover, from the server’s logs, the user can

determine exactly what servers an attacker has accessed, where on the network

those accesses came from, and whether the attacker has changed the user’s login

information at any sites. Thus, even accounts the user may have forgotten about

will be brought back to his attention if there is any risk of an attacker having

accessed them.

The next section describes SFS and related work in user authentication

and proactive signature schemes. Section 2.3 describes the 2Schnorr protocol

and gives a proof of security. Section 2.4 describes the implementation of our

user-authentication mechanism in SFS. Section 2.5 reports on the performance

of 2Schnorr and our user-authentication scheme. Section 2.6 summarizes the

results in the chapter.

2.2 Related Work

A vast number of systems have dealt with the problem of user authentication.

This section describes SFS and the motivation for a new SFS user authentication
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mechanism. We then highlight a few other systems that have tackled user

authentication on a large scale. Finally, we discuss related work in cryptography.

2.2.1 SFS Overview

SFS is a secure network file system designed for decentralized control and easy

sharing of files across organizational boundaries. In SFS’s administrative model,

servers are grouped into administrative realms that recognize the same set of

authorized users. Realms can be as large as an entire campus or as small as a

single server behind a DSL line. While a simple mechanism allows one realm

to “import” or recognize users from another, realms in general need not trust

each other, coordinate with each other, or even know of each other’s existence.

Each SFS user may have accounts in many different administrative realms.

From a single client machine, users can simultaneously access servers in multiple

realms. The SFS client itself has no notion of belonging to a particular realm.

(In fact, SFS has no client-side configuration options that would differentiate

one client from another.) Users simply access files based on whatever realms

they belong to. If a user accesses a file on a server the client has never heard

of, an “automounting” mechanism causes the file to spring into existence before

the access completes.

SFS users have public signature keys which they register with any realms

in which they have accounts. User authentication consists of digitally signing

an authentication request with the corresponding private key. Each user runs

a program, sfsagent, that attempts to authenticate her to every file server she

accesses. In this way, by registering the same public key in every administrative

realm, a user can transparently access files from multiple realms without wor-
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rying about administrative boundaries. Unfortunately, if a user’s private key is

ever compromised, the user may have to update her public key in a large num-

ber of realms. The mechanism described in this paper makes it considerably

more difficult to compromise a user’s key.

SFS comes bundled with a remote execution utility, rex, with similar func-

tionality to the popular ssh [81]. Between the file system and rex, any SFS user

authentication mechanism can cover a large fraction of the day-to-day network

accesses people make to their servers.

2.2.2 User Authentication

Of widely used network file systems, SFS’s goals are probably most similar to

those of AFS [58]. AFS is a file system designed to work over the wide-area net-

work. AFS has been particularly successful in large organizations—for instance

permitting the user community of an entire university to share access to the

same file systems. Unfortunately, AFS does not adapt as well to settings with

many different administrative realms. AFS’s security is based on the central-

ized Kerberos [76] authentication system in which a central authority manages

all of the accounts and servers in a given administrative realm. Cross-realm

authentication is possible, but requires cooperation from realm administrators.

Thus, users must typically type a separate password for each realm in which

they wish to access servers. Since the central Kerberos server stores a secret

that is effectively equivalent to the user’s password, it is inadvisable for users

to have the same password in different Kerberos realms.

The SSH remote login tool supports a mode of authentication based on pub-

lic keys. The user registers his private key with an agent process on the local ma-
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chine, and stores the corresponding public key in a file .ssh/authorized_keys

in his home directory on the server. SSH public key authentication is very con-

venient. Users therefore typically end up copying their authorized_keys file

to all of their different accounts. Unfortunately, changing public keys requires

many accounts to be updated, and users are likely to forget to update accounts

on infrequently used machines.

Perhaps most relevant to P2SS are the various token- and hardware-based

user-authentication systems. As smart cards and other physical security devices

gain more computational power, it will become increasingly practical for them

to compute digital signatures. Such configurations will be even more desirable

if they can keep an audit trail of all signed messages in case the device is stolen

or otherwise compromised. P2SS schemes enable such scenarios, while addi-

tionally allowing users to recover from compromised devices without changing

their public keys. To compromise a user’s public key permanently, an attacker

would need to break the user’s hardware device (or steal a backup of the user’s

share) and compromise the centralized signature server before the user had an

opportunity to recover from the first event.

2.2.3 Two-Party Signature Generation

Ordinary two-party signature schemes are in some sense trivial. One can always

take two copies of a secure one-party signature scheme (call them Sig1 and Sig2),

publish the public keys pk1, pk2 for both of them, and let the first party store

sk1 and the second sk2. A two-party signature of a message m then consists of

two independent signatures of m using Sig1 and Sig2. The first signature can

only be be produced by the first party, and the second signature by the second

10
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party.

Most previous work on two-party signatures has therefore focused on the

problem of generating signatures that are compatible with existing one-party

algorithms. Such two-party schemes allow systems to interoperate with verifiers

that cannot be updated to understand new signature types. While 2Schnorr and

2GQ are the first two-party schemes compatible with Schnorr and GQ, they are

hardly the first schemes to interoperate with standard one-party algorithms.

Bellare and Sandhu [11] and MacKenzie and Reiter [46] consider several flavors

of two-party generation of the RSA (full domain hash) signature scheme (build-

ing on some previous less formal work, e.g., [20, 49]). The schemes are simple,

elegant, and in most cases reducible to the basic RSA assumption. MacKenzie

and Reiter [67] also give a protocol for two-party generation of DSA signa-

tures [45].

More closely related work was proposed in [65], where MacKenzie and Reiter

extend their schemes from [66] to allow for delegation of password-checking

services. As noted by the authors, this extra property offers an approach to

proactively update the password-protected secret key of a networked device.

The resulting P2SS is designed and optimized for a hardware-based user-

authentication model, whereas the primary motivation of our study of P2SS

is to obtain general-purpose schemes that could be combined with any user

authentication mechanism.

Indeed, in the model of [65], password authentication and signature gener-

ation are tightly combined together, and performed by a password-protected,

networked device which stores sensitive data on behalf of the user, and (en-

crypted) tokens for the server. Hence, to authenticate to the server and obtain

a signature, the user needs possession of a physical device.
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In contrast, in our model mutual authentication between the two parties

involved in the P2SS is separated from the actual joint signing protocol, coher-

ently with the spirit of modularity of the design of SFS [68]. No matter how

the two parties establish a secure, authenticated channel, 2Schnorr and 2GQ let

them jointly generate signatures in a proactive secure manner. As mentioned

in Section 2.4, this can be combined with password-based authentication pro-

tocols, allowing a user to access her cryptographic services from any machine

around the world, with no need of bringing along any physical device, as long as

she remembers her password and trusts the local software to erase all sensitive

information at the end of her session.

Our approach thus allows for a wider class of usage scenarios, since people

do not always carry smartcards or PDA’s—whereas our new user authentication

mechanism has been implemented completely in software, and is already used

in the daily work of the authors. On the other hand, the customized P2SS

resulting from [65] may be more desirable for the specific setting thy consider,

and we could indeed adapt our 2Schnorr and 2GQ schemes to their model to

get similar protocols based on different assumptions.

Two-party signatures can also be viewed as a special case of general secure

two-party computation [80] and threshold cryptography [37]. However, most

threshold cryptography results assume an honest majority and therefore apply

only to n ≥ 3 players. Many threshold techniques and even definitions (e.g.,

robustness) are inapplicable to the two-party setting.

Two-party signatures are also related to the notion of key-insulated signature

scheme [38]. In this model, there is a server that helps the client update its

secret key from period to period (while keeping the same public key). Within

a period, however, the client performs all signatures on its own. This has the
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advantage of not requiring the server’s cooperation on each signature, but for

our application we specifically want all signatures to go through the server for

approval and logging. (This is also what allows very simple key revocation when

the client’s key is compromised.)

2.2.4 Proactive Security

A basic two-party signature scheme remains secure only as long as both parties

are not compromised. Unfortunately, the longer the lifetime of the public key,

the more realistic the concern that both the client and the server may at one

point have been compromised. General proactive cryptosystems [71, 57] address

this problem by allowing potentially unbounded number of compromises, as

long as not too many happen simultaneously. Specifically, there is an efficient

share update protocol which allows players to refresh their current sharing of

the secret key. As long as not too many servers are compromised between any

two successive refreshes, the system remains secure.

As with threshold cryptography, proactive cryptography has concentrated

on n ≥ 3 players. To the best of our knowledge, proactive signature schemes

have not previously been studied in the two-party setting, except for the brief

remark in the aforementioned work of [65].

Recent work of Itkis and Reyzin [60] on intrusion-resilient signatures de-

scribes a setting similar to P2SS. These combine the properties of key-insulated

and proactive signatures. However, as in the key-insulated model, the server

only helps the client to update its secret key from one time-period to another;

all the signing is done by the client alone. In the P2SS model, the actual secret

does not change from one time period to the next; only the sharing of the secret
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changes.

In both 2Schnorr and 2GQ, the share update protocol is very simple: a

client simply sends a random element of an appropriate group to the server over

a secure channel. Of course, this does not mean that proactivization is generally

simple in the two-party case. Indeed, there seems to be no way to “proactivize”

the generic double signature two-party approach, so the question of generic

proactive two-party signature schemes is not as trivial as in the non-proactive

case. Except for the two-party RSA scheme of [66], where proactivization comes

at the cost of some efficiency loss (due to the need of resorting to the techniques

of [46] to share the secret over a much larger modulus), previous two-party

signatures do not appear to “proactivize” in as simple way as our 2Schnorr and

2GQ schemes do.

2.3 The 2Schnorr Signing Protocol

This section specifies the 2Schnorr signing protocol and analyzes its security.

Like the standard Schnorr signature scheme, 2Schnorr relies on a cryptographic

hash function, H , which for the proofs we will assume behaves like a random

oracle—an assumption very common in the cryptographic research, first for-

malized in [9]. Before going into the details of 2Schnorr, we briefly describe the

standard Schnorr scheme.

The Schnorr signature scheme was first proposed in [74] as an application

of the Fiat-Shamir transformation [43], and its security has been analyzed,

among the others, in [75, 72]. It can be instantiated on every group G of

prime order where the discrete log problem is believed to be hard, and can be

proven secure under the standard notion of existential unforgeability against the
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adaptive chosen-message attack [55] in the Random Oracle Model, assuming

that computing discrete logs in the underlying group is hard. For concreteness,

we will consider cyclic subgroups of Z∗
p (for large primes p) of prime order q.

The key generation algorithm produces two large prime p and q such that

q|(p − 1), and an element g of Z∗
p of order q. Then it picks a random element

x in Z∗
q , and sets y = gx mod p. The public key is now 〈p, q, g, y〉, while the

corresponding private key is x. Notice that the group parameters p, q, g can be

safely shared between a community of users, so that y by itself can be thought

as the public key corresponding to the private key x. We will also assume that

a cryptographic hash function H mapping arbitrary strings into elements of Z∗
q

has been specified as a parameter of the scheme.

To sign a message m, the holder of the private key x picks a random k ∈ Z∗
q

and set r = gk mod p. It then computes e = H(m, r), s = k + xe mod q, and

outputs the signature 〈r, s〉. Notice that k must be kept secret and chosen anew

each time: disclosing or reusing the value of k would allow recovery of the secret

key x.

To check whether a given 〈r, s〉 is indeed a signature for some message m,

it suffices to know the corresponding public key 〈p, q, g, y〉 and verify that gs =

rye mod p, where e = H(m, r).

The Schnorr signature scheme is often studied together with the GQ scheme,

its “twin” based on the RSA assumption. In fact, they can be thought as vari-

ations of the same basic theme. Semantically, the difference between the two

schemes is that in Schnorr’s all secrets are drawn from the additive group (Zq, +)

and their public counterparts are obtained by exponentiation on a fixed base;

in the GQ scheme, instead, private data is taken from the multiplicative group

(Z∗
N , ∗) (where N is the product of two big primes) and public quantities are
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obtained by exponentiating to a fixed exponent. Syntactically, this is equivalent

to convert all additions in Schnorr’s scheme into multiplications, and all multi-

plications (involving secrets) into exponentiations. A mechanical application of

such “conversion rules” to our 2Schnorr protocol (described below) yields the

2GQ protocol, which enjoys analogous security properties based on the RSA

assumption.

2Schnorr is a simple and elegant two-party proactive variation of the above

scheme. We call the two parties the client and the server. We assume the client

is the party that wants the digital signature—it starts with the message and

ends with the signature. The server simply wants to log or approve all signed

messages.

The main issue in obtaining a two-party solution for Schnorr signatures is

that if one party (say the client) could control the choice of one of the secret

quantities x or k, or their public counterparts y and r, then the client would

gain an advantage over the server, and the resulting scheme might not be secure.

Fortunately, in our case the parties need just to agree on a random value, a

task usually referred to as coin flipping [14]. This can easily be achieved by hav-

ing each party choosing its random share, and then exchanging and combining

the two shares. To avoid any unfairness in the exchange due to the fact that one

party (say the server) must reveal its share first, the server will only “commit”

to its random share, and will “open” the commitment only upon receiving the

client’s random value.

Since the value the server has to commit to is a random share, the commit-

ment can be achieved using a cryptographic hash function G that behaves as

a random oracle: to commit, the server will just send the hash of its random

share; the client will not be able to learn anything from it, but will be able to
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check the consistency of the server’s randomness at the end of the exchange.

Notice that although we already introduced a random oracle H , we are using

a different notation for G as a syntactic reminder that the two oracles H and

G serves different purposes, and that one of them (i.e., G) could be replaced

by any other “extractable” commitment scheme (like “committing” encryption;

cf. [34]).1 Furthermore, G and H take inputs of different length. In an actual

application, both oracles could be conveniently implemented in term of a cryp-

tographic hash function like SHA-1 [44], prepending a 0 for H and a 1 for G:

H(z) = SHA-1(0, z) G(z) = SHA-1(1, z).

Remark. Our use of extractable commitment to solve the problem of the

randomness in Schnorr and GQ schemes generalizes to other probabilistic sig-

nature schemes where the randomness is public, but its choice plays a crucial

role for the claimed security result (e.g., PSS [10], PFDH [31]).

Key generation. A 2Schnorr public key is just an ordinary Schnorr pub-

lic key, 〈p, q, g, y〉. However, the corresponding Schnorr private key, x, is split

between two key halves, xc and xs, such that x ≡ xc + xs (mod q). A public

2Schnorr key can be centrally generated along with two halves for the corre-

sponding private key as follows:

q ← a large prime

p← a larger prime such that q|(p− 1)

g ← an element of Z∗
p of order q

xc, xs ← random elements of Zq

y = g(xc+xs) mod p

The two private keys halves are xc and xs.

1Extractable commitments can be realized without the random oracle model, but we are

using random oracles anyway, so we go for the simpler design.
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For distributed key generation between the client and the server, the client

chooses p, q, g, and xc, computes yc = gxc mod p, and sends the server

{p, q, g, G(yc)}. The server then picks xs and sends the client ys = gxs mod p.

Finally, the client reveals yc, both parties compute y = ycys mod p, and the pub-

lic key is 〈p, q, g, y〉. To prevent the client from (maliciously) choosing “bad”

group parameters [13], the server may require from the client a certification

that the values p, q, g have been generated according to some specific algorithm:

in the implementation described in Section 2.4, we actually used the method

proposed by the NIST in [45], for which such a proof can be easily provided.

Signature generation. To sign a message m, the client and the server

each select a random element of Zq—kc for the client, ks for the server. The two

parties then exchange the three messages shown in Figure 2.1. First the server

picks at random an ephemeral private key ks from Z∗
q , computes the correspond-

ing ephemeral public key rs = gks mod p and sends the G-hash of it (message

1). Similarly, the client computes its ephemeral key pair 〈kc, rc〉 and sends the

second flow of the protocol, consisting of the value G(rs) it got in message 1,

its ephemeral public key rc and the message m it wishes to sign. Upon receiv-

ing message 2, the server checks that rc belongs to the group specified by p, q

and g by verifying the equality rq
c mod p

?
= 1, then computes r = rcrs mod p,

e = H(m, r), ss = ks +xse mod q, and replies with message 3, which reveals the

value of rs. The client computes G(rs) and verifies that it matches the hash value

received in message 1; if so, it verifies rs and computes sc in a way analogous to

what described above for the server. Finally, the client sets s = sc + ss mod q,

and obtain the pair 〈r, s〉—an ordinary Schnorr signature.

