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Abstract

Instruction-level parallelism(ILP) refers to a family of processor and compiler

design techniques that speed up execution by allowing individual machine oper-

ations to execute in parallel. Explicitly Parallel Instruction computing (EPIC)

processors evolved in an attempt to achieve high levels of ILP without signi�cant

hardware complexity. To take advantage of higher level of ILP in EPIC, the ILP

compiler must use aggressive and expensive optimization techniques leading to

increased compilation time.

If the size and shape of the compilation unit is limited, the compilation time

can be reduced. But this limited scope of compilation may restrict the scope of

the optimization, thus limiting the amount of performance improvement that can

be achieved. As a result, the compiler may generate less eÆcient code. Region-

based compilation has been proposed as an approach for coping with this problem,

namely containing compilation cost without compromising execution performance.

In region-based compilation, execution frequencies are used to guide compiler op-

timizations, with more attention given to the regions of the program with a higher

frequency of execution, thus achieving greater overall performance improvements

for the same compilation cost.

In this thesis, we address the problem of the compilation time and execution

performance trade-o� in region-based compilation, within the context of the key

v



optimization of register allocation. We demonstrate that schemes designed for

region-based allocation perform as well as or even better than schemes designed

for global register allocation while having much smaller compilation time. To

achieve this goal, we innovated novel techniques which form the core of this thesis.

We show compilation time savings of 40% on the average, with comparable

execution time performance, by synthesizing our techniques in a region-based reg-

ister allocation. We also explore the relation between the performance of the

register allocation and the region size and quantify it. Our research shows that

selecting the right sized region has an impact on the performance of register al-

location. Based on this observation, we propose the concept of restructuring the

regions based on register pressure, and develop techniques for estimating the regis-

ter pressure in order to improve compilation time while maintaining the execution

time.
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Chapter 1

Introduction

Instruction-level parallelism(ILP) is a family of processor and compiler design

techniques that speed up execution by allowing individual machine operations,

such as memory loads and stores, integer additions and oating point multipli-

cations, to execute in parallel. The operations involved are normal RISC-style

operations, and the system is handed a single program written with a sequen-

tial processor in mind. An important feature of these ILP techniques is that,

unlike traditional multiprocessor parallelism and massively parallel processing,

parallelism is largely transparent to users. Explicitly Parallel Instruction com-

puting (EPIC) 1 processors evolved in an attempt to achieve high levels of ILP

without the hardware complexity that is required in superscalar processors. In

1The joint program between Intel and HP has announced products such as Itanium in the

IA-64 family
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EPIC processors, most of the functions to extract ILP are performed by the com-

piler, while these are done at run-time by the hardware in superscalar processors.

The compiler for an EPIC processor must specify exactly which functional unit

each operation should be executed on and exactly when each operation should

be issued - thus, the compiler plays a more critical role than ever [42] [44].

With EPIC making inroads into general purpose computing, compilers will play

an ever-increasing and central role in optimizing the performance of applications.

The implementation of EPIC design philosophy enables new levels of paral-

lelism and rede�nes the sequential execution model that exists in traditional archi-

tecture. For example, the innovative use of predication and speculation uniquely

combined with explicit parallelism by the compiler, allows EPIC to progress well

beyond the limitations (like mis-predicted branches and memory latency) of tra-

ditional architectures. To extract a higher level of ILP in these architectures,

the ILP compiler must use aggressive ILP optimization techniques. To satisfy the

need for more ILP, many techniques have been designed including inter-procedural

optimization and function inlining [1] [39] [25].

However, this opportunity for improved performance comes at the price of in-

creased compilation time. For example, function inlining 2 results in very large

function bodies that makes aggressive global analysis and transformation tech-

2The function inlining technique replaces a function call with the function body.
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niques, such as global data-ow analysis and register allocation ineÆcient and

intractable [22]. The size of the compilation unit has a positive correlation to the

amount of ILP we can extract, but it incurs a trade o� in compiler performance

in terms of compile time and memory utilization. In situations in which the com-

piler time and memory usage becomes too large, the aggressiveness of the applied

transformations must be scaled back to avoid excessive compilation cost.

To help overcome this problem, region-based compilation [23] has been pro-

posed as a solution in which the fundamental compilation unit is controlled by

the compiler completely. Essentially, the compiler is allowed to repartition the

program into a new set of compilation units, called regions. The bene�ts of region-

based compilation is that the compiler can select compilation units that reect

the dynamic behavior of the program and reduce the complexity of compilation

by focusing the optimization e�ort on regions with a very high payo�|typically

regions that are visited with high frequency. The bene�ts of region-based compi-

lation can also be applied to register allocation.

A signi�cant challenge, therefore, is to get as much performance from region-

based approaches as can be obtained from their classical \global counterparts". It

is of course more desirable to get performance that is even better than conventional

global schemes while paying a lower price in terms of compilation time. For

instance, the relatively smaller scope of region-based compilation limits the aspects

3



of the register allocation process as compared to global register allocation. Under

the region-based framework model [23], each region may be compiled completely

before compilation proceeds to the next region, and register allocation is also

performed in each region independently. As a consequence, register mismatches

(i.e. di�erent registers allocated to the same variable in di�erent regions) between

region boundaries can occur in this approach, and these may degrade both register

allocation time and execution performance seriously.

1.1 Scope and Objectives

In this thesis, we address the problem of the compilation time and execution

performance trade-o� in region-based compilation within the context of the key

optimization of register allocation. Speci�cally, we demonstrate that schemes de-

signed for region-based allocation perform as well as, or even better than schemes

designed for global allocation while taking smaller compilation time. To achieve

this goal, we propose several innovative techniques which form the core of this

thesis. Our innovations are centered on knowing and using the execution frequen-

cies of the program units (such as basic-blocks, super-blocks and hyper-blocks) to

guide our register allocation steps. This approach is attractive for two reasons.

First, execution frequencies are an inherent part of many region-based approaches

to compilation and hence will be available quite naturally. Second, they help guide

4



optimization decisions using a �rm quantitative framework, when compared to the

alternate choice of using ad-hoc approaches.

Another aspect that should be considered in modern EPIC compilers is ar-

chitectural innovations, including predication. To support even higher levels of

ILP, it has been announced [43] that commercial EPIC architectures will include

predicate execution support. The predicated code provides many challenges and

opportunities to the various phases of optimizing compilers including register allo-

cation. For example, many blocks from di�erent control ow paths can be grouped

into a single sequence of predicated instructions for compiler optimizations and

instruction scheduling - these regions can be formed into hyper-blocks. We also

study the impact of the predicated code in our work of register allocation.

1.2 Main Contributions

1.2.1 Live Range Splitting

Live range splitting divides a single live range into several pieces and expects

the new, smaller live ranges to have a reduced degree of interference, thereby

facilitates an eÆcient register allocation. Live range splitting is the basis of Chow's

priority based coloring approach which avoids spilling when splitting is possible.

Unfortunately, previous approaches are performed in an ad-hoc manner or use
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program structures, but do not consider execution frequency. In Chapter 4, we

introduce a new live range splitting technique based on execution frequency and

explore it further with rematerialization. We also studied the problems related to

predicated codes and the splitting of predicated live ranges followed by proposed

solutions.

1.2.2 Register Assignment

The limited scope of region-based register allocation has many potential problems.

When a variable is live across many regions, coloring each region independently

may be suboptimal as each live segment may be assigned with a di�erent register,

thus resulting in a register mismatches. In this case, we need some extra oper-

ations to reconcile these miss-matches. The eventual assignment of live-ranges

to registers might have to be made globally since, sometimes, a live-range with

a lower priority within a region might have a very high priority when viewed

across all the regions that it traverses. We introduce the notion of delayed binding

and propagation based on frequency to help overcome this challenge. We proposed

three techniques to reduce the possibility of the miss-matches we explained above.

All three techniques are based on execution frequency.
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1.2.3 Priority Function

The order of coloring is one of the most important factors in register allocation,

since the quality of register allocation is governed mostly by it. The base of

coloring order is the priority function which is based on the amount of spill code

that can be saved by allocating a variable to a register as opposed to spilling the

live range of the variable. In the region-based approach where many variables

are live-in and live-out, the priority function should consider the e�ect of the

register bindings of these values. Codes inside a hyper-block provides another

challenge to the priority-based approach. Unlike the operations in a basic block

where the execution frequency of every operation is the same, the operations in

hyper-block varies by the multiple branch points in a block or the probability of

the predication. In Chapter 6, we propose an extension to the priority function

which considers all these e�ects and analyzes them.

1.2.4 Region Restructuring

Our experiments show considerable compilation time savings with comparable

execution time performance using our region-based register allocation which syn-

thesizes our techniques. Our region-based register allocation is not limited to any

speci�c type of region and can be used for any regions passed to the register alloca-

tion phase. To avoid the extra compiler time of region formation, the region-based
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register allocation approach may use regions formed in earlier phases of compi-

lation like instruction scheduling. But our extensive experiments show that the

performance of the register allocation varies according to the region size. The lack

of register pressure in previous region formation causes register allocation to have

excessive live range splitting or propagation according to the region size. If the

size of each region is too large, each region may have register pressure higher than

the available number of registers and many of the live ranges are forced to spilt.

If the size of each region is too small, the compiler needs to spend more time for

propagation than larger regions, and may add unnecessary shu�e code caused by

color miss-match. In Chapter 8, we propose the concept of region restructuring

based on estimated register pressure. Our approach simply re-groups the regions

constructed in previous phases into new regions based on the register pressure.

We demonstrate that this linear time region restructuring e�ectively re-groups

the regions and provides more appropriate size of the region than original regions,

therefore both the compilation and the execution time can be reduced in all of

our benchmarks.

1.3 Outline

This thesis presents a series of techniques to the register allocation in the scope

of region-based compilation and predicated execution based on hyper-blocks. Our
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approach builds on the notion of a priority based global register allocator origi-

nally introduced by Chow and Hennessy [11]. Chapter 2 presents an introduction

to the region formations explored for ILP compilers and Chow and Hennessey's

model for register allocation. Chapter 3 presents an overview of the organization

and operation of the Trimaran compiler which infrastructure is the platform for

our implementations and experiments. The main contributions of the thesis are

contained in Chapter 4 through Chapter 7. Chapter 8 describes the framework

used to compare function-based approach and region-based approach, and evalu-

ates the performance of the techniques with respect to region size. As a result of

our analysis, we then propose the concept of restructuring the regions, previously

constructed by the instruction scheduler, based on register pressure3.

3The number of registers required in any compilation unit without spilling variables into

memory
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Chapter 2

Background

The compiler performs its analysis required for optimization and optimization

itself in a certain scope of the program called compilation unit. The size of compi-

lation units is closely related to both compilation time and the quality of the code

that can be obtained. Traditionally the compiler process has been built using

the function as a compilation unit, because the function provides a convenient

partition of the program. But the size and the contents of a function may not

provide a desirable scope of units to the compiler.

This chapter will explain the importance of the region-based compilation ap-

proach [23] and several historic region formations especially explored in ILP com-

pilers. We also explain the background of graph coloring register allocation and

Chow's priority based approach on which our work is based.
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2.1 Region-Based Compilation

The traditional approach of function based compilation, where a compiler man-

ager uses a function as a unit of compilation, has many limitations such as the

scope of compiler optimization is limited to a function of critical paths spanning

procedures cannot be considered. Modern compilers include aggressive transfor-

mations like function inlining and loop unrolling to exploit ILP well beyond a

single basic block. However, aggressive transformation often results in excessively

large function bodies that make aggressive analysis and transformation technique

ine�ective and intractable.

Region-based compilation has been proposed as a solution to this problem,

because it provides many bene�ts to aggressive ILP compilers such as

1. The compiler has complete control over the size and contents of the compi-

lation unit.

2. The size of the compilation unit is typically smaller than the function,

thereby reducing the impact of the algorithmic complexity

3. Selecting regions allows the compiler to select compilation units that more

accurately reect the dynamic behavior of the program and allows the com-

piler to produce more compact and optimized code.

4. Each region may be compiled completely before compilation proceeds to
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the next region, so all function-oriented compiler transformations may be

applied.

In terms of register allocation process, region-based register allocation can have

two speci�c advantages: (I) High levels of ILP and aggressive transformations for

EPIC architectures increase register pressure dramatically. The size of the re-

quired analysis and data structures for register allocation become much smaller in

region-based register allocation. (II) The register allocation phase can be sensitive

to the other compiler optimization phases. For instance, if the scheduler optimizes

a region aggressively, register allocation may use the information obtained by the

scheduler.

2.2 Region formation for ILP compilers

A basic block is a sequence of consecutive instructions in which ow of control

enters at the beginning and leaves at the end without the possibility of branching

except at the end. The optimizations in basic blocks are well understood and

can be easily implemented, however they have limited e�ectiveness due to limited

parallelism available for extraction within a basic block. As increasing amounts of

ILP become available in microprocessors, instruction scheduling inside basic blocks

is not enough to �nd data-independent operations to utilize the CPU optimally.
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To keep the CPU busy enough, operations must be moved from one basic block

to another, and in some cases operations must be moved up ahead of conditional

jumps. Many di�erent types of regions have been devised. In this section, we will

review several types of region formation methods which have been explored for

ILP compilers based on execution frequencies.

2.2.1 Trace Scheduling

The trace scheduling algorithm by Fisher [18] was one of the �rst approaches

to instruction scheduling that transcended the level of the basic block. A trace,

in this context, is a sequence of basic-blocks without internal loops and trace

scheduling has been extended by many researchers. We present an overview of

the trace scheduling process as it applies to the thesis. Two key steps in trace

scheduling are (1) trace selection and (2) shu�e code insertion.

2.2.1.1 Trace Selection

An ordered sequence of basic-blocks for a trace is constructed �rst. Using pro�le

information, the scheduler selects a trace from the unscheduled code. Of the

unscheduled blocks, the one with the highest execution frequency is chosen; this

block is called the seed and denoted s. Starting from the seed s, they grow the

trace forward and backward in the control ow graph, picking the unscheduled
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successors or predecessors of the s with the highest branch frequency as long as

the inclusion does not introduce an internal cycle. This inclusion is repeated as

long as the following two conditions are satis�ed. Here W (x) is the frequency

for region R and W (x ! y) is the frequency for the edge from region x to y

respectively and Te and Ts are certain speci�ed thresholds.

