Adversarial Reasoning:
A Logical Approach for Computer Go

by

Tamir Klinger

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Computer Science
New York University

May 2001

Ernest Davis

© Tamir Klinger
All Rights Reserved, 2001

To Mom and Dad

Acknowledgment

The research and writing of thisthesis has been my preeminent preoccupation for more
than six years. My colleague in this project, David Mechner, originally suggested the
ideas on which this work was based and was an equal partner — sometimes more than
equal — in every aspect of the program design, implementation, and analysis. Without
David's optimism, dedication, and hard work this thesis would not have been written.

My family and friends have all endured this difficult time with the greatest support
and encouragement. To them | offer my sincerest thanks and gratitude.

Finally, my advisor, Ernie Davis, helped me immensely both as amentor and reader.
He fought through countless drafts of countless papers, listened carefully to half-worked
ideas, and never wavered in his commitment.

Thanksto all of you.

Tim Klinger, May 2001

Abstract

Go is a game with simple rules but complex strategy requiring ability in aimost all
aspects of human reasoning. A good Go player must be able to hypothesize moves and
analyze their consequences; to judge which areas are relevant to the analysis at hand,;
to learn from successes and failures; to generalize that knowledge to other “similar”
situations; and to make inferences from knowledge about a position. Unlike computer
chess, which has seen steady progress since Shannon’s [23] and Turing’'s [24] original
papers on the subject, progress on computer Go remainsin relativeinfancy. In computer
chess, minimax search with «-3 pruning based on a simple eval uation function can beat
abeginner handily. No such ssmple evaluation function is known for Go. To accurately
evaluate a Go position requires knowledge of the life and death status of the points on
the board. Since the player with the most live points at the end of the game wins, a
small mistake in thisanalysis can be disastrous.

In this dissertation we describe the design, performance, and underlying logic of a
knowledge-based program that solves life and death problems in the game of Go. Our
algorithm applies life and death theory coupled with knowledge about which moves
are reasonable for each relevant goal in that theory to restrict the search space to a
tractable size. Our results show that simple depth-first search armed with a goal theory
and heuristic move knowledge yields very positive results on standard life and death
test problems — even without sophisticated move ordering heuristics.

In addition to a description of the program and its internals we present a modal

logic useful for describing strategic theoriesin games and useit to give alife and death
theory and to formally state the rules of Go. We also give an axiomatization for this

logic using the modal p-calculus [15] and prove some basic theorems of the system.

Vi

Contents

Dedication i
Acknowledgment iv
Abstract %
List of Figures X
List of Tables Xii
1 Introduction 1
1.1 Introduction 2
1.2 DifficultiesinComputer Go 3
1.3 Contributionsof thisthesis 5
14 Previousworkoncomputer GO 6
15 PreviousworkonGamelogic 8
1.6 Organizationof thisthesis 8
2 Adversarial Reasoning 9

Vi

21 Adversariad Operators. e 10

22 GameKnowledge 13
2.3 SolvingLifeand DeathProblems. 17
24 Thelanguage GO o 19
2.5 A dtrategic theory for lifeanddeathinGo 23

2.6 Thegoal graph: Using the strategic theory to solve life and death prob-

lems . . . 28
2.7 Correctnessof theagorithm 39
Program 41
31 Introduction 42
32 TheBoard 43
33 Blocks 43
34 CONNECLIONS o o o o e e e e 45
35 Groups. e 46
3.6 COres 47
37 EYES . . 48
38 AUra 50
39 Knowledgebase. 51
3.10 Rulefiltering 52
3.11 Constraint Manager 54
312 AssertionDatabase 56
3.13 Statechange—TheReversonManager 58
3.14 Historyof theproject 59

viii

4 Results 61

41 TestingandResults 62
4.2 Two problems. A successand afailure 63
5 Gamelogic 72
51 Introduction 73
5.2 IntroductiontoModal Logic 73
53 Models 74
54 Thefirst-order modal p-calculus L. 77
55 First-Order Modal GamelLogic 79
56 GamelogiC e 81
57 Axiomsand Definitions 81
58 Semantics 84
59 Someusefultheorems. 85
6 Rulesfor Go 90
6.1 Introduction 91
6.2 Metalanguageconventions. 91
6.3 Rulesof GO 94
7 Conclusion 101
7.1 Conclusionsand Directionsfor FutureWork 102
Bibliography 105

List of Figures

1.1 Five stone handicap game between David Mechner (white) and Greg

Ecker (black) 5
21 Areasonablewaytoconnectptoq. 15
2.2 Someexamplesof Goconcepts. 24
2.3 Black can connect her stonesat C2 and F'3 by playingat E2. 26
24 TheAND/ORgraphfor Save(P17) v 32
2.5 A life and death problem Save(P17) on the left; its goal graph on the

Aght. . . 33
2.6 Theproblem after Black playsat 1 (White'sturn). 34
2.7 The problem after Black playsat 1, and Whiterespondsat 2. 35
2.8 Black capturesdl the White stones, savingP17. 36
2.9 Black can win the race to capture by playing on pointsG1 or F'1.. . . . 37
2.10 Black can makelifeby playingonpoint £'1. 37
211 Blackisadive. 37
3.1 Theprogramstructure. i 44
3.2 Theblack and whitestonesformacrosscut. 46

3.3

34
3.5

3.6
3.7

4.1
4.2
4.3
4.4
4.5

Two rules for recognizing eyes. Stones marked with atriangle are op-

Avarietyof rules. 53

Applying rule 3.6 incorrectly gives Black two disjoint eyes (borders

marked with“B”, centerswith“C”.). 54
Aneyerule. e 54
A morespecificeyerule. L o 54
Correctly solved problem 1-124. 64
Problem 1-124. Black choosesthewrong path. 64
Problem 1-124. Black choosestherightpath. 65
Incorrectly solved problem2-42. 66
Incorrectly solved problem 2-108 (getslost). 67

Xi

List of Tables

21

31

4.1
4.2
4.3
4.4
4.5

Definitionsof somebasicGoconcepts
Number of rulesforeachpurpose.

Results on Kano's Graded Go Problems for Beginners: vols. 1-2
Results on Kano's Graded Go Problems for Beginners: vols. 1-2
Results on Kano's Graded Go Problems for Beginners: vols. 1-2 cont. .
Results on Kano's Graded Go Problems for Beginners: vols. 1-2 cont. .

Summary of results on Kano's Graded Go Problems for Beginners:

Xii

52

68
69
70
71

Chapter 1

| ntroduction

1.1 Introduction

One of the reasons games have been of interest to Al researchers, aside from the popular
belief that they are worthy intellectual pursuits, is the fact that they are usually self-
contained, circumscribed activities not subject to the difficulties associated with the
formalization of many “real-world” problems. Games are micro-worlds with none of
the messiness and unpredictability of the real world but with some very challenging
problems to be solved and strong human intuitions about how to solve them. Also,
unlike in other human domains, it is relatively easy to measure the performance of a
game-playing program on standard problem sets and in competition with other players.

Chess has traditionally been the game of choice for researchersinterested in games.
Within the computer chess world some, like Wilkins [26] with his PARADISE chess
program, have pursued the knowledge-based approach, but the incredible success of
big-search programs, like Deep Blue, have all but completely eclipsed these efforts.
Go, on the other hand, has proved much more intractable.

There are really two problems in applying big-search methods to Go. The most

often-cited problem is just the huge size of the search space. As Mechner [17] putsit:

On average, at any given moment in a chess game, aplayer has twenty-five
legal movesto choose from. Various refinements have enabled the minimax
algorithm to effectively consider only the five or six best choices, pruning
away therest. In Go, on average, a player can choose from 250 legal moves
per turn. Even if a Go algorithm could prune that number down to fifteen
or sixteen, and consider 200 million positions per second, it would need

seventy years to explore as deeply as Deep Blue does in three minutes.

But a more subtle and less-often mentioned problem is the quality of static evalua-

tion functions. Mechner [17] continues:

Very well, one might say; computers will get faster soon enough. But the
problem goes deeper than that. Go programs not only fail to evaluate 200

million Go positions a second; they cannot accurately evaluate asingle one.

Big-search techniques with sophisticated move-ordering heuristics have been suc-
cessfully applied to solving life and death problems in Go by Wolf [28] and others,
but these programs require very circumscribed positions that occur relatively rarely in
real games. Many of even the smplest life and death problems we consider in this
thesis are not solvable by these programs. All the successful full-playing programs and

open-position life and death problem solvers are knowledge-based to some degree.

1.2 Difficultiesin Computer Go

In Chess, arelatively simple positional evaluation function based on atally of features
like material advantage, while definitely not up to expert standards, provides a suffi-
ciently good measure of the position to allow big-search techniques to work. In Go,
humans evaluate a position by determining the life and death status of the stones on the
board. Since dead stones are removed from the board at the end of the game and leave
the space they occupied as enemy territory, amistakein life and death analysis can lead
to a big error in positional evaluation. Furthermore, this analysis is not one that can
easily be made statically.

For human players, determining whether stones will live or die requires an under-

standing of which other stones on the board are important to the problem. Once the

context of the problem is understood, if the position is very ssimple, it may be possible
to evaluate it statically. More often it requires further search to positions which are
statically determinable. Thisis not only alimitation of Go programs. No human player
can statically determine the life and death status of stonesin all positions; there are too
many subtle variations and interactions for a player to be able to look at an arbitrary
configuration of stones and pronounce them alive or dead. People do, however, have a
lot of knowledge they bring to bear about what is reasonable in a situation that allows
them to limit the amount of reading they perform. By formalizing the techniques and
knowledge Go players apply, we have a useful model for automation. Once it is deter-
mined that apositionisunclear and further reading isrequired, one very strong heuristic
for limiting the moves considered in the search is to try only moves that have worked
for similar goalsin similar contextsin the past. Thisisthe basisfor our approach.

To illustrate how subtle differences in the position can have dramatic positional
significance consider the positionin figure 1.1 taken from a game between two amateur
players. It is White's turn to move.

In order to evaluate this position, an analysis must be made that is deep enough to
reveal that the Black group on A14 isalive. An intermediate level human player will
see this quite easily by reasoning that the White group on C'11 can be captured more
quickly than either of the surrounding black groups (on A14 and A9). Also, the one-
eyed white group at M1 is alive because it can capture the black M5 before it is itself
captured. And therefore the black group at K1 is dead. Such an anaysisis beyond

current go-playing programs and is the focus of our research.

Figure 1.1: Five stone handicap game between David Mechner (white) and Greg Ecker (black)
AlE e min rlE e R R e e e e R e R e

|

3

B L X F R S B B

-
£l

B

99

w
M N

L= Lt R A

1.3 Contributions of thisthesis

Our work focuses on a number of difficult and important issues in Go and Artificial
Intelligence. First, we have devised anovel algorithm that applies human game knowl-
edge to solve uncircumscribed life and death problems. To implement this algorithm

required finding appropriate knowledge representation and truth maintenance schemes

and developing a class library of data structures to support incremental update and
reversion in search. Our solutions to these problems are discussed in more detail in
chapter 3.

Our second major contribution is in the development of a modal logic for knowl-
edge representation in games, and the presentation of our program in termsof thislogic.
Logicisthelingua franca for researchersin different areas of Al. By casting our prob-
lem and solution in a logical language, we increase the possibility that it will prove
useful to others both in the specifics of the formalization, as well as, more generally, a
template for research in other domains.

We give an axiomatization for our logic and provide semantics in terms of game
tree models. We use the logic to prove some general game theorems, to state a rule set
for Go, and to describe an algorithm for adversarial reasoning. The algorithm we give
applies a strategic theory, to find the relevant context for a given adversarial decision
problem. When the context is known, knowledge about which moves are reasonable
to achieve the required goals is applied to focus the search. This agorithm applied to a
strategic theory of life and death is the basis of our life and death problem solver, but
can more generally be applied to the solution of adversarial reasoning problemsin any

domaininwhich it is possible to state a strategic theory.

1.4 Previouswork on computer Go

There have been a number of papers and theses published on computer Go since Zo-
brist’sthesis[29] in 1970. Mller [18] lists among others: Erbach [9], Kierulf [3], and
Ryder [21]. The interested reader will find most of the relevant references and a his-

tory of computer Go in these documents. Further references are also available from the
American Go Association web page [1].

The best existing full-playing programs perform shallow life and death analysis
through recognition of features associated with life, like eyes' or surrounding open
space (lots of “friendly” empty space means room to make eyes). Thisis adequate in
simple positionswhere the block in questionis clearly safe or hopelessly dead, but falls
down in complex situations like the one above, which often occur in real games. Most
current programs also perform some kind of limited, “tactical” reading to determine
whether stones with few liberties can be captured, but this too falls down when the
statusof alarger group isin question, or when the stonesin question have many liberties
but are still dead.

Relatively little has been written on the problem of life and death in Go. Dave Dyer
and Thomas Wolf [28] have devel oped life and death problem solvers; however both use
brute-force search and are therefore limited in their application to highly constrained
positionswith no access to the center of the board and little empty space allowed within
the confines of the problem. Problems such asthese are rare in actual games where the
life and death status of stones must be determined before positions become so well-
defined.

An interesting and relevant recent piece of work that is similar in spirit to our own
is Willmott’s master’sthesis [27]. Willmott’s program is a prototype of alife and death
problem solver based on the notion of hierarchical planning in an adversarial setting.

In this context he represents atheory of life and death somewhat similar to our own and

1An eye is a compartment each point of which is empty or occupied by dead enemy stones. A block of stones

with the ability to form two adjacent digjoint eyeswill live, so eyes play afundamental rolein life and death strategy.

shows how it can be used to solve a small set of problems.

1.5 Previouswork on GameLogic

Game semantics has been widely used by researchers in a variety of fields, but the
notion of agamelogic, aproof system and semanticsfor games, isrelatively recent and
unexplored. Game logic wasfirst proposed in a paper by Parikh [19] and more recently
considered by Pauly [2]. Both of these papers consider games as atomic entities in
the language. Our interest lies in the analysis of the internal structure and strategies
of games. To accommodate this added expressivity requirement, we have chosen the

first-order modal p:-calculus asthe basis for our logic.

