
Relation Extraction with Weak Supervision and

Distributional Semantics

by

Bonan Min

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2013

Professor Ralph Grishman

c© Bonan Min

All Rights Reserved, 2013

Dedicated to my parents.

iii

Acknowledgements

First of all, I would like to thank my advisor Prof. Ralph Grishman. Ralph

introduced me to the fascinating world of Information Extraction and taught me

how to do research. I’m extremely grateful for his patience, especially for answering

my questions in the late night, helping me with proofreading my draft papers even

got it at the last minute. Ralph is always very supportive through my PhD study.

This dissertation won’t be possible without his guidance.

Second, I would like to thank my other mentors in the proteus group: Prof.

Satoshi Sekine and Prof. Adam Meyers. Satoshi is an insipirasion to several of my

research projects. Adam is the linguist that I always asked for help when I had

questions. I would also like to thank my other comittee members: Prof. Heng Ji,

Prof. Ernest Davis, and Prof. Dennis Shasha.

Third, I am indebt to two former proteus group members, Ang Sun and Shasha

Liao. Their knowledge and passion on Information Extraction has directly led me

to choose the field for my PhD. I’m especially grateful to Ang, who shared with me

his code which is an excellent example of language engineering and the entry point

to one of my research projects. I would like to thank following current members of

the proteus group: Yifan He, Xiang Li, Maria Pershina, Lisheng Fu, Chen Chen,

Wei Xu, Siyuan Zhou, Thien Huu Nguyen, Zachary Glass, Angus Grieve-Smith. I

benefit tremendously from the discussion with them.

Fourth, I feel extremely lucky to have had two very fruitful summer internships.

I would like to thank Dr. Chin-Yew Lin and Dr. Shuming Shi from Microsoft

Research Asia (MSRA), and Dr. Chang Wang and Dr. David Gondek from IBM

T.J. Watson Research Center. A large part of this dissertation is the result of

collaboration with them. I would like to thank following researchers in MSRA: Dr.

iv

Yunbo Cao, Dr. Wei Lai, Dr. Xian-Sheng Hua and Dr. Jun’ichi Tsujii. I would

also like to thank everyone in the DeepQA team of IBM Research, including but

not limited to: Dr. James Fan, Dr. Chris Welty, Dr. Alo Gliozzo, Dr. Aditya

Kalyanpur, Dr. Sugato Bagchi, Dr. Siddharth Patwardhan, Dr. Eric Brown,

Dr. Jennifer Chu-Carroll, Dr. Ken Barker, Dr. Edward A. Epstein, Dr. William

Murdock. I enjoyed the many group discussions, weekly error analysis sessions and

the great coffee in the lab.

Furthermore, I thank following (former) colleages at NYU: Prof. Jinyang Li,

Prof. Lakshminarayanan Subramanian, Nguyen Tran, Yair Sovran, and Li Wan.

Finally I thank my parents for their love and support. I am most grateful for

the support from my girlfriend Lan, without whom this dissertation would have

been finished half a year earlier.

This work is supported in part by the Intelligence Advanced Research Projects

Activity (IARPA) via Air Force Research Laboratory (AFRL) contract number

FA8650-10-C-7058 and via Department of Interior National Business Center con-

tract number D11PC20154. The U.S. Government is authorized to reproduce and

distribute reprints for Governmental purposes notwithstanding any copyright an-

notation thereon. The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily representing the official poli-

cies or endorsements, either expressed or implied, of IARPA, AFRL, DoI/NBC, or

the U.S. Government.

v

Abstract

Relation Extraction aims at detecting and categorizing semantic relations be-

tween pairs of entities in unstructured text. It benefits an enormous number of

applications such as Web search and Question Answering. Traditional approaches

for relation extraction either rely on learning from a large number of accurate

human-labeled examples or pattern matching with hand-crafted rules. These re-

sources are very laborious to obtain and can only be applied to a narrow set of

target types of interest.

This dissertation focuses on learning relations with little or no human supervi-

sion. First, we examine the approach that treats relation extraction as a supervised

learning problem. We develop an algorithm that is able to train a model with ap-

proximately 1/3 of the human-annotation cost and that matches the performance

of models trained with high-quality annotation. Second, we investigate distant

supervision, a weakly supervised algorithm that automatically generates its own

labeled training data. We develop a latent Bayesian framework for this purpose.

By using a model which provides a better approximation of the weak source of

supervision, it outperforms the state-of-the-art methods. Finally, we investigate

the possibility of building all relational tables beforehand with an unsupervised

relation extraction algorithm. We develope an effective yet efficient algorithm that

combines the power of various semantic resources that are automatically mined

from a corpus based on distributional semantics. The algorithm is able to extract

a very large set of relations from the web at high precision.

vi

Contents

Dedication . iii

Acknowledgements . iv

Abstract . vi

List of Figures . ix

List of Tables . x

1 Introduction 1

2 Prior Work 4

2.1 Supervised relation extraction . 4

2.2 Distant supervision for relation extraction 6

2.3 Unsupervised relation extraction . 8

3 Compensating for Annotation Errors in Training a Relation Ex-

tractor 10

3.1 Introduction . 11

3.2 Background . 12

3.3 Analysis of data annotation . 15

3.4 Relation extraction with low-cost annotation 23

3.5 Experiments . 27

vii

3.6 Related work . 30

3.7 Conclusion . 31

4 Weakly Supervised Relation Extraction 32

4.1 Introduction . 32

4.2 Problem definition . 33

4.3 Correcting false negatives: a semi-supervised MIML framework . . . 37

4.4 Correcting false positives: an extension 41

4.5 Implementation details . 43

4.6 Experiments . 44

5 Unsupervised Relation Extraction via Ensemble Semantics 48

5.1 Introduction . 49

5.2 Related work . 51

5.3 Problem analysis . 53

5.4 Mining relations from the Web . 54

5.5 Experiment . 63

5.6 Discussion . 75

5.7 Conclusion . 78

6 Conclusion and Future Work 80

Bibliography 82

viii

List of Figures

2.1 ACE05 relation types and subtypes. 5

2.2 Unsupervised relation extraction. 9

3.1 Inter-annotator agreement. 16

3.2 Major syntactic classes. 17

3.3 CDF of ranks of errors . 18

3.4 TSVM optimization function for non-separable case 26

4.1 Examples from the distant-supervision dataset 34

4.2 Plate diagram of semi-supervised MIML 38

4.3 Performance of semi-supervised MIML on correcting false negatives 46

4.4 Performance of semi-supervised MIML on correcting false positives 47

5.1 Overview of WEBRE . 57

5.2 CDF of phrase synonymy and polysymy. 73

5.3 A hierarchy of relations . 78

ix

List of Tables

3.1 Categories of spurious relation mentions 21

3.2 Performance of RDC on various training sets 24

3.3 5-fold cross-validation results. 30

3.4 Performance when trained with a fraction of adj 30

4.1 Incompleteness of Freebase . 35

4.2 False negative match rate for distant supervision. 36

5.1 Overall statistics of WEBRE experiment. 64

5.2 Scores for human judgments on triples 66

5.3 Phase 1 performance . 67

5.4 Scores for human judgments on Type A relations. 69

5.5 Performance for Type B relation extraction 69

5.6 Sample relation phrases and their corresponding type A relations . 70

5.7 Top neighbors of an example relation phrase. 71

5.8 Pairwise precision/recall/F1 of WEBRE and SNE 72

5.9 Example Type B relations . 77

x

Chapter 1

Introduction

People have dreamed of building a computer system that can understand human

lanauge since the early days of modern computing. An area of Natural Language

Processing (NLP) research that evolves towards this ultimate goal is Information

Extraction (IE). IE involves developing algorithms that can automatically process

unstructured text and generate a database of entities, relations and events. The

resulting database allows computer algorithms to query and perform logical rea-

soning. IE not only unveils the intrinsic semantic meanings of text and moves

us closer to the ultimate goal of enabling computers to understand text, but it

can also be used for an enormous number of applications, such as web search and

question answering.

One of the three core IE tasks is Relation Extraction, which aims at detecting

and categorizing semantic relations between pairs of entities in text. The following

are three examples of semantic relations:

• (book author) Moby Dickwas written by Hermann Melville.

• (located in) New York University is located in New York City.

1

• (school attended) Bonan Min studied at New York University.

Popular approaches for relation extraction include 1) developing a machine

learning algorithm that learns from a large amount of accurate human-annotated

examples and can make predictions on new mentions, 2) using rules that are man-

ually crafted or generated semi-automatically to match text fragments (raw or pre-

processed). In addition, semantic knowledge resources (lexicons and paraphrase

collections) have been shown to be important to the performance of such systems.

All these human-generated sources of supervision (labeled examples, rules, and se-

mantic resources) are very laborious to obtain and can only be applied to a narrow

set of target types of interest.

This dissertation focuses on learning relations with little or no human supervi-

sion. First, we examine the approach that treats relation extraction as a supervised

learning problem. We develop an algorithm that is able to train a model with low-

cost annotation (1/3 of the normal cost) and that matches the performance of

models trained with high-quality annotation. Second, we investigate distant su-

pervision (DS), a weakly supervised algorithm that automatically generates its own

labeled training data. We found that dealing with incorrectly labeled examples is

critical for its success. We develop a latent Bayesian framework for this purpose.

By using a model which provides a better approximation of the weak source of

supervision, it outperforms the state-of-the-art methods. Finally, in collaboration

with Microsoft Research Asia, we investigate the possibility of building all rela-

tional tables beforehand with an unsupervised relation extraction algorithm. We

develope an effective yet efficient algorithm that combines the power of various

semantic resources that are automatically mined from a corpus based on distribu-

tional semantics. The algorithm is able to extract a very large set of relations from

2

the web at high precision.

The rest of the dissertation is organized as follows: first we review prior work

in chapter 2, then we present three concrete solutions in chapter 3, 4 and 5, finally

we conclude in chapter 6 and describe our immediate future work.

3

Chapter 2

Prior Work

In this chapter, we review prior work that is closely related to the solutions

(chapter 3,4,5) described in this dissertation. Our goal is to set the background

for our work, but not to present a comprehensive survey of research in relation

extraction. Therefore, certain interesting research in relation extraction, e.g., semi-

supervised relation extraction [1] [6], is not described here. We refer interested

readers to a recent survey [22] for further details on these methods.

2.1 Supervised relation extraction

Supervised methods ([38] [32] [7] [23] [83] [30] [60] [77] [9] [10] [82] [78] [79]

[84] [50]) for relation extraction have been studied extensively since rich annotated

linguistic resources were released. One of the most studied relation extraction

tasks is the Automatic Content Extraction (ACE) relation extraction evaluation

sponsored by the U.S. government. ACE 2005 defined 7 major entity types, such

as PER (Person), LOC (Location), ORG (Organization), and also defines 7 major

4

relation types and more than 20 subtypes (Figure 2.11). ACE provides a large

corpus which is manually annotated with entities (with coreference chains between

entity mentions annotated), relations, events and values.

In this dissertation, we will call the text which is a mention of a entity as entity

mention, following the ACE definition. There could be multiple mentions, taking

the form of names/common nouns/pronouns, of an entity. Similarly, we also make

a distinction between relations and relation mentions. A relation mention is a

segment of text expressing a relation between two entity mentions. These two

entity mentions are called the arguments of the relation mention. In ACE, each

relation mention, expressing one of the predefined types, is tagged with a pair of

entity mentions appearing in the same sentence as its arguments. More details

about the ACE evaluation can be found on the official ACE website.2

Figure 2.1: ACE05 relation types and subtypes (Relations marked with an * are
symmetric relations).

1The ACE 2005 (ACE05) Evaluation Plan: http://www.itl.nist.gov/iad/mig/tests/ace/ace05/
doc/ace05-evalplan.v2a.pdf

2http://www.itl.nist.gov/iad/mig//tests/ace/ace05/

5

A supervised system for relation extraction has three steps: 1) data represen-

tation for labeled examples (a.k.a. relation mentions in ACE terms), e.g., feature

extraction for feature-based method, or extracting objects for kernel-based method,

2) train a classification model as the relation detector/classifier, 3) apply the model

as the relation extractor on the unseen relation mentions.

For data representation, state-of-the-art methods are either feature-based, or

object-based. Given a relation mention, feature-based methods ([38] [32] [7] [23]

[83] [30] [60]) extract a rich list of structural, lexical, syntactic and semantic fea-

tures to represent it. [30] presents a systematic exploration of the relation feature

space. In contrast, kernel based methods ([77] [9] [10] [82] [78] [79] [84] [50]) rep-

resent each instance with an object such as augmented token sequences or a parse

tree, and use a carefully designed kernel function, e.g., subsequence kernel ([10])

or convolution tree kernel ([15]), to calculate their similarity. These objects are

usually augmented with features such as semantic features.

Various machine learning methods have been applied for relation extraction.

The two popular ones are maximum entropy classifiers (MaxEnt) ([32] [83] [30]

[60]) and support vector machines (SVM) ([77] [30] [9] [10] [82] [78] [79] [84] [50]).

Other methods such as K-nearest neighbors algorithm ([23]) and Voted Perceptron

learning algorithm ([77]) have also been applied to the task [23].

2.2 Distant supervision for relation extraction

Distant supervision was first proposed by [12]. The approach generates weakly

labeled examples by aligning facts in the Yeast Protein Database into the articles

that may establish the facts, for training an extractor. Since then, it has gained

6

popularity ([41] [11] [72] [51] [27] [59]). [11] treats each automatically-labeled

relation mention as a labeled example, and trains an extractor with supervised

learning that tolerates incorrect labels of positive examples. To provide a more

accurate treatment of label noise while capturing the pair-level label constrains,

[51] proposes to use Multiple Instance Learning ([16]), which assumes that only

at-least-one of the mentions for each argument pair listed as having a relation in

the KB, indeed has the target relation. MultiR ([27]) and Multi-Instance Multi-

Label (MIML) learning ([59]) further improve it to allow a pair to have multiple

relations. Their models allow different mentions for a pair to express different

relations. [63] view the problem differently and propose a method that estimates

the probability of each pattern showing each relation, based on the automatically

labeled dataset. Their algorithm removes false positive matches by filtering men-

tions with low-probability patterns. [61] and [40] also estimate the probablities of

patterns showing relations, but instead use them to relabel examples to their most

likely classes. Their approach can correct highly-confident false negative matches.

Labeling noise can be reduced by using a more restricted labeling heuristic. For

example, [71] assumes only the first sentence in Wikipedia text that contains a pair

of related entities is a valid relation mention of the corresponding type. KYLIN [72]

proposes three heuristics for labeling Wikipedia text with infobox. Such heuristics

are able to improve label precision by sacrificing recall. Furthermore, they are

domain-specific and are not applicable in a more distant yet common labeling

scenario: align Freebase to newswires.

[71] uses distant supervision to improve supervised relation extraction. Their

method starts with constructing relation topics from the set of heuristically labeled

examples (by distant supervision) using Diffusion Wavelets. They propose a new

7

SVM kernel that encodes the background knowledge (a set of relation topics)

as a source for measuring similarity between relation mentions. The resulting

extraction algorithm, improves on existing solutions in the Automatic Content

Extraction (ACE) relation evaluation dataset.

Notwithstanding this progress in distant supervision, current performance is

still quite modest and not satisfactory for practical use. For example, the system

very recently described in [59] achieves only a recall of 26.9 and a precision of 29.7

on a standard test set, Knowledge Base Population [29].

2.3 Unsupervised relation extraction

Unsupervised relation extraction (URE) algorithms ([25] [14] [55]) collect pairs

of co-occurring entities as relation instances, extract features for instances and then

apply unsupervised clustering techniques to find the major relations of a corpus.

These UREs rely on tagging a predefined set of argument types, such as Person,

Organization, and Location, in advance. [75] proposes several generative models,

largely similar to LDA [5], for relation extraction. One of their models learns

fine-grained semantic classes as relation arguments, but they share the similar

requirement of tagging coarse-grained argument types. Most UREs use a quadratic

clustering algorithm such as Hierarchical Agglomerate Clustering ([25] [55]), K-

Means ([14]), or both ([52]) thus they are not scalable to very large corpora.

As the target domain shifts to the Web, new methods are proposed without

requiring predefined entity types. Resolver ([76]) resolves objects and relation syn-

onyms. [33] proposes Semantic Network Extractor (SNE) to extract concepts and

relations. Based on second-order Markov logic, SNE uses a bottom-up agglomera-

8

Figure 2.2: Unsupervised relation extraction[25].

tive clustering algorithm to jointly cluster relation phrases and argument entities.

However, both Resolver and SNE require each entity and relation phrase to be-

long to exactly one cluster. This limits their ability to handle polysemous relation

phrases. Moreover, SNE only uses features in the input set of relation instances for

clustering, thus it fails to group many relevant instances. Resolver has the same

sparseness problem but it is not affected as much as SNE because of its different

goal (synonym resolution).