W (x; y)

W (x)
� Te (2.1)

W (y)

W (s)
� Ts (2.2)

In �gure 2.1 we show the result of a trace formation process. This example

ow graph is annotated with branch probabilities. Here, block F is the basic

block with the highest execution frequency, and is used as the seed. Using the

trace picking algorithm, the blocks B, C, G and H are included in the trace.

2.2.1.2 Shu�e Code

If code is moved across a block boundary while scheduling the trace, the compiler

sometimes has to add copies of operations it has scheduled on the trace to o� trace.

This occurs because some operations, which previously preceded a conditional

jump, would have been scheduled after the conditional jump and thus, must be

duplicated before the o�-trace target of the jump.
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Figure 2.1: Trace Formation
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For instance, if an operation op1 in B1 is scheduled below the conditional

jump, say in B2, a new operation needs to be copied to B3, as in Figure 2.2 (a).

Similarly, if an operation op2 in B4 is scheduled in B2, a new operation is copied

to B3 as in Figure 2.2 (b). Code motion past side entry or side exit is more

complicated. If an instruction i is moved from below to above a branch operation

as in Figure 2.2 (c), i may kill the value live-in to B1 or de�ned in B1. To avoid

this problem, a false dependence may be added between the branch operation in

B1 and op3; alternatively, register renaming can be used. Likewise, code motion

from B3 to B4 as in Figure 2.2 (d) may kill the value live-in from B2. Again,

there are two possible approaches; creating a false data dependency, or copying

B4 into a new block B40 and redirecting B2 to B40 instead of B4.

2.2.2 Super-block Scheduling

The complexity of trace scheduling by inserting shu�e code caused by the side

entries is simpli�ed in super-block scheduling [24]. A super-block is a trace with

a single entry but potentially many side exits. Since side entries do not exist,

upward movements past a side entry within a super-block are pure speculation,

and no replications in the o�-trace code are required. Similarly, any movement

from above to below a side exit is pure replication. In the super-block algorithm,

we allow an instruction i to move past a side exit E only if it is not live-out on
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Figure 2.2: Code Shu�e for Trace Schedule
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E. This way, downward movements do not require any sort of shu�e code to be

inserted into the program after scheduling.

Super-blocks are formed in two steps. First, frequently executed traces are

identi�ed using techniques similar to trace scheduling. To restructure a trace

into the form of a super-block, the tail duplication transformation is used. Tail

duplication �rst duplicates each block A with a side entry, into the blocks A

and A0. The side entry is then redirected to the o�-trace block A0. Repeated

applications of this transformation can be used to turn a trace into a super-block.

In Figure 2.3 we show the use of tail duplication on the trace. The side entry

into block D is �rst tail duplicated; this results in the duplicate block D0. Then

the side entry into block G is removed by tail duplicating G, resulting in the

duplicate block G0. Finally, the blocks A, B;D, E and G can be merged. As

before, block C;D0; F and G0 are selected for a another super block and block F

is duplicated to F 0.

Tail duplication can be seen as a program specialization transformation. The

result of this specialization can in turn enable more traditional compiler opti-

mizations, such as constant propagation, value congruence, partial redundancy

elimination, dead-code removal, branch removal etc. A compiler using the super-

block compilation model will need to iterate on these optimizations in order to

fully take advantage of the super-block transformation.
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Figure 2.3: Tail duplication.

19



2.2.2.1 Super-block Formation

Hwu et al. [24] describe various techniques of enhancing transformations to in-

crease the available parallelism in super-blocks as follows:

branch target expansion Branch target expansion replicates the target super-

block of a forward branch at the end of a super-block if the branch is likely

to be taken.

loop peeling A super-block loop is a super-block which ends with a likely control

transfer back to its entry. Loop peeling replicates the body of a super-block

loop N number of times, where N is its expected number of iterations. The

remaining iterations of a loop are then moved o�-trace.

loop unrolling A super-block loop that is to be executed N times is unrolled to

increase the size of the basic-block. The control ow instructions between

the unrolled loop bodies are eliminated.

register renaming Register renaming assigns each de�nition a new virtual reg-

ister. This removes false dependences from the ow graph, which can im-

prove the ILP.

operation migration Operation migration moves instructions o� trace if their

values are unlikely to be needed. This can be seen as a form of re-scheduling

replication in which an instruction i is moved to all its use targets.
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induction and accumulator variable expansion Induction and accumula-

tor variable expansion can be used in conjunction with loop peeling and

loop unrolling. These transformations assign a di�erent virtual register to

each induction (or accumulator) variable in the di�erent copies of the repli-

cated loops. Using this transformation, loop-carried dependencies between

di�erent iterations of the loops on these variables can be reduced.

2.2.3 Hyper-block Scheduling

A hyper block is a set of predicated basic-blocks in which control may only enter

from the top, but may exit from one or more locations. The motivation behind

hyper-blocks is to group many basic-blocks from di�erent control ow paths into a

single manageable block for compiler optimization [35]. To exploit the high level

of ILP in the architectures with predicated codes, hyper-blocks are often used as

the unit of program presentation. Hyper-blocks provide a very natural unit for

instruction scheduling, as well as register allocation as we will see soon.

A common problem of all optimization and instruction scheduling is condi-

tional branches in the target application. The process of eliminating conditional

branches from a program in order to utilize predicated execution support is re-

ferred to as if-conversion[48] [27] [38]. If-conversion replaces conditional branches

in the code with comparison instructions which set a predicate. Instructions which

21



are control-dependent on the branch are then converted to predicated instructions

dependent on the value of the corresponding predicate. If-conversions can elimi-

nate all loop backward branches from a program.

2.2.3.1 Region Selection

The �rst step of hyper-block formation is to decide which basic-blocks in a re-

gion to include in the hyper-block. Unlike the super-block, which contains only

basic blocks from a single ow of control, a hyper-block may include basic blocks

from mutually exclusive branches of a region. Typically, hyper-blocks are formed

from blocks that fall within an innermost loop and conventional techniques for

if-conversion predicate all blocks with a single-loop nesting region together.

2.2.3.2 Hyper-block Formation

We need two conditions in order to select basic-blocks and convert them into a

hyper block.

1. There exist no incoming control ow graph arcs from outside basic-blocks

to the selected blocks except the entry block.

2. There is no nested block in a selected region.

When these conditions are met, we do the following for formation:
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if (x > 10) then

if (y > 0 and x = 1) then

v := v + 1;
else

v := v � 1;
endif

x := 3 � y
else

v = v � x;
endif

u = v + y;

x > 0

y > 0

v:=v*x

z = 1

v:=v-1v:=v+1

u:=v+y

x:=3*y

A

B

C

D

E F

H

I

(a) (b)

Figure 2.4: Hyper-block formation: Control Flow Graph
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if (x>10) goto C:

if (y <= 0) goto F:

if (x != 1) goto F:

v = v + 1

goto H:

E:

v := v+1

F:

v := v-1

H:

x := 3+y

u := v+y

goto EX:

C:

v := v*x

I':

u := v+y

EX:

x > 0

y > 0

v:=v*x

z = 1

v:=v-1v:=v+1

u:=v+y

x:=3*y

A

B

C

D

E F

H

I u:=v+y I
’

(a) (b)

Figure 2.5: Hyper-block formation: Tail duplication

24



if (x>10) goto C:

p1, p2 = ?(y > 10)

p3 := ?(x == 1) ?p1

p4 := ?(x != 1) ?p2

v := v + 1 ?p3

v := v - 1 ?p4

x := 3 + y ?p1

u := v + y

goto EX:

C:

v := v*x

I':

u := v+y

EX:

v:=v*x

u:=v+y

C

ble x,0,C

d := ?(y>0)

f’ := ?(y<=0)

e := ?(x=1) if d

f” := ?(x ≠1) if d

f  := ?( f’ ∨f” )

v := v+1 if e

v := v-1 if f

x := 3*y if d

u := v+y

I’

(a) (b)

Figure 2.6: Hyper-block formation: If-Conversion

vr0 = load x

vr1 = vr0+2
vr3 = 3*vr1

vr2 = 4*vr0
vr3 = vr2+5

Store vr3,y

vr0 > 10

f

 vr0

 vr0  vr2  vr3

 vr3

 vr3 vr1 vr0

Live ranges

t

bb0

bb2bb1

bb3

vr1 vr2

vr0

vr3

Figure 2.7: Register Requirements before If-conversion
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� Tail duplication Tail duplication is used to remove control ow entry points

into the selected blocks from outside the region. This is similar to super-

block formation.

� Loop peeling For loop nests with inner loops that iterate only a small number

of times, eÆcient hyper-blocks can be formed by including both outer and

inner loops within a hyper block.

� Node splitting Node splitting may be used on the selected blocks to eliminate

dependencies created by control path merges.

� If-conversion If-conversion substitutes a single block of predicated instruc-

tions for a set of basic-blocks containing a conditional control-ow between

the blocks.

Figure 2.4 shows a sample program we use for the example of the hyper-block

construction and its control ow graph. The shaded blocks are the regions we

choose for hyper-block and please note that block C is intentionally excluded for

demonstration purpose. This exclusion will be happened if the frequency of the

block C or the edge frequency between A and C is smaller than the threshold.

Figure 2.5 shows the pseudo assembly codes and control ow graph after tail

duplication is performed from the program in 2.6 (a). To avoid a side entry from

region C to I, a duplicated region of I is created as a block I 0. Finally, if-conversion
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creates a hyper-block with region A, B, D, E, H and I as in Figure 2.6 (b).

2.3 Overview of Trimaran Compiler

The Trimaran compiler infrastructure has been developed for supporting state

of the art research in compiling Instruction Level Parallel architectures, espe-

cially those based on Explicitly Parallel Instruction Computing (EPIC) and for

research in instruction scheduling, register allocation and machine dependent op-

timizations.

Trimaran provides advanced capabilities and support for experimenting with

innovative, forward-looking ILP architectures and the compiler modules needed

to generate high-performance code for these architectures.

2.3.1 HPL-PD: A parameterized ILP architecture

HPL-PD [28] is designed to support the advanced features of EPIC style archi-

tectures and it was conceived for research in instruction level parallelism. The

advanced features of the architecture include:

1. Control speculative execution

2. Predicated Execution

3. Compiler control of the memory hierarchy
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4. Data speculation

2.3.2 MDES: High level machine description language

Trimaran uses a machine description database to represent the properties of the

target HPL-PD processor. A high-level textual language, called HMDES, is used

to describe the machine database so that a new HPL-PD processor can be created

by changing the machine description database.

The Trimaran compiler is fully parameterized with respect to the target ma-

chine information. The compiler modules are allowed to make a �xed set of

queries to the database through an mdes query system (mQS) interface. The

mQS provides basic information about the machine, including opcodes, register

�les, operation latencies and resources and resource tables. For example, the

scheduling interface provides latencies for dependence edges in a data dependence

graph. There is support for a broad space of realistic machines including ma-

chines with non-unit latencies and complex reservation tables. Both equals(EQ)

and less-than-equals(LEQ) latency models are supported.

2.3.3 Trimaran Modules

2.3.3.1 IMPACT: A Compiler Front End

Trimaran includes the IMPACT front-end for C with the following modules

28



� K&R/ANSI-C parser built upon EDG

� Variable and Function name renaming and complex expression attening

� Control ow pro�ling

� C source �le splitting and function inlining

� Classical basic block and function level optimization

� Super-block and hyper-block formation

� ILP transformations including loop unrolling, register renaming with copy,

induction variable expansion and predicate promotion.

2.3.3.2 ELCOR: An optimizing compiler back-end optimizer

ELCOR is the compiler back-end for Trimaran and performs instruction schedul-

ing, register allocation, and other machine-dependent optimizations.

2.3.3.2.1 Data-ow Analysis The Trimaran back-end provides many types

of data ow analysis including variable liveness analysis, reaching de�nitions anal-

ysis, available expression analysis and predicate analysis.

Live variable analysis operates on a region of code and annotates information

on the control ow edges between basic-blocks and hyper-blocks. This module

can also compute the upward-exposed de�ne variables, downward exposed used
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variables, and downward exposed de�ned variables. Reaching de�nitions analysis

computes def-use chains for a region of code and annotates the information on

the region. Available expression analysis results are also annotated on the region

being analyzed, and expression availability can be queried at any point in the

control ow graph of this region. The Trimaran also provides a uniform way for

modules to ascertain the relationship between predicate expressions through the

Predicate Query System (PQS).

2.3.3.2.2 Control Flow Analysis Control ow analysis modules operate on

a control ow graph where all nodes of the graph are basic blocks. The Elcor pro-

vides three control ow analysis: dominator and post-dominator analysis, control

dependence analysis, and loop detection. Each analysis module has a data struc-

ture that encodes the analysis results. The loop detection module also identi�es

basic induction variables in a loop.

2.3.3.2.3 Dependence Graph Construction Dependence graph construc-

tion is a scheduling-speci�c phase of Elcor that introduces dependence edges in

an operation graph. The edges represent ow dependences, anti-dependences and

output dependences for registers as well as memory dependences and control de-

pendences that restrict code motion across branch operations. In addition to its

use for scheduling, the data dependency graph is useful for guiding optimizations
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that consider critical path lengths in a program.

2.3.3.2.4 Modulo scheduling and Rotating register allocations The

loop scheduling consists of two modules: the modulo scheduler and stage sched-

uler. The modulo scheduler [41] [50] allocates resources for the loop kernel subject

to an initiation interval. The stage scheduler moves operations across stages in

order to reduce register usage in the loop. When a loop is modulo scheduled, some

of the virtual registers in the loop are designated as rotating registers. Rotating

register allocation maps such registers to the rotating register �les immediately

after modulo scheduling. Stage scheduling can be used to reduce the rotating

register requirements in a loop after modulo scheduling. The remaining registers

are allocated to the static register �le after scalar scheduling of the rest of the

program.

