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Abstract

We address the problem of authorization in large-scale, open, distributed systems.

Authorization decisions are needed in electronic commerce, mobile-code execution,

remote resource sharing, content advising, privacy protection, etc. We adopt the trust-

management approach, in which “authorization” is viewed as a “proof-of-compliance”

problem: Does a set of credentials prove that a request complies with a policy?

We develop a logic-based language Delegation Logic (DL) to represent policies,

credentials, and requests in distributed authorization. Delegation Logic extends logic

programming (LP) languages with expressive delegation constructs that feature dele-

gation depth and a wide variety of complex principals (including, but not limited to,

k-out-of-n thresholds).

D1LP, the monotonic version of DL, extends the LP language Datalog with delega-

tion constructs. D2LP, the nonmonotonic version of DL, also features classical nega-

tion, negation-as-failure, and prioritized conflict handling. Our approach to defining

and implementing DL is based on tractably compiling DL programs into ordinary logic

programs (OLP’s). This compilation approach enables DL to be implemented modu-

larly on top of existing technologies for OLP, e.g., Prolog.

As a trust-management language, Delegation Logic provides a concept of proof-of-

compliance that is founded on well-understood principles of logic programming and

knowledge representation. DL also provides a logical framework for studying delega-

tion, negation of authority, conflicts between authorities, and their interplay.
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Chapter 1

Introduction

In today’s Internet, there are a large and growing number of scenarios that require au-

thorization decisions. Such scenarios include electronic commerce, execution of down-

loadable code (e.g., Java applets [3] and ActiveX controls [17]), content advising [64],

privacy protection [75, 76], remote resource sharing, etc.

Authorization in these Internet scenarios is significantly different from that in cen-

tralized systems or even in distributed systems that are closed or relatively small. In

these older settings, authorization of a request is divided into authentication (“who

made the request?”) and access control (“is the requester authorized to perform the

action?”).

In Internet authorization scenarios, often there is no relationship between a requester

and an authorizer prior to a request. Because the authorizer does not know the requester

directly, it has to use information from third parties who know the requester better; nor-

mally, the authorizer trusts these third parties only for certain things and only to cer-

tain degrees. This trust and delegation aspect makes distributed authorization different

from traditional access control. The goal of a growing body of work on trust manage-
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ment [9, 11, 12, 13, 20, 24, 25, 49, 50] is to find a more expressive and “distributed”

approach to authorization in these scenarios.

In the “trust-management” view of distributed authorization, a “requester” submits

a request, possibly supported by a set of “credentials” issued by other parties, to an “au-

thorizer,” who controls the requested resources. The authorizer then decides whether

to authorize this request by answering the “proof-of-compliance” question: “Do these

credentials prove that a request complies with my local policy?”

The trust-management approach adopts a key-centric view of authorization, i.e.,

it views public keys as entities to be authorized. Moreover, it supports credentials

that endow public keys with more than just identities or “distinguished names” of key

holders, e.g., with agreed-upon “authorizations” [24], with various attributes of key-

holders, or with fully programmable “capabilities” [9, 11, 20]. Identity information is

just one kind of credentials, and it may be necessary and sufficient for some applications

but not for others.

A major challenge in authorization and trust management is to provide a language

that facilitates specification of authorization policies, especially one can be understood

and modified by people who are expert in a business domain rather than in program-

ming. Expressive convenience and separation of the policy specification semantics

from the choice and details of implementation technique are thus important goals.

The goal of this dissertation is to provide such a “trust-management language ” for

representing authorization policies and credentials. Our design goals for this language

include:

• It should have a declarative semantics and provide a notion of proof-of-compliance

that is based on well-understood logical foundations.
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• It should allow the specification of complex trust and delegation relationships in

distributed authorization.

• It should strike a right balance among expressive power, computational complex-

ity, and ease of understanding.

We view the problem of designing a language for representing authorization poli-

cies and credentials as a knowledge-representation problem. We further adopt an ap-

proach that has been proved very successful in knowledge representation: the logic-

programming approach. Logic-programming-based languages for representing secu-

rity policies have been studied before (e.g., [6, 40, 41]), but previous work focused

on centralized environments and did not address the delegation aspect of distributed

authorization.

In this dissertation, we propose the logic-programming-based language Delegation

Logic (DL) as a trust-management language. Our approach in designing Delegation

Logic is to extend well-understood logic-programming languages with features needed

in distributed authorization. Specifically, DL extends Definite Ordinary Logic Pro-

grams1 along two dimensions: delegation and nonmonotonic reasoning. DL’s dele-

gation features include explicit linguistic support for delegation depth and for a wide

variety of complex principals (e.g., k-out-of-n thresholds). DL’s nonmonotonic ex-

pressive features include classical negation, negation-as-failure, and prioritized conflict

handling.

DL differs from other proposed trust-management languages [9, 11, 12, 24] in pro-

viding a notion of “proof-of-compliance” that is not ad hoc; rather, it is based on model-

1See page 26 for a brief introduction to terminology in logic programming (LP) and further

references on LP.
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theoretic semantics of logic programs (thus abstracted away from choice and details of

implementation). Moreover, DL is a tractable and practically implementable approach.

In the next chapter, we give background information on authentication, access con-

trol, and trust management. In chapter 3, we describe the monotonic version of DL,

called D1LP. D2LP, the version of DL that has nonmonotonic features, is described in

chapter 4. We conclude in chapter 5.
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Chapter 2

Authentication, Access Control, and

Trust Management

Computer security aims at ensuring that access to resources is restricted to and available

to those parties with legitimate access permissions. Three mutually supportive mech-

anisms together provide the foundation for achieving this goal: authentication, access

control, and audit.

We abstract a system into entities that are inter-connected and resources that

are controlled by entities. Entities may include users, operating systems, processes,

threads, objects, etc. Resources may include information, files, network connections,

methods of objects, etc. When an entity wants to access a resource controlled by an-

other entity, it sends a request to that entity. The entity that wants to access the resource

is called the requester and the entity that controls the resource is called the authorizer.

Traditionally, when an authorizer receives a request, it first “identifies” the requester.

This task of determining a requester’s identity in a rigorous manner is called authen-

tication. In other words, authentication answers the question “who made this request”
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with an identity. Knowing the identity of the requester, the authorizer then decides

whether this identity is allowed to access the requested resource. This step is called ac-

cess control. The audit process gathers data about activities in the system and analyzes

it to discover security violations and diagnose their cause. Analysis can occur off-line

after the fact or it can occur on-line more or less in real time.

We use the term authorization to denote this process of “authentication + access

control.” This dissertation focuses on authorization in emerging applications in large-

scale, open, distributed systems (e.g., Internet). Examples of such applications include

execution of downloadable code (e.g., Java applets [3] and ActiveX controls [17]), con-

tent advising [64], privacy protection [75, 76], remote resource sharing, etc.

Authorization in these applications is significantly different from traditional autho-

rization. The goal of a growing body of work on trust management [9, 11, 12, 13, 20,

24, 25, 49, 50] is to find a more expressive and “distributed” approach to authorization

in these scenarios.

In the rest of this chapter, we first give some background information on authenti-

cation and access control, then motivate and describe the trust-management approach.

See [57] for a comprehensive treatment of modern cryptography and [29, 42, 69] for

introductions to communication and network security.

2.1 Authentication

In this section, we briefly review authentication techniques. Here, we only consider

entity authentication, also known as identification or identity verification. It allows one

entity (the verifier) to gain assurance that the identity of another entity (the claimant)

is as declared, thereby preventing impersonation.
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User-to-local-host authentication

In a user-to-local-host authentication scenario, the claimant is a human user and the

verifier is a process on a trusted local host. This is the typical authentication scenario in

a single-host environment. It is also the first step of a user-to-remote-host authentication

scenario, which can be conceptually separated into two steps: the user first authenticates

to a process on a local computer, then this process authenticates to the remote host on

behalf of the user.

User-to-local-host authentication is based on some secret only the claimant can gen-

erate. This secret may be a password that the claimant knows, a cryptographic key

stored in some physical equipment that the claimant has (e.g., a smart card), or some

biometric of the claimant (e.g., fingerprint, voice-print, etc.) One can also combine

two or more of the above approaches, e.g., a smart card combined with a PIN that is

required to access it.

Direct remote authentication

By direct remote authentication, we mean the authentication between two processes

running on two different hosts connected by an insecure network without the help of a

trusted third party. It may be the case that one process is running on behalf of a user,

and, if so, this is actually a user-to-remote-host authentication scenario.

In this kind of authentication, the claimant demonstrates knowledge of some secret,

e.g., a password, a cryptographic key, etc. This secret may be shared between the

claimant and the verifier. In this case, the simplest (but insecure) way is to send the

secret in clear text. More secure techniques include one-time passwords, challenge-

response, etc. Alternatively, the secret may be known only to the claimant, and the

7



claimant can convince the verifier without revealing the secret, e.g., using public-key

cryptography or some “zero-knowledge proof system.”

Secret-key-based authentication with a trusted third party

Secure remote authentication typically requires the use of some cryptographic algo-

rithms. Authentication schemes that are based on symmetric cryptography require two

parties to share a secret key. In a distributed system that has N entities, each pair of

entities needs a different key, and so there need to be N(N−1)/2 keys. Obviously, this

doesn’t scale well. Many protocols have been developed to address this problem. They

all use the notion of a key distributed center (KDC), also known as an authentication

server. KDC was first introduced by Needham and Schroeder in [59]. With every en-

tity in the system, the KDC shares a different key. These keys are called master keys.

The KDC acts as a trusted intermediary in the authentication of two entities. During an

authentication process, a session key is established to allow the two parties to commu-

nicate securely. Using KDC reduces the number of required keys from N(N − 1)/2 to

N . The most widely known system based on this approach is Kerberos [45, 60].

Public-key-based authentication with a trusted third party

Authentication schemes based on secret-key cryptography and a KDC require every

entity in the system to share a secret key with the KDC. This requires significant amount

of initial setup for every new entity. Also, the KDC must always be on-line and highly

available, because it is needed for every authentication. This may serve well for a

local-area network environment; however, it does not scale to the size of Internet.

Public-key cryptography systems make key distribution easier. Every entity has a
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public/private key pair and the public key can be distributed freely. The verifier can

easily authenticate a claimant if it knows the public key of the claimant. However, to be

sure that a public key indeed belongs to a particular entity, trusted third parties, often

known as certification authorities (CA’s), are still needed. CA’s issue digital certificates.

A digital certificate is a digitally signed data record containing a public key and some

information about the key holder. Unlike KDC, CA’s can stay off-line.

2.2 Identity-based Public-Key Infrastructures (PKI)

To enable the authentication of entities in a global distributed system, one CA is not

enough; a global public-key infrastructure (PKI) is needed. Elements of a PKI include

a naming scheme of the information that is bound to public keys, data structures of cer-

tificates, methods to distribute and revoke these certificates, and the intended meaning

of certificates. A certificate can bind a public key to a piece of information directly; it

can also specify (implicitly or explicitly) other trust relationships that can be used to

deduce other bindings.

An important design question for any PKI is “what information is bound to public

keys?” Earlier PKI proposals are designed for authentication and bind a globally unique

identity to each public key. In this section, we give an overview of several existing

identity-based PKI’s.

X.509

The Directory Authentication Framework, known as X.509 [39], defines a format for

digital certificates. In a certificate, a public key is bound to the distinguished name (DN)

of the key holder. For a large community of users, multiple CA’s are needed. These
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CA’s sign certificates for each other. When two users certified by different CA’s want

to authenticate each other, a chain of certificates is used. X.509 suggests that CA’s

be arranged in a hierarchy fashion, so that navigation among CA’s is straightforward.

When a chain of certificates is used to establish a DN-to-public-key binding, the user

has to trust all the CA’s along the chain in that they are all honest and competent to

make correct bindings. Because the user may not know the CA’s, the trust can only

come from the certificate chain. Therefore, a CA-to-CA certificate vouches for more

than just the DN-to-public-key binding; it also implicitly suggests the trustworthiness

of the CA.

Internet Privacy Enhanced Mail (PEM)

Privacy Enhanced Mail [43] is a draft Internet standard for securing the Internet e-mail

system. PEM uses X.509 certificates and implements a hierarchy of certification au-

thorities. It defines three levels of CA’s: Internet Policy Registration Authority (IPRA),

Policy Certification Authorities (PCA’s), and Certification Authorities (CA’s). The root

IPRA establishes a common policy that applies to all certificates issued under this hier-

archy. Each PCA must register with the IPRA and file a document describing its own

policies; the IPRA then signs these policies. A PCA ensures that CA’s certified by itself

must conform to its policies. These policies can reveal the degree of assurance when

a CA vouches for name-to-public-key bindings. A CA may be certified by multiple

PCA’s, meaning that it may issue certificates under multiple policies.
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Pretty Good Privacy (PGP)

Pretty Good Privacy (PGP) is a software package originally developed by Phil Zimmer-

man [77]. It provides cryptographic routines for e-mail and file storage. In PGP, a user

is identified by a User ID, which is an e-mail address plus a name. A PGP certificate

binds a public key to a User ID. This makes sense, because PGP is designed primarily

for e-mail security.

A user can get the public key of another user through some secure channels (which

may be outside cyberspace) or verify the public key through such channels. When

there is no such channel, introducers (PGP’s name for CA’s) are needed. An introducer

vouches for a user-ID-to-public-key binding by signing it. Contrary to the strict hierar-

chy model in PEM, every user can serve as an introducer in PGP. And every user can

choose which introducers he trusts. This is often called the “Web of Trust” model.

In PGP, all keys and certificates are stored in key rings. Each user has two key rings.

The private key ring stores the public/private key pairs owned by the user. The public-

key ring stores public keys the user knows. In the public-key ring, each public-key entry

has two fields governing trust of this public key. The key legitimacy field indicates the

extent to which PGP trusts the binding is valid. This field is computed by PGP. The

owner trust field indicates the degree to which the public key is trusted to serve as an

introducer. This field is specified by the user who owns the key ring. Each public-key

entry has zero or more signatures, and each signature has a signature trust field that is

the same as the owner trust field of the signing key. The key legitimacy field of a key

entry is derived from the collection of the signature trust fields of all signatures. A user

can configure parameters to determine how many signatures are needed to trust a key

blinding as valid.
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A PGP certificate means only that the signer vouches for the binding between the

User ID and the public key. There is nothing in a certificate to indicate to what extent

the signer trusts the key-holder’s ability to sign other keys. This trust information is

stored in everyone’s local key ring and is not revealed to other people. Therefore, a

user can only use the public keys of people he knows directly to establish key bindings.

Thus the “web of trust” is a very shallow (only two levels) web.

2.3 Access Control

The basic way to model access control is a four-tuple: (S, O, A, M), where S is the set

of subjects, O is the set of objects, A is the set of actions (access rights), and M is a

function that maps a tuple (s, o, a) ∈ S ×O×A to a decision ∈ {T, F}. The mapping

M can be stored in an access matrix, with rows corresponding to subjects, columns

corresponding to objects, and matrix entries indicating allowed access rights. In prac-

tice, a typical access matrix is large and sparse, and it is difficult to store, manage, and

understand such a matrix directly. Therefore, various access-control policies have been

developed.

Discretionary Access Control(DAC)

In the Trusted Computer System Evaluation Criteria (TCSEC) [44], two types of

access-control policies are specified: discretionary access controls (DAC) and manda-

tory access controls (MAC). As defined in the TCSEC, DAC is

A means of restricting access to objects based on the identity of subjects

and/or groups to which they belong. The controls are discretionary in the
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sense that a subject with a certain access permission is capable of pass-

ing that permission (perhaps indirectly) on to any other subject (unless re-

strained by mandatory access control).

DAC permits the granting and revoking of access privileges to be left to the discre-

tion of individual users. This is based on the notion that individual users are “owners”

of objects. Ownership is usually acquired as a consequence of creating the object.

Mandatory Access Control (MAC)

MAC is defined in TCSEC as

A means of restricting access to objects based on sensitivity (as represented

by a label) of the information contained in the objects and the formal autho-

rization (i.e., clearance) of subjects to access information of such sensitivity.

The different security levels in a system form a lattice. MAC is typically used to

enforce one-directional information flow in such a lattice. The rule for read access re-

quires that a user with a given clearance level can only read information with the same

or lower classification level. The rule for write access requires that a user with a given

clearance level can only write information to a target with the same or higher classifica-

tion level. This prevents a user from declassifying information without authorization.

Role-based Access Control (RBAC)

Recently, role-based access control (RBAC) [67] has emerged as a promising alterna-

tive to the two traditional classes of access-control policies.
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The notion of role is central to RBAC. Permissions are associated with roles, and

users are granted membership in appropriate roles, thereby acquiring the roles’ permis-

sions. More advanced RBAC models include role hierarchy and constraints. Roles are

created for the various functions in an organization and are assigned to and revoked

from users based on users’ responsibilities and qualifications. The power of RBAC

comes from the fact that the notion of “role” captures the way most organizations op-

erate.

RBAC by itself is policy neutral. It can be used to implement MAC. The notion

of roles makes the creation and modification of security policies easier so that security

policies can more easily evolve incrementally over the system life cycle. Roles add

another layer between principals and objects, thus helping to model the many-to-many

relationships between principals and objects.

In RBAC, authorization is decided on the basis of which role the principal is asso-

ciated with and which access rights the role has. Thus the full identity information of

a requester may not be needed in access control. As long as the requester can provide

proof that it is associated with the correct role, the request can be allowed.

The Clark and Wilson model

The Clark and Wilson model [21] recommends the enforcement of two principles: the

principle of well-formed transactions and the principle of separation of duty. The con-

cept of well-formed transactions is that a user should not manipulate data arbitrarily,

but only in constrained ways that preserve or ensure the integrity of data. Separation of

duty means that some transactions should not be completed by a single subject. This

implies that any single subject should not have all the access rights required for such

14



a transaction. When this principle is enforced, collusion among subjects is needed for

fraud to take place.