The protocol in Figure 2.1 requires three messages. The first message can

be precomputed and sent to the client in advance, reducing network latency to
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kc
R
← Zq ks

R
← Zq

rc = gkc mod p rs = gks mod p

r = rcrs mod p e = H(m, r)

sc = kc + xce mod q ss = ks + xse mod q

s = sc + ss mod q

1

2

3 rc, rs, ss

G(rs), rc, m

G(rs)

Client Server

Figure 2.1: The 2Schnorr signature protocol. Computations carried out by the

client are reported on the left; server-side computations appear to the right. m

is the message being signed; the final signature is 〈r, s〉.

a single round trip from the time the client receives the message to be signed.

As discussed later, however, a system with a constant bound on the number

of concurrent signatures requested by the client can simply eliminate the first

message of the protocol (and remove G(rs) from the second message). The

resulting two-message protocol may be more convenient to implement.

Signature verification. Signature verification is identical to Schnorr.

Given a public key 〈p, q, g, y〉, a message m, and a signature 〈r, s〉, the sig-

nature is valid if and only if gs ≡ rye (mod p), where e = H(m, r). It can be

easily checked that signatures obtained from an honest execution of the signing

protocol do indeed verify correctly.

Key update. The aim of key updates is to tolerate multiple break-ins of

each party. Clearly, if an adversary A could break in both parties between two
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successive key updates, A will learn the entire state of the system, so that no

security can be guaranteed any more. Still, the system should be able to with-

stand multiple break-ins as long as one honest key update happens in between.

Key updates are considerably simpler in the two-party case than in general

proactive signatures. Since either party can already destroy the private key

by erasing its own share, there is no need to preserve the private key when

the client or server misbehaves. Further simplifying the problem, our update

protocol assumes a secure channel between the client and server, because our

system already requires such a channel for other purposes. (Otherwise, the

client and server could use a 2Schnorr signature as part of negotiating a secure

channel.)

To update the key halves xc and xs, the client picks a random δ ∈ Zq and

sends it to the server over a secure channel. The new key halves x′
c and x′

s are

simply computed as: x′
c = xc − δ mod q x′

s = xs + δ mod q

Such key update is not only quite simple, but also very effective in re-

randomizing the state of the system, thus simplifying the arguments for the

security proofs in the following.

2.3.1 Security against Malicious Clients

Theorem 1. If a malicious client can forge a signature without the approval of

the server in probabilistic polynomial time (PPT) with non-negligible probability,

then we can also compute discrete logs in PPT with non-negligible probability.

Proof. Let p, q, and g be as in Schnorr public keys. Let y, in the group

generated by g, be a random element of which we wish to compute the discrete

log. Let A be an adversary that behaves like a 2Schnorr client but then outputs a
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forged signature (which the server did not approve) in PPT (with non-negligible

probability).

Choose a random element xc ∈ Zq. Let yc = gxc mod p and ys = yy−1
c mod p.

Give A public key 〈p, q, g, y〉 and private key xc. Now ask A to forge a signature.

A can make four types of oracle query we must respond to. It can make

random oracle queries to the hash functions H and G. It can make update

queries to refresh the key halves. It can ask the server to start a signature

(corresponding to message 1 in the protocol). Finally, it can ask the server to

endorse a signature (i.e., return the third flow in the protocol).

Without loss of generality, we will assume throughout this paper that A does

not ask for the same hash query to the same oracle twice (A could simply store

previously computed values in a table). All oracle queries to G are answered

with random values. As for oracle queries to H , we reply to them with random

but consistent answers: however, during certain other queries (described below),

we set the value of the random oracle H on certain inputs to specific, though

uniformly distributed, values.

We keep a running total, ∆, of all the update requests A makes. Initially,

∆ = 0, but for each update request δ, we add δ to ∆ (mod q).

When A makes a start signature query, we choose two random numbers

α, β ∈ Zq and compute rs = gαyβ
s mod p. We now fix some random output for

the value of G(rs), and return this to A. Notice that A cannot learn anything

about rs from the random value G(rs), unless it has previously asked for the

hash of rs to the oracle G; however, the chance of A having already asked for

G(rs) is negligible, since rs is uniformly distributed in the group of order q

generated by g.

When A asks us to endorse a signature with query {G(rs), rc, m}, we com-
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pute r = rcrs mod p, and fix the random oracle value of e = H(m, r) such that

H(m, r) ≡ −β (mod q). Notice that the probability of having already set this

value due to a previous hash query to H is negligible, since up to this point rs is

a random element unknown to A (A just saw G(rs), a random value that leaks

no information about rs) and so r is also uniformly distributed in the group gen-

erated by g. We set ss = α + ∆e mod q, and return {rs, ss}. If A was talking

to an ordinary server, the server would reply with ss = ks + (xs + ∆)e mod q,

where ks is the discrete log of rs and xs is the discrete log of ys. Even though

we cannot compute ks and xs, we are still computing the correct value of ss by

returning α + ∆e:

gαyβ
s ≡ rs (mod p)

gα ≡ rsy
−β
s (mod p)

gα ≡ gks (gxs)−β (mod p)

gα ≡ gksgxse (mod p)

α ≡ ks + xse (mod q)

α + ∆e ≡ ks + (xs + ∆)e (mod q)

Because our responses to A’s oracle queries are indistinguishable from those

of a real server and random oracles, A will output with non-negligible probability

some message and forged signature m, 〈r, s〉.

We can now rewind A’s state to the first time it queried the random or-

acle for e = H(m, r), and return some new, randomly chosen value e′ 6= e.

Such rewinding argument is quite common in analyzing the security of similar

schemes [59, 8, 7]: intuitively, since A only makes polynomially many oracle

queries and e′ is statistically indistinguishable from e, there is a non-negligible
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probability that A will again forge a signature for the same m and r, yielding

a second signature 〈r, s′〉 for m, with s′ 6= s. The exact probabilistic analysis

is based on the forking lemma of [72], and is quite similar to the one for the

standard Schnorr signature scheme.

By the verification property, 〈r, s, e〉 and 〈r, s′, e′〉 satisfy the following two

congruences:

gs ≡ rgxe (mod p)

gs′ ≡ rgxe′ (mod p)

By memberwise division of the above congruences, we can compute x, the dis-

crete log of y, as follows:

gs−s′ ≡ gx(e−e′) (mod p)

s− s′ ≡ x(e− e′) (mod q)

x = (s− s′)(e− e′)−1 mod q

2.3.2 Security against Malicious Servers

Theorem 2. If a malicious server can forge a signature without the client’s

help in PPT with non-negligible probability, then we can also compute discrete

logs in PPT with non-negligible probability.

Proof. Let p, q, g, y be a challenge in which we need to find the discrete log of y.

Let A be an adversary that acts as a 2Schnorr server and can forge signatures.

We choose a random xs ∈ Zq and compute ys = gxs mod p and yc = yy−1
s mod p.

Give A public key 〈p, q, g, y〉 and private key xs, and ask it to forge a signature.

As before, A can make four types of oracle query: random oracle queries

(to H or to G), update queries, asking the client to initiate the signature of a
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particular message, and asking the client to finish computing the signature of a

message for which an initiate query was previously done.

The two random oracles are treated as before. For update queries, we are

now even allowed to choose a random δ ourselves: since the client refreshes its

key half by subtracting δ, here ∆ is defined as the running total of the values

q − δ for each update (mod q).

When A asks to initiate the protocol, we choose two random numbers α, β ∈

Zq and compute rc = gαyβ
c mod p. Notice that we allow A to choose the message

m it wants to sign, but still, A must provide its “commitment” G(rs). Since

G behaves like a random oracle, A must have asked for the value of G(rs)—

otherwise it will have only a negligible chance of guessing the correct value

needed to open, in the third flow of the protocol, the commitment sent in the first

message. Hence, upon receiving an initiate query, we can perform a simple look

up for G(rs) in the table containing the pairs 〈query, answer〉 for all the oracle

queries that A has done to G so far.2 Then, we compute r = rcrs mod p and fix

the random oracle value of e = H(m, r) such that H(m, r) ≡ −β (mod q): e is

still uniformly distributed in Zq since we chose β at random.

The complete signature query are handled virtually identically to the proof

of Theorem 1, reversing the s and c subscripts in variables. The only difference

is that when completing a signature, we must return 〈r, s〉 instead of 〈rc, sc〉. r

and s are easy to compute given rc, rs, sc, ss, all of which we have.

Since the interaction of A with the oracles thus simulated is indistinguish-

able from a real attack to the 2Schnorr signing protocol, with non-negligible

probability A will forge a signature 〈r, s〉 for a message m that the client did

2As we mentioned, we can replace G by any “extractable” commitment which would also

allow us to recover rs in our simulation.
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not finish signing. Therefore, using the same technique as in Theorem 1, we can

compute the discrete log of y with non-negligible probability.

2.3.3 Security against Mobile Adversaries

Theorem 3. If the 2Schnorr protocol is secure against both malicious clients

and malicious servers, then it is also secure against a adversary that repeatedly

breaks into the client and the server, as long as a honest key update happens

between any two consecutive break-ins.

Proof. Intuitively, the reason why the proactive security of 2Schnorr follows

from the security against malicious clients and against malicious servers is that

once the adversary A misses a refresh of the shares xc and xs, the new state of

the system is independent from all the information A could have learnt during

its previous interaction.

More formally, assume that by repeatedly breaking into the client and the

server (while always allowing a honest key update to happen in between) A is

able to forge a signature with some non-negligible probability ε. Assume also

that A finally obtains such forgery while in control of the client more often

than half of the times (the case when A is most successful when finally breaking

into the server is completely analogous). In other words, with probability ε/2,

after several (non-simultaneous) compromises of both parties, at the end A

successfully forges a signature without the server endorsing it.

We now show how to construct a malicious client A′ that, using A as a

black box, forges signature without the server’s approval with (non-negligible)

probability ε/2.

A′ is given the public key PK = 〈p, q, g, y〉, the client’s share xc and access
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to a server oracle willing to engage in as many protocol runs as A′ wishes.

To the aim of computing a signature without the server’s help, A′ runs A,

initially feeding it with the public key PK. For all break-ins (except for the last

one) that A may want to carry out, A′ follows the simulation from Theorem 1

or Theorem 2, according to whether A asked to compromise the client or the

server. Notice that since we are assuming a honest key update to occur between

any two consecutive break-ins, and since each time the sharing of the secret key

x as xc + xs is completely re-randomized, there is no problem with all these

simulations, which will proceed exactly as A expects. Thus, at the end A will

ask to carry out its final break-in against the client. This time A′ gives A its

own secret share xc, and forward all A’s query to the server to its own server

oracle.

Overall, A′ was able to let A mount its mobile attack against the system.

Hence, with (non-negligible) probability ε/2, A will finally forge a signature

that the server did not approve. A′ then simply outputs such signature as

its forgery, thus succeeding with the same non-negligible probability ε/2 in its

own (malicious-client-only) attack against the system. But this contradicts our

hypothesis, and the theorem follows.

2.3.4 Two-Message Protocol

In certain cases, it may be desirable to compute signatures with only two mes-

sages. If there is a constant bound on the number of concurrent signatures a

client requests, the first message can be eliminated (and the second flow con-

sequently modified removing the hash value G(rs)), yielding the simpler two-

message protocol in Figure 2.2.
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1

2

rc, m

rc, rs, ss

Client Server

Figure 2.2: A two-message signature protocol, for applications with a bounded

number of concurrent signature requests from the client. The constants are

computed as in Figure 2.1.

From Theorem 1, we see that the two-message protocol is secure against a

malicious client. Indeed, in this case the malicious client is just less powerful

than in the previous scenario (since it does not have access to the initiate signa-

ture oracle): If an adversary A could forge signatures by acting as a two-message

client, one could trivially build a three-message adversary A′ in terms of A.

Furthermore, the proof of Theorem 3 is clearly not affected by the change

in the signing protocol, since that proof hinges solely upon the properties of the

key update protocol. Hence, the proactive security of the two-message protocol

will follow as soon as its security against malicious server is established.

To prove the two-message protocol secure against a malicious server, how-

ever, we must rely on a stronger assumption than the difficulty of computing

discrete logs, and assume a constant bound t on the number of concurrent runs

of the protocol3. The intuitive reason behind the strengthening of the assump-

tions is that in the two-message protocol the server can control the value of r

by (maliciously) choosing rs = rr−1
c mod p. In this way, the server can be able

3More precisely, we assume that the client is willing to initiate an unbounded number

of concurrent executions of the protocol, but it will only complete one of the t most recent

pending runs.
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to compute H(m, r) before sending the value rs to the client. This would break

the simulation described in the Section 2.3.2, so that the proof does not go

through. Still, it is not clear how this attack could help the server in forging a

signature 〈r, s〉, since the choice of rs = rr−1
c leaves the server with the problem

of computing its the discrete log, i.e., ks; hence, the server will not be able to

compute the correct ss = ks+(xs+∆)e mod q needed to complete the signature

〈r, s〉.

Indeed, we show that the modified scheme is secure under the assumption

that the known-target discrete log problem (DL-KT) [8] is hard. The DL-KT

problem consists of getting some number n of discrete log challenges in the

same group, then computing their discrete logs while making at most n − 1

queries to a discrete log oracle. Although the assumption that the DL-KT

problem is hard for any polynomially-bounded n is relatively new, it has already

been used quite a bit in proving the security of various schemes [8, 7, 15].

However, in all these other cases the claimed result follows almost trivially

from such assumption. On the contrary, our application is considerably more

involved: it requires an additional “twist” in the reduction argument, namely

the assumption on the bounded concurrency, and the development of some novel

ideas in the probabilistic analysis.

Theorem 4. If a malicious server, interacting with a client with bounded con-

currency, can forge a signature without the client’s help in PPT with non-

negligible probability, then we can also solve the DL-KT problem in PPT with

non-negligible probability.

Proof. Let p, q, g define a group as usual. Let z0, z1, z2, . . . be challenges of

which we want to compute the discrete logs. Let t be the concurrency bound
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of the client. Let A be an adversary that acts as a 2Schnorr server and forges

signatures in PPT. We will compute the discrete logs of n challenges for some

number n > 0, while making only n− 1 queries to a discrete log oracle.

We first choose a random xs ∈ Zq. Let y = z0 (i.e., the first challenge),

ys = gxs mod p, and yc = yy−1
s mod p. We give A public key 〈p, q, g, y〉 and

private key xs. Finally we ask A to forge a signature.

Again, A can make four kinds of oracle queries. It can query the random

oracle, ask for a key update, ask the client to initiate the protocol on some

message, or ask the client to complete and output a signature. We emulate the

random oracle H in a completely honest manner, by replying to each query with

a random value. More specifically, we choose a random (and sufficiently long)

list of values for the hash oracle H before we even start executing A: we will use

these values one after the other to answer A’s queries, no matter what specific

value A is asking for. Also, we randomly choose and fix the entire random tape

of A. Finally, we also choose update values δ randomly, and keep a running

sum ∆ =
∑

δ(q − δ) mod q. To put it differently, all the randomness we need

for the entire simulation is chosen and fixed.

When A asks us to initiate the signature on a message m, we set rc = zj for

some challenge zj we have not yet used, and we send A the message {rc, m}.

When A wishes us to complete the signature of some m, it will send us

{rc = zj , rs, ss}. Let r = rcrs mod p and e = H(m, r). We query our own

discrete log oracle to find the discrete log of rc(ycg
∆)e mod p. Let sc be this

logarithm. Let kc be the log of rc and xc be the log of yc. Both kc and yc are
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unknown to us. However:

gsc ≡ rc(ycg
∆)e (mod p)

gsc ≡ gkc
(
gxc+∆

)e
(mod p)

sc ≡ kc + (xc + ∆)e (mod q)

Thus, sc is exactly as it should have been. We compute s = sc + ss mod q, and

output the signature 〈r, s〉.

Since we are exactly simulating the attack scenario, A will eventually output,

with non-negligible probability, a message m and forged signature 〈r, s〉.

