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Abstract

This work develops the best linear model of residential real estate prices for

2003 through 2009 in Los Angeles County. It differs from other studies

comparing models for predicting house prices by covering a larger

geographic area than most, more houses than most, a longer time period

than most, and the time period both before and after the real estate price

boom in the United States. In addition, it open sources all of the software.

We test designs for linear models to determine the best form for the model

as well as the training period, features, and regularizer that produce the

lowest errors. We compare the best of our linear models to random forests

and point to directions for further research.
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Chapter 1

Introduction

Many parties are interested in accurate predictions of the market value of

residential real estate. Buyers and sellers have a clear interest in setting

prices relative to market values. Mortgage originators, who use the

property as collateral for the loan, want to know the extent to which the

borrower starts with and continues to have equity in the house. Investors in

mortgages want to know the current value of the property relative to the

current debt on the property. Local governments use market values in part

to set real estate taxes.

With so much interest, it is not surprising that a business has arisen in

predicting market values of residences. The structure of this market

comprises a few large national players and many regional players. The
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players regard their algorithms and their data as sources of competitive

advantage.

Academic studies of real estate pricing models have been limited by data

availability and the absence of benchmarks from the commercial players.

Most academic studies are generated around a data set for one city for one

year. Often the data are licensed only to specific scientists.

This work systematically compares linear models for predicting prices of

single-family residential real estate in Los Angles County over a time period

that precedes and follows the real estate crash. The data are from

CoreLogic, one of the providers of both the data and algorithms for real

estate price prediction. As for other academic work, the data are

proprietary to the study. However, the source code for the work is licensed

under the GPL and is available on the author’s Github account. It is

written in R and its models are designed to work on any data set.

We developed a few insights into linear models of real estate prices. All

these findings are for Los Angeles County residential real estate

transactions between 2003 and the first part of 2009.

• A lot of data didn’t help a lot. Linear models price houses by pricing

each feature of the house. When house values are changing, the

hedonic nature of the linear model must mean that feature values are

also changing. While training a model on a longer time period will
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smooth noise, it will also use older feature prices that are not

necessarily relevant to feature prices at the time of the query. We

found an optimal time period was roughly 30 days, considering both

time periods before and after the real estate crash.

• One might suppose that a very valuable feature would be the value of

the house as estimated by the real estate tax assessor. However, we

found that during the crash, the value of the tax assessment was

negative when used in simple linear models.

• “Location, location, location” are said by some real estate agents to

be the most important features of a house. We found that wasn’t

true, at least for linear models. The most important feature of the

house was its interior living space. The second most important

feature of the house was a feature related to location: the median

income of the census tract holding the house.

• One would hope that a few features of houses would contain most of

the information that is driving prices. If so, models could be simpler.

We found that the minimum prediction error was $58,571, when 15

features were used. The best parsimonious model has 6 features and

an error of $59,198, a 1 percent increase from the minimum.

• Linear models are popular in part because they are relatively easy to

understand and quick to fit. However, they tend to underperform
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non-linear models. In this work, we examine local linear models. In a

local linear model, a separate linear model is fit to every query

transaction, resulting in a non-linear model. In our experiments, a

carefully designed local linear model was outperformed by an

off-the-shelf random forests model.

The remaining chapters are these. Chapter 2 contains a review of the

literature, focusing on other studies of real estate price prediction models.

Chapter 3 describes how the Los Angeles data were ingested, cleaned up,

and converted into transactions. We ended up with about 1.2 million

transactions mostly dated from 1984 through the early part of 2009.

Chapter 4 describes our work to find a subset of the Los Angeles data that

is both informative for prediction purposes and does not contain any future

information. Chapter 5 identifies the best local linear models, at least

according to our experiments on these data. It also describes a random

forests model that performs better than the best of the local linear models,

when trained on the same data. Chapter 6 presents overall conclusions that

lead to future work I’d like to do.
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Chapter 2

Literature Review

The literature on what works in predicting housing prices is thin. Several

detractors keep researchers away from the field. The primary one is the

absence of sharable data sets. Yes, it is true that all the data one needs are

in the public domain: tax assessments are held by county tax assessors,

deeds are recorded publicly by the county recorder of deeds, the U.S.

Census Bureau publishes the census data, GPS coordinates of houses are in

the public domain.

However, public and free are two very different things. Many counties sell

their tax assessment and deeds data. For example, I was offered the

opportunity to buy data for one county for a dollar a record. Sometimes

the data are priced and sometimes are free. It seems that the Louisville,
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Kentucky tax assessor has made Louisville data freely available to some

researchers at universities in Louisville, but I (in New York City) was given

the chance to buy the data.

Even freely available data may be difficult to use. For example, CoreLogic,

one of the largest resellers of U.S. real estate data, has a partnership which

obtains the data sets from the tax authorities and then cleans and

augments them and finally places them into a canonical form, because not

all counties produce the same data sets for their tax rolls and deeds. The

resulting data are available under license. The licensed data are much

easier to use than the raw, from-the-tax-authorities data. However, the

licenses tend to be restrictive, in order to protect the significant

downstream work after the data are gathered. The license under which I

have access to the Los Angeles County data is from CoreLogic. That license

permits access only by specifically-named people. Most of the people who

have worked with me on this project may not see the raw data.

The licenses are expensive. One reason is the high value of the data to many

companies that want to invest in real estate, in mortgages, or in securities

derived from mortgages. Another reason for high prices in that there are

relatively few providers of the cleaned-up data. Yet another reason for high

prices is that companies selling the data also sell real estate price-prediction

models that use the same data. The predictions are said to sell for $8 to

$20 each, creating a substantial market in price estimates, so the model
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providers have little incentive to undermine their own models. I approached

one potential data provider asking for a donation of real estate data. The

key issue quickly became: Why should we help you compete with us?

A secondary reason for thin literature is an absence of a tradition of making

one’s software available in open source form. Of course, there is less

motivation to do so if no one can run your software because it is tied to

specific, proprietary data sets. Indeed, there is a lack of generally usable

tools such as an R library that supports real estate analytics. Why develop

generalized tools if no one can get the data to use the tools?

This literature review is focused on studies that compared real estate price

prediction models with one another. What follows are sections that

correspond to the studies. The final section describes the contributions of

this work.

Here are the studies we review:

• A 2003 study of Auckland prices in 1996

• A 2003 study of Tucson prices in 1998

• A 2004 study of Fairfax Country prices in 1967 through 1991

• A 2009 study of Los Angeles prices in 2004

• A 2010 study of Louisville prices in 1999
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• A 2011 study of Louisville prices in 2003 through 2007.

2.1 2003 Study of Auckland Prices in

1996

In [BHP03] authors Steven C. Bourassa, Martin E. Hoesli, and Vincent S.

Peng studied housing prices in Auckland, New Zealand in 1996. Their

objective was to determine the extent to which housing submarkets

matter.

The idea of introducing housing submarkets into real estate price models is

this: rather than develop a model for an entire city, partition the city into

submarkets and develop a model for each submarket or, alternatively, fit

one model and include in it an indicator variable for each submarket. The

motivation for introducing submarkets is to improve prediction accuracy. It

is clear that not all submarket definitions will improve accuracy: for

example, define every house to be in its own submarket, and then the only

training data for a house is the history of prices for that house. It’s hard to

see how this model could be accurate.

So the problem is to find a definition of submarkets that improves accuracy.

The text considered two definitions. For the first, submarkets were defined

as the “sales groups” used by the Auckland government real estate tax
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appraisers. “The sales groups are geographic areas considered by the

appraisers to be relatively homogeneous.”

For the second definition of submarkets, principal components analysis

(PCA) was used. Two sets of PCA-based clusters were defined. The first

was based on all the PCA components accounting for 80 percent of the

variance in price. The second was based on the first two principal

components. The extracted clusters were defined to be the submarkets;

they were not required to hold contiguous houses.

Five models were developed.

• Model 1 was for the entire market. The features set was from the tax

assessment augmented by indicator variables for each quarter.

• Model 2 was like model 1, but included indicator variables for the

sales groups.

• Model 3 was a separate model for each sales group.

• Model 4 was a separate model for the first set of PCA-based clusters.

• Model 5 was a separate model for the second set of PCA-based

clusters.

Various subsets of the houses and features were tested. We focus here on

results for detached houses (corresponding to our interest in single-family
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residences), for the text’s restricted data set (using only variables readily

available from the tax assessor), and for non-spatially adjusted data (the

spatial adjustments add complications without changing the conclusions of

interest to us).

A resampling technique was used to compare models. The comparison

metric was a measure of accuracy: fraction of estimated prices that are

within 10 and 20 percent of their true values. Root mean squared errors

(RMSE) were not reported.

Based on the fraction of estimates within 10 percent of true values, the

models using the sales groups outperformed the models using the clusters

found through PCA. Thus, reliance on experts trumped reliance on the

specific clustering algorithms used. Other automated means to find clusters

may outperform the human experts. Models with clusters always

outperformed model 1, the model for the entire market. Model 2, which

used indicator variables for the sales groups, slightly outperformed model 3,

which used a separate model for each sales group.

The strength of this study is the demonstration that submarkets are

important and the discovery that, at least in Auckland in 1999, the human

expert tax authorities outperformed two PCA-based clustering

algorithms.

A weakness, not of the study but of the literature, is a lack of follow up in
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attempting to construct algorithmic clustering techniques that outperform

the human experts. Such an effort would require data, of course.

2.2 2003 Study of Tucson Prices in 1998

In [FLM03], authors Timothy J. Fik, David C. Ling, and Gordon F.

Mulligan studied approaches for incorporating location into house-price

estimation models using data from 1998 for Tucson, Arizona. The data

were for 2,971 sales transactions as recorded in the nine multiple listing

services systems that covered Tucson.

Four models were compared. All were linear in form and predicted the log

price using features in natural units.

• Model 1 was an “aspatial” model. It contains no location features.

Features used included the interior square footage, lot size, and age of

the house, as well as the squares of these features.

• Model 2 used indicator variables for the multiple listing systems,

which partition Tucson. In addition, the features from model 1 were

used as well as interactions with the indicator variables. Though nine

multiple listing systems were used, only three indicator variables for

them were included. The choice of these variables reflects the expert

opinions of real estate agents, who grouped some of the multiple
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listing services.

• Model 3 used GPS coordinates after transforming them into x, y

offsets from the most southwestern house. The feature set was built in

several steps. First, all the x, y and house features from model 1 were

included. Second, the squares and cubes of all these features were

added to the feature set. Finally, the products of all plain, squared,

and cubed features were added.

• Model 4 used all the features from model 2 and 3 combined, so it had

both the expertise of the real estate agents and the x, y locations.

The text claimed that model 4 performed best as measured by the mean

absolute error and fraction of estimates with 10 percent of observed prices.

The error rates were identified by randomly selecting 500 of the 2,971

transactions, training on remaining 2,491 transactions and testing on the

500.

Model 3 was claimed to perform almost as well as model 4, and did not

require the expert knowledge of the real estate agents, just the property

descriptions and GPS coordinates.

Model 3 was claimed to perform better than model 2 as measured by mean

absolute error and only slightly worse as measured by fraction of estimates

within 10 percent.
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Strengths of the work include:

• Incorporating GPS coordinates. This work seems to be among the

first to do so.

• Showing that the GPS coordinates provide a useful feature in

predicting real estate prices.

• Demonstrating that the expert knowledge of real estate agents is not

needed and providing a simple-to-understand method of incorporating

GPS coordinates. The text’s method for incorporating GPS

coordinates has been followed by some other studies.

2.3 2004 Study of Fairfax County Prices in

1967 through 1991

In [CCDR04] authors Bradford Case, John Clapp, Robin Dubin, and

Mauricio Rodriguez reported on a competition to build house price

prediction models for single-family residences in Fairfax County, Virginia

from 1967 through 1991. The time period was long but covers only 60,000

transactions.

The model-building efforts were organized as a competition. The data were

split into training and testing sets. One participant kept the testing data
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and scored the predictions from others.