2.3.3.2.5 Acyclic scheduling Trimaran employs three variations of acyclic

scheduling: cycle-scheduler, backtracking scheduler and meld-scheduler. The cycle

scheduler generates a schedule by constructing instructions from operations for

each issue cycle in order. The backtracking scheduler is a modi�ed versions of the

cycle scheduler which can either do limited backtracking to support scheduling

of branch operations with branch delay slots, or do unlimited backtracking. The

meld scheduler is a modi�ed version of the cycle scheduler that can propagate
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operation latency constraints across scheduling region boundaries.

2.3.3.3 Simulator

Trimaran has a cycle level simulator for the HPL-PD architecture which is con�g-

urable by a machine description language called HMDES. The simulator provides

run-time information on execution time, branch frequencies, and resource utiliza-

tion. This information can be used for pro�le-driven optimizations as well as to

provide validation of new optimizations.

2.3.3.4 Register Allocation

A diagram of the Trimaran compiler is presented in Figure 2.8. The compiler

consists of three major components: the IMPACT front-end, the Elcor back-end

and a cycle level simulator.

Thanks to the modular design of Trimaran, register allocation can be imple-

mented as a separate module and can be plugged in between any modules. Our

work is implemented after the �rst acyclic scheduler (pre-pass scheduler) and is

followed by another pass of scheduling (post-pass scheduler). Spill codes inserted

by register allocation may lead to inadequate scheduling for EPIC processors,

since STORE or LOAD operations inserted by register allocation generate many

idle cycles. So it is necessary to schedule the spill code which were inserted during
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Figure 2.8: Trimaran Compiler Infrastructure

register allocation. For certain types of scheduling problems, when using certain

scheduling algorithms, it is possible to allocate the registers and introduce the

spill code during scheduling [12]. This is known as combined instruction schedul-

ing and register allocation. In such cases, one can schedule the spill code as it is

generated.
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2.3.4 Experiment Framework

To validate the e�ectiveness of our algorithms, we also have conducted experiments

on the Trimaran compiler [49] for selected Unix programs and Spec 92 and Spec

95 benchmarks. We simulate the execution of these programs on a 4-way ALU

EPIC machine with 2 oating-point units, 2 memory units and 1 branch unit. In

our experiments we varied the register �le size. The following con�gurations were

tested:

� 32 general purpose registers (GPR) and 32 oating point registers (FPR)

� 64 general purpose registers (GPR) and 64 oating point registers (FPR)

� 96 general purpose registers (GPR) and 96 oating point registers (FPR)

In all experiments we used 32 branch target registers (BTR) and 128 predicate

registers so that these registers would not be a bottleneck.
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Chapter 3

Overview of Region-based

Register Allocation

3.1 Coloring Approach of Register Allocation

Graph coloring is a well established approach to register allocation and has been

used as the central paradigm for register allocation in modern compilers.

A coloring of a graph G = (v; e) is an assignment of a color to each node of the

graph such that any two adjacent nodes do not have the same color. Informally,

a live range is a collection of operations (or basic blocks in some approaches)

where a particular de�nition of a variable is live. For register allocation, a graph

called the interference graph is constructed from the program in the following way.
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Each node vi in the interference graph G represents the live range of a program

data value which is a candidate to reside in a register. Two nodes in the graph

are connected by an edge e if the two data values corresponding to those nodes

interfere with each other in such a way that they can not reside in the same

register. The coloring approach to register allocation seeks to map a �xed set

of colors to all the nodes of the interference graph. In coloring the interference

graph, the number of colors used corresponds to the number of registers available

for use in register allocation.

Chaitin's approach forms the basis of many register allocation schemes [8].

His approach consists of two major phases, simpli�cation and register assignment.

Simpli�cation is based on the observation that if node V has degree less than the

number of available registers N , then the register assignment phase is guaranteed

to �nd a color for V regardless of the colors assigned to V 's neighbors. Even if

each of V 's neighbor node is assigned a di�erent color, at most N � 1 colors are

used, and there is an available color for V . The main point is that the graph is

still N-colorable if this V is removed from the graph G when G is N-colorable. This

process of removing nodes that have degrees less than N is called simpli�cation.

Simpli�cation is blocked when all live ranges of the graph have a degree of at least

N . Then, Chaitin's approach chooses a live range from the graph for spilling.

Spilling a variable means keeping it in memory, rather than in a register. In this
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case, the live range corresponding to the spilled variable can be deleted from the

interference graph. This deletion will reduce the degree of G and this process can

be repeated until the graph is colorable. The selection of live ranges for spilling

is based on certain heuristics related to the cost of spilling. Register assignment

follows the simpli�cation phase and the physical registers are assigned to the live

range in the reverse order in which they were removed during simpli�cation.

3.2 Register Allocation Steps in the Chow and

Hennessy model

An alternative to Chaitin's approach is the register allocation via priority based

graph coloring introduced by Chow and Hennessy [11]. They also introduce the

concept of live range splitting as an alternative to the spilling techniques used by

Chaitin et al.

Chow and Hennessy noticed that register allocation should use cost and bene�t

analysis for better performance. The value of assigning a given variable to a

register depends on the cost of the allocation and the resultant savings. The cost

is a function of the need to introduce register{memory transfer operations, which

put the variable in a register, and later update its home location. Greedy coloring

assigns colors to live ranges in a heuristic order determined by priority function.
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Figure 3.1: The framework of Chow and Hennessy register allocation

The priority function captures the savings in memory accesses which results from

assigning a register to a live range as opposed to keeping the live range in memory.

This thesis builds on the work of Chow and Hennessy in so far as region itself

provides natural live range splitting in our region-based approach, and frequency

information used in region formation can also be used in priority function. There-

fore, it is important to understand their work.

Their framework, illustrated in Figure 3.1, has the following steps.

1. Build the interference graph.
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2. Prioritize each live range according to some heuristic function.

3. Color the live-range with the highest priority. Repeat from (3) whenever

there remains an uncolored live range.

4. If there is a live range that cannot be colored, reduce the interference of the

live range by splitting it into two or more smaller live ranges and repeat

from (3). To connect split live ranges, shu�e code is inserted at splitting

points.

3.2.1 Live Range Construction

A live range is an isolated and contiguous group of nodes in the control ow

graph. Live ranges are discovered by �nding connected groups of def-use chains.

A single def-use chain connects the de�nition of a virtual register to all of its uses.

In the Chow and Hennessy approach, live ranges are determined by data-ow

analysis { live-variables analysis and reaching de�nition analysis. A variable is

live at the entry of block i if there is a direct reference of the variable in block i or

at some point reachable from block i not preceded by a de�nition. The reaching

attribute is solved by forward iteration through the control ow graph. A variable

is reaching in block i if a de�nition or use of the variable reaches block i. The live

range lr(v) of a variable v is constructed as live(v) \ reach(v).
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Figure 3.2: Interference of live ranges with BB and SB

Chow and Hennessy uses the basic-block as the unit of coloring. The granular-

ity of the basic block representation is used in their approach for faster compila-

tion. They noticed that the coarser interference graph may result in less eÆcient

allocation but they claimed that the penalty of coarse-grained live ranges is min-

imal since the size of basic blocks is typically small.

For region-based compilation using hyper-blocks or super-blocks, this penalty

can be greater for two reasons. First, the register pressure in a basic block with

coarse grained live ranges is not as large as in HB since the size of a basic block is
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Benchmark Coarse Fine Reduction

a5 3988 2354 40.97%
�r 716 684 4.47%
idct 770 730 5.19%
idea 5114 3682 28.00%
nbradar 4946 4240 14.27%
paraÆns 5472 5278 3.55%
polyphase 6390 5250 17.84%
qsort 1056 986 6.63%
strcpy 104 84 19.23%
wave 238 228 4.20%
wc 948 894 5.70%

Table 3.1: The number of edges in interference graph for coarse grained (basic
block) live ranges and �ne grained (operation) live ranges

usually smaller. Second, a coarse grained live range may have extra interferences

in super-blocks or hyper-blocks not present in basic blocks. In Figure 3.2 (a),

variable x is live in blocks B1 and B3 only. Hence, it does not interfere with

variable y which is live in B2, even if we use a basic block as the unit of a live

range. But if we create a super-block SB1 from blocks B1 and B2, a coarse

grained live range construction will report interferences between x and y.

By constructing live ranges recursively from sub-live ranges, which can go

all the way down to operation level, we have been able to compare the e�ect of

granularity of live ranges for many di�erent types of regions including basic blocks

and hyper-blocks. Table 3.1 and Table 3.2 show the di�erence between basic block

based live ranges and operation based live ranges by using the total number of
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Benchmark Coarse Fine Reduction

a5 8190 3362 58.95%
�r 10696 7224 32.46%
idct 7876 6672 15.29%
idea 8642 4614 46.61%
nbradar 130894 85154 34.94%
paraÆns 21332 15406 27.78%
polyphase 74676 48636 34.87%
qsort 20282 12002 40.82%
strcpy 4610 3342 27.51%
wave 6444 4740 26.44%
wc 4600 2320 49.57%

Table 3.2: The number of edges in interference graph for coarse grained (hyper-
block) live ranges and �ne grained (operation) live ranges

interference edges from several benchmarks chosen from digital signal processing

programs and common Unix utilities. For the hyper-blocks, the weighted average

of coarse-grained live ranges has about 54% more interference edges than �ne-

grained live ranges where as the average for basic-blocks is is about 22%. This

reduction makes for faster register allocation and hence a reduction in compilation

time.

3.2.2 Interference Graph Construction

Intuitively, two live ranges interfere with each other if the allocation to the same

register changes the meaning of the program. In Chow's approach, two live ranges

are said to interfere if the intersection of their live ranges is not empty.
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We however, use Chaitin's de�nition of liveness. Two live ranges interfere

if one of them is live at the de�nition point of the other. This is necessary

as our approach is based on live units that can be as small as an operation.

Hyper-block formation substitutes a single block of predicated instructions for a

set of basic blocks containing conditional control-ow between those blocks [35].

Central to the construction of predicated code is the computation of accurate

liveness information in order to build the sparsest possible interference graph.

This is essential for reducing compilation time, but even more crucial for execution

performance.

Consider the control-ow graph and live ranges in Figure 3.3 and the cor-

responding interference graph. In B3 for example, x is live when y is de�ned.

Therefore, there is an edge between vertices x and y in the interference graph.

Notice that there is no edge between vertices y and z since the thread of execu-

tion moves exclusively to one of the two basic-blocks B2 or B3. The accurate

interference graph can be colored by no more than 2 colors. Using if-conversion,

the four basic-blocks of Figure 3.3 are merged into the single predicated block of

Figure 3.4. The operations previously executed in B2 and B3 are guarded by

the predicates p and q respectively.

An interference graph using traditional live ranges is also shown in Figure 3.3.

This interference graph contains an edge between y and z because y and z are
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Figure 3.4: Interference Graph with Hyper-blocks

considered to be live simultaneously, as traditional analysis does not examine

the predicate expressions. As a result, the number of registers required by this

predicated block increase from 2 to 3. This increase in the register requirements is

mainly due to two reasons. First, without knowledge about predicates, the data

ow analysis must make conservative assumptions about the side e�ects of the

predicated operations. Second, the solutions of the data ow analysis rely heavily

on the connection topology among basic-blocks in the ow graph, which is altered

by the if-conversion process used to construct hyper-blocks.
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The problem of predicate-aware liveness computation has been studied ex-

tensively in the past [20] [16]. Eichenberger and Davidson[16] consider register

allocation for predicated code. \P-facts" are de�ned to capture logically invariant

expressions in straight line code (using both the predicated expressions in instruc-

tions and branch conditions) and analysis of these are used to de�ne liveness. A

more complex region like a loop is considered through \bundling" of virtual reg-

isters. A predicate insensitive register allocation is then used. Their framework

does not consider spilling and emphasis is therefore placed on minimizing register

requirements in the context of modulo-scheduled loops [50], rather than on good

register allocation with a �xed number of registers. Their data reports show the

reduction of registers needed for the Livermore kernel loops.

Gillies, Ju, Johnson and Schlansker[20] also consider predicated register allo-

cation but hyper-blocks are not used in their framework for region construction.

Global analysis (on whole procedures) is performed on the standard control-ow

graph (CFG) with BB's having predicated code, and control predicates represent-

ing the branch component from the CFG. The basis of a BB is the set of predicates

used in the BB code stream. The basis of BB within a global scheduling region

(GSR) are recursively merged to form a single common basis for data ow analysis

(DFA). Interval analysis is used to guide this process. To avoid expensive global

analysis, a limit of 32 is imposed on the size of the basis during the recursive
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merging. Our approach uses a similar predicate analysis but HBs are constructed

taking into account the frequency of execution.

Our analysis di�ers in that we use a predicate query system(PQS) [26] rather

than eagerly computing all the implications (the set of P-facts), which can be very

expensive in larger regions. We address live range interferences in the context of

region-based compilation by performing hyper-block formation. We perform local

predicate analysis using a PQS in our region-based register allocation. Due to the

the arti�cial limit of the size of the basis for each interval or the simpli�cation

used in PQS, the rest of the predicate expressions have to be approximated to

what is in the basis or to TRUE.

Our study (see Table 3.3) shows that region-based register allocation with local

predicate-aware liveness analysis gives limited performance improvement. While

some procedures improved with predicated analysis, the performance improvement

is either small or none in many of our test cases.