We then rewind A’s state to the time it queried the random oracle for the

value of H(m, r) (say this was the ith A did to the oracle H). Call this query

crucial. This time, instead of using the value in the “list of randomness” we

prepared before beginning executing A, we discard this value, and answer such

crucial query with a new, random value. We then continue the simulation as

in the first execution: in particular, we will continue using our “list” to reply

to random oracle queries, but will use brand new (already prepared) challenges

zj .

As we will shortly prove in Lemma 5, there is a non-negligible probability

that A will forge again the same message m with randomness r but different

values for H(m, r) (plus some additional property will hold; see below). Once

we come up with two signatures for the same message m, the same randomness

r but different hash values e 6= e′ (and hence s 6= s′), it is just a matter of

modular arithmetic to recover x (cf. Theorem 1). Now, given x, we can answer

all the challenges zj as follows.

For each initiate query that the adversary decided not to complete (i.e., he

initiated a run of the protocol but then it decided not to complete it), we have
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used one of the challenge zj without “consuming” any query to our discrete

log oracle. Therefore, we can use it now to find the discrete log of zj . So we

concentrate on the initiate queries which were completed by A.

Next, since y = gx mod p = z0, x itself is the answer to the challenge z0

(and we did not consume any discrete log queries for getting x!). Moreover,

once we know both x and xs, we can also compute xc = x − xs mod q. Given

xc, we can recover the value kc—the discrete log of each zj—from each of the

sc = kc + (xc + ∆)e mod q values we asked our discrete log oracle to compute.

There is only subtle problem: we have to ensure that we consume at most

one discrete log query per each value zj (for j ≥ 1), i.e., per each (completed)

initiation query of the adversary. Such queries can be divided into three parts:

the queries initiated and completed before the critical hash query i, the (at most

t) queries initiated before but completed after the critical query, and the queries

initiated and completed after the critical query. There is no problem with the

first and the last kind of queries. Indeed, they both consumed exactly one zj and

utilized exactly one call to the discrete log oracle (recall, we use fresh zj ’s in the

second run). However, the second category could present problems: each query

utilizes one zj , but can potentially call the discrete log oracle twice, i.e., once

in each run of A. Here is where we will use that t is bounded (by a constant).

For each such “semi-completed” signature query mj , let rj be the corresponding

randomness in the first run, and call the t hash queries H(mj, rj) important (in

the first run). Notice, important queries could appear both before and after

the critical query i, since the server can control the randomness by choosing

a “cheating” value of rs,jrjr
−1
c,j mod p for each mj , and query H(mj, rj) way

before the initiation query for mj . Similarly, we can define these t important

hash queries in the second run (corresponding the the same mj, rc,j but possible
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different values r′j , r′s,j). However, since we chose all the randomness for our

hash query answers at the beginning, and reused this randomness in the second

run, we do not have to make the extra t calls to the discrete log oracle provided

the important queries in the first and the second run have the same indices.

Indeed, in this case we would return the same value ej for the important query

j in both runs, and therefore will need to compute the discrete log of two very

similar values rc,j(ycg
∆j)ej mod p and rc,j(ycg

∆′

j)ej mod p. It is clear that these

discrete logs differ by (∆j − ∆′
j)ej mod q, which is a known value, so we can

compute the discrete log s′c,j by returning (sc,j − (∆j −∆′
j)ej) mod q. We will

argue in Lemma 5 that (for a bounded t) the important queries will indeed be

the same with non-negligible probability.

To summarize, if we are lucky that the following three conditions hold during

the “double” run of A, we utilize one less discrete log query than the number of

discrete log challenges we are computing, thus breaking the DL-KT assumption:

1. A succeeded the first time on some critical query i.

2. A succeeded the second time on the same critical query i, but the ith

response we gave was different.

3. A used the same (up to) t important queries in the first and second run.

We argue that the above three conditions hold (with non-negligible probability)

in the following final lemma, which completes the proof.

Lemma 5. Let ε be the probability of A successfully producing a forgery in

one run, and δ be the success probability of satisfying the above three conditions

in the “double” run of A. Assume also that A makes at most qhash random

oracle queries in one run, and t is the maximum number of concurrent signature
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queries the client initiates. Then δ ≥ ε2/qt+1
hash − negl(k). (here k is the security

parameter and negl(k) is a negligible function in k).

Proof. Without loss of generality, we will assume throughout the proof that

A always calls the random oracle H to validate all issued signatures and its

final forgery—otherwise A has at most a negligible success probability, which

is consumed in the negl(k) term. Let i ∈ [qhash] be an index and J ⊂ [qhash] be

a subset of at most t indices. Let εi,J be the probability of adversary’s success

in one run given that the critical query corresponding to the forgery is query

number i, and that all the (at most) t important queries have indices in J .

Obviously,
∑

i,J εi,J = ε.

Next, recall δ is the probability of success of the above experiment. For any

i and J defined as above, let δi,J be the success probability conditioned on the

fact that in both runs the critical query is i and the important queries were in

the set J . Again, it is clear that
∑

i,J δi,J = δ.

We claim that if the size of the universe of hash responses has size L ≥ 2ℓ,

we have:

δi,J ≥ ε2
i,J − εi,J2−ℓ (2.1)
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Assuming Equation (2.1) is true, by using Cauchy-Schwartz inequality4 we get:

δ =
∑

i,J

δi,J ≥
∑

i,J

(ε2
i,J − εi,J2−ℓ)

=
∑

i,J

ε2
i,J − ε2−ℓ ≥

1

qt+1
hash

(∑

i,J

εi,J

)2
−

ε

2ℓ

=
ε2

qt+1
hash

−
ε

2ℓ
=

ε2

qt+1
hash

− negl(k)

It remains to show the validity of Equation (2.1). For any fixed i and J , choose

at random the random tape of the adversary, qhash answers to the hash queries,

plus any other randomness our simulator needs. Fix this randomness, but split

it into the two parts, and consider the following matrix. On the columns we

place the random response to query number i (call this response e); on the

rows of the matrix we place all the remaining randomness (call it R). Mark

a square in this matrix if the square corresponds to adversary’s success in a

single run (i.e., we do not rewind it yet). Let εi,J,R be the probability of success

conditioned on R, i.e., the density of marks in row number R of our matrix.

Obviously,

εi,J =
1

|R|

∑

R

εi,J,R (2.2)

Next, let δi,J,R be the probability of success of the whole experiment (with

rewinding), conditioned on the fact that the row was R, i.e., conditioned on the

fact that the randomness used in the entire experiment (except for the answer

to query number i) is described by R. We want to estimate the probability that,

when we selected at random the answer to the ith query twice, we got a dot both

4For ease of reference, we report Cauchy-Schwartz inequality below:

(∀N ∈ N)(∀a1, . . . , aN ≥ 0).
[∑

i

a2

i
≥ 1/N

(∑

i

ai

)2]
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Figure 2.3: SFS user-authentication architecture.

times and the answers chosen—e1 and e2—were different. Indeed, since i and

J are fixed, in this case A succeeds twice and uses the same important/critical

queries. Since these two runs are now independent, the needed probability is

simply computed as:

δi,J,R = εi,J,R(εi,J,R − 2−ℓ) = ε2
i,J,R − εi,J,R2−ℓ (2.3)

Finally, by conditioning δi,J on the value of R, using Equations 2.2, (2.3), and

Cauchy-Schwartz again, we get:

δi,J =
1

|R|

∑

R

δi,J,R =
1

|R|

(∑

R

ε2
i,J,R −

∑

R

εi,J,R2−ℓ
)

=
( 1

|R|

∑

R

ε2
i,J,R

)
−

εi,J

2ℓ
≥

( 1

|R|

∑

R

εi,J,R

)2

−
εi,J

2ℓ

= ε2
i,J − εi,J2−ℓ

Equation (2.1), and hence the overall bound, follows.

2.4 Implementation

Figure 2.3 illustrates the major components of SFS involved in user authentica-

tion. The file system client and file server communicate over a TCP connection,
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encrypting and MACing all traffic to obtain a secure channel. User authenti-

cation itself is actually performed by processes external to the file system. On

the client, every user runs an agent program responsible for authenticating it to

remote servers. On the server side, a program authd is responsible for validating

authentication requests and translating them into credentials meaningful to the

file server.

When a user accesses a file server for the first time, the file system client

delays the access and asks the user’s agent to authenticate her to the server.

The agent then communicates with the server’s authd to obtain appropriate

privileges for the user. The agent and authd communicate through the file

system’s secure channel, but the file system views their messages as opaque

byte arrays. Thus, new authentication protocols can be implemented without

modifying the file system software.

Figure 2.4 shows the interface between the file system, agent, and authd.

Every secure channel between a client and server is identified by a unique ses-

sion ID, SessID. SessID, when hashed together with the server’s name, public

key, and certain other information, produces a value called AuthID. When the

SFS client asks a user’s agent to authenticate her to a server, it sends the agent

the SessID of the session with that server, a sequence number, Seq#, identifying

the authentication request within that session, and several other pieces of infor-

mation including the name of the server. The agent computes AuthID and then

communicates with the server’s authd. If the authentication protocol succeeds,

the authd informs the file server of the user’s Seq#, AuthID, and credentials.

The server then returns a short handle Auth# to the client, which the client

subsequently uses to tag all file system requests on behalf of that user.5

5SFS could equally well have chosen to tag requests with Seq#, but Auth# is a shorter
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Figure 2.4: Messages exchanged during the user-authentication process. The
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In the original SFS authentication system, authd keeps a mapping of users’

public keys to credentials, while the agent keeps one or more private keys in

memory. The authentication protocol consists of the user digitally signing

{Seq#, AuthID}. The original protocol used Rabin-Williams [78] digital signa-

tures.

In addition to validating file server users, SFS’s authd plays a separate role

as a repository of users’ encrypted private keys. SFS users can store encrypted

copies of their private keys with the authd of their “primary” SFS server. After

logging into a client machine, users typically connect to their primary server’s

authd over the network, authenticate themselves through the SRP [79] secure

password protocol, and then retrieve their encrypted private keys. (Users also

end up securely downloading server public keys this way; cf. [68] for details.)

2.4.1 Implementing 2Schnorr in SFS

Integrating 2Schnorr in SFS was relatively straight-forward, as the original

user authentication protocol already consisted of a simple digital signature on

{Seq#, AuthID}.

On the server side, we made several modifications to authd. We extended

it to support both Schnorr and Rabin public keys. We modified the server’s

encrypted private-key repository functionality, so that it now optionally holds

both an encrypted half of a user’s private key and an unencrypted one. We

added an option to the RPC by which users update their login information so as

to update the two key halves whenever users change their passwords. Finally,

we added a SIGN RPC that implements the server side of the two-message

and therefore slightly more convenient value.
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2Schnorr protocol.

In order to access the new SIGN RPC, a user must first authenticate himself

to the server. The simplest way is through SRP. When a client downloads a

user’s encrypted private key half, it is permitted to keep the connection open to

the server for issuing SIGN requests. The server is currently willing to endorse

two types of message—login requests, and requests to change the user’s public

key on a particular server. Both types of messages include an AuthID, which

authd computes and verifies. Computing AuthID involves hashing, among other

things, the name and public key of the server being accessed and the type

of service being requested (remote login, file server, etc.). Authd logs this

information, leaving a complete audit trail in case an attacker steals a user’s

password.

On the client side, rather than hard-code 2Schnorr into the agent, we instead

implemented an extension facility by which arbitrary external programs can plug

into the agent and offer to attempt user-authentication. Figure 2.5 illustrates

the complete system. Upon loading the 2Schnorr private key half, an external

authentication process ext plugs into the agent, keeping open a connection to the

user’s primary authd, which we call the signing authd. When the user accesses

a new file server, the agent queries the ext process, which executes 2Schnorr

with the signing authd to produce an ordinary Schnorr signature. The verifying

authd on the server that the user is accessing then verifies the Schnorr signature

to authenticate the user.

Several other implementation details are worth mentioning. The new authd

can actually store two private keys for a user. This is important so that a user

who changes her public key can access both the old and new private keys for

a time. On the client side, while ext is waiting for the server to endorse a

39



Rabin 2Schnorr
0

5

10

15

20

E
xe

cu
ti

on
 T

im
e 

(m
ill

is
ec

on
ds

)

Verify

Client Sign

Server Sign

End-to-end Protocol

Figure 2.6: Benchmarks for signing and verifying in the Rabin and Schnorr

signature schemes. End-to-end protocol shows user wait time for complete au-

thentication.

signature, it precomputes gkc mod p for the next signature, to reduce latency.

Also, in order to compute the value sc = kc + xce mod q, the client actually

computes sc = (kc (e−1 mod q) + xc) e mod q to thwart any timing attacks based

on non-constant time of the modular reduction. ss is computed similarly.

2.5 Performance

This section evaluates the performance of 2Schnorr and its impact on SFS.

The two most important effects of 2Schnorr are on the responsiveness of the

client and on CPU consumption on the server. In both cases, we compare the

new 2Schnorr authentication protocol to the original SFS authentication pro-

tocol, which is based on an optimized, non-interactive Rabin signature scheme.

We show that the new protocol has little impact on system responsiveness for

clients with good network conditions. It is more expensive on the server-side in
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comparison to Rabin, but still cheap in an absolute sense.

We measured the 2Schnorr and Rabin algorithms both in isolation and as

part of a file system access that required user authentication. We used three

separate machines in our experiments: a verifying-authd server, a signing-authd

server, and a client. The verifying-authd machine served the file system we used

in the file access benchmark, while the signing-authd performed the 2Schnorr

server-side protocol (and hence was not used in the Rabin experiments). We

used 1.75 GHz Athlon computers for both servers, and a 1.4 GHz Athlon for

the client. All three machines had sufficient memory so that no paging activity

was detected during any of the trials. The three machines were connected by

switched 100 Mbit ethernet, with round trip latencies below 0.2 ms between

every pair of machines. The verifying-authd was running FreeBSD 4.6.2, while

the signing-authd and client were running OpenBSD 3.1. All machines used

GMP version 3.1.1 for large integer arithmetic.

The experiments were conducted using Rabin keys with a 1024-bit modu-

lus, and Schnorr keys with 1024-bit ps and 160-bit qs. There are no known

efficient reductions from the discrete log problem to factorization or vice-versa.

However, given today’s fastest algorithms, taking discrete logs over the group

in the Schnorr algorithm should be roughly comparable to factoring the Rabin

modulus.

To measure system responsiveness, we timed a cd command on the client

to a directory (on the verifying-authd) that triggered an authentication. Under

normal circumstances, a user is authenticated to a remote SFS server as long

as that server is mounted and the user does not add or remove keys from his

agent. In our experimental setup, however, we reset the user’s agent after every

successful authentication. The results of this experiment are shown by the

41



black bars in Figure 2.6. Without network latency, the 2Schnorr protocol is

47% slower. However, in absolute terms, 2Schnorr is only 6 msec slower, which

is a barely noticeable delay for the first access to a file system. In fact, when

the file system client is not already connected to the server, there is additional

time to connect and negotiate a session key, which further reduces the relative

difference of Rabin and 2Schnorr. On the other hand, had there been greater

latency between the client and signing-authd, the 2Schnorr authentication time

would increase by the network round trip time.

Figure 2.6 also shows the CPU times required to compute and verify digital

signatures. Note that verifying in Rabin is negligible, as no modular expo-

nentiation is required. The verifying-authd can verify a Rabin signature in well

under 0.1 msec. By contrast, Schnorr signature verification takes approximately

3 msec—a significant increase. For this reason, Schnorr might be a bad can-

didate for a verifying-authd server that supported huge numbers of users with

high turnover. However, since every client connection also requires the server

to engage in the key negotiation protocol, SFS servers cannot scale to 1,000s of

new connections per second anyway.

If we compare the cost of signing, the sum of the two halves of the 2Schnorr

signature protocol is 87% slower than Rabin. As 2Schnorr overlaps its calcula-

tion of gkc mod p with network latency and server computation, the cost of this

computation, about 1.7 msec, is not reflected in the CPU times shown in the

graphs.

Finally, we should note that key generation with 2Schnorr is significantly

slower. We generated keys on the signing-authd and found that Rabin keys can

be generated in about 0.2 seconds, while 2Schnorr keysets require about 0.55

seconds. Because users will rarely need to regenerate keys, this slowdown is
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acceptable.