1.6 Organization of thisthesis

In chapter 2 we introduce a modal language useful for adversarial reasoning and use it
to present a theory of life and death, a high-level algorithm for solving life and death
problems, and a detailed example problem. In chapter 3 we present our program’s
structure and algorithms. Chapter 4 gives results on a set of graded Go problems. In
chapter 5 we consider the problem of adversarial reasoning in games like Go from a
logical perspective. We present an axiomatization for the first-order modal logic of
games and prove some basic results.In chapter 6 we use our game logic to provide an

axiomatization of the rules of Go.

Chapter 2

Adversarial Reasoning

In this chapter we will describe, at a high-level, our algorithm for analyzing and
solving life and death problems. The basic ideais to define a logical theory of life
and death in Go and use this theory to find the set of goals that are relevant to the
problem at hand. We represent the relevant goals and their logical relationshipsin an
AND/OR graph and use a knowledge base to find the reasonable moves for each goal
in this graph. With luck, the set of reasonable movesis considerably smaller than the
set of legal moves. The reasonable moves for the root goal are each explored in turn,
and the resulting position analyzed recursively until the problem is solved or we run
out of time. The algorithm may be applied more generally in any domain in which it
is possible to state a strategic theory, though we have implemented it only for life and

death.

2.1 Adversarial Operators

In this section we introduce adversarial operators which augment the first-order lan-
guage presented above to allow statements about strategies. Such statements take the

form:
Player 1 has a move such that

For al Player 2’s moves

Player 1 has a move such that
For al Player 2’s moves

some goal istrue

10

In afirst-order notation we could expressthis as
dmVmedmy - - - dm,, _1VYm, ¢

for some goa ¢ and some number n. However the number n would have to be fixed;
there is no way to quantify over the number of quantifiers in the statement and no
facility for adding a “there existsn” in front of the above statement. To allow thiskind
of statement we propose the addition of three new adversarial operators, two of which
are primitive and one which is the composition of the primitive operators. We will not
here explore the logical properties of these operators but refer the interested reader to

Chapter 5 where we provide a proof system and semantics.

e est;(¢) (“establishable ¢”) which meansthat player i hasalegal strategy to make
the goa ¢ true.

e irr;(¢) (“irrefutably ¢”) which means ¢ is true now and player i hasalega strat-
egy to maintain its truth until there are no legal moves available (the end of the

game).

e ach;(¢) (“achievable ¢") which is est;(irr;(¢)) and means player i has a legal
strategy to make ¢ irrefutably true.

If we want to say that thereis a strategy to establish ¢ from some particular position
or state s, wewrite“s |= est;(¢)” whichisread “smodelsest;(¢)” or “est;(¢) istrue
in state s.” Similarly with irr; and ach,;.

To illustrate the definitions consider how we could express the fact that black (on

her turn) can capture either a bishop or a knight, in the game of chess:

11

ToPlay(BLACK) A
est pracr (Captured(bishopQ) V Captured(bishopK) V

Captured(knightQ) vV Captured(knightK)))

whereit isassumed the predicates 7o Play (whose turnitisto play), and Captured
(indicating that a piece has been removed from the board), are already defined. bishop@
refersto the queen-side bishop; bishopK refersto the king-side bishop; knight() refers
to the queen-side knight; knight K to the king-side knight.

Note that saying est;(P V @) is not the same as est;(P) V est;(Q). It istrue that
[est;(P) V est;(Q)] — est;(P V Q), but not conversely in general. The reason for
this is that there may be a situation in which player 7 a strategy to make either P or
Q true, but which one is up to the opponent. Imagine the case where the player has
simultaneously attacked (forked) a knight and a bishop. It is the opponent’s decision
which one to save. If the player wants to capture a bishop, the opponent denies her by
sacrificing the knight; if the player wants to capture a knight, the opponent denies her
by sacrificing the bishop. Both strategies fail individually but the strategy to capture
either abishop or aknight is a success.

Another example from chess is the notion of checkmate. A checkmate occurs in
chess when the opponent’s king is in check and has no legal move to escape. The
existence of a strategy for White to checkmate Black from a state s can be expressed in

our language as:

achyypii. (Check(Black))

12

where it is assumed that C'heck has aready been defined. This saysthat it is White's
turn to play and she has alega strategy from state s to reach a state in which Black is
in check and there are no legal moves available to escape from it. It must be Black’s
turn in such a state since it is not (legally) possible for Black to be in check on White's
turn.

As a another example, in the game Othello, we can state the fact that square P is

White at the end of the game:
ach; (W hite(P))

If we assume that the predicate W hite has already been defined, this says that player i
can make square P ultimately white (forever after a certain point), even though it may
change color from white to black and back again many times during the course of the

game.

2.2 GameKnowledge

The adversarial operators est;, irr;, and ach; allow usto talk about legal game strate-
giesin alogica language. However, they do not take into consideration the practical
difficultiesin the computation of such strategies. To decide whether White hasaforced
win in the game of NxN Go, for instance, is known to be PSPACE complete [16].

In our model we assume non-modal sentences of interest can be statically decided.
Examples (in English) of such sentences for Go include, “How many black stones are
adjacent to the block on point p?’ and “How many white blocks are there on the board?’
With a reasonable representation for the board, these kinds of questions are trivia to

answer quickly and efficiently.

13

When we allow modal sentences (including sentences with the adversarial opera-
tors) that refer implicitly to other states in the game the decision process is no longer
so simple. Search is generaly required and such a search may be intractable without
additional knowledgeto limititin someway. For example, “ Does Black have a strategy
to capture the white block on point p?’. Answering this question without any knowl-
edge of which moves are “reasonable’” to Go about capturing a block will likely be
intractable.

To combat thisdifficulty wetry to model how humans simplify the problem. Human
players when confronted with a decision problem like s |= ach;(¢) seem to engagein
several simplifying processes. One is to find the set of goals that have some bearing
on the goal ¢ of interest. If successful, this heuristic may narrow down the set of
possibilities dramatically. We model this human ability in life and death problems
by constructing an AND/OR graph representing the relevant goals or context for the
problem at hand.

In addition to finding the context of a problem, human players seem to have at their
disposal arepertoire of movesthat have worked in the past to accomplish similar goals
in similar situations. Sometimes, it is clear that the current situation is similar enough
to one encountered previously that the same move that worked there can be statically
determined to work in the current situation. More often though, finding the set of moves
that have worked in similar situations in the past merely serves as a good heuristic for
focusing on the likely candidates. Combined with knowledge about the set of relevant
goalsto the problem goal, a human player can use this heuristic to determine the set of
all relevant moves to try to achieve the problem goal by finding the relevant moves for

each relevant goal. Obviously for such a strategy to be correct with respect to perfect

14

Figure 2.1: A reasonable way to connect p to gq.

play, the set of moves considered must include at least one move that does in fact work,
when such a move exists.

An example of arule suggesting areasonable move for connecting p and ¢ shownin
figure 2.1. Thisrule states that playing on the point marked “ X is areasonable way to
connect the p and ¢ stones. It is reasonable because, while it is not guaranteed to work
in every context, there are many contexts in which it will work to connect the stones.
Our program makes use of hundreds of such rules for a number of different strategic
goals. A more detailed discussion of the rule language and goalsis provided in chapter
3 section 3.9

The question arises, why break the problem down into these two components: find-
ing the relevant goal's, and using rules such as the connect rule in figure 2.1 to generate
moves for each such relevant goal? Why not just “build in” the context into the pre-
conditions of the rules? The answer to this question is that there are so many dlightly
different positions where the same goal has very different reasonable moves that try-
ing to capture them in “if-then” rulesis very difficult. The structure of a given life and
death problem can be very complex requiring arecursive analysis of the position. Using
a goal theory to model it is a succinct and efficient approach: the goa theory handles
the problem structure while the knowledge base concernsitself only with which moves

are reasonable to achieve agoal inisolation —ignoring its relationships to other goals.

15

The strategic goal theory and knowledge base of rules suggesting moves for goals
in that theory form the basis of our approach. However, there are some complicating
subtleties.

One wrinkle is the fact that goals which may be achievable in isolation may not be
in conjunction with other necessary goals; there can be interactions between the two
which allow one or the other to be achieved but not both simultaneously. The most
well-known example of such a situation occurs in Chess when the opponent has two
pieces forked. The player may have one move which is guaranteed to save one of the
pieces, and a different move which is guaranteed to save the other, but no moveexistsin
common which will save both. Similar examplesin Go occur frequently. The question
of whether there is afork between two goalsisreally a question of their independence
or, more accurately, their dependence.

Intuitively agoal ¢ is digunctively independent from a goal « just if whenever itis
possible to achieve ¢ Vv 1, it is possible either to achieve ¢ or to achieve ¢. In a state s

we write:

s = ach;(¢ V 1) — [ach;(¢) V ach; ()]

A player has a fork attack between two goals ¢ and v if and only if they are not
disunctively independent. If, for example, the opponent has a fork attack between a
bishop and a knight, then she may capture one or other, but which one is the player’'s

choice. Inlogical terms, thereisafork attack between ¢ and ¢ iff

s = ach;(¢ V ¢) A (mach;(¢) A (mach;(v)))

There is a dual notion of conjunctive independence. Two goals are conjunctively

16

independent just if whenever they are both achievable individually they are achievable

collectively. Inlogical terms:

s = [ach;(¢) A ach;(¢)] — ach;(¢ A)

A player has a fork defense between two goals ¢ and ¢ if and only if they are not
conjunctively independent. For example, after the opponent has played her move to
fork abishop and a knight, the player hasafork defense. She may save one or the other

piece, but not both. In logical terms, there is afork defense between ¢ and ¢ iff

s |= ach;(¢) A ach;(¢)) A (mach;(¢ A1)

It is a difficult problem to determine independence between goals in a given po-
sition, but there are times when independence assumptions are plausible and seem to
correspond with human intuition as well as leading to the correct result. In the move
generation algorithm presented in the next section, we make independence assumptions
about goals whose value is statically known. These assumptions are heuristic but seem

to work well in practice.

2.3 Solving Lifeand Death Problems

A life and death problem is a problem that asks whether a point on the board can
be captured (by the opponent) or saved (by the player). A captured point is one that
cannot be occupied by the opponent at the end of the game. Such points may ultimately

be empty or occupied with friendly stones. Dead enemy stones are assumed removed.

17

The problem of capturing a point p from state s for player ¢ can be formalized as the

problem of deciding:
s = ach;(TwoFEyes(p))

where the predicate TwoEyes(p) will be defined more precisely in section 2.4.

It ispossibleto show that ablock is saved (uncapturable by the opponent) iff it hasa
strategy to maintain at least two eyes. Thisis because capturing a block requiresfilling
in all adjacent empty points. In theory, it need only have a strategy to maintain asingle
eye, but there are no such strategies since it is always legal for the opponent to just fill
the single empty point on histurn, capturing the block.

One way of making two eyes which is sometimes possible is just to play near to
the point to be saved and to build defenses around two empty digoint points. Such a
strategy is required when the point to be saved is hemmed in by enemy stones. When
there is more space to “run out”, another kind of strategy for making life isto establish
an unbreakable connection between the point to be saved and another friendly point
which can be saved. Ultimately these two strategies amount to the same thing: the point
in question is saved because it can make and maintain two eyes, but the techniques
applied by Go players to pursue one or the other of these strategies are qualitatively
different and knowledge about how to accomplish each of them is quite reasonably
kept separate in the knowledge base.

In the next section we present a simple language for life and death in Go that will
allow us to formulate life and death problems and theories in a logical language. In
section 2.1 we extend this language to include adversarial operators which allow us

to make statements about the existence of strategies to achieve goals. Chapter 5 has a

18

more formal presentation of the adversarial game logic with proofs of some of the basic
properties of the system. Section 2.5 works through a life and death problem in some
detail.

2.4 Thelanguage GO

There are redlly only a handful of predicates necessary to express basic life and death

ideas. We need the primitive concepts of

e occupancy —which points are occupied with black or white stones, and which are

empty.
¢ adjacency —which points are adjacent on the board.

e nearness — whether two occupied points are close enough together for the life of

one to affect the other.
e turn—whoseturnitisto play.
From these, we derive the concepts of
¢ friendly — whether two stones are of the same color.
e enemy —whether two stones are of different colors.

e block adjacent — there is a path of adjacent stones of the same color from a stone

to apoint.

The reader should note that our definition of an “eye” captures the concept of a

potential eye, or ablock-adjacent empty point that may or may not remain empty under

19

attack by the opponent. Having two eyes, as we have defined them, does not guarantee
anything about the block’s ability to live. In the next section, we will define operators
which can be applied to our definition of eyes, that say, in effect, “there is a strategy to
make the block have two potential eyes forever.” This statement will be our definition
of “alive’.

Table 2.1 gives the formal definitions in our language for these concepts. Asis
usual, free variables are assumed universally quantified.

Ideally, we would define Same Block as aleast-fixpoint of the definition given—in
fact, in chapter 6 that is exactly how we defineit. At this point, because we have not yet
discussed fixpoints or the modal z.-calculus, we give this less precise characterization.

Figure 2.2 shows examples of Block Adj, Enemies and —~Enemies.

Each of these predicates can be easily and efficiently statically decided using asim-
ple board representation. Chapter 3 discusses our program’s particular representation
scheme in more detail.

Currently, we define Near(p, q) to be trueif p and ¢ are both occupied and within
a Manhattan distance of 3 on the board, with no interposing enemy stones on the path
between them.

This language is useful for stating facts about a particular position, but lacks the
“temporal” operators necessary to describe future or past positions or to talk about
strategies to reach a goal position. These kinds of modal statements require additional
logical machinery. The next section introduces some adversarial operatorswhich allow
us to extend the basic language to handle these kinds of statements.

In the next section wewill present our strategic theory for Go. The goalsrepresented

in the theory correspond roughly to human notions of life and death theory though we

20

e Ocelp,c) -

Table 2.1: Definitions of some basic Go concepts

The point p is occupied with color ¢, with ¢ €

{BLACK,WHITE,EMPTY}}.

Adj(p,q) —The point p isimmediately north, south, east, or west of g.

e Near(p,q) —Thepoint ¢ is close enough to p to be of strategic interest.

Black(p)

W hite(p)

Empty(p)

Enemies(p, q)

EnemyNbrs(p,q)

Friends(p, q)

FriendlyNbrs(p,q)

ToPlay(i) —Itis player i’sturn to play.

