Translation Validation of Loop Optimizations

by

Ying Hu

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Computer Science

New York University

September 2005

Benjamin Goldberg

Clark Barrett

©Ying Hu

All Rights Reserved, 2005

ACKNOWLEDGEMENTS

I would like to thank my advisers Benjamin Goldberg and Clark Barrett
for their support and guidance over many years. I would also like to thank
Amir Pnueli and Lenore Zuck for their valuable advice. Many others have

contributed to the success of this work, including my family and friends.

iii

ABSTRACT

This dissertation presents a translation validation framework for verifying
optimizing compilers. Our validation work is focused on loop optimizations
since loops are generally hard to analyze and it is especially difficult to verify
loop optimizations. To solve these problems, a set of theories and algorithms
are proposed, and they are implemented in our validation tool called TVOC.

In order to validate the optimizations performed by the compiler, we try
to prove the equivalence of intermediate representaions of a program before
and after the optimizations. A set of proof rules were previously proposed to
build the equivalence relation between two programs. However, they cannot
validate some cases with legal loop optimizations. We improve these proof rules
to consider the conditions of loops and possible elimination of some loops, so
that those cases can also be handled. Algorithms are designed to apply the
new rules to an automatic validation process.

Based on the proof rules mentioned above, our validation tool TVOC val-
idates compiler optimizations by analyzing the original and optimized codes
and generating checkable verification conditions. Previously, TVOC only dealt
with optimizations which do not significantly change the structure of the code,
while loop optimizations do change the structure greatly. We built a new part
of TVOC treating loop optimizations seperately, which guesses what kinds of

loop optimizations happened, analyzes the loops, proves the validity of a com-

v

bination of loop optimizations, and synthesizes a series of intermediate codes.
With this new component, TVOC has succeeded in validating many examples
with loop optimizations.

Speculative optimizations are aggressive optimizations which are only cor-
rect under certain conditions that cannot be known at compile time. In this
dissertation, we present a formalism for validating speculative optimizations
and generating the runtime tests necessary to ensure their correctness. We

also provide results on several examples.

Contents

Acknowledgements
Abstract
Contents

List of Figures.
1 Introduction

2 Background

2.1 Transition Systems oL
2.2 Translation Validation
2.3 Loop Optimizations
24 Rule PERMUTE,
25 Rule VALIDATE

3 Validating Loop Optimizations

3.1 Improved PERMUTE Rule

vi

il

v

vi

X

11

14

20

23

29

3.2 Rule REDUCE i i 39

3.3 Generalized VALIDATE Rule 41
3.4 Summary 46
3.5 Appendix: Soundness of GEN-VALIDATE 46

TVOC: A Translation Validator for Optimizating Compilers 49

4.1 Overview 50
4.2 New Implementation Features 56
4.2.1 An Algorithm for Inferring Loop Optimizations 57

4.2.2 A Unified Validation Module for Reordering Optimizations 58

4.2.3 A Methodology for Combinations of Optimizations . . 59
4.2.4 Implementation of Rule GEN-VALIDATE 61
4.2.5 Introducing array types. 63
4.3 Summaryo e 67
4.4 Appendix: Sample output from TVOC 68
Speculative Loop Optimizations 81
5.1 Imtroduction Lo 83
5.2 The algorithm for using the proof rule INV-PERMUTE 84
5.2.1 Loop transformations with invariants 85
5.2.2 Speculative loop optimizations 87
5.2.3 Automatically generating invariants using CVC Lite . . 89

vii

5.3 Results 93

5.4 Summaryo 98
6 Conclusion 100
Bibliography 102

viii

List of Figures

2.1 Acompiler. 11
2.2 Translation Validation. 12
23 AGeneral Loop 20
2.4 Rule PERMUTE for Reordering Transformations 22
2.5 Program equivalence withnoloop 23
2.6 Program equivalence with loops 25
2.7 'The Proof Rule VALIDATE 26
3.1 A loop interchange example 32
3.2 Rule INV-PERMUTE for reordering loop transformations 33
3.3 An example for loop reduction. 39
3.4 Rule REDUCE for loop reduction 40
3.5 Reduction for an empty loop. 40
3.6 An example for which rule VALIDATE fails. 41
3.7 Rule GEN-VALIDATE example. 42

X

3.8

3.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1

5.2

9.3

5.4

9.5

The generalized rule GEN-VALIDATE 44

Example with modified cut-points. 46
Initial design of TVOC. 50
The second architecture of TVOC. 51
S, 8" and T for the example. 53
Control points for the example. 54
Verification conditions for the example. 55
The current architecture of TVOC. 56
The algorithm for analyzing loop transformations. 58
Previous design with different validation modules. 59
Combinations of optimizations. 59
A combination of loop transformations. 60
An example for speculative loop interchange 87
A fusion exampleo Lo 93
An interchange example o000 95
Areversal example L. 96
Atiling example L oo 97

Chapter 1

Introduction

There is a growing awareness in industry and academia of the crucial role of
formally proving the correctness of systems. For a critical software system,
it is not enough to have a proof of correctness for the source code, there
must also be an assurance that the compiler produces a correct translation
of the source code into the target machine code. Verifying the correctness of
modern optimizing compilers is a challenging task because of their size, their
complexity, and their evolution over time. The primary goal of my research
has been integrating an approach for validating loop transformations into a
Translation Validation framework for optimizing compilers. An automatic
verification tool, called the Translation Validator for Optimizing Compilers

(TVOC), has been designed and implemented. This thesis discusses the theory

and the system integration and implementation issues relating to validation of
loop transformations.

Traditional compiler verification treats a compiler as a program, and tries
to prove the correctness of the algorithms and their implementation, which
becomes a difficult task due to the complexity and evolution of modern com-
pilers. Recently, a number of creative techniques for verifying compilers have
been introduced [Nec97, NL98, RM00, GS99, JGS02, PSS98b, Nec00, LMCO03].

In [Nec97] [NL98], a certifying compiler provides the proof for type safety
and memory safety properties of the target program, while our approach proves
the semantic equivalence of the source and target program.

[Nec00] verifies the preservation of semantics for each compilation which
is the same as ours. Instead of using an automatic theorem prover, a set of
algebraic rules are used to check the equivalence of logic formulas. The cases
with branch splitting and loop optimizations are not handled there.

A credible compiler [RMO00] produces an inductive proof along with each
compilation, similar to our approach but with different algorithms and rules.
However, the method proposed there assumes full instrumentation of the com-
piler, which is not assumed here or in [Nec00].

In [GS99], the notion of correct translation and the method of program
checking appear similar to ours. However, instead of transition systems, ab-

stract state machines (ASMs) have been used there to model the operational

semantics of programs, and their work does not deal with optimizations.

Comparison checking [JGS02] is a technique that automatically checks the
semantic equivalence of executions of source and target programs at run-time.
Though it has the advantage of being precise, it cannot validate a program
translation for all possible program inputs, and it increases the runtime of the
program.

In [LMCO03], compiler optimizations are automatically proved correct using
the automatic theorem prover Simplify [DNS03]. Optimizations are proved
once for all possible inputs so that the result is a verified compiler. However,
the compiler writers have to use a domain-specific language called Cobalt and
provide complicated rewrite rules with triggering guards. This approach also
assumes that the compiler is written with verification in mind and that the
transformations which have been verified are correctly implemented, and it
does not handle loop optimizations.

Our approach, translation validation [PSS98b], is similar to many of these
approaches in that it focuses on verifying a single run of the compiler, rather
than verifying the compiler itself. However, our work has the advantage that
its abstract computational model and refinement concepts are very general,
it can be used to verify existing compilers due to its independence from the
compiler, and it does not increase the runtime of programs.

Previous work on TV focused on validating optimizations which preserve

the loop structure of the code, while more aggressive optimizations, especially
loop optimizations were not considered. A set of proof rules and algorithms
were proposed to check the validity of loop transformations by treating loop
transformations as permutations. I have successfully implemented these per-
mutation rules to check the validity of a number of reordering loop transforma-
tions such as loop fusion/distribution, loop interchange and tiling. However,
these proof rules have the limitation of requiring the loop transformations to
be valid in all contexts without considering any conditions outside of the loop.
Therefore, I proposed an improved proof rule to consider the initial conditions
and invariant conditions of the loop. This new proof rule not only improves
the validation process for compile-time optimizations, it can also be used to
ensure the correctness of speculative loop optimizations, aggressive optimiza-
tions which are only correct under certain conditions that cannot be known at
compile time. Based on the new rule, with the help of an automatic theorem
prover, CVC Lite, an algorithm was presented for validating loop optimiza-
tions. The improved proof rule can also be used to generate the runtime tests
necessary to support speculative optimizations.

A previous proof rule VALIDATE was used to validate structure-preserving
transformations with a clear mapping of control points between target and
source programs. However, this rule was found insufficient for certain kinds

of transformations performed by optimizing compilers. For example, a loop

which repeatedly increments a variable can be replaced by a single multiplica-
tion operation. For this kind of transformations, I introduced a new proof rule
Reduce to break a loop down to a block of non-loop statements. In addition, I
observed that in structure-preserving cases involving nested loops, rule VALI-
DATE was unsuccessful. Therefore rule VALIDATE was generalized to have less
restrictive requirements, allowing the set of control points to be chosen more
freely.

Finally, based on the above theory and algorithms, I contributed in de-
veloping TVOC, a tool for the translation validation of advanced optimizing
compilers. In the framework of TV, to prove that the translated code correctly
implements the original code, TVOC uses the proof rule VALIDATE for struc-
ture preserving optimizations, and the permutation rule for loop optimizations.
TVOC accepts as input intermediate codes produced by the compiler. Just as
compilers perform optimizations in multiple passes, TVOC breaks the valida-
tion into multiple phases, each using a different proof rule and focusing on a
different set of optimizations. In each phase, TVOC automatically generates
verification conditions and proves their validity using CVC Lite.

This thesis is organized as follows: Chapter 1 gives the background for
the translation validation framework, loop optimizations and proof rules VAL-
IDATE and PERMUTE. Chapter 2 explains the theoretical work I have done

for translation validation. Chapter 3 introduces the tool TVOC. Chapter 4

discusses the theory and implementation for speculative loop optimizations.

Chapter 5 concludes.

Chapter 2

Background

This chapter gives the background for my thesis work. Section 2.1 describes
Transition Systems. Section 2.2 introduces the notation of Translation Vali-
dation. Section 2.3 reviews a set of general loop optimizations. Section 2.4

and Section 2.5 present the proof rules PERMUTE and VALIDATE.

2.1 Transition Systems

In order to discuss the formal semantics of programs, we briefly review tran-
sition systems, TS’s, a variant of the transition systems of [PSS98b]. A Tran-
sition System S = (V, 0,0, p) is a state machine consisting of: a set V of
state variables; a set O C V of observable variables; an initial condition ©,

which is a formula over V' characterizing the initial states of the system; and

a transition relation p, a formula over both unprimed and primed versions of
the variables, where the unprimed versions of variables refer to the values of
the variables in the pre-transition state, while the primed versions of variables
refer to their values in the successor states. Thus, e.g., the transition relation
may include “z’ = x + 1”7 to denote that the value of the variable z in the
successor state is greater by one than its value in the old (pre-transition) state.
The variables are typed, and a state of a TS is a type-consistent interpretation
of the variables. For a state s and a variable z € V', we denote by s[x] the value
that s assigns to z. We assume that each transition system has a variable pc
that describes the program location counter.

While it is possible to assign a transition relation to each statement sepa-
rately, we prefer to use a generalized transition relation, describing the effect of
executing several statements along a path of a program from one basic block

to another. Consider the following piece of code:

Lol
n = 100;
if (n < z) goto Ly;

Lll

There are two disjuncts in the transition relation whose starting locations
are Lg. The first describes the Ly to L; path, which is pc = Ly A n' =
100 A ' =2 AN n' > 2" A pc’ =L, and the second describes the Lg to
Ly path, whichispc =Ly A n' =100 A 2/ =2 A n' <2’ A pc’ = L.
The complete transition relation is formed by taking the disjunction of all such
generalized transition relations.

The observable variables are the variables we care about, where we treat
I/O devices as variables, and each 1/O operation, including external procedure
calls, removes/appends elements to the corresponding variable. If desired,
we can also include among the observable variables the history of external
procedure calls for a selected set of procedures. When comparing two systems,
we will require that the observable variables in the two systems match, i.e. are

related by a one-to-one correspondence relation.