Chinese Wall policy

The Chinese Wall policy [15] can be viewed as a kind of dynamic separation of duty.

In the Chinese Wall policy, data objects are grouped into datasets, and datasets are

grouped into conflict-of-interest classes. If a user accesses an object in one dataset,

he cannot access any object in other datasets in the same conflict-of-interest class. For

example, competing companies’ datasets should be grouped into one conflict of interest

class, and an analyst can only advise one of the companies in that class.

Access Control mechanisms

Techniques to implement the above access-control policies include the following:

• Access Control Lists (ACLs): An access-control list is an attribute of a target

object, stating which users can invoke which actions on it. An access-control

list specifies the contents of the column related to the target object in the access-

control matrix.

• Capabilities: A capability is effectively a ticket, possessed by a requester, that

authorizes the holder to access a specified object in specified ways. Some capa-

bilities can only be used by a specified principal, while others may be transferred

to other principals.

• Security Labels: A security label is a set of security-attribute information bound

to a user, a target, or a piece of information in transmission. The label indicates

the sensitivity level of the data. This mechanism is used to implement MAC.
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Language-based approaches to access control

Recently, there has been considerable research interest in language-based approaches

to access control [6, 19, 40, 41, 66, 72, 73]. The goal is to provide a language that

can support multiple access-control policies and achieve separation of policies from

mechanisms. Most work uses logic-programming (LP) languages [6, 40, 41]; some

other work [66, 73] uses languages that can be easily translated to LP languages. One

important issue is whether to allow negative authorizations. If they are allowed, then

there are potential conflicts among security policies. These systems differ significantly

in how to deal with conflicts.

2.4 SRC logic for authentication and access control

In distributed systems, authentication is complicated by the fact that a request may

originate from a distant host and traverse multiple machines and network channels that

are not trusted. Abadi, Burrows, Lampson, Plotkin, Wobber, et al. developed a logic

for authentication and access control in distributed systems [1, 48]. They also designed

and implemented a security system based on this logic.

The basic concepts of SRC logic are principals and statements. Principals make

statements. A says S means that principal A makes the statement S (an assertion or a

request). There is a “speak for” relation among principals. We write A ⇒ B when A

speaks for B; this means that, if principal A makes a statement, then we can believe

that principal B makes it, too. Principals include:

• Simple principals. Users, machines, etc.

• Channels. Network addresses, encryption keys, etc. If S appears on channel
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C then C says S. In particular, for a key K, K says S represents a message

containing S and encrypted by K. A channel is the only kind of principal that

can directly make a statement. The theory cannot reason about whether a channel

has made a statement; it is taken into the theory as a fact and used to deduce other

results.

• Groups. Set of principals. A group is treated as a disjunction of its members. Any

member can speak for the group.

• Conjunction of principals. A∧B stands for the conjunction of A and B. (A∧B)

says S means both A says S and B says S.

• Principals quoting principals. B | A stands for B quoting A. If B says A says S

then (B | A) says S.

• Principals in roles. A as R stands for A in role R. A principal can adopt a role to

reduce its rights.

• Principals acting on behalf of others. B for A stands for B acting on behalf of

A.

Statements are defined inductively as follows:

• Primitive statements are statements.

• If s and s′ are statements, then s ∧ s′ (s and s′), s ⊃ s′ (s implies s′), and s ≡ s′

(s is equivalent to s′) are statements.

• If A is a principal and s is a statement, then A says s is a statement.

• If A and B are principals, then A⇒ B (A speaks for B) is a statement.
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SRC logic has a hand-off axiom:

(A says (B ⇒ A)) ⊃ (B ⇒ A)

This means that B speaks for A when A says so. Thus a principal A can delegate all

its authority to another principal B by saying that B speaks for A. To limit the authority

being delegated, a principal can adopt a role before delegating.

The notion of “speak for” is very useful in distributed authentication and access

control. However, as a language for authentication and access control, SRC logic is

rather limited in several aspects. First, primitive statements are propositions and are

not interpreted by the logic; thus, they cannot state properties of principals for use in

the logic. Second, SRC logic does not have variables. Because of these two limitations,

one cannot express a delegation to any principal that has a certain property, without

explicitly listing all the principals. Therefore, SRC logic is too limited for expressing

attribute-based access-control policies. Third, there is no direct support for thresholds.

Without this support, a delegation to a threshold of principals can only be implemented

by multiple delegations to conjunctions of principals; however, doing this requires an

exponential number of delegations in the worst case. Fourth, there is no re-delegation

control mechanism; every delegation can be freely re-delegated.

Even with the above limitations, validity in SRC logic is undecidable in general.

In [1], Abadi et al. defined two simplified classes of access-control problems that are

decidable. One class is worst-case exponential-time solvable. The other class is the

result of even further simplification and is computationally tractable.
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2.5 Trust-Management

Authorization in Internet services is significantly different from traditional authoriza-

tion in centralized systems or in closed distributed systems. Differences exist in the

following aspects:

• Who needs protection?: In a traditional client/server computing environment,

valuable resources usually belong to servers, and it is when a client requests ac-

cess to a valuable resource that the server uses an authorization procedure to pro-

tect its resources. In a large-scale, open distributed system, users access many

servers and have valuable resources of their own (e.g., personal information, elec-

tronic cash); indeed “client” is no longer the right metaphor. Such a user cannot

trust all of the servers it interacts with, and authorization mechanisms have to

protect the users’ resources as well as those of the servers.

• Whom to protect against?: In a large, far-flung network, there are many more

potential requesters than there are in a smaller, more homogeneous (albeit dis-

tributed) system. Some services, e.g., Internet merchants, cannot know in advance

who the potential requesters are. Similarly, users cannot know in advance which

services they will want to use and which requests they will make. Thus, the autho-

rization mechanisms must rely on delegation and on third-party credential-issuers

more than ever before.

• Who stores authorization information?: Traditionally, authorization informa-

tion, e.g., an access-control list, is stored and managed by the service. Internet

services evolve rapidly, and thus the set of potential actions and the users who

may request them are not known in advance; this implies that authorization in-

19



formation will be created, stored, and managed in a dynamic, distributed fashion.

Users are often expected to gather all credentials needed to authorize an action

and present them along with the request. Because these credentials are not al-

ways under the control of the service that makes the authorization decision, there

is a danger that they could be altered or stolen. Thus, public-key signatures (or,

more generally, mechanisms for verifying the provenance of credentials) must be

part of the authorization framework.

In traditional authentication and access control, the notion of identity plays an im-

portant role. In a traditional system, an identity often means an existing user account.

User accounts are established with the system prior to the issue of any request. Ear-

lier PKI proposals try to establish a similar global “user-account” system that gives a

unique name to every entity in the system and then binds each public key to a globally

unique “identity.”

In Internet applications, the very notion of identity becomes problematic. The term

identity originally means sameness or oneness. When we meet a previously unknown

person for the first time, we cannot really identify that person with anything. In a

scenario in which an authorizer and a requester have no prior relationship, knowing

the requester’s name or identity may not help the authorizer make a decision. One can

argue that, in a global system, the only real “identity,” with which anything can later be

related, is the public key. Thus, the “trust-management approach” adopts a key-centric

approach to authorization: Public keys are treated as principals and authorized directly.

Moreover, the trust-management approach supports the use of more expressive cre-

dentials that endow public keys with more than just identities. Credentials can bind

public keys to agreed-upon “authorizations” [24], to various attributes of key-holders,
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or to fully programmable “capabilities” [9, 11, 20]. Authorization is framed as a proof-

of-compliance problem: “Does the set C of credentials prove that the request r com-

plies with the local security policy P ?” Furthermore, the “trust-management approach”

demands that the notion of proof-of-compliance be application-independent.

The “trust-management approach” also adopts a “peer model” of authorization. Ev-

ery entity can be an authorizer, a third-party credential issuer, or a requester. An entity

can act as a requester in one authorization scenario and as an authorizer (or as a third-

party credential issuer) in another.

In the following, we briefly review several trust-management systems (see [13] for

a more detailed survey).

2.5.1 PolicyMaker

PolicyMaker was the first “trust-management system.” It was introduced in the origi-

nal trust-management paper by Blaze, Feigenbaum, and Lacy [9], and its compliance-

checking algorithm was later fleshed out in [11]. In this section, we give a high-level

overview of the PolicyMaker system. Our description is mostly based on [11, 13].

For more details about PolicyMaker, see [9, 11, 13]. Experience using PolicyMaker in

several applications is reported in [10, 46, 47].

In PolicyMaker, there are policies and credentials. They differ only in their issuers.

Policies are issued by a special principal, POLICY, which represents local authority

and is the “trust root” for granting rights. All other principals are public keys. Public

keys can issue credentials as well as request for rights. Policies and credentials together

are referred to as “assertions.” An assertion is represented as a pair (f, s), where s is

the source of authority (i.e., the issuer of this assertion) and f is a program describ-
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ing the nature of the authority being granted as well as the party or parties to whom

the authority is being granted. Credentials must be signed by their issuers, and these

signatures must be verified before the credentials can be used. PolicyMaker assertions

can be written in any programming language that can be “safely” interpreted by a local

environment. A safe version of AWK was developed for early experimental work on

PolicyMaker (see [9]).

In the PolicyMaker framework, applications are responsible for collecting certifi-

cates and translating them to PolicyMaker assertions. After collection and translation

is done, the application calls the PolicyMaker inference engine with a query and a set of

policies and credentials. The PolicyMaker inference engine provides an environment in

which the policies and credential assertions can cooperate to produce a proof that the re-

quest complies with the policies (or can fail to produce such a proof). This environment

provides a method of inter-assertion communication and a method for determining that

assertions have collectively succeeded or failed to produce a proof.

Inter-assertion communication in PolicyMaker is done via a simple, append-only

data structure on which all assertions write intermediate results. PolicyMaker initial-

izes the proof process by creating a “blackboard” containing only the request string r.

Then PolicyMaker runs the various assertions, possibly multiple times each. When an

assertion (fi, si) is run, it reads the contents of the blackboard and then adds to the

blackboard zero or more acceptance records (i, si, Rij). Here, Rij is an application-

specific action that source si approves, based on the acceptance records previously

written on the blackboard.

A proof of compliance is achieved if, after PolicyMaker has finished running asser-

tions, the blackboard contains an acceptance record indicating that a policy assertion
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approves the request r. The paper [11] provides: (1) a mathematically precise formu-

lation of the PolicyMaker compliance-checking program, (2) proof that the problem is

undecidable in general and is NP-hard even in certain natural special cases, and (3) one

special case of the problem that is polynomial-time solvable, is useful in a wide variety

of applications, and is implemented in the current version of PolicyMaker.

2.5.2 KeyNote

KeyNote [12] was designed according to the same principles as PolicyMaker. KeyNote

requires that credentials and policies be written in a specific assertion language.

A calling application passes to a KeyNote evaluator a list of credentials, policies,

requester public keys, and an “Action Environment,” which consists of a list of at-

tribute/value pairs, similar in some ways to the UnixTM shell environment. The action

environment is constructed by the calling application and contains all information that

is relevant to the request and necessary for the trust decision. The action-environment

attributes and the assignment of their values must reflect the security requirements of

the application accurately. Identifying the attributes to be included in the action envi-

ronment is perhaps the most important task in integrating KeyNote into new applica-

tions. The result of the evaluation is an application-defined string (perhaps with some

additional information). This string is passed to the application. In the simplest case, it

is something like “authorized.”

The KeyNote assertion format resembles that of e-mail headers. As in Policy-

Maker, policies and credentials (collectively called assertions) have the same format. A

KeyNote assertion has a Licensees field. It specifies explicitly the principal or princi-

pals to which the authority is delegated. Syntactically, the Licensees field is a formula
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in which the arguments are public keys and the operations are conjunction, disjunction,

and threshold. The semantics of these expressions is specified in [12].

2.5.3 SPKI/SDSI

SPKI (Simple Public Key Infrastructure) and SDSI (Simple Distributed Security Infras-

tructure) were started independently. Both of them were motivated by the inadequacy

of public-key infrastructures based on global name hierarchies, such as X.509 [39] and

Privacy Enhanced Mail (PEM) [43]. Later, SPKI and SDSI merged into a collaborative

effort, SPKI/SDSI 2.0, about which the most up-to-date documents are [23, 25, 26].

The SPKI/SDSI approach shares many views with the trust-management approach.

For example, it aims at developing a standard form for digital certificates whose main

purpose is authorization rather than authentication. However, it does not define an

application-independent trust-management engine. In [25], Ellison et al. state: “The

processing of certificates and related objects to yield an authorization result is the

province of the developer of the application or system.” Therefore, strictly speaking,

SPKI/SDSI is not a trust-management system.

SPKI/SDSI adopts the localized naming scheme of SDSI. In SDSI, there are princi-

pals and local identifiers. Principals are public keys and are therefore unique. Principals

make statements. Each principal has its own name space. Names are formed by linking

principals and local identifiers. For example, “keyAlice’s Bob’s friend” is a name. A

local name is a principal followed by a local identifier. A subject is either a name or an

object of the form: “(k-of-n K N sub1 sub2 ... subN),” where K and N

are both positive integers and K ≤ N ; each subi is a subject.

SPKI/SDSI 2.0 has two kinds of certificates. Name-definition certificates (name
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certs for short) came originally from SDSI; a name cert binds a local name to a principal

or a more complex name. Name certs are used to resolve names to principals.

Authorization certificates (auth certs) came originally from SPKI; an auth cert del-

egates a certain permission from a principal (the cert’s issuer) to the cert’s subject. An

auth certificate has the following five fields: “Issuer” (the principal that signs this cert),

“Subject” (the entity being authorized in this cert), “Authority” (the specific permission

being delegated in this certificate), “Delegation” (a boolean value to indicate whether

the subject can further delegate the authority it gets from this certificate), “Validity” (va-

lidity period and/or checking methods). An auth cert represents a 5-tuple. Informally,

a 5-tuple means “The issuer says that the subject has the stated authority during the

validity period.” The trust reasoning in SPKI consists of finding a delegation chain that

delegates the authority from the original issuer to the final subject. For the delegation

chain to work, the authority being delegated must be the intersection of all the author-

ities in the 5-tuples along the chain, and the delegation fields of all 5-tuples except the

last one on the chain have to be true.
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Chapter 3

A Monotonic Delegation Logic

In this chapter, we present a monotonic Delegation Logic that we call D1LP. It stands

for version 1 of Delegation Logic Programs. We use the term D1LP to denote both the

formalism and a program in this formalism. D1LP extends Datalog Definite Ordinary

Logic Programs by adding an issuer to every atom and adding delegation constructs that

have pre-defined meanings. “Ordinary” logic programs (OLP’s) correspond essentially

to pure Prolog, but without the limitation to Prolog’s particular inferencing procedure.

These are also known as “general” LP’s (a misleading name, because there are many

further generalizations of them) and as “normal” LP’s. “Definite” means without nega-

tion. “Datalog” means without function symbols of non-zero arity. The “arity” of a

function symbol is the number of parameters it takes. For reviews of standard concepts

and results in logic programming, see [5, 14, 53].

We define two versions of D1LP; they have different expressive power and compu-

tational complexities.

• Standard D1LP (or just D1LP), first defined in [50], satisfies the conjunctive-

delegatee-queries restriction: A delegation statement appearing in a query or a
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rule-body (because it is implicitly a query) must have a delegatee that is a princi-

pal, a principal variable, or a conjunction of principals. That is, such a delegatee

is not permitted to contain a disjunction or a threshold structure (which is disjunc-

tive in nature). This restriction is imposed to ensure computational tractability of

standard D1LP. This rationale is discussed in detail in section 3.4.

• The delegation-query-free D1LP (D1LPDQF ) is further restricted from standard

D1LP by completely forbidding any delegation statement to appear in a query or

a rule-body. We introduce D1LPDQF because it has simpler semantics and lower

computational complexity than standard D1LP and still has sufficient expressive

power for many applications. D1LPDQF is also the foundation upon which we

define the version of D2LP in this dissertation.

This chapter is organized as follows. In section 3.1, we describe the syntax, some

concepts, and some examples of D1LP. In section 3.2, we define the semantics of

D1LP via a transformation from D1LP into OLP. D1LP inferencing is accomplished

by the combination of this transformation plus OLP inferencing. Tractability results

are given in section 3.3. In section 3.4, we discuss the tractability motivation behind

the conjunctive-delegatee-queries restriction for standard D1LP. In section 3.5, we de-

scribe two implementations of D1LP. We present D1LPDQF in section 3.6.

3.1 Syntax, Concepts, and Examples

In this section, we define the syntax of D1LP, explain some important concepts in D1LP,

and give examples of D1LP programs.
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3.1.1 Syntax

1. The alphabet of D1LP consists of three disjoint sets, the constants, the variables,

and the predicate symbols. Variables start with ‘?’. The set of principals is a

subset of the constants. The set of principals should be distinguishable from other

constants. There is a reserved principal symbol “Local”; it represents the trust

root, i.e., the authorizer of an authorization decision. When a variable appears in

certain positions, e.g., as an issuer, it is called a principal variable and can only

be instantiated to a principal. A term is either a constant or a variable. A principal

term is either a principal or a principal variable.

Note that we prohibit function symbols with non-zero arities: This is the Datalog

restriction. The Datalog restriction helps to ensure finiteness of D1LP seman-

tics and tractability of D1LP inferencing. It can be weakened, however. See

section 3.3.2 for further discussion of the relationship between the Datalog re-

striction and tractability of D1LP inferencing.