9

Chapter 3

Compensating for Annotation

Errors in Training a Relation

Extractor

The well-studied supervised relation extraction algorithms require training data

that is accurate and has good coverage. To obtain such a gold standard, the com-

mon practice is to do independent double annotation followed by adjudication.

This takes significantly more human effort than annotation done by a single anno-

tator. We do a detailed analysis on a snapshot of the ACE 2005 annotation files

to understand the differences between single-pass annotation and the more expen-

sive nearly three-pass process, and then propose an algorithm that learns from the

much cheaper single-pass annotation and achieves a performance on a par with the

extractor trained on multi-pass annotated data. Furthermore, we show that given

the same amount of human labor, the better way to do relation annotation is not

to annotate with high-cost quality assurance, but to annotate more.

10

3.1 Introduction

Supervised methods for relation extraction have been studied extensively since

rich annotated linguistic resources, e.g. the Automatic Content Extraction1 (ACE)

training corpus, were released. Those methods rely on accurate and complete

annotation. To obtain high quality annotation, the common wisdom is to let two

annotators independently annotate a corpus, and then asking a senior annotator

to adjudicate the disagreements2. This annotation procedure roughly requires 3

passes3 over the same corpus. Therefore it is very expensive. The ACE 2005

annotation on relations is conducted in this way.

In this chapter, we analyzed a snapshot of ACE training data and found that

each annotator missed a significant fraction of relation mentions and annotated

some spurious ones. We found that it is possible to separate most missing exam-

ples from the vast majority of true-negative unlabeled examples, and in contrast,

most of the relation mentions that are adjudicated as incorrect contain useful ex-

pressions for learning a relation extractor. Based on this observation, we propose

an algorithm that purifies negative examples and applies transductive inference

to utilize missing examples during the training process on the single-pass anno-

tation. Results show that the extractor trained on single-pass annotation with

the proposed algorithm has a performance that is close to an extractor trained on

the 3-pass annotation. We further show that the proposed algorithm trained on a

single-pass annotation on the complete set of documents has a higher performance

1http://www.itl.nist.gov/iad/mig/tests/ace/
2The senior annotator also found some missing examples as shown in Figure 3.1.
3In this chapter, we will assume that the adjudication pass has a similar cost compared to

each of the two first-passes. The adjudicator may not have to look at as many sentences as an
annotator, but he is required to review all instances found by both annotators. Moreover, he
has to be more skilled and may have to spend more time on each instance to be able to resolve
disagreements.

11

than an extractor trained on 3-pass annotation on 90% of the documents in the

same corpus, although the effort of doing a single-pass annotation over the entire

set costs less than half that of doing 3 passes over 90% of the documents. From

the perspective of learning a high-performance relation extractor, it suggests that

a better way to do relation annotation is not to annotate with a high-cost quality

assurance, but to annotate more.

3.2 Background

3.2.1 Supervised Relation Extraction System

Given a sentence s and two entity mentions arg1 and arg2 contained in s,

a candidate relation mention r with argument arg1 preceding arg2 is defined as

r = (s, arg1, arg2). The goal of Relation Detection and Classification (RDC) is to

determine whether r expresses one of the types defined. If so, classify it into one of

the types. Supervised learning treats RDC as a classification problem and solves

it with supervised Machine Learning algorithms such as MaxEnt and SVM. There

are two commonly used learning strategies ([60]). Given an annotated corpus, one

could apply a flat learning strategy, which trains a single multi-class classifier on

training examples labeled as one of the relation types or not-a-relation, and apply it

to determine its type or output not-a-relation for each candidate relation mention

during testing. The examples of each type are the relation mentions that are

tagged as instances of that type, and the not-a-relation examples are constructed

from pairs of entities that appear in the same sentence but are not tagged as any of

the types. Alternatively, one could apply a hierarchical learning strategy, which

trains two classifiers, a binary classifier RD for relation detection and the other

12

a multi-class classifier RC for relation classification. RD is trained by grouping

tagged relation mentions of all types as positive instances and using all the not-a-

relation cases (same as described above) as negative examples. RC is trained on

the annotated examples with their tagged types. During testing, RD is applied

first to identify whether an example expresses some relation, then RC is applied

to determine the most likely type only if it is detected as correct by RD.

Following previous work, we ignore sub-types in this chapter and only evaluate

on types when reporting relation classification performance. We use the hierarchi-

cal learning strategy since it simplifies the problem by letting us focus on relation

detection only. The relation classification stage remains unchanged and we will

show that it benefits from improved detection. For experiments on both relation

detection and relation classification, we use SVM4 [65] as the learning algorithm

since it can be extended to support transductive inference as discussed in chapter

3.4.3. However, for the analysis in chapter 3.3.2 and the purification preprocess

steps in chapter 3.4.2, we use a MaxEnt5 model since it outputs probabilities6 for

its predictions. For the choice of features, we use the full set of features from

[83] since it is reported to have a state-of-the-art performance [60]. Finally we

use the perfect entity mentions instead of mentions detected by a Named Entity

Recognition algorithm, following the common practice (e.g., [83]).

4SVM-Light is used. http://svmlight.joachims.org/
5OpenNLP MaxEnt package is used. http://maxent.sourceforge.net/about.html
6SVM also outputs a value associated with each prediction. However, this value cannot be

interpreted as probability.

13

3.2.2 ACE 2005 annotation

The ACE 2005 training data contains 599 articles from newswire, broadcast

news, weblogs, usenet newsgroups/discussion forum, conversational telephone speech

and broadcast conversations. The annotation process is conducted as follows: two

annotators working independently annotate each article and complete all anno-

tation tasks (entities, values, relations and events). After two annotators both

finished annotating a file, all discrepancies are then adjudicated by a senior anno-

tator. This results in a high-quality annotation file. More details can be found

in the documentation of ACE 2005 Multilingual Training Data V3.07. Since the

final release of the ACE training corpus only contains the final adjudicated an-

notations, in which all the traces of the two first-pass annotations are removed,

we use a snapshot of almost-finished annotation, ACE 2005 Multilingual Training

Data V3.0, for our analysis. In the remainder of this chapter, we will call the

two independent first-passes of annotation fp1 and fp2. The higher-quality data

done by merging fp1 and fp2 and then having disagreements adjudicated by the

senior annotator is called adj. From this corpus, we removed the files that have

not been completed for all three passes. On the final corpus consisting of 511 files,

we can differentiate the annotations on which the three annotators have agreed

and disagreed. A notable fact of ACE relation annotation is that it is done with

arguments from the list of annotated entity mentions. For example, in a relation

mention tyco’s ceo and president dennis kozlowski which expresses an EMP-ORG

relation, the two arguments tyco and dennis kozlowski must have been tagged as

entity mentions previously by the annotator. Since fp1 and fp2 are done on all

tasks independently, their disagreement on entity annotation will be propagated

7LDC2005E18. LDC Catalog

14

to relation annotation; thus we need to deal with these cases specifically.

3.3 Analysis of data annotation

3.3.1 General statistics

As discussed in chapter 3.2, relation mentions are annotated with entity men-

tions as arguments, and the lists of annotated entity mentions vary in fp1, fp2 and

adj. To estimate the impact propagated from entity annotation, we first calculate

the ratio of overlapping entity mentions between entities annotated in fp1/fp2 with

adj. We found that fp1/fp2 each agrees with adj on around 89% of the entity men-

tions. Following up, we checked the relation mentions8 from fp1 and fp2 against

the adjudicated list of entity mentions from adj and found that 682 and 665 rela-

tion mentions respectively have at least one argument which doesn’t appear in the

list of adjudicated entity mentions.

Given the list of relation mentions with both arguments appearing in the list

of adjudicated entity mentions, Figure 3.1 shows the inter-annotator agreement of

the ACE 2005 relation annotation. In this figure, the three circles represent the

list of relation mentions in fp1, fp2 and adj, respectively.

It shows that each annotator missed a significant number of relation mentions

annotated by the other. Considering that we removed 682/665 relation mentions

from fp1/fp2 because we generate this figure based on the list of adjudicated en-

tity mentions, we estimate that fp1 and fp2 both missed around 18.3-28.5%9 of

8This is done by selecting the relation mentions whose both arguments are in the list of
adjudicated entity mentions.

9We calculate the lower bound by assuming that the 682 relation mentions removed from fp1
are found in fp2, although with different argument boundary and headword tagged. The upper
bound is calculated by assuming that they are all irrelevant and erroneous relation mentions.

15

the relation mentions. This clearly shows that both of the annotators missed a

significant fraction of the relation mentions. They also annotated some spurious

relation mentions (as adjudicated in adj), although the fraction is smaller (close to

10% of all relation mentions in adj).

Figure 3.1: Inter-annotator agreement of ACE 2005 relation annotation. Num-
bers are the distinct relation mentions whose both arguments are in the list of
adjudicated entity mentions.

ACE 2005 relation annotation guidelines (ACE English Annotation Guidelines

for Relations, version 5.8.310) defined 7 syntactic classes and the other class. We

plot the distribution of syntactic classes of the annotated relations in Figure 3.2

(3 of the classes, accounting together for less than 10% of the cases, are omitted)

and the other class. It shows that it is generally easier for the annotators to find

and agree on relation mentions of the type Preposition/PreMod/Possessives but

harder to find and agree on the ones belonging to Verbal and Other. The definition

and examples of these syntactic classes can be found in the annotation guidelines.

In the following sections, we will show the analysis on fp1 and adj since the

result is similar for fp2.

10http://projects.ldc.upenn.edu/ace/

16

Figure 3.2: Percentage of examples of major syntactic classes.

3.3.2 Why the differences?

To understand what causes the missing annotations and the spurious ones, we

need methods to find how similar/different the false positives are to true positives

and also how similar/different the false negatives (missing annotations) are to true

negatives. If we adopt a good similarity metric, which captures the structural,

lexical and semantic similarity between relation mentions, this analysis will help

us to understand the similarity/difference from an extraction perspective.

We use a state-of-the-art feature space [83] to represent examples (including

all correct examples, erroneous ones and untagged examples) and use MaxEnt

as the weight learning model since it shows competitive performance in relation

extraction [30] and outputs probabilities associated with each prediction. We train

a MaxEnt model for relation detection on true positives and true negatives, which

17

respectively are the subset of correct examples annotated by fp1 (and adjudicated

as correct ones) and negative examples that are not annotated in adj, and use it

to make predictions on the mixed pool of correct examples, missing examples and

spurious ones.

To illustrate how distinguishable the missing examples (false negatives) are

from the true negative ones, 1) we apply the MaxEnt model on both false negatives

and true negatives, 2) put them together and rank them by the model-predicted

probabilities of being positive, 3) calculate their relative rank in this pool. We

plot the Cumulative distribution of frequency (CDF) of the ranks (as percentages

in the mixed pools) of false negatives in figure 3. We took similar steps for the

spurious ones (false positives) and plot them in figure 3 as well (However, they are

ranked by model-predicted probabilities of being negative).

Figure 3.3: Cumulative distribution of frequency (CDF) of the relative ranking of
model-predicted probability of being positive for false negatives in a pool mixed of
false negatives and true negatives; and the CDF of the relative ranking of model-
predicted probability of being negative for false positives in a pool mixed of false
positives and true positives.

18

For false negatives, it shows a highly skewed distribution in which around 75%

of the false negatives are ranked within the top 10%. That means the missing

examples are lexically, structurally or semantically similar to correct examples, and

are distinguishable from the true negative examples. However, the distribution of

false positives (spurious examples) is close to uniform (flat curve), which means

they are generally indistinguishable from the correct examples.

3.3.3 Categorize annotation errors

The automatic method shows that the errors (spurious annotations) are very

similar to the correct examples but provides little clue as to why that is the case. To

understand their causes, we sampled 65 examples from fp1 (10% of the 645 errors),

read the sentences containing these erroneous relation mentions and compared

them to the correct relation mentions in the same sentence; we categorized these

examples and show them in Table 3.1. The most common type of error is duplicate

relation mention for coreferential entity mentions. The first row in Table 3.1 shows

an example, in which there is a relation ORG-AFF tagged between US and George

W. Bush in adj. Because President and George W. Bush are coreferential, the

example <US, President> from fp1 is adjudicated as incorrect. This shows that

if a relation is expressed repeatedly across relation mentions whose arguments

are coreferential, the adjudicator only tags one of the relation mentions as correct,

although the other is correct too. This shared the same principle with another type

of error illegal promotion through blocked categories11 as defined in the annotation

11For example, in sentence Smith went to a hotel in Brazil, (Smith, hotel) is a taggable PHYS
Relation but (Smith, Brazil) is not, because to get the second relationship, one would have to
promote Brazil through hotel. For the precise definition of annotation rules, please refer to ACE
(Automatic Content Extraction) English Annotation Guidelines for Relations, version 5.8.3.

19

guideline. The second largest category is correct, by which we mean the example

is a correct relation mention and the adjudicator made a mistake. The third

largest category is argument not in list, by which we mean that at least one of the

arguments is not in the list of adjudicated entity mentions.

Based on Table 3.1, we can see that as many as 72%-88% of the examples which

are adjudicated as incorrect are actually correct if viewed from a relation learn-

ing perspective, since most of them contain informative expressions for tagging

relations. The annotation guideline is designed to ensure high quality while not

imposing too much burden on human annotators. To reduce annotation effort, it

defined rules such as illegal promotion through blocked categories. The annotators

practice suggests that they are following another rule not to annotate duplicate re-

lation mention for coreferential entity mentions. This follows the similar principle

of reducing annotation effort but is not explicitly stated in the guideline: to avoid

propagation of a relation through a coreference chain. However, these examples

are useful for learning more ways to express a relation. Moreover, even for the

erroneous examples (as shown in Table 3.1 as violate reasonable reader rule and

errors), most of them have some level of similar structures or semantics to the

targeted relation. Therefore, it is very hard to distinguish them without human

proofreading.

3.3.4 Why missing annotations and how many examples

are missing?

For the large number of missing annotations, there are a couple of possible rea-

sons. One reason is that it is generally easier for a human annotator to annotate

correctly given a well-defined guideline, but it is hard to ensure completeness, es-

20

Example
Category Percentage

Relation
Type

Sampled text of spurious exam-
ples in fp1

Notes (examples are
similar ones in adj for
comparison)

Duplicate
relation
mention
for coref-
erential
entity
mentions

49.2% ORG-
AFF

his budding friendship with US
President George W. Bush in the
face of

his budding friend-
ship with US Presi-
dent George W. Bush
in the face of

PHYS Hundreds of thousands of
demonstrators took to the streets
in Britain

Correct 20%
PER-SOC The dead included the quack doc-

tor, 55-year-old Nityalila Naotia,
his teenaged son and

(Symmetric relation)
The dead included the
quack doctor, 55-year-
old Nityalila Naotia,
his teenaged son

Argument
not in list

15.4% PER-SOC Putin had even secretly invited
British Prime Minister Tony
Blair, Bush’s staunchest backer in
the war on Iraq

Violate
reasonable
reader rule

6.2% PHYS ”The amazing thing is they are
going to turn San Francisco into
ground zero for every criminal
who wants to profit at their cho-
sen profession”, Paredes said.

PART-
WHOLE

a likely candidate to run Vivendi
Universal’s entertainment unit in
the United States

Arguments are tagged
reversed

Errors 6.1%
PART-
WHOLE

Khakamada argued that the
United States would also need
Russia’s help ”to make the new
Iraqi government seem legitimate.

Relation type error

illegal
promotion
through
blocked
categories

3% PHYS Up to 20,000 protesters thronged
the plazas and streets of San
Francisco, where

Up to 20,000
protesters thronged
the plazas and streets
of San Francisco,
where

Table 3.1: Categories of spurious relation mentions in fp1 (on a sample of 10% of
relation mentions), ranked by the percentage of the examples in each category. In
the sample text, dotted underlined text shows head words of the first arguments
and the underlined text shows head words of the second arguments.

21

pecially for a task like relation extraction. Furthermore, the ACE 2005 annotation

guideline defines more than 20 relation subtypes. These many subtypes make it

hard for an annotator to keep all of them in mind while doing the annotation, and

thus it is inevitable that some examples are missed.

Here we proceed to approximate the number of missing examples given limited

knowledge. Let each annotator annotate n examples and assume that each pair of

annotators agrees on a certain fraction p of the examples. Assuming the examples

are equally likely to be found by an annotator, therefore the total number of unique

examples found by k annotators is
∑k

i=0 (1− p)in. If we had an infinite number

of annotators (k →∞), the total number of unique examples will be n/p , which

is the upper bound of the total number of examples. In the case of the ACE

2005 relation mention annotation, since the two annotators annotate around 4500

examples and they agree on 2/3 of them, the total number of all positive examples

is around 6750. This is close to the number of relation mentions in the adjudicated

list: 6459. Here we assume the adjudicator is doing a more complex task than an

annotator, resolving the disagreements and completing the annotation (as shown

in figure 1).