A computation of a TS is a maximal (possibly infinite) sequence of states
o Sp,S1,... , where the starting state sy satisfies the initial condition ©, and
every two consecutive states are related by the transition relation p.

A transition system 7 can be deterministic or non-deterministic. If the
observable part of the initial condition uniquely determines the rest of the
computation, the transition system is called deterministic . This thesis is
focused on deterministic transition systems and the programs which generate
such systems. Thus, to simplify the presentation, we do not consider here
programs whose behavior may depend on additional inputs which the program
reads throughout the computation. It is straightforward to extend the theory
and methods to such intermediate input-driven programs.

We denote P, = (V, O,, 0y, p,) as the source TSand P, = (V,.,0,,0,, p,)
as the target TS. If there exists a one-to-one correspondence between the ob-
servables of P, and those of P,, the two systems are called comparable . To
simplify the notation, we denote by X € O, and z € O,, the corresponding ob-
servables in the two systems. A source state s is defined to be compatible with
the target state ¢, if s and ¢ agree on their observable parts (that is, s[X]| = t[z]
for every z € O,). We say that P, is a correct translation (refinement) of P,
if they are comparable and, for every o, : ?p,%1,... a computation of P, and
every og : 8o, S1,... a computation of P such that sy is compatible with %,

then o, is terminating (finite) iff o, is and, in the case of termination, their

10

final states are compatible. It is not hard to see that this notion of refinement
is an equivalence relation. We will use P, ~ P, to denote that P, is a correct
translation of P;.

We distinguish between structure preserving optimizations, with a clear
mapping of control and data values in the target program to corresponding
control and data values in the source program, and structure modifying opti-
mizations that admit no such clear mapping. Most high-level optimizations are

structure preserving, while most loop optimizations are structure modifying.!

2.2 Translation Validation

A compiler is defined [ASU86| as a program that reads a program written in
the source language, and translates it into an equivalent program in the target

language (Fig. 2.1).

source program —— | Compiler = target program

Figure 2.1: A compiler.

Correctness of compilers was first considered by McCarthy in [MP67],

where a simple compilation of arithmetic expressions was verified manually.

1Some transformations such as skewing, unrolling, and peeling, can actually be handled
by both our structure modifying and structure preserving proof approaches.

11

Traditional compiler verification treats a compiler as a program, and tries to
prove the correctness of the algorithms and their implementations, which be-
comes a difficult task due to the complexity and frequent evolution of modern

compilers.

Bad
Counter Example

Analyzer Good)
Proof Script

I
Rudimentary

Proof Checker

O.K. Not O.K.
Fault Indication

Figure 2.2: Translation Validation.

Pnueli et al [PSS98b] proposed the notion of translation validation, which
proves the target program preserves the meaning of the source program by
analyzing the results of each run of the compiler instead of analyzing the
compiling process.

Fig. 2.2 taken from figure 1 in [PSS98b| gives an overview of translation
validation, where the source and target programs are sent to an analyzer which
compares them and produces a proof script if the target program correctly im-

plements the source program, or emits a counter-example otherwise. The proof

12

script is a witness of the correct compilation and it will be further checked by
a proof checker, while the counter-example is an evidence of bad compilation.

The definitions in [PSS98b] built a framework for translation validation,
proving the target program implements the source program inductively by a
mapping of observable states. They are the theoretical basis for the later work
in [ZPFGO03], which refined the innovative concepts in [PSS98b] for establish-
ing the equivalence of two transition systems, using control points of programs
instead of observable states and introducing a data mapping instead of assum-
ing the observable set of the target is a subset of that of the source. Inspired
by Floyd’s inductive method, using the transition system model instead of the
flow chart, they proposed a new proof rule VALIDATE which inductively proves
that a target program correctly implements a source program by establishing
an equivalence relation for each pair of corresponding source and target con-
trol points. Without help from the compiler, the control points of a target
program were mapped in order with the control points in a source program,
thus this rule requires the translation to be structure preserving with a clear

mapping of control points between target and source programs.

13

2.3 Loop Optimizations

Loop transformations attempt to improve performance by rewriting loops to
make better use of the memory hierarchy or increase parallelism. This section
gives definitions of loop transformations including loop fusion, distribution,
peeling, interchange, tiling, unrolling, reversal, skewing, and scalar replace-

ment according to [AK02].

1. Loop fusion and distribution

Loop fusion merges two or more loops into a single loop. It is often used to
avoid loading those memory locations into the cache multiple times and to
enhance temporal locality.

Here is an example of loop fusion:

Do I =1 to N

A[I] = B[I] + 1; Do I =1 to N
A[I] = B[I] + 1;
=
Do I =1 to N DL[I] = A[I] + C;
D[I] = A[I] + C;

When transformed from right to left, the above is an example for loop
distribution, which splits a single loop into several separate loops. Loop dis-

tribution is simetimes used to reduce the amount of memory used during one

14

loop so that the remaining memory may fit in the cache, and it can be used

to convert a sequential loop to multiple parallel loops.

2. Loop peeling

Loop peeling moves the first iteration of a loop outside the loop. Peeling a
loop may expose the code to other optimizations. For example:

A[1]

A[1] + A[1];
Do I =1 to N

Do I 2 to N

A[I] = A[I] + A[1];=
A[I] = A[I] + A[1];

The resulting loop can be vectorized:
A[1] = A[1] + A[1];

A[2:N] = A[2:N] + A[1];

3. Loop interchange

Loop interchange changes the nesting order of loops in a perfect nest. It can
minimize the stride of array element access during loop execution and reduce

the number of memory accesses needed. For example:

15

Do I =1 to N Do J =1 to M
Do J =1 to M Do I =1 to N

=
A[I,J+1] = A[I,J]+B; A[TI,J+1] = A[I,J]1+B;

after loop interchange the inner loop can vectorize to produce:
Do J =1 to M

A[1:N,J+1] = A[1:N,J] + B;

In this example, loop interchange enhances vectorization by moving a vector-

izable loop to the innermost position.

4. Loop tiling

Loop tiling decomposes an n-dimensional loop nest into a 2n-dimensional loop
nest, where the inner n-loops together scan the iterations in a tile of the original
iteration space. It can improve the cache performance. A standard example
is matrix multiplication:

Do i =1 to n

Do j 1 ton
Do k =1 to n

cli,jl=cli,jl+ali,k]l*blk,j];

16

Do 4 = 1 to n step b
Do 70 = 1 to n step b
Do kp = 1 to n step b
Do i = 45 to min (4+b-1,n)
Do j = jo to min(jp+b-1,n)
Do k = kg to min(ky+b-1,n)

cli,jl=cli,jl+ali,k]l*blk,jl;

5. Loop unrolling

Loop unrolling repeats loop body instructions several times within a single loop
iteration. It minimizes the number of branches and groups more instructions
together to allow efficient overlapped instruction execution. For example:

Do I =1 to N by 4

A[I] = 0;
Do I =1 to N
A[I+1] = 0;
A[I] =0 =
A[I+2] = 0;
A[I+3] = 0;

17

6. Loop reversal

Loop reversal runs a loop backward. It provides an opportunity for other

transformations. For example:

Do I =1 to N Do I = N to 1 by -1
A[I] = BILI] + 1; A[I] = BILI] + 1;
CLlI] = A[Il/2; C[I] = A[I]l/2;

=

Do I =1 to N Do I = N to 1 by -1
D[I] = 1/C[I+1] D[I] = 1/C[I+1]

After reversal, the loop allows fusion:

Do I = N to 1 by -1

A[I] = B[I] + 1;
CLI] = A[I1/2;
D[I] = 1/C[I+1]

7. Loop skewing

Loop skewing reshapes an iteration space to allow parallelization. For example:
Do I =1 to N

Do J =1 to M

A[I,J]=A[I-1,J]1+A[I,J-1];

18

Do I =1 to N
Do j = I+l to I+M

A[I,j-I1=A[I-1,j-I]1+A[I,j-1-1];

The index j is used to replace index J with J = j — I. After skewing, the
loop can be interchanged into:
Do j = 2 to M+N
Do I = max(1,j-N) to min(N,j-1)

A[I,j-I1=A[I-1,j-I]1+A[I,j-1-1];

After loop skewing and interchange, the inner loop can be vectorized.

8. Scalar replacement

Scalar replacement replaces the use of an array element with a scalar variable.

It reduces memory references. For example:

19

Do I =1 to N
Do I =1 to N t = A[I];
Do J =1 to M Do J =1 to M
=
A[I] = A[I]1+B[J]; t = t+B[J];
A[I] = t;

Here scalar replacement exposes the reuse of A[l].

2.4 Rule PERMUTE

Loop optimizations are often used by a modern compiler to improve parallelism
and make efficient use of the memory hierarchy. Many loop transformations,
including reversal, fusion, distribution, interchange, and tiling are reordering
loop transformations, changing the iteration order of individual statements,

but not changing which statements are executed.

for 7:1 = Ll,Hl do

for i,, = Ly, H,, do
B(ir, .., im)

Figure 2.3: A General Loop

Consider the generic loop in Fig. 2.3.

20

Schematically, we can describe such a loop as “for 7 € by <, do B(D”
where ¢ = (i, ..., i) is the vector of nested loop indices, and T is the set of
the values assumed by Zthrough the different iterations of the loop. The set Z
can be characterized by a set of linear inequalities. For example, for the loop

of Fig. 2.3,
IZ{(il,...,im)|L1Si1§H1 VANEERIIAN ngimSHm}-

The relation < is the ordering by which the various points of Z are traversed.
For example, for the loop of Fig. 2.3, this ordering is the lexicographic order
on 7.

Consider a generic loop transformation:

for i € T by <, do B(i)

—

-,

for j € J by <, do B(F(5))

in which the loop index vector is changed from i to f, the loop index domain
is changed from Z to [J, the iteration order is changed from <, to <, the
permutation function F'is a mapping from J to Z, and the loop body B is

parameterized by the loop index vector.

21

In [ZPFGO03|, rule PERMUTE was proposed for validating such loop re-
ordering transformations. As shown in Fig. 2.4, there are two requirements
that must be satisfied to verify a reordering transformation: the mapping F
must be a bijection from J onto Z, and for every pair of loop index vectors
i1, i3, such that the order of execution of B(i;) and B(4,) is reversed after the
transformation, the result of executing the pair of iterations in either order
must be the same. The symbol ~ in Fig. 2.4 means that two pieces of code

are equivalent, i.e. they transform the program state in the same way.

-

Rl. VieZ:3jeJ: i=F(j)
R2. Vj:l Zéjgéjt _}T(.;l)zéF(;Q) .
R3. Vi, ip€T: i =g s AFY(in) <, F1(11)

B(E‘l);B(lé) ~ B(iz);B(41)

for i€ T by <, doB(i) ~ for j€ J by <, do B(F(j))

Figure 2.4: Rule PERMUTE for Reordering Transformations

As shown, rule PERMUTE may appear to deal only with transformations
that change the execution order of a single loop body. However, as shown in
[GZBO04], by considering more sophisticated domains for Z, it is possible to
handle a wide variety of loop structures including multiple and nested loops.
Rule PERMUTE is limited to reordering transformations that are valid in all
contexts. In Section 3.1, we will introduce a more general proof rule INv-

PERMUTE [HBGO4] which is able to consider the initial and invariant condi-

22

tions of the loop.

2.5 Rule VALIDATE

In the translation validation framework, the validator compares the source and
target programs, and tries to verify their equivalence. To prove the equivalence
of two programs with the same structure, we use a proof rule, VALIDATE (see
[ZPFGO3], and a variant in [ZPGT05] which produces simpler verification con-
ditions), which is inspired by the computational induction approach ([Flo67]),

originally introduced for proving properties of a single program.