This can be explained in several ways. First, hyper-block formation is not

undertaken if there exists nested inner loops inside the selected region. So only

programs without inner loops but with many conditional branches and many local

variables to be colored will bene�t from predicate-aware liveness analysis. Second,

the hyper-block construction maximizes the potential of instruction scheduling

and this disables many of the careful interference calculations of the predicate-
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Benchmark Predicate Predicate Number of Saved
-Unaware(U) Aware(A) Functions(N) (U-A)/N

008.espresso 1729866 1729014 361 2.36%
023.eqntott 276686 276456 62 3.70%
072.sc 484094 483380 179 3.98%
085.gcc 5682058 5678266 1451 2.61%
124.m88ksim 465746 465518 252 0.90%
129.compress 155766 155744 24 0.91%
130.li 82648 82524 357 0.34%
132.ijpeg 1641726 1640956 473 1.62%
cccp 373380 373200 63 2.85%
cmp 4376 4376 5 0.00%
eqn 128276 128148 59 2.16%
lex 726564 726390 60 2.90%
tbl 421176 420708 89 5.25%
yacc 841108 840938 49 3.46%
AVERAGE 2.36%

Table 3.3: The number of edges in the interference graph for predicate-aware and
predicate-unaware liveness analysis

aware register allocation. For example, if a branch is heavily weighted in one

direction, the block on the opposite side may not be included in the hyper-block,

so as to maximize speculation. Third, if a block contains a function call with

side e�ects, the block will not be included in a hyper-block, as this prevents

code motion and instruction scheduling su�ers. Last, many predicate conditions

are promoted to TRUE in our hyper-block construction in order to get a good

instruction schedule, and this gives register allocation little chance for accurate

interference graph construction.
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3.2.3 The Coloring Algorithm

The �rst step of the coloring process is to remove unconstrained live ranges from

the interference graph. Chow and Hennessy distinguished between constrained

live ranges and unconstrained live ranges in the coloring process. Unconstrained

live ranges have a number of neighbors in the interference graph which are less

than the original number of registers available. These live ranges are not colored

until the very end, since it is certain that some unused color can be found for

them.

Then each live range selected according to the order of priority given by the

priority function is assigned a color. If there is no available color, an attempt

is made to split the live range. The process of selecting the highest priority live

range with a possibility of live range splitting is repeated until the interference

graph is empty.

3.2.4 Priority Function

As stated earlier, Chow and Hennessy noticed that register allocation should use

a cost and bene�t analysis. The value of assigning a given variable to a register

depends on the cost of the allocation and the resultant savings.

The priority function captures the savings in memory accesses from assigning

a register to a live range rather than keeping the live range in memory. It is
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proportional to the total amount of execution time savings, S(li), gained due

to the live ranges residing in registers. First, the register binding bene�t si is

computed for every live unit of the variable i in each basic block as follows:

si = LOAD SAVE � u+ STORE SAVE� d�MOVE COST� n (3.1)

where u denotes the number of uses and d denotes the number of de�nitions and

n denote the number of register moves needed in that live unit. Then, S(li) is

computed by summing si over the every live unit i in the live range lr weighted

by the execution frequency wi in the individual basic-blocks:

S(li) =
X

i2lr

si � wi (3.2)

The last factor to consider is P (li), the size of the live range, which is approxi-

mated as the number of live units, N in the range. A live range occupying a larger

region of code takes up more register resources if allocated to a physical register.

The total savings are therefore normalized by N so that smaller live ranges with

the same amount of total savings will have higher priority. Thus, the priority

function is computed as

P (lr) =
S(lr)

N
(3.3)
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3.2.5 Live Range Splitting

Color assignment is blocked when no legal color exists for the next live range lri to

be colored. Live range spilling is one solution where a live range lri is assigned a

location in memory, and all references to lri are done by memory access operations

like STORE/LOAD codes. These are referred to as spill code. Live range splitting

is an alternative to the spilling when no registers are available. The basic purpose

of splitting is to reduce the degree of interference by segmenting a long live range

into smaller live ranges. Although the number of live ranges is increased, each

smaller live range usually interferes with fewer other candidates because the live

ranges occupy smaller regions and the probability of overlaps with other live ranges

is thereby reduced. This is illustrated in Figure 3.5. In Figure 3.5 (a), all three

variables x, y and z are interfered each other and we have 3-colorable graph. If we

split the live-range of x and create two smaller live-ranges x1 and x2, the required

number of registers is reduced to two. In this case, we may need an extra copy

code at the boundary of x1 and x2 as we will explain in following section. But

this can be reduce many memory access code by spilling the show live range of x.

In splitting a live range, Chow and Hennessy separate out a component from

the original live range, starting from the �rst live unit which has at least one

reference to the variable. This component is made as large as possible to the

extent that its basic blocks are connected. This has the e�ect of avoiding the
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Figure 3.5: Live range split
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creation of too small a live range segment. The live range splitting steps for the

live range lr can be summarized as follows:

1. Find a live unit lu in lr in which the �rst appearance is a de�nition. If this

cannot be found, then start with the �rst live unit. Add lu to a the live

range lr0.

2. For each successor lu of the live units in lr in breadth-�rst order, add lu

into lr0 as long as lr0 is colorable.

3. Update the interference graph and priority of lr and lr0

4. If lr and/or lr0 become unconstrained after the split, move them from the

constrained pool to unconstrained pool.

3.2.6 Spill code and shu�e code insertion

Spilling a live range lr assumes that the value of lr resides in memory and it

is necessary to insert a store operation after every de�nition of lr and a load

operation before every use. The costs due to these operations are called spilling

cost.

When a live range is split into a number of smaller live segments and split

live ranges are bound to di�erent registers, shu�e code (also called patch up code

or compensation code) may be needed to move the data from one live range to
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the next. Figure 3.6 shows several di�erent examples of shu�e code insertion.

When a preceding live segment is bound to a register while the following segment

is spilled, a store operation is required (Figure 3.6(a)). Likewise, if the preceding

live segment is spilled and the following live segment is bound to a register, a

load operation is required for the boundary as the Figure 3.6(b) shows. The

Figure 3.6(c) shows that if two adjacent live segments are bound to di�erent

physical registers, a move operation is needed. In region-based register allocation,

region boundaries provide implicit and natural splitting points to the compiler.

In this case, the shu�e code for the region boundaries are identical to the shu�e

code required in live range splitting.

Other operations are also inserted during register allocation in order to comply

with the calling convention. Many compilers divide the registers into two sets,

caller-save and callee-save registers, and we will cover the detailed issues about

them in a later chapter.

The register allocation cost is the total overhead due to register allocation,

as compared to the ideal case where all variables can be assigned to the physical

registers. As previously explained, this cost is the sum of three components:

1. Spill Cost to move data to and from memory when no register is assigned

to a live range

2. Call Cost to store and load registers upon procedure entry and exit
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3. Shu�e Cost to move values from one live range segment to another

3.2.7 Region-Based Register Allocation Framework

Our region-based register allocation framework is shown in Figure 3.7 based on

Chow and Hennessy framework. To overcome the problems of suboptimal color-

ing by limited scope of region-based register allocation, we introduce the notion of

delayed binding and propagation based on frequency. The coloring of register al-

location works collaboratively with these. We introduce a new live range splitting

56



technique based on execution frequency and explore it further with rematerializa-

tion. We will also study the problems related to predicated codes and the splitting

of predicated live ranges followed by proposed solutions. Our priority function is

re�ned for the region-based approach where many variables live-in and live-out

are considered into the priority function. For the codes inside a hyper-block, we

reect the e�ects that the operations in hyper-block varies by the multiple branch

points or the probability of the predication. Even though our basic register al-

location framework is not limited to any speci�c type of region, we propose the

concept of region restructuring based on estimated register pressure to improve

the performance of region-based register allocation.

3.3 Other Region-Based Register Allocation

Callahan and Koblenz [7] partition the register allocation of a function by de�ning

a hierarchical tiling based on the control ow graph. In the �rst phase, the tiles are

colored individually in a bottom-up fashion and each virtual register is mapped

to pseudo-registers. In a second, downward pass the pseudo-registers are mapped

to physical registers. Norris and Pollock propose a similar hierarchical approach;

however, the partition is based on the program dependency graph(PDG) [36].

The register allocation is done in a hierarchically in a bottom-up manner also,

and Chaitin's algorithm is used at each region node. These two region-based
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approaches using program structures would tend to allocate the highest frequently

executed regions �rst, since leaf nodes of the hierarchical graph or the PDG-

based regions tend to correspond to the innermost loop bodies. But such region

formation is not sensitive to actual patterns of execution and frequencies of the

region boundaries where the shu�e codes are inserted. Each control dependent

subset of a given node that is common with those of another node is factored out,

and a region is created to represent it. In this technique, the scope of register

allocation tends to be too small, on the order of one C statement, resulting in

unnecessary spill code [22]. In a branch intensive code, the regions formed by this

method will not typically perform better than a basic block. Norris and Pollock

report only a 2.7% improvement over a standard global register allocator.

Gupta, So�a and Ombres[45] use Tarjan's result on colorability of a graph by

decomposing it into subgraphs using clique separators. The result states that if

each subgraph can be colored using at most k colors, then the entire graph can be

colored in k colors by combining the coloring of subgraphs [46]. A clique separators

is a completely connected subgraph whose removal disconnects the graph [19].

Each subgraph includes the clique separator, and a renaming of registers for the

clique separator nodes might be needed when merged with other subgraphs. In

Tarjan's work, the entire interference graph is constructed all at once, and clique

separators identi�ed later. In Gupta et al., clique separators are identi�ed by
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examining code and interference graphs, then we construct one subgraph at a

time for space eÆciency. A program is partitioned by selecting traces (paths)

through the CFG and �nding clique separators for each trace. If a variable is

live on multiple traces, renaming may be necessary at branch or join points. The

maximum number of cliques, chosen as separators, in which a live range can occur

is �xed to a small constant, e.g., 2. Though traces use frequency information, the

clique separators (and hence the regions for register allocation) are determined

by starting and stopping of live ranges rather than by groups of traces that are

executed together frequently. The time complexity of register allocation with

m-clique is O(n2 � m), but the overhead of determining the clique separators

is signi�cantly larger than the bene�t in register allocation time and results in

signi�cantly longer overall time.

The Multiow compiler [12] employs trace scheduling as a framework for both

register allocation and scheduling. The trace scheduler picks a trace and then

passes it to the instruction scheduler. Rather than applying global register allo-

cation after instruction scheduling, combined register allocation and instruction

scheduling are performed. The instruction scheduler keeps the records of register

binding and this information is maintained for each exit and entry point of a re-

gion through a data structure called a Value Location Mapping (VLM) as we will

describe it further in Section 5.2. This information in VLM is used for the register
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allocation of the subsequent regions for register biding decision, and the shu�e

code between traces when a variable is not bound to the same register among

the traces. In the IMPACT compiler, Hank uses a approach similar to the Mul-

tiow compiler [22]. The compiler selects a region and performs classical global

optimizations, ILP optimization, instruction scheduling and register allocation.

Proebsting and Fischer use probabilistic register allocation [40] which is a hy-

brid of the priority-based and program structure-based approaches. The approach

consists of three steps, local register allocation, global register allocation, and reg-

ister assignment. The global register allocation step partitions a program into

regions based on the loop hierarchy and proceeds from the inner most loops to

the outermost loops. When a variable is assigned to a register, the shu�e code is

placed at the entry and exit points of a loop. Like previous structure-based region

formations, this is not sensitive to actual patterns of execution and frequencies of

the region boundaries.

Lueh [33] uses graph fusion in his fusion-based register allocation. His approach

starts with an interference graph for each region of the program where a region can

be basic block, super-block, a loop nest, or some combinations of these. Regions

are merged in a bottom-up manner by the order of frequency of edges between

regions, and the interference graph is fused and the live range is again simpli�ed as

in Chaitin's approach. His approach is closest to ours in the sense that frequency
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information is used for fusion and that shu�e code are likely to be inserted at

less frequent points. Live-range splitting is implicitly done at region boundaries.

However, it does not split large super-blocks or hyper-blocks, even if the register

pressure is very high inside a block.
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Chapter 4

Live Range Splitting

In region-based register allocation where the regions are selected before the color-

ing process, the regions also provide implicit live range splitting points. However,

inter-region live range splitting still plays an important role when the regions are

constructed aggressively to obtain the higher level of ILP. These regions may need

further splitting since selected regions are usually large and there is high regis-

ter pressure. In this chapter we explore two important strategies for improving

the e�ectiveness of graph coloring register allocation; live range splitting and re-

materialization. Splitting divides an uncolorable live range into several smaller

and potentially more easily colorable live ranges, sometimes called live segments

speci�cally. Since smaller live ranges usually have less interferences than larger

live ranges, splitting can frequently reduce a live-range into two colorable halves.
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To preserve the semantics of the program, the shu�e code is inserted at the split

points to connect the ow of values between the split live ranges. Rematerializa-

tion is another spill code saving technique. Rematerialization recomputes a value

by need instead of reloading from memory, whenever this is possible and more

pro�table than spilling. We also explore the problem and requirement of the live

range splitting for predicated code.

4.1 Introduction

There are two main issues in live range splitting and rematerialization: (i) how to

choose the right live ranges to split and to rematerialize, and (ii) how to �nd the

right places to split and to rematerialize. These decisions can drastically a�ect

the quality of the generated code. The priority function, as we explained in 1.2.3,

can guide the register allocator to �nd the live range to be split. It is important

to understand that two split live segments are colored di�erently and the splitting

points tend to be the places where the shu�e code is placed. Split live ranges

tend to be colored with di�erent physical registers since the bigger live was split

into two segments when it could not be colored with the single register. If there

is a register available through out the whole live range, then we would not need

to split this live range into the smaller segments.

In particular, if the splitting point is located in a hot spot of the program, then
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the shu�e code will be executed often, which may lead to a slow program execu-

tion. When we split a live range, it is important for the execution performance to

select split point at points of low execution frequency, thereby reducing the shu�e

costs. Figure 4.1 shows two di�erent examples of two possible live range splitting

when the live range of x is uncolorable, where Figure 4.1 (b) has lower shu�e

costs than Figure 4.1 (a) has. In this chapter, we explore the limitations of the

previous proposed live range splitting algorithm and present the new live range

splitting algorithm based on frequency, called Frequency Based Splitting (FBS).