2. A base atom takes the form:

pred(t1, ..., tn)

where pred is a predicate and each ti is a term.

A base atom encodes a belief. For example, “isBusinessKey(keyBob,Bob)” and

“goodCredit(?X)” are base atoms that encode beliefs. When a belief talks about

a security action, e.g., an action to access a resource, it means a belief that this

action should happen. For example, the base atom “remove(file1)” encodes the

belief that file1 should be removed.
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3. A direct statement takes the form:

X says ba

where X is a principal term, “says” is a keyword, and ba is a base atom. X is

called the issuer of this statement.

A direct statement “X says ba” intuitively means that X “supports” the be-

lief encoded in ba. For example, “keyBob says goodCredit(Carl)” means that

keyBob supports (believes) that Carl has good credit. When ba encodes a belief

about a security action, the direct statement “X says ba” means that X believes

that the action encoded in ba should happen, i.e., X requests the action; therefore,

this direct statement encodes a request by its issuer X . For example, one can use

the direct statement “keyTom says purchase(computer, 1500)” to encode that

the principal keyTom requests to purchase a computer priced at $1500.

4. A static unweighted threshold structure takes the form:

threshold (k, [A1, . . . , An])

where “threshold” is a keyword, k is a positive integer, Ai’s are principals,

and Ai 6= Aj for 1 ≤ i 6= j ≤ n. We call k the threshold value and “[A1, . . . , An]”

the threshold pool.

For example, “threshold(2, [cardA, cardB, cardC])” is a static unweighted

threshold structure. It supports a base atom ba if at least two principals among the

threshold pool “[cardA, cardB, cardC]” support ba.

Static unweighted threshold structures are often known as “k-out-of-n thresh-

olds.” They are common in many existing authorization systems, e.g., Policy-

Maker [9, 11], KeyNote [12], and SPKI/SDSI [24, 25, 65].
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5. A static weighted threshold structure takes the form:

threshold (k, [(A1, w1), . . . , (An, wn)])

where k and the Ai’s are the same as in item 4, and the wi’s are positive integers.

We call these wi’s weights and “[(A1, w1), . . . , (An, wn)]” a principal-weight pair

set. This set is the threshold pool of this threshold structure.

Weighted threshold structures enable the assignment of different weights to dif-

ferent principals in the threshold pool. Such a threshold structure supports a base

atom if the sum of the weights of all those principals that support the base atom

is greater than or equal to the threshold value k.

6. A dynamic unweighted threshold structure takes the form:

threshold (k, ?X , Prin says pred(. . .?X . . . ))

where the threshold value k is an integer, ?X is a principal variable, and “Prin

says pred(. . .?X . . . )” is a direct statement in which the variable ?X occurs

(one or more times).

Such a threshold structure has a dynamic threshold pool that is the set of all prin-

cipals A such that the direct statement “Prin says pred(. . . A . . . )” is true, i.e.,

the expression “Prin says pred(. . .?X . . . )” becomes true when A is substi-

tuted for ?X for each appearance throughout the direct statement.

The reason for introducing dynamic threshold structures is that a static threshold

structure becomes inconvenient when its threshold pool is very large, changes

very often, or both. For example, suppose that a bank requires that two cashiers

cooperate to do a certain transaction. This can be implemented by delegating the
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right to do this transaction to a threshold structure that represents two out of all

the cashiers. Use of a dynamic unweighted threshold structure yields a simple

and clear policy and enables the company to change the set of cashiers without

changing its policy.

7. In D1LP, a threshold structure is one of the above three kinds of threshold struc-

tures. Threshold structures introduce fault tolerance and aid flexibility in joint

authorization.

8. A principal structure is constructed from principals and threshold structures using

“,” (conjunction), “;” (disjunction), and parentheses.

For example, the principal structure

(threshold(1, ?X, companyA says accountant(?X)),

threshold(1, ?Y, companyA says manager(?Y)))

represents any conjunction of an accountant in companyA and a manager in

companyA. Such principal structures are useful in common separation-of-duty

policies.

9. A delegation statement takes the form:

X delegates baˆd to PS

where X is either a principal or a principal variable, “delegates” and “to” are

keywords, ba is a base atom, d is either a positive integer or the asterisk symbol

“∗”, and PS is a principal structure or a principal variable.

X is called the issuer of this statement; d is called the delegation depth of this

delegation (“∗” means unlimited depth); and PS is called the delegatee of this
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delegation. In DL, the basic meaning of a delegation is transferability of support.

For example, the delegation statement

Bob delegates goodCredit(?X)ˆ1 to Carl

means that Bob trusts Carl about whether someone has good credit. The meaning

of delegation depths is discussed in section 3.1.2.

10. A speaks for statement takes the form:

Y speaks for X on ba

where X and Y are either principals or principal variables, and ba is a base atom.

The issuer of a speaks for statement is defined to be the special principal Local.

A speaks for statement “Y speaks for X on ba” intuitively means that Y

has all power that X has with respect to the base atom ba, i.e., whoever trusts X

about ba should trust Y equally about ba. It is similar to the delegation statement

“X delegates baˆ∗ to Y ,” but there are important differences. The rationale

for speak for statements is discussed in section 3.1.4.

11. A head statement is a direct statement, a delegation statement, or a speaks for

statement.

12. A body statement is a body-direct statement, a body-delegation statement, or a

speaks for statement.

13. A body-direct statement is more general than a direct statement in that it permits

the issuer to be a principal structure.

For example, the following is a body-direct statement:

threshold(2, [cardA, cardB, cardC]) says accountGood(?X).
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14. A body-delegation statement is more general than a delegation statement in that

it allows the issuer to be a principal structure but less general in that it obeys

the conjunctive-delegatee-queries restriction: Its delegatee must be a principal, a

principal variable, or a conjunction of principals.

15. A body formula is constructed from body statements using “,” (conjunction), “;”

(disjunction), and parentheses.

16. A rule, also known as a clause, takes the form:

H if F.

where H is a head statement and F is a body formula. H is called the head of

the rule, and F is called the body of the rule. The body may be empty; if it is, the

keyword “if” is omitted. A rule with an empty body is also called a fact.

If H has a principal as its issuer, then this principal is also the issuer of this rule.

Otherwise H has a principal variable as its issuer, then the issuer of this rule is

the principal symbol Local.

For example, the issuer of the rule “A says p if B says q” and the rule “A

delegates pˆ1 to B” is A. The issuer of the rule “A speaks for B on p and the

rule “?X says p(a) if Local says c(?X,a)” is Local. Intuitively, the issuer of a

rule is the principal who has the power to issue that rule. This is further discussed

in sections 3.1.3 and 3.1.4.

17. A program is a finite set of rules. This is also known as a logic program (LP) or

as a rule-set.

18. A query takes the form “F ?” where F is a body formula.
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As usual, an expression (e.g., term, base atom, statement, clause, or program) is said

to be ground if it does not contain any variables. A clause with variables stands for all

its ground instantiations.

3.1.2 Discussions of delegation depth

As we defined earlier, a delegation statement has a depth, which is either a positive

integer or “∗.” In this subsection, we discuss the intuition behind delegation depths.

One reason to limit delegation with respect to depth is that trust is not transitive

(see [28, 56] for some interesting discussion). For example, the delegation statement

Bob delegates goodCredit(?X)ˆ1 to Carl

means that Bob trusts Carl about whether someone has good credit. That is, if Carl

says that someone has good credit, then Bob believes it. However, even if Bob trusts

Carl about goodCredit(?X) and Carl trusts David about goodCredit(?X), Bob doesn’t

necessarily trust David about goodCredit(?X). It is imaginable that Bob trusts Carl’s

ability to judge whether someone has good credit, but doesn’t trust Carl’s ability to

judge other principals’ ability to judge whether someone has good credit. In this case,

Bob should only delegate to Carl with depth 1. If Bob does trust the principals that

Carl trusts, then Bob should delegate to Carl with depth at least 2. Whether Bob should

delegate to Carl with depth 3 or higher depends on whether Bob trusts Carl’s abil-

ity to judge other principals’ ability to judge other principals’ trustworthiness about

goodCredit(?X). In some cases, Bob trusts Carl completely, and then Bob can dele-

gate to Carl with depth ∗. Under this intuition, each integer depth has a distinct meaning

and a larger depth conveys more trust than a smaller depth. Depth greater than 4 seems

too abstract to be useful, but using depth 2 or 3 in some scenarios should be plausible.
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From another point of view, delegation depth can be viewed as the number of re-

delegation steps that are allowed. Consider the following delegation statement:

Bob delegates read(file1)ˆ1 to Carl.

It means that Bob delegates to Carl the permission to read file1. Given this delegation,

when Carl makes a request, one can believe that Bob also supports this request. If Bob

allows Carl to further delegate this permission one more step, Bob can delegate to Carl

with depth 2. If Bob allows Carl to freely re-delegate this permission, Bob can delegate

to Carl with depth ∗. Following is an example of using delegation depth to control

re-delegation.

Example 3.1 (Delegation depth).

Given the following statements:

Alice delegates orgMember(?X)ˆ2 to Bob.

Bob delegates orgMember(?X)ˆ1 to Carl.

Carl delegates orgMember(?X)ˆ1 to David.

Carl says orgMember(Jack).

David says orgMember(John).

one can infer in our DL semantics (section 3.2):

Alice delegates orgMember(?X)ˆ1 to Carl.

Alice says orgMember(Jack).

Bob says orgMember(Jack).

Carl says orgMember(John).

but not:

Bob delegates orgMember(?X)ˆ1 to David.

Bob says orgMember(John).
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This is because Alice delegates to Bob with depth 2, but Bob only delegates to Carl

with depth 1.

In DL, a depth-d delegation from A to B about a base atom ba implies all delega-

tions of depth smaller than d from A to B about ba. In particular, a depth-∗ delegation

implies all integer-depth delegations. This is supported by both of the above two intu-

itive interpretations of depth.

DL uses both integer and unlimited depth to control re-delegation. There are three

other approaches: (1) no control, in which every delegation can be freely re-delegated,

(2) boolean control, in which a delegation allows either totally free re-delegation or no

re-delegation at all, and (3) integer control (no ∗ option). In section 4 of [25], SPKI

designers discussed these three approaches. They chose to use boolean control and

gave the following two reasons for choosing boolean control over integer control (in

section 4.1.4 of [25]):

The integer control option was the original design and has appeal, but was

defeated by the inability to predict the proper depth of delegation. One can

always need to go one more level down, by creating a temporary signing

key (e.g., for use in a laptop). Therefore, the initially predicted depth could

be significantly off.

As for controlling the proliferation of permissions, there is no control on the

width of the delegation tree, so control on its depth is not a tight control on

proliferation.

When integer control is enhanced with ∗, the first reason doesn’t hold anymore. One

can always use depth-∗ when the proper depth cannot be predicted. On the other hand,

it is imaginable that one does have an accurate prediction of delegation depth in some
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scenarios. Moreover, in scenarios in which one needs to create a temporary signing key

for laptop use, the boolean approach seems to be more inappropriate than the integer

approach. Suppose that a user is originally given the permission to do something but

not to re-delegate that permission and the user wants to empower a temporary key. To

enable this, in the boolean approach, the user has to be given full power to re-delegate

freely; in the integer approach, however, the user just needs a delegation depth that is

one larger.

We do not agree with the second reason either. We can’t see why one should give

up depth control because width control is difficult. Moreover, as we will see in exam-

ple 3.5 (page 44), it is possible to control the width of a delegation in DL, by using a

conjunction of principals as its delegatee.

We think that it is still unclear how re-delegation should be handled in practice.

However, we believe that it is important to work out the details of each approach. This

will allow one to gain more insights into these approaches, to analyze the cost of each

approach, and to test them in practice. We choose to use both integer depth and un-

limited depth mainly because they are strictly more expressive than any of the other

three approaches. Re-delegatabilities being “true” and “false” in the boolean approach

can be represented in DL by depth ∗ and 1, respectively, but integer depths like 2 or 3

cannot be represented in boolean approach. We conjecture that delegation depths such

as 2 and 3 might prove useful and natural in many practical policies.

3.1.3 Using DL in authorization scenarios

In this subsection, we discuss how DL is used in authorization scenarios. Entities in au-

thorization scenarios are represented by principals in DL. These principals issue creden-
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tials and requests. Typically, a principal in distributed authorization is a public/private

key pair. Such a principal issues a credential or a request by digitally signing a message

that contains it.

When an authorizer gets a request and some credentials that support this request,

this authorizer creates a queryQ from this request and a DL program (rule-set) P from

the combination of the request, the credentials, and the authorizer’s local policies. Poli-

cies and credentials are translated into rules in DL. During the translation, the authorizer

should verify that each rule is indeed made by its issuer. A rule with a principal as its

issuer should be encoded in a credential that is signed by the rule’s issuer. A rule with

Local as its issuer should come from a local policy. Policies that are securely stored

locally do not need to be signed. Having a program P and a query Q, the authorizer

decides whether to authorize this request by inferring whether the queryQ is true rela-

tive to the program P . DL’s semantics gives a proof procedure to answer Q relative to

P . Consider the following example:

Example 3.2 (Determining credit status).

A merchant ShopA will approve a customer’s order if it can determine that the cus-

tomer has a good credit rating. ShopA trusts BankB and whoever BankB trusts in

determining credit ratings. ShopA also has a credential issued by BankB saying that

BankB believes that a principal has good credit if two out of three particular credit-card

companies certify that this principal has an account in good standing. These policies

and credentials are represented as follows:

ShopA says approveOrder(?X) if ShopA says creditRating(?X, good).

ShopA delegates creditRating(?X, ?R)ˆ2 to BankB.

38



BankB says creditRating(?X, good)

if threshold(2,[cardW,cardX,cardY]) says accountGood(?X).

Now a customer Carl sends an order to ShopA and provides the following two cre-

dentials: “cardX says accountGood(Carl)” and “cardY says accountGood(Carl).”

ShopA then generates a new program consisting of the above rules and queries it with

“ShopA says approveOrder(Carl)?” According to the DL semantics, the answer is

true, and so ShopA should authorize this request.

Suppose that another customer David also sends an order and provides the fol-

lowing two credentials: “cardY says accountGood(David)” and “cardZ says ac-

countGood(David).” ShopA will decline this request because only one principal in

“[cardW, cardX, cardY]” supports accountGood(David).

Note that the above process of generating the program and inferencing is done from

the authorizer ShopA’s point of view. In DL, there is always a single, distinguished

viewpoint: the viewpoint of the principal who is doing reasoning and making autho-

rization decisions, i.e., the current trust root, referred to as “Local.” Note that Local

is a special symbol that refers to the current trust root and, in particular, that it is not

another principal. For example, Local in example 3.2 is ShopA.

Now let us step through ShopA’s reasoning process in example 3.2 to derive

“BankB says creditRating(Carl, good).” First, ShopA believes “cardX says ac-

countGood(Carl)” and “cardY says accountGood(Carl),” because these two facts are

signed by their respective issuers. To ShopA, the rule issued by BankB means that: “If,

for some principal x, I (ShopA) believe that at least two principals in [cardW, cardX,

cardY] support accountGood(x), then I (ShopA) should also believe that ‘BankB says

creditRating(x, good)’.” From this rule and the two facts, ShopA concludes that
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“BankB says creditRating(Carl, good).”

The above reasoning process is from ShopA’s point of view; however, this view-

point is not that different from that of any other principal. Because credentials are

signed by their issuers, any principal that sees the above three credentials should be-

lieve that “BankB says creditRating(Carl, good).” When a principal X signs and

distributes a rule “X says p if Y says q,” X means: “To whoever sees this credential,

if you believe that ‘Y says q,’ then you can also believe that ‘X says p’.”

3.1.4 Discussion of speaks for statements

Now we discuss the differences between a speaks for statement “Y speaks for X

on ba” and a depth-∗ delegation statement “X delegates baˆ∗ to Y .”

First, the speaks for statement is strictly stronger than the delegation statement. If

“Y speaks for X on ba,” then Y has all the power that X has on ba even if

X is not allowed to re-delegate this power. In other words, conclusions drawn from a

speaks for statement don’t consume any delegation depth.

For example, given the following rules:

Alice delegates read(file1)ˆ1 to Bob.

keyBob speaks for Bob on read(?File).

keyBob says read(file1).

one can conclude that “Alice says read(file1).” But if one changes the second statement

to:

Bob delegates read(?File)ˆ∗ to keyBob.

then one can no longer conclude that “Alice says read(file1),” because Alice only

delegates to Bob with depth 1.

40



Another difference is that the issuer of a speaks for statement is always the prin-

cipal Local, i.e., the trust root. A principal B can issue a statement saying that B

delegates to C. But B cannot say that C speaks for B. Allowing a principal to say that

another principal speaks for it would circumvent depth restriction on delegations, and

so speaks for statements can only be made by the trust root. (Note that a rule whose

head is of the form “?X says ...” or “?X delegates ...” also has Local as its issuer.

Such a rule too should only be made by the trust root.)

One main reason for having speaks for statements is to handle delegations to princi-

pals that cannot make (i.e., sign) statements directly, e.g., distinguished names in X.509

or local names in SPKI/SDSI. Because these names cannot sign statements, it makes

sense to allow only Local to determine that a principal speaks for another principal,

although Local may rely on information from other principals to make this decision.

In example 3.2, there is a credential issued by BankB about creditRating(?X,

good). In many scenarios, BankB is a name and cannot issue statements; the credential

is most likely signed by a key of BankB. Let us call this key keyBankB. Assume that

ShopA also knows that keyBankB is BankB’s public key for business purposes, i.e.,

ShopA has the following statement:

ShopA says isBusinessKey(keyBankB, BankB).

Then, by adding the following statement, ShopA can derive the same conclusions as in

example 3.2.