X=x"Y=y

* True- - - - - = - - - - 2 __ ‘ True
Y =0 y:=0
’Y:O L y:0
X:=10 X:=5
y=0"x=5
X=x"Y=y
/

Figure 2.5: Program equivalence with no loop

Fig. 2.5 gives the flow charts for a simple source code (on the left) and

23

its target code (on the right). In a flow chart, each vertex (such as Y:=0)
is a statement, and the edges tagged by assertions (such as Y=0) are the
possible control passages between the statements. For each vertex, the proof
task is that the properties of its antecedent edges implies the properties of
its consequent edges. The properties at the final edge of a flow chart can be
proved inductively given the properties at the initial edge of the flow chart.
It is obvious that Y =0 A X = 5 holds at the final edge of the source flow
chart, and y =0 A z =5 holds at the final edge of the target flow chart.
This inductive method for proving the properties of one program can be
extended to prove the equivalence of two programs, if the initial and terminal
points of the target is mapped into the initial and terminal points of the
source, and the observable variables of the two programs are mapped (such as
X corresponding to z, Y corresponding to y). This equivalence usually requires
that the observable variables have the same values (suchas X =2 A Y =y) at
the final points of both programs, given the same initial inputs. This seems to
be straightforward for the simple example in Fig. 2.5, since it is easy to get the
relations between the initial states and final states of the programs. However,
for the cases with loops (Fig. 2.6), it can be hard to get the relation bewteen
the initial state and final state of a program. Our strategy is to introduce
selected control points to break the cycles: besides the initial and terminal

points, there is at least one point for each cycle. When the target control

24

point set is mapped into the source control point set, given an equivalence
relation at a pair of corresponding control points, it can be proved that the
relation also holds for the next pairs of corresponding control points. Thus it
can be proved inductively that the equivalence relation holds at the final pairs

of control points of the programs.

L1:V=v

Figure 2.6: Program equivalence with loops

With the above intuition, assuming both source and target programs are
deterministic and have the same inputs, rule VALIDATE in Fig. 2.7 (this ver-
sion of rule VALIDATE is from [ZPGT05] paper, and it differs slightly from its
previous version in [ZPFGO03| paper) provides a proof methodology by which

one can prove that one program refines another. This is achieved by estab-

25

. Establish a control abstraction k: CP, — CPg such that 7 is an initial
block of T' iff k(%) is an initial block of S and i is a terminal block of
T iff k(@) is a terminal block of S.

. For each basic block Bi in CP,, form an invariant ¢; that may refer
only to concrete (target) variables.

. Establish a data abstraction
a:(PC=k(pc) A (pr=Vi=e) A -+ A (pn = Va=¢ep)

which asserts that the source and target are at corresponding blocks
and which assigns to some non-control source state variables V; € V
an expression e; over the target state variables, conditional on the
(target) boolean expression p;. Note that o may contain more than
one clause for the same variable. It is required that for every initial
target block Bi, ©, A ©, — o A ;. It is also required that for
every observable source variable V € O, (whose target counterpart is
v) and every terminal target block B, « implies that V = v at B.

. For each pair of basic blocks Bi and Bj such that there is a simple
path from Bi to Bj in the control graph of P,,, we form the verification
condition

T S
Cij: wi N o A Pij A (\/ p’i‘l’) = A (P;',
w€Paths(k(i))

where Paths(k(i)) is the set of all simple source paths from x(7) and
pfr is the transition relation for the simple source path .

. Establish the validity of all the generated verification conditions.

Figure 2.7: The Proof Rule VALIDATE

26

lishing a control mapping from target to source locations, a data abstraction
mapping from source variables to (possibly guarded) expressions over the tar-
get variables, and proving that these abstractions are maintained along basic
execution paths of the target program.

In rule VALIDATE, P, = (V,,0,,0,,p,) and P, = (V,,0,,0,,p,) are
two comparable TS’s, where P; is the source and P, is the target. Each TS is
assumed to have a cut-point set, a subset of the program locations (i.e. possible
values of pc) that includes all initial and terminal locations, as well as at least
one location from each of the cycles in the programs’ control flow graph. A
simple path is a path connecting two cut-points, and containing no other cut-
point as an intermediate node. For each simple path, we can (automatically)
construct the transition relation of the path. Typically, such a transition
relation contains the condition which enables this path to be traversed and
the data transformation effected by the path.

Rule VALIDATE constructs a set of verification conditions, one for each
simple target path, whose aggregate consists of an inductive proof of the cor-
rectness of the translation between source and target. Roughly speaking, each
verification condition states that, if the target program can execute a simple
path, starting with some conditions correlating the source and target programs,
then at the end of the execution of the simple path, the conditions correlating

the source and target programs still hold. The conditions consist of the control

27

mapping, the data mapping, and, possibly, some invariant assertion holding
at the target code.

Following the generation of the verification conditions whose validity im-
plies that the target T is a correct translation of the source program S, it only
remains to check that these implications are indeed valid. One advantage of
the approach promoted here is that this validation (as well as the preceding
steps of the conditions’ generation) can often be done in a fully automatic

manner with no user intervention.

28

Chapter 3

Validating Loop Optimizations

This chapter decribes the theoretical work I have done for my thesis. Sec-
tion 3.1 explains rule INV-PERMUTE. Section 3.2 gives rule REDUCE. Sec-

tion 3.3 presents rule GEN-VALIDATE. Section 3.4 concludes.

3.1 Improved PERMUTE Rule

A modern compiler performs a set of advanced optimizations to make the
compiled code run faster. Among them are loop optimizations which improve
parallelism and make efficient use of the memory hierarchy. A reordering
transformation is defined [AK02] as any program transformation that merely
changes the order of execution of the code, without adding or deleting any

executions of any statement. Many loop transformations, including rever-

29

sal, fusion, distribution, interchange, and tiling, are in the class of reordering
transformations.

Traditionally, dependence analysis has been used to determine whether it
is safe to perform certain kinds of program transformations. In the presence
of two accesses to the same memory location (where at least one is a write)
dependence theory [AK02] states that a reordering transformation preserves
a dependence if it preserves the relative execution order of the source and
target (i.e. the first memory access and second memory access) of that depen-
dence. A reordering transformation is walid if it preserves all dependences in
the program. To decide whether a reordering loop transformation preserves
the meaning of the program, the compiler usually performs dependence anal-
ysis. The basic idea is that for any pair of statements s; and s,, if there is
any dependence between them, then the order of executing them cannot be
changed in the transformation. Let Dependence(si, s2) be a predicate denot-
ing whether there is any dependence between the statements s; and so, and let
Reorder(sy, s2) be a predicate denoting whether the transformation can safely
reorder the execution of s; and s,. The dependence rule can be schematized

as:

Dependence(sy,s;) = —Reorder(sy, sz2) (3.1)

30

or, equivalently,

Reorder(s1,ss) = —Dependence(sy, $) (3.2)

This rule has a stronger requirement than necessary for the correctness of
reordering loop transformations. The right hand side requires that there is no
dependence between the pair of statements, but there are cases when this is
too conservative. For example, when two statements assign the same value to
a variable, it does not matter which one is executed first. From a broader view
of program equivalence, let si;s9; ~ $9;51; denote that the effect of executing

the two statements s; and sy in either order is the same. The rule becomes:

Reorder(sy, s2) = $1;82; ~ S2;81; (3.3)

Rule (3.3) is more powerful than rule (3.2), because it validates more cases
than rule (3.2). Rule PERMUTE (Fig. 2.4) formalizes the idea in rule (3.3). In
addition to being more general, the PERMUTE rule has two additional advan-
tages over the standard dependence analysis approach. First, it only needs the
information inside the loop to generate the logical formula for code equivalence,
without explicitly having to perform dependence analysis. Second, PERMUTE
can leave the task of proving the legality of transformations to an automatic

theorem prover, which can not only determine whether a transformation is

31

legal, but can actually provide a proof in the case that it is'.

for i =1 to N for j =1to M
for j=1to M = for i =1 to N
Ali+k,j+11=A[1i,jl+1 Ali+k,j+1]=A[i,jl+1

Figure 3.1: A loop interchange example

Though it is easy to implement, PERMUTE does not take the context of a
loop into account. The rule assumes that the program is in an arbitrary state,
which requires premise 3 in Fig. 2.4 to be valid for all values of non-index
variables. Consider the loop in Fig. 3.1, where loop interchange is invalid
according to the PERMUTE rule. Notice that if £ happens to have a non-
negative value upon entering the loop, then loop interchange is valid. From
this example, we see that PERMUTE can be improved by incorporating a loop

invariant ¢ (such as k > 0), so that premise 3 becomes:

V;l,ZQ ceTl: ;1 =<z ZQ A F_l(zg) -<J F_l(fl)

=

{¢} B(71);B(i2) ~ {¢} B(i2);B(71)

where the representation {¢} uses Hoare’s precondition notation [Hoa69],

'In fairness, much of the machinery required to perform dependence analysis, including
solving diophantine equations involving array subscripts, must be incorporated into the
theorem prover.

32

meaning that we assume ¢ holds before each of the two pieces of code.

R1.
R2.
R3.
RA4.

VZEI:EI}EJ:
VZl?'észjl
VieT:
VZ‘I,ZZEI:

{¢} for i € T by <, do B(7)

~J

A

{¢} for 7 € J by <, do B(F(5))

Figure 3.2: Rule INV-PERMUTE for reordering loop transformations

It is important that the invariant ¢ hold at the beginning of the loop and
continue to hold (i.e. be invariant) during the execution of the loop. We also
require that ¢ does not contain any loop index variables, otherwise it may
become invalid by the updating of loop index variables at the end of each
iteration. Fig. 3.2 gives the improved INV-PERMUTE rule [HBGO04|, which

includes an invariant ¢ assumed to not contain any reference to the loop index

variables.

In INV-PERMUTE, premises 1 and 2 ensure that the permutation F'is a
bijection, premise 3 ensures that the property ¢ holds at the beginning and
end of each iteration of the loop, and premise 4 ensures the equivalence of the

source and target loop by commutativity. The PERMUTE rule can be regarded

33

as a weaker version of the INV-PERMUTE rule with invariant ¢ = true.
The following lemma directly implies the soundness of the INV-PERMUTE

rule:

Lemma 3.1.1 (Soundess of INV-PERMUTE) Let Z and J be finite sets or-
dered by <, and <, respectively such that |Z| = |J|. Let F: J — T be a

bijection. Let ¢ be a property independent of the loop index variables. If

VieZ: {¢} Bl {¢}

and
VZ]_,ZQ eTl: Zl =<z ZQ A F_I(ZQ) =7 F_l(fl)
=
{6} B(1);B(i2) ~ {@} B(i2);B(%1)
then

{¢} for i € T by <, do B(7)

>

{¢} for j € J by <, do B(F(5))

34

Proof Assume that [Z| = m, and that Z = {iy, ..., ip} such that i; <_ ... <

z
im. Forevery k =1,...,m, let Iy, = {i1,..., i}, and denote J; = F~(Z}).

We prove, by induction on £, that for all k =1,...,m, if

V;l,ZQ € Ik : ;1 <z ;2 /\F_l(’z'g) '<J F_l(;;’l)

=

{¢} B(71);B(i2) ~ {¢} B(i2);B(i1)

then

{¢} for i € T, by <, do B(3)

-,

{¢} for j € Ji by <, do B(F(j))

The base case is when £ = 1 and then the claim is trivial. Assume the
claim holds for k < m. Denote F~1(iy,1) by 7.

From the induction hypothesis and the properties of ~, it follows that

{¢} for i € T, by <, do B(3)

35

- -

{¢} for j € T, by <, do B(F(J)); B(F(}.))

Assume that J, = {jl,...,fk} such that 7, <y =y I If 7, = ks
then the inductive step is established. Otherwise, let £ be the minimal index

such that ;* <, 5‘4. It suffices to show that

- -

{6} BF(G);- i B(F(e1)); B(F(1.);

-

{¢} for j € Ji by <, do B(F(5)); B(F(j.))

Notice that the first assumption

VieZI: {¢} B(i) {¢}

implies that ¢ holds at the beginning and the end of each iteration if ¢ holds

as precondition of the loop, no matter what the iteration order is. That means:

{0} BF(71)): {0} -5 {6} B(F(je-1)); {6} B(F(3.));
{0} B(F(0)): {9} - {0} BE (i) {0}

Now, for each t € [¢,..., k], we have that F(j,) <, F(J,) and 7, <, i, 80

36

by R4 of Rule INV-PERMUTE, it follows that

{6} B(F(j1)): B(F(J.) ~ {8} B(F(5.)); B(F (j.)),

and thus B(F(j,)) can be “bubbled” into its position between B(F(j,_)) and

B(F(7¢))- =

Example

Let ¢ be the property £ > 0. For the example in Fig. 3.1, let the loop index
vector i; be the tuple (41,71), and iy the tuple (i2,72). The domain Z is
[1, N] x [1, M], the domain J is [1, M] x [1, N], the permutation function F
is F((4,4)) = (i,7), and the body B((i,7)) is Al + k,j + 1] = A4, j] + 1;. The
INV-PERMUTE rule requires:

\Vlil,’ig € [LN],le,jg € [1:M] :

(i1, 1) <tew (t2,72) A (d2,12) <tex (J1,7%1)

{k > 0}A[ix + k, 51 + 1] = Aliy, 1] + 1;

Alig + k, jo + 1] = Alis, jo] + 1;

37

{k > 0}Alia + k, jo + 1] = Alig, jo] + 1;

Aliy + kg1 +1] = Alig, 1] + 15

Let read(A, i) denote the value obtained by “reading” the ith element of
array A, and write(A, i,) denote a new array obtained by “writing” z to the
1th element of array A. The above verification condition can then be expressed
as:

1<t SNALISp S NALSjpSMAL<jp<M

N <2 NJ1 > Jo

(Al = write(A, (21 + kajl + 1)a Tead(Aa (ihjl)) + 1)
N Ay = write(Aq, (ia + k, jo + 1), read(Ay, (i2, j2)) + 1)

N Al =write(A, (is + k, jo + 1), read(A, (i, j2)) + 1)

38

A AIZ = write(Alla (21 + kajl + 1),read(A’1, (ilajl)) + 1))

A2:Al2

which can be verified as a valid formula by the automated theorem prover CVC

Lite.