Chaitin et al. point out that certain values can be recomputed in a single

instruction and that the required operands are always available for the recompu-

tation. They call these always available values never-killed and there are many

cases of this, like:

� integer constants or oating-point constants

� constant o�set from the frame point or the static data pointer

� data loads from stack frame or the static memory address

� constant literal or string

The recomputation of a value from these never-killed is cheaper than stor-

ing that value to memory and loading it back when necessary. This technique
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is called rematerialization [5][3]. In other words, rematerialization is a spill re-

duction technique of replacing spills and reloads with instructions that recompute

values that have been evicted from the registers, whenever this is possible and

pro�table. Figure 4.2 shows an example of rematerialization when there is no

register available for the variable x. The left �gure illustrates the code that would

be produced when entire the live range of the variable x is spilled to memory such

that load code is required before every use of the variable and store code is in-

serted after its de�nition. The right �gure shows the code with rematerialization

of x. The rematerialization codes are inserted before the uses and the original

de�nition can be removed. This thesis presents the technique of frequency based

rematerialization(FBR) based on FBS, used in our region-based register allocator

for predicated VLIW/EPIC architectures. FBR is the natural extension of live

range splitting and rematerialization is obtained only at the splitting points.

4.2 Frequency Based Splitting

The previous priority based approach by Chow and Hennessy [11] does not take

account execution frequency when it splits the live ranges. Their approach uses a

simple heuristic to split live ranges:

1. The split component of the original live range should be as large as possible
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to the extent that the operations are connected. This avoids the creation of

too many small fragments.

2. The split segment should be small enough to have fewer interfering live-

ranges than the number of available registers, so at least one of the split live

range is colorable.

The algorithm by Chow and Hennessy for splitting �nds the �rst appearance

of the variable and extends it as far as it is colorable. While their approach uses

execution frequencies in the priority function, it does not use any frequency infor-

mation in searching for splitting points; it �nds splitting points in breadth �rst

search(BFS) order with the highest register pressure. The region-based register

allocator proposed by Hank [22] does not split live ranges in a region but instead

spills them if they are not colorable. The problem with these approaches is that

the split points of two divided live segments may have the highest frequency in

many cases. Figure 4.3 shows an example of splitting a live-range with these two

di�erent schemes. If the split points are searched by BFS order and the search

algorithm starts from the �rst region by the control-ow, then splitting may be

done on a loop back edge. Figure 4.3 (a) illustrates this case where the splitting

starts from the region B0 and the splitting point is between the region B3 and

B4. Figure 4.3 (b) shows an example of an alternative way of splitting which

may result from using frequency information to determine the split point (where
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the live range in the loop is not split into two segments). In this case, the shu�e

code between two live segments can be move to the less frequent point, the edge

E(B3; B4), than E(B2; B3).

Briggs [3] also introduced live range splitting into Chaitin style register alloca-

tion. The splitting points are determined using static single assignment (SSA) [15]

representations of programs and the loop boundaries [14] [13] [4]. Since live range

splitting is performed prior to the coloring phase, the decisions regarding split-

ting points and live range selections for splitting are made prematurely. Live

ranges may be split unnecessarily, resulting in execution performance degradation

by extra shu�e code. Many heuristics are used to eliminate this extra shu�e

code, including biased-coloring and conservative coalescing. Briggs conceived that

his approaches often produce signi�cant losses due to excessive copies, but he

still did not provide a solution. The live range splitting based on SSA or loop

structures can be used in priority based register allocation framework. But the

splitting points by these approaches are not necessarily the places of lower execu-

tion points. For example, in a control-dependent program in which there is high

register pressure inside a loop, a loop-based split may not be appropriate.

Live range splitting before the coloring process has many similarities to region-

based register allocation where region formation is also performed before coloring.

We will explain many region-based approached in Chapter 8 in details.
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4.2.1 Algorithm

This thesis proposes the frequency based splitting (FBS) algorithm, which uses

frequency information to guide live range splitting and attempts to split along the

edges where the frequency is the lowest in the region. Our splitting algorithm is

solely based on execution frequency and the order of �nding splitting points is

driven by the control ow frequencies between each base region (i.e basic blocks,

super-blocks and hyper-blocks). From all the blocks considered in a region, the

highest frequent block, called the seed, is selected. The scope of the �rst part of

the splitting region is expanded to its successors or predecessors by the order of

the frequency of the control ow arc as long as following conditions are met:

1. Expanded live-range is still colorable

2. Connected edge is the highest entry/exit edge of the neighboring region

The �rst condition guarantees that the new live range prevents too many

splits from happening. Figure 4.4 shows examples of frequency-based splitting

and splitting based on program structure (loop based splitting). The variable x

is live in all regions and no register is available for x while the variable y is bound

to R1 and the variable z is bound to R2. Our algorithm may choose B4 as a

seed (the highest frequency block) and expand in the order of the region B3, B1,

B0 and B5 by using edge frequency. Thus, it chooses the lower frequency edges
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e2 and e3 as split points and minimizes the cost of inserting shu�e codes. If a

split point decision is made by the program structure, as in loop based splitting,

the live range of x is split at e1 and e4 and the shu�e cost is higher than in our

frequency based splitting.

The second condition is necessary to avoid cases when splitting expands too

aggressively and the splitting points are chosen at the higher frequency edges.

Figure 4.5 shows an example of how standard frequency based splitting can be

di�erent from a conservative approach. In Figure 4.5 (a), the �rst splitting ap-

proach will choose B2 as the seed block and expand to region B1 and B2 until

e1 and e4 are chosen as split points. If we choose e2 and e3 as split points in-

stead, the shu�e cost will be reduced. By the second condition of our splitting

algorithm, the region splitting starting from the region B2 will not be expanded

to either the region B1 or B4, since B1 or B4 has other outgoing ( or incoming)

regions with higher frequencies between them. The detailed algorithm is described

in Figure 4.6.

4.3 Rematerialization with Live Range Splitting

Frequency based rematerialization (FBR) is a natural extension of FBS by incor-

porating rematerialization in the splitting process. The main observation is that

splitting points computed by FBS are also good places to insert rematerialization
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func split(live-range LR) f
SEED = the highest frequent sub-region in LR;

LR1 = fSEEDg;
LR2 = LR - fSEEDg;
EDGES = the cross edges between LR1 and LR2;

while (EDGES) f
pop highest frequency E from EDGES;

NEXT = live segment in LR2 connected by E;

if (E is the highest entry/exit edge compare to NEXT's

corresponding entry/exit edges to LR2)

if (LR1+fNEXTg is colorable) f
LR1 += fNEXTg;
LR2 -= fNEXTg;
update EDGES as cross edges between LR1 and LR2;

g
g
return (LR1, LR2);

g

Figure 4.6: Frequency Based Live Range Splitting Algorithm
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code, for these reasons:

� First, FBS splitting points are, by de�nition, the program points of low

execution frequency, and rematerialization code that is inserted at these

places will also be infrequently executed.

� Secondly, FBS always splits a live range into two live ranges such that at

least one is colorable. Rematerialized code inserted in the colorable live

range is guaranteed not to be spilled.

� Finally, rematerialization can dramatically reduce the sizes of split live

ranges over that of FBS, making it more likely that these live ranges can be

colored as well as other live ranges.

Briggs uses SSA in his implementation of rematerialization [5]. By examining

the de�ning instruction for each value, he recognizes never-killed values and prop-

agates this information through the SSA graph. Sparse simple constant algorithm

by Wegman and Zadeck [52] is used to propagate never-killed information .

4.3.1 The FBR Algorithm

The FBR algorithm is described in Figure 4.7. The basic framework of FBR is

very similar to FBS. We �rst perform the splitting step and partition the live

range LR into two live ranges LR1 and LR2. We then check all live range splitting

76



function FBR(live range LR of x)

(LR1,LR2) = FBS(LR);

for all cross edges E between LR1 and LR2 do

if a value v crosses E and

v is live and

v is rematerializable then

rematerialize(v,x,E)

Figure 4.7: The Frequency Based Rematerialization Algorithm

function rematerialize(v,x,E)

Insert code to recompute v at E

/* Recompute the live range after rematerialization */

Traverse the control flow graph from E

in the backwards direction.

Incrementally recompute the live ranges.

Remove dead definitions of x in the process.

Figure 4.8: The Rematerialize Algorithm

points, represented as cross edges E between LR1 and LR2. For each edge E, we

check whether the value crossing E is rematerializable. If it is, we insert the

rematerialized code and update the new live range information.

The auxiliary routine rematerialize shown in Figure 4.8 is responsible for

updating the live ranges after a value has been rematerialized. Unlike splitting,

which introduces a new de�nition and a new use (in the shu�e code), rematerial-

ization introduces a de�nition but does not introduce a new use.

The example in Figure 4.9 illustrates the working of the FBR algorithm. We
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Figure 4.9: A Rematerialization Example.

�rst use FBS to split the live range corresponding to the variable x. FBS has

determined that edges e2 and e4 are the best split points of the program. The

result of the splitting divides the live range into two live ranges spanning blocks

B0; B1; B2; B4; B5; B6 and block B3. Let us suppose that the de�nition of x in

block B1 is rematerializable. FBR will then proceed to insert rematerializable

code at the split edges e2 and e4. The result of this rematerialization is shown in

Figure 4.10(a).

Finally, FBR reconstructs the new split live ranges by performing an incre-

mental liveness analysis by walking the program in the reverse direction of the
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Figure 4.10: Rematerialization Steps.
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control ow graph. We terminate this traversal as soon as we encounter use of

x1. In this example, the de�nition of x in block B0 can be deleted, since it is no

longer live by the virtue of the rematerialized code in e2. The result is that we can

delete the portion of the live range in block B0; B1, and B2, leading to a smaller

interference graph. The result of this transformation is shown in Figure 4.10(b).

4.3.2 Finding Rematerializable Code

One decision that every rematerializing allocator must consider is to determine

what live ranges in a program are rematerializable. Briggs [3] suggests that each

live range should be decomposed into its component values, according to the

structure of the SSA [15] graph. To discover rematerializable values, a simple

forward propagation algorithm similar to constant propagation [51] can be used.

In Briggs' scheme, the following values are considered to be rematerializable:

� All constants,

� All address arithmetic expressions that depend only on constants and dedi-

cated registers such as the frame pointer and a global data pointer.

� Loads from constant o�set in the stack frame or in the static data area.

1All live-out values are considered to be uses.
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To deal with predicated instructions, our algorithm extends Briggs' scheme in

the following ways:

� Since instructions may be predicated in a hyper-block, a value is only con-

sidered to be rematerializable if its predicate is also rematerializable. This

is because the rematerialized code must be predicated under the same con-

dition as the original instruction.

� Predicate computations that depend on rematerializable value can be con-

sidered to be rematerializable.

In our implementation, we deviate from Briggs' scheme in not using SSA to

discover rematerializable values. Instead, we maintain a set def/use chains and

use these to discover rematerializable values by demand. We arrive at this imple-

mentation decision due to two important reasons: (i) SSA, without extensions,

does not deal with predication in a clean way, and (ii) because of the use of

region-based register allocation, our def/use chains are relatively compact, so the

sparseness of SSA is not as big an advantage as in traditional global algorithms.

4.3.3 Optimistic Rematerialization

It is informative to compare FBR with Chaitin-style (and Briggs-style) rematerial-

ization [8, 9, 3]. In these earlier frameworks, the decision to spill occurs relatively
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late in the allocation process, and because of this, the placement choice of rema-

terialization code is restricted. In general, rematerialization code is inserted at

where a reload may occur, i.e before the use of a value. This implies that if a

rematerialized use site appears in the middle of an inner loop, the rematerialized

code will be executed often. While global (post-pass) scheduling (e.g. [18, 24, 35])

can be used to hide the latency of these rematerialized code, most scheduling

schemes stop at loop boundaries and thus they cannot hoist rematerialized code

out of loops.

In contrast, the FBS heuristic decides to split and rematerialize live ranges

relative early in the coloring process. Since we are have �ne control on where

splitting and thus rematerialization can occur, we can use this opportunity to

minimize the cost of rematerialization.

Consider the example hyper-block in Figure 4.11(a) where the live ranges y; z

and w have already been colored and there are no more colors available for x2.

When the live range x is rematerialized in Chaitin/Briggs approach, remateri-

alization code in necessary before each use. The result of this is shown in Fig-

ure 4.11(b).

In the FBR algorithm we insert rematerialization code at split points even

if we are not guaranteed that the rematerialized code can be colored. We call

2Other live ranges are not shown.
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this optimistic rematerialization3. Note that since rematerialized code is itself

rematerializable by de�nition, the result of this optimistic approach has a few

interesting consequences:

� If the rematerialized code is itself colorable, then it will be colored as usual.

� If it is not colorable, we may recursively apply the FBR algorithm and split

the (split) live range into smaller live ranges. As a side-e�ect of the FBR

algorithm, dead rematerialization code inserted earlier will be deleted and

new rematerialization code will be inserted at new split points.

Figure 4.12 shows the operation of the FBR algorithm based on the live ranges

in Figure 4.11(a). Here, an initial splitting point is chosen immediately after the

the live range of z ends. Since the original de�nition of x is now dead after the

rematerialized code is inserted, it can be removed. In Figure 4.12(b) we re-apply

the FBR heuristic on the remaining live range of x, since it is still not colorable.

After rematerialization is applied again, the top half portion of the split live range

can be shrunk further. The resulting live ranges can then be colored.

Note that while live range splitting by itself reduces the register pressure by

decreasing the degree of interference graph, the size of a split live range itself is

not reduced. Using rematerialization, we can actually reduce the size of split live

3An alternative approach is to insert rematerialize only if we are guaranteed that the resulting

code can be colored.
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ranges by removing unreferenced de�nitions.

4.4 Experiment

Figure 4.13 summarizes the performance of our frequency based split algorithm

and rematerialization for two di�erent sets of benchmarks: common Unix bench-

marks and, selected Spec Int92 and Spec Int95 programs. We show three di�erent

sets of data for each benchmark, each compares to the total dynamic execution

cycles of Chow's style of live range splitting: frequency based live range splitting

(FBS), rematerialization based on splitting (FBR) and rematerialization with fre-

quency based live range splitting (FBS+FBR).

In Figure 4.13 we compare the performance improvement of Frequency Based

Splitting (FBS) and Frequency Based Rematerialization (FBR), using the dy-

namic cycle count as the basis. In this experiment, region-based register allocation

is performed, and the granularity of each region is a hyper-block.

The target machine used in this experiment has 4 integer units, 2 oating-

point units, 2 memory units and 1 branch unit, and it has 32 GPRs and 32 FPRs.