Though 2Schnorr is clearly more expensive than the original Rabin-based

user authentication scheme, the performance is still perfectly acceptable for a

procedure that only needs to be invoked when a user first accesses a new file

server. Moreover, we believe the performance impact is more than offset by the

2Schnorr’s added security.

2.6 Summary

This chapter develops proactive, two-party signature schemes (P2SS) as an effec-

tive tool to address the challenges of user-authentication in settings with many

administrative realms. We present a three-message protocol, 2Schnorr, which is

provably secure in the random oracle model assuming only the difficulty of the

computational discrete log problem. For systems with a constant bound on the

number of concurrent signature requests, we also give a two-message version of

2Schnorr, which we prove secure using the stronger one-more-discrete-log as-

sumption. We argue that similar techniques can be used for a P2SS version of

the GQ signature scheme.

To demonstrate the utility of P2SS, we integrated 2Schnorr into SFS, a

secure network file system. Using 2Schnorr, a user whose password is com-

promised can recover by simply changing his password on his primary server.

This will immediately block attackers from accessing his accounts in all other

administrative realms where he has registered the same public key. Moreover,

the user can also obtain from his primary server a log of all servers accessed by

the attacker—possibly including accounts the user has forgotten about. While

2Schnorr is slower than SFS’s original Rabin signature algorithm, we show that
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the performance impact is quite acceptable, particularly given the added secu-

rity.
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Chapter 3

E-Mail Authentication via Social

Networks

A variety of peer-to-peer systems use social networks to establish trust be-

tween participants. Yet the sharing of social information introduces privacy

concerns. This chapter describes new privacy-preserving cryptographic proto-

cols that enable participants to verify social proximity while exposing minimal

information about the parties’ social contacts. Compared to previous results,

our protocols are either significantly more efficient (orders of magnitude faster

than the private-matching approached used in PM [50]) or achieve stronger

security properties at similar cost.

3.1 Introduction

In peer-to-peer systems where resources are scarce or users are subject to abuse,

participants can leverage social relationships to guide their interactions with

other users. Further considering transitive trust relationships can extend a
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user’s vantage, while still incurring a low risk of coming across abusive users.

In the email or instant messaging contexts, for example, social networks can

facilitate cooperative spam blacklisting [64] or sender whitelisting [50].

A näıve approach to discover transitivity is for one party to send his list of

friends to the other party, who computes the set intersection of their two input

sets. Yet this simple form of information sharing introduces privacy concerns.

While the problem of privacy-preserving two-party computation has been

widely studied in the cryptographic literature [80, 52], general-purpose crypto-

graphic solutions are too computationally expensive for practical use. Further-

more, their privacy guarantees are often misaligned with applications’ specific

threat models (discussed in Section 3.3).

This chapter describes efficient cryptographic protocols with which parties

can determine shared friends while exposing minimal information about their

social contacts. Using Re: [50] as a motivating example—an email system that

reliably accepts mail from senders based on proximity in a social network—we

describe two alternative methods to verify social proximity. The first method,

based only on cryptographic hash functions and symmetric encryption, meets all

of Re:’s current privacy and security goals at a fraction of the cost of its current

Private Matching [48] protocol. The second method, while of comparable cost,

achieves stronger privacy guarantees (namely, non-transferability) through its

novel use of cryptographic properties of bilinear groups [17].

Our contributions are twofold. First, we describe and define a security model

for verifying social connectedness in a privacy-preserving fashion (Section 3.3).

In fact, the mismatch between Re:’s goals and the privacy properties offered by

Private Matching were a source of both computational inefficiency and privacy

limitations. Second, we propose cryptographic protocols that protect such social
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proximity queries, for both scenarios that require high efficiency (Section 3.4.1)

and those that demand strong security properties (Section 3.4.2).

3.2 Motivating application: Re:

Reliable Email (Re:) [50] is an automated email acceptance system that

whitelists email according to its sender. It seeks to undue the email unreli-

ability introduced by content-based filters and other spam-fighting technologies

which, while seeking to minimize the amount of spam that reaches a user’s

inbox, occasionally misclassify legitimate mail as spam.

The concept of sender-based whitelisting for email is hardly new. Yet, tra-

ditional whitelists suffer from two chief usability issues. First, a recipient’s

whitelist cannot accept mail from a sender previously unknown to the recipi-

ent. Second, populating whitelists requires manual effort distributed diffusely

in time, as users acquire new contacts.

To overcome these limitations, Re: automatically broadens the set of senders

whose mail is accepted by recipients’ whitelists by explicitly examining the social

network among email users. Specifically, Re: allows a user R to attest to another

user S, which indicates that R is willing to have email from S directly forwarded

to his mailbox. In other words, “User R trusts his friend S not to send him

spam.” Such an attestation is a digitally-signed statement of the form:1

σR→S = {H(R), H(S), start, end}SKR

where H is a collision-resistant cryptographic hash function like SHA-256 op-

erating on the users’ email addresses, start and end define the attestation’s
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validity period, and SKR denotes user R’s signing key.

Re: leverages these attestations for accepting mail in cases where the sender

S and recipient R are not already friends, but instead share a bridging friend

T , resulting in a friend-of-friend (FoF) relationship between S and R.

By performing an FoF query, a recipient can determine which of his friends,

if any, have attested to the sender. Re: achieves this while still providing the

following privacy properties:

• The sender S does not learn anything about R’s friends. Both learn an

upper bound on the number of friends presented by the other, however.

• The recipient R learns only the intersection of the two sets of friends, i.e.,

those T for whom R signed σR→T and from whom S received σT→S.

• A third party observing all messages between S and R learns an upper

bound on the size of each input, but nothing about their content nor the

intersection size.

• Only R can execute the FoF query.

Re: provides the final property through its use of a one-time authorization

token, while the first three properties are achieved through the use of a Private

Matching (PM) protocol [48].

At a high level, PM is a two-party interactive protocol, where the input of

each party is a set, and the output (learned only by one party) is the input

sets’ intersection. PM uses the homomorphic properties of certain public-key

encryption schemes.

1The original notation used in Re: [50] for attestations had the form R→ S; we chose to

adopt a subscripted notation to reserve “plain arrows” to denote social links (see Section 3.3).

48



In Re:’s case, R’s inputs are the email addresses of those X such that σR→X ,

while S’s inputs are those Y such that σY→S, along with the σY→S themselves as

payloads for each input. After running PM, R learns the email addresses for the

set of bridging friends T and the corresponding attestations {σT→S : T ∈ T }.

R finally verifies the digital signatures on these attestations before whitelisting

S’s email.

Re:’s initial concern with sharing friendship lists (“address books”) for

whitelisting purposes was the potential for spammers to use such a mechanism

to harvest valid email addresses. Re:’s use of the PM protocol certainly pre-

vents such an attack. It does not, however, prevent parties from “lying” about

their inputs,2 e.g., by including in their input sets email addresses of people for

whom they do not have the appropriate attestations.

While in this context the sender S cannot benefit from lying—as R will

check the recovered attestations’ signatures, match them to the supplied email

addresses, and verify that the proper attestation path exists—a deceitful recip-

ient may lie to mount a targeted attack against those parties that consider S

a friend, for example. Namely, to verify whether some party Z considers S a

friend, R simply claims to consider Z a friend himself when performing an FoF

query with S: if S has an attestation σZ→S, R will receive such attestation as

part of PM’s output.

Within Re:’s ill-defined security model, it is not even clear if and how such

behavior could be construed as a protocol abuse, as R can generate an attes-

2Indeed, private function evaluation protocols, of which PM is an instance, are proven

secure in a model that only concerns itself with preventing information leakage from the

function’s execution; the model does not embed a notion of “proper” inputs, so one cannot

directly reason about lying parties.
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tation σR→Z at any time anyway (say, with a very short duration). In the next

section, we propose a more formal privacy model for verifying proximity in social

networks that directly addresses these shortcomings.

3.3 Model

A social network can be modeled as a directed graph G = (V, E), whose vertices

represent the users of the system and where the presence of an arc (R, T ) ∈ E

(also denoted R → T ) indicates the existence of a social relationship between

user R and user T . We will discuss the implications attached to such rela-

tionships shortly; for now, we will just take R → T to mean that “T is R’s

friend.”

This graph is represented within the system in a distributed fashion: each

participant has only a local view of the network, consisting of its incoming and

outgoing arcs. Additionally, the system provides a proximity check mechanism

by which a user S can help R determine whether he is “close enough” to her in

the social network. In particular, R can find out all bridging friends X such that

R→ X and X → S. Such mechanism is exposed to a higher-level application, in

which users send requests to each other, and requests may be treated differently

by the recipient according to the social proximity of the sender (e.g., whitelisting

FoF’s in Re:).

Figure 3.1 illustrates this for a fragment of a social network, where R learns

that there is exactly one bridging friend between him and S, namely T . Notice

that both T and W are directly connected to S, but R should not learn about

W since the arc R→ W does not appear in the graph.

To properly address privacy concerns of this kind, we first elaborate on the
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Figure 3.1: A fragment of a social network. Solid arrows represent trust rela-

tionships; the dotted arrow highlights a pair of users for which to verify social

proximity.

nature of the relationships represented by the social network. In the context of

Re:, such relationships were viewed as predominantly unidirectional: R → T

roughly corresponds to the notion that “user R trusts T not to send him spam.”

Under this interpretation, whether the arc R→ T appears in the social network

or not is essentially up to R. As we alluded in Section 3.2, however, this approach

is arguably too lax: Building on the example of Figure 3.1, an overly curious

R could unilaterally augment the social network with arcs R → U , R → W ,

R → Z. This would “entitle” R to learn about the social link W → S when

receiving email from S, breaching the privacy of both W and S.

To this effect, we posit that the presence of social link R → T ought to

express consent of both parties:

(Forward Trust) User R places some form of trust on user T that T can use

to demonstrate to some U the presence of a chain U → R, R→ T .

(Backward Authorization) User T authorizes user R to discover links of the

form T → X when trying to establish the existence of a social chain such
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as R→ T , T → S.

Within a specific system, each such requirement would be associated with

some concrete piece of data. For example, R’s trust in T could be expressed via

a digitally-signed attestation à la Re:, whereas backward authorization could

be implemented as a shared secret key that T gives to R (as in Section 3.4).

Under such a setup, one can formalize a system’s privacy properties by

explicitly pointing out what information is exposed to the users, in terms of

guarantees of the form: “During a proximity check with user S, user R learns

at most I.” Following the approach of secure multi-party computation [80, 52],

a statement of this sort is proved by showing that, given I and the knowledge

held by R (which can be deduced from R’s social relationships), it is possible to

simulate (or “fake”) the content of all messages seen by R during the proximity

check. This implies that any other information exposed to R can be derived

using only I and R’s knowledge. Thus, I itself provides an upper bound on the

extra knowledge that R gains. We apply this proof technique in Section 3.4 to

assess the privacy of our constructions.

3.4 Constructions

3.4.1 An Efficient Hash-Based Construction

Our first construction assumes, as in Re:, a signing/verification key pair

SKR/V KR for each user R. Additionally, a user R maintains a secret seed

sR for a cryptographic pseudo-random function F like HMAC-SHA-256.

Each arc in the social network is associated with a (pseudo-)random key,

termed the arc’s a-value. All a-values corresponding to arcs of the form R→ X
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Figure 3.2: Data structures used for a hash-based proximity check between a

sender S and recipient R.

are derived from R’s secret seed sR as: aR→X = FsR
(“arc”, R, X).

For each social link of the form R→ X, user R creates an attestation σR→X

for user X, and sends it to X along with aR→X (forward trust). In return, R

receives sX from X (backward authorization).

This asymmetry in exchanging secrets stems from the way we implement

proximity checks: Roughly speaking, for Y such that Y → S, the sender S

encrypts the attestation σY→S under (a key derived from) aY→S. In turn, for X

such that R→ X, the receiver R tries to read these encrypted attestations using

(a key derived from) the a-value aX→S (corresponding to the possibly non-extant

arc X → S), which R can compute given sX .

To help R in his decryption process (which, as described, requires a quadratic

amount of symmetric-key operations), S includes a tab tY→S along with each

encrypted attestation cY→S (cf. Figure 3.2). More in detail, for each arc

Y → S, S combines the attestation σY→S and the a-value aY→S into a tabbed

encrypted attestation (cY→S, tY→S) as follows. The tab tY→S is a pseudo-random

hash computed under F keyed with aY→S i.e., tY→S = FaY→S
(“tab”,ReqID),

where ReqID is a unique identifier supplied by the higher-level application.
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The ciphertext cY = CkY→S
(σY→S) is computed under a secure symmetric ci-

pher C (e.g., AES-CBC), with a key kY→S also derived from aY→S: kY→S =

FaY→S
(“key”,ReqID).

At this point, S creates a list of these tabbed encrypted attestations, one for

each of her incoming social relationships, permutes this list in random order,

and sends it to R along with her request.

User R processes such a list by first looking at the tab component of each

entry. In particular, for each relationship of the form R→ X, R holds the seed

sX . So R can form the a-value aX→S = FsX
(“arc”, X, S), and then the F -hash

of ReqID (which was included as part of S’s request) under aX→S . In this way,

R computes his own set of tabs, and compares them with those received from

S (which can be done efficiently, e.g., by first storing one set of tabs in a hash-

table, and then trying to retrieve from it the tabs of the other set). Thanks to

the cryptographic properties of F , it is extremely unlikely that two such tabs

will coincide, except when they are created from the same seed. In other words,

a match between the tabs guarantees that the same seed was used by both

R and S, which in turn reveals the bridging friend(s), say T . At this point,

R can compute the proper key kT→S = FaT→S
(“key”,ReqID) and decrypt the

corresponding encrypted attestation, thus recovering σT→S. Finally, R verifies

T ’s signature on σT→S before concluding that R→ T and T → S.

Security proof. Clearly, malicious senders do not pose any privacy threat,

because the protocol consists just of a single sender-receiver flow. As for a

malicious receiver R, we now prove that he only learns how many friends have

attested to S and those attestations for which the attester is a common friend

i.e., I = (|Y|, {σX→S : X ∈ T }), where Y = {Y : Y → S} and T = {X : R →

X, X → S} ⊆ Y . To this end, we need to show how to simulate the message
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that R receives from S, given |Y|, {σX→S : X ∈ T } and the shared secrets

known to R.

We start by observing that for any W ∈ Y \ T , W ’s random seed sW

is unknown to R, so that aW→S is (pseudo-)random in R’s view. Hence, by

the properties of pseudo-random functions [51], it is infeasible to tell kW→S =

FaW→S
(“key”,ReqID) (resp. tW→S = FaW→S

(“tab”,ReqID)) apart from a random

string k̃W→S (resp. t̃W→S) of the same length. It follows that no efficient algo-

rithm can distinguish cW→S = CkW→S
(σW→S) from Ck̃W→S

(σW→S), which in turn,

since C is a secure symmetric encryption scheme, cannot be distinguished from

c̃W→S = Ck̃W→S
(0|σW→S |). Thus, we can replace (cW→S, tW→S) in S’s message with

a “randomized” pair (c̃W→S, t̃W→S), without R noticing the change.

Simulating the tabbed encrypted attestation (cT→S, tT→S) for T ∈ T is easier,

since in this case we have σT→S (from I) and aT→S (as R → T , and so, by

backward authorization, R knows sT , from which aT→S is derived). Thus, we

can directly compute kT→S = FaT→S
(“key”,ReqID), cT→S = CkT→S

(σT→S) and

tT→S = FaT→S
(“tab”,ReqID).

3.4.2 Privacy in the Face of Collusions

Compared to the privacy properties of the PM-based protocol of Re:, our hash-

based construction additionally guarantees that receivers cannot learn about

attestations created by a user T without T ’s permission. This is in keeping

with the notion of backward authorization, an aspect of our modeling missing

from Re:’s original framework.

However, the kind of backward authorization implemented by the hash-based

scheme is transferable: if user T authorizes user R to learn about attestations
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of the form σT→X , R can further transfer such authorization to another user

U . Then, during a proximity check with S, U would be able to discover the

attestation σT→S, even though the social link U → T is absent and so U was

never back-authorized by T .