<, <,=,2>,>—Therelationa operators for each sort of interest.

Occ(p, BLACK)

The point p is occupied by ablack stone.

Occ(p, WHITE)

The point p is occupied by awhite stone.

Occ(p, EMPTY')

The point p is empty.

[Black(p) A W hite(q)] V [W hite(p) A Black(q)]

The points p and ¢ are occupied with stones of different colors.
Enemies(p,q) A\ Adj(p, q)

Points p and ¢ are adjacent enemies.

[Black(p) A Black(q)] V [W hite(p) A W hite(q)]

The points p and ¢ are occupied with stones of the same color.
Friends(p, q) N\ Adj(p,q)

The points p and ¢ are adjacent friends.

21

SameBlock(p, q,1)

BlockAdj(p, q,1)

Liberty(p, q,1)

Atari(p, i)

Suicide(p, 1)

«— Oce(p,i) A 3r Oce(r,i) A Adj(p,r) A

[r = qV SameBlock(r,q,1)]

Point p isin the same block as point ¢ iff

p and ¢ are the same point, occupied with stones of color 4 or
p is adjacent to apoint » which isitself

in the same block as ¢.

Ir SameBlock(p,r,i) A Adj(r,q)

Point p is block-adjacent to point ¢ iff

itisin the same block as a point adjacent to q.

Empty(q) N\ BlockAdj(p,q,1)

Point ¢ isaliberty for p iff

p isblock-adjacent to ¢ and ¢ is empty.

[Vq,r [Liberty(p,q,i) A Liberty(p,r,i)] — q =r] A

3t Liberty(p,t,i)

A point p isin atari if it is has exactly 1 liberty.

Empty(p) AVq Adj(p,q) — [~Empty(q) A

[Oce(q,1) — Atari(q)] A

[Occ(q,i) — —~Atari(q)]]

An empty point p is suicide for player ¢ iff al its neighbors
are occupied — the friendly neighbors (of color 7)

arein atari, and the enemy neighbors (of color 7) are not.

22

Eye(p,q,i) <— Liberty(p,q,i) A Suicide(q,i)
A point g isan eyefor point p iff g isaliberty of the block on p and
g issuicide for the opponent.

TwoEyes(p,q,r,1) +— FEye(p,q,i) N\ Eye(p,r,i) Nq #r

Points ¢ and r together give p two eyes iff
they are both distinct eyes.

Point(p,i) +— Occ(p,i) V 3q Eye(q,p,i)
The board point p is apoint of territory for player ¢ iff
p is occupied with a stone of color 4 or

p isan eyefor ablock of color .

do not elaborate the goals of saving and capturing into amore detailed theory involving
eyes. Mainly the theory addresses capturing, saving, connecting to points, and severing
from points. The purpose is to explicitly state the logical relationships between these

goals so that we can identify the relevant goals in a particular life and death situation.

2.5 A strategictheory for life and death in Go

There are four basic strategic conceptsin our theory: capture, save, connect, and sever.
Capture and Save are the primary goals in the theory. All life and death problems
that we will consider will be framed in terms of deciding whether a given stone can be

captured or saved. When the object block is completely surrounded with (statically)

23

Figure 2.2: Some examples of Go concepts.

008

BlockAdj(p, q, BLACK) SamebBlock(p, q, BLACK)
BlockAdj(p, r, BLACK)

Enemies(p, q) Friends(p, q)

Atari(p, WHITE) Eye(p, q, BLACK)

safe enemy stones (such asinfigure 2.10) then it is not necessary to consider other cap-
ture or save goals to analyze the problem. The problem is simply a matter of deciding
whether the object block can make two eyes or not. In figure 2.10, block D1 can make
two eyes by playing on point F'1. The resulting shape is shown in figure 2.11. The
goals Capture and Save are defined formally below. The point p is the object block to
be saved or captured. The points ¢ and r refer to eye points.

24

1. Save(p,i) = ach;(3q,r TwoEyes(p,q,r,1))
2. Capture(p,i) = ach;(Vq,r ~TwoEyes(p,q,7,1))

Note that these goals are about the existence of strategiesto make something true.
Capture(p), for instance, is satisfied when there is a strategy to make the point p ir-
refutably a point of territory at some time in the future.

Not al life and death problems are so simple as 2.10. Often the question of whether
agiven block can be captured hinges on whether other blocks can be captured or saved.
The purpose of our goal theory isto relate the capturing or saving of an object block to
the other capture and save goals that have some relevance. Thisiswhere the secondary
goals, Connect and Sever come into play. Connect is the goal of establishing block-
adjacency and, Sever, itsdual, isthe goal of preventing block-adjacency.

If ablock isto be saved and it is not completely surrounded asin figure 2.10, it may
liveif thereis astrategy to expand the block until it has enough additional surrounding
empty space, or an increased ability to articulate eyes. As an example, consider figure
2.3. Here the Black stone on F'3 isin danger of being cut off by a White move at D2.
To save it, she can play at D2 herself, as part of a strategy to connect it to the other
Black stone on point C'2.

The goals Connect, and Sever are formally defined as follows:

1. Connect(p, q,i) = est;(BlockAdj(p, q,1))

2. Sever(p, q,i) = irr;(—BlockAdj(p,q,1))

Notethat for these goalsthe point ¢ need not be occupied. Thismay be confusing for

Go playerswho typically use the term “sever” when talking about cutting two occupied

25

Figure 2.3: Black can connect her stones at C2 and F'3 by playing at E2.

? . .

stones apart. We useit in that conventional sense, but al so to mean keeping an occupied
point p from extending itself to a block which is adjacent to the point ¢, regardless of
whether ¢ isempty or occupied with an enemy stone.

We now give a strategic theory that relates the goals of capturing and saving, using
Connect and Sever 2.

When reading these axioms be aware of the following subtleties:

1. It is perfectly possible to connect a block to, or sever a block from, an empty

point.

2. In the C'apture axiom, the point p is of a different color than the player 7 so an

enemy of p isactually afriend of the player who istrying to capture p.

3. For axiom 2.5.1 the right-to-left implication is trivial since it includes the case
g = p. Similarly, for the left-to-right implication of 2.5.2. When there are no
points ¢ different from p satisfying the right-hand side of axiom 2.5.2, no other

capture or save goals have relevance to Save(p, i) and we are in a situation like

’The theory is given as a pair of axioms, both of which should, in fact, be theorems derivable from the rules

given in chapter 6 for some fixed definition of Near. We won't attempt that derivation in thisthesis.

26

that of figure 2.10 where to live p must articulate eyes internally. Similarly for

Capture(p,i) inaxiom 2.5.1.
The axioms and their English meanings are now given below:

Axiom 2.5.1.

Capture(p,i) «— Yq Sever(p,q,i) V
[[(Near(p, q) A Enemies(p,q)) — Save(q,i)] A

[(Near(p, q) N ~Enemies(p,q)) —> Capture(q,i)]]

Axiom 2.5.1 gives the compl ete rel ationship between capturing and saving. It says
that a point p is captured iff for each point ¢, either p can be severed from ¢, or if ¢ is
an enemy stone, near to p then it can be captured, or if ¢ isafriendly stone, near to p,
then it can be saved. As mentioned, the predicate Near is currently defined to mean
“within a Manhattan distance of 3

Thereisadua axiom relating Save to Capture:

Axiom 2.5.2.

Save(p, i) «— Jq Connect(p, q,i) A
[[((Near(p, q) A ~Enemies(p, q)) A Save(q,i)] v

[(Near(p, q) A Enemies(p,q)) A Capture(q,i)]]

Axiom 2.5.2 saysthat a point p is saved iff it can be connected to a point ¢, near to

p that is either friendly and saved, or enemy and captured.

27

2.6 The goal graph: Using the strategic theory to solve life and

death problems

In this section we show how the strategic theory presented in the previous section can
be applied to find the relevant goals or context of alife and death problem. We begin by
building a model of the theory using an AND/OR graph. The reader should be careful
not to confuse this graph with the graph of the game state space — they are entirely
different. Thisgraphisamodel of the strategic theory. The nodes correspond to goals
in the theory; they do not represent positionsin the game.

A strategic theory for a particular problem can be modeled as an AND/OR graph
which we call the goal graph. Figure 2.4 shows the AND/OR graph for the goal of
saving point P17. We've abbreviated the goals for Capture, Save, Connect, and Sever
as“C” and“S’, “Con”, and “Sev” respectively. The predicate Enemies is abbreviated
“En”.

Each branch from the root goal corresponds to one valuation of the point variable ¢
inthe existential quantifier 3¢ in the definition of Save(p, i) giveninaxiom 2.5.2 above.
All points ranging from (1,1) to (19, 19) are considered in this hypothetical model.
The definitions in the goal theory are recursive so goals can occur as descendants of
themselvesin the graph creating cycles.

We originally formulated the question of whether or not a point p could be saved
from a state s as the decision problem s |= Save(p,i). Inthe goa graph model, the
guestion of thelife of the point p is now whether the root goal of the AND/OR graphis
true or false. In principle, evaluation of a node in the graph just requires searching for

astrategy. For instance, if the node is Save(p) for some point p, we are looking for a

28

strategy to achieve TwoFEyes(p, q,r, i) for some points ¢ and r. If such a strategy can
be found then the value of the node is true, and if no such strategy existsthenit'sfalse.
However, since, this sort of search isintractable in general (which iswhy we were led
to this kind of analysis in the first place), we cannot know what the value of the goal
is, unless it can be statically determined. Using the goal graph, we may be able to use
the static determination of other nodes to decide a node of interest. For each node that
is statically unknown, we examine its children in the graph. If they can be statically
determined, then the node itself will be known.

To evaluate a goal graph with root node R, we determine the static value of al the
nodes in the graph and then, starting from the root, recursively evaluate the nodes in

depth-first order. The algorithm is sketched below:

e Initialize the value of each node in the graph to “true”, if it is statically true,

“false”, if itisstatically false, and “unknown” otherwise.

e if node V isknown, return its value, otherwise mark N “visited” and recursively

evaluate each of N’'sunvisited children.

e If node N isan AND-node, then itis“true” if al children are true, “false” if any

child isfalse, and “unknown” otherwise.

e |f node N isan OR nodethenitis“true” if at least one child is “true”’, “false” if

al children are “fase”’, and “unknown” otherwise.

In our model we assume that the truth value of non-modal formulas can be decided
quickly. For example, it is easy to check, for any pointsp and ¢, if s = Near(p, q).

Modal, and specifically adversarial, formulas are assumed to be neither true nor false

29

but “unknown”, unless we have specific static knowledge otherwise. This reflects the
fact that it is generally much more computationally involved to determine their truth,
often requiring a search of positions other than the current one for information.

We can use our static knowledge of the truth of predicates such as Near to avoid
having to actually build the full AND/OR graph shown in figure 2.4. We use the fol-
lowing observation to eliminate nodes from the graph which are logically redundant.

Suppose the theory gives us
A<— BANC

for some goals A, B, and C. If B is known statically to be false then A is known
statically to be false aswell. Similarly, if

A« Bv(C

and B is known statically to be true, then A is known statically to be true as well.
In figure 2.4, for instance, we can safely (without affecting the value of the root of
the tree) remove any subgraph of Save(P17) for which the leaf node Near (P17, q) A
Enemies(P17, q) is statically known to be false, and similarly for any subgraph with
aleaf node Near(P17,q) A =Enemies(P17, q) which is statically known to be false.

Theright side of figure 2.5 showsthe AND/OR graph (without the redundant nodes)
for theground goal Save(P17, BLACK) inthelifeand death problem given on the left
of thefigure. The nodes of the graph are labeled with the goal they represent. The player
argument of the goal is omitted in the graph, so, for instance, Save(P17, BLACK) is
written Save(P17). No confusion should result since the player can be determined by
the color of the object — Save and Connect goals have the same player color as their

objects, Capture and Sever have different player colorsfrom their objects. The object

30

points are given in the notation < column letter><row number>. The goal whose truth
value is being decided is called the root goal and isidentified in the figure by a double
border. In this example, the root goal is* Save(P17)”.

To save space in the diagram we do not always interpret quantified formulas as
AND/OR graphs. Normally, an existential quantifier is interpreted as an OR-node
with children for each possible interpretation of the quantified variable and a universal
guantifier is interpreted as an AND-node similarly. However, if the quantified variable
ranges over points there may be a considerable number of nodes that need to be repre-
sented in the graph. In practice our rules limit the number of pointsto a small number
but to avoid enumerating all the rules used in the problem we just make one node which
stands for the whole sub-graph in the tree.

Some nodesin the graph are decorated on the top witha“+” or “-”. These are nodes
whose value is known statically to be true or false, respectively. For example, the node
corresponding to Save(O15) A Save(P12) A Save(Q13) is marked with a“+”. Each
of these three goalsis statically known to be true. Recall that static knowledge of agoal
such as Save(0O15) means that we are confident that a strategy exists to establish two
eyesfor O15. When agoal of theform Save(q) isstatically known to be true, or agoal
of theform Capture(q) is statically known to be false, we say ¢ is safe. The safe points
are marked in the Go position on the left with triangles.

We do not show the expansion of nodes whose value is statically known (marked
witha“+” or “-"). Goalswhose value is unknown and that have children that are not

shown in the graph are marked on the underside with an ellipsis. The godl,

dg Connect(R14, q) A Save(q)

31

Figure 2.4: The AND/OR graph for Save(P17)
Saye(P1T)

one branch for each

board poird © A1, ..., Tm

Connect{P17, A1) Connect{P17, T19)

Hear(A1, P1T) Sawe(A1) Capture(A1)
~—En{P17T, A1) = Hear({A1, PAT) .
~En({P1T, A1)

for instance, has children which are elided.

Cyclesin the graph indicate mutual dependency. Mutual dependency among goals

of interest is very common in human analysis of problems. In figure 2.9, for example,

there are only two goals whose value is unknown: Save(D1) and Capture(G2) and

they are mutually dependent. This situation is given the name semeiai in Go terminol-

ogy.