The scope of the register allocation is the function based region.

Our experiment shows FBS and FBR achieves better quality of code and re-

duces the execution time by 10% and 7% respectively. Furthermore, a combination

of these two techniques improves execution performance even better by as much
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as 12%. Most of the performance improvement of FBR can be attributed to re-

materialization of function call addresses, branch target addresses, and address

o�sets from the stack pointer. Our conjecture is that as we increase the size of

the hyper-blocks, the regions will have more branches and function calls and thus

will result in even greater opportunity for rematerialization.

4.4.1 Sensitive to Register Pressure

The performance of live range splitting is closely related to the register pressure.

As register pressure increases, more live ranges need to be split and di�erent

techniques of live range shows more di�erence. Register pressure is sensitive to

two major factors in ILP compilers: the size of register �le and the number of

functional units. It is not hard to see that register pressure decreases as register

�le size increases. In ILP compiler, more instruction can be scheduled in parallel

as the number of functional units increases.

Table 4.1 shows the number of live range splitting required for our register

allocation for the di�erent size of register �les. For this experiment, we use the

machine has 4 integer units, 2 oating-point units, 2 memory units and 1 branch

unit. The scope of the register allocation is the region based on a function. The

count of live range splitting decreases dramatically after 32GPR+32FPR set. In

the machine model with ILP scheduling we use 64GPR+64FPR register seems to
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Benchmark 32GPR+32FPR 64GPR+64FPR 96GPR+96FPR
008.espresso 1487 90 58
023.eqntott 359 16 8
124.m88ksim 83 23 15
129.compress 193 13 4
130.li 25 15 15
132.ijpeg 1079 224 92
cccp 268 13 4
cmp 18 2 2
eqn 53 9 8
tbl 654 67 42
lex 1048 88 37
yacc 1486 50 44

Table 4.1: Live Range Split Count

be enough. This becomes more clear in the following test.

We also vary the size of functional units to increase ILP factor and regis-

ter pressures. In our experiments, we increase the number of integer units to

6 and oating-point units to 4, but this did not improve the execution perfor-

mance signi�cantly. To explore this behavior further, we conduct the experiment

of register allocation with an in�nite number of registers, so no register will be

spilled. Table 4.2 shows the total dynamic execution cycles and dynamic num-

ber of operations with ILP factor for our selected benchmarks. Our experiment

shows that the average number of instruction per cycle is no more than 3. This

means the number of functional units in our experiment was not what prevented

us from obtaining higher ILP. The instruction scheduling and region formation
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Benchmark Dynamic Execution Dynamic Operations ILP factor
Cycles (C) Count (O) (O/C)

008.espresso 218322683 760693506 3.48
023.eqntott 361079842 1555775187 4.31
072.sc 265024760 636878163 2.40
085.gcc 84275725 183525339 2.18
124.m88ksim 56474256 123990825 2.20
129.compress 14564842 42110391 2.89
130.li 105162363 242728632 2.31
132.ijpeg 569619724 1617547655 2.84
cccp 3262669 9480713 2.91
cmp 1275577 2196090 1.72
eqn 24063896 68600191 2.85
tbl 1689261 4862907 2.88
yacc 19057501 61774019 3.24

Table 4.2: Execution Data and ILP factor

used does not fully expand ILP currently, which may be at least partially the rea-

son that most of benchmarks do not require more than 64GPR+64FPR. Under

current circumstance, our experiment is conducted mostly with 32GPR+32FPR,

48GPR+48FPR, and 64GPR+64FPR, if it is not speci�ed.

4.4.2 Interference Degree Changes

To validate the e�ectiveness of the FBS and FBR algorithm, we also have con-

ducted an experiment of the changes of the live range splitting. Our experiment

shows that FBS can reduce live range splitting by 50% on average, compared to

Chow's approach. The result is illustrated in the second column and the third

90



column of the Table 4.3. In splitting a live range, Chow separates out a com-

ponent of the original live range that is as large as possible to the extent that

it is colorable. In other words, the counterpart of the split live range may not

be still colorable and may need further live range splitting. This counterpart of

live range splitting, when the structure of the program is not considered, tends to

need further live range splitting.

As we explained earlier, rematerialization can reduce the degree of interfer-

ence graph by reducing the size of live range rematerialized. This leads register

allocation to decrease register pressure on many other live ranges and the number

of live range splitting required can also be decreased. In Table 4.3, we show the

number of live range splitting required in selected benchmarks. Column 3 and 4

shows the live range splitting count for our base case which is frequency live range

splitting (FBS) without any rematerialization and with rematerialization based

on live range splitting (FBS+FBR). The percentage of savings are showed in the

last column.

4.5 Live range split for predicated codes

Predication[27] has been included in EPIC-style architectures and provides many

opportunities of ILP optimization to the compiler. It enables modulo-scheduling[41]

to reduce code expansion and to be scheduled with kernel-only codes. More com-
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Benchmark BASE FBS FBS+FBR 1-FBS/BASE 1-FBS+FBR/FBS
008.espresso 1487 744 717 49.97% 3.63%
023.eqntott 359 251 239 30.08% 4.78%
072.sc 352 115 115 67.33% 0.00%
085.gcc 7431 2312 2078 68.89% 10.12%
124.m88ksim 83 30 30 63.86% 0.00%
129.compress 193 113 94 41.45% 16.81%
130.li 25 15 15 40.00% 0.00%
132.ijpeg 1079 668 655 38.09% 1.95%
cccp 268 140 113 47.76% 19.29%
cmp 18 9 9 50.00% 0.00%
eqn 53 30 25 43.40% 16.67%
lex 1048 505 387 51.81% 23.37%
tbl 654 253 228 61.31% 9.88%
yacc 1486 621 605 58.21% 2.58%

Table 4.3: Comparison of live range split count for FBS and FBS+FBR

monly, predication handles branch intensive programs since trace scheduling or

super-block scheduling cannot handle clusters of traces that should be considered

together. However, the predicated instructions in hyper-blocks [35] pose many

interesting problems to many phases of the compiler including register allocation.

Predicate analysis for liveness we explained in Section 3.2.2 was one approach

to cope with predicated code. Live range splitting for predicated code poses

another problem related to shu�e code. If the interference graph construction uses

liveness analysis with predication, the shu�e code must be predicated also with

the same predicate condition of variable liveness at the split point. Predication for

shu�e code makes post-pass scheduler (which comes after register allocation) to
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schedule this code eÆciently and can reduce the execution time. More importantly

this is required to reserve the semantic of the program.

Consider the example in Figure 4.14 where the variable x is de�ned and used

under the condition p, and the variable y is de�ned and used under the condition

q where the predicate value p and q are exclusive to each other. If variable x was

split and two segments of x were bound to register R1 and R2 respectively, we

need to guard the shu�e code with the same predication condition of the liveness

of variable x, i.e. p. If the predication guard is missing for the shu�e code, the

value of y guarded by the predicate q can be corrupted by the shu�e code when

q is true.

It is important to understand that predicate conditions for the shu�e code

must be exactly the same as the liveness condition used in the phase of the in-

terference graph construction. Please consider the example of liveness condition

of live range x in Figure 4.15 (b) which is obtained from control ow graph in

Figure 4.15 (a). At the split point, the variable x is live under the predicate

condition of p ^ (s _ u). There are a few obstacles in making this shu�e code

with the predication. First, some conditions for the shu�e code may not yet be

de�ned at the split point. In this example, predicate variable for the condition s

or u may be de�ned somewhere between the split point and the use operations.

This problem can be solved by re�ning the live range split carefully. We always
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x(R1):= if p

Live Range of

x(R1)

:=x(R1) if p

:=x(R2) if p

y(R2):= if q

:=y(R2) if q

split point
x(R2):=x(R1) if p

x(R2) y(R2)

Figure 4.14: Predicate guard of shu�e code
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x:=

:=x

:=x

:=x

p
q

r
s

t u

(a) Predicate partition graph with code fragment

x(R1):= if p

:=x(R1) if p

:=x(R2) if u

split point

x(R2):=x(R1)
     if p ∧(s ∨u)

:=x(R2) if s

p

p∧(s ∨u)

p∧u

Liveness Condition

(b) Hyper-block codes and liveness condition

Figure 4.15: Predicate partition graph
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make the splitting point to be after the de�nition of predicate variables needed

for the shu�e code. From the end of live range, we scan the operation in reverse

order of execution as long as it it colorable as in Chow's approach. We may select

splitting points in the following ways:

� if we encounter an operation which makes the new live range uncolorable

� or if we encounter the predicate de�nition which the variable refers to.

The second problem is the predicate expression required for the shu�e code

may be diÆcult to obtain and may need too many operations. As in Figure 4.15

(b), the program did not de�ne the predicate variable for predicate expression

p ^ (s _ u) as a single predicate variable. We may need many instructions to

derive the desired predicate value from the existing predicate expression. In our

example, we need to de�ne the new predicate variable v for p^(s_u) and guard the

shu�e code. The features of EPIC architecture make it possible to optimize such

a way that this shu�e code can be scheduled eÆciently, if the machine supports

simultaneous writing to the register. Some EPIC architecture design like HPL-

PD permits multiple operations to simultaneously write a value into a register

provided all such operations write the same value. In this case, the result stored

in a register is well-de�ned and is the value being written into the register, so the

post scheduler can schedule the shu�e in the same clock cycle. Figure 4.16 shows
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s1: a := cmp.or(s, u)

s2: b := cmp.and(a, p)

s3: x(R2) := x(R1) if b

(a)

s1: a := cmp.or(p, s) b := cmp.or(p, u)

s2: x(R2) := x(R1) if a x(R2) := x(R1) if b

(b)

Figure 4.16: Shu�e code for the hyper-block in Figure 4.15. Predication condition
p ^ (s _ u) is promoted to s _ u. (a) Predicate variable w is de�ned and used for
shu�e code. (b) Parallel shu�e code where simultaneous writing is performed.

an example code of the di�erence between the simultaneous writing approach and

the non-simultaneous approach.

The last problem can occur if there is high register pressure for predicate reg-

isters and new predicate registers may not be available. In our implementation

of the liveness analysis used in the interference graph construction, the predi-

cated expression is promoted to the lowest upper bound predicate value de�ned

in the program by the conservative approximation based on the predicate parti-

tion graph [20][16]. So in our previous example in 4.16, the predicate expression of

p^ (s_ u) will be promoted to its smallest superset as p and this is the predicate

guard used in interference graph construction. In this approach, the predicate

guard for shu�e can be expressed in conservative simple form and we do not need

any extra predicate register. To guarantee the simple predicate variable is live at
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the split point, we again check the liveness of that predicate register at splitting

time.
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Chapter 5

Register Assignment

region-based register allocation has potential weakness when compared to the

global register allocation because of its limited scope of region as a compilation

unit. By using region formation, one large live range can be divided into several

live segments and the register allocator in a region may be performed fully in-

dependently before a compilation scope moves to the next region. Coloring each

region independently may be suboptimal as each live segment may be assigned a

di�erent register, resulting in many patch up codes at each live segment bound-

ary. When each live segment is colored independently, the register allocator must

ensure that the necessary shu�e code is inserted to handle the di�erent regis-

ter assignment between regions, and this shu�e code increases execution time in

many cases.
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In this chapter, we explore the problems of the register assignment in region-

based register allocation and propose several innovations to overcome this poten-

tial disadvantage of the region-based approach, thereby reducing shu�e cost. All

of our innovations are also centered on knowing and using the execution frequen-

cies of the program units such as basic blocks, super-blocks, hyper-blocks and

others.

5.1 Issues Related to Register Assignment

According to how two adjacent regions are assigned to the registers, shu�e code

may be required to reconcile those two regions. Ideally, if both adjacent regions are

assigned to the same physical register or both spilled, no shu�e code is required.

If a variable is allocated to di�erent physical registers in di�erent regions, then

shu�e code is required. Figure 5.1(a) shows the cases where store and load shu�e

are required. The variable x is allocated to a physical register R1 in the region B1

and the region B3 while x is spilled in the region B2. The variable x needs to be

stored into memory after B1 but before B2, and needs to be loaded back to the

register R1 before the region B3. If two adjacent live segments are colored with

di�erent colors in each region, copy operations are required. In Figure 5.1(b), the

variable x is assumed to be allocated to di�erent physical registers; the register

R1 in the region B1, the register R2 in the region R2 and the register R3 in the
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region B3 respectively. This requires copy operations at each region boundary as

R1 is copied to R2 between B1 and B2, and R2 is copied to R3 between B2 and

B3.

Please note this shu�e code is very similar to the code required in live range

splitting. region-based register allocation has a meaning of aggressive live range

splitting which splits the live ranges before the coloring process [6]. So it is natural

that shu�e code requirements for live range splitting and region-based register

allocation are the same. We will explore and compare in detail dynamic live

range splitting (live range splitting is performed as coloring process is performed)

and aggressive live range splitting (live range splitting is performed in advance)

in chapter 8, where we cover the comparison of region-based approach and global

register allocation.

To implement inserting shu�e code between two adjacent regions, another

region may be required. Creating a new block degrades the runtime performance

in two ways. First, the new block needs extra branch operation above the shu�e

code itself, so we extra extra branch latencies. Second, the ILP factor of the

shu�e block is relatively low since there tends to be not many operations in

it. In particular, if the machine architecture does not support indirect memory

access, the stack address for memory access operations needs to be stored in

some registers. This may require special registers for stack address, or consumes
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B2

B1 x(R1)=

=x

=x

STORE R1,x

LOAD x

LOAD x

=x(R1)

=x(R1)

LOAD R1,x

x is SPILLED

B3

(a)

B2

B1 x(R1)=

=x(R2)

=x(R2)

=x(R3)

=x(R3)B3

MOVE R2,R1

MOVE R3,R3

(b)

Figure 5.1: Region Reconciliation
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general registers. So there can be false dependency between those memory address

operands, and these operations cannot be parallelized.

In many cases, fortunately, shu�e code can be moved to either the source or

the destination region. In two adjacent regions, if the only connecting edge is the

single exit edge of its source region and the single entry edge to the destination

region as in Figure 5.2 (a), the shu�e code can be moved to the either regions.