3.2 Rule REDUCE

for i=1to N do

= N;
r:=x+1; — T=T AN

Figure 3.3: An example for loop reduction.

Rule PERMUTE can handle any loop reordering transformation, but there
are other kinds of loop transformations that cannot be handled by either VAL-
IDATE or PERMUTE. Fig. 3.3 shows an example (an actual transformation
performed by Intel’s Open Research Compiler [JCWO01]) in which a loop is
removed and replaced with a single statement. We call this loop reduction
and propose a new proof rule, REDUCE [HBGPO05], to deal with such cases.
Rule REDUCE is shown in Fig. 3.4, where the symbol ~ means that two pieces

of code are equivalent.

39

RI. B(1) ~ B'(1)
R2. Vi>0: B'(i);B(i+1)~ B'(i+1)

fori=1to N doB(i) ~ DB'(N)

Figure 3.4: Rule REDUCE for loop reduction

Typically, loop reduction is based on finding a closed-form expression for
the result of executing the loop. Such transformations can often be verified
using induction. Rule REDUCE is based on an inductive argument that ex-
ecuting B(7) from 1 to N is equivalent to executing some closed-form block
B'(N). The first premise is the base case. It requires that B(1) be equivalent
to B'(1). The second premise is the inductive case, which requires that B’'(3)
be able to “absorb” B(i 4+ 1) to become B'(i + 1). For the code in Fig. 3.3,
B(i) is ¢ := z + 1 and B'(3) is := z + i. The two premises can easily be
established for this simple case.

for i=1to N do

Skip: = Skip;

Figure 3.5: Reduction for an empty loop.

Rule REDUCE can also be used to show that a loop which does nothing
can be removed. Fig. 3.5 shows a transformation which removes a loop with

no loop body. In this case, B(i) = B'(i) = Skip.

40

3.3 Generalized VALIDATE Rule

Chapter 2 described the proof rule VALIDATE. Rule VALIDATE can validate
many transformations in which the source and the target have the same loop
structure. However, there are still some cases in which, even though the loop
structure is the same, rule VALIDATE is unsuccessful. Fig. 3.6 gives an example

of such a transformation performed by ORC.

Cp; -
if (1 < N) then {
CPli 11: .
for i =1 to N do if (1 < M) then {
CP, : fori=1to N do
for j =1 to M do cpy :
CP; : = for j=1to M do
B(Za])a Cp3 - o
CP, : B(i, j);
}
}
CPy -

Figure 3.6: An example for which rule VALIDATE fails.

The transformation adds two “short-cut” branch conditions before the
main loops. In this example, CP;, CP,, CP3 and CP, are the source cut-points,
and cp,, cp,, cp; and cp, are the target cut-points. The control mapping maps

each of the target cut-points in order to the corresponding source cut-point.

41

1LN21AM<1

1<N
I N>1AM<1 \\
fori=1to N do 1<M
z N
forj=1toM do fori=1to N do
3 2y
B(ij) forj=1to M do

3)

B(i.j)

Figure 3.7: Rule GEN-VALIDATE example.

42

1, is a target location that is not in the cut-point set. Now, consider the
simple target path from cp, to cp,. This path goes from cp, through 1; and
then to cp, directly without ever entering the loops (Fig. 3.7). This target
path is enabled under the condition N > 1 A M < 1. Its corresponding
source path goes from CP; inside the loop to CPy, stays at CPy, for N cycles,
and then exits to CP, without entering the inner loop. Since this source path
crosses CP, N times on its way from CP; to CPg4, it is not a simple path. This
is exactly the problem for rule VALIDATE: the simple path from cp, to cp,
has no corresponding simple path in the source! As a result, the verification
condition corresponding to the simple path from cp, to cp, fails.

The reason that rule VALIDATE fails for the transformation of Fig. 3.6 is
that it assumes each simple path in the target corresponds to one or more
simple paths in the source. However, this transformation transforms a non-
simple path in the source into a simple path in the target. We can solve this
problem by relaxing the requirement on the set of cut-points used by rule
VALIDATE.

The modified proof rule, GEN-VALIDATE [HBGPO05], is presented in Fig. 3.8,
and a proof of its correctness is given in Section 3.5. It is essentially the same
proof rule as that given in [ZPG™05] except that a new item 0 has been added
which explicitly allows the set of cut-points to be chosen more freely. The

cut-point sets must include the initial and terminal points of programs as be-

43

0. Establish source and target cut-point sets CP, and CP,, which
include all initial and terminal program locations. For any simple
path between two cut-points ¢ and j, its transition relation p;;
must be computable.

1. Establish a control abstraction k: CP, — CP such that 7 is an ini-
tial (terminal) location of T iff k(%) is an initial (terminal) location

S.

2. For each cut-point ¢ in CP,,, form an invariant ¢; that may refer
only to target variables.

3. Establish a data abstraction
a:(PCZK‘(PC) A (pl - W :el) A e A (pn%Vnzen)

which asserts that the source and target are at corresponding cut-
points and which assigns to some non-control source variables V; €
V, an expression e; over the target variables, conditional on the
(target) boolean expression p;. It is required that for every initial
target cut-point ¢, O, A ©, = a A ¢;. It is also required that every
observable source variable V' € O, has a unique corresponding
observable target variable v € O,, and that for every terminal
target cut-point ¢, pc =t A « implies that V =wv for all V € Oq.

4. For each pair of cut-points ¢, j € CP, such that there is a simple
path from 7 to j, we form the verification condition

T S
CZ] wi N a A Pij A (\/ pﬂ') - a A 9037
w€Paths(k(i))

where Paths(k(z)) is the set of all simple source paths starting at
k(%) and pi is the transition relation for the simple source path .

5. Establish the validity of all the generated verification conditions.

Figure 3.8: The generalized rule GEN-VALIDATE

44

fore, but they do not necessarily contain a point for each loop. Instead, we
require that the transition relation for every simple path be “computable”.
Here, “computable” means that the path is finite and its transition relation
can be calculated by data flow analysis or derived by proof rules. It is easy to
see that loop-free paths are guaranteed to be computable. But it is also the
case that whenever the number of iterations of a loop are known, the transition
relation for the loop can be computed by unrolling the loop.

To solve the example of Fig. 3.6, we can eliminate cut-points CP, and cp, as
shown in Fig. 3.9. There are now several new simple paths that did not exist
before. Most of these are loop-free and are thus easily computable. However,
there is now a new source path from CP; to CP4. This path is only possible if
the inner loop is never executed (otherwise CP3 would be reached). But this
means that the loop body is effectively empty, and as discussed earlier (see
Fig. 3.5), a loop with an empty body is equivalent to doing nothing. Note that
such a path in the target is not feasible since it would require both 1 < M
and 1 > M to be true. Thus, all of these paths are computable and the re-
quirements for rule GEN-VALIDATE are met. With this new set of cut-points,
the validation succeeds because there is a corresponding simple source path

for the target path from cp, to cp,.

45

cp;
if (1 < N) then {

CP; : if (1 < M) then {
for i =1to N do for i=1to N do
for j=1to M do for j=1to M do
CP; : == Ccp;
CP4I }
}
Cpy :

Figure 3.9: Example with modified cut-points.

3.4 Summary

This Chapter describes enhancements to our translation validation framework,
primarily allowing additional loop and loop-related transformations to be val-
idated. We introduced the new proof rule REDUCE, an improved permuta-
tion rule INV-PERMUTE, and a generalization of the old validate rule GEN-
VALIDATE. Chapters 4 and 5 will describe the use of these rules in TVOC and

speculative optimizations.

3.5 Appendix: Soundness of GEN-VALIDATE

Let P, = (V,,0,,0¢,p,) and P, = (V,,0,,0,,p,) be two TS’s, where P, is
the source and P, is the target. Assume all the parts in rule GEN-VALIDATE

are established. We need to prove that P, is a correct translation of Py, which

46

means they are comparable and, for every o, : ?y,%1,... a computation of P,
and every o, : Sg, 51, ... a computation of P, such that sy is compatible with
to, then o, is terminating (finite) iff o, is and, in the case of termination, their
final states are compatible.

From part 3 of rule GEN-VALIDATE, we know that the two systems are
comparable. We will prove the rest in two directions.

Suppose we have a terminating target computation o,. We know that the
initial state ¢y and terminal state ¢,, of the computation must be at some target
cut-points cpg and cp,,, according to part 0 of rule GEN-VALIDATE. According
to part 1 of GEN-VALIDATE, the corresponding source cut-points C'Py and CP,
are initial and terminal source cut-points respectively, and for any other cut-
point cp; in the target computation path, the corresponding source cut-point
CP; is k(cp;). Now, by part 3, a A ¢ holds at the initial states ¢y and sg. From

part 4, for any cut-point ¢ and its next cut-point j in the target path,

T s
Cij: i Ao A py A \/ pr) — d A gl
wEPaths(k(i))

Here, since the source cut-point k(i) is not the terminal cut-point, there is
always a source path enabled at (i), which means \/, cp,unss) p. is always
true. This condition guarantees that for the target simple path between 1

and j (it has computable transition relation pz-Tj, and its corresponding source

47

simple path also has a computable transition relation p:), if a A ¢ holds at
cut-points ¢p; and (cp;), then it also holds at ¢p; and (cp;). By induction,
it follows that a A ¢ holds at the terminal cut-points, which have the states s,
and t,,. But by 3, this implies that s, and t,, are compatible.

For the other direction, suppose we have a terminating source compu-
tation o,. Now, suppose the corresponding target computation o, is non-
terminating. This infinite target path will include an infinite number of target
cut-points, since it is required that the transition relation for the path between
two directly connected cut-points be computable and only a finite path can
have a computable transition relation. By the argument above, a target com-
putation with an infinite number of cut-points will have a corresponding source
computation ¢/ with an infinite number of source cut-points. This would re-
quire there to be two different source computations o, and o), starting from
the same initial source state sy, which violates the assumption that the source
program is deterministic. Therefore, the corresponding target computation
0, must be terminating. And according to the previous argument, their final

states must be compatible.

48

Chapter 4

TVOC: A Translation Validator

for Optimizating Compilers

TVOC is a tool for the translation validation of advanced optimizing compil-
ers, using an automatic theorem prover CVC Lite [BB04]. In the framework of
translation validation, to prove that the translated code correctly implements
the original code, TVOC uses the proof rule VALIDATE for structure preserv-
ing optimizations with a clear mapping of control points between target and
source programs (e.g. dead code reduction, loop-invariant code motion, copy
propagation) [ARG99, WL91|, and rule PERMUTE for reordering loop opti-
mizations (e.g. interchange, tiling) which modify the iteration order of loops

without modifying the loop bodies [AK(02, Wolfe95].

49

This chapter is organized as follows. Section 1 introduces the architecture
of TVOC, and provides an example of the tool. Section 2 gives the new imple-
mentation features in TVOC. Section 3 summarizes this chapter. In addition,

Section 4 provides a sample output from TVOC.

4.1 Overview

Source program —{ Compiler =~ Target program
VvC
IcS N TVOC
yesno l l

Verified Not verified

Figure 4.1: Initial design of TVOC.

The initial version of TVOC (Fig. 4.1) validated basic global optimiza-
tions employed by Intel’s ORC compiler, using the ICS decision procedure
[FORS01]. However, a lot of important issues were not considered initially:
First, only global optimizations were dealt with, while other optimizations such
as loop optimizations were not handled. Second, there were only scalar data

types, while array types were not included. Third, as CVC Lite has advantages

90

of efficiency and the ability to produce verifiable proofs, it is a better choice for
checking the verification conditions. To convert the decision procedure from
ICS into CVC Lite, I used the commands and API interfaces of CVC Lite for
types, expressions, assertions, queries, and contexts, and the details will not be
presented here. The following paragraphs will describe how I improved TVOC

considering the first two issues.