The assumption of the calculation is a little crude but reasonable given the

limited number of passes of annotation we have. Recent research [28] shows that,

by adding annotators for IE tasks, the merged annotation tends to converge after

having 5 annotators. To understand the annotation behavior better, in particular

whether annotation will converge after adding a few annotators, more passes of

annotation need to be collected. We leave this as future work.

22

3.4 Relation extraction with low-cost annotation

3.4.1 Baseline algorithm

To see whether a single-pass annotation is useful for relation detection and

classification, we did 5-fold cross validation (5-fold CV) with each of fp1, fp2 and

adj as the training set, and tested on adj. The experiments are done with the same

511 documents we used for the analysis. As shown in Table 3.2, we did 5-fold

CV on adj for experiment 3. For fairness, we use settings similar to 5-fold CV for

experiment 1 and 2. Take experiment 1 as an example: we split both of fp1 and

adj into 5 folds, use 4 folds from fp1 as training data, and 1 fold from adj as testing

data and does one train-test cycle. We rotate the folds (both training and testing)

and repeat 5 times. The final results are averaged over the 5 runs. Experiment 2

was conducted similarly. In the reminder of the chapter, 5-fold CV experiments

are all conducted in this way.

Table 3.2 shows that a relation tagger trained on the single-pass annotated

data fp1 performs worse than the one trained on merged and adjudicated data adj,

with 4.6 points lower F measure in relation detection, and 4.6 points lower relation

classification. For detection, precision on fp1 is 3 points higher than on adj but

recall is much lower (close to 10 points). The recall difference shows that the miss-

ing annotations contain expressions that can help to find more correct examples

during testing. The small precision difference indirectly shows that the spurious

ones in fp1 (as adjudicated) do not hurt precision. Performance on classification

shows a similar trend because the relation classifier takes the examples predicted

by the detector as correct as its input. Therefore, if there is an error, it gets prop-

agated to this stage. Table 3.2 also shows similar performance differences between

23

fp2 and adj.

Detection (%) Classification (%)
Exp # Training Testing

Precision Recall F1 Precision Recall F1

1 fp1 adj 83.4 60.4 70.0 75.7 54.8 63.6

2 fp2 adj 83.5 60.5 70.2 76.0 55.1 63.9

3 adj adj 80.4 69.7 74.6 73.4 63.6 68.2

Table 3.2: Performance of RDC trained on fp1/fp2/adj, and tested on adj.

In the remainder of this chapter, we will discuss a few algorithms to improve a

relation tagger trained on single-pass annotated data12. Since we already showed

that most of the spurious annotations are not actually errors from an extraction

perspective and table 2 shows that they do not hurt precision, we will only focus

on utilizing the missing examples, in other words, training with an incomplete

annotation.

3.4.2 Purify the set of negative examples

Traditional supervised methods find all pairs of entity mentions that appear

within a sentence, and then use the pairs that are not annotated as relation men-

tions as the negative examples for the purpose of training a relation detector. It

relies on the assumption that the annotators annotated all relation mentions and

missed no (or very few) examples. However, this is not true for training on a

single-pass annotation, in which a significant portion of relation mentions are left

not annotated. If this scheme is applied, all of the correct pairs which the annota-

tors missed belong to this negative category. Therefore, we need a way to purify

the negative set of examples obtained by this conventional approach.

12We only use fp1 and adj in the following experiments because we observed that fp1 and
fp2 are similar in general in the analysis, though a fraction of the annotation in fp1 and fp2 is
different. Moreover, algorithms trained on them show similar performance.

24

[35] focuses on classifying documents with only positive examples. Their algo-

rithm initially sets all unlabeled data to be negative and trains a Rocchio classifier,

selects negative examples which are closer to the negative centroid than positive

centroid as the purified negative examples, and then retrains the model. Their

algorithm performs well for text classification. It is based on the assumption that

there are fewer unannotated positive examples than negative ones in the unlabeled

set, so true negative examples still dominate the set of noisy negative examples in

the purification step.

Based on the same assumption, our purification process consists of the following

steps:

1. Use annotated relation mentions as positive examples; construct all possi-

ble relation mentions that are not annotated, and initially set them to be

negative. We call this noisy data set D.

2. Train a MaxEnt relation detection model Mdet on D.

3. Apply Mdet on all unannotated examples, and rank them by the model-

predicted probabilities of being positive.

4. Remove the top N examples from D.

These preprocessing steps result in a purified data set Dpure. We can use Dpure

for the normal training process of a supervised relation extraction algorithm.

The algorithm is similar to [35]. However, we drop a few noisy examples instead

of choosing a small purified subset since we have relatively few false negatives

compared to the entire set of unannotated examples. Moreover, after step 3, most

false negatives are clustered within the small region of top ranked examples which

25

has a high model-predicated probability of being positive. The intuition is similar

to what we observed from Figure 3.3 for false negatives since we also observed very

similar distribution using the model trained with noisy data. Therefore, we can

purify negatives by removing examples in this noisy subset.

However, the false negatives are still mixed with true negatives. For example,

still slightly more than half of the top 2000 examples are true negatives. Thus we

cannot simply flip their labels and use them as positive examples. In the following

section, we will use them in the form of unlabeled examples to help train a better

model.

3.4.3 Transductive inference on unlabeled examples

Transductive SVM ([65] [31]) is a semi-supervised learning method which learns

a model from a data set consisting of both labeled and unlabeled examples. Com-

pared to its popular antecedent SVM, it also learns a maximum margin classifi-

cation hyperplane, but additionally forces it to separate a set of unlabeled data

with large margin. The optimization function of Transductive SVM (TSVM) is

the following:

Figure 3.4: TSVM optimization function for non-separable case [31].

26

TSVM can leverage an unlabeled set of examples to improve supervised learn-

ing. As shown in chapter 3.3, a significant number of relation mentions are missing

from the single-pass annotation data. Although it is not possible to find all missing

annotations without human effort, we can improve the model by further utilizing

the fact that some unannotated examples should have been annotated.

The purification process discussed in the previous section removes N examples

which have a high density of false negatives. We further utilize the N examples as

follows:

1. Construct a training corpus Dhybrid from Dpure by taking a random sample13

ofN(1−p)/p (p is the ratio of annotated examples to all examples; p = 0.05 in

fp1) negatively labeled examples in Dpure and setting them to be unlabeled.

In addition, the N examples removed by the purification process are added

back as unlabeled examples.

2. Train TSVM on Dhybrid.

The second step trained a model which replaced the detection model in the

hierarchical detection-classification learning scheme we used. We will show in the

next section that this improves the model.

3.5 Experiments

Experiments were conducted over the same set of documents on which we did

analysis: the 511 documents which have completed annotation in all of the fp1, fp2

13We included this large random sample so that the balance of positive to negative examples
in the unlabeled set would be similar to that of the labeled data. The test data is not included
in the unlabeled set.

27

and adj from the ACE 2005 Multilingual Training Data V3.0. To reemphasize, we

apply the hierarchical learning scheme and we focus on improving relation detection

while keeping relation classification unchanged (results show that its performance

is improved because of the improved detection). We use SVM as our learning

algorithm with the full feature set from [83].

Baseline algorithm: The relation detector is unchanged. We follow the com-

mon practice, which is to use annotated examples as positive ones and all possible

untagged relation mentions as negative ones. We sub-sampled the negative data

by since that shows better performance.

+purify: This algorithm adds an additional purification preprocessing step

(chapter 3.4.2) before the hierarchical learning RDC algorithm. After purifica-

tion, the RDC algorithm is trained on the positive examples and purified negative

examples. We set N = 200014 in all experiments.

+tSVM: First, the same purification process of +purify is applied. Then we

follow the steps described in chapter 3.4.3 to construct the set of unlabeled exam-

ples, and set all the rest of purified negative examples to be negative. Finally, we

train TSVM on both labeled and unlabeled data and replace the relation detection

in the RDC algorithm. The relation classification is unchanged.

Table 3.3 shows the results. All experiments are done with 5-fold cross valida-

tion15 using testing data from adj. The first three rows show experiments trained

on fp1, and the last row (ADJ) shows the unmodified RDC algorithm trained on

adj for comparison. The purification of negative examples shows significant perfor-

14We choose 2000 because it is close to the number of relations missed from each single-pass
annotation. In practice, it contains more than 70% of the false negatives, and it is less than
10% of the unannotated examples. To estimate how many examples are missing (chapter 3.3.4),
one should perform multiple passes of independent annotation on a small dataset and measure
inter-annotator agreements.

15Details about the settings for 5-fold cross validation are in chapter 3.4.1.

28

mance gain, 3.7% F1 on relation detection and 3.4% on relation classification. The

precision decreases but recall increases substantially since the missing examples

are not treated as negatives. Experiment shows that the purification process re-

moves more than 60% of the false negatives. Transductive SVM further improved

performance by a relatively small margin. This shows that the latent positive ex-

amples can help refine the model. Results also show that transductive inference

can find around 17% of missing relation mentions. We notice that the performance

of relation classification is improved since by improving relation detection, some

examples that do not express a relation are removed. The classification perfor-

mance on single-pass annotation is close to the one trained on adj due to the help

from a better relation detector trained with our algorithm.

We also did 5-fold cross validation with a model trained on a fraction of the 4/5

(4 folds) of adj data (each experiment shown in table 4 uses 4 folds of adj documents

for training since one fold is left for cross validation). The documents are sampled

randomly. Table 3.4 shows results for varying training data size. Compared to

the results shown in the +tSVM row of Table 3.3, we can see that our best model

trained on single-pass annotation outperforms SVM trained on 90% of the dual-

pass, adjudicated data in both relation detection and classification, although it

costs less than half the 3-pass annotation. This suggests that given the same

amount of human effort for relation annotation, annotating more documents with

single-pass offers advantages over annotating less data with high quality assurance

(dual passes and adjudication).

29

Detection (%) Classification (%)
Algorithm

Precision Recall F1 Precision Recall F1

Baseline 83.4 60.4 70.0 75.7 54.8 63.6

+purify 76.8 70.9 73.7 69.8 64.5 67.0

+tSVM 76.4 72.1 74.2 69.4 65.2 67.2

ADJ (on adj) 80.4 69.7 74.6 73.4 63.6 68.2

Table 3.3: 5-fold cross-validation results. All are trained on fp1 (except the last
row showing the unchanged algorithm trained on adj for comparison), and tested
on adj. McNemar’s test show that the improvement from +purify to +tSVM, and
from +tSVM to ADJ are statistically significant (with p < 0.05).

Detection (%) Classification (%)
adj used

Precision Recall F1 Precision Recall F1

60% 4/5 86.9 41.2 55.8 78.6 37.2 50.5

70% 4/5 85.5 51.3 64.1 77.7 46.6 58.2

80% 4/5 83.3 58.1 68.4 75.8 52.9 62.3

90% 4/5 82.0 64.9 72.5 74.9 59.4 66.2

Table 3.4: Performance with SVM trained on a fraction of adj. It shows 5 fold
cross validation results.

3.6 Related work

[17] studies WSD annotation from a cost-effectiveness viewpoint. They showed

empirically that, with same amount of annotation dollars spent, single-annotation

is better than dual-annotation and adjudication. The common practice for quality

control of WSD annotation is similar to Relation annotation. However, the task

of WSD annotation is very different from relation annotation. WSD requires that

every example must be assigned some tag, whereas that is not required for rela-

tion tagging. Moreover, relation tagging requires identifying two arguments and

correctly categorizing their types.

The purified approach applied in this chapter is related to the general frame-

30

work of learning from positive and unlabeled examples. [35] initially set all un-

labeled data to be negative and train a Rocchio classifier, then select negative

examples which are closer to the negative centroid than positive centroid as the

purified negative examples. We share a similar assumption with [35] but we use

a different method to select negative examples since the false negative examples

show a very skewed distribution, as described in chapter 3.3.2.

Transductive SVM was introduced by [65] and later refined in [31]. A few

related methods were studied on the subtask of relation classification (the second

stage of the hierarchical learning scheme) in [80].

[13] observed the similar phenomenon that ACE annotators rarely duplicate a

relation link for coreferential mentions. They use an evaluation scheme to avoid

being penalized by the relation mentions which are not annotated because of this

behavior.

3.7 Conclusion

We analyzed a snapshot of the ACE 2005 relation annotation and found that

each single-pass annotation missed around 18-28% of relation mentions and con-

tains around 10% spurious mentions. A detailed analysis showed that it is possible

to find some of the false negatives, and that most spurious cases are actually correct

examples from a system builders perspective. By automatically purifying negative

examples and applying transductive inference on suspicious examples, we can train

a relation classifier whose performance is comparable to a classifier trained on the

dual-annotated and adjudicated data. Furthermore, we show that single-pass an-

notation is more cost-effective than annotation with high quality assurance.

31

Chapter 4

Weakly Supervised Relation

Extraction

Distant supervision, heuristically labeling a corpus using a knowledge base,

has emerged as a popular choice for training relation extractors. However, it

generates noisy class labels. In this chapter, we first analyze two problems of

distant supervision, and then propose a general statistical framework which models

both mention-level and entity-level noise. Experimental results demonstrate its

advantage over existing algorithms.

4.1 Introduction

Recently, Distant Supervision (DS) [12] [41] has emerged to be a popular choice

for training relation extractors without using manually labeled data. It automati-

cally generates training examples by labeling relation mentions in the source corpus

according to whether the argument pair is listed in the target relational tables in a

32

knowledge base (KB). This method significantly reduces human efforts for relation

extraction.

However, serious problems remain which limit the broad application of these

weakly supervised methods. First, the labeling heuristics mapping a KB to un-

labeled corpora have generated lots of incorrect labels. For example, mapping

Freebase1 to New York Times generates about 31% errors. Second, it also gener-

ates lots of false negatives because knowledge bases are highly incomplete (as high

as 90% incompleteness for popular types such as the place of birth of a person in

Freebase).

In this chapter, we analyze these two problems and present a novel statistical

framework. Our weakly supervised learning framework jointly models mention-

level and entity-level noise, and is able to address both problems. Experimental

results on a realistic and challenging dataset demonstrate the advantage of the

algorithm over existing solutions.

4.2 Problem definition

Distant Supervision: Given a KBD (a collection of relational tables r(e1, e2),

in which rǫR (R is the set of relation labels), and < e1, e2 > is a pair of entities that

is known to have relation r) and a corpus C, the key idea of distant supervision

is that we align D to C, label each bag2 of relation mentions that share argument

pair < e1, e2 > with r, otherwise OTHER. This generates a dataset that has

labels on entity-pair (bag) level. Figure 4.1 illustrates the labeling process. After

1Freebase is a large collaboratively-edited KB. It is available at http://www.freebase.com.
2A bag is defined as a set of relation mentions sharing the same entity pair as relation argu-

ments. We will use the terms bag and entity pair interchangeably in this chapter.

33

generating labeled examples, a relation extractor is trained with algorithms such

as conventional supervised single-instance learning (by assuming all mentions have

the same label of the bag), or Multiple-Instance Learning (by assuming at-least-

one of the mentions expresses the bag-level label), or Multi-Instance Multi-Label

learning (further assuming a bag can have multiple labels). All previous research

treats the OTHER class as the negative class for training purpose.

Figure 4.1: Generate labeled examples (bottom) with a KB (top) using distant
supervision. + and - mark examples labeled as positive and negative, respectively,
for the relation Person:Employee of. +? and -? respectively mark the ones labeled
positive and negative by the process, but in fact one can tell that they do not
belong to the respective class by reading the sentences.

4.2.1 Problem 1: false negative matches

The incomplete KB problem: KBs are usually incomplete because they are

manually constructed, and it is not possible to cover all human knowledge or stay

current. We took frequent relations, which involve an entity of type PERSON, from

Freebase (a large collaborative KB) for analysis. We define the incompleteness ∂(r)

34

of a relation r as follows:

∂(r) =
|{e}| − |{e|∃e′, s.t.r(e, e′)ǫD}|

|{e}|

∂(r) is the percentage of all persons {e} that do not have an attribute e′ (with

which r(e, e′) holds). Table 4.1 shows that 93.8% of persons have no place of

birth, and 78.5% of them have no nationality. These are must-have attributes for

a person. This shows that Freebase is highly incomplete.

Freebase relation types Incompleteness
/people/person/education 0.792

/people/person/employment history 0.923
/people/person/nationality* 0.785
/people/person/parents* 0.988

/people/person/place of birth* 0.938
/people/person/places lived* 0.966

Table 4.1: The incompleteness of Freebase (* are must-have attributes for a per-
son).