?Key speaks for ?X on creditRating(?Y, ?Z)

if Local says isBusinessKey(?Key, ?X).

Using a speaks for statement, one can delegate a certain permission to the name of an

entity and separate this delegation from the binding of a key with this name.
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DL’s speaks for notion is similar to the speaks for notion in [1, 48]. However, there

are two differences. First, DL’s speaks for relation is defined on a per-base-atom basis.

Principal B may speak for principal A on one thing but not on another. In [1, 48],

if B speaks for A, then B speaks for A with respect to everything. Second, in DL,

a speaks for statement can only be made by the trust root, but in [1, 48], “B speaks

for A” is true if A says so. This is more like DL’s delegation relationship, in which A

delegates to B if A says so. However, the speaks for relation in [1, 48] is unrestrictedly

transitive, i.e., it has no ability to restrict re-delegation; it is thus different from the

delegation relation in DL.

The speaks for relation can model the relationship between a group and its members

or between the subject field and the name field in a SPKI/SDSI 4-tuple.

3.1.5 More Examples of D1LP

In this section, we show several examples that use D1LP to represent authorization

policies and credentials.

Example 3.3 (Using multiple certification systems).

Alice delegates isSiteKey(?K, ?S)ˆ3 to (XRCA,(YRCA;ZRCA)).

Alice delegates isSiteKey(?K,?S)ˆ∗

to threshold(1, ?X, Alice says trustedFriend(?X)).

Alice says trustedFriend(Bob).

Bob delegates isSiteKey(?K, ?S)ˆ1 to ZRCA

if Bob says belongsTo(?S, orga).

Bob delegates belongsTo(?S, orga)ˆ1 to orgaKey.

YRCA delegates isSiteKey(?K,?S)ˆ1 to YCA1.
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YCA1 says isSiteKey(LKey, LSite).

ZRCA says isSiteKey(MKey, MSite).

orgaKey says belongsTo(MSite, orga).

In this example, XRCA, YRCA, and ZRCA are root keys of three public-key certifica-

tion systems. They all have at most three levels of CA’s. The first rule says that, for

Alice to accept a binding between a public key and a site, the binding must be certified

by system X and at least one of system Y and system Z. The second rule says that Alice

(unconditionally) trusts anyone who is a “trusted friend” on binding public keys with

sites. The third rule says that Bob is a trusted friend of Alice. The fourth rule says that

Bob thinks certification by system Z is good enough if the site belongs to a specific

organization orga. The fifth rule says that Bob trusts the public key orgaKey to certify

that a site belongs to the organization. The rest of the rules are facts.

From the above rules and facts, DL can conclude that “Alice says isSiteKey(MKey,

MSite),” because this follows from Alice’s trust of Bob; however, DL cannot conclude

that “Alice says isSiteKey(LKey,LSite),” because isSiteKey(LKey,LSite) is only cer-

tified by system Y.

Example 3.4 (Accessing medical records).

This example concerns access to medical records. It is based on an example in [38].

HM is a hospital that controls the medical records of some patients; it only authorizes

those principals that are physicians of a given patient to access the medical record of

that patient. HM trusts any known hospital to certify that a principal is the physician

of a patient. HM knows some hospitals itself; furthermore, it believes that a principal

is a hospital if two known hospitals certify that it is. The following D1LP program

represents these policies and includes some facts.
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HM says readMedRec(?X, ?Y) if HM says isPhysician(?X,?Y).

HM delegates isPhysician(?X, ?Y)ˆ1 to ?Z

if HM says isHospital(?Z).

HM delegates isHospital(?H)ˆ1

to threshold(2,?Z, HM says isHospital(?Z)).

HM says isHospital(HC). HM says isHospital(HB).

HB says isHospital(HA). HB says isHospital(HD).

HC says isHospital(HA).

HA says isPhysician(Alice, Peter).

HD says isPhysician(David, Peter).

In this example, HM initially believes that HB and HC are hospitals. Because both

HB and HC certify that HA is also a hospital, HM believes that it is. Because HA says

that Alice is the physician of Peter, DL can conclude that “HM says readMedRec(Alice,

Peter)).”

Example 3.5 (Controlling delegation width).

Suppose that Alice wants to delegate to Bob the right to access something and to allow

Bob to further delegate this right as long as the principals to which Bob delegates are

members of some organization orga, where membership of orga must be certified by

Carl. In other words, Alice does not want to control the depth of Bob’s delegation,

but she wants to restrict the delegation to be within a certain domain — the members

of orga. In D1LP, Alice can represent this policy by the following two delegation

statements.

Alice delegates accessˆ∗ to (Bob,tmpKey).

tmpKey delegates accessˆ1 to threshold(1,?X,Carl says member(?X,orga)).
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Here, tmpKey is a new principal created by Alice. Alice first generates tmpKey, a

new pair public/private keys, then signs the second statement with the new private key

and use the new public key in the first statement. After signing the second statement,

Alice can throw the new secret key away, not worrying about keeping it in a safe place.

According to this policy, Alice will delegate to a principal if both Bob and tmpKey

delegate to it. Bob can delegate freely. But tmpKey only delegates to those principals

certified by Carl to be members of orga, and tmpKey does not allow re-delegation.

Therefore, this achieves the intended policy.

Suppose that we further have

Bob delegates accessˆ2 to David. Carl says member(David,orga).

Bob delegates accessˆ2 to John.

Then the delegation “Alice delegates accessˆ1 to David” is a conclusion, but “Alice

delegates accessˆ1 to John” is not.

3.2 Semantics

In this section, we define the semantics of D1LP. This semantics defines a minimal

model for every D1LP P and gives an answer to every query Q relative to P . This

semantics is defined via two transformations: Trans and RevTrans. Trans takes a

D1LP and outputs an OLP. RevTrans takes a set of OLP conclusions (ground facts)

and outputs a set of D1LP conclusions.

A D1LP P is first transformed (essentially, compiled) into a definite OLP O =

Trans(P) in an OLP languageLOP . According to the usual minimal-model semantics

of OLP, this OLP O has a minimal model MO that is a set of entailed ground conclu-

sions expressed in OLP. The minimal D1LP model of P , denoted by MP , is obtained
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by reverse-transforming MO back into D1LP syntax, i.e., MP = RevTrans(MO). MP

is a set of entailed ground conclusions expressed in D1LP. This inferencing procedure

that computes the entire model MP is called exhaustive (forward) inferencing. It is

useful when one wants to compute all the conclusions of a program.

As in OLP, one does not always want to perform exhaustive inferencing. To answer

a particular D1LP query Q with respect to a D1LP P , one can transform both Q and

P into OLP and then use OLP’s query-answering mechanism to answer the query.

The procedure that does this is described in detail in section 3.2.5. This kind of query-

answering avoids computing the entire minimal D1LP model; it is also called backward

inferencing.

In specifying Trans and calculating the size of its output O = Trans(P), we

use the following notation. N is the size of P . By “size,” we mean the number of

symbols, i.e., variables, constants, predicate symbols, keywords, logical operators, etc.

D is the largest integer delegation depth in P . Because it is difficult to imagine an

authorization decision that distinguishes between depth, say, 12 and 13, normally we

expect D to be a very small integer, e.g., less than five. We define [0..∗] = [0..D]∪{∗},

[∗..∗] = {∗}, and d < ∗ for any d ∈ [0..D]. We also define the following operation:

For any d1, d2 ∈ [0..∗],

d1⊕ d2 =







∗ if d1 = ∗, or d2 = ∗, or d1 + d2 > D

d1 + d2 otherwise

We specify Trans in the next three subsections, first showing how to transform a

D1LP that doesn’t contain threshold structures, then showing how to handle static and

dynamic threshold structures as well.
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3.2.1 Transformation from D1LP to OLP without threshold structures

The transformation Trans generates an OLP program that propagates direct statements

through delegations when the depth constraints are not exceeded. To do so, the gener-

ated program maintains the number of depth-consuming delegation steps that a conclu-

sion has gone through. Because D1LP allows delegation queries, the generated program

also has rules that chain delegations together to derive new delegations and rules to gen-

erate weak delegations from strong ones, so that, if a stronger delegation is proved to

be true, then the answer to a query that is a weaker delegation is also true.

Before doing the transformation, we replace each occurrence of Local in P with

the principal that is the current trust root.

There are two predicates in Trans(P)’s output language LOP : holds and

delegates. The predicate holds, used to represent direct statements that are made in

P or derived in the inference process, takes three parameters:

holds(issuer, ba, len)

The domain of issuer is Principals, a set that contains all principals in P plus some

dummy principals introduced during the body transformation, which we will define

soon. The domain of ba is the set of all ground base atoms inP Inst (ground instantiation

of P). The domain of len is [1..∗]. Note that base atoms in P are used as terms here; for

each predicate symbol in P , we add to LOP a new function symbol that has the same

name as that predicate symbol. The field len stores the number of delegation steps this

conclusion has gone through. A “∗” in the field len means that it has gone through

more steps than we need to keep track of, i.e., the number of steps is greater than the

maximum integer delegation depth D.

The predicate delegates, used to represent delegation statements and speaks for
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statements that are made in P or derived in the inference process, takes five parameters:

delegates(issuer, ba, dep, dele, len)

Here, dep stands for depth and dele stands for delegatee. The domains of issuer and

ba are the same as they are in holds; the domain of dep is [1..∗]; the domain of dele is

Principals, the same as that of the issuer field; the domain of len is [0..∗]. Note that,

unlike the len field in a holds atom, the len field in a delegates atom can be 0; this will

be the case for speaks for statements. Note that the domain of dele is a set of principals,

and so a delegates atom can only represent a delegation to a single principal. This is

essential in ensuring tractability. Why this suffices will become clear later.

Function PSFormula:

We now define a function PSFormula. It takes two parameters: a complex principal

term PS (either a principal variable or a principal structure) and an atom (of predicate

holds or delegates) without the issuer field. The function PSFormula is defined

recursively as follows:

PSFormula((PS1, PS2), At) = (PSFormula(PS1, At), PSFormula(PS2, At))

PSFormula((PS1; PS2), At) = (PSFormula(PS1, At); PSFormula(PS2, At))

PSFormula(X, holds(ba, l)) = holds(X, ba, l)

PSFormula(X, delegates(ba, dep, dele, l)) = delegates(X, ba, dep, dele, l)

where X is either a principal variable or a single principal.

The function PSFormula transforms a statement that has a complex principal struc-

ture as its issuer to an equivalent statement formula, in which each statement has a

principal or a principal variable as issuer. As we will soon see, PSFormula deals

with delegatees that are complex principal structures and enables body statements to be
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more general than head statements.

For now, PSFormula simply returns a formula. When we deal with threshold

structures in sections 3.2.2 and 3.2.3, we will extend the definition of PSFormula; it

will have side effects as well as returning a formula — it will generate some additional

rules and introduce some new constants.

Finally, we can start defining Trans. It is divided into two phases: body transfor-

mation and head transformation.

Phase I: Body transformation

This phase of the transformation changes rule-bodies in P; the result is called P1. It

may also construct some new rules; the set of new rules is called Padd
1 .

This phase of transformation does the following to the body of each rule in P .

1. Holds body translation:

Replace each body-direct statement AS says ba

with PSFormula(AS, holds(ba, ∗)).

This step adds the length ∗ to body statements and uses PSFormula to deal with

complex issuers. Intuitively, a direct statement “AS says ba” in the body of a

rule is true if we can prove that AS supports the base atom ba either directly or

through delegation. The length ∗means that we do not require that the conclusion

be drawn within a certain number of delegation steps.

2. Speaks for body translation:

Replace each speaks for statement B speaks for A on ba

with delegates(A, ba, ∗, B, 0).

This means that speaks for statements are special delegations that always have
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depth ∗ and length 0.

3. Simple delegates body translation:

Replace each body-delegation statement AS delegates baˆd to B

with PSFormula(AS, delegates(ba, d, B, ∗)),

where B is a principal or a principal variable.

This step is similar to step 1, but it is for delegation statements.

4. Conjunction delegates body translation:

Replace each body-delegation statement

AS delegates baˆd to (B1, . . . , Bn)

with PSFormula(AS, delegates(ba, d, Bnew, ∗)),

where B1, . . . , Bn are principals, and Bnew is a newly created principal.

In addition, for each Bi, i = 1..n, add the following fact to Padd
1 :

delegates(Bi, ba, ∗, Bnew, 0).

This step enables tractable inference of delegations that have conjuncts of prin-

cipals as delegatees. Remember that the dele field of the predicate delegates

is required to be a principal, rather than a conjunction of principals. There-

fore, we introduce a dummy principal Bnew to represent the principal structure

(B1, . . . , Bn). That Bnew is equivalent to (B1, . . . , Bn) is fully characterized by

the relationships that Bnew speaks for every principal in (B1, . . . , Bn). The new

facts “delegates(Bi, ba, ∗, Bnew, 0)” are introduced for this purpose. These facts

are added to Padd
1 instead of P1, because they do not need further processing;

including them in the final output is sufficient.

Let Principals be the set of all principals in P1 ∪ P
add
1 .
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Phase II: Head transformation

The input to this phase is P1. This phase of the transformation changes rule heads in

P1; the result is called P2. It also constructs some new rules; the set of the new rules is

called Padd
2 .

For each rule R in P1, one of the following two cases applies:

Case one: When R’s head is a direct statement “A says ba,” do the following two

steps.

5. Holds head translation:

Replace R’s head with “holds(A, ba, 1).”

6. Holds length-weakening meta-rule:

For each len ∈ [1..D], add the following rule:

holds(A, ba, len⊕ 1) if holds(A, ba, len).

This meta-rule states that, if something can be derived with smaller length, then

it can also be inferred when larger length is allowed.

Case two: When R’s head is not a direct statement, i.e., it is either a delegation state-

ment or a speaks for statement, do the following steps.

Sub-case a: If R’s head is a delegation statement:

A delegates baˆd to BS,

i.e., a depth-d delegation from A to BS, then let ll be 1, and let B be BS if BS is a

single principal or a principal variable; otherwise, let B be a newly created principal

(dummy principal to represent BS).

Sub-case b: If R’s head is a speaks for statement:

B speaks for A on ba,
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then let d be ∗, ll be 0, and BS be B.

For both sub-cases, do the following steps.

7. Delegates head translation:

Replace R’s head with delegates(A, ba, d, B, ll).

This transformation step makes sure that A delegates to B whenever A delegates

to BS is true from the rule R. B is defined above. We use B in place of BS,

because the delegatee field of the predicate delegates can only be a principal or a

principal variable.

8. Holds propagation meta-rule:

For each len ∈ [1..d], add the following rule:

holds(A, ba, len⊕ ll)

if delegates(A, ba, d, B, ll), PSFormula(BS, holds(ba, len)).

This meta-rule propagates direct statements through a delegation as follows: If

the delegation in R’s head is true (by the previous step, it is true when the body of

R is true), and the delegatee BS supports something within len (≤ d) delegation

steps , then the issuer A supports the same thing within len⊕ ll steps, where ll is

1 if R’s head is a delegation and 0 if R’s head is a speaks for statement.

9. Holds length-weakening meta-rule:

For each len ∈ [d⊕ 1..D], add the following rule:

holds(A, ba, len⊕ 1) if holds(A, ba, len).

This meta-rule is the same as step 6. It appears again, because it is also needed

for case two.
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10. Self delegation meta-rule:

For each C ∈ Principals, for each dep ∈ [1..∗], and for each len ∈ [0..∗], add

the following fact:

delegates(C, ba, dep, C, len).

This meta-rule states that each principal delegates unconditionally to itself.

11. Delegates length-weakening meta-rule:

For each C ∈ Principals, for each dep ∈ [1..d], and for each len ∈ [0..D], add

the following rule:

delegates(A, ba, dep, C, len⊕ 1) if delegates(A, ba, dep, C, len).

This meta-rule states that any delegation that is derived within a certain length

can also be derived within a larger length.

12. Delegates depth-weakening meta-rule:

For each C ∈ Principals, for each len ∈ [0..∗], and for each dep ∈ [1..D], add

the following rule:

delegates(A, ba, dep, C, len) if delegates(A, ba, dep⊕ 1, C, len).

This meta-rule states that a smaller-depth delegation can be derived if a corre-

sponding larger-depth delegation is derived.

13. Delegation chaining meta-rule:

For each C ∈ Principals, for each dep ∈ [1..d], and for each len ∈ [0..d	 dep],

add the following rule:

delegates(A, ba, min(d	 len, dep), C, ll⊕ len)

if delegates(A, ba, d, B, ll),

PSFormula(BS, delegates(ba, dep, C, len)).

where, for any d1, d2 ∈ [0..D]: “∗	 ∗ = ∗,” “∗	 d1 = ∗,” “d1	 d2 = d1− d2,”
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and “d1	 ∗ < 0.”

This is the most complex and the most expensive (in terms of the size of the

new rules added) meta-rule. Intuitively, it means that, if A delegates to BS with

depth d (see step 7 for the relation between B and BS), and one can also derive

within len ≤ d steps that BS delegates to C with depth dep, then A delegates to

C as well. The depth of this newly derived delegation is bounded by the depth

dep, because A should not trust C more than BS trusts C. It is also bounded by

the depth d minus the number of delegation steps that have already been used to

derive the delegation from BS to C.

Steps 10–12 infer weak delegations from strong ones and step 13 chains delegations

together.

The above meta-rules may seem unnecessarily complicated, especially in the way

they deal with length and delegation depth. This complication arises because we are

avoiding introducing new variables in the transformation; this is essential in proving

tractability results.

The result of the transformation is: O = Trans(P) = P2 ∪ P
add
1 ∪ Padd

2 .

It is straightforward to show by a counting argument that the size ofO is O(N 3D2),

where N is the size of P , and D is the maximal integer depth used in P . Each rule in P

can produce O(ND2) new rules in O, and each new rule may have a size that is O(N)

times the size of the original rule. A more detailed counting argument is as follows.