The data were from the tax assessor, a GPS coding firm, and the 1990 U.S.

decennial census. They included both housing characteristics (such as land

area, number of rooms, and so forth), GPS coordinates, and census tract

data. The census tract data were based on 1990 census tracts.

A large number of models were built in several families.

• Model family 1 was based on an ordinary least squares (OLS) model

with housing features and with what was called a “trend surface.”

The trend surface was modeled by including latitude and longitude,

the squares of these features, and the product of these features. The

trend surface is very similar to the x, y approach from [FLM03], which

was reviewed in the previous section. A variant in the model 1 family

included indicator variables for census tracts, building what is now

called a submarket model. Model 1 variants also included indicator

variables for the years.

• Model family 2 was based on a kind of local regression in which the

log of the price is modeled as the sum of a linear function of house

features and a possibly non-linear function of the house’s location in

space and time. One variant in this model worked in two stages. In

stage one, residuals for all transactions were determined. In stage

two, the residuals from the nearest fifteen neighbors of each house
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sold within the last three years were included as features in the linear

portion of the model.

• Model family 3 was a set of linear models in which the error terms

were allowed to be correlated and the covariance matrix of the error

terms was modeled explicitly. In the literature, these kinds of models

are called both geostatistical and kriging models. The model was (we

follow the text, page 176) Y = βX + µ, where µ is drawn from

N(0, σ2K), a change from the standard OLS model in which µ is

drawn from N(0, σ2I), where I is the identity matrix. If K were

estimated by K̂, then the estimate for β would be

β̂ = (Y ′K̂−1X)−1X ′K̂−1Y .

The problem reduces to estimating K, which is a square matrix of

size n, the number of observations. This is done by assuming a form

for K. Kriging, a technique within geostatistics, is based on the

assumption that K, the correlation matrix for the error terms, is a

function solely of the distance between each observation i and j. The

model builder Robin Dubin assumed this form for K:

Kij = b1 exp(−dij/b2) when i 6= j and Kij = 1 when i = j. Here dij

was the physical distance separating house i and j. The parameters

Kij, b1, b2, and σ were estimated through maximum likelihood.

One advantage of kriging is that it explicitly models the error and
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thus allows the predicted error to be added back to the estimate from

the linear model. A separate local model was built for each query

transaction. Variants included inclusion or not of census tract data,

testing of several methods to estimate the covariance of the error

terms, and tuning of hyperparameters used to selected samples for

inclusion in the local models.

• Model family 4 was a set of linear models with “homogeneous

[submarkets] and nearest-neighbor residuals.” The submarkets were

found through K-means clustering of features of census tracts. The

census tract features were the fitted parameters of separate linear

models for each census tract. The optimal number of submarkets was

found to be 12. This model family was a two-stage model, in which

residuals from the nearest five properties from the first stage were

used as features in the second stage. A separate model was estimated

for each submarket.

Models were built by the builders and tested by the judge. Feedback was

given to the builders. The model builders then tuned their models and

resubmitted. The judge computed a handful of metrics, all variants on

mean and median errors (but not fraction within x percent).

We focus here on results as measured by the root median squared

prediction error, a metric that we used in our own work. Under this metric,
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all models performed within 7.3 percent of each other. The best model was

a variant of model 3, a local kriging model. The text claims that it is

“computationally intensive.” The software to implement it was available at

time of publication from Robin Dubin and was written in the Gauss

programming language.

One of the OLS variants had errors 4.0 percent higher than the best model;

the other OLS variant had errors 6.2 percent higher than the best

model.

The strengths of the study include:

• The use of a single data set by multiple model builders

• The long time period for the data sets

• Inclusion of many time periods in the testing sample.

2.4 2009 Study of Los Angeles Prices in

2004

In [Cho09] author Summit Prakash Chopra developed factor graphs for

relational regression, an approach intended to capture “the underlying

relation structure” of the data. He developed the approach and illustrated
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its value using two real estate price prediction problems. Here we review

the first of these price prediction problems because its setting is most like

other price prediction studies in this literature review.

Five models were compared:

• Model 1 was a nearest neighbor model using 90 neighbors, a value

found through experimentation. The distance metric was the

Euclidean metric on the entire feature space with equally weighted

coordinates.

• Model 2 was linear regression using an L2 regularizer. The features

used were the tax assessor features.

• Model 3 was a locally-weighted regression. Here “local” means that a

separate linear model was constructed for each query transaction.

The training set for the query was the K nearest neighbors to the

query. The distance metric was the Euclidean distance in the feature

space and the GPS coordinates. Distances were converted to weights

via a Gaussian kernel (called exponential in the text). K was set to

70 through experimentation.

• Model 4 was a neural network with two hidden layers.

• Model 5 was a “relational factor graph,” a model developed for the

study. This model is designed to determine neighborhood desirability
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for all houses collectively.

The models were compared by training on the first 90 percent of

transactions in 2004 and then estimating the values for the transactions in

the last 10 percent of 2004. The size of the data set was about 42,000

transactions.

Here we report the study’s results for the metric fraction of estimated values

within 10 percent of the true values. The accuracy of the models is in the

order listed above: model 1 was least accurate (47 percent of transactions

were within 10 percent of true values), model 5 was most accurate (66

percent within 10 percent). The 66 percent figure is a high figure compared

to other studies, however, none of the studies are repeatable as all of the

data are proprietary. Moreover, the time period for the predictions was

about 5 weeks, much shorter than for most other studies.

A strength of the study is the development of the relational factor graph

approach.
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2.5 2010 Study of Louisville Prices in

1999

In [BCH10], authors Steven C. Bourassa, Evan Cantoni, and Martin Hoesli

compared hedonic methods for predicting residential real estate prices. The

data were 13,000 single-family house sales in the year 1999 in Louisville,

Kentucky. Data came from the Property Valuation Administrator for

Jefferson County, which then contained Louisville. (Louisville and Jefferson

County subsequently merged.) Census data at the census block level were

used. The regressor was the log of the price. Predictors included the

house’s age and age squared and the lot size and lot size squared. Indicator

variables were included for quarterly time periods.

These models were compared:

• An OLS model.

• A two-stage OLS model. The first stage was used to calculate

residuals. The second stage used the average residual of the ten

nearest neighbors as an additional feature.

• A geostatistical model, an approach that models the covariance

matrix of residuals from a first-stage model. The key assumption of

geostatistical models is that “the covariance [of residuals] between
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locations depends only on the distance between them [BCH10,

p. 142].” This model is similar to the geostatistical model in the 2004

study of Fairfax County [CCDR04].

• A “trend surface” method. Five features were used: lot size, interior

space, age, latitude, and longitude. Then the squares and cubes of

these features were added, giving 15 features. Then all 15× 14

pairwise interactions of the 15 features were also added. A linear

model was then fitted to the 5 + 15 + 15× 14 features. This model is

similar to Model 3 of the 2003 Tucson study [FLM03].

Most models were fitted once for the entire market and several times for

submarkets. The submarket models were sometimes defined by indicator

variables for the submarket and sometimes by models trained for entire

submarkets. Submarkets were defined in several ways, including starting

with census blocks and building up neighborhoods by merging census

blocks with similar house values.

The comparison approach was to train models on 74 percent of the data

and determine the errors on the remaining 26 percent of the data. This

procedure was repeated 100 times for different random draws.

The key error metrics used were the fraction of the test transactions within

10 and 20 percent of the known true values.
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The study claims that accuracy was improved by including submarkets and

that more narrowly defined submarkets were better than more broadly

defined submarkets. The study reached no conclusion on whether the

indicator variable or entire submarket approach was more accurate. The

most accurate model was a geostatistical model with indicator variables for

submarkets, a surprise to me given the simplified assumptions in the

geostatistical kriging model. Perhaps improvements in modeling the errors

are possible.

There are several limitations of the study. One is that the computer codes

were implemented in Splus, a commercial package, and the S+ Spatial

Toolbox was used. Updating the work to open source tools would

encourage reproducibility. Another limitation is that the data are

proprietary to the study team. I spoke with Bourassa and was told that his

license for the data did not allow sharing of the data with me. Another

limitation is that the data are for one year and the size of the data set is

relatively small (13,000 transactions).

The main strength of the work is the use of a single data set to compare

very different models. It is a shame that the modeling work cannot be

extended to also test other techniques independent of the original study

team.
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2.6 2011 Study of Louisville Prices in 2003 -

2007

In [ZSG11] authors Jozef Zurada, Alan S. Levitan, and Jian Guan

compared regression and “artificial intelligence” methods for predicting real

estate prices. The study used Louisville data for 2003 through 2007.

Seven models were compared (descriptions are from the text):

• MRA: multiple regression analysis using features from the tax

assessor.

• NN: neural network.

• M5P trees: a decision tree with a linear regression model built at each

leaf.

• Additive Regression (aka, gradient boosting): an ensemble method

that repeatedly adds models that best maximize predictive

performance.

• SVM-SMO regression: support vector machines optimized not with

quadratic programming but with sequential minimal optimization,

which is claimed to be faster.

• RBFNN: a neural network variant with one hidden layer where the
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hidden layer is a radial Gaussian activation function; hence a radial

basis function neural network.

• MBR: memory-based reasoning, which was not defined in the text.

Possibly it was the average of the 10 nearest neighbors (based on the

headings in Exhibits 8, 9, and 10).

The data set came from the Louisville tax assessor. After processing, it

contained 16,366 sales in years 2003 - 2007 (hence before the real estate

crash) and 18 features (the text sometimes says 16 features).

Five “scenarios” were studied.

• Scenario 1 used the data from the tax collector. There was one model

for the entire market.

• Scenario 2 used all the features from scenario 1 and a feature called

Location meant to represent neighborhood desirability: the mean

price of properties within a tax assessor district, which was designed

by the tax assessor to contain 10 to 50 properties. What time periods

were used was not specified. There was one model for the entire

market. (A better name for Location would have been

NeighborhoodV alue.)

• Scenario 3 used K-means to create 3 clusters using all the features

from scenario 2 and the sales price. A Euclidean distance was used,
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most likely with equal weighting of the coordinates, as coordinate

weighting was not discussed. A separate model was built for each

cluster.

• Scenario 4 used K-means clustering to create 5 clusters using just the

Location feature from scenario 2 and sales price. A separate model

was built for each cluster.

• Scenario 5 used K-means clustering to create 5 clusters using

Location, sale price, age, and interior square footage. A separate

model was built for each cluster.

Each of the seven model forms was compared on each of the five

scenario-cluster combinations. Comparisons were based on 10-fold cross

validation. Cross validation was repeated: if each fold had more than 5,000

observations, the cross validation was repeated 3 times with new random

draws; otherwise it was repeated 10 times. It is claimed (but not

substantiated) that this procedure is “sufficient to achieve stabilization of

cumulative average error (page 368).”

Models were compared on five metrics including RMSE and excluding

fraction within x percent.

We undertook our analysis of the text’s results, relying exclusively on the

RMSE metric. We found:
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• Adding the Location feature (NeighborhoodV alue) always improved

estimates.

• Some clusters had lower estimated RMSE values while others had

higher estimated RMSE values. The clusters here were equivalent to

submarkets in other studies and this finding is typical.

• Additive Regression performed best in 12 of the 14 scenario-cluster

combinations. When it didn’t perform best, it was at most 1.3

percent worse than the best performing model. When Additive

Regression was not the best performing model, the best performing

model was M5P in one case and NN in other.

• MRA was never the best performing model, but never the worse

performing model.

• MRA’s RMSE as a fraction of that of the best performing model

ranged between 1.015 (1.5 percent worse than the best model) and

1.118 (11.8 percent worse than the best model). The mean was 1.049,

so that MRA performed on average 4.9 percent worse than the best

model.

The main strengths of the text are its multi-year nature and testing of

many different models and scenarios.

I asked for a copy of the data sets and was told by Alan Levitan, one of the
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authors, that a strict confidentiality and nondisclosure agreement was

imposed by the Louisville tax assessor. He referred me to the tax assessor’s

website, which offered to sell the data. (All the text’s authors were at the

University of Louisville when the study was published.)