Figure 2.10 shows a position where there is just the goal to save. Black must play

amove to directly save his block by making two eyes. Figure 2.11 shows the position

after black has played. Now the root goal graph is statically known and both the black

and white stones are safe. In this case, the goal theory is not helpful to us since there

32

Figure 2.5; A life and death problem Save(P17) on the l€eft; its goa graph on the right.
i 5 E = b |

’
Sawve[P1T)

A 2 - -4
1q ConnectiP17, q) - |[Caplre(P15) - Ts[Capurs o 17).
saveiq) purs(aie) |[JCapura(P18
" 5 1 T
wq Sever[P15,q)] [saw(R14) ava(O15] .
14 Capure(g]] - save(P12)~
[wq S8 verj@IE, q) v ave[a13
12 Capure(q]
8 ¥
[—iq Connact(R 14, q].—]
sawehy)

S =5k

are no friendly blocks to connect to and no enemy blocks to attack. Axiom 2.5.2 tells
usonly that Save(D1) «— Save(D1). In this case the move F'1 is generated directly
from the goal Save(D1).

The goal graph represents the universe of relevant goals for solving problem. As
long as the root of the goal graph is not statically known (marked with a“+” or “-"),
the problem’s solution is still unknown and we must continue to search for a strategy to
make it statically true. If no such strategy can be found then it is false. We use the goal
graph to narrow down the set of moves considered in the strategy search by applying
rules from a knowledge base to generate moves for each goal in the graph.

In the starting position, figure 2.5, Black must save her block on P17. To do this,
she may play moves (like liberty extending moves) to directly save the block, but the
goal graph suggests other alternatives too. She might try to connect P17 to something
that is itself safe. This goal is labeled “2” in the diagram. In this case there are no
blocks to connect to and this goal is statically false. Another possibility is to capture
the surrounding White blocks: O17 or O18. This goa is labeled “4” in the diagram

33

Figure 2.6: The problem after Black plays at 1 (White's turn).

+
wig Sever (P17.9]- Sawe(Q1E)| [Sawe(017)~
Capture(q] Sawe(018)

- Conrect (P135,q) ~

Ca y o
Save(q) [pruret]]

DaptI:re[l.'-'ﬂ 3)| [Capture(R14) |
t

|-—,rq SeverfR14,q)
Capture(q)

and again is recognized statically as being hopeless. The remaining goal, labeled “3”,
to capture P15 or P16 is possible.

When we have analyzed the position fully and determined the statically known

34

Figure 2.7: The problem after Black plays at 1, and White responds at 2.

I‘Iq Cornect P17, q) .~
Save(q)

"
Save(R14) | Fave[013)
“‘-..,]:; \-]b

q Connecti P17,q) ~] P Connecti P17,9) ~
Savelq)

Sawvelq)

4
|[¥a Sever{F13, dl|[save(@13)

/

q Connecti P17,q) ~
Save(q)

goals, we are ready to generate candidate moves to try to determine if the root goal
istrue or false (i.e. if there is a strategy to achieve safety for P17).

The move generation algorithm generates moves for each node in the graph in

35

Figure 2.8: Black captures all the White stones, saving P17.
B o ¥ 0 B =] T

] ! I".I 17 -

N i

T -
o= Safe

depth-first order starting with the root. No moves are generated for goas which are
statically known.

For example, in figure 2.5, to generate moves for the graph rooted at goal 3, we
would generate moves for goals 3, 5, 6 and 8 but not from goal 7, since that goal is
statically known to be true. No moves would be collected from goal 1 — even though it
isachild node of 3 —sinceit has already been visited on the way to goal 3. The move
generation algorithm is given below. R isthe root of a goal (sub)graph for which we

want to generate moves.

36

Figure 2.9: Black can win the race to capture by playing on points G1 or F'1.

- .I. =
Wi SeverC1,q) -
e

Figure 2.10: Black can make life by playing on point F'1.

37

GENERATE_MOVES(R)

D if Rvalueisstatically known

2 return ()

(3) Mark R asvisited

4 Mowves +knowledge-base generated moves forR
5 foreach unvisited child C' of R

(6) Moves < Moves U Generate_Moves(C')

@) return Moves

After amoveis played, the opponent’s goal graph is generated and moves are col-
lected for her to play. When one is selected and played, we generate the player’s goal
graph in the resulting state, and so on, until the problem is determined or we run out
of time. Because positions often do not change radically from move to move, the goa
graph after such an exchange is likely quite similar to its original structure. However,
sometimes — after a big capture for instance — the structure can change radically. We
regenerate the goal graph after each move rather than attempting to update it incremen-
tally.

Continuing with our example, figure 2.6 shows the position after Black tries the
candidate move P13 3. Now it is White's turn and her root goal is the negation of
Black’s, namely to Capture P17. Her goa graph (shown to the right of the diagram)
dictates that she must try to save P15 and Q16. She chose to play at Q15 and the
resulting positionis shownin figure 2.7.

Now it is Black’s turn to play and she must again choose a move that works to

3For illustration we have selected a move that actually works to solve the problem. The move generation algo-

rithm, of course, does not always choose the correct move to try first.

38

capture P15 or Q16. Figure 2.8 shows the position after Black plays at S15, White
responds at 7'18, Black captures the White stones at 7'16. In thisposition it is White's
turn to play and her root goal, to capture P17 is statically determined to be false. At
this point the search algorithm would backtrack to the last choice point and continue
searching for a solution. When it is determined, finaly, that White has no means of

preventing Black from saving P17, the problemis over.

2.7 Correctnessof thealgorithm

There are two important assumptions that underlie the correctness of the move genera-
tion algorithm. First, the knowledge base must be complete in the sense that if thereis
amovethat ispart of astrategy to achieve goal R then it issuggested by the knowledge
basefor R or asub-goal of 12 inthegoal graph. Second, when agoal isstatically known,
itisindependent of itssiblingsin the graph. More specificaly, suppose G| = ach;(F,),
Go = ach;(P,), G, = ach;(Py). If G = AND(G4,Gs, ... ,Gy) is statically known,
then P, isconjunctively independent of Po,APsA---AP. If G = OR(G4,Gs, ... ,G,)
then P, isdigunctively independent of P, vV PV - - -V P

This assumption comes from the following analysis. Recall, earlier in section 2.2
we discussed conjunctive and digunctive independence. There we said that agoal P is
conjunctively independent of agoa () just if whenever it is possible to achieve P and

Q separately, there is a strategy to achieve them jointly. In logical terms,
[ach;(P) A ach;(Q)] — ach;(P A Q)

If we have ach(4) «+— ach(B) A ach(C) for some goas ach(A),ach(B), and

ach(C), and ach(B) is statically known to be true, then, conjunctive independence

39

of B and C' amounts to the statement
ach;(C) «<— ach;(A)

This means that in generating moves to try to achieve and AND node ach;(A) we
are justified in considering only moves directly suggested by the knowledge base for
ach;(A) andfor ach;(C) and ignoring movesfor ach;(B).

Similarly, if we have ach;(A) «— ach;(B) V ach,(C) and ach;(B) is statically
known to be false then disjunctive independence of B and C' amounts to the statement

that
ach;(A) «— ach;(C)

Thisjustifiesignoring moves generated by statically false subgoals of an OR-node.

40

Chapter 3

Program

41

3.1 Introduction

In chapter 2 we showed how to use a strategic theory of life and death to find moves
relevant to a given life and death problem. The move generation algorithm we gave
there uses a goal graph of the goals relevant to the problem and a knowledge base of
moves to find reasonable moves for each goal in the graph whose value is not stati-
caly known. The collection of al such movesis the set of moves that are explored to
determine whether the root goal istrue or false.

In this chapter we present the data structures and algorithms that are used to stati-
cally decide and generate moves for each of the strategic goals. Many of the structures
we create to do this will be familiar to go players and programmers; they include:
blocks, groups, cores (what some programmers call strings), eyes, and an implementa-
tion of the goal graph discussed in chapter 2.

Figure 3.1 shows a schematic of the program. The major data structures occupy the
left-hand-side of the" State” box. The right-hand-side shows modules used to interface
with the knowledge base and support incremental state update. The Rule Matcher reads
rules from the knowledge base and matches them to the board. Rules that match have
their assertions stored in an (in-memory) Assertion Database. The Constraint Manager
is a truth maintenance system that manages constraints on the board and blocks re-
quired for the validity of assertionsin the Assertion Database. The Reversion Manager
interacts with all the incremental data structures in the state to support backtracking.
Since almost every data structure has at least some incremental components, we do not
show the connection between the Reversion manager and the rest of the state (it's just

marked with a double-line border).

42

Outside the State box and to the right are the knowledge base, containing the heuris-
tic rules, and PET, the editor used to enter and maintain them.

At the bottom, there is a box for the search algorithm that interacts with the data
structures in the state to determine which moves to try at each ply of a problem. The
search algorithm is just a standard boolean minimax search with no frills or move-

ordering heuristics.

3.2 TheBoard

Obviously the starting point for any go program is a representation of the board. The
board records the color of each of the 361 board points. When alegal moveis played
on a point, the board is updated to reflect the change. We refer to the color of a point
as its occupancy. When the occupancy of a point is black or white, we refer to it as a

stone.

3.3 Blocks

Two points are adjacent if one is directly north, south, east, or west of the other on the
board; diagonal points are not adjacent. Two points are in the same block if they are
of the same color (black or white) and connected by a path of adjacent stones of that
color. An occupied point p is block-adjacent to an empty point ¢ if ¢ is adjacent to
some stone in p’s block. The set of al such empty block-adjacent points is called the
block’s liberties. The rules of go dictate that when all the liberties of ablock are filled,
the block is captured and all its stones removed from the board. All stonesin the block

share the same fate — if one is captured they are all captured — so blocks are the basic

43

Figure 3.1: The program structure.

= The Board ™ Dule
+ Matcher ™
= Elocks
= Cotitie ction s +‘ Constraint
Manager -
e Group s +—
hzsertion
Database —nr-
— Cores +‘
— Evea +—
Reversion
el Goal Graph Manager

The 5tate

N

Eriowl edgeb aze

FET
Pattem
Editirug
Tool

Gearch Algorithm

tactical unit in the game.
It isalso useful to consider blocks more loosely related than the adjacency required

of the stonesin each block.

3.4 Connections

The strategic theory presented in chapter 2 for capturing and saving stones, includes

the two goals:

Connect(p, q,1) <— est;(BlockAdj(p, q,1))
and
Sever(p, q,i) +— irr;(=BlockAdj(p, q,1))

To statically decide if Connect(p, q, 1) istrue, we first search for “connect” rulesin
the knowledge base that match between the points p and ¢. If a connect rule is found,
we create a connection data structure to record this fact. However, the existence of a
move to connect p and ¢ is not itself enough to pronounce Connect(p, q,1) statically
true. The opponent may still have moves to sever them. If a connect rule is found
(and connection structure created) we say that p and ¢ are possibly connected. If, in
addition, the opponent has no movesto sever p and ¢, then we say that p isunassailably

connected to ¢ and consider Connect(p, q,) staticaly true *.

By considering opponent moves in aposition in which it is the player’s turn to play, we are implicitly assuming
that if the opponent has no moves in this state, she will not have any moves after some move by the player. In go
thisis areasonable assumption since the player may just pass her turn leaving the state unchanged except for whose

turn it isto play.

45

Figure 3.2: The black and white stones form a crosscut.

If no connect rule is found in the knowledge base that matches for points p and
q then Connect(p, q,i) is considered statically false and no connection structure is
created. The existence of aconnection structure meansthat C'onnect(p, ¢,) ispossible
(i.e. not statically known to be false).

Connection rules are constructed according the heuristic that, in some (usually
many) contexts, the points to be connected must be able to at least form a crosscut.
Figure 3.2 shows a crosscut pattern. Crosscuts are significant because they indicate that
there is some hope that the black or white stones will be able to connect by capturing
one of the adjacent enemy stones. Without the ability to form a crosscut pattern there
is no hope that they will be able to connect if the opponent actively opposes it. Each
connection rule in the knowledge base satisfies the property that, when the stones are
considered in isolation, with no enemy stones nearby, they will at the very least be able

to join in a crosscut pattern.

3.5 Groups

A maximal set of possibly connected blocksis called a group. Groups on a point p are
computed using a standard transitive closure algorithm on the set of connections from
p.

Groups are the “loosest” tactical unit considered in our life and death problem

solver. They represent the most optimistic assessment of which blocks will be able

46

to merge (from the owner of the block’s perspective). Very often, however, this assess-
ment is overly optimistic. The opponent may have ways of cutting apart the group by
attacking and severing its connections.

Groups are not very useful for solving life and death problems but they are useful
for getting a reasonable upper bound on the territory to be gained or lost by attacking a

block — something which is necessary for afull-playing go program.

3.6 Cores

The maximal set of blocks that are unassailably connected is called a core. Since it
is possible that the opponent may not be able to sever either of two unassailable con-
nections but may have a fork to sever one of the two, unassailable connectivity is not
transitive. Put another way, even if Connect(p, ¢, i) and Connect(q, r,), it is not nec-
essarily the case that Connect(p,r, i).

After all connection structures have been created, we create core structuresto record
information about the collection of blocks in the core. Except for the possibility of
forks, all the blocksin the core can be assumed to live or die together. Cores are thus a
sort of natural generalization of the block concept to include stonesthat are not adjacent
but nevertheless known to be able to connect. The largest possible core for ablock is
the whole group, which reflects the most optimistic assessment of connection between
the blocks. Some go programmers call cores, “strings’.

When a coreistightly surrounded by the opponent it must be able to articul ate eyes
internally to save itself. When thereisalot of “friendly” space around the core, it has

more optionsto either articulate eyes if attacked, or connect to another core which has

47

Figure 3.3: Two rules for recognizing eyes. Stones marked with atriangle are optional.

1st line eye rule 3/4 filled side eye rule
center (A center (A
bor der (B) bor der (B)

eyes (or friendly space). We call the measure of the amount of friendly empty space
around acoreitsaura.

The life or death of a core depends on its ability to create eyes, either by making
them, reinforcing existing ones, gaining access to enough friendly space to be guaran-
teed to be able to articulate eyes, or to connect to another friendly core that is able to
do any of these things.

The next two sections describe data structures that, in conjunction with cores, alow

us to statically decide save and capture goals.