Notice that this scenario does not contradict the privacy guarantees proved

in Section 3.4.1; rather, it points out the privacy implications that collusions

of two or more users can have. In fact, it is unclear whether this ought to

be considered a privacy problem: After all, if R and U pool their resources

together, then they appear as “one and the same” to the rest of the system.

Since a proximity check between S and R would have disclosed σT→S anyway,

we may deem that U learning σT→S is a reasonable outcome.

In settings where user collusions are of concern, however, we may want to

attain non-transferability: namely, only enable those users that T has individ-

ually authorized to actually learn about his attestations. We now describe a

construction that leverages the cryptographic properties of bilinear groups to

satisfy this stronger requirement.

Bilinear groups are pairs of cryptographic groups G1 and G2 of the same

order q (for some large prime q), equipped with an efficiently computable map

e : G1×G1 → G2 such that e(ga, hb) = e(g, h)ab for all g, h ∈ G1 and all a, b ∈ Zq

(bilinearity).3 Typical examples of bilinear groups are based on elliptic and

hyperelliptic curves (e.g., [61, 17]).

Our bilinear construction exploits the bilinearity of the e map to enable

users to “personalize” the secret values that they give out for backward autho-

rization when establishing a social link (whereas in the hash-based scheme of

3Technically, the map should also be non-degenerate: not all pairs in G1 × G1 should map

to the unit in G2.
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Section 3.4.1, user R gives out the same secret sR to all X such that X → R).

In particular, each user R maintains a secret exponent sR ∈ Zq and a public

value yown
R = H1(“own”, R)sR ∈ G1, where H1 : {0, 1}∗ → G1 is a random or-

acle [9] with range in G1.
4 Then, R hands out yfwd

R→X = H1(“fwd”, R, X)sR to

each X for which R→ X, and ybwd
X→R = H1(“bwd”, X, R)sR to those X for which

X → R. Notice that the bilinear property enables X to verify the correctness

of the value received from R, since for properly computed yfwd
R→X , it must hold

that e(H1(“own”, R), yfwd
R→X)

?
=e(yown

R , H1(“fwd”, R, X)), and a similar check can

be performed to test the correctness of ybwd
X→R.

The proximity check protocol between S and R uses the same overall struc-

ture as that of the hash-based scheme, except that the a∗ seeds for the pseudo-

random function F are now computed as follows: For each Y → S, S sets

aR,Y,S = e(yfwd
Y→S, H1(“bwd”, R, Y )). Then, S can compute a tabbed encrypted

attestation as before, using aR,Y,S in place of aY→S. R computes his tabs in a

similar fashion for each R → X, by setting aR,X,S = e(H1(“fwd”, X, S), ybwd
R→X).

The only detail to check is that, for those T such that R→ T and T → S, both

S and R obtain the same value aR,T,S, which readily follows by bilinearity.

Security proof. One can show that this bilinear scheme preserves the privacy

of S’s email contacts even in the face of collusions. The proof follows the same

approach as the one used for the hash-based scheme of Section 3.4.1; we omit

the details, and only point out that the hardness assumption needed for the

bilinear groups is the standard Decisional Bilinear Diffie-Hellman Assumption

[17]: Given (g, ga, gb, gc) for random g ∈ G1, a, b, c ∈ Zq, it is infeasible to

distinguish e(g, g)abc from a random value in G2.

4Reliance on the random oracle model is not necessary, but we decided not to pursue

alternative approaches for simplicity.
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3.5 Discussion

Multi-Hop Proximity via Memoization. Although this paper has focused

on friend-of-friend relationships, our hash-based protocol also supports a weak

form of detection for longer social paths. Namely, we can build a multi-hop

path R  T and T  S, whereby Y  X corresponds to a path of length

ℓ ≥ 1 in which Y and X have directly authorized each other (i.e., X knows

sY and Y knows aY→X), yet signed attestations only exists for pairs of adjacent

users on the path Y  X, i.e., σY→I1, . . . , σIℓ−1→X .

To use a social path from T of length ℓ > 1, S encrypts the entire multi-hop

attestation chain within the ciphertext cT→S associated to tT→S. Note that this

protocol does not prevent observers from learning an upper bound on the length

of each encrypted chain.

Privacy vs. Auditability. In modeling the desired privacy guarantees, one

could consider a more privacy-preserving definition: users only find out whether

bridging friend(s) exist, not their actual identity. However, we argue that this

stronger guarantee would limit the confidence that an application can place on

social proximity: although social trust is transitive to an extent, it seems impru-

dent to assert that transitivity will always correctly predict trust relationships

between bridged parties.

In Re:’s case, for example, a user might incorrectly attest to a spammer,

or he might get compromised and begin acting as a spammer. By uncovering

the identity of the linking friend, our protocols provide auditability, which helps

coping with these scenario by enabling the decision-maker to review and correct

the elements that led to the wrong decision.

Non-Interactive Implementation. Unlike the PM-based approach, both
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methods described in Section 3.4 are non-interactive, requiring just a single

message from S to R. This can significantly reduce system complexity (es-

pecially with respect to handling failures), and (for the specific case of Re:)

facilitate integration with the existing e-mail infrastructure.

Symmetric Trust and Forward Security. For social networks with sym-

metric trust relationships (i.e., where the links Y → X and X → Y are either

both present in the social network, or both absent from the social network), our

hash-based construction from Section 3.4.1 can be simplified by suppressing the

a-values, and having the seed sY playing the role of aY→X , for all of Y ’s social

contacts X. Besides being conceptually simpler and computationally more effi-

cient, this variant lends itself easily to extensions providing additional security

properties, such as forward security, which we discuss next.

If a user S sends a request to U and no friend bridges U to S in the social

network, all our constructions guarantee that U will not learn the identity of

any of S’s friends. Yet, as time passes and the social network evolves, a new

social link may be established between U and one of S’s friend (say, T ). Now

knowing sT , if U has recorded S’s request, he can recover T ’s earlier attestation

to S.

Temporal correlations of this kind can be prevented in symmetric social

networks by introducing time intervals in the model, and letting the s∗ values

evolve over time using hash chains. Namely, if the social link T → S is set up

at time j0, S gets from T the secret seed s
(j0)
T . Then, at time j1, S computes

the tabbed encrypted attestation using the seed s
(j1)
T defined by the recurrence

s
(i+1)
T = Hs(s

(i)
T ), where Hs is a one-way permutation over the appropriate do-

main. Now, if U obtains s
(j2)
T from T at a later time j2, he will not be able

to use it to match the tabbed encrypted attestation that S included in her old
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Input sizes (number of friends)

Party Algorithm 10 100 1000

S PM 589.7 27867.4 2490831.4

R PM 14.7 110.9 1457.8

S Hash 0.15 1.53 15.39

R Hash 0.08 0.52 5.01

Table 3.1: Time (milliseconds) to perform privacy-preserving computations

(with sender and recipient having inputs of the same sizes) for PM and hash-

based protocols.

message, because doing so would require inverting Hs.

Performance Comparison. We now compare the performance of our hash-

based construction (from Section 3.4.1) to the PM protocol used in Re:[50].

We instantiated the PM protocol using its faster ElGamal variant with 1024-

bit keys. The hash-based construction uses HMAC-SHA-1 and AES-CBC with

128-bit keys. In both the PM and the hash-based schemes, attestations use

1024-bit Rabin signatures. Both microbenchmarks were performed on a 2.4-GHz

AMD Athlon processor (in 32-bit mode) and do not include network overhead

(which are nearly identical for both). Recipients in both protocols stopped

analyzing results once three bridging friends were uncovered (a configurable

parameter).

Table 3.1 reports the performance of the two protocols. As we see, the

hash-based construction is orders of magnitude faster than the public-key-based

PM protocol. This table does not include the time to verify any uncovered

attestations, as it is identical in both (e.g., 15µs per 1024-bit Rabin signature).
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3.6 Summary

Peer-to-peer systems may use social networks in order to establish trust between

participants, yet they introduce privacy concerns when sharing such informa-

tion. In this paper, we define a privacy model for verifying social proximity.

We use insights from this model to propose two cryptographic protocols that

protect social proximity queries: a hash-based protocol that provides similar

privacy to Re:’s proposed use of PM, yet is orders of magnitude faster; and a

bilinear-groups-based protocol that introduces protection against collusion. We

also described how to integrate our protocols with the Reliable Email white-

listing system. Our techniques are likely also applicable to other applications

that leverage social networks.
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Chapter 4

Authentication and Privacy for

Group Access Control

This chapter introduces Ad Hoc Anonymous Identification schemes, a new multi-

user cryptographic primitive that allows participants from a user population to

form ad hoc groups, and then prove membership anonymously in such groups.

Our schemes are based on the notion of accumulator with one-way domain,

a natural extension of cryptographic accumulators we introduce in this work.

We provide a formal model for Ad Hoc Anonymous Identification schemes and

design secure such schemes both generically (based on any accumulator with

one-way domain) and for a specific efficient implementation of such an accumu-

lator based on the Strong RSA Assumption. A salient feature of our approach

is that identification protocols take time independent of the size of the ad hoc

group. All our schemes and notions can be generally and efficiently amended

so that they allow the recovery of the signer’s identity by an authority, if the

latter is desired.

Via the Fiat-Shamir transform, we obtain constant-size, signer-ambiguous
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group and ring signatures (provably secure in the Random Oracle Model). For

ring signatures, this is the first such constant-size scheme, as all the previous

proposals had signature size proportional to the size of the ring. For group

signatures, we obtain schemes comparable in performance with state-of-the-art

schemes, with the additional feature that the role of the group manager during

key registration is extremely simple and essentially passive: all it does is accept

the public key of the new member (and update the constant-size public key of

the group).

4.1 Introduction

Anonymous identification is an oxymoron with many useful applications. Con-

sider the setting, for a known user population and a known set of resources,

where a user wants to gain access to a certain resource. In many cases, access-

ing the resource is an action that does not mandate positive identification of

the user. Instead, it would be sufficient for the user to prove that he belongs

to the subset of the population that is supposed to have access to the resource.

This would allow the user to lawfully access the resource while protect his real

identity and thus “anonymously identify” himself.

Given the close relationships between identification schemes and digital sig-

natures, one can easily extend the above reasoning to settings where a user

produces a signature that is “signer-ambiguous” i.e., such that the verifier is

not capable of distinguishing the actual signer among a subgroup of potential

signers. In fact, it was in the digital signature setting that such an anonymous

scheme was presented for the first time, with the introduction of the group sig-

nature model [29], which additionally mandates the presence of a designated
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party able to reveal the identity of the signer, were the need to arise.

Subsequent work on group signatures and on anonymous identification in

general [30, 36, 23, 28, 26, 35, 3, 1, 21, 24, 6, 2] allowed for more efficient designs

and formal modelling of the primitive, with the current state of the art being

the scheme by Ateniese et al.[1]. In general, existing group signature schemes

are derived from their interactive counterpart (ID Escrow schemes [63]) via the

Fiat-Shamir transform [42].

A related notion, but of slightly different nature, is that of ring signatures,

introduced by Rivest, Shamir and Tauman in [73] and further studied in [22, 69].

Ring signatures differ from group signatures in that they allow group formation

to happen in an ad hoc fashion: group must be formed without the help of a

group manager; in fact, a user might not even know that he has been included in

a certain group. This is in sharp contrast to the group signature setting where

the user must execute a Join protocol with the group manager and obtain a

group-membership certificate that cannot be constructed without the help of

the group manager. Note that ad hoc group formation in the context of ring

signatures is always understood within the context of a user population and an

associated PKI. Based on the PKI, ad hoc subsets of the user population can be

formed without the help of a “subset manager”—but it is assumed that every

user has a registered public key.

While ring signatures are attractive because they have simple group for-

mation procedures that can be executed by any user individually, they have

the shortcoming that the length of the signature is proportional to the group

size. For large groups, the length of a ring signature (growing linearly with the

group size) will become impractical. To the contrary, schemes with constant-

size signatures have been successfully designed in the group signature setting [1].
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We remark that in the setting of anonymous identification, the counterpart of

“signature size” is the bandwidth consumed by the protocol, which is thus an

important complexity measure to minimize.

Based on the above discussion, an important open question in the context of

anonymous identification and signature schemes, recently posed by Naor in [69],

is the following:

Is it possible to design secure anonymous identification schemes that

enable ad hoc group formation in the sense of ring signatures and at

the same time possess constant-size signature (or proof) length?

This chapter answers the above question in the affirmative. Specifically, we

introduce a new primitive called Ad Hoc Anonymous Identification schemes;

this is a family of schemes where participants from a user population can form

groups in ad hoc fashion (without the help of a group manager) and then get

anonymously identified as members of such groups.

Our main tool in the construction of Ad Hoc Anonymous Identification

schemes is a new cryptographic primitive, accumulator with one-way domain,

which extends the notion of a collision-resistant accumulator [12, 4, 25]. In sim-

ple terms, in an accumulator with one-way domain, the set of values that can

be accumulated are associated with a “witness space” such that it is compu-

tationally intractable to find witnesses for random values in the accumulator’s

domain.

First, we demonstrate the relationship between such accumulators and Ad

Hoc Anonymous Identification schemes by presenting a generic construction

based on any accumulator with one-way domain. Second, we design an efficient

implementation of accumulator with a one-way domain based on the Strong
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RSA Assumption, from which we obtain a more efficient construction of Ad

Hoc Anonymous Identification scheme whose security rests upon the Strong

RSA Assumption.

We remark that previous work on anonymous identification that allowed sub-

set queries was done by Boneh and Franklin [16]. They define a more limited

security model, and show a protocol which imposes on both parties a computa-

tional load proportional to the subset size at each run. Moreover, their scheme

is susceptible to collusion attacks (both against the soundness and against the

anonymity of the scheme) that do not apply to our setting.

In our Strong-RSA-based Ad Hoc Anonymous Identification scheme, the

computational and communication complexity on both ends is constant, re-

gardless of the size of the group. Thus, the signature version of our ad hoc

anonymous identification scheme yields a ring signature with constant size sig-

natures (over a dedicated PKI). Other applications of our scheme include “ad

hoc group signatures” (group signature schemes where the group manager can

be offline during the group formation) and identity escrow over ad hoc groups.

Building on work by Camenisch and Lysyanskaya [25], Tsudik and Xu [77]

investigated techniques to obtain more flexible dynamic accumulators, on which

to base group signature schemes (which is one of our applications). The specific

method used by [77] bears many similarities with our Strong-RSA-based instan-

tiation, with some important differences. Namely, in their solution anonymity

revocation takes time proportional to the user population, due to subtle prob-

lems concerning the accumulation of composite values inside the accumulator.

Our work resolves this technical problem. Moreover, we present a new notion

of Ad Hoc Anonymous Identification scheme, which has more applications than

those specific to group signature schemes: for example, they allow us to build
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the first constant-size ring signature schemes. We present a general construc-

tion for our primitives from any accumulator and not just the one of [25]. Our

formal definitional framework is of independent interest.

4.2 Preliminaries

4.2.1 Notation

Throughout the chapter, we assume familiarity with the GMR notation [54],

briefly summarized below.

A negligible function, denoted by negl(λ), is a function f(λ) such that for all

polynomials p(λ), f(λ) < 1/p(λ) holds for all sufficiently large λ.

An efficient algorithm A(·) is a probabilistic Turing machine running in

expected polynomial time. An adversary A is a probabilistic, polynomial-time

interactive Turing machine. If A(·) is an efficient algorithm and x is an input

for A, then “A(x)” denotes the probability space that assigns to a string σ the

probability that A, on input x, outputs σ. An efficient algorithm is deterministic

if for every input x, the probability mass of A(x) is concentrated on a single

output string σ.

For a probability space P , “x
R
← P” denotes the algorithm that samples

a random element according to P . For a finite set X, “x
R
← X” denotes the

algorithm that samples an element uniformly at random from X. If p(·, ·, . . .)

is a boolean function, then “Pr[x1
R
← P1, x2

R
← P2, . . . | p(x1, x2, . . .)]” denotes

the probability that p(x1, x2, . . .) is true after executing the algorithms x1
R
←

P1, x2
R
← P2, . . ..