I was not successful in obtaining a copy of the code used in the text.

Clearly the research community for real estate analytics is never going to be

able “to stand on the shoulders of giants” (the metaphor is attributed to

Bernard of Chartes by John of Salisbury in a book published in 1159 [oS09,

p. 167]). Though we may be able to identify the giants (the text study is

one of them), we can’t use their data nor leverage their software.

2.7 Contributions of This Work

This work extends the literature in several ways.

• Open sources all of the software. The implementation is entirely in

the R programming language [R C14]. All the source code is available

in the author’s Github account rlowrance. The license is the GNU

General Public License Version 3. Most of the modeling code is

written in a generic way so that it could be incorporated into a

reusable library. The only data-source specific code is in the code that

cleans up the data sets. All the modeling code was designed to be
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adapted to work with any data set.

• Inclusion of transactions both before and after the 2007 real estate

crash. None of the other studies reviewed included data after the

crash. It is possible that the crash invalidated some models.

• Price levels for real estate are potentially changing all the time. The

most typical approach in the literature is to capture period-specific

price levels through indicator variables, sometimes quarterly,

sometimes annually. Our approach was to directly consider the effect

of increasing or decreasing the training period on model accuracy, thus

implicitly capturing price level effects. (Time period indicators may

cause the future to appear in models, as the time period indicator

coefficients may be been set using data after the query transaction.

None of the studies reviewed here mentioned this concern.)

• Most prior studies focus on one model form, often the log-level form

in which the log of the price was estimated using features in natural

measurement units. This work studied whether this model form was

in fact best for predictive purposes.

• Most prior studies fixed a feature set and used it for prediction. This

work studied potential feature sets and used a simple heuristic

(potentially new) that was used to pick the best feature set.
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• Most prior studies were for relatively small data sets. Our data set

was for all of Los Angeles County, the most populated county in the

United States [Bura].

• Most prior studies measured goodness of fit of the tested model using

some variant of the metric “fraction of estimated values within 10

percent of the actual value.” We tested this metric against other

choices.

• We avoided using future information in fitting models through careful

design of the data sets and by fitting a model to each query

transaction in a way that all data on or after the date of the query

transaction were invisible to the fitting process.

Some limitations of this work include:

• The data set was proprietary to the study. Thus even though the

source code is available, results cannot be replicated on these data.

• The work reported on here did not use the GPS coordinates for the

properties. Other work has found that leveraging the GPS

coordinates can improve predictive accuracy.
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Chapter 3

Data Munging

We started with real estate data for Los Angeles County: the tax roll for

2008, containing about 2,400,000 parcels, and 25 years of deeds, about

15,600,000 observations, ending early in 2009. These data came from

CoreLogic. We supplemented them with data from the U.S. Census Bureau

from the year 2000 and, from a geocoding service, the latitude and

longitude of many of the parcels. We joined a subset of these files to create

a transactions file for single-family residences that were sold at arms-length.

Each record in the transaction file was for the sale of a property. The record

contains all the information we had on the sale itself (for example, the sale

date and price) and on the parcel (for example, the lot size and number of

bedrooms). We had about 2,200,000 transactions. The transactions file

contained observations with unusual values which we presumed to be
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erroneous. For example, there were houses with zero rooms. So we created

a subset (“subset 1”) containing only transaction observations with values

we defined to be reasonable. We split subset 1 into training and testing

sets. All of the analyses described here used the training set within subset

1, which contained about 1,200,000 observations.

This chapter provides the details on how subset 1 was formed. It contains

these sections:

• A description of the input files

• How the input files were joined into the transactions file

• How a subset of the transactions was selected

• An optimization designed to speed up testing of programs using the

subset.

3.1 Input Files

The tax roll is used by the tax assessor to prepare and send property tax

bills. In Los Angeles County, the initial real estate bills are sent starting

October 1. The tax roll used in this work is as of November 1, 2008,

representing tax due in late 2008 and in 2009.

31



The eight tax roll files we used were assembled by CoreLogic, which

obtained the original files for Los Angeles County, cleaned them up,

augmented them with other data, and licensed them. There was one record

(CoreLogic type 2580) for every parcel.

The fields in each record were in these groups:

• The parcel identifier, called the Assessor Parcel Number (APN). This

value was presented twice, once formatted with hyphens and once as a

plain number field. The number field was not always numeric and did

not always have the correct number of digits, so the two fields were

analyzed to infer the “best” APN.

• Information on the parcel itself: census tract, latitude, longitude,

location on maps, the universal land use code (LUSEI), and so forth.

The LUSEI field was used to identify whether the parcel was for a

single-family residence. The GPS fields were not populated in our

data.

• Information on the subdivision, primarily its location in reference

books.

• The address of the property including its 9-digit zip code.

• Information on the owner, which was not populated.
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• A series of fields describing the assessment for the parcel.

• Information on the most recent sale of the property. We didn’t use

this information and relied instead on the information in the deeds.

The two sources did not always agree.

• Information on the mortgage. We didn’t use any mortgage

information in this work.

• Information on the prior sale. We again relied on the deeds for this

type of information.

• A description of the lot including its size in acres and square feet.

• A description of the primary building, including the year built,

number of rooms, number of bedrooms, number of bathrooms, and

whether it had a swimming pool. Many of the values were missing.

Later we describe how we defined a subset of the data to use.

• The legal description of the property. We didn’t use this.

A deed transfers ownership or legal rights to a property. When a property

is sold or encumbered, one files an appropriate deed with the registrar of

deeds. The deeds used in this work were for the 25 years ending early in

2009.

The eight deeds files we used were assembled by CoreLogic, which obtained
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the original files, cleaned them up, augmented them with other data, and

licensed them. There was one record (CoreLogic type 1080) for every

deed.

The fields in each record were in these groups:

• The parcel identifier, the APN. This was coded as in the tax roll file

and had similar issues.

• A description of the owner. We didn’t use this.

• The owner’s mailing address. We didn’t use this.

• Property information. We relied on the tax roll for this type of

information and hence did not use these fields.

• Information on the sale, including the sale date, the price, how many

APNs were in the transaction, the type of deed, and the primary

category code (PRICATCODE) reporting whether the transaction

was at arms-length. We used only arms-length transactions in this

work. We used only grant deeds (these are deeds of sale) in this work.

The census file for the year 2000 decennial census. It contained records for

census tracts in Los Angeles County.

The geocoding file was produced by GeoLytics, Inc. It contained latitudes

and longitudes for many of the parcels in Los Angeles.
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3.2 Creating the Transactions File

We joined the input files to create a transactions file which we then

subsetted to create the main data file for most of the analysis. This section

describes the steps.

The major steps are these:

• Select just the arms-length sale deeds.

• Select just the parcels containing single-family-residences.

• Create additional features for the zip codes and census tracts.

• Create additional features for the census tracts.

• Join all the files together.

• Pick a subset that has “reasonable” values.

• Split the subset into individual features.

Details of each of these steps are in the subsections that follow.
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3.2.1 Select arms-length sale deeds

The deeds files classified every record as to whether it was an arms-length

sale or not. Deeds not at arms length may be between related parties, and

the price paid may not be at market. For example, a parent might sell a

house to a child for $10. How a deed was classified as arms-length was not

specified, but presumably relied on the type of deed and the relationship if

any between the seller and buyer.

Our work used only deeds classified as arms-length sales as recorded in the

PRICATCODE (primary category code) field. The deeds files from

CoreLogic contained 15,600,000 deeds of which 4,600,000 were classified as

arms-length.

The document type code field recorded the type of the deed. The deeds of

interest were those that transferred ownership of a property. These were

the grant deeds. There were 6,700,000 grant deeds in the deeds files.

We were interested in deeds that are both arms-length and grant deeds.

There were 4,000,000 such deeds.
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3.2.2 Select single-family residences

The tax assessor classifies each parcel according to its primary use. One of

the uses is as a single-family residence.

Our work used only parcels classified as single-family residences as recorded

in the LUSEI field. The tax roll files from CoreLogic contained 2,400,000

tax roll records of which 1,400,000 were classified as single-family

residences.

3.2.3 Create additional features for zip codes and

census tracts

A potentially-informative feature of a parcel is whether it is near industry,

a park, shopping, or a school. Perhaps the first of these characteristics

detracts from attractiveness and the others increase attractiveness.

These features are not directly reflected in the tax roll file and hence must

be deduced. Ideally, one would determine the distance to the nearest

industrial location, park, shopping area, and school for every parcel. But

we had latitudes and longitudes only for residences, not for parcels

containing industry, parks, retailers, or schools. Hence we resorted to

determining whether 5-digit zip codes and census tracts contain industry,

parks, retailers, and schools.
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Thus we had two additional input files that were joined: one stating

whether every 5-digit zip code had any of the features of interest, the other

with the same information for every census tract.

3.2.4 Create additional features for the census

tracts

The features we wanted to have for the census tracts are the average

commuting time (perhaps properties with longer commutes have lower

values), the median household income (perhaps neighborhoods with higher

incomes also have higher property values), and the fraction of houses that

are owner-occupied (perhaps higher ownership is associated with higher

property values).

None of these features are provided directly in the Census Bureau file, but

all were straightforward to compute from the information in that file.

3.2.5 Join all the files together

The transactions file was created by joining each of the input files:

• The file of all arms-length sale deeds containing 4,000,000 records.

• The file of all single-family-residence parcels containing 1,400,000
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records. These parcels were naturally joined into the deeds using the

best APN field from each file. The resulting joined file had 2,200,000

records. The unique key of each record was the APN and the

recording date for the deed. Other fields in the joined records were

information from the deeds files including, when available, the date of

the sale and the price, and information from the tax roll file

including, when available, a description of the property (lot size,

interior space, number of rooms, and so forth).

• The file containing 2,039 records derived from the census tract data.

The information in these records was appended to the joined

deeds-parcels file using the census tract fields to line up the records.

A file with 2,200,000 records resulted.

• The file containing 2,366,403 records from the geocoding provider.

This file had the APN as its primary key and usually contained the

latitude and longitude of the corresponding parcels. These location

values were appended onto the corresponding records in the

census-deeds-parcel file. The resulting merged file had 2,200,000

records.

• The file containing 396 records recording features of the 5-digit zip

codes and 2,059 similar records from census tracts. These information

in these files was appended onto the census-deeds-geocoding-parcels

39



file to create the transactions file.

The resulting transactions file contained 2,200,000 records.

3.3 Pick a subset with reasonable values

We would have been finished with the data munging except that the

transactions file contained observations with unreasonable values. For

example, there were single-family residences with no rooms and with prices

in the hundreds of millions of dollars.

This project assumed that observations with unreasonable values were not

recorded properly and chose to discard those observations. An alternative

would be to identify the missing or miscoded values and to impute their

values.

These judgements were applied to reject records and form “subset 1,” the

subset of transactions actually used in the analysis.

• Assessed value. Transaction arising from parcels with an assessed

value exceeding the maximum sales price were discarded. How the

maximum sales price was determined is described just below under

“Sale amount.” There were 1 such.

• Effective year built. Transactions arising from properties without an
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effective year built were discarded. The effective year built is the year

of the last major remodeling or the year the property was built.

There were 4,505 such.

• Geocoding. Transactions for which either the latitude or longitude

were missing were rejected. There were 277,497 such.

• One building. Transactions arising from parcels with more than one

building were rejected because we had only the description for one

building. There were 3,367 such.

• One parcel. Transactions arising from deeds that reported more than

one sold parcel were rejected because there was no way to apportion

the price to the parcels. There were 6 such.

• Sale amount. Some deeds report extremely large prices. Research in

the Wall Street Journal suggested that the highest transaction price in

Los Angeles through the end of 2009 was $85,000,000, so observations

with higher prices were rejected. There were 274,869 such.

• Sale code. The price on the deed might not be for the full value of the

parcel. We rejected transactions that did not say the sales price was

for the full amount. There were 404,293 such.