3.7 Eyes

Chapter 2 defines an eyefor apoint p asaliberty point ¢ that is suicide for the opponent.
Such points are necessarily surrounded by stones of the same color asp (since these are
the only pointsthat are suicide for the opponent).

To stetically decideif Save(p, i) istrue based on its ability to form eyes, we match
eye rules from the knowledge base for the point p. If arule matches, we create a data

structure called an eye structure to record this fact. Figure 3.3 showstwo eye rules.

48

The eyerulestell usthe border and center of the eye. The border isthe set of points
surrounding the space, the center the set of pointsthat are surrounded. We say two eyes
e; and e, aredigoint if the border of e; isdigoint from the center of e, and the border
of e, isdigoint from the center of e;. The borders of two digoint eyes may overlap.

If the core on apoint p has two eyes then we say that core is possibly alive. An eye
for which the opponent has no attacking movesis called unassailable.

If the core on a point p has two digjoint unassailable eyes, then Save(p, i) is con-
sidered statically true.

If two disjoint eyes cannot be found for a core, and the core cannot obtain resources
in other ways (see section 3.8 below), then Save(p, i) is statically false.

The following rules determine a minimum (min) and maximum (max) number of

digoint eyesfor ablock on point p.

1. if there are two non-overlapping eyes both of which are unassailable, min = 2 and

max = 2.

2. if there are two non-overlapping eyes, exactly one of which is unassailable, min

=Jland max = 2.

3. if there are two non-overlapping eyes, neither of which is unassailable, min = 0

and max = 2.
4. if there is one eye which is unassailable, min = 1 and max = 1.
5. if thereis one eye which is not unassailable, min = 0 and max = 1.

6. if there are no eyes, min=0and max = 0.

49

3.8 Aura

Eyes provide one method of statically determining Save(p, i). However, our eye knowl-
edge is not complete. Sometimes, a core may have no eyes (or just one eye) according
to the knowledge base, yet still be able to make two eyes by virtue of the amount of
empty space surrounding it. Such cases are better characterized algorithmically than by
the kinds of rules we have in our knowledge base.

To determine whether a core has enough surrounding friendly space to articulate
two eyes under alternating play we use a measure called aura. This is a weighted
count of the space surrounding the core. The weights are determined by the presence
of friendly vs. enemy surrounding cores.

The amount of auraacore hasisrecorded in the core structure directly. A core with
sufficient aura to be able to articulate two eyes (a value determined by trial and error)
ispossibly alive.

If the opponent has no attacks to reduce the aura (drastically) then we say the aura
isunassailable.

If a core on point p is possibly alive and the core's aura is unassailable then we
consider Save(p, i) statically true.

If the coreis not possibly alive then we consider Save(p, i) statically false.

Eyes and aura are the only ways a core can be considered possibly alive and
Save(p, 1) staticaly true or false.

If itis player i’sturn and she has a core on point p for which Save(p, i) isstatically
true or Capture(p, i) is statically false, then we say the core on point p is safe. In the

examples given in chapter 2, the safe stones were marked with triangles.

50

3.9 Knowledge base

Most of the declarative knowledge in our system is knowledge about which moves
are reasonable to establish their goal. This knowledge is broken down into a series of

if -then rules of the form:

If precondition X holds for object p then move M is reasonable to establish

god ¢.

The kinds of conditions that X can represent divide naturally into two categories:
strict occupancy constraints, such as “ There must be a Black stone on point p” and at-
tribute constraints such as“ The Black block must have 2 or more liberties.” In addition
we can have boolean combinations of constraints.

Because board occupancy plays such a central role among the constraintsin most of
our rules, we devel oped agraphical pattern editor called PET that allowsthe knowledge
maintainer to enter these constraints graphically on rectangular board sections called
“maps’. Figure 3.4 shows a variety of typical pattern maps. Rules may have multiple
maps linked by some attribute constraint that identifies common objects in the two.

The knowledge base currently has 725 rules. Table 3.1 shows the breakdown of
rules by purpose. These purposes are away of categorizing the knowledge more finely
than the four strategic goals of chapter 2. Each purpose has associated rules that apply
to one of the strategic goals in some particular circumstance. The strategic goal for
each rule type is given in parentheses following the purpose name.

Figure 3.4 shows a variety of different rules.

51

Table 3.1: Number of rules for each purpose.

Purpose Number of rules
Enclose (Sever) 8
Escape (Connect) 1
Eye fight (Save, Capture) 229
Eye recognition (Save, Capture) 126
Save and Capture (Save, Capture) 156
Connection recognition (Connect, Sever) 22
Sever/Split/Connect/Join (Connect, Sever) 183
Total 725

3.10 Rulefiltering

As often happens in knowledge-based systems one would like to be able to override
genera rules when more specific ones apply. To determine aranking among rules that
match agiven position, we assign a specificity to each rule computed as a measure of the
information content of the pattern. Thisis determined at the time the pattern is created
and stored with the pattern. Among all the patterns that hold in a given state s for a
particular goal and objects, we prefer the most specific, which we call the dominant
pattern. We say the dominant pattern filters the less specific ones.

For example, itisalso useful to be ableto override general eye knowledge with more
specific knowledge. Figure 3.5 shows a position where Black might have two digoint
eyes by virtue of two matches in the corner of the rulein figure 3.6. The “B” indicates
aborder point, the“C” indicates a center point of the eye. Reading this position out we

would determinethat in fact, Black can make only one eye, but reading the situation out

52

Figure 3.4: A variety of rules.

& O—
micwe |

mowe(good black X, ;I:;I; I[:vla ch X
ﬁiai?:;“- Escape(A]) DecreaseEyes(A)and Erclose(A))

“‘:\—‘

A '—K

{}—e—{} LRJ.
mcwe |
good black X, good ,Ejach ‘. good black X,
Capture(f]and Enclose(d |) Conrectif, B)) Sever(d, B))

Legend #—q p—é—q'}“f , I

Black ".I'l.hrte Ellacl-i ".I'l.hrte Ellacl-i Empty

Empt;r Emp’q.r '-.I'l.hrte
or

Ermnpty

takes time. To make a static determination that Black has just a single eye, we need an
additional rule that matches the position and has higher specificity than the rule shown
in figure 3.6. Figure 3.7 shows the occupancy constraints of such arule. Typically, we
would also require that the surrounding white blocks be safe, so that Black could not

capture them as part of an escape.

53

Figure 3.5: Applying rule 3.6 incorrectly gives Black two digjoint eyes (borders marked with

“B”, centerswith“C".).

Figure 3.6: An eyerule.

3.11 Constraint Manager

To maintain the integrity of the data structures representing board knowledge we em-

ploy aconstraint manager to propagate board occupancy changes to any data structures

that may be affected.
Each data structure may be either award or a support (or both). Wards are objects

Figure 3.7: A more specific eyerule.

that require notification if some object they depend on changes. Supports are objects
that are depended upon by other objects. When a support object changes (including
possibly when it is created and destroyed) it alerts any wardsthat have registered them-
selves as dependent. The notification received by the ward includes a message parame-
ter that allowsthe support to pass information about the nature of the change. Theward
itself may be a support of another ward. In this case when it receives an dert it may in
turn alert another ward. Obviously, support cycles are prohibited.

There are two types of wards that behave differently when aerted: synchronousand
asynchronous. Asynchronous wards respond by alerting their wards immediately upon
receiving an aert themselves. Synchronous wards require a notification to propagate
alertsto their wards.

Synchronous natification is useful in the case where award has multiple dependen-
cies and requires knowledge of al of them before making a decision about alerting its
ward. Consider for example an AND-node with two children X and Y whose values
are 0 and 1, respectively. In the asynchronous case, if X changesvalueto 1, the AND-
node itself changes value from 0 to 1 and anything that depends on it must be notified.
However, if later, Y changes from 1 to O, the AND-node's value changes back to O,
and again anything dependent on it must be notified. Using synchronous notification
instead, we wait until both X and Y are finalized before alerting any wards, avoiding
two potentially expensive updates.

The order in which the data structures of the program are provided synchronous
notification is determined by an update cycle that reflects their natural dependencies:
first the board occupancy, then blocks, relationships, groups etc.

The constraint manager takes board and block changes and notifies anything that

55

depends on them through a constraint system. An atomic constraint is an expression of

the form:
(term) (RelOp) (term)
A (term) is
Occ(p) | Libs(p) | number
A (Relop) is

<l <=l=1>1>=

Occ(p) takes values BLACK, WHITE, or EMPTY depending on the occu-
pancy of the point p. Libs(p) isthe number of liberties of the block on point p.

Each atomic constraint has a value determined by evaluating its expression. In
addition, we have AND/OR-constraints that can have an arbitrary number of constraint
children. Using AND and OR constraints we can build arbitrary boolean constraints
on the four terms listed above. The constraint manager notifies any constraints whose
terms have changed since the last move and the constraint propagates the notification

up to its parent recursively.

3.12 Assertion Database

The assertion database holds al of the rule-derived facts or assertions about the posi-
tion. Assertions may be of different types; the data for the assertion varies according to
type. Not all assertion purposes have rules associated with them yet in the knowledge
base.

All assertions have the following fields:

56

name — the name or purpose of the assertion. One of

— Defensive purposes: {increase liberties, break out, escape, connect, join,
increase eyes, reinforce eyes, save, live, increase aura, semeiai increase lib-
erties }

— Offensive purposes. {decrease liberties, trap, enclose, sever, split, decrease

eyes, destroy eye, capture, kill, decrease aura, semeiai decrease liberties}
move number — the move for which this assertion was created.

specificity — an integer measuring the amount of information in the precondition
of the rule that matched to make the assertion. Used for deciding between con-

flicting assertions of patterns that match the current position.

In addition, assertions have one or more of the following attributes:

objects — Up to three object points. The objects for which the assertion holds.
Rx point — The Rx or prescribed point. Where to play.
color — The color of the player for whom the assertion obtains.

recommendation — The recommendation value of the suggested move: {GOOD,

BAD, THREAT }.

strength — An integer value giving arough measure of the strength of the connec-

tion (not currently used).

border — the set of points surrounding the eye that would be occupied if the eye

were fully articul ated.

center —the set of pointsinside the eye.

57

3.13 Statechange-— The Reversion Manager

There are really three main options for handling state changes.
1. Redo state each time a move is made or backtracked.

2. Come up with some transparent system for automatically recording and undoing

changes to the data structures.
3. A mixture of 1 and 2.

If the state is small, or there is not much code in the state update then option 1 is
a viable alternative. However, for systems with heavy update requirements option 1
becomes inefficient if most changes to the state are localized; that is if, on average,
more of the state remains unchanged from move to move than changes. This has the
unfortunate side-effect of placing subtle psychological pressure on the programmer not
to add more knowledge. More knowledge means more updating each ply and although
it although it may be easier to program and faster to get up and running, it may become
a bottleneck in the exploration of new ideas.

Options 2 and 3 are really the best choices in our estimation since they are com-
putationally efficient, do not place pressure on the programmer to keep the state small,
and can be implemented at the data structure level making it amost transparent to the
programmer in the implementation of her algorithms.

Our system is based on the following observation: In an object-oriented setting
all access to an object is through the class interface. If some preprocessing must be
performed by the object before actually performing an operation, it can be hidden from

the caller in a“wrapper” function. In our case the preprocessing consists of saving the

58

state of the object before any operation that changesiit.

There aretwo key pointsto observe here. First, when we revert to an object’s previ-
ous state after a backtrack we can copy the old version to the same memory location as
the new version. Thisensuresthat all references to the object remain valid. Second, we
needn’t copy an object every timeit is changed, we can construct “frames’ that group
together changes to increase the granularity of change. After a backtrack, an object is
reverted to its previous state at the beginning of the last frame. Changes made during a
frame are not recorded and cannot be reverted. For the purposes of our go program we
identify aframe with a state in the game. In thisway the first change made to an object
during a state update is recorded but subsequent changes made during the same update

process are not.

3.14 History of the project

David Mechner and | started developing our program in 1992 with a grant from the
Cambridge Center for Behavioral Studies (CCBS). Our initial goal wasto develop afull
playing knowledge-based go program. Just getting the infrastructure in place to be able
to work comfortably with the system took a couple of years. We had to decide on an
appropriate scheme for knowledge representation, build a knowledge editor with aGUI
front-end, a truth-maintenance system, revertable 2 class library, board representation
and display, pattern matcher, and many other bits and pieces necessary for a working
system.

It wasn't until 1997 after several rewrites and platform changes that we had a work-

2\We call adata-structure revertable if it supports an “undo” operation which revertsit to its state prior to the last

recorded change.

59

ing problem solver. At that point we turned our attention to improving its knowledge
and testing it on problem sets. We began our project with the idea that it would be a
full go-playing program but quickly became focused on the problem of life and death.
Life and death knowledge is central to accurate positional evaluation so we were deter-
mined to do agood job of it. We imagined we could build agood quality life and death
problem solver and still have time to incorporate it into a playing program. Asit turned
out we have only been able to implement the problem solver, a full-playing program
infrastructure, and some pieces of afull-playing program.

We determined that there were three basic kinds of knowledge we would need.
First was state knowledge — the important facts about a position that go into making a
move decision. This includes the standard repertoire of computer go entities such as
stones, blocks, groups, cores (or strings) etc. These entities are computed and stored
in data structures when the position changes. The code for their computation is quite
static — once written it is unlikely to change much — so it makes sense that this kind of
knowledge is essentially procedural rather than declarative.

The second kind of knowledge required was about which moves are reasonable in
aparticular situation. This knowledge changes fairly frequently asthe rules are refined
in response to testing so recording it in declarative form was important. We built the
knowledge editor PET to make thisjob easier.

We trained the system on Kano’'s Graded go problems for beginners, a series of
four volumes of increasing difficulty. When the program had enough knowledge to
solve many of the training set problems, we tested it on afresh set of untried problems.

The next chapter discusses our resultsin more detail.

60

Chapter 4

Results

61

4.1 Testing and Results

To test the quality of our program’slife and death analysis, wefirst trained it on the odd
numbered problemsin Kano's[13, 14] Graded Go Problemsfor Beginners: Volumes1,
2, and 3, entering knowledge when it failed to see a solution path and filtering generally
good moves that were bad in a particular context. Problems that asked for the best
move or were otherwise not suitable for our use we excluded. Problems that required
the solver to both find the right object and solve the problem were given the object.
For example, if the problem stated “How can Black capture three white stones?” we
would identify the block of three stones that was intended and provide thisinformation
to the problem solver. Guessing the correct object was almost always atrivia part of
the problem.