Source program
|
Compiler
SourcelR' S A file Target IRT
\ /
L ! ~ valid
TVOC Phase 1 -~ Phase?2
] i — |nvalid
yes/no ‘ Verification Conditions ’ yes/no
CVC Lite

Figure 4.2: The second architecture of TVOC.

The second version of TVOC [HBGZ04] accepts as input the source inter-
mediate code S and target intermediate code T generated from Intel’s ORC
compiler [JCWO01], and outputs the result “VALID” with proof or “INVALID”

with counter examples. This version was designed with two separate phases

ol

(Fig. 4.2): the first phase implements rule PERMUTE for reordering loop op-
timizations and the second phase implements rule VALIDATE for structure
preserving optimizations. These two phases are explained with the help of
the following example, where two loops in the source are fused and an extra

branch condition is added in the target.

if N>0{
doi=0to N
doi=0to N {
Ali] = 0;
Ali] = 0
== B[i] = 1;
doi=0to N
}
B[i] = 1;

In the first phase, in order to validate the loops, TVOC needs to know what
kind of loop optimizations have actually been performed by the compiler. Since
ORC compiler produces a .1 file containing such information, this file was used
in TVOC to get the hints from the compiler. Then TVOC generates verification
conditions for these loop optimizations according to the proof rule PERMUTE,
and validates them using CVC Lite. In the above example, for an iteration 7
in the first loop and i, in the second loop, fusion reorders them when iy, < i1,

so the rule requires:

19 < 11 — A[Zl] =0; B[Zg] =1; ~ B[ZQ] =1; A['Ll] =0

52

Let write(A,i,z) denote a new array obtained by “writing” z to the ith

element of array A. The verification condition is represented as:

io < i1 N Ay =write(A,i1,0) A By = write(B,i2,1)
A B] = write(B,i2,1) AN A} = write(A4,i1,0)

— A1 = All AN By = Bi
After validating the loops, TVOC produces a synthesized code S’, which

is the result from transforming the source code S with the guessed loop opti-
mizations. For the above example, TVOC compares the source and the target,
finds that two loops are fused, validates this fusion and produces a new S’

code (Fig. 4.3).

do zTi]O_tOO{V doi=0to N {
B Ali] = 0;
doi=0to N Bli] = 15
B[i] = 1; }
(a) I; (Source S)) 2 (8)
if N>0{
doi=0to N {
Ali] = 0;
B[i] = 1;

}
}

(¢c) I (Target T)
Figure 4.3: S, S" and T for the example.

93

Source Target
cpo IF (n > 0)

CP,: DO (I:=0; I < N; I++) DO (i:=0; 7 < n; i++)
CP : Afl] := 0; cpy ali] := 0;
B[] :=1; bli] := 1;
ENDDO ENDDO
CP;: ENDIF
Cpa :

Figure 4.4: Control points for the example.

In the second phase, after receiving the synthesized code S’ from phase
one, TVOC first finds the mapping « of variables between S’ and the target
code T, and transforms S’ and 7 into flow graphs. TVOC then sets a series of
control points C'Ps and cpr in the flow graphs, and builds the control mapping
k between them. TVOC also performs data flow analysis to get the invariants
© at the control points. Finally TVOC generates a set of verification conditions
with «, k and ¢ according to rule VALIDATE, and validates them using CVC
Lite.

For the above example, both source S’ and target 7" are marked at three
points (Fig. 4.4). Assuming arrays A and B are observable variables, the proof
task is to verify A = a and B = b at the terminal points (CPs,cps) of the

programs. The control mapping « is:

cpg—= CPy cpr— CPy cpy— CP,.

54

Data mapping between source and target is:

PC = k(pc) A (A =a) A (B =Dh).

There are four possible paths connecting two points directly 0 — 1, 0 — 2,
1 — 1 and 1 — 2. Therefore four verification conditions are established
(Fig. 4.5), and they are verified by CVC Lite.

Cor : True N =0 A d=a AN b=b A n=n A n>0
NA=A N B=B ANI'=0 AN N=N
ANa=A ANb=B A i=1 N n=N
— d=A ANV=B"Ni=I N n=N AN i<n ANT<N
Coz : True AN i'=4i AN d=a N bV=b A n'=n AN n<0
NA=A N B=B ANI'=0 AN N=N
ANa=A Nb=B AN i=I1 N n=N
— d=A ANV=B" AN n=N A True
Ci: i<n AN I<N
ANi=i4+1 A d =write(a,i,0) AN b =write(b,i,1) A n'=n
ANi+1<n A A" =write(A,1,1) N B' =write(B,I,1)
ANI'=I4+1 AN NN=NA a=A AN b=B AN i=1 N n=N
— d=A ANV=B"Ni=I Nn=N AN i<n ANT<N
Cis: i1<n AN I<N
ANi=i4+1 A d =write(a,i,0) AN b =write(b,i,1) A n'=n
ANi+1>n AN A =write(A,1,1) N B' =write(B,I,1)
ANI'=I4+1 AN N=N A a=A Nb=B AN i=I1 AN n=N
— d=A ANV=B"ANn=N AT+1>N

Figure 4.5: Verification conditions for the example.

For a given source program, if both phases of TVOC yield positive results,
it is guaranteed by the proof rules that the source and target intermediate

codes are equivalent. For the above example, TVOC outputs result “Valid”,

95

which means that the source and target are indeed equivalent.

4.2 New Implementation Features

Source program

\i

Compiler

N

SourcelR' S Target IRT

s — N

Phase 1 S Phase 2 —=Vadid
VOC 1S =88, =8, =5 "| validate(S,T)
/4

yesno / / Verification Conditions / / yesno
CVvC Lite

—|nvalid

Figure 4.6: The current architecture of TVOC.

Fig. 4.2 shows the previous architecture of TVOC. There are three limita-
tions of this architecture [GZB04]: first, TVOC depended on an auxiliary file
(the “1” file) generated by the compiler to tell it which loop transformations
had been performed; second, loop transformations had to be verified in one

step, even if the transformations were more naturally modeled as the compo-

26

sition of several simple transformations; and third, there were several different
proof rules (and corresponding code) for verifying the loop transformations.
In this section, we discuss the new architecture of TVOC [BFG+05] (shown
in Fig. 4.6) and show how we implemented the solutions to these problems.
We also discuss the implementation of the GEN-VALIDATE rule described in

Chapter 3.

4.2.1 An Algorithm for Inferring Loop Optimizations

Because it is nontrivial to figure out what kind of optimizations the compiler
performs, the old version of TVOC used information produced by the compiler
to figure out which loop optimizations had occurred. However, not all com-
pilers provide such information, and the information provided by ORC was
sometimes incomplete. In order to make TVOC more generally applicable, we
developed an algorithm to infer which loop transformations were performed
by looking only at the source and target code. The algorithm is capable of
inferring loop reduction, loop fusion, loop interchange, and loop tiling and is

shown in Fig. 4.7.

o7

1. For each nested loop of depth m in the source, check the cor-
responding target code for a nested loop of depth n. Note that
we can match up loops in the source and target because WHIRL
includes annotations indicating which line number in the source
corresponds to a given target line.

2. If m > n, check whether the target contains code which came
from the body of the source loop. If not, try loop reduction.
Otherwise, try loop fusion.

3. If m = n, check to see if any indices are out of order. If so, loop
interchange has occurred.

4. If m < n, assume loop tiling has occurred.

Figure 4.7: The algorithm for analyzing loop transformations.

4.2.2 A Unified Validation Module for Reordering Op-

timizations

In previous versions, TVOC used different proof rules for interchange and tiling
than it does for fusion, and it had different modules for different loop trans-
formations (Fig. 4.8). This was not ideal from a software engineering perspec-
tive. In the current version, TVOC uses the generalized approach described in
[GZBO04] for all reordering loop transformations (Fig. 4.9). Thus, there is only
one general module for checking reordering transformations which accepts the
loop index domain and permutation function as parameters and generates the

appropriate verification conditions.

o8

SourcelR S

A file

loop
optimization

Figure 4.8: Previous design with different validation modules.

Phase 1

Check_fusion

Check_tiling

: IRS
Check_interchange I

4.2.3 A Methodology for Combinations of Optimiza-

tions

SourcelR S

Target IRT .

Analyze loops

Phase 1

loop optimization 1

loop optimization 2

Check_loop

loop optimization n

Figure 4.9: Combinations of optimizations.

The old version of TVOC had difficulty handling combinations of loop trans-

formations. This was a serious drawback since often multiple transformations

are performed by the compiler. In the new version, after a loop transformation

99

is inferred and validated, TVOC synthesizes a new intermediate version of the
code obtained by applying that transformation. It repeats this process for
each detected transformation. In this way, a series of intermediate versions of
codes S, .95, ...5, are generated by TVOC, and the final version S, is output
by phase one and provided as input to phase two which uses the validate rule

to check it against the target code (Fig. 4.9).

for i =1 to 100 do

. for : =1 to 100 do for 7 =1 to 100 do
forj=1to100do ¢ i 1t0100do fori=1to 100 do
CL(Z,]) =05 () 0: () 0;
for 7 =1,100 do bij) = 1; bi, j) = 1;
b(i j) = 1; g g

Figure 4.10: A combination of loop transformations.

As an example, consider the code in Fig. 4.10. ORC first fuses the two
inner loops and then performs loop interchange in order to improve cache
performance (when the input code is written in Fortran in which arrays are
stored in column major order). In phase 1, after comparing the source and
target loops, TVOC detects that loop fusion and interchange happened. It
first checks if fusion is valid. When the result is positive, it performs fusion
and generates a new intermediate version of the code. Next it checks whether
interchange is valid (which it is), generates a new intermediate version, and

sends the result to phase two.

60

4.2.4 Implementation of Rule GEN-VALIDATE

Recall that rule GEN-VALIDATE requires checking a verification condition for
each simple path between cut-points in the target. The verification condition
as shown for the target path from ¢ to j includes a disjunction of all possible
simple source paths starting from (7). In the actual implementation of rule
(GEN-VALIDATE, it is not practical to test all the paths starting from cut-point
k(%) in the source. It is much easier to restrict the source paths to those from
k(%) to k(j). With some additional work, we can restrict our attention to only
these paths.

The following theorem shows how to recast the verification condition in
terms of only those source paths from k(i) to k(j). Let Cond. be the con-
ditions under which a source simple path 7 is enabled (this corresponds to a

conjunction of the branch conditions along the path).

Theorem 4.2.1 Consider the following verification conditions:

oi NaApg AC N\) = o A (4.1)
w€Paths(k(i))
©i N a A piTj - \/ Cond,sr) (4.2)

wePaths(k(i),x(5))

61

T
oi N a N py A \/ pi) — o A g, (4.3)
m€ Paths(r(i),5(5))

We claim that equation (4.1) holds iff (4.2) and (4.3) hold.

Proof In one direction, suppose (4.1) holds, (4.3) also holds because the left-
hand side of (4.3) is stronger than the left-hand side of (4.1) while the right-
hand sides of the two implications are the same. Now, to show that (4.2)
also holds, suppose we have ¢; A a A p:; By definition of p and «, it
follows that PC = k(7). Since 7 is not a target terminal cut-point, (i) is not a
source terminal cut-point. Now, at every non-terminal source cut-point, some
transition must be taken, so it follows that (\/, cpasns(aei)) p.) holds. By (4.1),
we then have o/ A ¢}. But from piTj Ao, PC" = k(j) follows. We thus have
(Ve Paths(s(i) (7)) p.), which means (4.2) holds since Cond., is implied by p..
In the other direction, suppose that (4.2) and (4.3) hold and that we have
©i N a A ,0;7;- A (V rePaths(ni)) p.). By (4.2), we have (V re Paths (s(i),50) Cond,),
so some path 7 from k(%) to x(j) is enabled. But because the transition system
is deterministic, only one path can be enabled at a given point, which means
that at (i), the only simple path enabled is from k(i) to x(j). Therefore

(Ve Paths(s(i) (7)) p.) holds. By (4.3), we have o/ A ¢}, and thus (4.1) holds.O

Using this theorem, we were able to implement part 4 of rule GEN-VALIDATE

by checking the conditions of the source simple paths between x(i) and &(j)

62

without looking for all the source simple paths starting from (7).