• Sale date. None of the deeds were missing recording dates. Some were

missing sale dates. When a sale date was missing, it was imputed
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from the recording date. This imputation used the average delay

between sale and recording (54 days) as the best estimate for the

missing sale date.

• Total rooms. We rejected transactions for houses reported to have

less than 1 room. There were 451,737 such.

• Transaction type code. We rejected transactions for parcels that were

neither new construction nor resales. Other possibilities include time

shares, construction loans, and refinancing. There were 26,085 such.

• Units number. The files had the description for only the primary unit

on the parcel, so we rejected observations with more than one unit.

There were 9,156 such.

• Year built. Transactions arising from properties with a missing year

built were discarded. There were 3,412 such.

Some transactions were discarded because of extremely high values in one or

more features. Observations that exceeded the 99th percentile of reported

values were discarded. Features subject to this protocol were these:

• Land square footage: the square footage of the land. The largest land

square footage value in the transactions file was 435,606,534; the

largest value in the subset of retained transactions was 81,021. There

were 22,154 observations with values exceeding the highest allowed
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percentile.

• Living square feet: the square footage of the livable part of the house.

The largest value in the transactions file was 40,101; the largest value

in the subset of retained transactions was 5,172. There were 25,175

observations with values exceeding the highest allowed percentile.

• Universal building square feet: the square footage inside the house.

The largest value in the transactions file was 354,707; the largest

value in the subset of the retained transactions was 5,178. There were

24,715 observations with values exceeding the highest allowed

percentile.

The resulting subset file (“subset 1”) contained 1,200,000 records.

At this point, subset 1 was split into training and testing data. The testing

sample was drawn randomly as a two percent sample of the subset 1

transactions in each month.

3.4 Split the subset into individual

features

The project used R as the programming language. The output of each of

the processing steps was a data frame that was stored in R’s internal binary
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serialized format. The idea was to make it quick to read in the data. CSV

files could have be created later if they were needed.

After I starting working with subset 1, I found that reading the binary

serialized format took several minutes, and that was too long to wait. So I

created one final processing step, which was to split the subset 1 data frame

into individual features and write the features as 1-column data frames in

serialized files. Often an experiment needed only a handful of features, and

reading just the features needed and assembling them into a data frame for

analysis was often quicker than reading all the features and discarding most

of them.

Since models could need transformed versions of the features, I

pre-computed those as well. For the continuous features with all positive

values, I created centered versions and centered versions of the log of the

values. For continuous features that could be zero, instead of the log I used

1 plus the log.
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Chapter 4

Data Selection

We’d like to investigate a range of real estate price prediction models over

as many years as possible. Most academic studies of real estate prices cover

just one year of transactions. Unfortunately, the overlap in time periods for

our data sets was small.

• The deeds files contained deeds for 1984 through the first part of

2009. A few deeds from years before 1984 were thrown in.

• The tax roll file was for 2008. It was created in late 2007. It contained

property descriptions as well as the tax assessor’s estimated value for

the house. It also contained the census tract number for each house.

• The census file contained data from the decennial census in year 2000.
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It became available to the public sometime in 2002.

Thus, the common time period was starting in late 2007 and extending into

a few months in 2009.

This time period could have been extended to earlier time periods if we

could have concluded that the tax assessment did not carry much predictive

value. If that were so, we could have simply not used features derived from

the tax assessment and extended the analysis back to 2003, when the year

2000 census data became available.

Furthermore, we could have extended the time period back before 2003, if

the census data were also not valuable for predictive purposes.

To determine whether feature sets were valuable for predictive purposes, we

employed a cross validation and model-testing process using the training

data.

The remainder of this chapter is sectionalized.

• Section 1 describes the cross-validation process and how models were

fitted and used for prediction.

• Section 2 provides an overview of real estate taxes in California.

• Section 3 answers the question: Were the tax assessment-derived

features valuable for predicting prices?
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• Section 4 provides an overview of the U.S. decennial census and the

year 2000 census in particular.

• Section 5 answers the question: Were the census-derived features

valuable for predicting prices?

• Section 6 provides a brief summary of the findings: the tax

assessment-derived features were not valuable and the census-derived

features were valuable.

4.1 Cross Validation and Model Fitting

We compared a large number of models with the goal of selecting the

models that were best for predictive purposes. In this work, “best” means

that the model provided the lowest estimated generalization error, which

was defined to be the estimated error on data that the trained model had

never seen.

To estimate the generalization error, we used 10-fold cross validation, as

described in [HTF01, Chapter 7, starting p. 214]. Our implementation of

cross validation assigned each of the training samples randomly to one of 10

folds and then trained 10 sets of models. We used the standard 10-fold

cross validation approach: for each fold, we defined training folds

containing 90 percent of the data and a testing fold containing 10 percent
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of the data.

For each of the samples in the testing fold, we built a local model just for

that sample, which we called the query transaction. To avoid using the

future in the training process, we first discarded all data in the training

folds that occured on or after the date of the query transaction. A model

was then trained on the remaining data in the training folds. The trained

model was then used to predict the query transaction’s price and the

results were recorded.

There were many local models to be fit. Just before the models were fitted,

the feature set was analyzed to detect and eliminate any feature that would

not meet the requirements of the underlying model. For example, usually

the model required that no feature had the same value for every

transaction. We made this tradeoff: we kept the transaction in the fold’s

test set using fewer features than are specified in the model rather than

discarding the test transaction. In a fold, usually very few test transactions

had discarded features.

One optimization sped up the fitting process. All models with the same

query date were fitted to the same training data because the training

process did not use the query transaction or any data on or after the date

of the query transaction. Thus the same fitted model could be used for

every query transaction on a given date.
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4.2 Understanding the Real Estate Tax

Assessment

Figure 4.1: Fraction of Property Sales For Exactly Their 2008 Assessments
By Recording Year and Month
For 2006 Through 2009
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In the United States, local government is often financed in part through

real estate taxes [Wik14]. The taxing authority, often a county, creates a

tax assessor which values the land and the improvements on the land. The

resulting assessed values are used to determine the assessment, the amount

of taxes due. For example, the assessment may be calculated as a fraction
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of the total assessed value of the land and its improvements. The assessed

value may be the market value or a stated fraction of the market value or,

as in California, have some other relationship to market value. How often

the assessments are carried out depends on the local government.

The tax assessment is possibly a useful feature to know when creating real

estate valuation models. Figure 4.1 depicts the fraction of residential

properties recorded in certain months in Los Angeles County relative to

what is called the 2008 tax assessment. We see that in the period July,

2007 through December, 2007, many of the properties, about 90 percent,

sold for exactly their assessed values. This did not happen in other periods.

What was going on?

The answer lies in California Proposition 13.

California Proposition 13 [Dat], passed in 1978, changed the relationship

between market values and assessed values. Assessments were reset to their

1976 levels. Increases from the 1976 level were limited to two percent per

year, unless the property sold (with a few exceptions). Properties that sold

were assessed at their selling prices.

The net effect is that the assessor’s assessed value is below the market value

in periods with inflation of more than two percent for homes that did not

sell in the previous year.
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One final note on timing. The tax bills are mailed between October 1 and

October 31 [otA] with initial payment due on November 1. The fiscal year

for Los Angeles County begins July 1.

Now we have the background to hypothesize an explanation for the many

zero-error points in the second half of 2007 in Figure 4.1. The assessor set

the assessment for 2008 equal to the transaction prices for properties

transacted in 2007 starting in July, when the fiscal year began. Assessed

values for properties transacting before July 2007 were set in some other

manner. The figure reflects recording dates, which tend to lag sales dates

by a few months. Thus the properties reported as transacting in November

and December in many cases would have transacted a few months early, say

ending in roughly October. The last day for publishing tax assessments is

October 31.

4.3 Testing the Predictive Value of the

Assessment

We turn now to a key question: to what extent is the assessed value useful

in predicting real estate prices when using linear models?

To answer this question, we compared two linear models that are otherwise

identical except for the feature sets used. One model used the tax data, one
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did not. In order to determine which of the two models was better, we

estimated the generalization error from each model using 10-fold cross

validation.

The common feature set across each model contained all the features that

were present in every transaction of subset 1. The features were structured

into six groups along two axis. The first axis was the source of the feature:

from the tax bills, from the U.S. Census Bureau, or from the deeds file. The

second axis was whether the feature describes the size of the property: yes

or no.

These two axis resulted in six feature sets.

• From the tax bills presented in late 2007.

– Size features: improvement value, land value.

– Non-size features: fraction improvement value (ratio of the

improvement value to the sum of the improvement and land

values).

• From the U.S. Census Bureau decennial census in year 2000.

– Size features: there were no such features.

– Non-size features: average commute time; fraction of houses that

were owned by the occupants; median household income;

52



whether the census tract had a park, retail stores, a school, and

industry.

• From the deeds files for the years 1984 through 2009.

– Size features: land square footage, living area, basement square

feet, number of bathrooms, number of bedrooms, number of

fireplaces, number of parking spaces, number of stories, and

number of rooms.

– Non-size features: effective year built; year built; whether there

was a pool; whether the house was newly constructed; whether

the five-digit zip code had a park, retail stores, a school, and

industry. When constructing the models, the year and effective

year built features were converted to age, age squared, effective

age, and effective age squared using the sale date from the query

transaction. This conversion was made because age and age

squared are popular features in the literature. The idea is that

houses may depreciate for a while and then gain in value as they

become classics.

In addition to varying the feature set, we varied other design choices in

linear models:

• Response variable. One can choose to predict the price of the house
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or the logarithm of the price.

• Prediction variable forms. One can choose to predict using the

natural units for the predictor features or by transforming the size

features into the log domain.

• Number of days of training data. Prices were moving rapidly

downward in 2007. With linear models, using a longer period for the

training data runs the risk of irrelevance of the training data to the

query date. If prices were stable, a longer training period could

provide a more accurate estimated price.

Figure 4.2 contains the results from the cross validation study. Column one

states the number of days in the training period. Each cell after column one

contains the median of the RMSE values from 10-fold cross validation. Here

RMSE means the square root of the median squared errors. Thus each cell

contains an estimate of the generalization error.

Column two contains estimated errors for the level-level form of the model,

which estimates price, and features that use the tax assessment. Column

three is also for the level-level form of the model, but does not use the tax

assessment.

Comparing columns two and three, we see that in every case the estimated

errors are lower if we do not use the tax assessment-derived features. This
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Median of Root Median Squared Errors from 10 Fold Cross Validation

Scope: entire market

Model: linear

Time period: 2008

Percent of queries in each fold that were estimated: 100

Use Tax (yes ==> use tax assessment)

response: price price price price logprice logprice logprice logprice

predForm: level level log log level level log log

use tax: yes no yes no yes no yes no

ndays

30 109129 108374 120745 115597 71570 70079 72527 70957

60 110262 107401 120992 115979 71913 70295 73058 71731

90 110557 108159 122610 116616 72927 71293 74195 72788

120 111882 108216 123739 117264 73703 72883 75418 73530

150 112079 109232 124241 118772 74850 73930 75779 73991

180 112834 109850 126559 119924 76163 74820 76606 74765

210 113514 110465 128019 121366 76798 75441 77313 76409

240 114349 111865 129142 122262 77738 75951 77872 76912

270 115017 112250 129717 122696 78364 76424 78298 77610

300 115159 112684 129932 123194 78597 77012 78556 78248

330 115228 112992 130403 123109 78597 77158 78794 78317

360 115212 113057 130386 123109 78713 77332 78842 78322

Figure 4.2: Estimated Generalization Errors
With and Without the Assessed Value
By Response Variable, Predictors, and Training Period
For Sales in 2008

is true for every column pair. Using the tax assessment always led to higher

estimated errors.

The key conclusion from the figure is that using the 2008 tax assessment as

a feature never reduced the estimated generalization error. Examining

Figure 4.3 shows why: median prices in 2008 fell every month, so that the

assessed values became increasingly obsolete.