After training we tested the program on the even numbered problemsin volumes 1
and 2. Our hope was that the even problemswould cover the same range of material but
would be different enough to test whether we had trained the program with general go
knowledge or just specifically how to solve the odd numbered problems in this book.
The results were encouraging, especially for volume 1; they are summarized below.

It is somewhat difficult to compare results with other programs because of two fac-
tors. First, weareinterested in life and death, not middle-game problems, so wefocused
on these in our testing. But, more importantly, we required our program to completely
solve the problem by reading it out until a static analysis could be made. The program
hypothesi zed moves then solved the sub-problemsthat resulted from playing the moves
at each ply. Mueller [18] and Fotland [11] givetheir program’s performance on some of

the same problems but define a solution as finding the correct first move, not the correct

62

first move at each ply until the problem is solved.

Table 4.2 gives our results on a series of graded go problems of varying difficulty.
Table 4.5 is a summary. It would be helpful to have the volumes handy as a reference
when examining this data. We obviously cannot reproduce the problems here.

The program was not trained on any of the test problems, so these results — espe-
cialy for volume 1 — indicate some degree of true competency at beginner life and

death, not just knowledge of the problem set.

4.2 Two problems: A successand afailure

In this section we briefly examine two problems from the sample set — book 1, problem
24, which the program successfully solves, and book 2, problem 42, which the program
failsto solve.

Figure 4.1 requires black to capture the stone marked P. The goa graph for this
problem suggests 6 initial moves for black (Iabeled in the order they will be explored).
The correct move is move 2. In this case moves 1 and 2 both have the same rank, but
move 1 is chosen randomly to be first.

Figure 4.2 shows the position after black plays at 1, white responds at 2, and black
connectsat 3. At thispoint, the white block on point P is statically safe and black gives
up backtracking to the choice of move 1 as her first move.

Next, black considers playing at 2. Figure 4.3 shows the position after black plays
at 2, white responds at 5, and black ataris the block on point P. At this point, all the
black stones are statically safe and the block on point P is statically dead. Black has

succeeded and reading backtracks to white's last choice point. None of white's other

63

Figure 4.1: Correctly solved problem 1-124.

o0
Iy LN Toun
SO0

oCo |
il

o0 -

[]

T

Figure 4.2: Problem 1-124. Black chooses the wrong path.

-0

QOO
L oa
OO+

®)
L 4
> 4
@

O

DOORRO

moves succeed and the problem is declared a success for black.
Black’s other moves at 3-6 are not explored, but it is interesting to see why they
were suggested. The move at 3 is suggested because a subgoal of Capture(P) in the

goal graph, isthe goa Save(Q) and one way to save () directly isto try to extend its

64

Figure 4.3 Problem 1-124. Black chooses the right path.
I I
NS

£y

Q)
OB é%
e

liberties.

Move 4 is suggested to capture the white block R, which is a subgoal of Save(Q)
(which inturnisasubgoa of the root goa, Capture(P)).

Move5 is suggested for Capture(P).

Move 6 is suggested for Capture(S), which isalso asubgoal of Save(Q).

Book 2, problem 42, shown in figure 4.4, is a problem that the program solved in-
correctly. The goal isfor black to capture the white block P. The only move generated
for thispurposeismove 1, which fails. The correct moveisat X, sincethisforceswhite
into a shape that can only make one eye. Unfortunately, the program was missing an
eyerule. The program failed to recognize that White has two disjoint non-overlapping
eyes (if she getsto play at X herself). No eye attacks were generated, and hence the
correct move was missed. Luckily, this problem required very little timeto get wrong.

Missing rules, such as the eye rule for problem 42, were often the culpritsin in-

correctly solved problems. Another major source of error, which often led to lengthy

65

Figure 4.4: Incorrectly solved problem 2-42.

reading and, ultimately caused the program to run out of time, was overly general pat-
terns in problems with many objects involved (problems with lots of cutting points,
for example). An early mistake in such a problem can mean a tremendous amount of
wasted reading. Figure 4.5 shows an example of a problem which the program was not
ableto finish.

In every case though, the program did very well in its analysis of the problem into
goals and the goal relations. Missing rules can be added, overly general rules filtered
and more static knowledge added, but the goal theory is right, the program has the
ability to determine which stones are logically relevant to the problem and that isa big

step forward in reasoning about life and death.

66

Figure 4.5: Incorrectly solved problem 2-108 (gets lost).

)

-
S

o 0

@0

67

Book | Problem | Result | Solution | Correct? | Num nodes | Time (secs)
1 2 S S Y 2 1
1 4 S S Y 2 2
1 6 S S Y 2 1
1 12 S S Y 2 1
1 14 S S Y 2 2
1 16 S S Y 2 2
1 18 S S Y 2 1
1 20 S S Y 2 1
1 24 S S Y 12 16
1 26 S S Y 4 5
1 28 S S Y 14 14
1 32 S S Y 2 1
1 42 S S Y 2 1
1 44 S S Y 2 1
1 46 S S Y 2 1
1 62 S S Y 2 2
1 64 S S Y 2 1
1 66 S S Y 2 2
1 70 S S Y 2 2
1 74 S S Y 4 4

Table 4.1: Results on Kano's Graded Go Problems for Beginners: vols. 1-2

68

Book | Problem | Result | Solution | Correct? | Num nodes | Time (secs)
1 78 S S Y 4 2
1 80 S S Y 6 5
1 80 S S Y 2 1
1 82 S S Y 2 1
1 84 S S Y 14 12
1 90 S S Y 2 2
1 94 S S Y 2 0
1 96 S S Y 4 5
1 102 U S N 1 0
1 104 S S Y 2 1
1 106 S S Y 4 4
1 108 U S N 1 0
1 112 S S Y 2 1
1 116 U S N 2 2
1 122 S S Y 2 1
1 126 S S Y 6 8
1 128 S S Y 4 3
2 2 S S Y 24 23
2 4 S S Y 74 105
2 6 S S Y 2 11

Table 4.2: Results on Kano's Graded Go Problems for Beginners: vols. 1-2

69

Book | Problem | Result | Solution | Correct? | Num nodes | Time (secs)
2 10 S S Y 20 29
2 14 U S N 1 1
2 14 U S N 1 1
2 16 S S Y 2 1
2 18 S S Y 100 125
2 24 S S Y 10 8
2 30 S S Y 2 0
2 34 S S Y 2 1
2 36 U S N 1 0
2 38 U S N 1 1
2 40 U S N 1 1
2 40 U S N 1 1
2 42 F S N 3 1
2 44 F S N 11 16
2 46 S S Y 4 3
2 66 S S Y 2 2
2 70 S S Y 18 24
2 76 U S N 1 0
2 80 S S Y 2 2
2 82 S S Y 2 2

Table 4.3: Results on Kano's Graded Go Problems for Beginners: vols.

70

1-2 cont.

Book | Problem | Result | Solution | Correct? | Num nodes | Time (secs)
2 84 u S N 1 0
2 86 S S Y 56 73
2 88 F S N 249 305
2 108 F S N 1 0
2 110 U S N 15 29
2 112 F S N 1 1
2 116 S S Y 2 1
2 118 S S Y 2 0
2 122 F S N 49 36
2 134 F S N 9 9
2 134 F S N 9 9
Table 4.4: Results on Kano's Graded Go Problems for Beginners: vols. 1-2 cont.
Text # probs | % correct | avg. tree size
Kano (vol. 1) 37 90 3
Kano (vol. 2) 34 59 18

Table 4.5: Summary of results on Kano's Graded Go Problems for Beginners: vols. 1-2

71

Chapter 5

GameLogic

72

5.1 Introduction

Until very recently, games have been considered aimost exclusively for interpretation
of other kinds of logical systems. In this chapter we go the other way and use logic to
analyze games. Thisideawasfirst proposed in apaper by Parikh [19] and more recently
considered by Pauly [2], however both of these papers consider games as atomic enti-
ties, our interest lies in the analysis of the internal structure and strategies of games.
To accommodate this added expressivity requirement, we have chosen the first-order
modal y-calculus as the basisfor our logic.

In the next section we briefly introduce modal logic and then consider the models,
axioms, and semantics for our game logic. In the next chapter we will apply thislogic

to stating rules for Go.

5.2 Introduction to Modal Logic

Modal logic is a branch of logic originally formulated to characterize the notions of
possibility and necessity but more recently applied to formal reasoning in a variety of
domains including discrete time, computer program execution, action, proof theory,
circuit verification and many others. Any domaininwhich it is desirable to make state-
ments that are true or false relative to a particular state of affairs (or time, or game
position etc.) is potentially a candidate for description in modal logic. Many of these
applications require only propositional modal logic but some — especially those involv-
ing knowledge representation — need the extra expressivity offered by predicate modal
logic. The standard introductory reference for propositional modal logicis[12]. A very

good recent text is[5]. For first-order modal logics[6] and [10] are good references.

73

The p-calculus is alogic of operators on modal sentences which includes i — the
least fixed point — and v — the greatest fixed point operators. Any moda language
can be augmented with axioms for the u-calculus to alow construction of more com-
plex operators from the primitives provided by the basic language. We use the modal
operators to define adversarial operators.

A standard reference paper on the modal p-calculusis[15]. Completeness results

for the propositional modal p-calculus are givenin [25].

5.3 Modds

The models for our logic are game trees whose nodes represent positions and whose
edges are labeled with the physically possible moves in the game. The fact that our
models are trees and not just rooted graphs means that identical positions reached by
different move sequences have different nodes in the model. The physically possible
moves may include moves that are not legal, such as moving a knight forward one
square in Chess. We could restrict ourselves to only legal moves, with respect to some
atomic definition of legality, but the rules of the game are themselves interesting and
to present these formally requires being able to refer to all the possible moves, not just
the legal ones. For example, in Go the concept of suicide move m is easiest to define
in terms of what happens after a player plays m, regardless of whether m islegal.

Our models specify two opposing players, a predicate to determine which moves
are legal for each player, a turn structure, and a function to determine who has won.
We assume a set of moves from which the players may choose. In Go the set of moves

available to both playersisthe set of the 361 available board points. Obviously, not all

74

of these are legal movesin any given position, but they define the universe from which
the players may choose.

The nodes of the game tree are Tarskian (first-order) models. They have a set of
domains corresponding to the important entities in the game, as well as functions and
predicates over those domains. We assume that the domains are the same for each node
inthetree.

More formally, a game structure is a labeled transition system with the following

components:

e A set of Tarskian models S.
e A finite set of directed labeled transitions (moves) M = {my, ma,... ,my}.
e A set of two playersZ.

e A set of (partial) “reachability” functions R. For each m € M, thereisapartial

functionR,,, € R,
Rm:S—S
R.m(s) isundefined iff m isnot a possible move from s.

e Each reachability function R, hasaninversefunction, R,}. R,.! (s) isundefined

iff m isnot amovethat leadsto s.

e A function ToPlay : Z — 2°. For each player this function givesthe statesin
which it isthat player’sturn to play.

e A function Legal : M x T — 2°. For a given move m and player i, this

function givesthe statesin which it islegal for ¢ to play move m.

75

e A function Win : Z — 25. For a given player, this function gives the states

which are winning for that player.

Werequirethat R,,, and R ! beinversein the following way:

If R,(s) isdefined then R! isdefined on R,,,(s) and R, (R(s)) =s (5.3.1)

If R.!(s) isdefined then R,,, isdefined on R ! (s) and R, (R, (s)) = s (5.3.2)

Werequire that it is exactly one player’sturnto play in any given state: For al states

s € S, forplayersi,i' € T
[s € ToPlay(i) N ToPlay(:')] impliesi = ' (5.3.3)

We require that if it is not a player’s turn in a state s, then that player has no legal

movesin s: For al states s € S, for al players: € Z, for al movesm € M
Legal(m, i) C ToPlay(i) (5.3.49)
To ensure that the structure is atree, we stipulate the following conditions:
R, (s) defined and R * (s) defined, impliesm = n (5.3.5)
and

Thereisaunique state, s, , theroot state, for which R, (s) isundefined for all m
(5.3.6)
We do not make any assumption about whether or not a state can be winning for
more than one player. In games such as Go or chess, the winning states for each player

aredigoint.

76

5.4 Thefirst-order modal p-calculus

The predicate modal y:-calculusisa predicate modal logic with aleast fixpoint operator,
“u.” Propositional modal p-calculus originated with Scott and De Bakker [22] and was
further developed by Hitchcock, Park, De Bakker and De Roever [20], [4], [7]. Kozen
[15] provides the axiomatization we use here.

The variables “ X and “¢”, in the examples below are predicate variables not a
first-order domain variables. Predicate variables can be bound or free like first-order
variables. If apredicate variable X occurs within the scope of a 4 X or v.X operator it
is bound, otherwise it is free. Typically bound predicate variables will be denoted by
upper-case letters from the end of the alphabet such as X, Y, or Z. Free variables will
be denoted by lower-case Greek letters such as ¢ or ¢. If all the predicate variablesin
a p~calculus formula are bound then the formulais closed otherwise it is open.

Before we proceed further, it will be useful to define some abbreviations:

o start = [u]|L
e term =011

Asusual, | denotes “falsum” — the proposition that is always false. Observe that
start isonly true at the root of the tree and term at its leaves. Also, note that start is
true only in the root state. If there is a sequence of moves that returns the position to
the root position, this node will be a descendant of the root and start will not be true
there.

In afinite model, you may imaginethe formula X . F'(X') asstanding for the (finite)

77

digunction:
F(L)VF(F(L)VFEF(F(L))Vv---F*(1)

Thisintuition isonly valid for finite models. If the models are infinite then there is
no guarantee that the least-fixpoint formula will ”converge’ in w steps. Since we are
primarily concerned with finite models, it does no harm to think about it this way.