A two-party protocol is a pair of interactive probabilistic Turing machines
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(P, V ). An execution (or run) of the protocol (P, V ) on input x (for P ) and y

(for V ) is an alternating sequence of P -rounds and V -rounds, each producing a

message to be delivered to the other party (except for the last V -round). The

sequence of such message is called the transcript of this run of the protocol. If,

for all x and y, the length of such sequence, as well as the expected running

time of P and V , are polynomial in the length of x and y, then (P, V ) is an

efficient two-party protocol. By “(P (x)↔ V (y))”, we denote the probability

space that assigns to a sequence of strings π the probability that a run of the

(P, V ) protocol, on input x and y, will produce π as transcript.

4.2.2 NP-Relations and Σ-Protocols

An NP-relation R is a relation over bitstrings for which there is an efficient

algorithm to decide whether (x, z) ∈ R in time polynomial in the length of x.

The NP-language LR associated to R is defined as LR
.
= {x | (∃z)[(x, z) ∈ R]}

A Σ-protocol [33, 32] for an NP-relation R is an efficient 3-round two-party

protocol, such that for every input (x, z) to P and x to V , the first P -round

yields a commitment message COM, the subsequent V -round replies with a

random challenge message CH, and the last P -round concludes by sending a

response message RES. At the end of a run, V outputs a 0/1 value, functionally

dependent on x and the transcript π
.
= (COM, CH, RES) only; a transcript is

valid if the output of the honest verifier is 1. Additionally, a Σ-protocol satisfies

(1) Special Soundness, meaning that there is an efficient algorithm (called a

Knowledge Extractor) that on input any x ∈ LR and any pair of valid transcripts

with the same commitment message, (COM, CH1, RES1) and (COM, CH2, RES2)

outputs z such that (x, z) ∈ R; and (2) Special Honest-Verifier Zero-Knowledge,
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meaning that there is an efficient algorithm (called a Simulator) that on input

x ∈ LR and any challenge message CH, outputs a pair of commitment/response

messages COM, RES, such that the transcript π
.
= (COM, CH, RES) is valid, and

it is distributed according to the probability distribution (P (x, z)↔ V (x)), for

any z such that (x, z) ∈ R.1

The main result we will need about Σ-protocols is the following:

Theorem 6 ([53, 41]). A Σ-protocol for any NP-relation can be constructed if

one-way functions exist.

4.2.3 Accumulators

An accumulator family is a pair ({Fλ}λ∈N, {Xλ}λ∈N), where {Fλ}λ∈N is a se-

quence of families of functions such that each f ∈ Fλ is defined as f : Uf×Xext
f →

Uf for some Xext
f ⊇ Xλ and additionally the following properties are satisfied:

• (efficient generation) There exists an efficient algorithm G that on input a

security parameter 1λ outputs a random element f of Fλ, possibly together

with some auxiliary information af .

• (efficient evaluation) Any f ∈ Fλ is computable in time polynomial in λ.

• (quasi-commutativity) For all λ ∈ N, f ∈ Fλ, u ∈ Uf , x1, x2 ∈ Xλ,

f(f(u, x1), x2) = f(f(u, x2), x1)

1In particular, this implies that, for any x ∈ LR and any two z1, z2 such that

(x, z1), (x, z2) ∈ R, the probability distributions induced by honest conversations between

(i) a prover holding (x, z1) and a verifier holding x; or between (ii) a prover holding (x, z2)

and a verifier holding x, are the same.
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We will refer to {Xλ}λ∈N as the value domain of the accumulator. For any

λ ∈ N, f ∈ Fλ and X = {x1, . . . , xs} ⊂ Xλ, we will refer to f(. . . f(u, x1) . . . , xs)

as the accumulated value of the set X over u: due to quasi-commutativity, such

value is independent of the order of the xi’s and will be denoted by f(u, X).

Definition 7. An accumulator is said to be collision resistant if for any λ ∈ N

and any adversary A:

Pr[f
R
← Fλ; u

R
← Uf ; (x, w, X)

R
← A(f, Uf , u) |

(X ⊆ Xλ) ∧ (w ∈ Uf) ∧ (x ∈ Xext
f \X) ∧ (f(w, x) = f(u, X))] = negl(λ)

For λ ∈ N and f ∈ Fλ, we say that w ∈ Uf is a witness for the fact that

x ∈ Xλ has been accumulated within v ∈ Uf (or simply that w is a witness for x

in v) whenever f(w, x) = v. We extend the notion of witness for a set of values

X = {x1, . . . , xs} in a straightforward manner.

Accumulators with One-Way Domain. An accumulator with one-way do-

main is a quadruple ({Fλ}λ∈N, {Xλ}λ∈N, {Zλ}λ∈N, {Rλ}λ∈N), such that the pair

({Fλ}λ∈N, {Xλ}λ∈N) is a collision-resistant accumulator, and each Rλ is a rela-

tion over Xλ × Zλ with the following properties:

• (efficient verification) There exists an efficient algorithm D that on input

(x, z) ∈ Xλ × Zλ, returns 1 if and only if (x, z) ∈ Rλ.

• (efficient sampling) There exists a probabilistic algorithm W that on input

1λ returns a pair (x, z) ∈ Xλ ×Zλ such that (x, z) ∈ Rλ. We refer to z as

a pre-image of x.

• (one-wayness) It is computationally hard to compute any pre-image z′ of

an x that was sampled with W . Formally, for any adversary A:

Pr[(x, z)
R
← W (1λ); z′

R
← A(1λ, x) | (x, z′) ∈ Rλ] = negl(λ)
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4.2.4 The Strong RSA Assumption

We briefly review some definitions [12, 4] regarding the computational assump-

tion underlying our efficient construction in Section 4.5.

A number n is an RSA integer if n = pq for distinct primes p and q such

that |p| = |q|. For λ ∈ N, let RSAλ be the set of RSA integers of size λ. A

number p is a safe prime if p = 2p′ + 1 and both p and p′ are odd primes. A

number n is a rigid integer if n = pq for distinct safe primes p and q such that

|p| = |q|. For λ ∈ N, let Rigλ be the set of λ-bit rigid integers.

Definition 8 (Strong RSA Assumption, [4]).

For any integer λ and for any adversary A:

Pr[n
R
← Rigλ; z

R
← Z

∗
n; (x′, y′)

R
← A(1λ, n, z) |

(
y′ > 1

)
∧
(
(x′)y′

≡ z(n)
)
] < negl(λ)

the probability being over the random choice of n and z, and A’s random coins.

4.3 Ad Hoc Anonymous Identification Schemes

4.3.1 Syntax

An Ad Hoc Anonymous Identification scheme is a six-tuple of efficient algorithms

(Setup, Register, Make-GPK, Make-GSK, Anon-IDP, Anon-IDV), where:

• Setup initializes the state of the system: on input a security parameter 1λ,

Setup creates a public database DB (that will be used to store information

about the users’ public keys), and then generates the system’s parameters

param; its output implicitly defines a domain of possible global parameters

Par.
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• Register, the registration algorithm, allows users to initially register with

the system. On input the system’s parameters param and the identity

of the new user u (from a suitable universe of users’ identity U), Register

returns a secret key/public key pair (sk, pk). To complete the subscription

process, the user then sends his public key to a bulletin board for inclusion

in a public database DB.

The Register algorithm implicitly defines a domain SK of possible user

secret keys and a domain PK of possible user public keys; its output

induces a relation over user secret key/public key pairs, that we will denote

by ⇋. We also require a superset PK′ ⊇ PK to be specified, such that

membership to PK′ can be tested in polynomial time.

• Make-GPK, the group public key construction algorithm, is a deterministic

algorithm used to combine a set of user public keys S into a single group

public key gpkS, suitable for use in the Anon-ID protocol described below.

Syntactically, Make-GPK takes as input param and a set S ⊆ PK′; its out-

put implicitly defines a domain GPK of possible group public keys. We

also require a superset GPK′ ⊇ GPK to be specified, such that member-

ship to GPK′ can be tested in polynomial time.

The Make-GPK algorithm shall run in time linear in the number of public

keys being aggregated; we also remark here that our definition forces Make-

GPK to be order-independent i.e., the order in which the public keys to

be aggregated are provided shall not matter.

• Make-GSK, the group secret key construction algorithm, is a deterministic

algorithm used to combine a set of user public keys S ′, along with a secret
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key/public key pair (sku, pku), into a single group secret key gsku, suitable

for use in the Anon-ID protocol described below.

Make-GSK takes as input param, a set S ′ ⊆ PK′ and a key pair (sku, pku)

satisfying sku⇋pku, and it shall run in time proportional to the size of S ′.

Its output implicitly defines a domain GSK of possible group secret keys.

The Make-GPK and Make-GSK algorithms can be used to extend the

⇋-relation to GSK × GPK, as follows: A group secret key gsk
.
=

Make-GSK(param, S ′, (sk, pk)) is in ⇋-relation with a group public key

gpk
.
= Make-GPK(param, S) if and only if S = S ′ ∪ {pk}. Observe that

even in the case that the ⇋-relation is one-to-one over SK × PK, it is

usually many-to-one over GSK×GPK, as more than one group secret key

correspond to the same group public key.

• Anon-ID
.
= (Anon-IDP, Anon-IDV), the Anonymous Identification Protocol,

is an efficient two-party protocol, in which both Anon-IDP (the prover) and

Anon-IDV (the verifier) get in input the system’s parameters param and

a group public key gpk (corresponding to some set S of user public keys

i.e., gpk
.
= Make-GPK(param, S)); Anon-IDP is also given a group secret

key gsk as an additional input.

Any execution of the Anon-ID protocol shall complete in time independent

from the number of public keys that were aggregated when constructing

gpk and/or gsk; at the end of each protocol run, Anon-IDV outputs a

0/1-valued answer.

Correctness. For correctness, we require that any execution of the Anon-ID

protocol in which the additional input to Anon-IDP is a group secret key gsk
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⇋-related to the common input gpk, shall terminate with Anon-IDV outputting

a 1 answer, with overwhelming probability. Formally:

(∀λ ∈ N)(∀(u1, . . . , ut) ∈ U
∗)(∀m ∈M)

Pr[param
R
← Setup(1λ);

(ski, pki)
R
← Register(param, ui), i = 1, . . . , t;

gpk ← Make-GPK(param, {pk1, . . . , pkt});

gsk ← Make-GSK(param, {pk2, . . . , pkt}, (sk1, pk1)) |

Anon-IDV(param, gpk)Anon-IDP(param,gpk,gsk) = 1] ≥ 1− negl(λ)

4.3.2 Soundness

The Attack Game. We formalize the soundness guarantees that we require

from an Ad Hoc Anonymous Identification scheme in terms of a game being

played between an honest dealer and an adversary A. In this game, the adver-

sary is allowed to interact with three oracles OHReg (the honest user registration

oracle), OCor (the user corruption oracle), and OScr (the transcript oracle) (cf.

Figure 4.1).

The game begins with the honest dealer running the Setup algorithm for

the security parameter 1λ, and handing the resulting global parameters param

to the adversary. Then, A arbitrarily interleaves queries to the three oracles,

according to any adaptive strategy she wishes: eventually, she outputs a target

group S∗ ⊆ PK′. At this point, A starts executing, in the role of the prover, a

run of the Anon-ID protocol with the honest dealer, on common inputs param

and gpk∗ .
= Make-GPK(param, S∗). Notice that during such interaction, the

adversary is still allowed to query the three oracles OHReg,OScr and OCor. Let π̃
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Honest user registration oracle OHReg User corruption oracle OCor

IN: u ∈ U IN: pk
u
∈ PK′

RUN: 1. (sku, pku)
R
← Register(param, u) RUN: 1. sku ← DB.Lookup(pku)

2. DB.Store(sku, pku) /* sku ← ⊥ if no match found */

OUT: pk
u

OUT: sku

Transcript oracle OScr

IN: S′ ⊆ PK′, pku ∈ PK
′

RUN: 1. sku ← DB.Lookup(pk
u
)

2. if sku = ⊥

3. then π ← ⊥

4. else gpk← Make-GPK(param, S′ ∪ {pk
u
})

5. gsk← Make-GSK(param, S′, (sku, pku))

6. π
R
← (Anon-IDP(param, gpk, gsk)↔ Anon-IDV(param, gpk))

OUT: π

Figure 4.1: Oracles for the soundness attack game. DB denotes a database

storing user secret key/public key pairs, indexed by public key.

be the transcript resulting from such run of the Anon-ID protocol. A wins the

game if the following conditions hold:

1. for all pk∗ ∈ S∗, there is an entry indexed by pk∗ in the SK-DB Database,

and

2. π̃ is a valid transcript i.e., the run completed with the honest dealer

outputting 1, and

3. for all pk∗ ∈ S∗, A never queried OCor on input pk∗;

Define SuccSnd
A (λ) to be the probability that A wins the above game.

Definition 9. An Ad Hoc Anonymous Identification scheme is sound against
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passive chosen-group attacks if any adversary A has negligible advantage to win

the above game:

(∀λ ∈ N)(∀PPTA)[SuccSnd

A (λ) ≤ negl(λ)]

A Note on Active Security. Our definition of soundness models an adver-

sary that, in her attempt to fool an honest verifier into accepting a “fake” run of

the Anon-ID protocol, can actively (and, in fact, adaptively) corrupt users, but

can only passively eavesdrop the communication between honest provers and

verifiers. One could, of course, define stronger notions of security by consid-

ering active, concurrent or even reset attacks, along the lines of previous work

on Identification Schemes [40, 5]; however, we refrain from doing so, both to

keep the presentation simpler, and because the main application of our Ad Hoc

Anonymous Identification schemes is to obtain new ring and group signatures

scheme by means of the Fiat-Shamir Heuristic (see Section 4.6.3), for which

security against a passive adversary suffices.

4.3.3 Anonymity

The Attack Game. We formalize the anonymity guarantees that we require

from an Ad Hoc Anonymous Identification scheme in terms of a game being

played between an honest dealer and an adversary A. In this game, the adver-

sary is allowed to interact only once with a “challenge” oracle OCh, described

in Figure 4.2.

The game begins with the honest dealer running the Setup algorithm for the

security parameter 1λ, and handing the resulting global parameters param to the

adversary. Then, the adversary A creates as many user secret key/public key

pairs as she wishes, and experiments with the Make-GPK, Make-GSK, Anon-IDP
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Challenge oracle OCh

IN: S′ ⊆ PK′, (sk0, pk
0
), (sk1, pk

1
)

RUN: 1. b∗
R
← {0, 1}

2. if sk0 6⇋pk0 or sk1 6⇋pk1 then abort

3. gpk ← Make-GSK(param, S′ ∪ {pk
0
, pk

1
})

4. gsk∗ ← Make-GSK(param, S′ ∪ {pk1−b∗}, (skb∗ , pkb∗))

5. π∗
R
← (Anon-IDP(param, gpk, gsk∗)↔ Anon-IDV(param, gpk))

OUT: π∗

Figure 4.2: The oracle for the anonymity attack game.

and Anon-IDV algorithms as long as she deems necessary; eventually, she queries

the OCh oracle, getting back a “challenge” transcript π∗. The adversary then

continues experimenting with the algorithms of the system, trying to infer the

random bit b∗ used by the oracle OCh to construct the challenge π∗; finally, A

outputs a single bit b̃, her best guess to the “challenge” bit b∗.

Define SuccAnon
A (λ) to be the probability that the bit b̃ output by A at the

end of the above game is equal to the random bit b∗ used by the OCh oracle.

Definition 10. An Ad Hoc Anonymous Identification scheme is fully anonymiz-

ing if any probabilistic, polynomial-time adversary A has success probability at

most negligibly greater than one half:

(∀λ ∈ N)(∀PPTA)
[∣∣∣SuccAnon

A (λ)−
1

2

∣∣∣ ≤ negl(λ)
]

4.3.4 Extension: Identity Escrow

In some scenarios, complete anonymity might create more security concerns

than what it actually solves. Instead, some degree of “limited anonymity”, not

hindering user accountability, would be preferable. In our context, this can be
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achieved with the help of a trusted Identity Escrow Authority, or IEA (also called

Anonymity Revocation Manager elsewhere [25]), endowed with the capability

of “reading” the identity of the prover “between the lines” of any transcript

produced by a run of the Anon-ID protocol.

To enable such escrow capability, the definition of Ad Hoc Anonymous Iden-

tification scheme from Section 4.3.1 is modified as follows:

• The Setup algorithm is run by the IEA, and it additionally outputs an

identity escrow key skIE (from some domain SKIE), which the IEA keeps

for himself.