4.2.5 Introducing array types

Loops often contain large arrays, and they are hard to analyze due to memory
aliasing. In TVOC, arrays of different names are regarded as different arrays
with no overlap in memory locations, assuming the program is free of pointers.
In this case, memory aliasing is restricted within an array.

In data flow analysis, a basic block is a sequence of statements with an
unique entry and exit, thus there is no branch inside a basic block. All state-
ments in a basic block B; are considered together to get the combined transition
relation p; for this basic block. With only scalar data types, this combined
transition relation p; is represented by a variable map which establishes a
function m; mapping the name of a variable v to the value of the variable
m;(v). Each mapping has m;(v) = v initially, and it is updated into m] by the
assignments in the block. The combined transition relation p; is represented
with

A\ v =mi)

veV

where V is the set of all variables in the program, and v’ holds the value of

v after the block. The composed result of two basic blocks B; and B; can be

63

computed by composing their mapping m; and m;:

To show how to compute the mapping, consider an arbitrary basic block

with a variable mapping m, it is assumed that the mapping m satisfies:

m(e1 op ez) = m(e1) op m(es)

m(op e) = op m(e)
m(C) =C

where operator op stands for any scalar operation, and C' is a constant. For a

single assignment z = e,;, the mapping function m is updated by m' with

m'(v) = m(v) if wv#

m'(z) = m(es).

If there is another assignment y = e,; following the above assignment, then

64

after another update, the mapping becomes m?:

m?*(v) = m'(v) if v#y;

m?(y) = m' (ey).

In this way, the final mapping m' of the basic block is computed, by updating

the initial mapping m with the statements sequentially.

The above algorithm considers scalars only. Arrays are difficult to handle
because each array assignment only modifies an element of an array, while
preserving all the other elements. Some extra expressions are needed to model
the special properties of array updates. Following CVC Lite, two operators

read and write are introduced:

read(a, i) means the value of element 7 of array a.

write(a, i, e) means the element i of array a is updated with value e.

It is assumed that any mapping m satisfies:

m(read(a,1)) = read(m(a), m(7))

m(write(a, i, e)) = write(a, m(i), m(e)).

65

And initially the mapping m has:

m(a) =a

for any array a in the program.

With the above representations, the array-read assignment z = ali]; up-

dates the map m with

m/(z) = read(m(a), m(7));

And the array-write assignment a[i] = e; updates the map m with

m/(a) = write(a, m(z), m(e)).

With these definitions, the behavior of arrays is modeled correctly. For

example, if the first statement in the block is

ali + 1] = ali] + 1;

66

then the map m is updated into m!, where

m'(a) = write(a,m(i + 1), m(read(a,i) + 1))
= write(a, m(i) + m(1), m(read(a, 7)) + m(1))
= write(a,i + 1,read(m(a), m(3)) + 1)

= write(a,i + 1,read(a,i) + 1).

4.3 Summary

This chapter gives the implementation details on the translation validation tool
based on the theory presented in Chapter 2 and 3. The two-phase architecture
of TVOC was introduced first, then the implementation features were described
focused on the part for loop optimizations.

TVOC can handle a significant variety of compiler optimizations including
combinations of both reordering transformations and structure-preserving op-
timizations. At this point, TVOC still has some limitations. There are still
some optimizations cannot be validated yet. However, our experience is that
TVOC is successful most of the time. The current version of TVOC does not
handle procedures, aliasing, or pointers. However, we expect to handle these
features in the future.

Although TVOC has primarily been used as a research prototype and ex-

67

perimental platform for theoretical work, we are hoping it will be of use and
interest to a broader community. It is available together with basic examples
and documentation at

http://www.cs.nyu.edu/acsys/tv/.

4.4 Appendix: Sample output from TVOC

First pass:

Source input code:

MAIN__()

{

For (I := 0; I <= t264 ; I :=I+1;) Do
{

(AT + (-1)1) := 0;

}

For (I :=0; I <= £265 ; I :=1I+1;) Do
{

(BLI + (-1 :

I
[y
-e

68

}
}
%% Fusion:

% The loop before optimization:

For (I :=0; I <= t264 ; I :=1+1;) Do
{
(AT + (-1)1) := 0;
}
% The second loop of fusion:
For (I :=0; I <= t265 ; I :=1+1;) Do
{

(BII + (-1)1) :=1;
}

% Before loop optimization:

(A#1 = (A WITH [(I_1 + -(1))] := 0)).
(B#1 = (B WITH [(I_2 + -(1))] := 1)).
% After loop optimization:

(B#1p = (B WITH [(I_2 + -(1))] := 1)).
(A#1p = (A WITH [(I_1 + -(1))] := 0)).

% (I_1) >LEX (I_2):

(I_1>1_2).

69

Check A#1 = A#lp
%% Valid
Check B#1 = B#lp

%% Valid

% The loop after optimization:

For (I := 0; I <= t264 ; I :=1I+1;) Do
{
(A[T + (-1)]) := 0;
(BII + (-11) := 1;
}
% The function after fusion:
MAIN__Q)
{
For (I :=0; I<=1t264; I :=1+1;) Do
{
(AT + (-1 := 0;
(BII + (-11) := 1;
}
}

Second pass:

70

Source code:

BO (S0) --

B2 (82) --

(AT + (-1DD) -

I
o

(BII + -1 :

[
[are

}

B3 (S3) --

Target code:

BO (TO) --
If (M >= 0)
{

Bl —-

t268 := 0;

71

For (.t268 := 0; .t268 <= M ; .t268 := .t268 + 1;) Do

B3 (T3) --

(A[.t268 + (-1)]1)

I
o

(BL.t268 + (-1)])

I
[y
.o

Else{

}

EndIf

B4 (T4) --

Ccontrol Mapping:
From TO To SO
From T3 To S2
From T4 To S3

Variable List:

Source:

A B I M

Target:

.t268 A B M

72

CVC-Lite starts:
Result:

C(0, 3) is VALID.
c(0, 4) is VALID.
c(0, 4) is VALID.
C(3, 3) is VALID.
C(3, 4) is VALID.

CVC-Lite succeeds checking.

Data Mapping:

alpha =

at point TO :
(A_t = A_s)
(B_t = B_s)
(.t268_t = I_s)
(M_t = M_s)

at point T3 :
(A_t = A_s)
(B_t = B_s)

(.t268_t = I_s)

(M_t = M_s)

at point T4 :

(A_t = A_s)

(B_t = B_s)

(M_t = M_s)
c(0, 3) VC:

inv =
target transitions =

(.t268_t’ = 0)

(A_t’ = A_t)
(B_t’ = B_t)
(M_t’ = M_t)

source transitions =
(((((0 <= M_s) AND (A_s’ = A_s)) AND (B_s’ = B_s))
AND (I_s’ = 0)) AND (M_s’ = M_s))

target conditions =

(M_t >= 0)

(0 <= M_t)
alpha =

(A_t = A_s)

(B_t = B_s)

(.t268_t = I_s)

74

(M_t = M_s)

~

I>

t
I

A_s’)

(B_t’

B_s?)
(.t268_t’ = I_s’)

(M_t’ = M_s?)

inv’ =
(.t268_t’ <= M_t’)
(I_s’ <= M_s’)
c(o, 4) VcC:
inv =

target transitions =

(.t268_t’ = .t268_t)
(A_t’ = A_t)
(B_t’ = B_t)
(M_t’ = M_t)

source transitions =
((C((0 > M_s) AND (A_s’ = A_s)) AND (B_s’ = B_s))
AND (I_s’ = 0)) AND (M_s’ = M_s))

target conditions =

75

M_t < 0)
alpha =

(A_t = A_s)

(B_t = B_s)

(.t268_t = I_s)

(M_t = M_s)
alpha’ =

(A_t’ = A_s?)

(B_t’ = B_s?)

(M_t’ = M_s?)

inv’ =

c(0, 4) VC: Not viable!

inv =
target transitions =

(.t268_t’ = 0)

(A_t’ = A_t)
(B_t’ = B_t)
(M_t’ = M_t)

source transitions =

target conditions =

76

(M_t >= 0)

(0 > M_t)
alpha =

(A_t = A_s)

(B_t = B_s)

(M_t = M_s)
===>
alpha’ =
(A_t’> = A_s?)
(B_t’ = B_s?)
M_t’ = M_s?)
inv’ =
c(3, 3) VC:
inv =

(.t268_t <= M_t)
(I_s <= M_s)
target transitions =
(.t268_t7 = (.t268_t + 1))

(A_t? (A_t WITH [(.t268_t + -1)]

(B_t’ (B_t WITH [(.t268_t + -1)]

7

0))
1))

(M_t’ = M_t)
source transitions =

(CCC((I_s + 1) <= M_s)

AND (A_s’ = (A_s WITH [(I_s + -1)] :
AND (B_s’ = (B_s WITH [(I_s + -1)] :
AND (I_s’ = (I_s + 1))) AND (M_s’ =

target conditions =
((.t268_t + 1) <= M_t)

alpha =

(A_t = A_s)
(B_t = B_s)

(.t268_t = I_s)

(M_t = M_s)
===>
alpha’ =

(A_t’> = A_s?)

(B_t’ = B_s?)
(.t268_t’> = I_s’)
(M_t’ = M_s’)

inv’ =
(.t268_t’ <= M_t’)

(I_s’ <= M_s’)

78

M_

0)))
D)D)
s))

c(3, 4) VC:
inv =
(.t268_t <= M_t)
(I_s <= M_s)
target transitions =

(.t268_t’ = (.t268_t + 1))

(A_t’ = (A_t WITH [(.t268_t + -1)] := 0))
(B_t’ = (B_t WITH [(.t268_t + -1)] := 1))
(M_t? = M_t)
source transitions =

(CC(((I_s + 1) > M_s)

AND (A_s’ = (A_s WITH [(I_s + -1)] := 0)))
AND (B_s’ = (B_s WITH [(I_s + -1)] := 1)))
AND (I_s’ = (I_s + 1))) AND (M_s’ = M_s))

target conditions =
(C.t268_t + 1) > M_t)
alpha =
(A_t = A_s)
(B_t = B_s)
(.t268_t = I_s)

(M_t = M_s)

79

alpha’ =
(A_t?
(B_t’
M_t?

inv’ =

A_s?)
B_s’)

M_s?)

80

Chapter 5

Speculative Loop Optimizations

A modern compiler performs a set of advanced optimizations to make the
compiled code run faster. Among them are loop optimizations which improve
parallelism and make efficient use of the memory hierarchy. The new permu-
tation rule INV-PERMUTE can be used by a compiler to decide whether some
loop transformation is valid at compile time given a loop invariant determined
by static analysis. Because an appropriate invariant is generally hard to find,
we use an automatic theorem prover, CVC Lite [BB04], to try to generate a
condition under which the loop transformation is valid. This condition can
then be checked in the loop to see whether it is indeed invariant. This chapter
gives an algorithm for generating such a condition using CVC Lite.

In some cases, it is impossible to determine at compilation time whether a

81

desired loop optimization is legal. This is usually because of limited capability
to check effectively that syntactically different array index expressions refer
to the same array location. In such cases, the validation condition derived by
CVC Lite cannot be proved to hold at compile-time, but it may hold at run
time. One possible remedy to this situation is to perform the optimization
conditionally, by adding code to check at run time whether the loop optimiza-
tion is safe. If the run-time check fails, the code chooses to use an unoptimized
version of the loop which completes the computation in a manner which may
be slower but is guaranteed to be correct. An algorithm for generating the
run-time test for speculative loop optimizations was given in [BGZ03]. The
proof rule INV-PERMUTE was introduced in Chapter 3 as the formal basis
for using loop invariants to validate loop optimizations (both speculative and
non-speculative). The algorithm for finding invariants needed to apply rule
INV-PERMUTE has been improved and will be described in more detail in this
chapter. More examples and results will be given.

This chapter is organized as follows. Section 5.1 introduces speculative loop
optimizations. Section 5.2 describes an improved algorithm for determining a
sufficient condition under which an otherwise invalid transformation may be
applied. Using the proof rule, we show that such a transformation is valid if
the condition can be statically verified. Alternatively, a run-time test for the

condition can be inserted. Section 5.3 gives several examples and shows the

82

results of applying the algorithms in Section 5.2 to these examples. Finally,

Section 5.4 concludes.

5.1 Introduction

Sometimes the compiler has to behave conservatively when it cannot decide
the validity of some loop optimizations because the values of some variables
are not known at compile time. For these cases, speculative loop optimiza-
tions [BGZ03] can introduce runtime tests on the unknown variables into the
compiled code so that the loop optimizations will be performed if the tests are
satisfied at run-time.