Thus we reached an unexpected conclusion: the assessed values were not

necessarily useful in linear models. One reason is that in California,
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Figure 4.3: Median Price
By Month

For 2006 Through 2009
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Proposition 13 biases the assessed values to be less than market values on

some properties but not others. Another reason is that the assessment may

become obsolete if market values are either increasing or decreasing

rapidly.
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4.4 Understanding the Census Data

The United States Census Bureau conducts [Burb] a decennial census every

10 years. The year 2000 census [Bur02, p. 140] began in March 2000 to

survey all 98 million households. The survey technique was to mail surveys

and follow up with non-respondents by sending “enumerators” to the

household.

Two survey forms were used in 2000.

• Short-form: Most households (83 percent) received a questionnaire

asking for information on “name, sex, age, relationship, Hispanic

origin, and race.”

• Long-form: Some households (17 percent) received a questionnaire

that asked for both the short-form information and an additional “52

questions requesting . . . information about housing, social, and

economic characteristics of the household.”

Data were captured for each household and then aggregated for reporting

purposes. The lowest level of aggregation was the census block. Data from

census blocks were further aggregated into several hierarchies [Burc]. The

hierarchy of interest to this work had these levels: nation, region, divisions,

states, counties, census tracts, block groups, and census blocks. All of the

census data we used were from the 2000 census for Los Angeles County and

57



were at the census tract level.

Boundaries between census tracts in Los Angeles changed between the 2000

and 2010 censuses [Pro14]. That’s because census tracts are designed to

contain about 4,000 people: as populations grow and shrink, census tracts

need to be redefined. Indeed, an analysis of Los Angeles County census

data at the census tract level for years 1990 and 2000 shows an increase in

the number of census tracts in Los Angeles County, consistent with an

increase in the Los Angeles County population.

Unfortunately, the census tract numbers we used for properties were

contained in the tax roll, which we had only for 2008. Thus we could not

easily determine census tract numbers for parcels for the 1980 nor 1990

censuses. The implication was that the earliest date we could use the

census data we had was for the date when it first became available.

According to the help line for the Census Bureau, the year 2000 census

data became public sometime in 2002. Rather than determine that date

exactly, we assumed that transactions on or after January 1, 2003 properly

reflect census data from the year 2000 census.
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4.5 Assessing the Predictive Power of the

Census Data

To assess whether features derived from the year 2000 census were valuable,

we used 10-fold cross validation to estimate the generalization error for a

variety of linear models, all trained and tested on data from 2003 on. The

models varied the same design choices as for the experiments to understand

the predictive power of features derived from the 2008 tax assessment.

These choices were:

• response variable: predict either the price or the logarithm of the

price.

• prediction variable forms: use as predictors either the natural units of

the predictors (called “level” in the chart) or the logarithm of the

natural units.

• number of training days: vary the training period from 30 days to 360

in steps of 30 days.

Figure 4.4 shows the estimated generalization error for each of the design

choices, both with and without the features derived from the census data.

The comparison metric is the median of the root median squared errors

from the folds. The key finding was that using the census-derived features
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Median of Root Median Squared Errors from 10 Fold Cross Validation

Scope: entire market

Model: linear

Time period: 2003 on

Percent of queries in each fold that were estimated: 100

Column Use Cen (yes ==> use census data)

response: price price price price logprice logprice logprice logprice

predForm: level level log log level level log log

use cen: yes no yes no yes no yes no

ndays

30 75333 94172 81834 110373 58862 75280 59385 79074

60 74459 93202 81091 109280 58871 75378 59432 78694

90 74173 92533 80795 108732 59361 75324 59780 78864

120 74239 92238 80821 108479 60006 75647 60473 79088

150 74399 92036 80835 108197 60780 76125 61205 79412

180 74764 92042 81044 107796 61580 76456 62010 79935

210 75150 92053 81292 107460 62563 77022 62951 80212

240 75573 92063 81406 107142 63526 77521 63800 80881

270 75869 92092 81781 106993 64673 78202 65012 81459

300 76238 92237 82165 106989 65905 78948 66104 81931

330 76844 92544 82455 106823 67198 79713 67370 82644

360 77560 92658 82888 106680 68452 80652 68506 83404

Figure 4.4: Estimated Generalization Errors
With and Without Census Data By Response Variable, Predictors, and
Training Period

always led to better performance.

4.6 Discarding Assessments and Keeping

Census Data

Because the assessment data were not valuable for the time period for

which they were relevant, namely the year 2008, we decided to discard all

features derived from the assessment. This decision reduced our available
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feature set and allowed us to use transactions before and after 2008.

Because the census data were valuable for the time period in which they

were relevant, namely beginning in 2003, we decided to keep these features

and restrict the analysis to year 2003 and later. The resulting dataset had

about 250,000 transactions. The median price over the time period was

$475,000.
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Chapter 5

Finding the Best Linear

Model

Linear models predict the price as a linear function of features:

price = β0 + β1x1 + . . .+ βnxn.

From this simple idea, a huge variety of models can be generated. Which

linear models were most accurate for predicting the prices of houses?

We answered this question by examining data from 2003 and later using the

decennial census from the year 2000 but not the tax assessment for 2008.

Our interest was in estimating the generalization error for unseen
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transactions. For this, we used 10-fold cross validation.

Property descriptions came from the tax roll for the year 2008. The tax roll

contained property descriptions as of October 31, 2007. We needed to

exclude from our data any houses built or modified after that date. An

analysis showed that there were no such houses.

All of the linear models in this chapter are local linear models, by which we

mean that a separate model was fitted for each query transaction. The

overall effect is to convert the linear models into an aggregate non-linear

model.

The plan of attack is reflected in the sections that follow.

• Section 1 explains our choice of metric to compare models. We show

that using different metrics leads to judging that different models

were better. We decided to focus on median errors.

• Section 2 studies design choices for local linear models that cover the

entire market. We started by considering model forms and the

number of training days that led to the most accurate models. (The

term “model form” captures whether transformations into the log

domain were used in the left hand and right hand sides of the model.

More on this later.) Having fixed form and number of training days,

we then considered which features were best and compared heuristics
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for selecting the best features. Finally, fixing form, number of training

days, and feature sets, we showed that regularization improves

estimation accuracy.

• Section 3 considers submarket models. Submarket models partition

the possibly queries and use the partitions in the fitting and

prediction processes. We considered both indicator-based submarket

models, in which the submarkets are represented by indicator

variables in a single model for all queries, and separate submarket

models, in which a separate model was built for each submarket. We

considered multiple definitions for submarkets. We found that

submarket models outperformed entire-market models.

• Section 4 summarizes our results for local linear models and provides

some guidelines for extending the work into a commercial setting.

• Section 5 compares the results from the local linear models with a

random forests model. We show that the local linear model was

outperformed by the random forests model.

5.1 Figure of Merit

The literature often compares models using the fraction of estimates within

10 percent of the known values. The motivation for this figure of merit may
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in part be that Freddie Mac is said [FLM03, footnote on p. 642] to use that

metric to judge the effectiveness of automated valuation models. In any

case, using fraction within 10 percent (along with fraction within 20 and 30

percent) is popular in the real estate pricing literature.

It is a curious choice of metric for at least two reasons. The first reason is

that linear models are often trained to minimize the mean squared error.

So fraction within 10 percent isn’t the criteria the model was trained to

deliver. The second reason is that selecting fraction within x percent is

implicitly a decision to favor models that are close when accurate and to

not minimize the average error.

Here’s a contrived example which illustrates that point. There are two

properties both of which sold for $100,000. Suppose we have two models to

consider. Model A produces estimates of $100,000 and $200,000. It is either

perfect or very wrong. Model B produces estimates of $85,000 and

$115,000. It is never super accurate but never very wrong. Model A has 50

percent of its estimates within 10 percent of the true value, Model B has 0

percent of its estimates within 10 percent of the true value. So under the

fraction-with-x-percent metric, we prefer model A over model B.

Now imagine using model A. When it delivers its estimate, we have no idea

whether the estimate is good or bad. To me, this situation is untenable if

there is an acceptable alternative (and there is: use some variant on mean
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squared error). To make the untenable situation acceptable, one would

need to produce both an estimate and a confidence in the estimate. Now

the model has to be trained to deliver two values, and we have conceivably

more than doubled the difficulty of the problem of selecting the best model:

there are now two figures of merit and how to make tradeoffs between them

is not obvious.

The issue of choice of figure of merit would be moot if using either metric

resulted in selecting the same model as best. To investigate whether the

issue is moot, we designed an experiment. In the experiment, we considered

the estimated generalization error from a variety of models. The models

were generated by sweeping these design choices:

• Response variable: either the price or log(price)

• The form of the predictors: either level (natural units) or log of

natural units for size features

• The number of days in the training period, from 30 up to 360 in steps

of 30 days

• The figure of merit used to select the model: one of the mean of the

root mean squared errors from the folds (meanRMSE in the figure), the

median of the root median squared errors from the folds (medRMSE),

or the fraction within 10 percent of actual values (fctWI10).
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All of these models used all features always present except for those derived

from the tax assessor data. All models used data from 2003 on.

The results are depicted in Figure 5.1.

The table has two panels. In panel A, the response variable is price. In

panel B the response variable is log(price). Each panel has a row for each

training period considered. The length of the training period is in column

ndays. Adjacent to the training period are two groups of columns. The

first group is for the level form of the predictors: we used the predictors in

their natural units. The second group is for the log form of the predictors:

we transformed the size features into the log domain. Each group of three

columns has the estimated error using one of the metrics. Our interest was

to determine which model was best. For the first two metrics, meanRMSE

and medRMSE, we sought the lowest error. For the third, fctWI10, we sought

the highest accuracy.

You will notice very high value in Panel B, column 2. These are the

estimated errors using the meanRMSE metric for the log-level form of the

linear model. What is happening is that a few houses were very badly

predicted. These houses tended to have unusually large values for some

features, causing the log(price) estimate to be very much higher than the

actual transaction price.
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Comparison of Metrics From from 10 Fold Cross Validation

Mean of Root Mean Squared Errors Across Folds (meanRMSE)

Median of Root Median Squared Errors Across Folds (medRMSE)

Mean of Fraction of Predictions Within 10 Percent of Actual Across Folds (fctWI10)

Scope: entire market

Model: linear

Time period: 2003 on

Predictors: always in every transaction and not in the tax assessment

Percent of queries in each fold that were estimated: 100

Panel A: price

predictorsForm: level level level log log log

metric: meanRMSE medRMSE fctWI10 meanRMSE medRMSE fctWI10

ndays

30 638476 75333 0.339 252444 81834 0.315

60 395434 74459 0.341 251268 81091 0.318

90 447337 74173 0.342 251148 80795 0.319

120 244367 74239 0.341 251260 80821 0.319

150 247197 74399 0.340 251520 80835 0.319

180 242215 74764 0.339 251892 81044 0.318

210 242706 75150 0.337 252337 81292 0.318

240 243262 75573 0.335 252837 81406 0.316

270 243764 75869 0.332 253343 81781 0.315

300 244292 76238 0.330 253893 82165 0.314

330 244892 76844 0.327 254478 82455 0.312

360 245459 77560 0.324 255058 82888 0.310

Panel B: logprice

predictorsForm: level level level log log log

metric: meanRMSE medRMSE fctWI10 meanRMSE medRMSE fctWI10

ndays

30 Inf 58862 0.413 254065 59385 0.407

60 1e+113 58871 0.411 253161 59432 0.406

90 2e+63 59361 0.407 253140 59780 0.403

120 8e+10 60006 0.402 253135 60473 0.399

150 4e+22 60780 0.397 253264 61205 0.394

180 1e+06 61580 0.391 253451 62010 0.388

210 1e+06 62563 0.385 253785 62951 0.382

240 2e+06 63526 0.379 254167 63800 0.376

270 2e+06 64673 0.372 254528 65012 0.370

300 2e+06 65905 0.366 255025 66104 0.364

330 2e+06 67198 0.358 255488 67370 0.357

360 2e+06 68452 0.351 255992 68506 0.351

Figure 5.1: Estimated Generalization Errors
For Model Selection Metrics
By Response Variable, Predictors, and Training Periods
For Sales in 2003 and Later
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best ndays
form meanRMSE medRMSE fctWI10

level-level 180 90 90
level-log 90 90 120
log-level 195 30 30
log-log 120 30 30

Figure 5.2: Preferred Number of Training Days
By Model Selection Metric
For Model Forms
Summarizing Figure 5.1

It was always true that the expected loss for the metric meanRMSE greatly

exceeded that for medRMSE. This was because there was right-skew in the

prices: the mean exceeds the median, so that the mean error can exceed the

median error.