• The Register algorithm is replaced by an efficient two-party protocol

(Registeruser, RegisterIEA), meant to be run between the prospective user

and the IEA, at the end of which the IEA learns the user’s newly generated

public key pku (possibly along with some other information auxu about

u that the IEA stores in a public registry database DB), but he doesn’t

learn anything about the corresponding secret key sku.

• The Anon-ID protocol is changed in that both prover and verifier get an

additional common input called an Identity Escrow Token (IET) τ . A

new IET τ is produced afresh by the prover before each execution of the

Anon-ID protocol, and it should include a policy (or label) describing the

circumstances under which the Identity Escrow Authority should honor

an escrow request from a verifier.

• An additional (deterministic) Extract algorithm is defined, which takes

as input an Identity Escrow Token τ and a transcript π for the Anon-ID

protocol, along with the Identity Escrow secret key skIE and the registry
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database DB, and returns a public key pk ∈ PK′ or the special symbol

⊥. Intuitively, Extract should be able to recover the identity of the user

who participated as the prover in the run of the Anon-ID protocol that

produced π as transcript; the symbol ⊥ should be output when π does

not meet the escrow criteria specified by the label included in τ , or when

π is ill-formed (e.g., when π comes from a ZK simulator, or upon failure

to trace the correct identity).

Our definitions of the security properties of the system have to be adjusted,

since we now have an additional functionality that the adversary may try to

attack; moreover, the presence of the IEA may open new attack possibilities to

the adversary.

The security requirements for the new Extract algorithm are formalized by

augmenting the attack scenario defining the soundness property (Section 4.3.2).

In this new, combined game, the adversary initially gets the IEA’s secret key

skIE, along with the public parameters param of the system. Also, the definition

of the honest user registration oracle OHReg should be changed so as to use the

two-party protocol (Registeruser, RegisterIEA) in place of the Register algorithm;

similarly, the definition of the transcript oracleOScr should be amended to reflect

the syntactical changes to the Anon-ID protocol described above.

Then, the game proceeds as described in Section 4.3.2, except that we loosen

the conditions under which the adversary is considered to win the game, sub-

stituting the last caveat with the following:

3′. for all pk∗ ∈ S∗, either Extract(π̃, skIE, DB) 6= pk∗, or A never queried

OCor on input pk∗;

As for the anonymity property, the definition from Section 4.3.3 is changed
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in that the adversary is now given access to two more oracles: a corrupted-user

registration oracle OCReg()
.
= RegisterIEA(skIE, param, DB), and a user identity

extraction oracle OXtr(·, ·)
.
= Extract(·, ·, skIE, DB). Also, the definition of the

challenge oracle OCh should be amended to reflect the syntactical changes to

the Anon-ID protocol described above. (In particular, the challenge output by

OCh now consists of an IET τ ∗ and an associated transcript π∗.)

The adversary wins the game if she successfully guesses the random bit

chosen by the challenge oracle OCh, without ever submitting to the extraction

oracle OXtr the IET τ ∗ which was output (together with the transcript π∗) by

the challenge oracle OCh.

4.3.5 Extension: Supporting Incremental Group Growth

In many applications where Ad Hoc Anonymous Identification schemes could

be useful, new ad hoc groups are often created as supersets of existing ones: for

example, if ad hoc groups are used to enforce access control, new users may be

added to the group of principals authorized to access a given resource. In such

cases, the ability to “augment” a group public key with the a new user’s public

key can be very handy, especially if coupled with algorithms to efficiently create

the corresponding group secret key for the new user, and to update the group

secret keys for the existing users. Our model can be easily amended to capture

this incremental functionality:

Definition 11. An incremental Ad Hoc Anonymous Identification scheme is

a Ad Hoc Anonymous Identification scheme augmented with 3 deterministic,
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polynomial-time algorithms

Augment-GPK : Par× GPK ×P(PK)→ GPK

Augment-Old-GSK : Par× GSK × P(PK)→ GSK

Augment-New-GSK : Par× GPK × SK × PK → GSK

such that:

• (Public Keys can be Incrementally Added into Group Public Keys)

(∀λ ∈ N)(∀(u′
1, . . . , u

′
t′) ∈ U

∗)(∀(u′′
1, . . . , u

′′
t′′) ∈ U

∗)

Pr[param
R
← Setup(1λ);

(sk′
i, pk

′
i)

R
← Register(param, u′

i), i = 1, . . . , t′;

(sk′′
i , pk

′′
i )

R
← Register(param, u′′

i ), i = 1, . . . , t′′;

gpk′ ← Make-GPK(param, {pk′
1, . . . , pk

′
t′});

gpk ← Make-GPK(param, {pk′
1, . . . , pk

′
t′ , pk

′′
1, . . . , pk

′′
t′′});

ĝpk ← Augment-GPK(param, gpk′, {pk′′
1, . . . , pk

′′
t′′}) |

ĝpk = gpk] ≥ 1− negl(λ)
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• (Public Keys can be Incrementally Added into Group Secret Keys)

(∀λ ∈ N)(∀(u′
1, . . . , u

′
t′) ∈ U

∗)(∀(u′′
1, . . . , u

′′
t′′) ∈ U

∗)

Pr[param
R
← Setup(1λ);

(sk′
i, pk

′
i)

R
← Register(param, u′

i), i = 1, . . . , t′;

(sk′′
i , pk

′′
i )

R
← Register(param, u′′

i ), i = 1, . . . , t′′;

gsk′ ← Make-GSK(param, {pk′
2, . . . , pk

′
t′}, (sk

′
1, pk

′
1));

gsk ← Make-GSK(param, {pk′
2, . . . , pk

′
t′ , pk

′′
1, . . . , pk

′′
t′′}, (sk

′
1, pk

′
1));

ĝsk ← Augment-Old-GSK(param, gsk′, {pk′′
1, . . . , pk

′′
t′′}) |

ĝsk = gsk] ≥ 1− negl(λ)

• (Group Secret Keys can be Incrementally Built from Group Public Keys)

(∀λ ∈ N)(∀(u1, . . . , ut) ∈ U
∗)

Pr[param
R
← Setup(1λ);

(ski, pki)
R
← Register(param, ui), i = 1, . . . , t;

gpk ← Make-GPK(param, {pk2, . . . , pkt});

gsk ← Make-GSK(param, {pk2, . . . , pkt}, (sk1, pk1));

ĝsk ← Augment-New-GSK(param, gpk, (sk1, pk1)) |

ĝsk = gsk] ≥ 1− negl(λ)

where all the probabilities are over the random coins of the Setup and Register

algorithms.
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4.4 Generic Construction

In this section, we will establish the fact that the existence of accumulators

with one way domain implies the existence of Ad Hoc Anonymous Identification

schemes. Below we describe how the algorithms (Setup, Register, Make-GPK,

Make-GSK, Anon-IDP, Anon-IDV) can be implemented given an accumulator with

one-way domain ({Fλ}λ∈N, {Xλ}λ∈N, {Zλ}λ∈N, {Rλ}λ∈N, ).

• Setup executes the accumulator generation algorithm G on 1λ to obtain

f ∈ Fλ. Then it samples Uf to obtain u ∈R Uf . Setup terminates by

setting param := (λ, u, f, D, W ), where D and W are polynomial-time

algorithms respectively to decide and to sample the relation Rλ.

• Register first samples a pair (x, z) ∈ Xλ × Zλ such that (x, z) ∈ Rλ using

the sampling algorithm W of the relation Rλ on input 1λ. Then, Register

outputs sk
.
= z (the user secret key) and pk

.
= x (the user public key).

Observe that SK′ = SK
.
= Zλ, PK

′ = Xext
f and PK

.
= Xλ.

• Make-GPK operates as follows: given a set of user public keys S =

{x1, . . . , xt} and the parameters (λ, u, f, D), it sets the group public key of

S to be the (unique) accumulated value of S over u i.e., gpkS
.
= f(u, S).

Note that thanks to the quasi-commutativity property of f , Make-GPK is

indeed order-independent.

• Make-GSK operates as follows: given the set of user public keys S ′ .
=

{x1, . . . , xt}, a user secret key/public key pair (z, x) and the system pa-

rameters param = (λ, u, f, D, W ), it first computes the accumulated value

w
.
= f(u, S ′), and then sets the group secret key gsk to be the tuple
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(x, z, w). Observe that w is a witness for x in f(u, S) (where S
.
= S ′∪{x}),

and that GSK
.
= Xλ × Zλ × Uf and GPK

.
= Uf .

• Anon-IDP and Anon-IDV are obtained generically as the Σ-protocol corre-

sponding to the following NP-relation Rparam ⊂ GPK × GSK:

Rparam
.
=

{(
v, (x, z, w)

)
|
(
(x, z) ∈ Rλ

)
∧

(
f(w, x) = v

)}

It is easy to see that the above relation is polynomial-time verifiable:

indeed, given v and (x, z, w), one can check in time polynomial in |v|

whether (x, z) ∈ Rλ (by verifying that D(x, z) = 1), and whether w is

indeed a witness for x in v (by verifying that f(w, x) = v). Thus, by

Theorem 6, we can construct a Σ-protocol (P, V ) for the NP-relation

Rparam. In the resulting protocol, the common input to the prover and

the verifier is the accumulated value v (i.e., a group public key) and the

additional input to the prover is a tuple of the form (x, z, w) (i.e., a group

secret key). Hence, the protocol (P, V ) meets the specification of the

Anon-ID protocol.

Correctness of the above construction follows from the fact that relation

Rparam is essentially equivalent to the⇋ relation. Consequently, a prover holding

a group secret key gsk
.
= (x, z, w) ⇋-related to the group public key gpk

.
= v

given as input to the verifier, possesses a tuple belonging to the relation Rparam,

so that the execution of the Anon-ID protocol will terminate with the verifier

outputting 1, with overwhelming probability.

We also remark that, thanks to the quasi-commutativity of (one-way) accu-

mulators, our construction can be extended to meet the extra requirements of
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“incremental” Ad Hoc Anonymous Identification scheme (cf. Section 4.3.5) in

a straightforward and efficient way.

4.4.1 Soundness

Intuitively, the soundness of the above generic construction stems from the

following considerations. The Special Honest-Verifier Zero-Knowledge property

of the Σ-protocol Anon-ID guarantees that the Transcript Oracle doesn’t leak

any information to the adversary that she could not compute herself. By the

Special Soundness property, in order to make the honest dealer accept (with non-

negligible probability) a run of the Anon-ID protocol in which the group public

key gpk∗ .
= v∗ consists solely of the aggregation of public keys of non-corrupted

users, A should posses a tuple gsk
.
= (x∗, z∗, w∗) such that (x∗, z∗) ∈ Rλ and w∗

is a witness of x∗ in v∗. Now, the collision resistance of the accumulator implies

that the user public key x∗ must indeed have been accumulated within v∗, which

means (by the third caveat of the soundness attack game in Section 4.3.2) that

x∗ belongs to a non-corrupted user. Hence, the adversary didn’t obtain the

pre-image z∗ via the user corruption oracle, which implies that A was able to

find it by herself, contradicting the one-wayness of the accumulator’s domain.

More formally, we now present a reduction argument showing how an adver-

sary A having non-negligible advantage SuccSnd
A (λ) in attacking the soundness of

the above scheme can be used to attack the security of the underlying accumu-

lator with one-way domain. Recall from Section 4.2.3 that a secure accumulator

with one-way domain is such that:

1. the advantage SuccColl
B1

(λ) of any probabilistic, polynomial-time adversary

B1 in attacking the collision-resistance of the accumulator is a negligible
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function in λ;

2. the advantage SuccOW
B2

(λ) of any probabilistic, polynomial-time adversary

B2 in attacking the one-wayness of the accumulator’s domain is a negligible

function in λ.

Thus, our reduction argument will proceed as follows: given black-box access

to A, we will construct two adversaries, B1 and B2, attacking the security of the

accumulator with one-way domain in the sense of 1 and 2 above, respectively.

We will then prove that if SuccSnd
A (λ) is non-negligible, then either SuccColl

B1
(λ) or

SuccOW
B2

(λ) (or both) must also be non-negligible, thus reaching a contradiction.

Construction of B1. We now describe how to turn A into an adversary B1

attacking the collision-resistance of the accumulator with one-way domain. The

input to B1 is the description of the accumulator function f , the initial value

u, and the decision and sampling algorithms D and W for the relation Rλ.

This is exactly the format of the system parameters param that A expects, so

B1 can feed A with that. During its execution, A also expects to be given

access to the three oracles OHReg, OCor and OScr: B1 simply simulates these

oracles honestly, according to the specification in Figure 4.1 (in particular, B1

will use the sampling algorithm W to generate user secret key/public key pairs).

Eventually, A will tell B1 the ad hoc group S∗ that she wishes to target, and

then she will initiate a run of the Anon-ID protocol on the common input gpk∗ .
=

f(u, S∗): let COM∗ be the first flow sent by A to B1. Adversary B1 then

attempts, using standard rewinding techniques for Σ-protocols [72], to extract

a tuple (x∗, z∗, w∗) from A: if successful, B1 outputs (x∗, w∗, S∗), otherwise B1

aborts.

Construction of B2. The construction of adversary B2 follows the same struc-
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ture as the one given above for B1, with few differences (described below),

stemming from the fact that the input to B2 additionally includes a “challenge”

value x̂ for which B2 needs to find a preimage ẑ.

Let QHReg be an estimate on the number of queries that A will ask to OHReg,

and let i be a random integer between 1 and QHReg; the simulation put on by

B2 will proceed as done by B1, with the following changes:

• In answering the ith query to oracle OHReg, B2 will return the challenge

value x̂ to A;

• If A queries OCor on x̂, B2 immediately aborts the simulation;

• If A queries OScr on (S ′, x̂), B2 uses the simulator for the Σ-protocol to

produce the transcript π, and returns it to A;

• After successfully rewinding A and extracting (x∗, z∗, w∗), B2 checks if

x∗ = x̂: if so, B2 outputs z∗; if not, B2 aborts.

Reaching a contradiction. Consider the events:

Erew
.
= “rewinding succeeded” Ein

.
= “x∗ ∈ S∗” Eeq

.
= “x∗ = x̂”,

and the quantities:

prew
.
= Pr[Erew] p1

.
= Pr[Ein | Erew] p2

.
= Pr[Eeq | E=sfrew ∧Ein],

the probability being over the random coins of A, B1, B2 and the random choice

of i. Now, notice that if during the execution of adversary B1, events Erew and

Ein occur, then the output of B1 is actually a collision, so that B1 wins the

game: it follows that SuccColl
B1

(λ) ≥ prew · p1. As for executions of adversary B2,

first notice that the simulation is correct as long as A does not query OCor on
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x̂ (in particular, Special Honest-Verifier Zero-Knowledge implies that A cannot

detect that transcripts from queries of the form OScr(S
′, x̂) actually come from

the Simulator). Thus, if events Erew, Ein and Eeq occur, then the output of

B2 is actually a pre-image of x̂, so that B2 wins the game: it follows that

SuccOW
B2

(λ) ≥ prew · (1 − p1) · p2. The probability prew of successful rewinding

can be safely estimated (cf. [72]) as pRew = O(SuccSnd
A (λ)2). As for p2, notice

that since the choice of i is independent from A’s view, it follows that p2 is

at least 1/QHReg, which is non-negligible. Finally, observe that p1 and (1− p1)

cannot both be negligible, so that, assuming that SuccSnd
A (λ) is non-negligible,

it follows that either SuccColl
B1

(λ) or SuccOW
B2

(λ) (or both) are also non-negligible,

as required.

4.4.2 Anonymity

In attacking the anonymity of the proposed scheme, the adversary basically

chooses a group public key gpk
.
= v and two group secret keys gsk1

.
= (x1, z1, w1)

and gsk2
.
= (x2, z2, w2), both ⇋-related to gpk. To subvert anonymity, the

adversary should then be able (cf. Section 4.3.3) to tell whether gsk1 or gsk2

was used in producing the (honest) “challenge” transcript. Since in the generic

construction above the Anon-ID protocol is implemented as a Σ-protocol, this

would mean that the adversary is able to tell which “witness” (gsk1 or gsk2) was

used by the prover to show that v belongs to the NP-language Lparam associated

to the NP-relation Rparam. In other words, a successful adversary would break

the Witness Indistinguishability of the Anon-ID protocol, which contradicts the

fact that Anon-ID enjoys Special Honest-Verifier Zero-Knowledge.