It was proposed [BGZ03] to use the automatic theorem prover CVC Lite to
help the compiler decide the validity of loop transformations and construct the
run-time tests automatically. That means, the compiler can generate the ver-
ification conditions (VCs) for the optimizations to be valid, input the VCs to
CVC Lite, and get results back. If CVC Lite reports valid, then the loop trans-
formations will be performed under all contexts; Otherwise the conditions
reported by CVC Lite will be used as run-time tests, and the loop transforma-
tions will be performed conditionally.

A strategy was proposed [BGZ03] to use the counter examples reported by

CVC Lite to derive conditions that ensure the correctness of the optimizations.

83

Assuming ¢ is the initially invalid verification condition, the algorithm is listed

as follows:
0. Let v = 0.
1. Check A(¢) — ¢ using CVC Lite.
2. If the result is valid, exit.

3. Use the WHERE command to obtain a set of assumptions 6
under which the formula ¢ is false.
4. Select a formula from 6, negate it, and add it to .
5. Goto 1.
The loop is exited with a set of conditions) under which the optimization is
valid.
The difficult part about automatically producing the conditions is how to

efficiently choose a formula from the counter examples reported by CVC Lite.

Heuristics for it will be presented in Section 5.2.

5.2 The algorithm for using the proof rule INV-

PERMUTE

This section gives the algorithms for using the proof rule INV-PERMUTE to

validate loop transformations and to generate run-time tests for speculative

84

loop optimizations.

5.2.1 Loop transformations with invariants

The compiler can decide whether some loop transformation is valid on the
basis of the INV-PERMUTE rule and the static analysis of the initial condition
and the invariant condition of the loop. For a given loop transformation,
the function F' is known, but the precondition ¢ can be any condition that
is implied by the initial condition of the loop. An initial condition ¢y can
be determined from dataflow analysis, but it may be too strong. The INV-
PERMUTE rule only needs an invariant condition ¢ that makes premise 4 valid,
which suggests finding an appropriate ¢ by trying to validate premise 4. If
there is no ¢ satisfying premise 4, then the requirements of INV-PERMUTE
cannot be satisfied. Thus, a feasible method is to first analyze premise 4 to
find a condition ¢ under which it is valid, then check this ¢ to see whether it
is implied by ¢y and preserved by the loop body. The main probem becomes
how to find this ¢ which makes premise 4 valid. Since the theorem prover CVC
Lite is able to check the validity of formulas and generate counter-examples
efficiently, it can be used for the purpose of finding ¢. With the help of CVC

Lite, the scheme for validating reordering loop optimizations is:

1. Apply INV-PERMUTE for the loop under ¢ = true, and gen-

erate the verification condition € for premise 4.

85

2. Check the validity of # using CVC Lite. If it is valid, exit with

a positive result.

3. Otherwise, from the counter-example ¢ produced by CVC Lite,
attempt to infer a condition ¢ that makes the verification con-
dition valid. If no appropriate ¢ is found exit with a negative

result.

4. Analyze the context statically to check whether ¢ holds as the
initial condition and is loop invariant. If ¢ holds, exit with a

positive result.

5. Otherwise, exit with a negative result.

Step 3 will be explained in more detail in Section 5.2.3.

In this scheme, ¢ = true is used initially to avoid the analysis for the
initial loop condition when possible. The verification condition (VC) according
to premise 4 is input to CVC Lite. If CVC Lite reports valid, then the loop
transformation is valid under all contexts. Otherwise the counter-example
reported by CVC Lite can be analyzed to construct a candidate condition ¢. If
the new ¢ holds as a precondition and is invariant in the loop, and if premise

4 is satisifed, then the reordering loop transformation is valid.

86

5.2.2 Speculative loop optimizations

The INV-PERMUTE rule requires that ¢ hold on entry to the loop (both original
and transformed versions). However, if the values of some variables are not
known at compile time, information about them cannot be included in ¢.
In such cases, a loop optimization might not be able to be validated using
only compile-time information, but the optimization might actually be valid

at run-time.

if (k > 0)
for j =1 to M
for i =1 to N
Ali+k, j+11]

Ali,jl + 1;
else
for i =1 to N
for j =1 to M
Ali+k,j+1]

Ali,jl + 1;

Figure 5.1: An example for speculative loop interchange

To preserve the benefit of loop optimizations in the presence of variables
whose values cannot be determined statically, a run-time test, testing the val-
ues of various variables used in the loop, can be inserted into the compiled
program. Loop optimizations enabled in this manner are called speculative
loop optimizations'. The idea of validating speculative loop optimizations

in the TV framework was introduced in [BGZ03]. However since the INV-

! This technique was called inspector/ezecutor in [BS90, PR9S].

87

PERMUTE rule was not established in that paper, only the concept and some
heuristics were given. In this thesis, Chapter 3 described the new proof rule
INV-PERMUTE, which is the formal basis for validating speculative loop opti-
mizations. Fig. 5.1 shows the result of applying a speculative loop optimization
to the interchange example of Fig. 3.1.

With the INV-PERMUTE rule, the scheme for speculative loop optimizations

1s:

1. Apply INV-PERMUTE for the loop, using ¢ = true, and gen-

erate the verification condition @ for premise 4.

2. Check the validity of 6 using CVC Lite. If it is valid, exit with

a positive result.

3. Otherwise, from the counter-example ¢ produced by CVC Lite,
attempt to infer a condition ¢ that makes the verification con-
dition valid. If no appropriate ¢ is found exit with a negative

result.

4. Analyze the context statically to check whether ¢ holds as the
initial condition and is loop invariant. If ¢ holds, exit with a

positive result.

5. Otherwise, if ¢ is satisfiable (i.e. it could hold under some

run-time conditions), is inductive in the loop, and is not too

88

costly to evaluate, exit and use ¢ to generate a run-time test
for a speculative loop optimization; else exit with a negative

result.

5.2.3 Automatically generating invariants using CVC Lite

We implement Step 3 in the previous algorithms as follows:

0. Let ¢ = true.
1. Check ¢ — 6 using CVC Lite.
2. If the result is valid, exit with ¢.

3. From the counter-example) = /\,(C;), choose an appropriate

subset S for 4, and let ¢ = ¢ A = (A, .5 Ci).

€S

4. Goto 1.

Since we choose counter-example assertions until we have a sufficient con-
dition ¢, the invariant ¢ we get may be stronger than necessary. To avoid ¢
being either too strong or too complicated, good heuristics need to be used to
pick the appropriate C;s from a set of formulas.

The following are some observations: As the invariant ¢ must refer to
non-index variables, at least one such variable must be in the chosen formula.

Because equality is usually a stricter requirement than disequality, the chosen

89

formula should not be a disequality such as =(z = y). Also a formula including
array elements may not be a good choice (as they generally include index
variables that may be hard to eliminate).

For the validity of interchanging the loop example in Fig. 3.1, CVC Lite

generates the following counter example with six formulas:

—_

0<t2—1

N

(t2 +k, 14 j2) = (i1, j1)

NOT (ig + k,1 + 71) = (42, j2)

_~ W
N N NN

o

NOT (ig + k,1+j1) = (ia + k,1 + j2)

=2}

(

NOT (—k = 0)
(

NOT (ig,71) = (2 + k,1 + j2)

Since formula 1 does not include any non-index variables, and formulas
3, 4, 5, 6 are disequality formulas, none of them are candidates according to
our heuristics. The only choice is formula 2. We get the result ¢ = —((i +
k,ja + 1) = (i1, 71)) using our algorithm. This ¢ is exactly the same as what
would result from dependence analysis. Using this value for ¢, premise 4 of
rule INV-PERMUTE is valid. The problem is that this ¢ is still not useful, since
the invariant in INV-PERMUTE is assumed to be independent of loop index

variables. So we have to find some way to eliminate the loop index variables

90

from ¢. To do this, we use the constraints on the loop index variables (i.e.
the loop bounds and the order of iterations) to aid in removing of loop index
variables, as explained below.

Let # denote the verification condition derived from premise 4 of rule INv-
PERMUTE with invariant ¢. 6 can be divided into three parts: the first part
is a constraint on the loop index variables which includes the loop bound
and the condition of reordering, let’s denote it as «; the second part is the
invariant ¢; and the third part is the formula for equivalence of executing the
two iterations in both orders, let’s denote it as 8. So the formula 6 can be

expressed as @« — ¢ — [. This formula is equivalent to:

(pANa) = a = .

Assume we find a condition ¢’ stronger than ¢ under «, i.e. a — ¢ — ¢,
g

then if 6 is valid, it is guaranteed that

('Na) - a = f

is also valid, which is equivalent to ¢ — o — [. Thus, as long as we find
a formula ¢’ which is stronger than ¢ under «, using this ¢' instead of ¢ can

also ensure the validity of the loop transformations.

91

The condition ¢ generated from CVC Lite is always some disequality or
inequality since the heuristic we use discards equality. Since, in most cases,
the expressions for the subscripts of array elements are linear, ¢ can be assumed
to be in the form e; OP e, (7,_1', z;) where e; is an expression free of loop index
variables, and ey is an expression containing no variables except loop index
variables, and the relational operator OP € {>, <, >, <,#}. As long as e, is
linear in the loop variables, a can be used to eliminate the loop variables from
eo. Based on the above observations, an algorithm was designed to derive a ¢’
free of loop index variables from ¢ and «. For the above interchange example,
from ¢ = =((ie + k,j2 + 1) = (41,71)), after using the algorithm eliminating
the loop index variables with
a: i1 —19 <0 A i3 —ig>—N
Nj—72>0A j1i—ja<N
and
B: Ay =write(A, (i1 + k, j1 + 1), Afir, 1] + 1)

N Ay = write(Ay, (12 + k, jo + 1), A1[ia, jo] +1)

N AL =write(A, (ia + k, jo + 1), Aliz, jo] + 1)

N AL = write(Al, (i + k,j1 + 1), Al[in, 1] + 1)

— Ay = A,

we arrive at ¢' being k > 0 V k < —N. This condition is checked again by

CVC Lite to make sure the verification condition is valid.

92

5.3 Results

We have implemented our algorithm to generate the invariant ¢’ using CVC
Lite for loop optimizations such as fusion, interchange, reversal and tiling. The
conditions ¢ and ¢’ were generated automatically for all the (small) examples

we tested. This section gives the results for the following four examples.

for i =1 to N
or 1 A[:;_i. for i =1 to N
b A- =-.
for i =1 to N [i] s
y = ALi-k]; y = ALi-kl;

Figure 5.2: A fusion example

The first example is the fusion example in Fig. 5.2, where two simple loops
in the source are merged into one simple loop in the target. Observe that this
transformation is legal when no anti-dependence is created during the merging
of the loops, i.e it is legal when (k > 0) or (|k| > N). Notice that the two
loops in the source can be treated as a general loop structure [GZB04], such
that rule INV-PERMUTE can be applied. The following table gives the logical
formulas for «, 8, ¢, and ¢'. The result shows that the fusion is valid when

k>0 VvV k< —N, which is consistent with the above observation.

93

a: 11— >0 A 41—t <N
B: A =write(A,ir,i1) N y= Ailia — k] A
y' = Alip — k] N Al = write(A,iy,1)
—
A=A Ny=y
b: k—iytiy 20

o : k>0V kE<-—N.

The second example is an interchange example given in Fig. 5.3, where the
inner and outer loops in the source are exchanged in the target. Observe that
this transformation is legal when the leftmost non-zero value in the dependence
vector tuple (p, ¢) has the same sign (pg > 0) before and after interchange, or
there is no loop-carried dependence (|p| > N V |q| > |M]). The following
table gives the logical formulas for «, 8, ¢, and ¢'. The result shows that the

interchange is valid when

P>0V p<=NV ¢g<0Vg>M)A

P<OVpP>NV ¢g>0V ¢g<—M),

which is consistent with our observation.

94

for i =1 to N for j =1 to M
for j=1to M == for i =1 to N
Ali, j1 = Ali-p, j-ql +1; Ali, j1 = Ali-p, j-ql +1;

Figure 5.3: An interchange example

a: 11— <0 A i1—1ig>—-NA
J1—=J32>0 A j1—j2<N

B: Ay=write(A, (i1,71), Ali1 — p, j1 —q] + 1) A

Ay = write(Ay, (ig, jo), Arlia — p, j2 — q] +1) A

(
(

Al = write(A, (iz, J2), Alia — p, jo — q] + 1) A
(

Ay = write(Al, (i1, 1), Ailin — p,j1 —q) + 1)
—
Ay = A
¢: (—ia+i+p#0V —ja+j1+¢#0) A
(ig—i1+p#0 V ja—Jj1i+q#0)
:(p>0Vp<—NVg<0V g>M)A
<0V pPp>NVq¢g>0V qg<—M).