We further investigate the rate of false negative matches, as the percentage of

entity-pairs that are not listed in Freebase but one of its mentions generated by

DS does express a relation in the target set of types. We randomly picked 200

unlabeled bags3 from each of the two datasets [51] [59] generated by DS, and we

manually annotate all relation mentions in these bags. The result is shown in

Table 4.2, along with a few examples that indicate a relation holds in the set of

false negative matches (bag-level). Both datasets have around 10% false negative

matches in the unlabeled set of bags. Taking into consideration that the number

of positive bags and unlabeled bags are highly imbalanced (1:134 and 1:37 in the

Riedel and KBP dataset respectively, before under-sampling the unlabeled class),

the number of false negative matches are 11 and 4 times the number of positive

bags in Reidel and KBP dataset, respec-tively. Such a large ratio shows false

385% and 95.7% of the bags in the Riedel and KBP datasets have only one relation mention.

35

negatives do have a significant impact on the learning process.

Dataset
(train-
ing)

pos-
itive
bags

posi-
tive : #
unlabeled

% are
false
nega-
tives

pos-
itive :
false
nega-
tive

has
hu-
man
assess-
ment

Examples of false negative
mentions

(/location/location/contains)...
in Brooklyn ’s Williams-

burg.
Riedel 4,700 1:134(BD*) 8.5% 1:11.4 no

(/people/person/place lived)
Cheryl Rogowski , a
farmer from Orange

County

(per:city of birth) Juan

Martn Maldacena (born
September 10, 1968) is a
theoretical physicist born
in Buenos Aires

KBP 183,062 1:37(BD*) 11.5% 1:4 yes
(per:employee of)Dave

Matthews, from the ABC

News,

Table 4.2: False negative matches on the Riedel [51] and KBP dataset [59]. All
numbers are on bag (pairs of entities) level. BD* are the numbers before down-
sampling the negative set to 10% and 5% in Riedel and KBP dataset, respectively.

4.2.2 Problem 2: false positive matches

As shown in Figure 4.1, distant supervision labels ... Kofi Annan warning

the United Nations ... as a positive mention for the relation Person:Employee of

because <Kofi Anna, United Nations> is listed in the corresponding table in the

KB. However, the sentence itself doesnt express the employment relation between

Kofi Annan and United Nations. We call this a false positive match for distant

supervision.

Generating false positive matches is a significant problem for the distant su-

36

pervision labeling process. Riedel et al. 2010 reported that about 31% of relation

mentions labeled are false positive matches when aligning Freebase to the New

York Times corpus (Sandhaus 2008). Surdeanu et al. 2012 reported 39% false

positive matches rate at mention-level when aligning Wikipedia infoboxes to the

source corpus provided by the KBP shared task.

Instead of applying conventional single-instance learning, previous approaches

deal with the label noise by using Multiple Instance Learning ([51]) or Multiple

Instance Multiple Label Learning([27, 59]). However, the problem is not completely

solved for two reasons:

• Since the knowledge base and the corpus are generated independently, there

is no guarantee that at-least-one mention expresses the relation.

• Our manual inspectation on the Riedel [51] dataset shows that around 50%

of the positive bags have only one mention. Therefore the at-least-one are

correct is a strong and artificial constraint which assumes all of the mentions

from these single-instance bags are correct.

4.3 Correcting false negatives: a semi-supervised

MIML framework

Our goal is to model the bag-level label noise, caused by the incomplete KB

problem, in addition to modeling the instance-level noise using a 3-layer MIL or

MIML model (e.g., [59]). We propose a 4-layer model as shown in Figure 4.2.

The input to the model is a list of n bags with a vector of binary labels, either

Positive (P), or Unlabled (U) for each relation r. Our model can be viewed as a

37

semi-supervised4 framework that extends a state-of-the-art Multi-Instance Multi-

Label (MIML) model [59]. Since the input to previous MIML models are bags

with per-relation binary labels of either P or Negative (N), we add a set of latent

variables ℓ which models the true bag-level labels, to bridge the observed bag labels

y and the MIML layers. We consider this as our main contribution of the model.

Our hierarchical model is shown in Figure 4.2.

Figure 4.2: Plate diagram of our model.

Let i, j be the index in the bag and mention level, respectively. Following [59],

we model mention-level extraction (p(zrij|xij;wz) and multi-instance multi-label

aggregation (p(ℓri |zi;w
r
ℓ)) in the bottom 2 layers. We define:

• r is a relation label. rǫR∪{OTHER}, in which OTHER denotes no relation

expressed.

• yri ǫ{P,U}: r holds for ith bag or it is unlabeled.

• ℓri ǫ{P,N}: a hidden variable that denotes whether r holds for the ith bag.

• θ is a observed constant controlling the total number of bags whose latent

label is positive.

We define the following conditional probabilities:

4We use the term semi-supervised because the algorithm uses unlabeled bags but existing
solutions requires bags to be labeled either positive or negative.

38

• p(yri |ℓ
r
i) =

1/2 if yri = P ∧ ℓri = P ;

1/2 if yri = U ∧ ℓri = P ;

1 if yri = U ∧ ℓri = N ;

0 otherwise ;

It encodes the constraints between

true bag-level labels and the entity pair labels in the KB.

• p(θ|ℓ) ∼ N (

∑n
i=1

∑
rǫR δ(ℓri ,P)

n
, 1
k
) where δ(x, y) = 1 if x = y, 0 otherwise.

k is a large number. θ is the fraction of the bags that are positive. It is

an observed parameter that depends on both the source corpus and the KB

used.

Similar to [59], we also define the following parameters and conditional proba-

bilities (details are in [59]):

• zijǫR ∪ {OTHER}: a latent variable that denotes the relation type of the

jth mention in the ith bag.

• xij is the jth relation mention in the ith bag. We use the set of features in

[59].

• wz is the weight vector for the multi-class relation mention-level classifier.

• wr
ℓ is the weight vector for the rth binary top-level classifier (from mention

to bag-level

• p(ℓri |zi;w
r
ℓ) ∼ Bern(fℓ(w

r
ℓ , zi)) where fℓ is probability produced by the rth

top-level classifier, from the mention-label level to the bag-label level.

• p(zrij|xij;wz) ∼ Multi(fz(wz,xij)) where fz is probability produced by the

mention-level classifier5, from the mentions to the mention-label level.

5All classifiers are implemented with L2-regularized logistic regression with Stanford CoreNLP

39

4.3.1 Training

We use hard Expectation-Maximization (EM) algorithm for training the model.

Our objective function is to maximize log-likelihood:

L(wz,wℓ) = logp(y, θ|x;wz,wℓ) = log
∑

ℓ

p(y, θ, ℓ|x;wz,wℓ)

Since solving it exactly involves exploring an exponential assignment space for ℓ,

we approximate and iteratively set ℓ∗ = argmaxℓ p(ℓ|y, θ,x;wz,wℓ)

p(ℓ|y, θ,x;wz,wℓ) ∝ p(y, θ, ℓ|x;wz,wℓ)

= p(y, θ|ℓ,x)p(ℓ|x;wz,wℓ)

= p(y|ℓ)p(θ|ℓ)p(ℓ|x;wz,wℓ)

Rewriting in log form:

logp(ℓ|y, θ,x;wz,wℓ)

= logp(y|ℓ) + logp(θ|ℓ) + logp(ℓ|x;wz,wℓ)

=
n

∑

i=1

∑

rǫR

logp(yri |ℓ
r
i) + (−k(

∑n

i=1

∑

rǫR δ(ℓri , P)

n
− θ)2)

+
n

∑

i=1

∑

rǫR

logp(ℓri |xi;wz,wℓ) + const

In the E-step, we do a greedy search (steps 5-8 in algorithm 1) in all p(ℓri |xi;wz,wℓ)

and update ℓri until the second term is maximized. wz, wℓ are the model weights

learned from the previous iteration.

After fixed ℓ, we seek to maximize:

logp(ℓ|xi;wz,wℓ) =
n

∑

i=1

logp(ℓi|xi;wz,wℓ)

=
n

∑

i=1

log
∑

zi

p(ℓi, zi|xi;wz,wℓ)

which can be solved with an approximate solution in [59] (step 9-11): update zi

independently with: z∗i = argmax
zi
p(zi|ℓi,xi;wz,wℓ). More details can be found

in [59].

package

40

Algorithm 1 Training (E-step:2-11; M-step:12-15)

1: for i = 1, 2 to T do

2: ℓri ← N for all yri = U and rǫR
3: ℓri ← P for all yri = P and rǫR
4: I = {< i, r > |ℓri = N}; I ′ = {< i, r > |ℓri = P}
5: for k = 0, 1 to θn− |I ′| do
6: < i′, r′ >= argmax<i,r>ǫI p(ℓ

r
i |xi;wz,wℓ)

7: ℓr
′

i′ ← P ; I = I\{< i′, r′ >}
8: end for

9: for i = 1, 2 to n do

10: z∗i = argmax
zi
p(zi|ℓi,xi;wz,wℓ)

11: end for

12: w∗
z = argmax

wz

∑n

i=1

∑|xi|
j=1 logp(zij|xij,wz)

13: for all rǫR do

14: w
r(∗)
ℓ = argmaxwr

ℓ

∑n

i=1 p(ℓ
r
i |zi,w

r
ℓ)

15: end for

16: end for

17: return w
z
,wℓ

In the M-step, we retrain both of the mention-level and the aggregation level

classifiers.

The full EM algorithm is shown in algorithm 1.

4.3.2 Inference

Inference on a bag xi is trivial. For each mention:

z∗ij = argzijǫR∪{OTHER} max p(zij|xij,wz)

Followed by the aggregation (directly with wℓ):

y
r(∗)
i = argyri ǫ{P,N} max p(yri |zi;w

r
ℓ)

4.4 Correcting false positives: an extension

We extend the framework in the previous section to deal with the false pos-

itive problem. In this section we focus on false positives and we assume there

41

are no false negatives in the dataset. For the end-system, we will combine both

approaches in this section and the previous section to deal with both problems.

Such a combination is straightforward since the two approaches share a common

underlining framework

4.4.1 A semi-supervised MIML algorithm

In contrast to previous research that simply trust the bag-level labels assigned

by the knowledge base, we instead use the additional layer of latent variables to

represent the true bag-level labels. Because there are “positive“ bags which donot

have any positive mentions, we believe this more accurately models the labels

generated by DS.

The input to the model is a list of n bags with a vector of binary labels, either

Positive (P), or Negative (N) for each relation r. Our model can be viewed as

a framework that extends the MIML model (Surdeanu et al. 2012), but enable

the bag-level labels to take different values from the ones assigned by the KB.

Following the previous section, we add a set of latent variables ℓ which models the

true bag-level labels, to bridge the observed bag labels y and the MIML layers.

The plate diagram is essentially the same to the one shown in Figure 4.2.

The model is the same to the one described in the previous section except the

following:

• yri ǫ{P,N}: whether r holds for the ith bag. P denotes Positive and N

denotes Negative.

• θ is an observed constant (a real number in [0, 1]) controlling the total num-

ber of bags whose latent label is positive. θ is set to be smaller than the

42

percentage of positive bags in all bags generated by DS to deal with false

positives.

• p(yri |ℓ
r
i) =

1 if yri = P ∧ ℓri = P ;

1/2 if yri = P ∧ ℓri = N ;

1/2 if yri = N ∧ ℓri = N ;

0 otherwise ;

Similarly, it encodes the constraints

between true bag-level labels and the entity pair labels in the KB.

The training is the same, except for 1) we fix ℓri ← N for all yri = N , 2) the

E-step: instead of searching in the set of negative bags, we search in “positive“

bags to find argmax<i,r> p(ℓri |xi;wz,wℓ) and set ℓri ← P until the first two terms

of (1) is maximized. This provides the effects that 1) keep the labels of negative

bags unchanged, 2) labeled the positive bags to correct the incorrectly labeled

positive labels, assigned by the nave labeling heuristics. We use the same inference

procedure to the one described in chapter 4.3.2.

4.5 Implementation details

We implement our model on top of the MIML[59] code base.6 We use the same

mention-level and aggregate-level feature sets as [59]. We adopt the same idea of

using cross validation for the E and M steps to avoid overfitting. We initialize

our algorithm by sampling 5% unlabeled examples as negative, in essence using 1

epoch of MIML to initialize. Empirically it performs well.

6Available at http://nlp.stanford.edu/software/mimlre.shtml

43

4.6 Experiments

Data set: We use the KBP [29] dataset7 prepared and publicly released by

[59] for our experiment since it is 1) large and realistic, 2) publicly available, 3)

most importantly, it is the only dataset that has associated human-labeled ground

truth. Any KB held-out evaluation without manual assessment will be significantly

affected by KB incompleteness. In KBP dataset, the training bags are generated by

mapping Wikipedia infoboxes (after merging similar types following the KBP 2011

task definition) into a large unlabeled corpus (consisting of 1.5 million documents

from the KBP source corpus and a complete snapshot of Wikipedia). The KBP

shared task provided 200 query named entities with their associated slot values

(in total several thousand pairs). We use 40 queries as development dataset (dev),

and the rest (160 queries) as evaluation dataset. We set θ = 0.25 by tuning on

the dev set and use it in the experi-ments. For a fair comparison, we follow [59]

and begin by downsampling the negative class to 5%. We also set T=8 and use

the following noisy-or (for ith bag) of mention-level probability to rank predicted

types (r) of pairs and plot the precision-recall curves for all experiments.

Probi(r) = 1−
∏

j

(1− p(zij = r|xij;wz))

Correct false negatives: We compare our algorithm (MIML-semi) to three

algorithms: 1) MIML [59], the Multiple-Instance Multiple Label algorithm which

labels the bags directly with the KB (y = ℓ). 2) MultiR (denoted as Hoffmann)

[27], a Multiple-Instance algorithm that supports overlapping relations. It also

imposes y = ℓ. 3) Mintz++ [59], a variant of the single-instance learning algo-

rithm (chapter 4.2). The first two are stat-of-the-art Multi-Instance Multi-Label

algorithms. Mintz++ is a strong baseline [59] and an improved version of the

7Available from Linguistic Data Consortium (LDC). http://projects.ldc.upenn.edu/kbp/data/

44

original distant-supervision algorithm. [41]. Figure 4.3 shows that our algorithm

consistently outperforms all three algorithms at almost all recall levels (with the

exception of a very small region in the PR-curve). This demonstrates that by

treating unlabeled data set differently and leveraging the missing positive bags,

MIML-semi is able to learn a more accurate model for extraction. Although the

proposed solution is a specific algorithm, we believe the idea of treating unlabeled

data differently can be incorporated into any of these algorithms that only use

unlabeled data as negative examples.

Correct false positives: Similar to the previous experiment, we evaluate the

proposed algorithm (MIML++) on the KBP dataset, and compared it to three

state-of-the-art algorithms: MIML [59], Hoffmann [27] and Mintz++ [59]. Figure

4.4 shows that our algorithm improves precision at most recall levels comparing to

all three algorithms. This demonstrates that a more accurate model can be learnt

by more appropriately modeling the labeling errors.

45

Figure 4.3: Performance on the KBP dataset. The figures on the top, middle and
bottom show MIML, Hoffmann, and Mintz++ compared to the same MIML-Semi
curve, respectively. MIML-Semi is shown in red curves (lighter curves in black and
white) while other algorithms are shown in black curves (darker curves in black
and white).

46

Figure 4.4: Performance on the KBP dataset. The figures on the top, middle and
bottom show MIML, Hoffmann, and Mintz++ compared to the same MIML++
curve, respectively. MIML++ is shown in red curves (lighter curves in black and
white) while other algorithms are shown in black curves (darker curves in black
and white).

47

Chapter 5

Unsupervised Relation Extraction

via Ensemble Semantics

The Web brings an open-ended set of semantic relations. Discovering the sig-

nificant types is very challenging. Unsupervised algorithms have been developed

to extract relations from a corpus without knowing the relation types in advance,

but most of them rely on tagging arguments of predefined types. One recently

reported system is able to jointly extract relations and their argument semantic

classes, taking a set of relation instances extracted by an open IE (Information

Extraction) algorithm as input. However, it cannot handle polysemy of relation

phrases and fails to group many similar (synonymous) relation instances because

of the sparseness of features. In this chapter, we present a novel unsupervised

algorithm that provides a more general treatment of the polysemy and synonymy

problems. The algorithm incorporates various knowledge sources which we will

show to be very effective for unsupervised relation extraction. Moreover, it ex-

plicitly disambiguates polysemous relation phrases and groups synonymous ones.

48

While maintaining approximately the same precision, the algorithm achieves sig-

nificant improvement on recall compared to the previous method. It is also very

efficient. Experiments on a real-world dataset show that it can handle 14.7 million

relation instances and extract a very large set of relations from the Web.