Our counting argument focuses on the ratio |O|/|P|, which we call the growth

factor.

Note that |PSFormula(BS, At)|/|At| = O(|BS|). Clearly, |BS| < N . There-

fore, the growth factor of PSFormula is O(N).
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In the body-transformation phase, a body statement is replaced by the result of a

corresponding PSFormula call. Therefore, |P1|/|P| = O(N). If a body statement

has a conjunctive delegatee, the program Padd
1 has one additional fact for each principal

in the delegatee. Because there are at most N principals in any delegatee, and each

additional fact has size linear in the size of the original body statement, |P add
1 |/|P| =

O(N). Note that this phase doesn’t change rule-heads.

In the head-transformation phase, if a rule has a direct statement as its head, up to

D new rules are added, each of which has size linear in the size of the original head.

Therefore, |Padd
2 |/|P| = O(D). The size of P2 remains unchanged from P1, and so

|P2|/|P| = O(N).

In the head-transformation phase, if a rule R has a delegation statement or a

speaks for statement as its head, several transformation steps apply; each adds a set

of rules to Padd
2 , but the size of P2 remain unchanged from P1. Step 13 (the delega-

tion chaining meta-rule) generates the largest set of rules. It adds O(|Principals|D2)

transformed rules for the rule R. Recall that Principals is the set of all principals

in P1 ∪ P
add
1 . Because at most one new principal is introduced per statement in P ,

|Principals| = O(N). Each transformed rule may use PSFormula to change parts

of it. Therefore, the growth factor for step 13 is O(N 2D2).

BecauseO = P2∪P
add
1 ∪Padd

2 , |O|/|P| = O(N 2D2). Of this N2D2 growth factor,

one N comes from the size of Principals, which is likely to be the order of |P|. The

other N comes from the bound on the size of one principal structure; this usually will

be much smaller than |P|.
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3.2.2 Transformation with static threshold structures

To handle static unweighted threshold structures, we add a new function symbol “suth”

to LOP ; it stands for static unweighted threshold structures. We also extend the do-

main of the issuer field for predicates holds and delegates to include terms of the

form “suth(i, [A1, . . . , An]),” where i is an integer representing the threshold value

that needs to be satisfied and Ai’s are principals. Then we extend the definition of

PSFormula to include the following:

PSFormula(threshold(k, [A1, . . . , An]), holds(ba, l))

= holds(suth(k, [A1, . . . , An]), ba, l)

PSFormula(threshold(k, [A1, . . . , An]), delegates(ba, dep, dele, l))

= delegates(suth(k, [A1, . . . , An]), ba, dep, dele, l)

The function PSFormula, for calls of the above forms, results in side effects besides

returning a formula; it generates the following new rules. These rules reason about

atoms that have issuers of the form “suth(i, [A1, . . . , An]).”

Case one: PSFormula is called with a holds atom.

“PSFormula(threshold(k, [A1, . . . , An]), holds(ba, l))” does the following.

• For i = k to 1, for j = 1 to n, add the rule:

holds(suth(i, [Aj, Aj+1, . . . , An]), ba, l)

if holds(Aj, ba, l), holds(suth(i− 1, [Aj+1, . . . , An]), ba, l).

Here, we define [An+1, . . . , An] to be the empty list [].

This meta-rule means that, if Aj supports ba and there are no fewer than i− 1

principals in [Aj+1, . . . , An] that support ba, then there are no fewer than i prin-

cipals out of [Aj, Aj+1, . . . , An] that support ba .
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• For i = k to 1, for j = 1 to n, add the rule:

holds(suth(i, [Aj, Aj+1, . . . , An]), ba, l)

if holds(suth(i, [Aj+1, . . . , An]), ba, l).

This meta-rule means that, if there are no fewer than i principals in [Aj+1, . . . , An]

that support ba, then there are no fewer than i principals in [Aj, Aj+1, . . . , An] that

support ba.

• For j = 1 to n + 1, add the fact:

holds(suth(0, [Aj, . . . , An]), ba, l).

This meta-rule means that it is always true that there are no fewer than 0 principal

in [Aj, . . . , An] that supports ba.

Case two: PSFormula is called with a delegates atom.

“PSFormula(threshold(k, [A1, . . . , An]), delegates(ba, dep, dele, l))” does the fol-

lowing.

• For i = k to 1, for j = 1 to n, add the rule:

delegates(suth(i, [Aj, Aj+1, . . . , An]), ba, dep, dele, l)

if delegates(Aj, ba, l),

delegates(suth(i− 1, [Aj+1, . . . , An]), ba, dep, dele, l).

• For i = k to 1, for j = 1 to n, add the rule:

delegates(suth(i, [Aj, Aj+1, . . . , An]), ba, dep, dele, l)

if delegates(suth(i, [Aj+1, . . . , An]), ba, dep, dele, l).

• For j = 1 to n + 1, add the fact:

delegates(suth(0, [Aj, . . . , An]), ba, dep, dele, l).

Each time PSFormula encounters a static unweighted threshold structure,
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O(min(k, n)n) new rules are generated, where k is the threshold value, and n is the size

of the threshold pool. Each new rule has size linear in the size of PSFormula’s input.

The worst-case bound for O(min(k, n)n) is O(N 2). Thus, handling static unweighted

threshold structures increases the growth factor of PSFormula from O(N) to O(N 2).

This increases the worst-case size of O from O(N 3D2) to O(N4D2).

Static weighted threshold structures are handled similarly; a new function symbol

“swth” is introduced. We extend the domain of the issuer field for predicates holds

and delegates to include terms of the form “swth(i, [(A1, w1), . . . , (An, wn)]).” Then

we extend the definition of PSFormula to include the following:

PSFormula(threshold(k, [(A1, w1), . . . , (An, wn)]), holds(ba, l))

= holds(swth(k, [(A1, w1), . . . , (An, wn)]), ba, l)

PSFormula(threshold(k, [(A1, w1), . . . , (An, wn)]), delegates(ba, dep, dele, l))

= delegates(swth(k, [(A1, w1), . . . , (An, wn)]), ba, dep, dele, l)

Case one: “PSFormula(threshold(k, [(A1, w1), . . . , (An, wn)]), holds(ba, l))” does

the following.

• For i = k to 1, for j = 1 to n, add the rule:

holds(swth(i, [(Aj, wj), (Aj+1, wj+1), . . . , (An, wn)]), ba, l)

if holds(Aj, ba, l),

holds(swth(max(i− wj, 0), [(Aj+1, wj+1), . . . , (An, wn)]), ba, l).

• For i = k to 1, for j = 1 to n, add the rule:

holds(swth(i, [(Aj, wj), (Aj+1, wj+1) . . . , (An, wn)]), ba, l)

if holds(swth(i, [(Aj+1, wj+1), . . . , (An, wn)]), ba, l).
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• For j = 1 to n + 1, add the fact:

holds(swth(0, [(Aj, wj), . . . , (An, wn)]), ba, l).

Case two: “PSFormula(threshold(k, [(A1, w1), . . . , (An, wn)]),

delegates(ba, dep, dele, l))” does the following:

• For i = k to 1, for j = 1 to n, add the rule:

delegates(swth(i, [(Aj, wj), (Aj+1, wj+1), . . . , (An, wn)]), ba, dep, dele, l)

if delegates(Aj, ba, dep, dele, l),

delegates(swth(max(i− wj, 0), [(Aj+1, wj+1), . . . , (An, wn)]),

ba, dep, dele, l).

• For i = k to 1, for j = 1 to n, add the rule:

delegates(swth(i, [(Aj, wj), (Aj+1, wj+1) . . . , (An, wn)]), ba, dep, dele, l)

if delegates(swth(i, [(Aj+1, wj+1), . . . , (An, wn)]), ba, dep, dele, l).

• For j = 1 to n + 1, add the fact:

delegates(swth(0, [(Aj, wj), . . . , (An, wn)]), ba, dep, dele, l).

Handling static weighted threshold structures doesn’t change the growth factor of

PSFormula, it is still O(N 2).

3.2.3 Transformation with dynamic threshold structures

To handle dynamic threshold structures, we need a listing of all principals in P . Let

M be the number of different principals in P and [C1, C2, . . . , CM ] be a list of all

principals in P .

We introduce a new function symbol “duth,” which stands for dynamic unweighted

threshold structure, and extend the domains of the issuer field for the two predicates
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holds and delegates to include terms of the form “duth(i, j, t),” where i and j are

integers, and t is a newly generated constant. The integer i is the threshold value

that needs to be satisfied, and the integer j is an index into the list of principals

“[C1, C2, . . . , CM ].” The newly generated constant t is used to uniquely identify the

overall dynamic threshold pool defined by “?X, Prin says pred(. . .?X . . . ).”

We also extend the definitions of PSFormula to include the following:

PSFormula(threshold(k, ?X, Prin says pred(. . .?X . . . )), holds(ba, l))

= holds(duth(k, 1, t), ba, l)

PSFormula(threshold(k, ?X, Prin says pred(. . .?X . . . )),

delegates(ba, dep, dele, l))

= delegates(duth(k, 1, t), ba, dep, dele, l)

Each time PSFormula is called with a dynamic unweighted threshold structure argu-

ment, it generates a new constant t and a set of new rules, in addition to returning an

atom as defined above.

Case one: “PSFormula(threshold(k, ?X, Prin says pred(. . .?X . . . )), holds(ba, l))”

does the following.

• For i = k to 1, for j = 1 to M , add the rule:

holds(duth(i, j, t), ba, l)

if holds(Prin, pred(. . . Cj . . . ), ∗),

holds(Cj, ba, l),

holds(duth(i− 1, j + 1, t), ∗)), ba, l).

• For i = k to 1, for j = 1 to M , add the rule:

holds(duth(i, j, t), ba, l) if holds(duth(i, j + 1, t), ba, l).
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• For j = 1 to M + 1, add the rule:

holds(duth(0, j, t), ba, l).

Case two: “PSFormula(threshold(k, ?X, Prin says pred(. . .?X . . . )),

delegates(ba, dep, dele, l))” also does the following.

• For i = k to 1, for j = 1 to M , add the rule:

delegates(duth(i, j, t), ba, dep, dele, l)

if holds(Prin, pred(. . . Cj . . . ), ∗),

delegates(Cj, ba, dep, dele, l),

delegates(duth(i− 1, j + 1, t), ba, dep, dele, l).

• For i = k to 1, for j = 1 to M , add the rule:

delegates(duth(i, j, t), ba, dep, dele, l)

if delegates(duth(i, j + 1, t), ba, dep, dele, l).

• For j = 1 to M + 1, add the rule:

delegates(duth(0, j, t), ba, dep, dele, l).

For each dynamic threshold structure, O(min(k, M)M) rules are added, where k

is the threshold value. Recall that M is the number of different principals in P , and

so M = O(N). Thus, the worst-case growth factor of PSFormula with dynamic

threshold structures is still O(N 2), the same as it is with static threshold structures.

However, dynamic threshold structures are more expensive in practice, because M is

typically much larger than n. (Recall that n, used in section 3.2.2, is the size of one

static threshold pool.)
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3.2.4 Reverse transformation of conclusions

In the previous three subsections, we defined the transformation from a D1LP P to an

OLP O. We now define a simple reverse transformation that maps an OLP model of O

to a D1LP model of P . This reverse transformation is useful if one wants all the D1LP

conclusions entailed by P .

• For each atom of the form: holds(A, ba, len),

where A is a principal, include the D1LP-conclusion:

A says ba.

• For each atom of the form: delegates(A, ba, ∗, D, 0),

where A and D are principals, include the D1LP-conclusion:

D speaks for A on ba.

• For each atom of the form:

delegates(A, ba, dep, D, len),

where A and D are principals and len > 0, include the D1LP-conclusion:

A delegates baˆdep to D.

(Note that, because of the way the semantic transformation is defined, there are

no atoms with both len = 0 and dep < ∗.)

Note that length can be ignored after the OLP conclusions are drawn. The mini-

mal D1LP model of P , denoted by MP , is obtained by applying the above reverse-

transformation to MO, the minimal OLP model of O.
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3.2.5 Query answering

An answer to a D1LP query Q is a set of variable bindings that makes Q true relative

to P . WhenQ is ground, the answer is just whetherQ is true or not. Although the truth

value of Q relative to P is determined by P’s minimal D1LP model MP , one cannot

simply check whether Q is in MP to answer it, because the syntactic expressiveness

of a D1LP query is considerably greater than that of a D1LP conclusion. A query may

have a complex principal structure as issuer, and it may have a conjunction of principals

as delegatee.

Next, we give an algorithm to answer the query Q relative to P , without doing

exhaustive inferencing:

1. Transform Q into an OLP query, using the same procedure as the one used to

transform rule-bodies, i.e., the body transformation (see section 3.2.1). This trans-

formation changesQ into an OLP queryQ′ and generates a new set of OLP rules

Qadd (possibly empty).

2. Form an OLP O′ = O ∪Qadd.

3. Answer the OLP query Q′ with respect to O′, using some backward OLP infer-

ence engine, e.g., Prolog. The resulting bindings directly yield the answer to the

query Q relative to P .

3.3 Tractability Results

In this section, we give upper bounds on the worst-case computational complexity of

Trans, the transformation from D1LP to OLP, and of overall D1LP inferencing using
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Trans. We show that Trans is tractable and that, under commonly-met restrictions,

overall D1LP inferencing is also tractable.

3.3.1 Tractability of the transformation from D1LP to OLP

From the counting arguments in sections 3.2.1, 3.2.2, and 3.2.3, it follows straight-

forwardly that the growth factor of the transformation Trans is O(N 3D2), where

N = |P|, and D is the maximal delegation depth in P . Therefore, we have the fol-

lowing result.

Theorem 3.1 (Tractable Transform Size).

Given a D1LP P , the size of O = Trans(P) is O(N 4D2), where N = |P|, and D is

the maximal delegation depth in P .

We observe that the definition of Trans corresponds straightforwardly to an algo-

rithm to perform this transformation. We observe further that this algorithm takes time

linear in the size of the output OLP. Following these observations and theorem 3.1, we

have the following theorem.

Theorem 3.2 (Tractable Transform Time).

Computing O takes time O(N 4D2). The transformation from D1LP to OLP is thus

computationally tractable.

As discussed before (page 46), we expect that D will typically be a small constant,

e.g., less than five.

Next, we discuss how the complexity picture will often in practice be significantly

better than the worst-case bound of O(N 4D2). Overall, we observe that each rule grows

independently and that most rules are simple ones that have small growth factors. A
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rule with a direct statement as its head is simpler than a rule with a delegation statement

or a speaks for statement as its head. A rule that doesn’t have any threshold structure

is simpler than a rule that does.

Consider a rule R that does not contain any threshold structures (neither in the head

nor in the body): Let SR be the size of the largest principal structure in R; certainly

SR < |R| < N . We expect that SR will usually be a small constant. If R’s head

is a direct statement, R’s growth factor is max(SR, D), which is a small constant as-

suming that SR and D are small constants. Thus the simplest rules typically have a

constant growth factor. If R’s head is a delegation statement or a speaks for statement,

R’s growth factor is “|Principals|SRD2,” where Principals is the set of different

principals in P ∪ Padd
1 . Clearly |Principals| = O(N). Assuming that SR and D

are constants, this “|Principals|SRD2” factor becomes O(N) with a relatively large

constant factor (e.g., 20–100).

Transformation of rules that contain threshold structures is more expensive. How-

ever, having threshold structures in one rule doesn’t affect the growth factor of other

rules. We expect that, in practice, most D1LP programs consist mostly of simple rules

that do not have threshold structures.

Now we break down the O(N 3D2) growth factor as follows.

• Having complex principals structures contributes O(N 2), which is the max of the

following two cases.

– Having conjunctions and disjunctions contributes O(S), where S is the size

of the largest principal structure in P . Clearly S = O(N). Typically, S is a

small constant.

– Having threshold structures contributes O(N 2), which is the max of the fol-

65



lowing two cases.

∗ Having static threshold structures contributes O(min(k, n)n).

∗ Having dynamic threshold structures contributes O(min(k, M)M).

Note that k is typically a small constant, in which case the overall growth

factor when complex principal structures are involved is O(N).

• Having integer delegation depth contributes O(D2), because Trans loops over

all lengths and depths to derive delegation conclusions. This factor is reduced to

O(D) if we do not answer delegation queries, because then Trans only needs to

loop over all lengths.

• Answering delegation queries contributes O(N), as Trans needs to loop over all

principals in the set Principals.

3.3.2 Tractability of D1LP inferencing

Next, we review some previously known results about OLP inferencing [53]. We say

that an LP (either OLP or D1LP) obeys the VB restriction when it has an upper bound v

on the number of (logical) variables. To indicate that the per-rule bound on the number

of variables is v, we also say that the LP is VB(v). We say that an LP is VBD(v) if

it is VB(v) and is either Datalog or ground. Given a definite OLP O that is VBD(v),

its inferencing (computing its minimal model or answering a query relative to it) takes

time O(|O|1+v). This is because inferencing of a definite OLP takes time linear in the

size of its ground instantiation and O’s ground instantiation has size O(|O|1+v). For

each variable, there are O(|O|) ground terms that can be used to instantiate it, and so,

for each rule, there are at most O(|O|v) ways to instantiate it. Thus, instantiating O

increases its size by a factor of O(|O|v).
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We cannot directly use the above result for D1LP inferencing because the gener-

ated OLP Trans(P) is not Datalog, even though P is. Trans(P) introduces logical

function symbols that have non-zero arities. For each predicate pred in P , Trans(P)

has one corresponding function symbol. Trans(P) also introduces several pre-defined

function symbols for threshold structures, e.g., suth, duth, etc.