We wanted to answer the question: which model was selected as best by

each metric? Figure 5.2 contains these results.

There are several observations to make:

• In no cases, did all three metrics pick the same number of training

days.

• The metrics medRMSE and fctWI10 closely agreed on the best number

of training days. They agreed on all model forms except for the

level-log form, and there they were only 30 days apart.

• The metric meanRMSE usually picked more training days as optimal
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than did the other metrics.

We concluded that the choice of metric did influence the choice of the best

training period to use.

Going forward, we focused on the medRMSE metric, judging that it more

intuitively sizes average errors than did meanRMSE (because of the

right-skew in the prices) and reflecting our predisposition to minimize

average errors rather than accuracy.

5.2 Entire-market Models

This section explores linear models that are specified once for the entire

marketplace: there is one model for every query transaction and this model

is location aware only through features of the census tract and zip code of

the property. I call these kinds of models “entire-market models.”

Within the class of entire-market models, we explored design choices. In

the first subsection that follows, we examine the form of the equation in the

model and the training period used to fit the model. We found that training

using 30 days of data before the query transaction was best. The best form

of model to use was log-level, so that one would predict the log of price

using the features in natural units. In the subsequent subsection, we then

examine, within this choice of training period and form, which features gave
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the best predicted performance and examine a reduced-feature model. We

found that a 15-feature model performed best. In the final subsection, we

examine adding an L2 regularizer to the 15-feature model. We found that

adding the regularizer improved performance slightly.

5.2.1 Model form and number of training days

In the literature, a popular model form is the log-level form: one predicts

log(price) using features in their natural units. Other choices for model

form include log-log, in which the log of price is predicted using size

features that are in the log domain and non-size features in their natural

units, level-level in which price is predicted using features in their natural

units, and level-log in which price is predicted using size features in the log

domain and non-size features in their natural units.

At least four rationales can be invoked to choose a model form. First is

that the form of the model should conform to one’s prior assumptions

about the data generation process. If you suppose that doubling the lot size

might double the price, you can admit this possibility by specifying

log(price) = β log(size), a log-log form. If you suppose that adding a

bedroom adds a certain amount of value, you would want to have

price = β bedrooms, a level-level form.

A second rationale for choosing the form is to transform the prices to a
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form more compatible with the statistical assumptions of the model. Since

real estate prices tend to be right-skewed, a log transformation would

possibly make the transformed distribution more normal.

A third rationale is to transform the price to the log domain in order to

avoid applying equal importance with respect to prediction errors to

expensive and less expensive houses. By prediction log(price) instead of

price, the idea is to fit the model to minimize errors on the more typical,

less expensive houses, not to minimize the price-weighted error, which could

be regarded as overly influenced by a few very large houses.

We focused on a fourth rationale and simply asked: Which model form

yielded the lowest estimated generalization errors as measured by the

median of the root median squared error across folds?

Another issue was to determine the best training period. Linear models are

setting the marginal price of each feature. If prices are moving slowly, then

training on a longer period of time might be beneficial. If prices are moving

rapidly, then training only on recent data might be necessary.

Our experiment fixed the time period (2003 on) and the feature set (all

features always in transactions excluding the features derived from the tax

assessment). We varied the model form and number of training days and

built a local model for every query transaction in every training fold. The

local model was built by using the query date to discard transactions in
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training folds that occurred on or after the query date. The same model was

re-used for all query transactions on the date of the query transaction. As a

result, we built one model for almost every day in the transaction set. The

transaction set contains data for 6 years and 3 months, hence we fit about

6× 365 + 3× 30 = 2280 models for each combination of parameters.

Comparison of Estimated Generalization Errors

From 10 Fold Cross Validation

Using Root Median Squared Errors from Folds

Across Model Form and Length of Training Period

Scope: entire market

Model: linear

Time period: 2003 on

Predictors: always in every transaction and not in the tax assessment

Percent of queries in each fold that were estimated: 100

response: price price logprice logprice

predictorsForm: level log level log

ndays

30 75333 81834 58862 59385

60 74459 81091 58871 59432

90 74173 80795 59361 59780

120 74239 80821 60006 60473

150 74399 80835 60780 61205

180 74764 81044 61580 62010

210 75150 81292 62563 62951

240 75573 81406 63526 63800

270 75869 81781 64673 65012

300 76238 82165 65905 66104

330 76844 82455 67198 67370

360 77560 82888 68452 68506

Figure 5.3: Estimated Generalization Errors
By Response Variable, Predictors, and Training Period
Using Census Features and Not Tax Assessor Features
For Sales in 2003 and Later
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Figure 5.3 shows the estimated generalization errors from 10-fold cross

validation. The lowest error is for ndays = 30 and is in the fourth column,

which holds errors for the log-level model. Thus the lowest error occurred

when training for 30 days and predicting log(price) using the features in

their natural units. The log-level model (in column four) always has the

lowest error for every choice for the number of training days. One way to

think about the results is to consider a very naive model builder who would

build a level-level model and use a year of training data. The model builder

would find an error that is the last entry in the second column: $77,560.

The best error is $58,862, which is 24 percent lower.

In our search for the best linear model, we fixed the number of training

days to 30 and used the log-level form for the model.

5.2.2 Feature selection

The models in the previous sections all used the 24 features that always

appeared in our transactions and were not derived from the tax assessment.

Which of these are the best features to use? Here we consider two

approaches. In the first, we use a simple heuristic to determine the best

features to use. In the second, we use Principal Components Analysis

(PCA) for the same purpose. We then compare results.
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LCV Heuristic

We had 24 features that were candidates for inclusion in the model. A

straight-forward way to determine the best feature set would have been to

consider all possible subsets and to have estimated the generalization error

for each. Doing so would have been way too time consuming, because there

were 224 possible feature sets to evaluate.

Our idea was to instead use L1 regularization to determine the rank

ordering of the 24 features in terms of their importance. We then used cross

validation to estimate the generalization error from a model with the first,

the first two, . . . , all 24 rank ordered features. We call the procedure LCV,

for L1 regularization followed by cross validation.

The implementation was by using the Elastic Net from Zoe and Hastie

[ZH05]. It fits a linear model while concurrently using an L1 and L2

regularizer. As a by-product, an R implementation, the elasticnet R

package [ZH], produces a rank ordering of the features in terms of their

importance. In our use of this package, we set the L2 regularizer to zero

and used just the rank ordering of features under the L1 regularizer.

The result of the rank ordering from the Elastic Net procedure is in Figure

5.4. It shows that the most important feature is the living area of the

house. Real estate agents often claim the most important feature of the

house is its location, but that wasn’t true in these data. Instead, features of
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the location (median household income and average commute time) were

second and third in importance.
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Estimated Generalization Errors from 10-fold Cross Validation

Using Root Median Squared Errors from Folds

Across Feature Sets

Scope: entire market

Model: linear

Time period: 2003 on

Response: log(price)

Predictors form: level (natural units)

Number of days in training period: 30

Percent of queries in each fold that were estimated: 100

num features nth feature name median RMSE 95% confidence interval

1 living.area 79332 [ 78954, 79679]

2 median.household.income 70595 [ 70234, 71288]

3 avg.commute.time 67185 [ 67005, 67656]

4 fireplace.number 66566 [ 66410, 67184]

5 year.built 64634 [ 64425, 65004]

6 fraction.owner.occupied 59198 [ 59019, 59793]

7 land.square.footage 59213 [ 58818, 59620]

8 zip5.has.industry 58955 [ 58732, 59386]

9 census.tract.has.industry 59014 [ 58852, 59659]

10 factor.has.pool 58864 [ 58771, 59624]

11 census.tract.has.retail 58730 [ 58589, 59329]

12 parking.spaces 58735 [ 58356, 59261]

13 effective.year.built 58590 [ 58331, 59184]

14 stories.number 58728 [ 58353, 59099]

15 zip5.has.school 58571 [ 58328, 58879]

16 bedrooms 58735 [ 58334, 59067]

17 bathrooms 58837 [ 58169, 59097]

18 census.tract.has.school 58826 [ 58341, 59142]

19 factor.is.new.construction 58854 [ 58333, 59201]

20 census.tract.has.park 58874 [ 58299, 59271]

21 zip5.has.park 58844 [ 58318, 59209]

22 basement.square.feet 58852 [ 58283, 59148]

23 zip5.has.retail 58874 [ 58293, 59141]

24 total.rooms 58862 [ 58349, 59155]

Figure 5.4: Table of Estimated Generalization Errors
And 95 Percent Confidence Intervals
For 24 Sets of Features
For Model Form log-level
For 30 Day Training Period
For Sales in 2003 and Later
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Figure 5.5: Graph of Estimated Generalization Errors
And 95 Percent Confidence Intervals
For 24 Sets of Features
For Model Form log-level
For 30 Day Training Period
For Sales in 2003 and Later

The same data are shown graphically in Figure 5.5, which displays the

estimated generalization error from including the first n features, together

with a 95 percent confidence interval. The large dots are the median of the

root median squared errors from the folds. The small dots to either side of

the large dots are the lower and upper bounds of the confidence intervals.

One sees that the lowest estimated error was when using the first 15
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features, from living-area to zip5-has-school. The estimated errors then

tend to increase and the placement of the confidence intervals does not

compel one to consider going beyond the first 15 features.

If one seeks parsimony, one could consider using the first six features

(through fraction-owner-occupied), after which there was an increase in

estimated generalization error before a subsequent decline to the minimum

at 15 features.

Most important features

As found through L1 regularization

importance rank house feature location feature

1 living.area

2 median.household.income

3 avg.commute.time

4 fireplace.number

5 year.built

6 fraction.owner.occupied

7 land.square.footage

8 zip5.has.industry

9 census.tract.has.industry

10 factor.has.pool

11 census.tract.has.retail

12 parking.spaces

13 effective.year.built

14 stories.number

15 zip5.has.school

16 bedrooms

17 bathrooms

18 census.tract.has.school

19 factor.is.new.construction

20 census.tract.has.park

21 zip5.has.park

22 basement.square.feet

23 zip5.has.retail

24 total.rooms

Figure 5.6: 24 Features
By Importance Rank
Classified as House Features or Location Features

Figure 5.6 shows the 24 rank-ordered features split into house features and
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location features. Some observations on the house features:

• living-area: this is the interior living space. Construction is required

to change it, so I was not surprised to see it highly ranked. That it is

more highly ranked than the land square footage was a surprise to

me, because land square footage seems harder to change than interior

living space.

• fireplace-number: the number of fireplaces, including the possibility of

zero. A surprise—perhaps fireplaces are proxies for overall amenities

in the house.

• year-built: the year the house was built. Other studies have

concluded that the age and the squared age of the house are

important features. Our models were local, so that we needed a

house’s age for every query transaction. Instead of pre-building a

training set for each possible query, we transformed year built into

age and age squared just before fitting the model. We performed a

similar transformation for the effective year built, which is the last

year of significant updates to the house.

• factor-has-pool: whether there is a swimming pool. Not a surprise, as

the houses were all in Los Angeles, where the weather is often

pleasant and a swimming pool might be a joy.
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Some observations on the location features:

• median-household-income and fraction-owner-occupied: the median

income in the census tract from the year 2000 census and the fraction

of houses in the census tract that were occupied by owners. Both of

these features indicated the wealth of the neighborhood.

• average-commute-time: in other studies, longer commutes were

associated with lower prices.

• zip5-has-industry and census-tract-has-industry: being near industry

was not good for house prices.

• census-tract-has-park and zip5-has-park: Los Angeles residents were

not there for the parks. Perhaps this is because it is a driving-around

city, not a walking-around city.