5.1 Introduction

In the era of the Internet, the Web has become a massive potential source

of relation mentions. However, there are challenges for Web-scale open-domain

relation extraction: the huge and fast-growing scale, a mixed genre of documents

and potentially infinite types of relations it carries. To extract these relations, a

system should not assume a fixed set of relation types, nor rely on a fixed set of

relation argument types. It also should be able to efficiently handle a very large

amount of data.

The past decade has seen some promising solutions. Unsupervised relation ex-

traction (URE) algorithms extract relations from a corpus without knowing the

relations in advance. However, most algorithms [25] [55] [14] rely on tagging pre-

defined types of entities as relation arguments, and thus are not well-suited for

open domain relation extraction.

Recently, [33] proposed Semantic Network Extractor (SNE), which generates

argument semantic classes and sets of synonymous relation phrases at the same

time. It avoids the requirement of tagging relation arguments of predefined types.

However, SNE has 2 limitations: 1) following previous URE algorithms, it only

uses features from the set of input relation instances for clustering. Empirically

we found that it fails to group many relevant relation instances. These features,

49

such as the surface forms of arguments and lexical sequences in between, are very

sparse in practice. In contrast, there exist several well-known corpus-level semantic

resources that can be automatically derived from a source corpus and are shown

to be useful for generating the key elements of a relation: its 2 argument semantic

classes and a set of synonymous phrases. For example, semantic classes can be

derived from a source corpus with contextual distributional similarity and web

table co-occurrences. The synonymy1 problem for clustering relation instances

could potentially be better solved by adding these resources. 2) SNE assumes

that each entity or relation phrase belongs to exactly one cluster, thus is not able

to effectively handle polysemy of relation phrases2. An example of a polysemous

phrase is be the currency of as in 2 triples <Euro, be the currency of, Germany>

and <authorship, be the currency of, science>. As the target corpus expands from

mostly news to the open web, polysemy becomes more important as input covers a

wider range of domains. In practice, around 22% (chapter 5.3) of relation phrases

are polysemous. Failure to handle these cases significantly limits its effectiveness.

To move towards a more general treatment of the polysemy and synonymy

problems, we present a novel algorithm WEBRE for open-domain large-scale un-

supervised relation extraction without predefined relation or argument types. The

major contributions of this work are:

• WEBRE inorporates a wide range of corpus-level semantic resources for im-

proving relation extraction. The effectiveness of each knowledge source and

their combination are studied and compared. To the best of our knowledge,

it is the first to combine and compare them for unsupervised relation extrac-

1We use the term synonymy broadly as defined in chapter 5.3.
2A cluster of relation phrases can, however, act as a whole as the phrase cluster for 2 different

relations in SNE. However, this only accounts for 4.8% of the polysemous cases

50

tion.

• WEBRE explicitly disambiguates polysemous relation phrases and groups

synonymous phrases, thus it fundamentally avoids the limitation of previous

methods.

• Experiments on the Clueweb09 dataset (lemurproject.org/clueweb09.php)

show that WEBRE is effective and efficient. We present a large-scale evalu-

ation and show that WEBRE can extract a very large set of high-quality re-

lations. Compared to the closest prior work, WEBRE significantly improves

recall while maintaining the same level of precision. WEBRE is efficient. To

the best of our knowledge, it handles the largest triple set to date (7-fold

larger than largest previous effort). Taking 14.7 million triples as input, a

complete run with one CPU core takes about a day.

5.2 Related work

As the preprocessing instance-detection step for the problem studied in this

chapter, open IE algorithms extract relation instances (in the form of triples) from

the open domain ([18] [2] [20]). For efficiency, they only use shallow features.

Reverb ([20]) is a state-of-the-art open domain extractor that targets verb-centric

relations, which have been shown in [3] to cover over 70% of open domain relations.

[71] filtered relation instances by using a few heuristics and a learning algorithm.

Taking the relation instances extracted by open IE algorithms as input, algorithms

have been proposed to resolve objects and relation synonyms (Resolver), extract

semantic networks (SNE), and map extracted relations into an existing ontology

[57].

51

Recent work shows that it is possible to construct semantic classes automati-

cally with data-driven approaches. They generally fall into three categories. The

first category is based on the distributional hypothesis, which states that similar

terms tend to appear with similar contexts ([24]), so that it is possible to group

similar terms if their contexts are similar. Several previous efforts aimed at utiliz-

ing the distributional hypothesis for constructing semantic classes ([47] [43]). The

second category ([46] [53]) uses patterns to find similar terms. The third category

is language independent approaches ([69] [70]). For example, [69] use HTML wrap-

pers to find similar terms. [49] combine several sources and features for extracting

entity classes.

Two tasks are closely related to the task of finding similar phrases for a relation:

paraphrase discovery and recognizing textual entailment. Data-driven paraphrase

discovery methods ([36] [48] [74] [54]) find paraphrases by extending the idea of

distributional similarity to phrases. The Recognizing Textual Entailment algo-

rithms ([4]) can be used for finding related phrases since they find pairs of phrases

in which one entails the other.

To efficiently cluster high-dimensional datasets, canopy clustering ([37]) uses

a cheap, approximate distance measure to divide data into smaller subsets, and

then clusters each subset using an exact distance measure. It has been applied to

reference matching. The second phase of WEBRE applies a similar high-level idea

of partition-then-cluster for speeding up relation clustering. We design a graph-

based partitioning subroutine that uses various types of evidence, such as shared

hypernyms. To the best of our knowledge, we have applied the efficient clustering

algorithm on the largest set of relation instances extracted from the open domain

to date.

52

5.3 Problem analysis

The basic input is a collection of relation instances (triples) of the form <

ent1, ctx, ent2 >. For each triple, ctx is a relation phrase expressing the relation

between the first argument ent1 and the second argument ent2. An example triple

is <Obama, win in, NY>. The triples can be generated by an open IE extractor

such as TextRunner or Reverb. Our goal is to automatically build a list of rela-

tions, each with the form3 {< ent1, ctx, ent2 >} or < C1, P, C2 > (P is the set of

relation phrases, and C1 and C2 are two argument classes). Examples of triples

and relations (as Type B relations to be explained in section 5.4.2) are shown in

Figure 5.1.

There are two major challenges for building such a list of relations. The first

problem is the polysemy of relation phrases, which means that a relation phrase

ctx can express different relations in different triples. For example, the meaning

of be the currency of in the following two triples is quite different: <Euro, be

the currency of, Germany> and <authorship, be the currency of, science>. It is

more appropriate to assign these 2 triples to 2 relations a currency is the currency

of a country and a factor is important in an area than to merge them into one.

Formally, a relation phrase ctx is polysemous if there exist 2 different relations

< C1, P, C2 > and < C ′
1, P

′, C ′
2 > where ctxǫP

⋂

P ′. In the previous example, be

the currency of is polysemous because it appears in 2 different relations.

Polysemy of relation phrases is not uncommon. We generated clusters from a

large sample of triples with the assistance of a soft clustering algorithm, and found

that around 22% of relation phrases can be put into at least 2 disjoint clusters

3There are 2 possible representations of a relation: as a set of triple instances or a triple with
2 entity classes and a relation phrase class

53

that represent different relations. More importantly, manual inspection reveals

that some common phrases are polysemous. For example, be part of can be put

into a relation a city is located in a county when connecting Cities to Counties,

and another relation a company is a subsidiary of a parent company when con-

necting Companies to Companies. Failure to handle polysemous relation phrases

fundamentally limits the effectiveness of an algorithm. The WEBRE algorithm

described later explicitly handles polysemy and synonymy of relation phrases in

its first and second phase respectively.

The second problem is the synonymy of relation instances. We use the term

synonymy broadly and we say 2 relation instances are synonymous if they express

the same semantic relation between the same pair of semantic classes. For example,

both <Euro, be the currency used in, Germany> and <Dinar, be legal tender in,

Iraq> express the relation <Currencies, be currency of, Countries>. Solving this

problem requires grouping synonymous relation phrases and identifying argument

semantic classes for the relation.

Various knowledge sources can be derived from the source corpus for this pur-

pose. In this chapter we pay special attention to incorporating various semantic

resources for relation extraction. We will show that these semantic sources can

significantly improve the coverage of extracted relations and the best performance

is achieved when various resources are combined together.

5.4 Mining relations from the Web

In this section, we first describe the knowledge sources that are used in the

relation extraction algorithm, and then introduce the WEBRE algorithm, followed

54

by a brief analysis on its computational complexity.

5.4.1 Knowledge Sources

Entity similarity graph: We build two similarity graphs for entities: a distri-

butional similarity (DS) graph and a pattern-similarity (PS) graph. The DS graph

is based on the distributional hypothesis [24], saying that terms sharing similar

contexts tend to be similar. We use a text window of size 4 as the context of a

term, use Pointwise Mutual Information (PMI) to weight context features, and

use Jaccard similarity to measure the similarity of term vectors. The PS graph

is generated by adopting both sentence lexical patterns and HTML tag patterns

[26] [34] [81]. Two terms (T) tend to be semantically similar if they co-occur in

multiple patterns. One example of sentence lexical patterns is (such as | including)

T{,T}* (and|,|.). HTML tag patterns include tables, dropdown boxes, etc.

Hypernymy graph: Hypernymy relations are very useful for finding seman-

tically similar term pairs. For example, we observed that a small city in UK and

another small city in Germany share common hypernyms such as city, location,

and place. Therefore the similarity between the two cities is large according to the

hypernymy graph, while their similarity in the DS graph and the PS graph may be

very small. Following existing work ([26] [45] [56] [64]), we adopt a list of lexical

patterns to extract hypernyms. The patterns include NP {,} (such as) {NP,}*

{and|or} NP, NP (is|are|was|were|being) (a|an|the) NP, etc. In this chapter, we

use the terms hypernym and label interchangeably.

Relation phrase similarity: To generate the pairwise similarity graph for

relation phrases with regard to the probability of expressing the same relations,

we apply a variant of the DIRT algorithm ([36]):

55

Algorithm 2 Paraphrase Discovery

Input: A collection of triples {< ent1, ctx, ent2 >}
Output: A similarity matrix of phrases M
1: for all t =< ent1, ctx, ent2 > such that tǫ{< ent1, ctx, ent2 >} do
2: Collect < ent1, ent2 > as features for ctx
3: end for

4: vec(ctx) = feature vector of ctx
5: for all ctx1ǫ{ctx} do
6: for all ctx2ǫ{ctx} do
7: sim(ctx1, ctx2) = Jaccord(vec(ctx1), vec(ctx2))
8: add sim(ctx1, ctx2) into M
9: end for

10: end for

11: return M

Like DIRT, the paraphrase discovery relies on the distributional hypothesis,

but there are a few differences: 1) we use stemmed lexical sequences instead of

dependency paths as relation phrase candidates. There are two reasons. First,

although dependency parsing produces less sparse phrase candidates, it is not

applicable to a very large corpus. Second, the impact of the data sparseness

problem is reduced in a large corpus. 2) We used ordered pairs of arguments as

features of phrases while DIRT uses them as independent features. We empirically

tested both feature schemes and found that using ordered pairs results in likely

paraphrases but using independent features the result contains general inference

rules4.

5.4.2 WEBRE for Relation Extraction

WEBRE consists of two phases. In the first phase, a set of semantic classes are

discovered and used as argument classes for each relation phrase. This results in a

4For example, be part of has ordered argument pairs < A,B > and < C,D >, and be not
part of has ordered argument pairs < A,D > and < B,C >. If arguments are used as indepen-
dent features, these two phrases shared the same set of features A,B,C,D. However, they are
inferential (complement relationship) rather than being similar phrases

56

Figure 5.1: Overview of the WEBRE algorithm (Illustrated with examples sampled
from experiment results). The tables and rectangles with a database sign show
knowledge sources, shaded rectangles show the 2 phases, and the dotted shapes
show the system output, a set of Type A relations and a set of Type B relations.
The orange arrows denote resources used in phase 1 and the green arrows show
the resources used in phase 2.

large collection of relations whose arguments are pairs of semantic classes and which

have exactly one relation phrase. We call these relations the Type A relations. An

example Type A relation is <{New York, London}, be located in, {USA, England,

}>. During this phase, polysemous relation phrases are disambiguated and placed

into multiple Type A relations. The second phase is an efficient algorithm which

groups similar Type A relations together. This step enriches the argument semantic

classes and groups synonymous relation phrases to form relations with multiple

expressions, which we called Type B relations. Both Type A and Type B relations

are system outputs since both are valuable resources for downstream applications

such as Question Answering and Web Search. An overview of the algorithm is

shown in Figure 5.1. Here we first briefly describe a clustering subroutine that is

used in both phases, and then describe the algorithm in detail.

57

To handle polysemy of objects (e.g., entities or relations) during the cluster-

ing procedure, a key building block is an effective Multi-Membership Clustering

algorithm (MMClustering). For simplicity and effectiveness, we use a variant

of Hierarchical Agglomerative Clustering (HAC), in which we first cluster objects

with HAC, and then reassign each object to additional clusters when its similari-

ties with these clusters exceed a certain threshold5. The algorithm is the following:

Algorithm 3 MMClustering

Input: a vector of objects I
objects similarity function SimFunc
similarity threshold α and β

Output: clusters of objects {C}
1: {C} = set each object in {I} as a unit cluster
2: {C} = HAC({C}, α)
3: for all I such that Iǫ{I} do
4: for all C such that Cǫ{C} do
5: if SimFunc(I, C) > β then

6: Insert I into C
7: end if

8: end for

9: end for

10: return {C}

An object can be an entity as in phase 1, or a relation for phase 2. Empirically

β should be greater than α to avoid generating duplicated clusters.

Discovering Type A Relations The first phase of the relation extraction

algorithm generates Type A relations, which have exactly one relation phrase and

two argument entity semantic classes. For each relation phrase, we apply a clus-

tering algorithm on each of its two argument sets to generate argument semantic

classes. The Phase 1 algorithm processes relation phrases one by one. For each

5This threshold should be slightly greater than the clustering threshold for HAC to avoid
generating duplicated clusters

58

relation phrase ctx, step 4 (refer to the Algorithm Phase 1 figure below) clusters

the set ent1 using MMClustering to find left-hand-side argument semantic classes

C1. Then for each cluster C in C1, it gathers the right-hand-side arguments which

appeared in some triples whose left hand-side-side argument are in C, and puts

them into ent2. Following this, it clusters ent2 to find right-hand-side argument

semantic classes. This results in pairs of semantic classes which are arguments of

ctx. Each relation phrase can appear in multiple Type A relations. For example,

<Cities, be part of, Counties> and <Companies, be part of, Companies> are dif-

ferent Type A relations which share the same relation phrase be part of. In the

pseudo code, SimEntFunc is encoded in the entity similarity graphs.

Algorithm 4 Phase 1: Discovering Type A relations

Input: a set of triples T = {< ent1, ctx, ent2 >}
entity similarity function SimEntFunc
similarity threshold α

Output: list of Type A relations < C1, ctx, C2 >
1: for each relation phrase ctx do

2: {< ent1, ctx, ent2 >} = set of triples sharing ctx
3: {ent1} = set of ent1 in {< ent1, ctx, ent2 >}
4: {C1} = MMClustering({ent1}, SimEntFunc, α)
5: for each C1 in {C1} do
6: ent′2=the set of ent2 s.t. ∃ < ent1, ctx, ent2 > ǫT

∧

ent1ǫC1

7: C2 = MMClustering({ent2}, SimEntFunc, α)
8: for each C2 in {C2} do
9: Add < C1, ctx, C2 > into {< C1, ctx, C2 >}

10: end for

11: end for

12: end for

13: return {< C1, ctx, C2 >}

Discovering Type B Relations The goal of phase 2 is to merge similar Type

A relations, such as <Cities, be located in, Countries> and <Cities, be city of,

Countries>, to produce Type B relations, which have a set of synonymous relation

59

phrases and more complete argument entity classes. The challenge for this phase

is to cluster a very large set of Type A relations, on which it is infeasible to run

a clustering algorithm that does pairwise comparison. Therefore, we designed an

evidence-based partition-then-cluster algorithm.

The basic idea is to heuristically partition the large set of Type A relations

into small subsets, and run clustering algorithms on each subset. It is based on

the observation that most pairs of Type A relations are not similar because of the

sparseness in the entity class and the relation semantic space. If there is little or

no evidence showing that two Type A relations are similar, they can be put into

different partitions. Once partitioned, the clustering algorithm only has to be run

on each much smaller subset, thus computation complexity is reduced.