This problem can be addressed by generating a typed OLP as output. The intuitive

idea of a typed logic program is that there are several sorts of variables, each ranging

over a different domain. Therefore, one can use typing to limit the terms that are used

to instantiate a variable, thus limiting the instantiated size of a program.

There are different typing systems for logic programs. For our purposes, the sim-

plest form of typing — many-sorted typing — suffices. (For more advanced typing

systems in logic programs, see [63].) In a many-sorted LP language, there is a finite set

of types. Variables and constants have types such as τ . Predicate symbols have types of

the form τ1× . . .× τn, and function symbols have types of the form τ1× . . .× τn → τ .

Variables of one type can only be instantiated to terms of the same type. The type of a

given predicate specifies the type of each of its arguments; the type of a given function

symbol also specifies the type of its “return value,” i.e., the type of any term of the form

func(...). There are simple techniques to translate programs from a many-sorted lan-

guage to an untyped language (see pages 18–20 of [53]). Many-sorted logic programs

can be executed with the same efficiency as untyped logic programs [62].

We can use many-sorted typing to ensure that, for each variable in Trans(P), there

are O(|P|) ground terms that can instantiate it. Because variables in Trans(P) come

from P , these variables must be instantiated only to ground terms in P and not to

terms constructed using the function symbols introduced during the transformation.
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The simplest typing that achieves this goal has two types in LOP . All the variables and

constants coming from P have one type. All the terms introduced during the transfor-

mation have the other type. Because all the variables in Trans(P) actually come from

P , all the variables in LOP have the first type.

It has been argued that logic programs often make implicit assumptions about types

and that a logic program only satisfies its intended meaning if type information is added

to it [58]. We think that typing is potentially useful in LP-based authorization lan-

guages. In authorization, there are different types of entities, e.g., subjects, objects,

groups, roles, etc. Most predicates should only take arguments of certain types. One

can add typing to DL. Actually, typing is implicitly present in DL. DL has principals

and principal variables; thus, there is an implicit “principal” type. Typing can also be

used to relax the Datalog restriction. As long as variables are only allowed to be instan-

tiated to a limited number of ground terms, the program does not need to be Datalog.

Although we think that adding types to DL is very useful, we do not pursue this topic

further in this dissertation, because it is not our main topic.

By generating a many-sorted OLPO, we can ensure that only ground terms from P

are used to instantiate variables in O. Then we have the following theorem.

Theorem 3.3 (Tractable D1LP Inferencing).

Given a D1LP P that is VB(v), computing the minimal D1LP model of P has time

complexity O(N v+4D2), where N = |P|, and D is the maximal delegation depth in P .

Proof. If P is VB(v), then O = Trans(P) is also VB(v), because Trans doesn’t

introduce any new variables. All variables in O are from P , and there are at most N

ground terms to instantiate each variable, because all the function symbols in P are

constants. Therefore, the instantiated size of O is O(|O|N v) = O(N v+4D2). Then,
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computing the minimal OLP model of O takes time O(N v+4D2), and the size of this

model is O(N v+4D2). The reverse transformation takes time linear in the size of this

model. So computing the minimal D1LP model of P has time complexity O(N v+4D2).

3.4 Discussion of the conjunctive-delegatee-queries restriction

In the beginning of this chapter, we defined standard D1LP to obey the conjunctive-

delegatee-queries restriction and said that the purpose of this restriction is to ensure

tractable D1LP inferencing. In this section, we discuss in detail the tractability motiva-

tion behind the conjunctive-delegatee-queries restriction.

3.4.1 Understanding D1LP’s inferencing of delegation

D1LP allows queries to contain delegations to a single principal or to a conjunction of

principals. To answer these queries correctly, D1LP’s semantics infers weaker dele-

gations from stronger ones. Delegations can be compared on several bases: the base

atoms that they are about, their delegation depths, and their delegatees. As we have dis-

cussed earlier, all other things being equal, a higher-depth delegation is stronger than a

lower-depth one. This stronger-than relation is transitive and reflexive; therefore, it is

a partial order. Not all pairs of delegations are comparable; for example, “A delegates

pˆ1 to B” and “A delegates qˆ2 to B” are not, because they are about two different

base atoms.

We now consider the stronger-than relation between two delegations that differ only

in their delegatees. For simplicity of presentation, we omit the implicit base atom and

the depth in the following discussion. We compare the relative strength of delegations
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on the basis of the intuitive interpretation of delegation: “A delegates to B” means that

“if B says something, then A agrees.” Following this interpretation, “A delegates to

(B;C)” is logically equivalent to the conjunction of “A delegates to B” and “A dele-

gates to C.” By contrast, “A delegates to (B,C)” is weaker than either “A delegates

to B” or “A delegates to C,” because either of the last two delegations implies the first,

but not vice versa.

One can view principals as propositions and principal structures as negation-free

formulas in propositional logic. A principal or a principal structure is true if it “says”

something (the implicit base atom we are talking about) and is false if it doesn’t. Given

two principal structures PS1 and PS2, “A delegates to PS1” is stronger than “A

delegates to PS2” if and only if PS2 ⇒ PS1 is a tautology. The reason is as follows.

Given that “A delegates to PS1,” if PS1 says something, then A agrees. If further

given PS2 ⇒ PS1, then whenever PS2 says something (thus PS2 is true), PS1 is also

true, and so A also agrees. Therefore, “A delegates to PS2” should also be true.

A conjunction of principals can be equivalently represented by the set of all prin-

cipals in it, and so we often call a conjunction of principals a principal set and use

set operators directly on it. For any two different principal sets PE1 and PE2, “A

delegates to PE1” is different from “A delegates to PE2”; furthermore, they are

incomparable when neither PE1 ⊆ PE2 nor PE2 ⊆ PE1.

Therefore, “A delegates to ((B11; . . . ; B1n), (B21; . . . ; B2n), . . . , (Bm1; . . . ; Bmn))”

would imply “A delegates to (B1i1 , B2i2 , . . . , Bmim),” where 1 ≤ ij ≤ n for

j ∈ [1..m]. There are nm such delegation conclusions; this number is worst-case expo-

nential in the size of the original delegation.

To be tractable, D1LP’s semantics only generates delegations to a single principal
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as conclusions. Therefore, it can only directly answer those delegation queries that

have a single principal as delegatee. However, it is often useful to have delegations to a

conjunction of principals as queries. For example, when a request is signed by multiple

principals, one may need to determine whether there is a delegation from Local to

the conjunction of all the signers. Therefore, standard D1LP permits delegations to a

conjunction of principals as queries. Such a query is handled by first introducing a new

“dummy” principal to represent the conjunction and then transforming the query into a

delegation to the new dummy principal. (See page 50 for details.) D1LP’s semantics

doesn’t automatically generate conclusions that are delegations to conjunctions of prin-

cipals; it only generates such a delegation when someone asks about it by including it

in a query or a rule-body. This is a form of lazy evaluation.

Example 3.6 (Answering delegation queries).

r1: A delegates pˆ2 to (B1, B2).

r2: B1 delegates pˆ1 to (C1,C2).

r3: B2 delegates pˆ1 to (C3, C4).

r4: A says qq if A delegates pˆ1 to (C1, C2, C3, C4, C5).

Given these rules, one should conclude that “A says qq.” We now give a high-level

description of how this is done in D1LP inferencing. Trans, the transformation from

D1LP to OLP, would generate a new principal T1, replace the last rule with “A says qq

if A delegates pˆ1 to T1,” and add facts “T1 speaks for C1 on p,” “T1 speaks for

C2 on p,” ..., and “T1 speaks for C5 on p.” (Note that Trans generates rules in OLP

syntax, but here we use D1LP syntax for ease of discussion.)

From rule r2 and the two facts “T1 speaks for C1 on p” and “T1 speaks for C2

on p,” one concludes that “B1 delegates pˆ1 to T1 on p.” Similarly, from rule r3 and
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the two facts “T1 speaks for C3 on p” and “T1 speaks for C4 on p,” one concludes

that “B2 delegates pˆ1 to T1.” Then, from these two new conclusions and rule r1, one

concludes that “A delegates pˆ1 to T1.” (Note that all depth constraints are satisfied.)

3.4.2 Handling delegation queries with disjunctive delegatees

Having explained how standard D1LP deals with conjunctive delegation queries, we

now generalize D1LP to allow delegation queries that contain disjunctions or static

threshold structures. We give an approach that is based on transforming principal

structures into “normal forms” and then replace a disjunctive delegation query with

an equivalent query that is a conjunction of delegation statements. This approach has

exponential computational complexity.

We now define the normal form of a principal structure. A principal structure PS

is in normal form when it is of the form: (PE1; PE2; ...; PEr), where each PEi is a

principal set and, for any i 6= j, PEi 6⊆ PEj. If one views PS as a propositional

formula; then PS’s normal form PE1; PE2; ...; PEr is the result of converting the

propositional-logic formula into its reduced disjunctive normal form (DNF). “Reduced”

means that there is no subsumption, neither within a disjunct PEi (i.e., no repetitions

of principals) nor between any two disjuncts (i.e., no disjunct is a subset of another

disjunct).

The normal form of “threshold(k, [(A1, w1), (A2, w2), . . . , (An, wn)])” is the dis-

junction of all minimal subsets of {A1, . . . , An} whose corresponding weights sum to

be greater than or equal to k. For example, the normal form of “threshold(3, [(A,2),

(B,1), (C,1), (D,1)]” is “((A,B); (A,C); (A,D); (B,C,D)). ” After two principal struc-

tures have been transformed, their conjunction and disjunction can be transformed to
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normal forms using methods from propositional logic.

Knowing a principal structure PS’s normal form: (PE1; . . . ; PEr), a delegation

“PS0 delegates to PS” in a query or a rule-body is transformed into “(PS0 delegates

to PE1, PS0 delegates to PE2, . . . , PS0 delegates to PEr).” Now consider an

example that has a delegation to a threshold structure in a rule-body.

Example 3.7 (Query of delegation to static threshold structures).

A delegates pˆ1 to (B,(C;D)).

A delegates pˆ1 to (C,D).

A says do something if A delegates pˆ1 to threshold(2,[B,C,D]).

The last rule would be translated into the following rule:

A says do something

if A delegates to (B,C), A delegates to (B,D), A delegates to (C,D).

D1LP’s semantics will answer true to each of “A delegates to (B,C),” “A delegates

to (B,D),” and “A delegates to (C,D),” using the dummy-principal approach we de-

scribed earlier. Therefore, “A says do something” is true (concluded).

When a principal structure is converted to its normal form, its size may grow ex-

ponentially. The normal form of the threshold structure “threshold(k, [A1, . . . , An])”

has size Θ(
(

n

k

)

), which is exponential in k. The principal structure “((A11; . . . ; A1n),

(A21; . . . ; A2n), . . . , (Am1; . . . ; Amn))” contains mn principals and has size Θ(mn),

but its normal form has size Θ(mnm).

Besides being expensive, such inferences about delegation to disjunctions may be

too tricky for normal users to understand. In fact, we have not yet encountered a real-

istic example that requires delegation queries that contain disjunctions. Therefore, we

believe that the conjunctive-delegatee-queries restriction leaves D1LP with all of the
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expressive power needed in practice.

3.4.3 Queries of delegations to dynamic threshold structures

A delegation query that has a dynamic threshold structure as delegatee is nonmonotonic

(in the sense used in knowledge representation) in that it may goes from true to false

when more information is known. Therefore, such a query should not be allowed in

D1LP, because D1LP is monotonic. Consider the following example.

Example 3.8 (Nonmonotonicity of delegation to dynamic threshold structures).

A delegates to (B,C). A says friend(B).

A delegates to (B,D). A says friend(C).

A delegates to (C,D). A says friend(D).

From the above program, one should conclude that “A delegates to threshold(2,

?X, A says friend(?X)),” because the three delegation facts in the program combined

are equivalent to “A delegates to threshold(2, [B,C,D])”; however, if we further add

the fact “A says friend(E)” to the program, the delegation “A delegates to thresh-

old(2, ?X, A says friend(?X))” is no longer true, because the delegation “A delegates

to threshold(2, [B,C,D,E])” also implies that “A delegates to (B,E),” which is not a

conclusion of the program.
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3.5 Implementation

In this section, we describe two implementations of D1LP.

3.5.1 A Java implementation

We have implemented, in Java, a compiler that does the transformation from D1LP to

OLP and the reverse transformation from OLP to D1LP (section 3.2) and does exhaus-

tive D1LP inferencing by combining that compiler with an existing OLP inferencing

engine. The implemented compiler can generate OLP in the syntactic formats of a vari-

ety of OLP inferencing engines, both forward reasoning ones (e.g., Smodels [61]) and

backward reasoning ones (e.g., XSB [70]).

The compiler and D1LP inferencing engine are integrated as an extension to the

IBM CommonRules system [37], a Java library that includes (among its capabilities ) a

rule translation format (“interlingua”, encoded in XML) and sample translators to talk

to multiple OLP inferencing engines. The D1LP compiler reuses classes and code from

the CommonRules core, especially for specification and inferencing.

This implementation is expressively restricted, and slightly different syntactically,

from the version of D1LP given in this paper. (It was based on an earlier design.)

3.5.2 An XSB implementation

We have also implemented D1LP in XSB [70], a Prolog-variant logic-programming

system developed by Warren et al. at SUNY Stony Brook. This implementation is

called XD1LP and is available [51]. XD1LP includes a compiler that compiles a D1LP

into OLP rules in an internal format and a meta-interpreter that can answer queries

using these rules. XD1LP turns the XSB engine into a D1LP engine.
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XSB has several nice features that most Prolog systems do not have. It uses SLG

resolution [18], which has tabling ability. SLG resolution enables XSB to evaluate cor-

rectly many recursive logic programs that would make SLD-resolution-based Prolog

systems get into an infinite loop. This is crucial to our work, because delegation rela-

tionships can be circular. XSB also supports HiLog (higher-order logic programming).

We can use this ability of XSB to extend D1LP to allow base atoms to be HiLog terms.

Even without this HiLog ability, we can still extend D1LP to allow a variable to appear

in place of a base atom. For example “A speaks for B on ?P” means that A speaks for

B on everything.

To use XD1LP in real applications, one may need to use interfaces between XSB

and other languages, e.g., Java [16], C, Oracle, and ODBC (see XSB manual, available

from [70]).

XD1LP uses an alternative transformation that is different from (but similar to) the

one we gave in section 3.2. This alternative transformation generates an output program

that has size linear in the size of the input program, but it does introduce new variables.

We call this an “ungrounded transformation.” XD1LP can handle everything in the

syntax described in section 3.1. With ungrounded transformation, it can also handle a

fourth kind of threshold structures: dynamic weighted threshold structures, which take

the form:

threshold(k, ?X, ?W, Prin says pred(. . .?X . . .?W . . . ))

where ?X and ?W are variables. The threshold pool of such a threshold structure is a

principal-weight pair set that consists of every principal-weight pair (A, w) such that

w is the largest positive integer that makes “Prin says pred(. . . A . . . w . . . )” true. We

leave dynamic threshold structures out of standard D1LP because handling them is
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computationally expensive and because we haven’t found practical examples requiring

them.

3.5.3 Other issues in using DL

There are several additional infrastructural issues, beyond what we discussed here, that

are practically important for developing real-world systems based on DL, and which

are the subject of current and future work. For example, which data structures and

communication protocols should one use for exchanging DL rules between distributed

applications/principals/Internet-sites? An approach we are currently exploring is en-

coding DL in XML syntax, building upon the XML Business Rules Markup Language

for OLP’s that is supported by IBM CommonRules [37].

However, there are work-arounds for using DL in the absence of such a communi-

cation infrastructure. One way is first to translate certificates from multiple public-key

infrastructure systems into DL “facts” and then write local policies to control the use

of these certificates. For example, these local policies may specify trust of different

PKI systems for various purposes and to varying degrees and/or how certification from

multiple systems is required to gain sufficient confidence for critical applications.

Another unresolved infrastructural question is how an authorizer obtains all the cre-

dentials needed to make the decision. There are several possible scenarios for how such

credentials should flow to the authorizer. One is that the requester submits credentials

together with its request. Another is that the authorizer asks the requester for additional

credentials during the evaluation of the request. Yet another is that the authorizer asks

other entities for relevant credentials during the evaluation of the request. Mixes of the

above are also interesting. How to obtain relevant credentials dynamically during DL
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inference is a topic we are exploring.

3.6 D1LPDQF

In this section, we define a restricted version of D1LP that we call D1LPDQF . It is a re-

striction of D1LP obtained by imposing the “delegation-query-free (DQF) restriction”:

Delegation statements are not allowed to appear in queries or rule-bodies (because rule-

bodies are queries by nature). The DQF restriction is stronger than the conjunctive-

delegatee-query restriction that ensures that D1LP is tractable.

The reason that we introduce D1LPDQF is because it is much simpler and has lower

computational complexity than standard D1LP but still has sufficient expressive power

for many applications.

Under the DQF restriction, only “who says what?” can be answered, not “who

delegates to whom?” Despite this restriction, D1LPDQF still has significant expressive

power. In many applications, ultimately one wants to know “who says what?”

One way to use D1LPDQF is to use direct statements to represent attributes of prin-

cipals; for example, groups, roles, and authorizations can all be viewed as attributes.

Using D1LPDQF , a principal can bind attributes to principals, delegate this binding

authority to other principals, and reason about attributes of principals.

3.6.1 Transformation from D1LPDQF to OLP

Because a D1LPDQF is also a D1LP, the algorithm that computes the semantics of

D1LP can also be used for any D1LPDQF . However, because D1LPDQF satisfies the

DQF restriction, the transformation from D1LPDQF to OLP can be simplified substan-

tially.
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First, because there are no delegation queries, the predicate delegates is not needed

anymore. Only the predicate holds is needed. Moreover, only five of the thirteen steps

in Trans are needed. In the following, we briefly list these five steps.