Here are some more examples to give the intuition behind the ;. operator:
1. The statement,
s EuX.oNOX
means, for somen,
sEOADG) ADO(S)) A+ AP ()
which in English meansthat ¢ istruein state s and in all descendants of s.
2. The statement
sk puX.pVoX
means, for somen,
SOV o(d) Vo(o(g)) V- V()
which means that ¢ is eventually true along some path from s.
3. The statement,

s = pX.0X

78

means, for somen
s = term vV O(term) v O(Oterm)) Vv - - - v O" (term)
which means that the tree rooted at s isfinite.
4. The statement,
s E pX. JulX
means, for somen
s | start V [u]start V [u]([u]start) V - - - V [u]"(start)

which means that every upward path reaches a root.

55 First-Order Modal Game Logic

Our modal language consists of the usual first-order logical symbols (with equality)

and the following additions.

e A finite set of constants denoting movesin the game.
e A set of two constants denoting the two playersin the game.

e A predicate on player terms, ToPlay (i), intended to mean that it is player :’sturn

to play.

e A predicate on move and player terms, Legal(m, i), intended to mean that move

m islegal for player i.

79

e A predicate on player terms, Win(i), intended to mean that player i has won the

game.

We add afamily of modal operators — one for each move term in the language — ¢,
and itsdua OJ,,. Weread “s |= ¢,,¢" as meaning “move m, made from state s, leads
to astate in which ¢ istrue’. Dudly, “s = O,,¢" istaken to mean that “ Either, move
m taken in state s, leads to a state in which ¢ istrue or m is not a possible move from
states’. The operators «,,, and [J,,, are equivalent except at leaf stateswhered,, iSstrue
and o, isfalse.

The operator <, isa“downward” operator in the sensethat it examinesthe children
of anodein the gametree. It isalso useful to have an “upward” operator which checks
the parent of a node. We define an upward version of diamond, (u), , whichistrue for
aformula ¢ at astate s when ¢ istrue in a parent of s with atransition labeled m to s.
The angle brackets around the u in (u),, are meant to evoke a ¢,,, operator (split down
the middle). Like o, (u),, hasadual [u],, whichisidentical to (u) except at the root
where [u],,,¢ is dwaystrue and (u),, ¢ isawaysfase.

These operators are more primitive than the ¢ and [J operators usually considered
primitive in basic modal languages. In fact, we can define ¢ and [J in terms of ©,,, and

0,, asfollows:

o(¢) =3m on ()

and

O(¢) = —omg

In this definition, s = ©(¢) iff there is some move from s to a state in which ¢ is

true. Similarly, s = C(¢) holdswhen all movesfrom s lead to statesin which ¢ istrue

80

(it isvacuoudly true if there are no moves from s, i.e. s isaterminal state in the game

graph).

5.6 Gamelogic

We are now ready to consider extensions to first-order p-calculus that lend it its adver-
sarial flavor.

We propose two new primitive adversarial operators, est;(¢), and irr;(¢). Intu-
itively, est;(¢) means that player i has a strategy to make ¢ true in some game and
irr;(¢) means ¢ is true now and player : has a strategy to maintain its truth until the
end of the game. If 7 denotes player i's opponent, then the operators est; and irr;
are duals. In English we say aformula ¢ can be established by player i iff —¢ is not
irrefutably maintained by player i.

From these two primitive operators, we define a derived operator
ach; (@) = est;(irr;(¢)) which meansintuitively that player i has a strategy to achieve
¢, or establish irrefutably the goal ¢. Note that est;(irr;(¢)) and irr;(est;(¢)) are not
equivalent in all models. The former says that there is a strategy to make ¢ true “for-
ever” The later saysthat there is a strategy to perpetually establish ¢, which admitsthe
possibility that the opponent can aso perpetually deny ¢, leading to an indeterminate
game. In finite or, more generally, determined, games, the two are equivalent.

In the next section we present a axioms and definitions for our game logic.

5.7 Axiomsand Definitions

If 7 denotes a player, then i denotes the opponent.

81

Define,
termLegal = Vm~—Legal(m,i) A —Legal(m, 1)
termLegal iStruein any state in which there are no legal movesfor either player.
1. ToPlay(i) +— —ToPlay(i)
It is exactly one player’sturnto play in any state.

2. Legal(i,m) — ToPlay(i)

If movem islegal for player ¢, then it must be player i’sturn to play.

Causes(i, 1) <— [ToPlay(i) — Im Legal(m, i) A o, ()]

A [ToPlay(i) — (Vm Legal(m, i) — O, (1))]

Player i has alegal moveto make ¢ trueif it is her turn to play, otherwise player
1 makes ¢ true no matter where she plays.

4. est;(p) <> uX.pV ((mtermLegal) A Causes(i, X))
A formula ¢ can be established by aplayer 7 iff ¢ istrue or player i hasamoveto
establish ¢ or all player i’s moves establish ¢.

5. irr;(¢) «— vX.¢ A (termLegal V Causes(i, X))

A formula ¢ isirrefutable by a player i iff ¢ istrue and player i has a move to

maintain itstruth, or all player i’'s moves maintain its truth.

82

10.

11.

12.

13.

14.

ach;(¢) <+— est;(irr;(¢))
A formula ¢ isachievableif it can be established irrefutably.

The next two axioms are the standard axiomsfor the first-order modal ;.-calculus.

. F(uX.F(X)) — pX.F(X),where uX.F(X) isfreefor X in F(X).

[F(Y) = Y] — pX.F(X)—Y,whereY doesnot occur in F'(Y).

These next two axioms correspond to the converse Barcan axiom.
(uXVA F(X)) — VA uX.F(X)

(FA uX.F(X)) — pX.34 F(X)

The next two axioms state that <,,, and (u), areinverse:

om((u),, (8)) — &

() (om(9)) — ¢

Finally, we have the tree axioms:

(), (9) A (u), (0)) — m=n

puX.[u] X

Axiom 1 corresponds to model condition 5.3.3. Axiom 2 correspondsto model con-

dition 5.3.4. Axioms 7 and 8 come from Kozen (axiom 8 is originally Park’s induction

axiom) who givesthem in equational form. We adapt them to our style of presentation.

Axioms 9 and 10 together are correspond to the ‘ converse Barcan” axiom. The Barcan

axiom does not hold in general for tree structured models.

83

Axiom 11 saysthat (u), isaright-inversefor o,,. Thiscorrespondsto model condi-
tion 5.3.2. Axiom 12 saysthat o, isaright-inversefor (u),; this corresponds to model
condition 5.3.1. Axiom 13 saysthat each node has exactly one parent; this corresponds
to model condition 5.3.5. Axiom 14 says that al paths up through the tree lead to a

root; this corresponds to model condition 5.3.6.

5.8 Semantics

The semanticsfor FOL (first-order logic) and the operators of the modal p-calculusare
standard and not repeated here. In this section we will just give the semantics for our
modal operators and game-specific extensions.

We associate the same set of domains (one for each sort in the language) with each

state. Semantics for non-modal formulas are given as usual for first-order logic with

equality.

Given a game structure with components
e M, aset of moves
e 7, aset of two players

e ToPlay(i), afunction determining the set of statesin which it is player i’s turn

toplay (i € 7).

e Legal(m,1), afunction determining the set of states in which move m islega

for playeri (m € M, i € 7).

e Win(i), afunction determining the set of states in which player i is the winner

(e € 7).

84

e A set of reachability functions R ,,,, one for each move m € M.

we extend the notion of first-order valuations to map move terms to movesin M,
and player terms to Z. The interpretation of aterm a under a valuation V' is denoted
[a]y. For brevity, wewill write“[a]” instead of “[a],/”, omitting the val uation subscript.

Let s € S. The semanticsfor the ToPlay, Legal, and Win predicates are givenin

the obvious way by:
e s = ToPlay(i) iff s € ToPlay([4)
e s = Legal(m,i) iff s € Legal([m], [1])
o s = Win(i) iff s € Win([i])

For anon-modal formula ¢:

s om(@) Iff Ry (s) isdefined and Ry (s) = o

s (u), () iff RL(s)isdefined and R, (s) = ¢

5.9 Some useful theorems

In this section we state a few simple consequences of our definitions.

A formulais positive in variable X iff X within the scope of an even number of
negationsin that formula. For example, X Vv —((=X) Vv Y') ispositivein X, but not in
Y.

85

Theorem 5.9.1. The following is a restatement of proposition 5.7 from [15]. For o €

{p, v}
1 pX.F(X) +— pY.F(Y)where X and Y freefor Z in F(Z)
2. [F(X) > GX)] — [0X.F(X) = 0 X.G(X)]
3 [X =Y] —[F(X)— F(Y)] where Z ispositivein F(Z)
4. F(oX.F(X)) «— o X.F(X)whereo X.F(X) isfreefor Zin F(Z)
5. (6 X.F) <— F where X isnot freein F’

6. [G(uX.FANG(X)) = F] — [(uX.G(X)) — F]|where F isfreefor X inG(X)

The next theorem shows that irr; iS monotonic.

Theorem 5.9.2.
(¢ —) — (irry(¢) — irri())
Proof. Define
Fy(¢, X) <— ¢ A (termLegal V Causes(i, X))
So, by definition,
irr;(¢) «+— vX.F;(¢, X)
By theorem 5.9.1 part 3,

(0 —) — (Fi(¢, X) — Fi(¢, X))

86

S0, by theorem 5.9.1 part 2,
(0 —¥) — [(vX.Fi(¢, X)) — (W X.F(y), X))]
Hence the result.
Theorem 5.9.3.
(¢ —>) — (est;(¢) — est;(v))
Proof. Similar to the proof for irr;.

The ach; operator is aso monotonic as the next theorem shows.

Theorem 5.9.4.
(¢ —) — (ach;(¢) — ach;(¢))
Proof. By definition,
ach;(¢) «— est;(irr;(¢))
By theorem 5.9.2,
(¢ —) — (irry(¢) — irry(¥))

And, by theorem 5.9.3

(¢ — b)) — (est;(irr;(¢)) — est;(irr;(¢))
Hence, the result.
Corollary 5.9.5.

ach(¢ A ¢) — ach(¢) A ach(v)

87

Proof. By FOL, ¢ A ¢» — 1 so, by the monotonicity of est; and irr;,
ach(¢ A 1)) — ach(9)

Similarly,
ach(¢ A1) — ach()

The result then follows by FOL.

Corollary 5.9.6.
[ach(¢) V ach(¢)] — ach(¢ V)

This theorem allows establishes the duality between est; and irr;:

Theorem 5.9.7.

estz-(gb) — ﬁirrg(—@)

Proof. First observethat Causes(i, ¢) <— —~Causes(i, ~¢) since,

~Causes(i,~¢) +— —|[ToPlay(i) — Im Legal(m, i) A op(=6)] A
[ToPlay(i) — (Ym Legal(m, i) — Uy (=9))]]
«— [ToPlay(i) AVm Legal(m, i) — Ou()] V
[ToPlay(i) A 3m Legal(m, i) A om(6)]
> [ToPlay(i) — (Ym Legal(m, i) — O (6))] A
[ToPlay(i) — 3m Legal(m, i) A om(6)]

+— Causes(i, ¢)

88

Now, by the definition of v as —u— and theorem 5.9.1 part 2

Sirri(~g) > pX.6V [(~termLegal) A ~Causes(i, ~9)
«— puX.pV [(mtermLegal) A Causes(i, ¢)]

+—— est;(9)

89

Chapter 6

Rulesfor Go

90

6.1 Introduction

In the previous chapter we presented a proof system and semantics for a modal game
logic. In this section we formally state the rules of the game and provide a motivation
for the life and death strategy presented in chapter 2.

Although we are using game logic with least and greatest fixpoint operators, the
language and rules require not much more than first-order (sorted) modal logic. The
fixpoint operators are required when we want to state strategic theories that require the
adversarial operators. The only additional operator that is required is a kind of quan-
tifier over points, Count,(¢), which acts syntactically like a term of sort integer. The
interpretation of the C'ount,, operator isasthe cardinality of the extension of itsformula
argument. That is, Count,(¢) counts the number of points satisfying the formula ¢ (¢
isassumed to have g asitsonly free variable).

All domains of interest to us are finite, so quantifiers can in principle be eliminated.
We use them anyway for conciseness of expression.

Our definition of Legal(m, i) corresponds most closely with Chinese rules. In fact,
there are many different rule-sets for Go with many subtleties (see [1] for more discus-
sion of the rules). We will present a rule-set which is the most amenable to axioma-
tization. The differences between our rules and standard rule-sets are relatively minor

overall and do not affect the character of the game substantially.

6.2 Meta-language conventions

Our language has terms of the following types:

e board points (the 361 intersectionson a19 x 19 Go board)

91

e moves (the 361 intersections on a Go board where it might be legal to play in-
cluding PASS_.MOVE which switches players but otherwise leaves the state un-
changed, and NULL _MOVE which changes nothing)

e stone colors (BLACK, WHITE, EMPTY)
e players (Black, White)
e integersintherange 1 to 19.

Point variables will typically be denoted p or ¢, colors ¢, players i, moves m, and
integersn. Since the number of pointson the board isfinite (361 in the case of the stan-
dard 19 x 19 Go board) we assume we have a constant denoting each point, written in
as (row, column) coordinate pairs: (1,1), (1,2),...,(19,19). Board occupancy colors
are BLACK,WHITE,or EMPTY . Players are Black, or W hite.

We will sometimes use a variable of sort Player where a variable of sort Color
is required. In these cases what we mean is that if the player is Black we intend
BLACK and if the player is W hite we intend WHITE. * For convenience, if ¢
is a variable of sort color we use the notation ¢ to refer to the “opposite” color of c¢:
BLACK =WHITE,WHITE = BLACK,and EMPTY = EMPTY.

We will aso use move and point variables interchangeably since every movein on
some board point and every board point is possibly alegal move. There are two nullary
functions, LastMove and PrevLastMove of type move that we will use to track the last
and previous to last moves. This is necessary to rule out repeated positions and to

determine when there have been two passesin arow (signaling the end of the game).

Technically, we can introduce a Color-valued function on Players which performs this translation.