To turn the above intuition into a formal proof, we now define two games,
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G0 and G1, indistinguishable to the eyes of any probabilistic, polynomial-time

adversary, both defined over the same probability space, where G0 is the original

anonymity attack game defined in Section 4.3.3, and G1 is a game in which even

an unbounded adversary cannot win with probability better than 1/2.

Game G0. Define game G0 to be the original anonymity attack game (cf.

Section 4.3.3).

Game G1. In game G1, step 4. and 5. of the Challenge Oracle OCh from

Figure 4.2 are replaced by the following:

4’. Ch
R
← {0, 1}χ

5’. π∗ ← Sim(param, gpk, Ch)

where χ is the challenge size and Sim is the simulator for the Σ-protocol.

In other words, in game G1, the Challenge Oracle constructs the challenge using

the Simulator algorithm, so that the value of b∗ is independent of the adversary’s

view. By Special Honest-Verifier Zero-Knowledge, no probabilistic, polynomial-

time adversary can detect that the challenge transcript π∗ actually comes from

the Simulator, so that the probability of adversary A guessing b∗ in G0 and G1

can only be negligibly apart. But as argued above, such probability is exactly

1/2 in G1: it follows that any probabilistic, polynomial-time adversary A can

only guess b∗ in the original anonymity attack scenario of Section 4.3.3 with

probability at most negligibly greater than 1/2 i.e., our generic construction

yields a fully anonymizing Ad Hoc Anonymous Identification scheme.

4.4.3 Adding ID Escrow

The generic construction described above can be extended to deal with Identity

Escrow as follows. During the initialization, the Setup algorithm additionally
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runs the key generation algorithm K of some CCA2-secure encryption scheme

(K, E ,D). The resulting public key pkIE is included in the system parameters

param, and the secret key skIE is given to the Identity Escrow Authority (IEA).

As for the user registration phase, each new user, after choosing his user

secret key/public key pair (sk, pk)
.
= (z, x), registers his public key with the

IEA, which simply stores his identity and public key in a publicly-available

database DB.

The Anon-ID protocol is also changed to be the Σ-protocol corresponding to

the following NP-relation:

RIE
param

.
=

{(
(v, τ), (x, z, w, r)

)
|
(
(x, z) ∈ Rλ

)
∧

(
f(w, x) = v

)
∧

(
τ = EpkIE

(x; r)
)}

In other words, the prover now additionally encrypts his public key x under the

IEA’s public key pkIE, and proves to the verifier that he did so correctly. Notice

that the Identity Escrow Token τ (cf. Section 4.3.4) is created by the prover and

sent to the verifier immediately before each execution of the Anon-ID protocol.

Finally, on input an IET τ and a transcript π, the Extract algorithm, recovers

the identity of the user that played the role of the prover by decrypting τ .

It is not hard to check that the above changes do not affect the soundness

and anonymity properties of the generic construction: in particular, the CCA2-

security of the encryption scheme (which is needed since a malicious party could

trick the IEA into acting as a decryption oracle) guarantees that an honestly-

created IET τ cannot be modified so as to alter the prover identity hidden within

it. We omit the details.
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4.4.4 Supporting Incremental Growth

Below we sketch how the algorithms for incremental ad hoc groups can be

efficiently implemented for the generic construction of Section 4.4 (and also

for its efficient instantiations of Section 4.5).

Recall that the systems parameters of an instance of our generic construction

(cf. Section 4.4) have the form param := (λ, u, f, D, W ). Also, recall that

SK
.
= Zλ, PK

.
= Xλ, GSK

.
= Xλ × Zλ × Uf and GPK

.
= Uf .

Then, the algorithms Augment-GPK, Augment-Old-GSK, Augment-New-GSK

can be defined as follows:

Augment-GPK(param, v, S ′′)
.
= f(v, S ′′)

Augment-Old-GSK(param, (x, z, w), S ′′)
.
= (x, z, f(w, S ′′))

Augment-New-GSK(param, (x, v, z, x)
.
= (x, z, f(v, x))

4.5 Efficient Implementation

4.5.1 Efficient Accumulators with One-way Domain

An efficient construction of a collision-resistant accumulator was presented in

[25], based on earlier work by [4] and [12]. Based on this construction, we

present an efficient implementation of an accumulator with one-way domain.

For λ ∈ N, the family Fλ consists of the exponentiation functions modulo

λ-bit rigid integers:

f : (Z∗
n)2 × Zn/4 → (Z∗

n)2

f : (u, x) 7→ ux mod n
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where n ∈ Rigλ and (Z∗
n)2 denotes the set of quadratic residues modulo n.

The accumulator domain {Xλ}λ∈N is defined by:

Xλ
.
=

{
e prime |

(e− 1

2
∈ RSAℓ

)
∧

(
e ∈ S(2ℓ, 2µ)

)}

where S(2ℓ, 2µ) is the integer range (2ℓ − 2µ, 2ℓ + 2µ) that is embedded within

(0, 2λ) with λ− 2 > ℓ and ℓ/2 > µ+1. The pre-image domain {Zλ}λ∈N and the

one-way relation {Rλ}λ∈N are defined as follows:

Zλ
.
= {(e1, e2) | e1, e2 are distinct ℓ/2-bit primes and e2 ∈ S(2ℓ/2, 2µ)}

Rλ
.
= {

(
x, (e1, e2)

)
∈ Xλ × Zλ |

(
x = 2e1e2 + 1

)
}

The collision resistance of the above construction can be based on the Strong

RSA Assumption, as showed in [25]. Regarding the added one-wayness of the

domain, assuming the hardness of factoring RSA integers, it is easy to see that

the NP-relation Rλ satisfies our one-wayness requirement (cf. Section 4.2.3):

hence, the above construction yields a secure accumulator with one-way domain.

4.5.2 Efficient Proof of Witnesses for the Accumulator

The generic construction described in Section 4.4 derives algorithms Anon-IDP

and Anon-IDV from the Σ-protocol corresponding to some NP-relation Rparam:

for our RSA-based accumulator with one-way domain, the relation is defined

as:

RRSA
param

.
=

{(
v, (x, (e1, e2), w)

)
|
(
wx ≡ v mod n

)
∧

(
x ∈ S(2ℓ, 2µ)

)

∧
(
x− 1 = 2e1e2

)
∧

(
e2 ∈ S(2ℓ/2, 2µ)

)}

However, the protocol generically obtained in virtue of Theorem 6, though

polynomial time, is not efficient enough to be useful in practice; thus, below we
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describe how a practical Σ-protocol for relation RRSA
param could be constructed,

exploiting the framework of discrete-log relation sets [62], which provides a sim-

ple method to construct complex proofs of knowledge over groups of unknown

order. A discrete-log relation set R is a set of vectors of length m defined over

Z ∪ {α1, . . . , αr} (where the αj ’s are called the free variables of the relation)

and involves a sequence of base elements A1, . . . , Am ∈ (Z∗
n)2. For any vector

〈ai
1, . . . , a

i
m〉 the corresponding relation is defined as

∏m
j=1 A

ai
j

i = 1. The con-

junction of all the relations is denoted as R(α1, . . . , αr). In [62], an efficient

Σ-protocol is presented for any discrete-log relation set R, by which the prover

can prove of knowledge of a sequence of witnesses x1, . . . , xr, with xi ∈ S(2ℓi, 2µi)

that satisfy R(x1, . . . , xr) ∧
(
∧r

i=1 (xi ∈ S(2ℓi, 2ǫ(µi+k)+2)
)
, where ǫ > 1, k ∈ N

are security parameters. Note that the tightness of the integer ranges can be in-

creased by employing the range proofs of [19], nevertheless the tightness achieved

above is sufficient for our purposes, and incurs a lower overhead.

In order to prove the relation RRSA
param, we assume that the public parameters

param include the elements g, h, y, t, s ∈ (Z∗
n)2 with unknown relative discrete-

logarithms. In order to construct the proof, the prover provides a sequence of

public values T1, T2, T3, T4, T5 such that T1 = gr, T2 = hrgx, T3 = srge2, T4 =

wyr, T5 = trg2e1, where r
R
← [0, ⌊n/4⌋ − 1].

The proof is constructed as a discrete-log relation set that corresponds to

the equations T1 = gr, T2 = hrgx, (T1)
x = ga1, (T1)

e2 = ga2, T3 = srge2

(T4)
x = vya1, (T5)

e2g = ta2gx, for the free variables r, x, e2, a1, a2 such that

x ∈ S(2ℓ, 2µ), e2 ∈ S(2ℓ/2, 2µ), a1 = rx and a2 = re2. The matrix of the

discrete-log relation set is shown below:
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g h y t s v T−1
1 T−1

2 T−1
3 T−1

4 T−1
5 g−1

T1 = gr : r 0 0 0 0 0 1 0 0 0 0 0

T2 = hrgx : x r 0 0 0 0 0 1 0 0 0 0

(T1)
x = ga1 : a1 0 0 0 0 0 x 0 0 0 0 0

T3 = srge2 : e2 0 0 0 r 0 0 0 1 0 0 0

(T1)
e2 = ga2 : a2 0 0 0 0 0 e2 0 0 0 0 0

(T4)
x = vya1 : 0 0 a1 0 0 1 0 0 0 x 0 0

(T5)
e2g = ta2gx : x 0 0 a2 0 0 0 0 0 0 e2 1




Observe that a proof of the above discrete-log relation set ensures that (i)

the prover knows a witness w for some value x in the ad hoc group accumulated

value v, and (ii) for the same x, the value x − 1 can be split by the prover

into two integers one of which belongs to S(2ℓ/2, 2µ). This latter range-property

guarantees the non-triviality of the splitting i.e., that the prover knows a non-

trivial factor of x − 1 (i.e., different than −1, 1, 2). Note that this will require

that the parameters ℓ, µ, ǫ, k should be selected such that ℓ/2 > ǫ(µ + k) + 2.

4.5.3 ID Escrow

In Section 4.4.3, we discussed a generic transformation to add Identity Escrow

to an Ad Hoc Anonymous Identification scheme. Most of the required changes

do not affect the system’s efficiency, except for the need to resort to a generic

derivation of the Anon-ID protocol.

This performance penalty is not unavoidable, however: in fact, escrow ca-

pabilities can be directly supported by the Σ-protocol for Anonymous Identifi-

cation described in Section 4.5.2. using protocols for verifiable encryption and
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decryption of discrete logarithms from [27].

With notation as in Section 4.5.2, the Anon-ID protocol is augmented as

follows: after sending the commitment T2 to the verifier, the prover verifiably

encrypts an opening of T2 (namely, x and r) under the IEA public key. By

checking that the encryption was carried out correctly, the verifier can be assured

that, should the need arise, the IEA would be able to identify the prover by

decrypting such opening, which would yield the prover’s public key x. Moreover,

by using verifiable decryption in the Extract algorithm, we can prevent the IEA

from untruthfully opening the identity of the prover for a given transcript, or

falsely claiming that the prover’s identity cannot be properly recovered.

Alternatively, if only honest users are assumed to have access to the Escrow

functionality (so that malicious parties cannot exploit the IEA as a “decryption

oracle”), then a more efficient solution is possible, by having the IEA knowing

the value logg(h) in the proof of knowledge from Section 4.5. Then, given a

transcript of the protocol (which includes the values T1, T2, T3, T4, T5) the IEA

can recover the value gx = T2T
− logg(h)

1 , from which the prover’s identity can

be recovered by comparing gx to the public keys published in the public DB

database.

4.6 Applications

4.6.1 Ad Hoc Identification Schemes

This is the most direct application. Imagine a large universe of users, where

each user has a public certificate, but otherwise there is no central authority

in the system. Now, some party “from the street” has a resource which he

95



is willing to share with some subset of the users. For example, an Internet

provider P may want to enable internet access to all its subscribers. However,

privacy considerations may lead a user to refuse to positively identify himself; in

fact, this is not strictly necessary, as long as he proves he belongs to the group

of current subscribers. Our ad hoc identification schemes are ideally suited for

this application, bringing several very convenient feautures. First, P can simply

take all the public keys of the users (call this set S) and combine them into one

short group public key gpkS. Notice, this initial setup is the only operation P

performs which requires time proportional to the group size. As for each user

u ∈ S, once again he will use his secret key and the public keys of other user to

prepare one short group secret key gsku. After that, all identifications that u

makes to P require computation and communication independent of the size of

the group. Now, another provider P ′ can do the same for a totally different sub-

group, and so on, allowing truly ad hoc groups with no trusted authority needed

in the system. Additionally, with incremental Ad Hoc Anonymous Identification

schemes (cf. Section 4.3.5), one can preserve efficiency even when the ad hoc

group is built gradually, as each new member addition only requires constant

computation by P and by every pre-existing user in the system.

4.6.2 Constant Size Ring Signatures

This is one of our main applications, since it dramatically improves the efficiency

of all known ring signature schemes (e.g., [73, 22, 18]). Recall, in a ring signature

scheme there again is a universe of registered users, but no trusted authority.

Any user u can then form a ring S, and sign a message m in such a way

that any verifier (who knows S) can confidently conclude that “the message m
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was signed by some member u of S”, but gets no information about u beyond

u ∈ S. Previous papers on the subject suggested that linear dependence of the

ring signature size on the size of the ring S was inevitable, since the group is

ad hoc, so the verifier needs to know at least the description of the ring. While

the latter is true, in practical situations the ring often stays the same for a long

period of time (in fact, there could be many “popular” rings that are used very

often by various members of the ring), or has an implicit short decryption (e.g.,

the ring of public keys of all members of the President’s Cabinet). Thus, we feel

that the right measure of “signature size” in this situation is that of an “actual

signature”—the string one needs in addition to the group description. Indeed,

when the ring stays the same for a long time or has a short description, this

actual signature is all that the verifier needs in order to verify its correctness.

With this in mind, there is no reason why the signature size must be linear in

the size of the ring.

In fact, our result shows that it does not have to be. Specifically, by applying

the Fiat-Shamir heuristics to our ad hoc identification scheme, we immediately

get ring signatures of constant size. Moreover, our ring signatures enjoy sev-

eral desirable features not generally required by ring signatures (even those

of constant size). For example, both the signer and the verifier need to per-

form a one-time computation proportional to the size of the ring, and get some

constant-size information (gskS and gpkS, respectively) which allows them to

produce/verify many subsequent signatures in constant time.
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4.6.3 Ad Hoc ID Escrow and Group Signatures

As mentioned in Section 4.3.4, in some situations complete anonymity might

not be desirable. In this case, one wishes to introduce a trusted Identity Es-

crow Authority (IEA), who can reveal the true identity of the user given the

transcript of the identification procedure (presumably, when some “anonymity

abuse” happens). Such schemes are called ID Escrow schemes [63] and have

traditionally been considered for fixed groups. ID Escrow schemes are duals of

group signature schemes [29, 1], which again maintain a single group of signers,

and where a similar concern is an issue when signing a document anonymously.

As argued in Section 4.4.3 and Section 4.5.3, our Ad Hoc Anonymous Iden-

tification schemes and the corresponding signer-ambiguous signature schemes

can efficiently support identity escrow capabilities. As a result, we get an ID

Escrow and a group signature scheme with the following nice features. (For

concreteness, we concentrate on group signatures below.) First, just like in cur-

rent state-of-the-art group signature schemes, the signature is of constant size.

Second, a user can join any group by simply telling the group manager about its

public key: no expensive interactive protocols, where the user will “get a special

certificate” have to be run. Thus, the group manager only needs to decide if the

user can join the group, and periodically certify the “current” public key of the

group. In other words, we can imagine a simple bulletin board, where the group

manager periodically publishes the (certified) group public key, the description

of the group, and potentially the history of how the public key evolved (which

is very handy for incremental Ad Hoc Anonymous Identification schemes; cf.

Section 4.3.5). From this information, each member of the group can figure out

its group secret key and sign arbitrary many messages efficiently. (Of course,
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when signing a message the signer should also include the certified version of

the current group key, so that “old” signatures do not get invalidated when the

group key changes.)
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