We use 2 types of evidence. They are shared members and shared hypernyms

of relation arguments. For example, 2 Type A relations r1=<Cities, be city of,

Countries> and r2=<Cities, be located in, Countries> share a pair of arguments

<Tokyo, Japan>, and a pair of hypernyms <city, country>. These pieces of

evidence give us hints that they are likely to be similar. As shown in the pseudo

code, shared arguments and hypernyms are used as independent evidence to reduce

sparseness.

Steps 1 and 2 build an inverted index from evidence to sets of Type A relations.

On the graph G whose vertices are Type A relations, steps 3 to 8 set the value

of edge weights based on the strength of evidence that shows the end-points are

related. The weight of evidence E is calculated as follows:

weight(E) =
shared triples inwhichE appears

max(# classesE appears)

The idea behind this weighting scheme is similar to that of TF-IDF in that the

weight of evidence is higher if it appears more frequently and is less ambiguous

60

Algorithm 5 Phase 2: Discovering Type B relations

Input: A set of Type A relations {r} = {< C1, ctx, C2 >}
Relation similarity function SimRelnFunc
Map from entities to their hypernyms: Mentity2label

Similarity threshold α
Edge weight threshold µ

Output: A list of Type B relations < C1, P, C2 >
1: {< ent, {r′} >} = build inverted index from argument ent to the set of Type

A relations {r′} on {< C1, ctx, C2 >}
2: {< l, {r′} >} = build inverted index from hypernym l of arguments to the set

of Type A relations {r′} on {< C1, ctx, C2 >} with map Mentity2label

3: for For each ent in {< ent, {r′} >} do
4: for For each pair of r1 and r2 s.t. r1ǫ{r

′}
∧

r2ǫ{r
′} do

5: weightedge(< r1, r2 >)+ = weight(l)
6: end for

7: end for

8: G(V,E) = weighted graph in which V = {r}
9: for each edge < r1, r2 > in G do

10: if weightedge(< r1, r2 >) < µ then

11: Remove edge < r1, r2 > from G
12: end if

13: end for

14: {CC} = DFS(G)
15: for each connected component CC in {CC} do
16: {< C1, ctx, C2 >} = vertices in CC
17: {< C ′

1, P
′, C ′

2 >} = MMClustering({< C1, ctx, C2 >}, SimRelnFunc, α)
18: Add {< C ′

1, P
′, C ′

2 >} into {< C1, P, C2 >}
19: end for

20: return {< C1, P, C2 >}

(appeared in fewer semantic classes during clustering of phase 1). The weighting

scheme is applied to both shared arguments and labels.

After collecting evidence, we prune (steps 9 to 11) the edges with a weight less

than a threshold µ to remove noise. Then a Depth-First Search (DFS) is called

on G to find all Connected Components CC of the graph. These CCs are the

partitions of likely-similar Type A relations. We run MMClustering on each CC

in CC and generate Type B relations (step 13 to step 16). The similarity of two

61

relations (SimRelnFunc) is defined as follows:

sim(< C1, P, C2 >,< C ′
1, P

′, C ′
2 >) =

0 if sim(P, P ′) < σ ;

min(sim(C1, C
′
1), sim(C2, C

′
2)) else ;

in which sim(P, P ′) is the average similarity of the 2 sets of relation phrases in

the 2 relations, and sim(C1, C
′
1) is the average similarity of the 2 sets of argument

entities in the 2 relations. These similarities are looked up from the similarity

graphs (phrase and entities) constructed with techniques described in chapter 5.4.1.

5.4.3 Computational Complexity

WEBRE is very efficient since both phases decompose the large clustering task

into much smaller clustering tasks over partitions. Given n objects for clustering,

a hierarchical agglomerative clustering algorithm requires O(n2) pairwise compar-

isons. Assuming the clustering task is split into subtasks of size n1, n2, ..., nk,

thus the computational complexity is reduced to O(
∑k

1 ni
2)). Ideally each subtask

has an equal size of n/k, so the computational complexity is reduced to O(n2/k),

a factor of k speed up. In practice, the sizes of partitions are not equal. Taking

the partition sizes observed in the experiment with 0.2 million Type A relations

as input, the phase 2 algorithm achieves around a 100-fold reduction in pairwise

comparisons compared to the agglomerative clustering algorithm. The combina-

tion of phase 1 and phase 2 achieves more than a 1000-fold reduction in pairwise

comparison, compared to running an agglomerative clustering algorithm directly

on 14.7 million triples. This reduction of computational complexity makes the un-

supervised extraction of relations on a large dataset a reality. In the experiments

62

with 14.7 million triples as input, phase 1 finished in 22 hours, and the phase 2

algorithm finished in 4 hours with one CPU core.

Furthermore, both phases can be run in parallel in a distributed computing

environment because data is partitioned. Therefore it is scalable and efficient for

clustering a very large number of relation instances from a large-scale corpus like

the Web.

5.5 Experiment

Data preparation We tested WEBRE on resources extracted from the En-

glish subset of the Clueweb09 dataset, which contains 503 million webpages. For

building knowledge resources, all webpages are cleaned, POS tagged and chunked

with in-house tools. We implemented the algorithms described in chapter 5.4.1 to

generate the knowledge sources, including a hypernym graph, two entity similarity

graphs and a relation phrase similarity graph.

We used Reverb Clueweb09 Extractions 1.16 as the triple store (relation in-

stances). It is the complete extraction of Reverb over Clueweb09 after filtering

low confidence and low frequency triples. It contains 14.7 million distinct triples

with 3.3 million entities and 1.3 million relation phrases. We choose it because 1)

it is extracted by a state-of-the-art open IE extractor from the open-domain, and

2) to the best of our knowledge, it contains the largest number of distinct triples

extracted from the open-domain and which is publicly available. Reverb triples

are in the form of triples < argument1, relation phrase, argument2 > in which

the 2 arguments are noun phrases and relation phrases are the lexical sequence

6downloaded from reverb.cs.washington.edu

63

in between. An example triple is <Boston, is located north of, New York>. To

reduce sparseness of the relation phrases, we apply a dictionary-based stemmer to

reduce the inflected form of each word to its base form. We also remove stop words

(semantically empty words) from the relation phrases.

Evaluation setup The evaluations are organized as follows: we evaluate Type

A relation extraction and Type B relation extraction separately, and then we

compare WEBRE to its closest prior work SNE. Since both phases are essentially

clustering algorithms, we compare the output clusters with human labeled gold

standards and report performance measures, following most previous work such as

[33] and [25]. Three gold standards are created for evaluating Type A relations,

Type B relations and the comparison to SNE, respectively. In the experiments, we

set α = 0.6, µ = 0.1 and σ = 0.02 based on trial runs on a small development set of

10k relation instances. We filtered out the Type A relations and Type B relations

which only contain 1 or 2 triples since most of these relations are not different

from a single relation instance and are not very interesting. Table 5.1 shows the

overall statistics of the experiment. 201,246 Type A relations and 84,126 Type B

relations are extracted.

Type Distinct # of instances
Triple 14,728,268
Entity 3,326,830

Relation phrase 1,299,841
Type A relation 201,246
Type B relation 84,126

Table 5.1: Overall statistics of the experiment. The Type A relations are generated
with the Label+SIM method and must contain at least 3 triples.

Evaluating Type A relations To understand the effectiveness of knowledge

sources, we run Phase 1 multiple times taking entity similarity graphs (matrices)

64

constructed with resources listed below:

• TS: Distributional similarity based on the triple store. For each triple <

ent1, ctx, ent2 >, features of ent1 are ctx and ctx ent2; features of ent2 are

ctx and ent1 ctx. Features are weighted with PMI. Cosine is used as similarity

measure.

• LABEL: The similarity between two entities is computed according to the

percentage of top hypernyms they share.

• SIM: The similarity between two entities is the linear combination of their

similarity scores in the distributional similarity graph and in the pattern

similarity graph.

• SIM+LABEL SIM and LABEL are combined. Observing that SIM gen-

erates high quality but overly fine-grained semantic classes, we modify the

entity clustering procedure to cluster argument entities based on SIM first,

and then further clustering the results based on LABEL.

The outputs of these runs are pooled and mixed for labeling. We randomly

sampled 60 relation phrases. For each phrase, we select the 5 most frequent Type

A relations from each run (4× 5 = 207 Type A relations in all). For each relation

phrase, we ask a human labeler to label the mixed pool of Type A relations that

share the phrase: 1) The labelers8 are asked to first determine the major seman-

tic relation of each Type A relation, and then label the triples as good, fair or

bad based on whether they express the major relation. 2) The labeler also reads

7Here 4 means the 4 methods (the bullet items above) of computing similarity.
84 human labelers perform the task. A portion of the judgments were independently dual

annotated; inter-annotator agreement is 79%. Moreover, each judgment is cross-checked by at
least one more annotator, further improving quality.

65

all Type A relations and manually merges the ones that express the same rela-

tion. These 2 steps are repeated for each phrase. After labeling, we create a gold

standard GS1, which contains roughly 10,000 triples for 60 relation phrases. On

average, close to 200 triples are manually labeled and clustered for each phrase.

This creates a large data set for evaluation.

We report micro-average of precision, recall and F1 on the 60 relation phrases

for each method. Precision (P) and Recall (R) of a given relation phrase is defined

as follows. Here RA and R′
A represents a Type A relation in the algorithm output

and GS1, respectively. We use t for triples and s(t) to represent the score of the

labeled triple t.

P =

∑

RA

∑

tǫRA
s(t)

∑

RA
|RA|

, R =

∑

RA

∑

tǫRA
s(t)

∑

R′

A

∑

t′ǫR′

A
s(t′)

s(t) is set to 1.0, 0.5 or 0 for t labeled as good, fair and bad, respectively.

Examples of labels assigned to triples are listed in Table 5.2.

Label Score Example triple (< Cities, be capital of, Countries >)
Good 1.0 < Baghdad, Iraq >
Fair 0.5 < Sukhumi,Abkhazia >
Bad 0.0 < Bangalore,Karnataka State >

Table 5.2: Scores for human judgments on triples. The labels are
assigned according to whether they belongs to the main relation <
Cities, be capital of, Countries >. The second entry is rated ’Fair’ because it’s
not clear that Abkhazia should be classified as a country.

The results are in Table 5.3. Overall, LABEL performs 53% better than TS

in F-measure, and SIM+LABEL performs the best, 8% better than LABEL. Ap-

plying a simple sign test shows both differences are clearly significant (p < 0.001).

Surprisingly, SIM, which uses the similarity matrix extracted from full text, has a

F1 of 0.277, which is lower than TS. We also tried combining TS and LABEL but

did not find encouraging performance compared to SIM+LABEL.

66

Among the 4 methods, SIM has the highest precision (0.964) when relation

phrases for which it fails to generate any Type A relations are excluded, but its re-

call is low. Manual checking shows that SIM tends to generate overly fine-grained

argument classes. If fine-grained argument classes or extremely high-precision

Type A relations are preferred, SIM is a good choice. LABEL performs signifi-

cantly better than TS, which shows that hypernymy information is very useful for

finding argument semantic classes. However, it has coverage problems in that the

hypernym finding algorithm failed to find any hypernym from the corpus for some

entities. Following up, we found that SIM+LABEL has similar precision and the

highest recall. This shows that the combination of semantic spaces is very help-

ful. The significant recall improvement from TS to SIM+LABEL shows that the

corpus-based knowledge resources significantly reduce the data sparseness, com-

pared to using features extracted from the triple store only. The result of the phase

1 algorithm with SIM+LABEL is used as input for phase 2.

Algorithm Precision Recall F1
TS 0.842 (0.886) 0.266 0.388

LABEL 0.855 (0.870) 0.481 0.596
SIM 0.755 (0.964) 0.178 0.277

SIM+LABEL 0.843 (0.872) 0.540 0.643

Table 5.3: Phase 1 performance (averaged on multiple runs) of the 4 methods.
The highest performance numbers are in bold. (The number in parenthesis is
the micro-average when empty-result relation phrases are not considered for the
method).

Evaluating Type B relations The goal is 2-fold: 1) to evaluate the phase 2

algorithm. This involves comparing system output to a gold standard constructed

by hand, and reporting performance; 2) to evaluate the quality of Type B relations.

For this, we will also report triple-level precision.

67

We construct a gold standard GS29 for evaluating Type B relations as follows:

We randomly sampled 178 Type B relations, which contain 1547 Type A relations

and more than 100,000 triples. Since the number of triples is very large, it is

infeasible for labelers to manually cluster triples to construct a gold standard.

To report precision, we asked the labelers to label each Type A relation (as a

whole rather than label each of its triples) contained in this Type B relation as

good, fair or bad based on whether it expresses the same relation. For recall

evaluation, we need to know how many Type A relations are missing from each

Type B relation. We provide the full data set of Type A relations along with three

additional resources: 1) a tool which, given a Type A relation, returns a ranked

list of similar Type A relations based on the pairwise relation similarity metric in

chapter 5.4, 2) DIRT paraphrase collection, 3) WordNet (Fellbaum, 1998) synsets.

The labelers are asked to find similar phrases by checking phrases which contain

synonyms of the tokens in the query phrase. Given a Type B relation, ideally we

expect the labelers to find all missing Type A relations using these resources. We

report precision (P) and recall (R) as follows. Here RB and R′
B represent Type

B relations in the algorithm output and GS2, respectively. RA and R′
A represent

Type A relations. s(RA) denotes the score of RA.

P =

∑

RB

∑

RAǫRB
|RA|s(RA)

∑

RB

∑

RAǫRB
|RA|

, R =

∑

RB

∑

RAǫRB
|RA|s(RA)

∑

R′

B

∑

R′

A
ǫR′

B
|R′

A|

s(RA) is set to 1.0, 0.5 and 0 for good, fair or bad respectively. Examples of labels

assigned to type A relations are listed in Table 5.4.

We also ask the labeler to label at most 50 randomly sampled triples from

each Type B relation, and calculate triple-level precision as the ratio of the sum

93 human labelers performed the task. A portion of the judgments were independently dual
annotated; inter-annotator agreement is 73%. Similar to labeling Type A relations, each judg-
ment is cross-checked by at least one more annotator, further improving quality.

68

Label Score Example Type A relation Main relation in Type B

Good 1.0
<Ben, Aaron,, be younger brother of,

Harish, Curt, >
Ben, Chris, is brother of Tim, John

Wesley,

Fair 0.5
<Bill Richardson, Edwards, Gore,
should endorse, Hilary Clinton,

Obama, Romney>

Gore, Edwards, supports Clinton,
Obama,

Bad 0.0
<Josh, James, , never like, Jamie,

Simon, >
Ben, Chris, is brother of Tim, John

Wesley,

Table 5.4: Scores for human judgments on Type A relations. The labels are
assigned to each Type A relation according to whether they express the main
relation in the Type B relation. The main relations in the third columns are the
human perceived major relations.

of scores of triples over the number of sampled triples. We use Pins to represent

the precision calculated based on labeled triples. Moreover, as we are interested

in how many phrases are found by our algorithm, we also include Rphrase, which is

the recall of synonymous phrases. Results are shown in Table 5.5.

Interval P R(Rphrase) F1 Pins count
[3, 5) 0.913 0.426 (0.026) 0.581 0.872 52149
[5, 10) 0.834 0.514 (0.074) 0.636 0.863 21981
[10, 20) 0.854 0.569 (0.066) 0.683 0.883 6277
[20, 50) 0.899 0.675 (0.406) 0.771 0.894 2630
[50,∞) 0.922 0.825 (0.594) 0.871 0.929 1089
Overall 0.897 0.684 (0.324) 0.776 0.898 84126

Table 5.5: Performance for Type B relation extraction. The first column shows
the range of the maximum sizes of Type A relations in the Type B relation. The
last column shows the number of Type B relations that are in this range. The
number in parenthesis in the third column is the recall of phrases.

The result shows that WEBRE can extract Type B relations at high precision

(both P and Pins). The overall recall is 0.684. Table 5.5 also shows a trend that if

the maximum number of Type A relation in the target Type B relation is larger,

the recall is better. This shows that the recall of Type B relations depends on the

amount of data available for that relation. Some examples of Type B relations

extracted are shown in Table 5.9.

69

Phrase synonymy and polysemy WEBRE disambiguates polysemous rela-

tion phrases and groups synonymous ones with the phase 1 and phase 2 algorithms

respectively. In Table 5.6, we show the type A relations generated for two relation

phrases withdraw from and be a unit of. We can see that phase 1 effectively placed

the phrases into several type A relations with different meanings. For instance,

withdraw from can represent the relationship between two countries (meaning one

country withdraws its forces from the other), a country and an organization (show-

ing that the country is no longer a member of the organization), a player and an

event, a team and a sport, etc. Multiple meanings of a relation phrase are success-

fully identified in the first phase of our algorithm, and multiple type A relations

are generated accordingly.