Figure 5.2 (b) shows a case where the load shu�e code can be merged into the

destination region but not to the source region. It is assumed that the variable

x is live in the region B1 and the region B3, and it is bound to the register R1

in B3 while it is spilled in B1. The shu�e code can be merged into B3, but this

code cannot be merged to B1 since it may change the semantics of the program.

In this example, if the LOAD operation is moved to the region B1 and the control

path to B2 is taken, the moved LOAD operation will over-write the value of

variable y which was also assigned to R1. Figure 5.2 (c) shows a reverse case

where the shu�e code can be merged into the source region only. It is assumed

that the variable x is bound to di�erent registers in each region, so shu�e codes

are required in each region boundary. Neither shu�e code from B1 or from B2

can be merged into B3 while they can be moved into the B1 or B2 respectively.

If any of shu�e code is moved to B3, it may change the meaning of the program

when the execution control is coming from the other region. For instance, if the
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left side MOVE operation is merged into B3 and the control is from B2 to B3, the

live-in value of x will be overwritten by the value of y which is in the register R1.

Finally, Figure 5.2 (d) shows a case where the shu�e code cannot be merged into

either the source region or the destination region, and a new region for shu�e code

is necessary. For the same region as we explained in the previous two examples,

the shu�e code between B2 and B4 cannot be move into either the source or the

destination region.

5.2 Frequency Based Propagation and Delayed

Binding

Propagation is the concept where coloring information of neighboring segments is

used, i.e., propagated, in register binding for the region currently being colored.

Propagation has been shown to decrease the shu�e cost by decreasing the shu�e

code. Whenever possible, our frequency based propagation algorithm searches

for a register from neighboring live ranges by the frequency order of control ow

edges.

A segment of the live range in a region may not have any references to that

variable (no defs and no uses), even if the value is live-in and live-out through the

region. We call this a pass-through live range. Pass-through live ranges present
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B2

B1
x(R1)=

=x(R2)

=x(R2)

MOVE R2,R1

B1 x=

=x(R1)

=x(R1)

=y(R1)

y(R1)=

x is SPILLED

LOAD R1,x

B3B2

(a) (b)

B1
=x(R2)

=x(R2)

B2B1

=x(R1)

=x(R3)

B3

MOVE R3,R1 MOVE R3,R2

y(R1)

B1

x(R2)

B2B1

x(R1)

x(R3)

B3

MOVE R3,R2

y(R1)
z(R3)

z(R3)
B4

(c) (d)

Figure 5.2: Shu�e Code Merge
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another interesting challenge to register allocation. For pass-through live ranges,

it is not clear whether we want to bind to a register in many cases. In the case

that several pass-through live ranges exist in a region and the number of available

registers is smaller than the number of pass-through live ranges , it is hard to

decide that which live ranges can be bound to physical registers since the register

binding bene�ts for all pass-through live ranges are equal to zero for the given

region. Let us assume there are M live ranges in a region with N pass-through

and M > R, (M � N) < R where R is the number of physical registers. All

of (M � N) non pass-through live ranges can be bound to registers. From the

N pass-through live ranges, only partial live ranges (R � M) can be bound to

registers. In this case, it is hard to decide which ones can be bound and which

ones can be spilled.

In some cases, even though there are enough registers available for all live

ranges, it may be more bene�cial to spill a live range. If a live range was spilled

in its neighboring region B2, it will be more bene�cial to spill the pass-through

live range in the current region B1 in order to avoid more expensive shu�e code

between B2 and B1. When the information of the neighboring region is not

known, it is hard to decide register binding for a pass-through live range.

As shown in [12] and [22], by delaying register binding decision for pass-through

live ranges, we can resolve these problems. In [12], they delay the binding decision

106



whenever they cannot decide register binding, because no propagation informa-

tion is available at that time. Whenever one of its neighboring live ranges have

propagation information, this information has propagated to the delayed live seg-

ments. The simple version of propagation is also used in Hank's approach which is

derived from the Multiow compiler [12] by using VLM(Value-Location Mapping)

to reduce shu�e cost problem.

The compilation manager maintains a table of register bindings of all outward-

exposed virtual registers at each region entry and exit point of each register allo-

cated region. Through the table of register bindings called VLM, register binding

information is propagated from its neighboring regions processed by its region

weight. Figure 5.3 shows an example of propagation of register binding infor-

mation through VLM. The region B1 has been allocated and has three outward-

exposed variables that live-in at the entry point of the region B2. This information

can be used for two purpose. First, register allocation for the region B2 can use

this information and guide the register binding to minimize the shu�e code. Sec-

ond, this information is used to insert required shu�e code.

Given that regions are being compiled in order of importance (by its frequency

order), Hank applied the register binding information of the �rst bound region

to the following regions for propagation. But his approach may have limitations

in cases of complex control ow graphs where a region has multiple entry or exit
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x=

B1

B2

x:{DB-B1}
y:{R1}
z:{R2}

x:{DB-B1}
y:{R1}
z:{R2}

=y(R1)

=x

y=

=y

z(R2)=

=z

Value-Location Map

Figure 5.3: Value-Location Map example

edges, and the edge frequency is not exactly match to the region frequency. In

Figure 5.4, the frequency of blocks are B1 > B3 > B2. If we process register

allocation by block frequency order, the variable x in B3 can be colored with

the register R2 while x was bound to the register R1 in B1 (this can happen,

for example, if B3 has other live-ranges with higher priority which have been

assigned R1). If regions are processed by control ow order and region frequency,

the variable x bound to R1 can be propagated to B2. If x in B2 is bound a

register other than R1, the shu�e code will be added to the edge e(B2; B3). If

B2 has no register pressure, it is more eÆcient to bind x with R2 in the region

B2 and B3 and to put shu�e code in e(B1; B2).
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B1

B2

B3

B4

(500)

(300)

(200)

x x(R2) x(R1)

Liveranges of

(400)

(100)

(200)
(100)

(100)

(100)

(100)

Figure 5.4: Region-Based Register Allocation and Propagation
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In our approach, we propagate the potential candidates for binding the pass-

through live range by using the adjacent live range information and frequency

information. If a pass-through live range does not have any adjacent live range

information, register binding for that live range is delayed until the register biding

information can be propagated properly. The register binding candidates cannot

be used when they are forbidden or they are unsuitable when the binding bene�t

is not bene�cial compared to spilling with shu�ing (i.e. the binding is unsuitable

due to the presence of functions). In these cases, the live range is further delayed.

Otherwise we �nd the preferred binding and reconcile. Using adjacent live ranges

information, we compute bene�ts of the neighboring bindings by the frequency

order of control ow, skipping only delayed ones. The bene�t is calculated as the

di�erence of register binding bene�t and weighted shu�e cost at entry and exit

points. If delayed bindings also exist on either side of this pass-through, shu�e

cost is set to zero with the expectation that the actual shu�e cost will be absorbed

by live ranges allocated later.

5.2.1 Algorithm

We now describe a register allocation algorithm that uses frequency information

in the propagation process. Whenever possible, our frequency based propagation

algorithm searches for a register from neighboring live ranges as outlined in Fig-
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func coloring(live-range LR) f
if (LR is pass-through)

delay register binding(LR);

else if (LR has neighboring live range)

coloring with propagation(LR);

else

allocate new register(LR);

g
func coloring with propagation(live-range LR) f

initialize EDGES with set of edges between LR and all

neighboring live ranges;

LR.UNAVAILABLE = LR.FORBIDDEN;

for each E in EDGES by frequency order f
ADJ = neighboring live segment connected by E;

if (ADJ is delayed)

LR.UNAVAILABLE += ADJ->UNAVAILABLE;

else if (ADJ is spilled)

continue to next edge;

else if (ADJ is bound and ADJ.COLOR is unavailable in LR)

bind LR with ADJ.COLOR;

g
g

Figure 5.5: Frequency Based Propagation Algorithm

ure 5.5. This refers to the register binding of the neighboring live range, in order

of control ow edge frequency, to decide register allocation. In the case of the

pass-through live ranges, register binding is delayed until the register binding of

all of its neighboring live live ranges is �nished instead of propagating from its

�rst available neighbor.

Figure 5.6 (a) shows the examples of how our propagation works. It is assumed
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that regions are compiled by their frequency orders. The region B1 is colored �rst

where the variable x is assumed to be bound to the register R1. When the region

B3 is colored, the register R1 is assumed to be used for an another live range, and

the variable x is bound to the register R2 instead. When we bind the register for

x in B2, our approach will propagate register binding information from B3 before

B2 by the order of control ow. Figure 5.6 (b) shows a more interesting case with

delayed binding. The region B4 is assumed to be the most important region and

the register binding of the variable x is delayed, since it is a pass-through live range

without any propagation information from its neighboring regions. When the

region B2 is processed and the variable x is bound to the register R1, this coloring

information can be propagated to the region B4. If x is spilled in region B3 later

(there may be high register pressure in B3), the compiler manager should add

shu�e code between B3 and B4. However, if the variable x is spilled in B4 rather

than bound to any register, we need shu�e code somewhere in the control-ow

between B2 and B4. This approach has lower frequency than allocating a register

to x in B4. In our approach, the propagation of delayed live range is delayed

repeatedly until its neighboring live range connected by the highest frequency

control-ow edge has propagation information. For this purpose, we maintain the

information of all control ow edges with live-in and live-out information when a

region is constructed. In this example, the register propagation for x in the region
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B4 is delayed until the register binding for x in the region B5 is decided.

5.3 Propagation of Unavailable Registers

Register binding for the current segment of a large live range can be constrained

by the register which later cannot be used for delayed live range. If the current

live range uses a register which was forbidden in delayed segment in the previously

region, adding the compensation code is unavoidable. Thus, we prefer to bind the

current live range with a register that is also available for the delayed segment

in the adjacent regions, and we can avoid extra shu�e code. These concepts are

illustrated below.

In �gure 5.7, the variable a is bound to the register R2, and the variable y

is delayed in the region B3. When the variable y is colored in the region B2,

we want to use a register other than R2, otherwise shu�e code for y in the edge

E(B2; B3) is required. This information of preferred or unpreferred registers

needs to be propagated to other regions for further optimization. In �gure 5.7,

register binding for the variable x will be delayed in B3 as well as in the region

B2 and the region B4. When register allocation binds a register to x in the region

B1, the register allocation should avoid using R1 but would also not use R2 to

prevent any compensation code insertion. In particular, binding the variable x

with the register R2 may lead to even poorer quality code than using R1, since
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Figure 5.6: Register Binding Propagation
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Figure 5.7: Propagation of Unavailable Registers
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more expensive shu�e code is required in a higher frequency point as in the edge

E(B2; B3).

In our approach, when we delay the binding, the forbidden register information

is propagated as unavailable registers from a higher frequency region to a lower

frequency region. In the previous �gure, the register R2 is propagated as an

unavailable register for x and y from B3 and B2. When the compilation unit

is moved to B1 and register allocation scope is in B1, both R1 and R2 will be

unavailable for x. If the variable x is still bound to R1 or R2 (i.e. because there is

high register pressure), x can be spilled in both B2 and B3 by unavailable register

information.

While this algorithm works well in most cases, it may have drawbacks in some

instances as shown in Figure 5.8. Unavailable register information is propagated

from region B3 (and B6) to B2, and it is assumed that x is forced to be bound to

R1 because of register pressure. Since R1 is unavailable in B2, it may be spilled

in region B2, B3, B4, and B6 and shu�e code is inserted in E(B1; B2) as before.

But if we spill x in B3 only, the shu�e code is moved to the lower frequency

edge e1(B2; B3). We improve the register binding heuristic further for delayed

live segment based on control-ow frequency. When we decide register binding for

a pass-through live-range, we exclude unavailable registers only when its region

connecting control ow frequency is larger than the frequency of the control ow
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Figure 5.8: Frequency Based Propagation and Register Binding

from the propagating register. We can visit each neighboring live range by edge

frequency until we �nd an available register while updating the current forbidden

register list with the unavailable list from the neighbors. For example, in B2 in

Figure 5.8, the variable x will include R2 as a forbidden register (from unavailable

register in B6) when it �nds a color R1 from B1, but R1 is not yet added to the

forbidden register list, since control ow frequency of (B2; B3) is smaller than that

of (B2; B6). So the variable x in B2 can be bound to register R1 as propagated

from B1.
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5.4 Clock Hand

In traditional coloring approaches for global register allocation, the registers should

be selected to minimize the number of used registers. This approach makes more

registers available for the live ranges with higher interference degree. In region-

based register allocation with a large number of registers (the likely case with

EPIC architectures), it is important to do a high level global partitioning of avail-

able registers into sets of registers for coloring in each partition.

As in Figure 5.9, consider 3 regions (B1, B2 and B3). Assume that there

is a live-range for the variable x that straddles B1 and B2 while the live range

for y and the live range for z straddle B2 and B3. Assume also that x and y

do not interfere in B2 but z does as illustrated in Figure 5.9 (a). If we process

B1 and then B3 by their assumed frequency order and if we happen to bind

physical register R1 for both the variable x and the variable y (even when we

have ample registers), we need two registers to color all the live ranges in this

example. However, if we apply same approach to the live ranges in Figure 5.9

(b), either variable y or z cannot be colored to the register R1 and shu�e code

becomes necessary at one set of edges out of R2 either for x or y. Note that such

\gratuitous" shu�e code may be necessary not only with one region in between

B1 and B3 as just considered but also with many regions in between. Hence

there is a need for intelligent precoloring so that \gratuitous" shu�e code does
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not result even when plentiful registers are present. The basic problem is that each

region may independently allocate registers from the same \subset" of registers

even when other \subsets" are available.

Graph-theoretic ideas that have been used in the past for register allocation

recursively on subgraphs are clique separators[45] and approximation through

multi-commodity ows[29]. In the �rst approach, the maximum number of cliques

chosen as separators decides the regions such a way that a live-range can occur in

cliques. In the latter approach, the algorithm �nds a minimum balanced directed

cut of directed acyclic graph(DAG) to split DAG into roughly equal pieces G1 and

G2 such that a minimum number of live ranges cross the cut and so that there

exist edges from G1 to G2 but not from G2 to G1. We can now process register

allocation or scheduling G1 before G2.