PCA

The second approach we used to determine the importance of features was

Principal Components Analysis. Figure 5.7 shows the principal components

associated with the training set predictors. The first three principal

components accounted for almost 100 percent of the variance.

In Figure 5.8 we see the weights of the 24 features in the first principal
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PCA Principal Component Variances

Principal Component 1 Variance 519224186 Cum Fraction Total Variance 0.929503

Principal Component 2 Variance 23925994 Cum Fraction Total Variance 0.972335

Principal Component 3 Variance 15156837 Cum Fraction Total Variance 0.999468

Principal Component 4 Variance 293190 Cum Fraction Total Variance 0.999993

Principal Component 5 Variance 2492 Cum Fraction Total Variance 0.999998

Principal Component 6 Variance 952 Cum Fraction Total Variance 0.999999

Principal Component 7 Variance 354 Cum Fraction Total Variance 1.000000

Principal Component 8 Variance 30 Cum Fraction Total Variance 1.000000

Principal Component 9 Variance 14 Cum Fraction Total Variance 1.000000

Principal Component 10 Variance 1 Cum Fraction Total Variance 1.000000

Principal Component 11 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 12 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 13 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 14 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 15 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 16 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 17 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 18 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 19 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 20 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 21 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 22 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 23 Variance 0 Cum Fraction Total Variance 1.000000

Principal Component 24 Variance 0 Cum Fraction Total Variance 1.000000

Figure 5.7: Cumulative Variance of the 24 Principal Components

component. The median household income had the highest absolute weight.

Other weights were much lower in absolute value. The only ones of much

importance were the land square footage and the living area. It seemed

that the first principal component may have been about the wealth of the

neighborhood.

In Figure 5.9 we see the weights of the 24 features in the second principal

component. The land square footage had the highest absolute weight.

Other weights were much lower in value with household income and living

area being the largest in absolute size. This principal component was

possibly about the size of the land.
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PCA Rotation for Principal Component 1

Feature avg.commute.time Weight -0.000005

Feature census.tract.has.industry Weight +0.000007

Feature census.tract.has.park Weight -0.000000

Feature census.tract.has.retail Weight +0.000005

Feature census.tract.has.school Weight +0.000001

Feature fraction.owner.occupied Weight -0.000006

Feature median.household.income Weight -0.996050

Feature basement.square.feet Weight +0.000112

Feature bathrooms Weight -0.001563

Feature bedrooms Weight -0.000009

Feature effective.year.built Weight -0.000210

Feature factor.has.pool Weight -0.000004

Feature factor.is.new.construction Weight +0.000000

Feature fireplace.number Weight -0.000009

Feature land.square.footage Weight -0.087663

Feature living.area Weight -0.014042

Feature parking.spaces Weight -0.000006

Feature stories.number Weight -0.000353

Feature total.rooms Weight -0.000019

Feature year.built Weight -0.000212

Feature zip5.has.industry Weight +0.000005

Feature zip5.has.park Weight -0.000000

Feature zip5.has.retail Weight +0.000000

Feature zip5.has.school Weight +0.000001

Figure 5.8: Feature Weights For the First Principal Component

In Figure 5.10 we see the weights of the 24 features for third principal

component. It was mostly composed of the basement square feet, perhaps a

proxy for other size features in the house: bigger basement probably implies

bigger house. This principal component was possibly about the size of the

house.

In Figure 5.11 we see the estimated generalization error from using the

median household income, land square footage, and so on up to the 4

features identified as important in the PCA work. The same data are in

Figure 5.12 which shows the 95 percent confidence intervals graphically.

The lowest estimated error was from using the first 3 features. Adding
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PCA Rotation for Principal Component 2

Feature avg.commute.time Weight +0.000124

Feature census.tract.has.industry Weight +0.000002

Feature census.tract.has.park Weight -0.000000

Feature census.tract.has.retail Weight -0.000002

Feature census.tract.has.school Weight +0.000008

Feature fraction.owner.occupied Weight -0.000001

Feature median.household.income Weight -0.088131

Feature basement.square.feet Weight +0.004862

Feature bathrooms Weight +0.003195

Feature bedrooms Weight +0.000021

Feature effective.year.built Weight +0.000200

Feature factor.has.pool Weight +0.000013

Feature factor.is.new.construction Weight -0.000000

Feature fireplace.number Weight +0.000020

Feature land.square.footage Weight +0.995409

Feature living.area Weight +0.036884

Feature parking.spaces Weight +0.000019

Feature stories.number Weight +0.000164

Feature total.rooms Weight +0.000044

Feature year.built Weight +0.000188

Feature zip5.has.industry Weight +0.000001

Feature zip5.has.park Weight +0.000001

Feature zip5.has.retail Weight -0.000001

Feature zip5.has.school Weight +0.000000

Figure 5.9: Feature Weights For the Second Principal Component

basement-square-feet slightly increased the estimated error but yielded a

smaller 95 percent confidence interval, so some may prefer keeping the

fourth PCA feature.

Reduced Feature Models

To find the best reduced-feature model, we tested all the feature sets

suggested by the LCV and PCA analyses. These results are in Figure 5.13,

which brings together results previously shown. The PCA-derived feature

sets all underperformed the LCV-derived feature sets: extremely small

feature sets were challenged in this setting. The best feature set was the
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PCA Rotation for Principal Component 3

Feature avg.commute.time Weight -0.000000

Feature census.tract.has.industry Weight -0.000000

Feature census.tract.has.park Weight -0.000000

Feature census.tract.has.retail Weight +0.000000

Feature census.tract.has.school Weight -0.000000

Feature fraction.owner.occupied Weight -0.000000

Feature median.household.income Weight +0.000534

Feature basement.square.feet Weight +0.999988

Feature bathrooms Weight +0.000060

Feature bedrooms Weight -0.000000

Feature effective.year.built Weight -0.000007

Feature factor.has.pool Weight -0.000000

Feature factor.is.new.construction Weight -0.000000

Feature fireplace.number Weight +0.000000

Feature land.square.footage Weight -0.004849

Feature living.area Weight +0.000320

Feature parking.spaces Weight +0.000000

Feature stories.number Weight -0.000004

Feature total.rooms Weight +0.000001

Feature year.built Weight -0.000016

Feature zip5.has.industry Weight +0.000000

Feature zip5.has.park Weight -0.000000

Feature zip5.has.retail Weight +0.000000

Feature zip5.has.school Weight +0.000000

Figure 5.10: Feature Weights For the Third Principal Component

Estimated Generalization Errors from 10-fold Cross Validation

Using Root Median Squared Errors from Folds

Across Feature Sets

Scope: entire market

Model: linear

Time period: 2003 on

Response: log(price)

Predictors form: level (natural units)

Number of days in training period: 30

Percent of queries in each fold that were estimated: 100

num features nth feature name median RMSE 95% confidence interval

1 median.household.income 91623 [ 90463, 91891]

2 land.square.footage 87125 [ 86052, 87505]

3 living.area 70369 [ 70174, 71175]

4 basement.square.feet 70388 [ 70144, 70973]

Figure 5.11: Table of Estimated Generalization Errors and 95 Percent Con-
fidence Intervals
For Feature Sets Selected by the PCA Analysis
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Figure 5.12: Graph of Estimated Generalization Errors and 95 Percent Con-
fidence Intervals
For Feature Sets Selected by the PCA Analysis

one with the first 15 features from the LCV heuristic. This feature set had

an estimated error of $58,571, which was 17 percent lower that the

estimated error of $70,369 which was found by PCA.

5.2.3 Regularization

Regularizing models is one way to avoid overfitting and thereby improve

prediction accuracy. So far the models were not regularized.

86



●

●

●

●

●

●

●

●

●

●

●

●pca04

pca03

best15

best06

0 20000 40000 60000
median rMedianSE across folds

pr
ed

ic
to

r 
fe

at
ur

e 
se

t n
am

es

Figure 5.13: Graph of Estimated Generalization Errors and 95 Percent Con-
fidence Intervals
For Feature Sets Selected by the LCV and PCA Analyses

To assess the extent to which regularization led to more accuracy, we took

the model using the 15 best features and ran multiple versions using several

choices for the weight of the L2 regularizer. A simple line search was

used.

Figure 5.14 contains the result in a table. We see the typical pattern:

increasing the regularizer weight first decreased errors and as the weight

continued to increase, errors were increased. Setting the weight to λ = 55
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Estimated Generalization Errors from 10-fold Cross Validation

L2 regularizer value median 95% confidence interval

0 58622 [ 58367, 58897]

1 58619 [ 58357, 58895]

2 58618 [ 58392, 58922]

3 58620 [ 58392, 58906]

4 58617 [ 58385, 58929]

5 58620 [ 58344, 58960]

6 58622 [ 58374, 58971]

7 58596 [ 58366, 58967]

8 58591 [ 58382, 58938]

9 58583 [ 58366, 58920]

10 58603 [ 58363, 58911]

30 58463 [ 58236, 58960]

41 58490 [ 58240, 58920]

55 58453 [ 58166, 58957]

74 58475 [ 58128, 58914]

100 58459 [ 58199, 59011]

132 58540 [ 58252, 58943]

173 58537 [ 58278, 59054]

228 58735 [ 58364, 59217]

300 58971 [ 58641, 59306]

1000 61919 [ 61388, 62108]

3000 69387 [ 69112, 69946]

10000 85187 [ 84669, 85687]

Figure 5.14: Estimated Generalization Errors and 95 Percent Confidence
Intervals
For Selected L2 Regularizers

seemed like a good choice: it had the lowest median across the

cross-validation folds and from Figure 5.15, one can see the 95 percent

confidence intervals were not signaling warnings.

The impact of the regularizer on the estimated generalization error was

very small: the median was reduced by $169 from an unregularized error of

$58,622, a reduction of less than three-tenths of a percent. The small

impact of the regularizer suggests that there was not much overfitting in

the unregularized model. Perhaps this was because the models were all
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Figure 5.15: Estimated Generalization Error from L2 Regularization

local models.

5.3 Submarket Models

We considered three very simple definitions of submarkets. In the first, the

submarkets were defined by the census tracts. Each census tract was its

own submarket. In the second, submarkets were defined by the city names.

Each city was its own submarket. In the third, submarkets were defined by
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zip code. Each five-digit zip code was its own submarket.

We considered two approaches to incorporating submarkets into the model.

The first used indicator variables, the second built a separate model for

each submarket.

5.3.1 Using Indicator Variables

The indicator models all had indicators for whether the observation was in

a specific submarket. For example, for zip-code based submarkets, the

model was

log(price) = β0 + β1ZipIs11111 + β2ZipIs22222 + . . .

+ βkLotSize+ βk+1LivingArea+ . . . .

The indicators were capturing the possibly different average prices in each

submarket. The average price per feature was the same across

submarkets.

Figure 5.16 shows the estimated generalization errors from adding

indicators variables to the regularized linear model. We see that adding

indicators for zip codes, census tract, and cities all helped and that the best
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Estimated Generalization Errors from 10-fold Cross Validation

Using Median of Root Median Squared Errors from Folds

Across Indicator Models

Model: linear with L2 regularizer

Time period: 2003 on

Response: log(price)

Predictors form: level (natural units)

Percent of queries in each fold that were estimated: 100

Number of days in training period: 30

Lambda: 55.00

indicators for medRMSE ci95%.lo ci95%.hi

no indicators 58453 58169 58957

zip 5 code 41013 40669 41287

census tract 45662 45451 45956

city 44521 44160 44642

Figure 5.16: Estimated Generalization Errors and 95 Percent Confidence
Intervals
For Submarket Indicators

result was obtained with the five-digit zip code indicators, which had an

error rate 30 percent lower than the entire-market model (the model with

no indicators).

5.3.2 Separate Models for Each Submarket

The separate-models approach built a separate model for each submarket.

Each model had the same form:

log(price) = β0 + βkLotSize+ βk+1LivingArea+ . . . .