Relation phrases Type A relations Argument pairs samples

withdraw from

<country, country> <America, Vietnam>; <Israel, Lebanon>
<country, organization> <Albania, the Warsaw Pact>; <Zimbabwe, the

Commonwealth>
<force, country> <American forces, Vietnam>; <Roman Legions, Britain>
<player, event> <Brandon Bass, the NBA draft>; <Agassi, Wimbledon>
<car, sport>* <Chrysler, NASCAR>; <Porsche, Grand Prix racing>

be a unit of
<company, company> <ABC, the Walt Disney co.>; <American Airlines, AMR

Corp.>
<unit, concept> <Celsius, temperature>; <pounds, weight>

Table 5.6: Sample relation phrases and their corresponding type A relations. The
second column shows the argument class names (assigned label pairs) and the
third column shows sample argument pairs. Note: *A wrong pair of labels was
assigned by WEBRE based on the hypernym hierarchy, The correct one should be
“< team, sport >“

We also show the top neighbors (the list of most similar phrase or type A

relations, sorted in descending order by their similarities to the query phrase) of

a common phrase be part of and two Type A relations <companies, be part of,

companies> and <cities, be part of, counties> in Table 5.7. The top neighbors

of be part of show a mix of two meanings of be part of: a company is a part of

its parent company, or a city is a part of a county, whereas the top neighbors of

70

the two type A relations (be part of applied to pairs of arguments <companies,

companies> and <cities, counties> respectively) diverge and show a clear split in

the meaning of the relations they express. This further shows the importance of

applying phase 1 to disambiguate relation phrases.

be part of <be part of, company, company> <be part of, city, county>
be a part of <be owned by, company, company> <be located in, city, county>
be a city in <be a division of, company, company> <be the county seat of, city, county>
be a town in <be a unit of, company, company> <be a township in, city, county>

be a city located in <be a subsidiary of, company, company> <be in, city, county>
be a village in <will be acquired by, company, company> <be a village in, city, county>
be a division of <will be purchased by, company, company> <be located in, city, city>

be a town located in <will be bought by, company, company> <be a city located in, city, county>
be located in <be now part of, company, company> <be a city in, city, county>
be a fact of <be a part of, company, company> <be a town located in, town, county>

be a subsidiary of <be recently sold to, company, company> <be a town in, town, county>
(I) (II) (III)

Table 5.7: Top neighbors of a relation phrase and the 2 type A relations it appears
in (I: top-10 similar relation phrases of “be part of“; II: top-10 similar type A rela-
tions of <companies, be part of, companies>; III: top-10 similar type A relations of
<cities, be part of, counties>). To emphasize our focus on the relation phrases, in
this table we show the relation phrase first, and then 2 argument classes (assigned
“labels“). This is different from previous notation <Argument class 1, relation
phrases, Argument class 2>.

Using the large set of Type A and Type B relations extracted by WEBRE, we

generate the Cumulative Distribution of Frequency (CDF) of the number of Type A

relations the relation phrases belong to, and the CDF of the number of synonymous

relation phrases each Type B relation has, and plot them in Figure 5.2 to shows

the distribution of polysemy and synonymy of relation phrases empirically.

The top figure in Figure 5.2 shows the CDF of the number of Type A relations

to which a relation phrase belongs. Around 40% of phrases can be put into 2

Type A relations, and around 8% of them can be put into at least 5 Type A

relations. It shows that WEBRE can disambiguate a large number of relation

phrases. In the bottom figure of Figure 5.2, we plot the CDF of the number of

71

synonymous phrases in Type B relations. Close to 30% of Type B relations have

at least 2 relation phrases (Note: x-axis of the bottom figure starts from 1 not 0).

Some Type B relations have more than 200 relation phrases. Coupled with the

phrase level recall shown in Table 5.5, this demonstrates WEBRE’s ability to find

synonymous relation phrases.

Comparison with SNE We compare Type B relations extracted by WEBRE

to the relations extracted by its closest prior work, SNE10. We found SNE is not

able to handle the 14.7 million triples in a foreseeable amount of time, so we

randomly sampled 1 million (1M) triples11 and test both algorithms on this set.

We also filtered out resulting clusters which have only 1 or 2 triples from both

system outputs. For comparison purposes, we constructed a gold standard GS3

as follows: randomly select 30 clusters from both system outputs, and then find

similar clusters from the other system output, followed by manually refining the

clusters by merging similar ones and splitting non-coherent clusters. GS3 contains

742 triples and 135 clusters. We report triple-level pairwise precision, recall and F1

for both algorithms against GS3, and report results in Table 5.8. We fine-tuned

SNE (using grid search, internal cross-validation, and coarse-to-fine parameter

tuning), and report its best performance.
Algorithm Precision Recall F1
WEBRE 0.848 0.734 0.787
SNE 0.850 0.080 0.146

Table 5.8: Pairwise precision/recall/F1 of WEBRE and SNE

Table 5.8 shows that WEBRE outperforms SNE significantly in pairwise recall

10Obtained from alchemy.cs.washington.edu/papers/kok08
11We found that SNEs runtime on 1M triples varies from several hours to over a week, depend-

ing on the parameters. The best performance is achieved with runtime of approximately 3 days.
We also tried SNE with 2M triples, on which many runs take several days and show no sign of
convergence. For fairness, the comparison was done on 1M triples.

72

Figure 5.2: Figure on the top shows the Cumulative Distribution of Frequency
(CDF) of the number of distinct Type A relations in which a relation phrase
appears, and bottom figure shows the CDF of the number of synonymous relation
phrases that are in the same Type B relation. Note: x-axis of the bottom figure is
in log-scale for presentation.

while having similar precision. There are two reasons. First, WEBRE makes use of

several corpus-level semantic sources extracted from the corpus for clustering en-

73

tities and phrases while SNE uses only features in the triple store. These semantic

resources significantly reduced data sparseness. Examination of the output shows

that SNE is unable to group many triples from the same generally-recognized fine-

grained relations. For example, SNE placed relation instances <Barbara, grow up

in, Santa Fe> and <John, be raised mostly in, Santa Barbara> into 2 different

clusters because the arguments and phrases do not share features nor could be

grouped by SNEs mutual clustering. In contrast, WEBRE groups them together.

Second, SNE assumes a relation phrase to be in exactly one cluster. For example,

SNE placed be part of in the phrase cluster be city of and failed to place it in an-

other cluster be subsidiary of. This limits SNEs ability to place relation instances

with polysemous phrases into correct relation clusters.

It should be emphasized that we use pairwise precision and recall in Table 5.8

to be consistent with the original SNE paper. Pairwise metrics are much more

sensitive than instance-level metrics, and penalize recall exponentially in the worst

case12 if an algorithm incorrectly splits a coherent cluster; therefore the absolute

pairwise recall difference should not be interpreted as the same as the instance-level

recall reported in previous experiments. On 1 million triples, WEBRE generates

12179 triple clusters with an average size13 of 13 while SNE generate 53270 clusters

with an average size of 5.1. In consequence, pairwise recall drops significantly.

Nonetheless, at above 80% pairwise precision, it demonstrates that WEBRE can

group more related triples by adding rich semantics harvested from the Web and

employing a more general treatment of polysemous relation phrases. On 1M triples,

12Pairwise precision and recall are calculated on all pairs that are in the same cluster, thus are
very sensitive to cluster sizes. For example, if an algorithm incorrectly split a cluster of size N
to a smaller main cluster of size N/2 and some constant-size clusters, pairwise recall could drop
to as much as 1/4 of its original value

13The clusters which have only 1 or 2 triples are removed and not counted here for both
algorithms.

74

WEBRE finished in 40 minutes, while the run time of SNE varies from 3 hours to

a few days.

5.6 Discussion

Domain of the relations The harvested relations are from a wide range of

domains. To show the breadth of coverage, we sample a few Type B relations and

map them into the relation types defined in a benchmark evaluation, and those

defined for two domains, business news and clinical text:

• Automatic Content Extraction (ACE) 200514: ACE is an evaluation on in-

formation extraction organized by the U.S. National Institute of Standards

and Technology (NIST). It is the standard benchmark for most research in

relation extraction. ACE 2005 defines 5 major types and 18 subtypes. They

come from a wide range of domains.

• OpenCalais15 is a service by Thomson Reuters that automatically extracts

entities, facts and events from the news domain. A fraction of its facts are

similar to relations.

• The 2010 i2b2/VA16 workshop on Natural Language Processing Challenges

for Clinical Records: it defines a few relation types in the clinical record

domain.

Table 5.9 presents the Type B relations that can be mapped into relation types

defined in ACE 2005, Calais (OpenCalais) or i2b2. Except for artifact subtypes,

14http://www.itl.nist.gov/iad/mig/tests/ace/ace05/
15http://www.opencalais.com/
16https://www.i2b2.org/NLP/Relations

75

we found WEBRE extraction covered all relation subtypes defined in ACE 2005.

This demonstrates that WEBRE’s extraction contains lots of relations of interest

in a wide range of topics. Furthermore, we show the extracted results contain

relations which can be mapped to the representative relations (facts) from Calais

and major types in the 2010 i2b2 challenge. In fact, WEBRE extraction covers

more than half of the facts (it is sometimes hard to differentiate events from facts

in Calais) of Calais and all the three major types in i2b2. This further shows

WEBRE extractions wide coverage. We also included two relations that could not

be mapped into any types that are defined in the known set.

As a fully unsupervised algorithm, WEBRE extracts a wide range of relations

that can be mapped into existing human-defined relation types from a diverse set of

domains. This shows it is useful for real-world applications. Furthermore, we show

that WEBRE can find relations that have not been defined in previous evaluations

(systems). This shows it has the flexibility to discover new open-domain relations.

A hierarchy of relations We evaluate relations (Type B) as a flat set of

relations following common practice. However, in practice we observe that some

Type A relations gradually merged together when we lowered the threshold in

the phase 2 clustering algorithm. In other words, different thresholds can lead

to relations at different target granularities. This indicates that relations could

form a hierarchy and provides us the ability to query them at different granularity.

The following figure illustrates this with sampled results. Building the hierarchy

remains an open research topic which we will study in the near future.

76

Type B relations

Types
Argument 1 Relation Phrase Argument 2

user-owner-
inventor-
manufacturer

Charlie, Luke, Barbara drive a Porsche, a Corvette, an Audi

AutoCAD, Java, PlayStation be a trademark of, be a product
of

Autodesk, Sun Microsystems, Sony
Corporation

Tim Berners-Lee, Philot.
Farnsworth, Thomas Alva
Edison

be the inventor of, have invented the World Wide Web, Television, elec-
tricity

Rockwell Automation, Lexar,
HoMedics

be a manufacturer of, be a big
name in

programmable controllers, flash mem-
ory, massage equipment

citizen-resident-
religion-
ethnicity

Larry, Grace, Anna reside in, be a legal resident of Tulsa, Boulder, Denver

David, Henry, Charlotte convert to, be a convert to Islam, Buddism, Mormonism
org-location AuctionDrop, BMI, Dr. Pepper be headquartered in, be a com-

pany in
Menlo Park, New York, Plano

employment Michael Smith, Michael Goldfarb,
Matthew Brown

work at, be an employee of Radioshack, Starbucks, Renaissance
magazine

founder Brzezin-
ski, Larson,
Bokaer

be founder of, be founding direc-
tor of

The Trilateral Commission,
LINC, Chez Bushwick

ownership United Online, Saks Inc., Lock-
heed Martin

be the parent company to, be the
owner of

NetZero, Saks Fifth Avenue, Savi Tech-
nology

student-alum Barnard, Axelrod, Doug graduate from, be a student at Simon Fraser University, George Wash-
ington University, The University of
Maryland

sports-affiliation Boyd, Mccovey, Tom Brady sign with, play for the Boston Red Sox, the San Francisco
Giants, the Patriots

investor-
shareholder

bond funds, international funds,
mutual fund

invest only in, invest primarily in bonds , foreign stocks, commodities

membership Elsie, Henry, Boyd remain a member of, be a member
of

Chi Omega Sorority, The Labour Party,
Greenpeace

artifact - - -
geographical Lacey Township, Vernon Town-

ship, Woodbridge Township
be a townshiP in be located in Ocean County, Sussex County, Middle-

sex County
subsidiary STM, Stock Building Supply,

FedEx Ground
be a subsidiary of, be a part of SunTrust bank, Wolseley, Federal Ex-

press
business Bohm, Robert, Mike be a colleague of Albert Einstein, Werner Heisenberg,

Jack Canfield
family Jean Grey, Jillian, Anne be a daughter of, be the younger

daughter of
John Grey, Jonathan Lee, James

lasting-personal Paul, Curtis, Kerr have a close friendship with, de-
veloped a friendship with

Michael Jackson, Roosevelt, Bas Rut-
ten

located David, Henry, Antoine live in, have resided in New York, Buffalo, San Francisco
near Seattle, Samaria, Yorkton be near, be north of Portland, Jerusalem, Minot
(Calais) acquisi-
tion

Philip Morris, Ingersoll Rand,
The Coca-Cola Company

acquire, be buying Kraft, Trane, Columbia Pictures

(Calais) alliance Microsoft, Mitsubishi Motors,
Enventis

be a strategic partner of Hewlett-Packard, DaimlerChrysler,
Cisco Systems

(Calais)
bankruptcy

Lehman Brothers, Penn Central,
Syntax-Brillian

go bankrupt in, declare
bankruptcy in

September 2008, June 1970, July 2008

(i2b2) medical
problems and
treatments

Albuterol, Imipramine, Darife-
nacin

be used for treating, be a medica-
tion used to treat

Emphysema, depression, Overactive
bladder

(i2b2) test rela-
tions with medi-
cal problems

Biopsy, blood tests, amnio come back positive for, confirm
the presence of

Breast cancer, Anthrax, Down syn-
drome

(i2b2) medi-
cal problem
relations with
other medical
problems

high blood pressure, Menorrha-
gia, Chronic Infections

can lead to, may raise the risk of congestive heart failure, Iron deficiency
anemia, weight loss

C# 2.0, PHP5, Java, C++ allow the use of, also use destructors, interfaces, template
Clinton, Obama, McCain, win in, take CA, DC, FL, NH, PA, VA, GA, IL

Table 5.9: A list of relations that maps into the ACE 2005 subtypes, representative Calais relation types from
news, and i2b2 types from the clinical data domain. The types with (Calais) are representative fact types from
Calais. The types with (i2b2) are the major relation types from the 2010 i2b2/VA challenge in clinical text. All
other types are relation subtypes defined in ACE 2005. - shows no relations matched. We also show 2 interesting
relations that cannot map into the types previously defined. At most 2 relation phrases are shown for each relation.

77

Figure 5.3: A hierarchy built from a small sample of type A relations using hier-
archical clustering. The top shows the different threshold we used to cluster type
A relations. The merging of lines represents the merging of type A relations into
the one cluster. To emphasize the meaning of relation phrases applied to a pair of
argument classes, in this table we show the relation phrase first, and then 2 argu-
ment classes (assigned labels). This is different from previous notation <Argument
class1, relation phrases, Argument class2>.

5.7 Conclusion

We have proposed an unsupervised algorithm that can extract relations with-

out predefined types of relations and entities. Compared to previous work, the

algorithm handles polysemy of relation instances and achieves a significant im-

provement in recall while maintaining the same level of precision. We applied the

78

algorithm on a very large web-based dataset and did a large-scale evaluation to

show its effectiveness. We analyzed the harvested set of relations in detail and

provided some insights into future research on open-domain relation extraction.

79

Chapter 6

Conclusion and Future Work

In this dissertation, we discuss three techniques for relation extraction. Com-

pared to previous methods for supervised relation extraction, the first method

reduces annotation cost by 2/3 while maintaining approximately the same per-

formance. Our second method is a distantly-supervised relation extraction model

which provides a better approximation of the weak source of supervision. It im-

proves over the previous approaches. The final method is an ensemble of rich

corpus-mined semantic resources for open-domain unsupervised relation extrac-

tion. It improves recall significantly over existing methods. In summary, we present

a wide range of techniques that perform relation extraction with little or no human

supervision, yet outperform state-of-the-art prior methods.

Our immediate future work is in the area of weakly supervised methods for

relation extraction. Serious problems remain which limit the broad application of

these methods. First, since the labeling heurstic is based on a crude assuption,

there are still false positive and false negative matches even after applying our

weakly supervised methods. Second, a knowledge base contains many but still a

80

fixed number of relations. A capability to deal with out-of-KB relation types would

provide great flexibility to IE systems. Therefore, we need to develop effective

algorithms to learn out-of-KB relations.