The third example is the reversal example in Fig. 5.4, where the iteration
order of the loop is reversed in the target. Observe that this transformation

is legal when there is no loop-carried dependence (k =0 V |k|] > N). The

95

following table gives the logical formulas for «, 3, ¢, and ¢'. The result shows

that here reversal is valid only when

k=0V k>N V k<—N,

which is consistent with our observation.

for i =1 to N :>fori=Nt01
A[i] = A[i-k] + 1; A[i] = A[i-k] + 1;

Figure 5.4: A reversal example

a: 11— <0 A i—13>—-N
B: Ay =write(A, i, Alir — k] + 1) A

Ay = write(Ay, ig, A1fia — k] + 1) A

Al = write(A, ig, Alia — k] + 1) A
Al = write(Al, iy, Aty — k] + 1)
—
AQ == AIZ

QSZ]{I+7:2—7;17é0/\k—2'2+7;17é0

¢: k=0V k>N V k<—N.

The fourth example is a tiling example given in Fig. 5.5, where the two-

96

level loop is decomposed into a four-level loop such that the iteration space
in the source is traversed in tiles of size 10 x 10 in the target. Observe that
this transformation is legal when interchanging is legal (k > 0) or there is no
dependence between the elements in the tiles of the same row (|k| > 10). The
following table gives the logical formulas for «, 3, ¢, and @', where ti,, ti are
the row tile numbers, tj;,js are the column tile numbers, and %1, 749, 771, 772
are the coordinates within the tiles. The result shows that the tiling is valid

when

k>0 V k< -—10,

which is consistent with our observation.

for tilei = 1 to N by 10
for i =1 to N for tilej = 1 to M by 10
for j =1toM — for i = tilei to Min(N, tilei+9)
Ali,jl = Ali-k,j-1]1+1; for j = tilej to Min(M, tilej+9)
Ali,jl = Ali-k,j-1]1 + 1;

Figure 5.5: A tiling example

97

a: 11— T <0 A 7riy — 119 > —10 A
rjr—1rJe <10 A 7§ —1jo > =10 A
tiy —tio =0 A tj; — 152 >0

B: 1y =10xtiy +riy A i9 = 10 * tig + 1ig A
J1 =10t +7j1 A Jo=10%tja +1j2 A
Ay = write(A, (i1, 1), Alin — k, 1 — 1]+ 1) A
Ay = write(Ay, (ig, j2), A1ie — k, 2 — 1]+ 1) A
A = write(A, (ig, j2), Alia — k,jo — 1] + 1) A
Ay = write(AY, (11, 51), Ailin — k, 1 — 1] +1)

—
Ay = A
¢: —rig+ri; —k#0

¢ k>0 V k< —10

5.4 Summary

This chapter proposed an algorithm to generate the conditions which make
the loop transformations valid, based on the new permutation rule described
in Chapter 3, with the help of an automatic theorem prover CVC Lite. These

conditions can be inserted as run-time tests for speculative optimizations. In

98

this chapter, we also showed the results of implementing the algorithm to
generate the run-time tests for speculative loop optimizations by CVC Lite.
In our work, we have established the theory and algorithms for a com-
piler to generate, or a validator to validate, speculative loop optimizations.
While the direction of this work is promising, we have not yet implemented
our theory in a working system (although the previous rule, PERMUTE, has
been implemented). Though we believe that introducing CVC Lite into the
compiler or inserting run-time tests into the executable code should not have
a significant overhead, we still need to do more extensive experimentation to

obtain convincing performance results.

99

Chapter 6

Conclusion

Translation Validation is a technique for ensuring that a translator produces
correct results. Because complete verification of the translator itself is often
infeasible, translation validation advocates coupling the verification task with
the translation task, so that each run of the translator produces verification
conditions which, if valid, prove the correctness of the translation.

I have made the following contributions in my thesis work on translation
validation: First, I proposed an improved permutation rule INV-PERMUTE for
loop optimizations considering the initial condition and invariant conditions
of the loops. Second, I proposed a rule REDUCE for loop reduction. Third,
I proposed a generalized validate rule GEN-VALIDATE for structure preserv-

ing optimizations, where the control points can be chosen more flexibly so

100

that some optimizations related to nested loops can be validated. Fourth, I
implemented the loop part of TVOC, and improved the tool to analyze loop
transformations, synthesize a set of intermediate codes and validated combi-
nations of loop optimizations. Fifth, I presented efficient algorithms to derive
the run-time test for speculative optimizations.

Our work on TV can handle a significant variety of compiler optimizations
including combinations of both loop optimizations and structure-preserving
optimizations. Our goal is to integrate our validation tool into the compiler.
Thus, the result of compilation would be not only the optimized target pro-
gram, but also a simple, machine-checkable proof script. We intend to apply
the results to optimizing compilers for emerging architectures, including EPIC
processors, out-of-order superscalar machines and highly scalable parallel com-

puting systems.

101

Bibliography

[AK02]

[ARGY9)]

[ASUSG]

[Ban88]

[BBOA]

Randy Allen and Ken Kennedy. Optimizing Compilers for Modern

Architectures. Morgan Kaufmann, 2002.

Pranav Ashar, Anand Raghunathan, Aarti Gupta, Subhrajit Bhat-
tacharya Verification of Scheduling in the Presence of Loops Using
Uninterpreted Symbolic Simulation In IEEE International Con-

ference on Computer Design, 1999.

A.V. Aho, R. Sethi and J.D. Ullman. Compilers: Principles, Tech-

niques, and Tool. Addison Wesley, 1986.

U. Banerjee. Dependence Analysis for Supercomputing. Kluwer

Academic Publishers, Norwell, Mass., 1988.

Clark Barrett and Sergey Berezin. CVC Lite: A new implementa-

tion of the cooperating validity checker. In Proceedings of the 16th

102

[BFG+05]

[BGZ03]

[BS90]

[DNS03]

[Flo67]

International Conference on Computer Aided Verification (CAV),

July 2004.

Clark Barrett, Yi Fang, Benjamin Goldberg, Ying Hu, Lenore Zuck
and Amir Pnueli. TVOC: A Translation Validator for Optimizing
Compilers. In Proceedings of the 17th International Conference on

Computer Aided Verification (CAV), July 2005.

Clark Barrett, Benjamin Goldberg, and Lenore Zuck. Run-Time
Validation of Speculative Optimizations using CVC. In Oleg Sokol-
sky and Mahesh Viswanathan, editors, Third International Work-

shop on Run-time Verification (RV), pages 87-105, July 2003.

H. Berryman and J. Saltz. A manual for PARTI runtime primitives.

In Interim Report 90-13, ICASE, 1990.

David Detlefs, Greg Nelson, and James Saxe. Simplify: a theorem
prover for program checking. Technical Report HPL-2003-148, Sys-

tems Research Center, HP Laboratories, Palo Alto, CA, July 2003.

R.W. Floyd. Assigning meanings to programs. Proc. of Symposia

in Applied Mathematics, 19:19-32, 1967.

103

[FORS01]

[GS99]

[GZB04]

[HBG04]

[HBGPO5]

Jean-Christophe Filliatre, Sam Owre, Harald Ruess and N.
Shankar. ICS: Integrated Canonizer and Solver. In Proc. of the

13th Conference on Computer-Aided Verification (CAV01), 2001.

G. Goos and W. Zimmermann. Verification of Compilers. In Cor-
rect System Design, volume 1710 of Lect. Notes in Comp. Sci.,

Springer-Verlag, pages 201-230, 1999.

Benjamin Goldberg, Lenore Zuck, and Clark Barrett. Into the
loops: Practical issues in translation validation for optimizing
compilers. In Proceedings of the Third International Workshop
on Compiler Optimization meets Compiler Verificaiton (COCYV),

April 2004.

Ying Hu, Clark Barrett, and Benjamin Goldberg. Theory and
algorithms for the generation and validation of speculative loop
optimizations. In Proceedings of the 2nd IEEE International Con-

ference on Software Engineering and Formal Methods, 2004.

Ying Hu, Clark Barrett, Benjamin Goldberg and Amir Pnueli. Val-
idating More Loop Optimizations In Proceedings of the 4th In-

ternational Workshop on Compiler Optimization Meets Compiler

Verification (COCV), April 2005.

104

[HBGZ04] Y. Hu, C. Barrett, B. Goldberg, and L. Zuck. TVOC: A tool for

[Hoa69]

[JCWO1]

[JGS02]

[LMCO3]

[MP67]

the translation validation of optimizing compilers. In Mid-Atlantic

Student Workshop on Programming Languages and Systems, 2004.

C.A.R. Hoare. An axiomatic basis for computer programming. In

Communications of the ACM, 12(10):567-580, 1969.

R.D.-C. Ju, S. Chan, and C. Wu. Open Research Compiler (ORC)
for the Itanium Processor Family. In Tutorial presented at Micro

34, 2001.

C. Jaramillo, R. Gupta, M.L. Soffa. Debugging and testing opti-
mizers through comparison checking In Electronic Notes in Theo-

retical Computer Science 65 No. 2, 2002.

Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically
Proving the Correctness of Compiler Optimizations. In Proceedings

of the ACM SIGPLAN Conference on Principles of Programming

Languages Design and Implementation (PLDI), 2003.

J. McCarthy and J. Painter. Correctness of a Compiler for Arith-
metic Expressions. In Proceedings Symposium in Applied Mathe-

matics, Vol. 19, Mathematical Aspects of Computer Science 1967.

105

[Nec97]

[Nec00]

[NLOS]

[PROS]

[PSS98b)

[RMO0]

G.C. Necula. Proof-carrying code. In POPL’97, pages 106-119,

1997.

G. Necula. Translation validation of an optimizing compiler. In
Proceedings of the ACM SIGPLAN Conference on Principles of
Programming Languages Design and Implementation (PLDI) 2000,

pages 83-95, 2000.

G.C. Necula and P. Lee. The design and implementation of a certi-
fying compilers. In Proceedings of the ACM SIGPLAN Conference
on Principles of Programming Languages Design and Implementa-

tion (PLDI) 1998, pages 333-344, 1998.

D. Patel and L. Rauchwerger. Principles of speculative run—time
parallelization. In Proc. of the 11th Annual Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC), August
1998. Chapel Hill, NC. Also in Lecture Notes in Computer Science,

vol. 1656, Springer-Verlag, 1998, pp. 323-338.

A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In

TACAS’98, pages 151-166, 1998.

M. Rinard and D. Marinov. Credible compilation with point-

ers. In Proceedings of the Run-Time Result Verification Workshop,

106

[SBCJ02]

[ST92]

[WL91]

[Wolfe95]

Trento, July 2000.

K.C. Shashidhar, M. Bruynooghe, F. Catthoor and G. Janssens.
Geometric Model Checking: An Automatic Verification Technique
for Loop and Data Reuse Transformations. In Proc. of Compiler
Optimization meets Compiler Verificaiton (COCV) 2002, Elec-
tronic Notes in Theoretical Computer Science (ENTCS), volume

65, issue 2.

Vivek Sarkar, Radhika Thekkath. A General Framework for
Iteration-Reordering Loop Transformations. In Proceedings of the
ACM SIGPLAN ’92 Conference on Programming Language De-
sign and Implementation, San Francisco, California, pages 175-187,

June 1992.

M.E. Wolf and M.S. Lam. A Loop Transformation Theory and
an Algorithm to Maximize Parallelism. In IEEE Transactions on
Parallel and Distributed Systems, Vol. 2, No. 4, pp. 452-471, Oct.

1991.

M. Wolfe. High Performance Compilers for Parallel Computing.

Addison-Wesley Publishing Company, 1995.

107

[ZPFG03]

[ZPG+05]

Lenore Zuck, Amir Pnueli, Yi Fang, and Benjamin Goldberg. Voc:
A translation validator for optimizing compilers. In Journal of
Universal Computer Science, 2003. Preliminary version in ENTCS,

65(2), 2002.

Lenore Zuck, Amir Pnueli, Benjamin Goldberg, Clark Barrett, Yi
Fang, and Ying Hu. Translation and run-time validation of opti-
mized code. In Formal Methods in Systems Design, 2005. Prelim-
inary version in Third Workshop on Runtime Verification (RV),

2002.

108