92

Table 2.1 gives the predicates of the language. When we gave the definitions in
chapter 2 we had not yet discussed the pi-calculus, so our definition of SameBlock did

not use the least fixpoint operator. Now we can give a more precise definition:

Vp,q SameBlock(p, q,i) +— pX.Occ(p,i) A Occ(q,i) A

p=qV3IrAdj(r,p) AI3pp=rAX

In essence, this says that p isin the same block as ¢ iff both p and ¢ are occupied
with stones of color i and either p = ¢ or there is some point adjacent to p which is
itself in the same block as ¢q. The . operator is used to select the the least solution to
thisrecursive definition.

The details are alittle bit tricky, however. Thefirst part,
Occ(p,i) A Oce(q,i) A\p=q\V ---

simply accounts for the case in which p and ¢ are the same point. The next part handles
the recursive case, but notice that 9p p = r occurs within the scope of the Vp in the
beginning of the definition. This effectively renames the variable p to be the adjacent
point r before recursively applying the definition. It is much the same as the following

recursive agorithm:

93

SAME_BLOCK(p, q,1)
D if Occ(p,i) AND p =gq

2) return true

(3 dse

(4) foreach r, such that Adj(p,r)
5) it SAME_BLOCK (r, q)
(6) return true

@) return false

6.3 Rulesof Go

In this section we present abasic set of rulesfor Go. Our rules correspond most closely
with Chinese rules which count stones and empty space both as territory. Counting
in this way makes the rules easier to state since we do not have to keep track of cap-
tures. The rules presented here are somewhat formal; for a more readable, intuitive
presentation see [1].

The rules below fall into three main categories. rules describing the initial state
of the game, rules describing how the state changes from move to move, and rules
describing how the game ends and who wins. Since all facts of interest in the state can
be described in terms of the primitive predicates Occ(p, ¢), Adj(p, q), and ToPlay(c),
it suffices to characterize the effects of moves on these three primitive predicates. The
effects on non-atomic formulas involving these three are entirely determined by the
extensionality of the basic move operator ©,,,.

Inour rulessuicideisillegal.

94

Black playsfirst.
Rule6.3.1. start — ToPlay(Black)
The players alternate turns.
Rule6.3.2. ToPlay(i) +— ¥Ym O,,(ToPlay(i))

The intersection points of the board form a 19 x 19 grid. If we imagine the grid
labeled with board points starting in the upper left corner and progressing left to right
to the lower right corner then points to the North, South, East, and west of each other
are adjacent. Therule below isjust English shorthand for the 176 axioms stating which

points are adjacent.

Rule6.3.3.
foral 1 <i,j,i, j <19
If |j —i| =1xor | —4'| = 1then Adj((i,), (i, 7))
The game begins with the board empty.
Rule6.3.4. start — Yp Empty(p)
Initially thereis no last move or previousto last move.

Rule 6.3.5.

start — LastMove = NULL_MOV E A

PrevLastMove = NULL_MOV E

After a move m, the last move is now m and the previous to last move is what the

last move was.

95

Rule6.3.6. 3XX = LastMove A op,(LastMove = m A PrevLastMove = X)

The next three axioms characterize the effects of amove on the primitive predicates
ToPlay, Adj, and the relational predicates.

The adjacency of pointson the board isthe same for all states.
Rule6.3.7. Adj(q,q') «— omAdj(q,q')
The relational predicates are the same for all states.
Rule 6.3.8 (schema for each relational operator <). z < y «— o, (2 < y)

The next four axioms describe how moves affect the occupancy of board points.
There are four cases to consider: empty to occupied, occupied to empty, empty to
empty, and occupied to occupied for each of both friendly and enemy play. In each of
the axiom descriptions “friendly” play means the color of the player to play and the
object point are the same; “enemy” play means they are different.

If a point p is alegal move for player i, then playing on point p will cause it to

become occupied with a stone of color 4, if it isnot suicidal.

Rule 6.3.9 (empty to occupied by friendly play).

CausesOccFriendly(p, q,1) <—

Legal(p,i) Ap # PASS_MOVE A p = q A —Suicide(p, i)

A friendly legal play preserves the occupancy of a point if whenever it is block-

adjacent to the point it isnot asuicide, or it is a pass move.

96

Rule 6.3.10 (occupied to occupied by friendly play).

PreservesOccFriendly(p, q,i) <—
Legal(p,i) A Occ(q,i) AN [p=PASS_MOVE V

[Block Adj(p, q) — —Suicide(p,i)]]

A legal enemy play preserves the occupancy of apoint ¢ if it iseither on apoint not

block-adjacent ¢, it is a pass move, or the point is not in atari.

Rule 6.3.11 (occupied to occupied by enemy play).

PreservesOccEnemy(p, q,i) +—
Legal(p,i) A Occ(q, i) A
[—BlockAdj(p,q) V p=PASS_MOV E V —Atari(q)]
These cases exhaust the ways in which ¢ will be occupied after a move by player 7

on point p.

Rule6.3.12.

[CausesOccFriendly(p, q,1) V
PreservesOccFriendly(p, q,1) V

PreservesOccEnemy(p, q,1)] <— ©,0cc(q, 1)

A legal enemy play capturesapoint ¢ if it isnot a pass move, is block-adjacent to ¢

and theq isin atari.

97

Rule 6.3.13 (occupied to empty by enemy play).

CausesEmpty Enemy(p, q,i) «—
Legal(p,i) ANp # PASS_MOVE A
Occ(q, i) A\ BlockAdj(p, q) A Atari(q)
A legal friendly play on p capturesapoint ¢ if it is not a pass move, and p is block-
adjacent to ¢, and p issuicidal.
Rule 6.3.14 (occupied to empty by suicide).
Causes Empty Friendly(p, q,1) <—

Legal(p,i) Ap # PASS_MOV E A BlockAdj(p, q) N\ Suicide(p, i)

This axiom combinesthe casesfor the different player’sturns. Playing alegal move
on point p different from an empty point ¢, or passing aturn, causes ¢ to remain empty

(regardless of which player plays).
Rule 6.3.15 (empty to empty by friendly or enemy).
PreservesEmpty(p, q,i) «—
(Legal(p, i) V Legal(p,i)) A Empty(q) A
[p=PASS_MOVEV p+# qV Suicide(p,1i)]
These cases exhaust the ways in which a point will be empty after a move.
Rule 6.3.16.
CausesEmptyEnemy(p, q,i) V

Causes Empty Friendly(p, q,1) V

PreservesEmpty(p, q,i) <— o, Empty(q)

98

The next five axioms describe which moves are legal and how the game ends.
This rule defines the predicate TwoPasses which is true if the current state is the

result of two consecutive passes. Two passes in arow means the gameis over.

Rule6.3.17.

TwoPasses +— LastMove = PASS_MOV E A

PrevLastMove = PASS_MOVE

If player i plays on point p in the current position and the resulting board position

isidentical to the board position before current position then it is arepeated position.

Rule 6.3.18.

RepeatedPosition(p, i) <—

ToPlay(i) A Yq3c (0,0cc(q, €)) < (W) 1 ysinrove OC(€; €)

A move p by player i islegal iff it is:’sturn to play, the point p is unoccupied, and
playing at p would not lead to a repeated position. A “pass’ moveis legal so long as
it is not the third pass in a row (the game is over after two consecutive passes). The

requirement that the position not repeat is called the ko rule.

Rule 6.3.19.

Legal(p, i) «— ToPlay(i) N -TwoPasses A

Empty(p) A (p # PASS_MOV E — —RepeatedPosition(p, 1))

99

The gameis over when aplayer has no legal moves.

Rule 6.3.20.
EndO fGame <— 3i ToPlay(i) ANNYm —Legal(m, i)

The player with the most territory at the end of the game wins.

Rule6.3.21.
Win(i) «— EndO fGame A Count,(Point(p,i)) > Count,(Point(p,1))

If neither player wins at the end of the game, the gameis a draw.

Rule6.3.22. Draw <— —Win(Black) A =Win(W hite)

100

Chapter 7

Conclusion

101

7.1 Conclusions and Directions for Future Work

Computer Go has long been considered an extremely challenging automation problem
because of its resistance to solution by standard game tree search techniques like mini-
max. In fact, closer examination of the problem shows that not only is the game space
huge, it is also difficult to derive simple static evaluation functions for the game, such
as are used in computer chess. No simple tally of positional features suffices to guide
a search engine sufficiently well to make big-search a viable option for computer Go.
Our view isthat a successful go program must focus on emulating some of the reason-
ing applied by human beings in their game analysis and couple this with knowledge of
which moves are reasonable in given position.

Initially, we set out to write a full-playing go program that could compete in com-
petition. After pursuing this goal for a number of years we realized that it was overly
ambitious — since we didn’t really understand how to write a program to solve the nec-
essary sub-problem of life and death — and at the same time, emphasized aspects of
tournament game programming (like short-time limits for moves) that were less inter-
esting to us than research on basic algorithms for the problem. We decided to focus
our energies on building a knowledge-based life and death problem solver and trying
to formalize some of the logic of human adversarial reasoning. This dissertation isthe
culmination of our work in both of these areas.

In aknowledge-based approach, the traditional view of game search with an integer-
valued evaluation function is somewhat restrictive. In other domainsin which we want
to understand human reasoning we have at our disposal the full power of formal logic

in which to develop languages and state theories. Why not in the domain of games as

102

well?

The language we developed for the purpose of describing gamesis a modal game
logic. Using this logic we were able to formally state the rules of go (see chapter 6)
and to develop a strategic theory of life and death (see chapter 2) that makes clear the
relationships between the goals in the theory. Later sections of that chapter showed
how a formal theory of life and death could be put to use in solving life and death
problems by building an appropriate model and using expert heuristic knowledge about
which moves are reasonable. Chapter 5 addressed some of the logical issues of this
language developing formal syntax and semantics and proving some of the basic facts
of the system.

Chapter 3 described how the implementation of a computer program to solve real
life and death problems based on these ideas. Our tests on Kano's series of graded go
problems yielded very encouraging results. When a problem was solved, the tree of
moves considered was very small in general (on the same order of magnitude as human
solutions) and very much smaller than big-search computer solutions. Furthermore,
when our program was given a problem to solve, we required that it solve that problem
completely, generating moves to try, hypothesizing them on the board, and solving the
sub-problems that resulted, recursively.

There are a number of different directions which would be promising for future
research. One clear path would be to take the life and death solver we have created and
either extend it to a full-playing program or incorporate it as a module of an existing
program. Another interesting project — one which we have looked at a bit — is to study
how the solver could be made to learn, both within the exploration of a given problem,

and from problem to problem.

103

Outside of the realm of computer Go there are also a number of potential applica
tionsfor our work. The clearest short-term application would be an analysis of another
game, such as chess using our game logic. Some parts of the program are quite spe-
cific to Go, but others, such as the revertable class library, knowledge editor, and truth

maintenance systems are generally useful tools.

104

Bibliography

[1] American go association. Web page: http://www.usgo.org/computer.
[2] Formalizing the dynamics of information. Web page: http://www.cwi.nl/ pauly/.

[3] J. Nievergelt A. Kierulf, K. Chen. Smart game board: A workbench for game-
playing programs, with go and othello as case studies. Technical report, ETH
Zurich, 1990.

[4] J. W. De Bakker and W. De Roever. A calculus for recursive program schemes.
Proc. 1st Intl. Coll. on Automata, Languages, and Programming, pages 167-196,
1972.

[5] Patrick Blackburn, Wilfried Meyer-Viol, and Maarten de Rijke. A proof system
for finite trees. Lecture Notesin Computer Science, pages 86—104, 1996.

[6] Brian F. Chellas. Modal Logic: An Introduction. Cambridge University Press,
1980.

[7] W. P. DeRoever. Recursive program schemes. Semantics and proof theory. PhD

thesis, Free University, Amsterdam, 1974.

[8] R. Bozulich (ed.). The Go Player’'s Almanac. Ishi Press, 1992.

105

[9] D.W. Erbach. Computersand go. In[8], 1992.

[10] Melvin Fitting and Richard Mendelsohn. First-order Modal Logic. Kluwer Aca-
demic Publishers, 1999.

[11] David Fotland. Personal communication.
[12] Robert Goldblatt. Logics of Time and Computation. CSLI, 1992.

[13] Yoshinori Kano. Graded Go Problems for Beginners, Vol. 3. Japanese Go Asso-
ciation, 1987.

[14] Yoshinori Kano. Graded Go Problems for Beginners, Vol. 4. Japanese Go Asso-
ciation, 1990.

[15] Dexter Kozen. Results on the propositional p-calculus. Theoretical Computer

Science, 27:333-354, 1983.

[16] D. Lichtenstein and M. Sipser. Go is pspace hard. Proc. 19th Ann. Symp. on
Foundations of Computer Science, IEEE Computer Society, Long Beach, CA.,
pages 48-54, 1978.

[17] David A. Mechner. All systems go. The Sciences, 38:1, 1998.

[18] Martin Mueller. Computer Go as a Sum of Local Games. An Application of
Combinatorial Game Theory. PhD thesis, Swiss Federal Institute of Technology
Zurich, 1995.

[19] Rohit Parikh. The logic of games and its applications. Topics in the Theory of
Computation, Karpinski and van Leeuwen, eds. Anals of Discrete Mathematics,

24:111-140, 1985.

106

[20] D. M. R. Park. Fixpoint induction and proof of program semantics. Machine

Intelligence, 5:59-78, 1970.

[21] J. L. Ryder. Heuristic Analysis of Large Trees as Generated in the Game of Go.
PhD thesis, Stanford University, 1971.

[22] D. Scott and J. W. De Bakker. A theory of programs. Unpublished manuscript,
IBM, Vienna, 19609.

[23] Claude Shannon. Automatic chess player. Scientific American, 182, 1950.
[24] Alan Turing. Faster Than Thought, chapter 25. Pitman, London, 1953.

[25] Igor Walukiewicz. Notes on the propositiona -calculus: Completeness and re-

lated results. BRICS, 1995.
[26] David Wilkins. Using patterns and plansin chess. Artificial Intelligence, 1980.

[27] Willmott. Adversarial planning techniques and the game of go. Master’s thesis,
Department of Artificial Intelligence Edinburgh, 1997.

[28] T.Wolf. The program gotoolsand its computer-generated tsumego database. Pro-
ceedings of the Game Programming Workshop in Japan, 1994.

[29] A. L. Zobrist. Feature Extraction and Representation for Pattern Recognition and
the Game of Go. PhD thesis, University of Wisconsin, 1970.

107