Phase I: Body transformation

Do the following to the body of each rule in P .

1. Holds body translation:

Replace each body-direct statement AS says ba.

with PSFormula(AS, holds(ba, ∗)).

Phase II: Head transformation

For each rule R in P1, exactly one of the following two cases applies:

Case one: When R’s head is a direct statement “A says ba,” do the following two

steps.

2. Holds head translation:

Replace R’s head with “holds(A, ba, 1).”

3. Holds length-weakening meta-rule:

For each len ∈ [1..D], add the following rule:

holds(A, ba, len⊕ 1) if holds(A, ba, len).

Case two: When R’s head is not a direct statement, i.e., it is either a delegation state-

ment or a speaks for statement, let bodyR be R’s body, and do the following steps.

Sub-case a: If R’s head is a delegation statement:

A delegates baˆd to BS,

i.e., a depth-d delegation from A to BS, then let ll be 1.
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Sub-case b: If R’s head is a speaks for statement:

B speaks for A on ba,

then let d be ∗, ll be 0, and BS be B.

For both sub-cases, remove the rule R and do the following.

4. Holds propagation meta-rule:

For each len ∈ [1..d], add the following rule:

holds(A, ba, len⊕ ll)

if bodyR , PSFormula(BS, holds(ba, len)).

Note that this meta-rule is different from its corresponding one in Trans in that

it uses bodyR instead of a delegates atom. This is because the output language

for D1LPDQF doesn’t have the predicate delegates.

5. Holds length-weakening meta-rule:

For each len ∈ [d⊕ 1..D], add the following rule:

holds(A, ba, len⊕ 1) if holds(A, ba, len).

Threshold structures are handled similarly to that in Trans, see subsections 3.2.2

and 3.2.3.

It is straightforward to show, by a counting argument, that the size ofO is O(N 3D),

where N is the size of P and D is the maximal integer depth used in P . Each rule in

P can produce O(D) new rules inO, and each new rule may have a size that is O(N 2)

times the size of the original rule, caused by threshold structures. We get rid of a factor

of N , because we do not need to loop over all principals to generate all delegation

results, and a factor of D, because we do not need to loop over all possible delegation

depths to generate all delegations.
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Chapter 4

A Nonmonotonic Delegation Logic

In this chapter, we expressively generalize D1LP to have nonmonotonic features, in-

cluding negation-as-failure, classical negation, and prioritized conflict handling. The

resulting formalism is called D2LP, which stands for version 2 of Delegation Logic

Programs. We use the term D2LP to denote both the formalism and a program in this

formalism.

There is a large amount of literature about nonmonotonic extensions to OLP

(see [5, 14] for surveys). We chose the approach of Generalized Courteous Logic Pro-

grams (GCLP) [34, 35, 36, 37]. GCLP is based on Courteous LP (CLP) [32, 33].

CLP features negation-as-failure, classical negation, and prioritized conflict handling.

In CLP, each rule can optionally have a label; conflicts between rules are resolved by

priority relationships among labels, defined through a reserved predicate overrides.

GCLP extends CLP to have mutual exclusion constraints (mutex’s) and (prioritized)

reasoning about the priority relationships. D2LP combines these nonmonotonic fea-

tures with the delegation constructs in D1LP.

Many security policies are (logically) nonmonotonic or at least are more easily or
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more naturally specified in a nonmonotonic formalism. In many applications, a com-

mon policy is to make a decision in one direction, e.g., in favor of authorizing a request,

if there is no information/evidence to the contrary, e.g., no known revocation. Using

negation-as-failure (a.k.a. default negation or weak negation) is often an easy and intu-

itive way to do this. Also useful in representation of many policies is classical negation

(a.k.a. explicit negation or strong negation), which allows policies that explicitly forbid

something. As argued in [40, 41], this allows more flexible security policies. Introduc-

ing classical negation leads to the potential for conflict. Conflict-handling mechanisms

are thus needed.

Existing work on logic-based languages for authorization often uses formalism and

results from nonmonotonic reasoning, e.g., [6, 40, 41, 72]. The main differences be-

tween D2LP and previous work are as follows. First, D2LP has delegation constructs

that deal with the multi-agent aspect of distributed authorization. In defining D2LP,

we have to deal with the interaction between delegation constructs and nonmonotonic

expressive features. This interaction results in some subtleties. Because of these sub-

tleties, we require D2LP not to have queries about delegation statements. Second,

D2LP is also different from the languages in [6, 40, 41, 72] in that it has prioritized

conflict handling. This is especially useful in resolving conflicting advice from differ-

ent, but apparently both trustworthy, sources.

Our technical approach to defining D2LP is based on tractably compiling a D2LP

into a Generalized Courteous LP (GCLP), which is in turn tractably compiled into an

Ordinary LP (OLP). We show that D2LP is thus tractable and practically implementable

on top of existing technologies for OLP, e.g., Prolog, SQL databases, and other rule-

based systems.
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The rest of this chapter is organized as follows. In section 4.1, we discuss the

motivations and usefulness of prioritized conflict handling and give the syntax and se-

mantics of GCLP. In section 4.2, we discuss some subtleties in extending DL to have

prioritized conflict handling, define the syntax and semantics of D2LP, and show that

D2LP is tractable.

4.1 GCLP

Recently, there has been a lot of interest in language-based approaches to security

policies, e.g., [6, 40, 41, 54, 72]. The goal is to provide a unified framework that can

support multiple access-control policies and achieve separation of policies from mech-

anisms. Most approaches use logic-programming languages; other approaches [66, 73]

use languages that can easily be translated to LP languages.

Many of these languages have negative authorizations, i.e., policies that explicitly

forbid something. When both positive and negative authorizations can be specified,

conflicts may arise. Existing languages deal with conflict handling in one or more of

the following ways: (1) Do not resolve conflicts; only define semantics for conflict-free

policy programs [72]. (2) Use totally ordered rules to resolve conflicts [73]. (3) Define

a fixed conflict-resolution policy based on relative authority and/or specificity [6, 7].

(4) Add a paraconsistent layer, and use negation-as-failure to resolve conflicts [40, 41].

For example, in [40, 41], one can write

do(file2, s, +a) ← dercando(file2, s, +a) & ¬dercando(file2, s, -a).

This specifies that the negative authorization “dercando(file2, s, -a)” wins over the

corresponding positive one. However, one can specify relative priorities only between
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pairs of mutually-conflicting conclusions, not between rules used to derive these con-

clusions.

We argue that these approaches are undesirably limited. In many cases, there isn’t

a meaningful total ordering. Relative authority and specificity are important sources of

conflict-resolution information, but they are not the only sources. Other sources may

also be useful, e.g., recency and relative importance of rules even from a single author-

ity. GCLP explicitly supports flexible conflict-resolution policies. Therefore, GCLP

itself, even before adding delegation constructs, is a useful language for expressing

authorization policies (albeit in a more centralized environment).

We now review the preexisting GCLP formalism, presenting it in a somewhat dif-

ferent notation. We use a version of GCLP that has been further generalized from the

version in [35] to allow a rule label to be any logical term, rather than simply a constant.

This version of GCLP is implemented in IBM CommonRules v 1.1 [37].

4.1.1 Syntax of GCLP

In GCLP, a classical literal takes the form at or ¬ at, where at is an atom. A literal

takes the form L or ∼ L, where ∼ stands for negation-as-failure, and L is a classical

literal. A GCLP rule takes the form:

〈lab〉 L0 ← BodyFormula.

Here, lab is a term, L0 is a classical literal, and BodyFormula is a formula built

from literals using “,” (conjunction) and “;” (disjunction). We call lab, L0, and

BodyFormula the label, the head, and the body, respectively, of this rule. The la-

bel of a rule can be empty, as can the body. A variable starts with a question mark. All

variables in a rule’s label must also appear either in the rule’s head or in its body. We
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say that a rule is label-range-restricted if all variables in a rule’s label also appear in

the rule’s head.

A special binary predicate overrides is used to specify prioritization among mutu-

ally conflicting rules. The atom “overrides(lab1, lab2)” means that a rule that has label

lab1 should take precedence if it conflicts with a rule that has label lab2. Except for this

pre-defined semantics, the predicate overrides is no different from any other predicate.

A mutual exclusion constraint (mutex) takes the form:

⊥ ← L1, L2 | BodyFormula.

“L1, L2” is called the focus of the mutex and BodyFormula is called the body of the

mutex.1 When BodyFormula is empty, the symbol “|” is omitted. Intuitively, this mu-

tex specifies that L1 and L2 conflict with each other if BodyFormula is true. An atom

at always conflicts with ¬ at; this conflict does not need to be specified explicitly. Note

that mutex’s do not have labels, because labels are only used to resolve conflicts and

nothing conflicts with a mutex. We introduce mutex’s because some conflicts cannot

be conveniently represented using classical negations. Examples include classification

of users into three or more mutually disjoint groups and choices among some mutually

exclusive actions, etc. For example, a constraint that no user is allowed to be associated

with both the engineer role and the tester role can be represented as follows:

⊥ ← hasRole(?U, Engineer), hasRole(?U, tester).

A GCLP consists of a set of rules and mutex’s. A rule or a mutex with variables stands

for all of its ground instantiations.

1In [35], a mutex is syntactically restricted such that the variables appearing in its body must

also appear in its focus. Here, we relax this restriction.
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4.1.2 An example of GCLP

Policies represented in GCLP can also be represented in OLP. Indeed, any GCLP can

be compiled into an OLP. However, GCLP’s mutex and prioritized-conflict-handling

features offer expressive convenience and clarity.

Consider the database authorization model in [7]. An authorization may be speci-

fied for a single user or for a group. A group may contain users and other groups as

members but may not contain itself as a member, directly or indirectly. A user u has

the authorizations specified for u and for all the groups that u belongs to, directly or

indirectly. Authorizations can be either positive or negative and either strong or weak.

Conflicts between positive and negative authorizations are resolved as follows:

• Strong authorizations always win over conflicting weak authorizations.

• A conflict between two strong authorizations cannot be resolved; policies having

such conflicts are inconsistent.

• In a conflict between two weak authorizations, the more specific authorization

wins; if neither is more specific, the conflict cannot be resolved. For example, if

Alice is a member of the Scientist group, which is a member of the Researcher

group, which is in turn a member of the Employee group, then authorization for

the Researcher group should take precedence over a conflicting authorization for

the Employee group.

Example 4.1. The above database authorization policy can easily be represented in

GCLP. Giving the group Researcher a weak authorization to perform the “select” op-

eration on the table T5 can be represented by the following rule:
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〈auth(weak,Researcher)〉 authorizes(?A, select, T5)←

user(?A),member(?A, Researcher).

The conflict-resolution policies can be represented by the following two rules:

overrides(auth(strong,?G1), auth(weak,?G2)).

overrides(auth(weak,?G1), auth(weak,?G2)) ← member(?G1, ?G2).

4.1.3 Semantics of GCLP

The intuitive meaning of GCLP’s conflict handling mechanism is as follows. When

a rule’s body is true, we say that this rule is ready and that it generates a can-

didate for its head. A candidate R for a classical literal L1 is refuted if there is

a candidate Q for another classical literal L2 such that L2 conflicts with L1 and

overrides(Q′s label, R′s label) is true. A literal L is true if and only if there is an

unrefuted candidate for it and there is no unrefuted candidate for any classical literal

that conflicts with L. This semantics never concludes both L and something that con-

flicts with L. For example, when there are unrefuted candidates for both p and ¬ p,

neither p nor ¬ p is concluded; they “skeptically defeat” each other. This semantics

is “skeptical” (in the sense used in the nonmonotonic reasoning literature) in that it

doesn’t conclude a conclusion when “in doubt” about it.2

GCLP’s semantics is formally defined by the following transformation from a

2We can choose a paraconsistent semantics if so desired, by dropping the requirement that

L is true only when there doesn’t exist any unrefuted candidate for any classical literal that

conflicts with L. A paraconsistent semantics may conclude L and ¬L at the same time. This

may be desirable for some applications. See [22] for a survey on paraconsistent semantics for

logic programs.

87



GCLP to an OLP. We follow the transformation that is given in [35] and implemented in

IBM CommonRules V1.1, but we change the notation slightly. A GCLP G is compiled

into an OLP O through the following steps.

1. a. For each predicate pred/z in G (z is the arity of the predicate pred, i.e., the

number of arguments it takes), introduce a new predicate n pred/z to represent

pred’s classical negation and add the following mutex to G.

⊥ ← pred(?x1, . . . , ?xz), n pred(?x1, . . . , ?xz).

b. Then, in G, replace each literal ¬ pred(t1, . . . , tz) with n pred(t1, . . . , tz).

c. Denote by G0 the result of the above transformation. Let G1 be the set of rules

in G0 and G ′ be the set of all mutex’s in G0. Let O be an empty set.

2. a. For each predicate opred/z in G1 (including the new predicates introduced

in step 1.a for classical negation), introduce two new predicates: opredu/z and

opreds/z.

b. For any literal L = opred(t1, . . . , tz) in G1, define Lu to be opredu(t1, . . . , tz)

and Ls to be opreds(t1, . . . , tz). Intuitively, Lu is true when there is an unrefuted

candidate for L, and Ls is true when L is skeptically defeated, i.e., when Lu is

true, and there is an unrefuted candidate for some literal that conflicts with L.

3. For each mutex µ in G ′, do the following:

Let µ be “⊥ ← L1, L2 | bodyµ.”

a. Define readyµ to be the atom ready predµ(?x1, . . . , ?xw), in which ready predµ

is a new predicate, and “?x1, . . . , ?xw” are all the variables in “L1, L2.”

b. Add the following rule to O:

readyµ ← bodyµ.
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The purpose of this step is to handle those mutex’s whose bodies contain variables

that do not appear in their heads. This step is not needed (and does not exist) in

[35], because this kind of mutex is not allowed in [35]. Without this step, we

should replace the readyµ in step 5.b with bodyµ.

4. For each rule R in G1, do the following:

Let R be “〈labR〉 headR ← bodyR.”

a. Define readyR to be the atom ready predR(?x1, . . . , ?xw) and refutedR to

be the atom refuted predR(?x1, . . . , ?xw). Here, ready predR and

refuted predR are new predicates and “?x1, . . . , ?xw” are all the variables in

“〈labR〉 headR.”

b. Then add the following three rules to O:

readyR ← bodyR.

headu
R ← readyR, ∼ refutedR.

headR ← headu
R, ∼ heads

R.

Intuitively, they mean the following: A rule is ready if its body is true; when a

rule is ready and is not refuted, its head has an unrefuted candidate; if a literal has

an unrefuted candidate and is not skeptically defeated, then the literal is true, i.e.,

concluded.

5. For each pair of rules R, Q in G1 and each mutex µ in G ′:

a. Let R be “〈labR〉 headR ← bodyR”; let Q be “〈labQ〉 headQ ← bodyQ”;

and let µ be “⊥ ← L1, L2 | bodyµ.” Without loss of generality, assume that no

variable appears in any two of R, Q, and µ; one can always rename variables

when necessary.

b. Let θ be the most general unifier of “(headR, headQ)” and “(L1, L2).” If θ
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exists, add the following two rules to O:

refutedRθ ← readyRθ, readyµθ, readyQθ, overrides(labQ, labR)θ.

heads
Rθ ← headµθ, readyµθ, headu

Qθ.

Here, appending θ to a term (e.g., overrides(labQ, labR)θ) means applying the

substitution θ to the term. The first rule means that R is refuted if R is ready, Q’s

head conflicts with R’s head, Q is ready, and Q’s label overrides R’s label. The

second rule means that R is skeptically defeated if R has an unrefuted candidate,

Q’s head conflicts with R’s head, and Q’s head has an unrefuted candidate.

The resulting program O is an OLP of size O(|G|3). Recall that the “size” of a

program is the number of symbols, i.e., variables, constants, predicate symbols, logical

operators, etc. Note that |G0| = O(|G|), because the new mutex’s being added in step

1.a are about predicates in G. Moreover, for each rule or mutex R in G0, steps 2–4

contribute to O a set of new rules that has total size O(|R|). For each tuple Q, R

and µ in G0, assume, without loss of generality, that R is the largest one; then step 5

may generate two new rules, each of which has size O(|R|). We charge this constant

growth factor to R. After step 5 is finished, each rule or mutex will be charged at

most O(max(NRNµ, N2
R)) times, where NR is the number of rules in G0, and Nµ is the

number of mutex’s in G0. Both NR and Nµ are O(N); therefore, |O| = O(|G0|
3) =

O(|G|3).

The semantics of a GCLP is defined by the semantics of its corresponding OLP.

There are multiple choices available for OLP semantics. Among them, the two leading

ones are well-founded semantics (WFS) [30] and stable model semantics [31]. Some

OLP programs do not have a stable model, and some have more than one. Furthermore,

even for a propositional program, determining whether it has a stable model is NP-
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complete [55]. On the other hand, WFS assigns a unique three-valued model to every

OLP program. For a finite ground program, the complexity of computing its well-

founded model is worst-case quadratic in the its size. Mainly because of these behavior

and computational complexity features of WFS, the previous definition of GCLP [34,

35] recommends to use WFS for GCLP. We like these advantages of WFS as well.

The GCLP model of G can be computed as follows: First transform G into an OLP

O; then compute the WFS model of O, and, finally, translate the conclusions in O’s

WFS model back into GCLP by discarding the new predicates introduced in steps 2-4

and translating n pred(t1, . . . , tz) to ¬ pred(t1, . . . , tz). Note that we assume that the

predicates introduced during the transformation are distinguishable from those in the

input program.