A query transaction was presented, its submarket was determined, for
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example, it was in zip code 11111, and then a model was trained using only

transactions in the prior 30 days in the zip code. This fitted model was

used to estimate the value for the query transaction.

This fitting process resulted in many models that could not be estimated,

most often because there were too few transactions in the training set.

Estimated Generalization Errors from 10-fold Cross Validation

Using Median of Root Median Squared Errors from Folds

Across Submarket Models

Model: linear with L2 regularizer

Time period: 2003 on

Response: log(price)

Predictors form: level (natural units)

Percent of queries in each fold that were estimated: 100

Number of days in training period: 30

Lambda: 55.00

scope name medRMSE 95%ci.low 95%ci.hi nScope nAlways coverage

census.tract 53635 50742 57245 1950 1047 0.54

property.city 46405 42021 51839 191 126 0.66

zip5 55436 50401 61862 331 279 0.84

Figure 5.17: Estimated Generalization Errors and 95 Percent Confidence
Intervals
For Submarket Models

Figure 5.17 shows the results of this experiment. The submarket models

that used city names had the lowest estimated generalization error, which

was 21 percent lower than the whole-market error (the model from the

previous figure with no indicators). The fitting process, however, succeeded

in all folds in only 66 percent of the city names. (We defined “covered” to

mean that at least one model for the submarket could be fit in every test

fold. We defined “coverage” to be the fraction of possible submarkets that

were covered.) In terms of the estimated error, the worst model was for zip
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codes, but it had the highest coverage. The lowest coverage was for census

tracts.

Perhaps the city names had the lowest errors because cities may acquire

brand positioning: they stand for something. Whatever that something is,

it attracts buyers who have affinity for that something, reinforcing the

positioning. The reinforcement leads to homogeneity within a city and that

makes it easier to fit the linear models.

Coverage numbers could be increased most likely by either retraining the

models on more than 30 days of data or forming submarket groups by

splicing together some of the submarkets. The latter approach has been

tried in the literature. The former appears not to have been tried.

Comparing Figures 5.16 and 5.17 we see that the best indicator model had

an error of $41,013, which was lower than the $46,405 error for the city

model. I was surprised by this, because the indicator-based models were

simply adjusting the average price level for each area and the submarket

models have the freedom to adjust the value of each feature in each

submarket.

The estimated errors in Figure 5.17 are perhaps deceptive: they are the

median values across all the submarkets. Individual models for specific

submarkets may have much lower or higher errors than the median for all

markets.
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Example of Estimated Generalization Errors from 10-fold Cross Validation

Using Median of Root Median Squared Errors from Folds

Examples of Models for Scope Property City

scope name medRMSE

lowest 10 medians

LANCASTER 14937

PALMDALE 17884

LAPUENTE 23324

ARLETA 24078

NORWALK 24353

POMONA 24786

COMPTON 24909

LAKEWOOD 25610

SOUTHGATE 25615

PANORAMACITY 26105

middle 10 medians

CASTAIC 44870

NORTHRIDGE 44990

HAWAIIANGARDENS 45194

COMMERCE 45486

DOWNEY 45503

ALHAMBRA 46008

HAWTHORNE 46802

TUJUNGA 46839

LONGBEACH 47381

NORTHHOLLYWOOD 48431

highest 10 medians

MANHATTANBEACH 263123

LACANADA 269054

HIDDENHILLS 273258

TOLUCALAKE 290696

SANTAMONICA 297360

BEVERLYHILLS 306666

HERMOSABEACH 358661

MARINADELREY 385632

PACIFICPALISADES 395398

MALIBU 574980

Figure 5.18: Estimated Generalization Errors
For Selected Property City Submarket Models
Using Metric Median of Root Median Squared Errors

Let’s focus on the city-defined submarkets, which had the lowest median

errors. Error estimates were produced for 126 cities. The median errors for

each city varied widely. Figure 5.18 shows the medians for various cities.

We see that the most accurately-estimated houses were those in Lancaster,
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where the estimated generalization error was about $15,000. A common

attribute of the cities with the ten lowest errors was that they all had

relatively low-priced houses. Median house prices for them from 2003

through 2009 ranged from $220,000 to $405,000.

Turning to the cities with the ten highest estimated errors, we see cities

that were expensive: Santa Monica, Beverly Hills, Malibu. The median

prices in this group of cities ranged from $1.0 million to $2.1 million (for

Hidden Hills).

The larger estimated errors for the more expensive cities may have been

generated in part from the higher prices, so that a 10 percent error in an

estimate was a larger amount than for lower-priced cities. Another source

of the larger errors might have been that the more expensive properties sell

based on features that were not in our data.

To assess the possible sources of error, we re-ran the analysis underlying the

previous figure but changed the metric. Rather than report the median

error, we examined the median of the absolute relative errors across the test

folds. The idea was that if the higher errors were generated solely by higher

prices, then measuring relative errors should show more uniform errors

when comparing the low-error submarkets to the high-error

submarkets.

The results of this analysis are in Figure 5.19. We see that the the houses
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Example of Estimated Generalization Errors from 10-fold Cross Validation

Using Median of Median Absolute Relative Errors from Folds

Examples of Models for Scope Property City

scope name medMARE

lowest 10 medians

LAKEWOOD 0.058

LAMIRADA 0.059

ARLETA 0.060

WINNETKA 0.063

NORWALK 0.066

SANTACLARITA 0.066

COVINA 0.068

LAPUENTE 0.069

RESEDA 0.069

CERRITOS 0.070

middle 10 medians

SOUTHELMONTE 0.100

ELMONTE 0.101

TORRANCE 0.102

WILMINGTON 0.103

MONTEREYPARK 0.103

SANDIMAS 0.104

LACRESCENTA 0.104

WOODLANDHILLS 0.106

GLENDALE 0.106

ROSEMEAD 0.106

highest 10 medians

PLAYADELREY 0.207

TOPANGA 0.208

ROLLINGHILLSEST 0.208

SANTAMONICA 0.241

LACANADA 0.245

PACIFICPALISADES 0.248

TOLUCALAKE 0.308

MALIBU 0.317

HERMOSABEACH 0.342

MARINADELREY 0.371

Figure 5.19: Estimated Generalization Errors
For Selected Property City Submarket Models
Using Metric Median Across Folds of Median Absolute Relative Error

with the lowest error (those in the first group) had much lower relative

errors than the houses with the highest errors (those in the last group).

The group in the middle had relative errors in the middle. Thus we

concluded that the higher absolute errors for the expensive cities in the
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submarkets model were probably not caused by the simply higher prices of

these houses. Something else seemed to be going on.
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5.4 The best linear model is . . .

Based on the time period from 2003 through the first part of 2009, the best

linear model would predict log(price) from the features in natural units, use

the 15 features we identified, and incorporate an L2 regularizer. It would be

fitted on 30 days of data.

If one wanted an entire-market model, one would then add indicator

variables for the zip codes. However, a submarket model might be

preferred, because it would have errors that reflect specific submarkets. We

found that defining submarkets around cities was best. The model design

process that selected the 15 features, 30 days, and the L2 regularizer could

be repeated for each submarket. Coverage could be increased by collapsing

some submarkets into bigger submarkets.

Commercial model builders should consider a different focus in selecting the

hyperparameters than we have used here. Rather than select them once for

the entire time period, they should select hyperparameters based on recent

transactions: we were interested in models that worked in average time

periods, most commercial price estimators are interested in models that

work on tomorrow’s transactions.
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5.5 Coda: Random Forests

Every study in our literature review that compared linear to non-linear

models claimed that non-linear models generally outperform linear models

when predicting house prices. We have designed a local linear model. It is

also a non-linear model. How well does it perform compared to the random

forests model, a popular non-linear model?

To design a random forests model, we swept these design choices.

• The number of training days. We tested both 30 and 60 days.

• The feature set used: we tested both all 24 features and the 15

features that were best for the linear model.

• The number of trees in the random forest (ntree): more trees may fit

better but may also overfit.

• The number of features to try when adding a new leaf to the tree

(mtry). The implementation of random forests first tests that number

of randomly-selected features to add and then adds the one giving the

best greedy performance. We tested 1, 2, 3, and 4 features.

Figure 5.20 shows the results of this experiment when training on 30 days

of data. Figure 5.21 shows the results when training on 60 days of data. In

order to reduce the computational burden, rather than test hyperparameter
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Comparison of Estimated Generalization Errors

From Random Forests

Scope: entire market

Model: random forest

Time period: 2003 on

Response: log(price)

Predictors form: level (natural units)

Number of training days: 30

Percent of queries in each fold that were estimated: 5

Panel A: using the best 15 predictors

mtry

ntree 1 2 3 4

1 93950 86158 83913 85000

100 69025 55991 53810 51843

300 70445 56374 52600 50581

1000 69173 56109 52172 51218

Panel B: using all predictors except assessment

mtry

ntree 1 2 3 4

1 95783 88146 85792 84717

100 76897 58273 54257 52460

300 74573 59707 56315 52909

1000 74417 59792 55598 53645

Figure 5.20: Estimated Generalization Errors
For Random Forests
For Selected Hyperparameters ntree and mtry

For All Features Except Assessment Features and the Best 15 Features from
the Linear Models
Trained for 30 Days
Using a Five Percent Sample of Queries in Folds

choices on every transaction in each test fold, we drew a random five

percent sample from the test folds. For each sampled query, we trained a

local model using all of the data in all of the training folds.

The lowest error for the random forests models was when training on 60

days of data, using the 15 best predictors from the linear models, setting

ntree = 300, and setting mtry = 4. This error was $47,035, which was 20
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Comparison of Estimated Generalization Errors

From Random Forests

Scope: entire market

Model: random forest

Time period: 2003 on

Response: log(price)

Predictors form: level (natural units)

Number of training days: 60

Percent of queries in each fold that were estimated: 5

Panel A: using the best 15 predictors

mtry

ntree 1 2 3 4

1 90440 79695 76060 76302

100 70715 53121 50692 48586

300 68534 53078 49017 47035

1000 68940 52596 49092 49494

Panel B: using all predictors except assessment

mtry

ntree 1 2 3 4

1 91130 84032 80863 79285

100 74470 57555 53688 50651

300 74309 55994 53670 51668

1000 73528 57147 52626 49954

Figure 5.21: Estimated Generalization Errors
For Random Forests
For Selected Hyperparameters ntree and mtry

For All Features Except Assessment Features and the Best 15 Features from
the Linear Models
Trained For 60 Days
Using a Five Percent Sample of Queries in Folds

percent lower than the best entire-market linear model, the one with the L2

regularizer and without the zip code indicators, which had an error of

$58,453.

Thus the random forests model, with minimal design work, outperformed

the carefully designed local linear model. We traded computation time for

human time.
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Chapter 6

Conclusions and Future

Work

We have systematically designed a local linear model with the goal of

finding a model that had the lowest expected error on unseen data. The

best model we found was tailored to zip codes using indicator variables,

trained on 30 days of data prior to the query transaction, predicted the log

of the price, was regularized, and used 15 features in their natural

units.

The random forests models we tested performed better than the local linear

model we designed.

These ideas for future work seem potentially fruitful:
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• Understand better why submarket models had higher errors for more

expensive properties. Was it because they traded based on features

we didn’t see? If so, can one obtain data on these features? If not,

can the latent features be none-the-less learned?

• Compare local linear models to other non-linear models found in the

literature to outperform linear models. Two to consider are neural

networks and the “Additive Regression” from [ZSG11].

• Consider enhanced feature sets. Include the GPS coordinates as

features. Compare direct usage of GPS coordinates to the trend

surface x, y feature sets (as studied in [FLM03]).

• Evaluate using deep learning techniques to generate feature sets.

Most of the deep learning research is in domains where the best

feature set is far from obvious. A research issue is: Can deep learning

find feature sets that outperform feature sets found in the real estate

pricing literature?

Some other ideas would help encourage others to work in the field of real

estate price prediction. The most important is to arrange for a multiyear

contemporary data set to be put in the public domain. Another idea is to

develop an open source package that allowed real estate pricing models to

be compared. The present work, which open sources its code, provides a

start on such a package.
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