Our next step includes several folds of research: 1) we will do a comprehen-

sive study of the distant supervision labeling process. In particular, we will align

various categories of relations from KBs to various genres of text and analyze the

resulting datasets. We will release the analysis and human assessment to the re-

search community. 2) We will re-design the heuristic labeling process to take into

account the local context of candidate relation mentions. We will also develop sta-

tistical methods to model how likely the KB-assigned relation is expressed by the

pairs in the corpus. 3) out-of-KB relation types can be extracted with a bootstrap-

ping procedure which takes a few seeds as input and iteratively finds new pairs

and patterns. The key is preventing semantic drift. We will develop a novel boot-

strapping algorithm which makes use of background relation topic ([71]), generated

with distant supervision, to effectively prevent semantic drift.

81

Bibliography

[1] Eugene Agichtein and Luis Gravano. 2000. Snowball: extracting relations

from large plain-text collections. In Proceedings of the fifth ACM conference

on Digital libraries, pages 85-94, New York, NY, USA, 2000. ACM.

[2] Michele Banko, Michael J. Cafarella, Stephen Soder-land, Matt Broadhead,

and Oren Etzioni. 2007. Open Information Extraction from the Web. In Pro-

ceedings of the International Joint Conference on Artificial Intelligence 2007.

[3] Michele Banko and Oren Etzioni. 2008. The Tradeoffs Between Open and

Traditional Relation Extraction. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics 2008.

[4] Jonathan Berant, Ido Dagan and Jacob Goldberger. 2011. Global Learning

of Typed Entailment Rules. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics 2011.

[5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet

allocation. Journal of Machine Learning Research, 3:9931022, January

[6] Sergey Brin. 1998. Extracting patterns and relations from the world-wide

web. In Proceedings of the 1998 International Workshop on the Web and

82

Databases at the 6th International Conference on Extending Database Tech-

nology, EDBT 98, pages 172-183, 1998.

[7] Elizabeth Boschee, Ralph Weischedel, and Alex Zamanian. 2005. Automatic

information extraction. In Proceedings of the International Conference on

Intelligence Analysis.

[8] Razvan Bunescu and Raymond J. Mooney. 2004. Collective Information Ex-

traction with Relational Markov Networks. In Proceedings of the Annual

Meeting of the Association for Computational Linguistics 2004.

[9] Razvan C. Bunescu and Raymond J. Mooney. 2005a. A shortest path depen-

dency kenrel for relation extraction. In Proceedings of HLT/EMNLP-2005.

[10] Razvan C. Bunescu and Raymond J. Mooney. 2005b. Subsequence kernels for

relation extraction. In Proceedings of NIPS-2005.

[11] Razvan Bunescu and Raymond Mooney. 2007. Learn-ing to extract relations

from the web using minimal supervision. In Proceedings of the 45th Annual

Meeting of the Association for Computational Linguistics.

[12] Mark Craven and Johan Kumlien. 1999. Constructing biological knowledge

bases by extracting information from text sources. In Proceedings of the Sev-

enth International Conference on Intelligent Systems for Molecular Biology.

[13] Yee Seng Chan and Dan Roth. 2011. Exploiting Syntactico-Semantic Struc-

tures for Relation Extraction. In Proceedings of ACL-2011.

83

[14] Jinxiu Chen, Donghong Ji, Chew Lim Tan, Zhengyu Niu. 2005. Unsupervised

Feature Selection for Relation Extraction. In Proceedings of the International

Joint Conference on Natural Language Processing 2005.

[15] Michael Collins and Nigel Duffy. 2001. Convolution Kernels for Natural Lan-

guage. In Proceedings of NIPS-2001.

[16] Thomas G. Dietterich, Richard H. Lathrop, Tomas Lozano-Prez. 1997. Solv-

ing the multiple instance problem with axis-parallel rectangles. In Articial

Intelligence 89(1-2), 3171 (1997)

[17] Dmitriy Dligach, Rodney D. Nielsen and Martha Palmer. 2010. To annotate

more accurately or to annotate more. In Proceedings of Fourth Linguistic

Annotation Workshop at ACL 2010

[18] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria

Popescu, Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander

Yates. 2004. Web-scale information extraction in KnowItAll (preliminary re-

sults). In Proceedings of the International World Wide Web Conference 2004.

[19] Oren Etzioni, Michael Cafarella, Doug Downey, AnaMaria Popescu, Tal

Shaked, Stephen Soderland, Daniel S. Weld and Alexander Yates. 2005. Un-

supervised named-entity extraction from the Web: An Experimental Study.

In Artificial Intelligence, 165(1):91-134.

[20] Anthony Fader, Stephen Soderland, and Oren Etzioni. 2011. Identifying Re-

lations for Open Information Extraction. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing 2011.

84

[21] Christiane Fellbaum (Ed.). 1998. WordNet: An Electronic Lexical Database.

Cambridge, MA: MIT Press.

[22] Ralph Grishman. 2012. Information Extraction: Capabilities and Challenges.

http://cs.nyu.edu/grishman/tarragona.pdf

[23] Ralph Grishman, David Westbrook and Adam Meyers. 2005. NYUs English

ACE 2005 System Description. In Proceedings of ACE 2005 Evaluation Work-

shop

[24] Zelig S. Harris. 1985. Distributional Structure. The Philosophy of Linguistics.

New York: Oxford University Press.

[25] Takaaki Hasegawa, Satoshi Sekine and Ralph Grishman. 2004. Discovering

Relations among Named Entities from Large Corpora. In Proceedings of the

Annual Meeting of the Association for Computational Linguistics 2004.

[26] Marti A. Hearst. 1992. Automatic Acquisition of Hyponyms from Large Text

Corpora. In Proceedings of the International Conference on Computational

Linguistics 1992.

[27] Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S.

Weld. 2011. Knowledge-based weak supervision for information extraction of

overlapping relations. In Proceedings of the Annual Meeting of the Association

for Computational Linguistics .

[28] Heng Ji, Ralph Grishman, Hoa Trang Dang and Kira Griffitt. 2010. An

Overview of the TAC2010 Knowledge Base Population Track. In Proceedings

of TAC-2010

85

[29] Heng Ji, Ralph Grishman, and Hoa T. Dang. 2011. Overview of the TAC

2011 knowledge base population track. In Proceedings of the Text Analytics

Conference.

[30] Jing Jiang and ChengXiang Zhai. 2007. A systematic exploration of the feature

space for relation extraction. In Proceedings of HLT-NAACL-2007.

[31] Thorsten Joachims. 1999. Transductive Inference for Text Classification using

Support Vector Machines. In Proceedings of ICML-1999.

[32] Nanda Kambhatla. 2004. Combining lexical, syntactic, and semantic features

with maximum entropy models for information extraction. In Proceedings of

ACL-2004

[33] Stanley Kok and Pedro Domingos. 2008. Extracting Semantic Networks from

Text via Relational Clustering. In Proceedings of the European Conference

on Machine Learning 2008.

[34] Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy. 2008. Semantic Class

Learning from the Web with Hypo-nym Pattern Linkage Graphs. In Proceed-

ings of the Annual Meeting of the Association for Computational Linguistics

2008.

[35] Xiao-Li Li and Bing Liu. 2003. Learning to classify text using positive and

unlabeled data. In Proceedings of IJCAI-2003.

[36] Dekang Lin and Patrick Pantel. 2001. DIRT Discovery of Inference Rules

from Text. In Proceedings of ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining 2001.

86

[37] Andrew McCallum, Kamal Nigam, and Lyle Ungar. 2000. Efficient Clustering

of High-Dimensional Data Sets with Application to Reference Matching. In

Proceedings of ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining 2000.

[38] Scott Miller, Heidi Fox, Lance Ramshaw, and Ralph Weischedel. 2000. A novel

use of statistical parsing to extract information from text In Proceedings of

NAACL-2000.

[39] Bonan Min, Shuming Shi, Ralph Grishman and Chin-Yew Lin. 2012a. Ensem-

ble Semantics for Large-scale Unsupervised Relation Extraction. In Proceed-

ings of EMNLP-CoNLL 2012.

[40] Bonan Min, Xiang Li, Ralph Grishman and Ang Sun. 2012b. New York Uni-

versity 2012 System for KBP Slot Filling. In Proceedings of the Text Analysis

Conference (TAC) 2012.

[41] Mike Mintz, Steven Bills, Rion Snow, and Daniel Juraf-sky. 2009. Distant

supervision for relation extraction without labeled data. In Proceedings of

the 47th An-nual Meeting of the Association for Computational Linguistics.

[42] Truc Vien T. Nguyen and Alessandro Moschitti. 2011. End-to-end relation

extraction using distant supervi-sion from external semantic repositories. In

Proceed-ings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies.

[43] Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-Maria Popescu and

Vishnu Vyas. 2009. Web-Scale Distributional Similarity and Entity Set Ex-

87

pansion. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing 2009.

[44] Patrick Pantel and Dekang Lin. 2002. Discovering word senses from text. In

Proceedings of ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining 2002.

[45] Patrick Pantel and Deepak Ravichandran. 2004. Automatically Labeling Se-

mantic Classes. In Proceedings of the North American Chapter of the Asso-

ciation for Computational Linguistics Conference 2004.

[46] Marius Pasca. 2004. Acquisition of Categorized Named Entities for Web

Search, In Proceedings of the ACM Conference on Information and Knowledge

Management 2004.

[47] Marius Pasca. 2007. Weakly-supervised discovery of named entities using web

search queries. In Proceedings of the ACM Conference on Information and

Knowledge Management 2007.

[48] Marius Pasca and Peter Dienes. 2005. Aligning needles in a haystack: Para-

phrase acquisition across the Web. In Proceedings of the Annual Meeting of

the Association for Computational Linguistics 2005.

[49] Marco Pennacchiotti and Patrick Pantel. 2009. Entity Extraction via Ensem-

ble Semantics. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing 2009.

[50] Longhua Qian, Guodong Zhou, Qiaoming Zhu and Peide Qian. 2008. Exploit-

ing constituent dependencies for tree kernel-based semantic relation extraction

. In Proc. of COLING-2008.

88

[51] Sebastian Riedel, Limin Yao, and Andrew McCallum. 2010. Modeling rela-

tions and their mentions without labeled text. In Proceedings of the Euro-

pean Conference on Machine Learning and Knowledge Discovery in Databases

(ECML PKDD 10).

[52] Benjamin Rosenfeld and Ronen Feldman. 2007. Clustering for Unsupervised

Relation Identification. In Proceedings of the ACM Conference on Information

and Knowledge Management 2007.

[53] Luis Sarmento, Valentin Jijkoun, Maarten de Rijke and Eugenio Oliveira.

2007. ”More like these”: growing entity classes from seeds. In Proceedings of

the ACM Conference on Information and Knowledge Management 2007.

[54] Satoshi Sekine. 2005. Automatic paraphrase discovery based on context and

keywords between NE pairs. In Proceedings of the International Workshop on

Paraphrasing, 2005.

[55] Yusuke Shinyama and Satoshi Sekine. 2006. Preemp-tive information extrac-

tion using unrestricted relation discovery. In Proceedings of the Human Lan-

guage Technology Conference of the North American Chapte of the Associa-

tion for Computation Linguistics.

[56] Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2005. Learning Syntactic

Patterns for Automatic Hypernym Discovery. In Proceedings of advances in

neural information processing systems 2005.

[57] Stephen Soderland and Bhushan Mandhani. 2007. Moving from Textual Re-

lations to Ontologized Relations. In Proceedings of the 2007 AAAI Spring

Symposium on Machine Reading.

89

[58] Mihai Surdeanu, Sonal Gupta, John Bauer, David Mc-Closky, Angel X.

Chang, Valentin I. Spitkovsky, and Christopher D. Manning. 2011. Stanfords

distant-lysupervised slot-filling system. In Proceedings of the Text Analytics

Conference

[59] Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, Christopher D. Man-

ning. 2012. Multi-instance Multi-label Learning for Relation Extraction. In

Proceed-ings of the 2012 Conference on Empirical Methods in Natural Lan-

guage Processing and Natural Language Learning

[60] Ang Sun, Ralph Grishman and Satoshi Sekine. 2011. Semi-supervised Relation

Extraction with Large-scale Word Clustering. In Proceedings of ACL-2011.

[61] Ang Sun, Ralph Grishman, Wei Xu, and Bonan Min. 2011. New York Uni-

versity 2011 system for KBP slot filling. In Proceedings of the Text Analytics

Con-ference.

[62] TAC KBP 2011 task definition. 2011. http://nlp.cs.qc.cuny.edu/kbp/2011/

KBP2011 TaskDefinition.pdf

[63] Shingo Takamatsu, Issei Sato, Hiroshi Nakagawa. 2012. Reducing Wrong La-

bels in Distant Supervision for Relation Extraction. In Proceedings of 50th

Annual Meeting of the Association for Computational Lin-guistics.

[64] Partha Pratim Talukdar, Joseph Reisinger, Marius Pasca, Deepak Ravichan-

dran, Rahul Bhagat and Fernando Pereira. 2008. Weakly-Supervised Acquisi-

tion of Labeled Class Instances using Graph RandomWalks. In Proceedings of

the Conference on Empirical Methods in Natural Language Processing 2008.

[65] Vladimir N. Vapnik. 1998. Statistical Learning Theory. John Wiley.

90

[66] David Vickrey, Oscar Kipersztok and Daphne Koller. 2010. An Active Learn-

ing Approach to Finding Related Terms. In Proceedings of the Annual Meeting

of the Association for Computational Linguistics 2010.

[67] Vishnu Vyas and Patrick Pantel. 2009. Semi-Automatic Entity Set Refine-

ment. In Proceedings of the North American Chapter of the Association for

Computational Linguistics Conference 2009.

[68] Vishnu Vyas, Patrick Pantel and Eric Crestan. 2009. Helping Editors Choose

Better Seed Sets for Entity Set Expansion, In Proceedings of the ACM Con-

ference on Information and Knowledge Management 2009.

[69] Richard C. Wang and William W. Cohen. 2007. Language- Independent Set

Expansion of Named Entities Using the Web. In Proceedings of IEEE Inter-

national Conference on Data Mining 2007.

[70] Richard C. Wang and William W. Cohen. 2009. Automatic Set Instance Ex-

traction using the Web. In Proceedings of the Annual Meeting of the Associ-

ation for Computational Linguistics 2009

[71] ChangWang, James Fan, Aditya A. Kalyanpur, David Gondek. 2011. Relation

Extraction with Relation Topics. In Proceedings of the 2011 Conference on

Empirical Methods in Natural Language.

[72] Fei Wu and Daniel S. Weld. 2007. Autonomously semantifying wikipedia. In

Proceedings of the Interna-tional Conference on Information and Knowledge

Management (CIKM-2007).

91

[73] Fei Wu and Daniel S. Weld. 2010. Open information extraction using

Wikipedia. In Proceedings of the Annual Meeting of the Association for Com-

putational Linguistics 2010.

[74] HuaWu and Ming Zhou. 2003. Synonymous collocation extraction using trans-

lation information. In Proceedings of the ACL Workshop on Multiword Ex-

pressions: Integrating Processing 2003.

[75] Limin Yao, Aria Haghighi, Sebastian Riedel, Andrew McCallum. 2011. Struc-

tured Relation Discovery Using Generative Models. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing 2011.

[76] Alexander Yates and Oren Etzioni. 2007. Unsupervised Resolution of Objects

and Relations on the Web. In Proceedings of the North American Chapter of

the Association for Computational Linguistics Conference 2007.

[77] Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. 2003. Kernel

methods for relation extraction. Journal of Machine Learning Research.

[78] Min Zhang, Jie Zhang and Jian Su. 2006a. Exploring syntactic features for

relation extraction using a convolution tree kernel, In Proceedings of HLT-

NAACL-2006.

[79] Min Zhang, Jie Zhang, Jian Su, and GuoDong Zhou. 2006b. A composite ker-

nel to extract relations between entities with both flat and structured features.

In Proceedings of COLING-ACL-2006.

[80] Zhu Zhang. 2005. Mining Inter-Entity Semantic Relations Using Improved

Transductive Learning. In Proceedings of ICJNLP-2005.

92

[81] Huibin Zhang, Mingjie Zhu, Shuming Shi, and Ji-Rong Wen. 2009. Employing

Topic Models for Pattern-based Semantic Class Discovery. In Proceedings of

the Annual Meeting of the Association for Computational Linguistics 2009.

[82] Shubin Zhao and Ralph Grishman, 2005. Extracting Relations with Integrated

Information Using Kern el Methods. In Proceedings of ACL-2005.

[83] Guodong Zhou, Jian Su, Jie Zhang and Min Zhang. 2005. Exploring various

knowledge in relation extraction. In Proceedings of ACL-2005.

[84] Guodong Zhou, Min Zhang, DongHong Ji, and QiaoMing Zhu. 2007. Tree

kernel-based relation extraction with context-sensitive structured parse tree

information. In Proceedings of EMNLP/CoNLL-2007.

93