One can also compile GCLP queries into OLP queries and evaluate them in OLP.

To compile a GCLP query into OLP, one only needs to replace ¬ pred with n pred. In

OLP inferencing, one can detect whether there is a conflict about a given literal lit by

checking whether lits is true.

4.1.4 Complexity results

Theorem 4.1. The transformation from a GCLP G to its corresponding OLP takes time

O(N3), and it generates an output OLP of size O(N 3), where N = |G|.

Proof. The O(N 3) size bound follows from the definition of the transformation. The

definition corresponds straightforwardly to an algorithm linear in the size of the output

OLP. Note that there are linear-time algorithms for unification. (See page 26 of [53] for

further references.)

The worst-case size is reached when both the number of mutex’s and the number
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of rules are linear in N , and almost all pairs of rules are potentially in conflict. This is

highly unlikely in practice. If an input program has the property that, for any rule, there

are at most a constant number of rules that potentially conflict with it, then the resulting

program has size linear in the size of the input program.

The following theorem shows that GCLP inferencing is tractable under restrictions

similar to those under which OLP inferencing is tractable (e.g., Datalog and bounded

number of logical variables per rule). We say that an LP obeys the VBL(v) restriction

when it is VB(v) (page 66) and each rule is label-range-restricted (page 85). If an LP is

both VBL(v) and Datalog, we say that it is VBLD(v).

Theorem 4.2. If a GCLP G is VBLD(v), then inferencing of G takes time O(N 2(3+v)),

where N = |G|.

Proof. First |O| = N 3. The key observation is that, when G is VBLD(v), the transfor-

mation maintains the per-rule number-of-variables bound. Then the ground instantia-

tion of O has size N 3+v , because the Datalog restriction implies that there are O(N)

terms that can be used to instantiate each variable. Furthermore, because WFS in-

ferencing takes worst-case quadratic time, we have the bound O(N 2(3+v)) for GCLP

inferencing.

We now show that the transformation maintains the variable bound. Each new rule

added in step 3 or step 4 has at most v variables, because it only has variables from one

rule in G. Now consider the two rules added in step 5:

refutedRθ ← readyRθ, readyµθ, readyQθ, overrides(labQ, labR)θ.

heads
Rθ ← headu

R, readyµθ, headu
Qθ.

Because each rule in G is label-range-restricted, the only variables in the two new rules

before applying θ are the variables in “(headR, headQ)” and “(L1, L2).” Note that,
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under the Datalog restriction, when θ unifies two terms t1 and t2, nv((t1θ, t2θ)) ≤

min(nv(t1), nv(t2)), where nv(t) is the number of variables in t. Similarly, when θ

unifies t1, t2, and t3, nv((t1θ, t2θ, t3θ)) ≤ min(nv(t1), nv(t2), nv(t3)).

If the mutex µ is from G, then there are at most v variables in “(L1, L2).” Be-

cause θ unifies “(headR, headQ)” and “(L1, L2),” there are at most v variables in each

of the two new rules. If µ is a mutex added in the transformation, then (L1, L2) =

(pred(?x1, . . . , ?xz), n pred(?x1, . . . , ?xz)). Therefore, θ unifies the arguments of

headR, the arguments of headQ, and (?x1, . . . , ?xz). Again there are at most v vari-

ables in each of the two new rules.

Inferencing for a Datalog OLP that is VBD(v) takes time O(N 2(1+v)), and so the

worst-case GCLP inferencing complexity is equivalent to adding two variables per

rule.

4.2 D2LP: A Nonmonotonic Delegation Logic

In this section, we define D2LP, a nonmonotonic delegation logic, by extending D1LP

to have the nonmonotonic features in GCLP.

4.2.1 Subtleties of integrating delegation and nonmonotonicity

D1LP’s semantics answers both “who says what?” and “who delegates to whom?”.

However, answering delegation queries and simultaneously resolving conflicts is subtle.

Consider the following example:

Example 4.2 (Interaction of delegation and conflict resolving).

〈A1〉 Alice delegates pˆ2 to Bob.
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〈B1〉 Bob delegates pˆ1 to Carl.

〈B2〉 Bob says ¬ p.

〈B3〉 Bob says overrides(B2, B1).

〈C1〉 Carl says p.

Should one conclude that “Alice delegates pˆ1 to Carl”? By chaining the delegation

〈A1〉 and 〈B1〉, one can argue that it should be concluded. Then, because of the fact

〈C1〉, one should also conclude that “Alice says p.” However, this is counter-intuitive.

Intuitively, the conclusion p propagates from Carl through Bob to Alice. However, by

〈B2〉 and 〈B3〉, the conclusion p is blocked at Bob; therefore it should not reach Alice.

Motivated by this subtlety, in this paper, we restrict D2LP to satisfy the “delegation-

query-free (DQF) restriction.” I.e., we define D2LP on top of D1LPDQF (section3.6),

instead of standard D1LP.

4.2.2 Syntax of D2LP

The syntax of D2LP is extended from that of D1LPDQF in the following ways:

(1) classical negation (¬ ) can be used before base atoms;

(2) negation-as-failure (∼) can be used before body statements;

(3) a rule can optionally have a label;

(4) there are mutex statements;

(5) there is a predefined predicate overrides.

Next, we give a concise, self-contained version of D2LP’s syntax.

1. A base atom takes the form pred(t1, . . . , tn). A base literal takes the form3

pred(t1, . . . , tn) or ¬ pred(t1, . . . , tn). Like GCLP, D2LP has a reserved binary

3We recommend using ! in place of ¬ when ASCII representation is desired.
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predicate overrides for prioritization.

2. A direct statement takes the form “X says lit.” A delegation statement takes the

form “X delegates litˆd to XS.” A speaks for statement takes the form “Y

speaks for X on lit.” Here X and Y are principal terms. A principal term is

either a principal or a principal variable. lit is a base literal. XS is a complex prin-

cipal term, i.e., either a principal structure or a principal variable; it is called the

delegatee of the delegation statement. Principal structures are constructed from

principals and threshold structures using “,”(conjunction) and “;”(disjunction).

(See section 3.1 for definition and discussion of threshold structures, delegation

statements, and speaks for statements.)

A mutex statement takes the form “X says lit1 opposes lit2.” Here X is a

principal term, and lit1 and lit2 are base literals. Intuitively, this statement means

that, in X’s view, lit1 and lit2 conflict with each other, i.e., “X says lit1” and “X

says lit2” are mutually exclusive.

3. A body statement is either a body-direct statement, which takes the form “XS

says lit,” or a negation-as-failure statement, which takes the form: “∼ XS says

lit.” Here XS is a complex principal term.

4. A rule takes the form: 〈lab〉 head if body.

Here head is a direct statement, a delegation statement, a speaks for statement, or

a mutex statement, and body is a formula constructed from body statements using

“,”(conjunction) and “;”(disjunction). Note that delegation statements, speaks for

statements, and mutex statements are not allowed to appear in rule-bodies. The

rule labels are used to resolve conflicts between direct statements derived from
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rules.

Example 4.3 (Nonmonotonic credit determining).

In this program, Alice authorizes anyone she believes to have good credit to do trans-

actions and delegates the right to determine who has good credit to credit bureaus and

allows them to further delegate one more step. Alice also delegates the ability to de-

termine that someone has bad credit to any fraud expert, and bad-credit information

overrides good-credit information. Finally, there is an expert Bob whom Alice trusts

unconditionally on with respect to credit-worthiness. Bob’s decision has the highest

priority. These policies are represented by the following program:

Alice says authorizes(?P, transaction) if Alice says credit(?P, good).

〈trusted〉 Alice delegates credit(?P, ?Status)ˆ* to Bob.

〈good〉 Alice delegates credit(?P, good)ˆ2 to ?X if Alice says creditBureau(?X).

〈bad〉 Alice delegates credit(?P, bad)ˆ1 to ?X if Alice says fraudExpert(?X).

Alice says credit(?P, good) opposes credit(?P, bad).

Alice says overrides(bad, good).

Alice says overrides(trusted, good).

Alice says overrides(trusted, bad).

4.2.3 Semantics of D2LP

D2LP’s semantics is defined by transforming a D2LP P into a GCLP G. This trans-

formation is, for the most part, similar to the transformation from D1LP into OLP in

section 3.2.

In addition to the reserved predicate overrides, G has one more predicate, holds.

An atom of holds takes the form: holds(X, lt, len) (see page 47).
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For each pred in P , we introduce two function symbols pred and nd pred. The

function pred is used to represent a base atom, and nd pred is used to represent a

negated base atom. We use lt to denote the term that corresponds to lt’s classical

negation.

In the transformation, we need to use the function PSFormula defined in sec-

tion 3.2 to expand statements with complex principal structures as issuers.

Transformation 0: Label and Negation transformation

This transformation changes rules in P; the result is called P0.

• For each rule R in P , let R be “〈labc(t1, . . . , tn)〉 headR if bodyR”; change

its label to “labc(X, t1, . . . , tn),” where X is the issuer of headR.

This step makes sure that each principal has a different name space for labels.

• In P , replace each base literal ¬ pred(. . . ) with nd pred(. . . ), in which nd pred

is a newly introduced predicate.

Transformation I: Body transformation

This transformation changes rule-bodies in P0; the result is called P1.

• Holds body translation:

Replace each body-direct statement “XS says lt”

with “PSFormula(XS, holds(lt, ∗)).”

• Negation body translation:

Replace each negation-as-failure statement “∼ XS says lt” with the “DeMor-

ganization” of “∼ PSFormula(XS, holds(lt, ∗),” i.e., the negation∼ is pushed

inside conjunctions and disjunctions.
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For example, the statement∼ (A, threshold(2, [B, C, D]) says p(a) is replaced

by (∼ holds(A, p(a), ∗);∼ holds(suth(2, [B, C, D]), p(a), ∗)).

Transformation II: Head transformation

This transformation changes rule heads in P1, removes some rules, and adds some new

rules; the result is called P2.

For each rule R in P1, let R be “〈labR〉 headR if bodyR”; there are three cases for

headR:

Case one: headR is a direct statement “X says lt.”

• Replace R’s head with “holds(X, lt, 1).”

Case two: headR is a mutex statement “X says lt1 opposes lt2.”

• Remove R and, for each len1, len2 ∈ [1..∗], add the rule:

⊥ ← holds(X, lt1, len1), holds(X, lt2, len2) | bodyR.

Case three: headR is either a delegation statement or a speaks for statement.

If headR is a delegation statement “A delegates ltˆd to BS,” then let ll be 1.

If headR is a speaks for statement “B speaks for A on lt,” then let d be ∗, ll be

0, and let BS be B.

• Delegation expansion: Remove R and, for each len ∈ [1..d], add the rule:

〈labR〉 holds(A, lt, len⊕ ll)← bodyR, PSFormula(BS, holds(lt, len)).

In cases one and three, also do the following.

• For each len ∈ [1..D], add the rule

holds(X, lt, len⊕ 1)← holds(X, lt, len).

• For each len1, len2 ∈ [1..∗], add the mutex:

⊥ ← holds(A, lt, len1), holds(A, lt, len2).
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• If lt is “overrides(labc1(t11, . . . , t1u), labc2(t21, . . . , t2v)),” then add the rule:

overrides(labc1(X, t11, . . . , t1u), labc2(X, t21, . . . , t2v))

if holds(X, overrides(labc1(t11, . . . , t1u), labc2(t21, . . . , t2v)), ∗).

Threshold structures are handled similarly to the way they are handled in subsec-

tions 3.2.2 and 3.2.3. Here, we omit the details.

The goal of the above transformation is to define the intended semantics of D2LP.

We have found several possible further tweaks to the transformation that would “op-

timize” it in the sense of resulting in fewer output rules while maintaining equivalent

semantics. However, these optimizations do not improve the asymptotic bound of the

output size. Thus, we choose to use this computationally slightly more expensive but

clearer definition.

An important property of this transformation is that it does not introduce any new

variables. More precisely, for each rule in G, all the variables in it come from a single

rule in P . As in section 3.3.2, we assume that the transformation generates a typed

GCLP. The transformation from GCLP to OLP simply passes the typing onto the gen-

erated OLP.

4.2.4 Inferencing and Complexity Results

Theorem 4.3. The transformation from D2LP to GCLP generates an output program

of size O(N3D). Computing the transformation takes time O(N 3D).

Proof. By the counting argument in section 3.2, the function PSFormula has an

O(N2) growth factor. The delegation-expansion step generates the largest output

among all steps. It generates O(D) rules, and each one uses PSFormula. Therefore,

this step has growth factor O(N 2D). Thus, the output program has size O(N 3D). The
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definition of the transformation corresponds straightforwardly to an algorithm linear in

the size of the output program.

D2LP inferencing can be done by first compiling a D2LP into a GCLP, then comput-

ing its minimal GCLP model, and finally translating the conclusions back into D2LP.

Each GCLP conclusion holds(A, pred(. . . ), len) is translated to “A says pred(. . . )”,

and each conclusion holds(A, nd pred(. . . ), len) is translated to “A says ¬pred(. . . ).”

Another way to do inferencing is as follows. First compile a D2LP program and a D2LP

query into GCLP; a query is compiled in the same way as a rule-body. Then compile

the GCLP query and program into OLP. And finally use an OLP inference engine to

answer these queries.

Example 4.4 (Nonmonotonic credit determining (continued)).

We now add the following facts to example 4.3:

Alice says creditBureau(cb1). Alice says fraudExpert(Carl).

cb1 says credit(Jack, good). Bob says credit(John, good).

Carl says credit(John, bad). Carl says credit(Jack, bad).

Then, one can conclude “Alice says credit(John, good)” and “Alice says credit(Jack,

bad).”

Recall that we say that an LP is VBLD(v) if it is Datalog, each rule in it has at most

v variables, and, for each rule, the variables in its label also appear in its head.

Theorem 4.4. Inferencing of a D2LP P that is VBLD(v) takes time polynomial in

(ND)v. When v is a constant and D = O(N), inferencing of a D2LP takes time

polynomial in N .

Proof. Given a D2LP P that is VBLD(v), the output GCLP G has size O(N 3D), and G

is VBL(v). Typing ensures that variables in G will only be instantiated to constants in
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P . (Note that P is Datalog.) When we compile G into an OLP O, |O| = O((N 3D)3),

andO has the same variable bound. InstantiatingO increases its size by O(N v), and so

the size of instantiated O is O(N 9+vD3). Inferencing of O takes time quadratic in its

instantiated size; therefore, the inferencing time is polynomial in O(N 2(9+v)D6).

The complexity bound in the proof is a high-degree polynomial. We can get a tighter

bound by doing a more detailed analysis. One observation is that not all pairs of rules in

G are potentially in conflict with each other. Detailed analysis of the theoretical worst-

case complexity of D2LP inferencing is not the most important task at hand, however;

rather, the practicality of D2LP needs to be tested in experiments.

101



Chapter 5

Conclusions

In this dissertation, we presented the logic-programming-based language Delegation

Logic (DL) for representing security policies and credentials for authorization in large-

scale, open, distributed systems.

Our general approach to designing DL was to extend existing well-understood logic-

programming (LP) languages with features that are needed in distributed authorization.

More specifically, we added issuers and delegation constructs to existing LP languages.

D1LP, the monotonic version of Delegation Logic, extends Definite Ordinary LP (a.k.a.

Definite LP, see [53]), and D2LP, the nonmonotonic version of Delegation Logic, ex-

tends Generalized Courteous Logic Programs (GCLP) [34, 35, 36]. Our approach to

defining the semantics of DL was to define a transformation from DL programs into

programs in the underlying logic-programming language. We defined a transformation

from D1LP into OLP and a transformation from D2LP into GCLP, for which there al-

ready exists a transformation into OLP. We showed that each of these transformation

steps is computationally tractable and that D1LP inferencing and D2LP inferencing are

thus tractable under a broad restriction similar to that which ensures tractability of OLP
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inferencing.

The transformation-based approach gives us easy access to the established results

for OLP; for example, every DL program has a minimal model. Thus, DL differs

from other proposed trust-management engines [9, 11, 12, 25] in providing a notion of

“credentials proving that a request complies with a policy” that is not entirely ad hoc;

rather, it is based on model-theoretic semantics and is thus abstracted away from choice

and details of implementation.

The transformation-based approach also yields a natural implementation architec-

ture for DL; it can be implemented by using a delegation compiler from DL to OLP.

This enables DL to be implemented modularly on top of existing technologies for OLP,

which include not only Prolog but also SQL relational databases and many other rule-

based/knowledge-based systems. We discussed two existing implementations of D1LP.

A major challenge in designing DL is the need to strike a right balance among

expressive power, computational complexity, and ease of understanding. In order to

allow the specification of complex trust and delegation relationships in distributed au-

thorization, we add to DL explicit linguistic support for delegation depth and for a wide

variety of complex principals (e.g., dynamic threshold structures). To achieve tractable

D1LP inferencing, we impose the conjunctive-delegatee-queries restriction on D1LP.

To achieve an intuitive semantics for D2LP, we restrict D2LP to be delegation-query

free, because of some subtleties that arise when the delegation constructs are combined

with the nonmonotonic features.

A major challenge in designing a knowledge representation (KR), especially one

that is nonmonotonic or multi-agent, is to achieve usefully rich expressiveness and in-

tuitively natural semantics, together with moderate computational complexity and rel-
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ative ease of incorporation into existing software environments. We believe Delegation

Logic represents significant progress along these lines. Other contributions of this work

include:

• Delegation Logic provides a notion of “proof of compliance” that is founded on

well-understood principles of logic programming and knowledge representation.

• Delegation Logic provides an expressive yet tractable and practically imple-

mentable trust-management language.

• Delegation Logic provides a logical framework for studying various delegation

features, nonmonotonic security policies, and their interplay.
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