However, in our case, what we have is a partition into regions based on fre-

quency information which is unlikely to be the same as the partitioning obtained in

the graph-theoretic approaches. In addition, such approaches can add to compila-

tion time. Due to the above diÆculties, one simple approach we have investigated

is the use of a hash function based on variable name and register size to locate a

free register. Another approach that we investigate is the clockhand algorithm1.

We maintain a \freelist" of registers with a clockhand. For each region, �rst com-

1term borrowed from OS scheduling where the processing of certain lists is started from where

last terminated

119



x=

y=
=x

=y

w=

=w

B1

B2

B3

x=

z=

=x

=z

w=

=w

B1

B2

B3

(a) (b)

Figure 5.9: Register Selection Problem for Region. (a) x and z do not interfere
in R2 (b) x and z interfere in R2

pute its clockhand (i.e. the starting point in the freelist from where registers

get allocated) by choosing the best non-interfering clockhand of all neighboring

already allocated regions. At the end of register allocation for this region, we

store the �rst clockhand used and the last register allocation to enable clockhand

computation by other nearby regions at a later time.

Our experiment shows limited performance improvement when there is high

register pressure. \Clockhand" algorithm may not have positive impact in the

case of Figure 5.9 (a) where the required number of registers for coloring increases

to three. As register �le size increases, the clockhand algorithm has positive

performance changes in most cases as we will show in the experiment section.
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5.5 Experiments

Propagation plays an important roll in region-based register allocation. Without

proper consideration of register matching, the shu�e codes between region bound-

aries is tremendous and makes a region-based register allocation impractical to

use. We compare our approaches to traditional propagation approaches used in

Multiow. Figure 5.10 shows the performance gains made by our frequency based

propagation method. As seen in �gure 5.10, some benchmarks show large perfor-

mance improvement { this occurs in cases when the spill codes are placed in the

outer loop instead of the inner loop. As register size increase, the performance

improvement increases up to a certain point and then starts to decrease as shown

in 008.espresso, 072.sc, 129.compress. This is because:

1. The control ow does not change with register size, so the register propaga-

tion behavior does not usually change.

2. Under high register pressure (with smaller register size), many live segments

are spilled and propagation is not critical.

3. As register size increases, some live ranges which were spilled with smaller

register sets may now be allocated to registers. Propagation scheme is im-

portant to reduce register color mismatch and shu�e code. However, if

there are enough registers, each live range can have its own color and even
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a simple propagation scheme is enough to reduce the shu�e code.

Performance improvement obtained from the clockhand algorithm is summa-

rized in Figure 5.11. While clockhand algorithm shows performance improvement

in most of our benchmarks, it may have some negative impact as in 023.eqn-

tott. This is because each region is competing to �nd register when there is high

register pressure. If there are more registers available and the register pressure

decreases, our approach has better performance improvement in every benchmark

by distributing registers for each live ranges as we illustrated in the Figure 5.11.
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Chapter 6

Priority Function

The order of coloring is an important factor in register allocation since it deter-

mines the variables to be spilled, thereby a�ecting the amount of spill code. The

priority function, proposed by Chow and Hennessy [11], is based on the amount

of spill code that can be saved by allocating a variable to a register as opposed to

spilling the live range of the variable (i.e., storing variable in memory).

Many revisions to the traditional method of priority function are necessary to

accommodate region-based register allocation, especially, with predicated code.

In this chapter we propose several new approaches to improve priority functions

in the scope of register allocation for regions and predicate analysis.
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Figure 6.1: Frequency Based Propagation and Register Binding

6.1 Priority function for region-based compila-

tion

For a given live range lr in blocks B1 to Bi, the priority function can be de�ned as

in equation 3.3. In Figure 6.1, the global priority PR(x) and PR(y) for variable

x and y by given Chow's priority function can be de�ned as

PR(x) = STORE COST � 100 + (LOAD COST � 2) � 90 + LOAD COST � 100

PR(y) = STORE COST � 90 + (LOAD COST � 2) � 90
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based on previous function.

If our compiler is region-based and if the region B2 is the current scope of

register allocation, the priority of x and y in region B2 can be derived as below

by applying the same function to this region scope;

PR(xB2
) = (LOAD COST � 2) � 90

PR(yB2
) = STORE COST � 90 + (LOAD COST � 90) � 2

where y ends up having higher priority:

This priority function may not adequately model the register allocation bene�t

when a live range is a segment of a bigger live range that encompasses many

regions. By the region priority above, the variable y has higher priority than the

variable x, and x will be spilled in the region B2 if there is only one register

available. If the variable x is bound to a register in region B1 and B3, we need a

STORE code for the variable x on the entry point and a LOAD code on the exit

point of the regionB2. Therefore, the actual amount we can save by region register

allocation may be di�erent according to the register bindings of its neighboring

regions. The priority function should be extended to consider these shu�e costs.

One simple approach is to consider every entry point and exit point as implicit

de�nition and use point respectively, and to derive the priority function. However,
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in a case when x is spilled in B1 or B3 and x is also spilled in B2, we do not need

any shu�e code and there is no extra cost that needs to be considered for spilling

in priority function.

We modi�ed Chow's priority function to include the propagation information

and edge frequency of live-in/live-out value of a live range. Suppose Bi(x) is the

live range of the variable x in the region Bi, freq(Bi; Bk) is the edge frequency

between region Bi and Bk, and freq(Bi) is the region weight of Bi. Nin(Bi(x))

is the set of live segments which precedes Bi(x) and is bound to a register and

Nout(Bi(x)) is the set of live segments which succeeds Bi(x) and is also bound

to a physical register. For a given variable x in region Bi, we de�ne our priority

function PR(Bi(x)) as follows.

Nin(Bi(x)) = fBj(x) j (freq(Bj) > freq(Bi))

^(Bj(x) is in the preceding live range of Bi(x))

^(Bj(x) is bound to a register)g

Nout(Bi(x)) = fBj(x) j (freq(Bj) > freq(Bi))

^(Bi(x) is in the preceding live range of Bj(x))

^(Bj(x) is bound to a register)g
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PR(Bi(x)) = STORE COST �DBi
+ LOAD COST � UBi

+
X

Bj(x)2Nin(Bi(x))

STORE COST � freq(Bj; Bi)

+
X

Bk(x)2Nout(Bi(x))

LOAD COST � freq(Bi; Bk)

The priority of Bi(x) is de�ned in terms of the number of STORE/LOAD

operations that can be saved by binding x to a register rather than spilling as

well as shu�e cost savings. If the preceding live segment of Bj(x) is bound to a

register, we need a STORE operation on the edge E(Bj; Bi) between the region

Bj and Bi when we spill Bi(x). Likewise, we need a LOAD operation on the edge

E 0(Bi; Bj) between Bi and Bj, when

� Bi(x) is spilled,

� Bj(x) is the successor live segment of Bi(x), and

� Bj(x) is bound to register.

6.2 Priority function with predicate analysis

The use of hyper-blocks to group together traces that are executed frequently (for

more e�ective optimizations, including register allocation) provides challenges to

register allocation. The function de�ned in the previous section captures the pri-

ority quite well in basic blocks in which all operations in a basic block have the
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same weight. As it is explained in the introduction, the ILP compiler uses new

styles of blocks like super-blocks or hyper-blocks frequently to explore the higher

level of ILP. These regions may have multiple exit points and not every operation

in a single region has same frequency. So the priority function designed in 3.3

or 6.1 is not suitable. Especially in a hyper-block, where some operations can be

nulli�ed due to predication, these functions do not reect predicated execution

well. In EPIC architectures, the nulli�ed operations are also scheduled by compil-

ers and execution cycles will be spent anyway. But in memory hierarchy model,

these operations can have huge performance di�erence by frequent cache misses.

In Figure 6.2, the weights of B2 and B3 are 90 and 10 respectively. By using

the functions in the previous section, LiveRange(x) has a higher priority than

LiveRange(y) has in B2. In the corresponding hyper-block, as in Figure 6.2 (b),

the priority of LiveRange(x) and LiveRange(y) is the same, even if their execu-

tion frequency is di�erent. To correct this problem, we have enhanced the priority

function further to reect frequency information using the predicate expression:

Priority(lr) =
X

lr2HB1::HBn

(Di � ST COST � PR(Di) +

Ui � LD COST � PR(Ui)) � wi
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where PR(x) is the fraction of the time the variable access actually occurs due to

predication.

6.3 Dynamic Priority Function

According to the approach we have used so far, the priority function is primarily

governed by the total register savings, and determined by the frequency and the

store or load operations that can be saved by register binding. But it is worth

noting that there are subtle di�erences in bene�t even though two live ranges have

the exact same number of uses and de�nitions.

In Figure 6.3, the live range of variable w, x, y and z are assumed to have

the same bene�t for register binding. But if there is only one register available,

register assignment for live range of w forces the compiler to spill the other three

live ranges while spilling of live range w will make it possible for x, y and z to

bind to a register. A live range occupying a larger region of code takes up more

register resource if allocated in the register.

Chow noticed that the bigger a live range, the more conicting live ranges

cannot use the same register as the live range. That is, higher register pressure

is introduced if bigger live ranges reside in registers. Based on this observation,

Chow's priority function is normalized by the size of the region (number of basic

blocks in a live range), which is approximated as the number of live units, N , in
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the range. So smaller live range with the same amount of total savings will have

higher priority. Thus the actual priority we are using is rede�ned as

P (lr) =
S(lr)

N

as shown in the equation 3.3.

Even though the size of the live unit provides good heuristics for normalization,

large size live range does not mean necessarily more register resource consumption.

The actual factor for register resource consumption is decided by the degree of the

node in the interference graph. The spilling heuristic of Chaitin-style coloring [8]

and optimistic coloring [3] uses S(lr)
degree(lr)

where degree(lr) is de�ned as the degree

of the interference graph of the node for variable lr.

Later work by Bernstein et al. explores other spill choice functions. They

present three alternative functions:

P (lr) =
S(lr)

degree(lr)2
(6.1)

P (lr) =
S(lr)

degree(lr)area(lr)
(6.2)

P (lr) =
S(lr)

degree(lr)2area(lr)
(6.3)

In the above equations, arean represents an attempt to quantify the impact lr
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has on live ranges throughput the routine:

area(lr) =
X

i2Q(lr)

(5depthi � widthi) (6.4)

where Q(lr) is a set of instructions in live range lr (i.e. instructions where a

variable is live), depthi is the number of loops containing the instruction i, and

widthi is the number of live ranges live across the instruction i. The experiment of

Bernstein et al. shows that no single spill priority function dominates the others.

They propose using a \best of 3" technique. They repeat simplify three times,

each time with a di�erent spill metric, and choose the version giving the lowest

spill cost.

The problem with the priority based approach is that the priority function

never changes unless it is split through the coloring process. So it may fail to

capture the dynamic behavior of the register binding bene�t.

Consider Figure 6.4 where vr1 has the highest spill cost of 90 followed by vr4.

If we have two registers available, the live ranges of vr1 and vr4 are bound to the

physical register and total spill cost is 72 by spilling vr2 and vr4. Normalizing

the bene�t (spill cost) by interference degree does not help in this case, since vr1

and vr4 remain the same. If we allocate one register to vr1 and the other to vr2

and vr3 (please note vr2 and vr3 do not interfere, so they can be bound to the
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variable bene�t degree priority
vr1 90 3 30
vr2 36 2 18
vr3 36 2 18
vr4 60 3 20

Figure 6.5: Dynamic priority based Coloring. Interference graph and priority in
initial stage

same physical register), the total spill cost is reduced to 60. In our approach, the

interference degree of each live range is used as a normalization factor but the

priority function is updated dynamically by the interference degree of uncolored

live ranges as register allocation proceeds.

Figure 6.5 shows an example of our dynamic priority function and coloring

based on the interference graph of Figure 6.4. It is assumed again that we have

only two available registers. Initially, vr1 has the highest priority of 30 and will be

allocated to a register. After vr1 is processed, every other live range's interference
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Figure 6.7: Dynamic priority based Coloring. Interference graph and priority after
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degree is decreased by one and then vr2 or vr3 becomes the next highest priority

node as in Figure 6.6. Figure 6.7 shows the priorities after vr2 is colored where the

next highest priority node now becomes vr4 and there are no registers available

for vr4 and vr3 is colorable.

6.4 Experiments

Figure 6.8, 6.9, and 6.10 summarize the results of our experiments in evaluating

the performance of our priority function in comparison to Chow and Hennessy's

priority function in region. For each chart, we denote the reduced number of exe-

cution cycles of the benchmarks based on Chow and Hennessy's approach. Priority

function with propagation information shows positive performance improvement

throughout all of our benchmarks. Except for cccp, most of the benchmarks have

limited improvement. Our analysis shows this is closely related to the region style

we used in our experiment. Most of the related sub-regions of the programs are

integrated into one large hyper-block and the live-in or live-out variables across

the regions have a small fraction of the control ow graph, therefore the e�ect of

propagation is relatively small. When a basic-block is used as a unit of region, the

dynamic priority function shows a much larger e�ect. Predicate-aware priority

function also shows consistent performance improvement on a weighted averaged

of 4.87% and the improvement may go up to about 10% as in 008.espresso. Dy-
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Figure 6.8: Performance improvement by region-based priority function with prop-
agation

namic priority function shows positive performance improvement in most of our

tests except 130.li which seems to be a�ected by noise.

Figure 6.11 shows the performance changes caused by incremental addition of

our algorithms; priority function with propagation (PROPA), dynamic priority

function (DYN) and predicate-aware priority function (PRED). As we expected,

each benchmark shows better performance with incremental enhancement. The

analysis of the three previous charts shows that each di�erent benchmark has its

own improvement behavior. Commonly, dynamic priority function governs most of
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Figure 6.9: Performance Improvement by Predicate-aware Priority Function
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Figure 6.10: Performance Improvement by Dynamic Priority function
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the performance improvement as in 008.espresso, 023.eqntott, 132,ijpeg and

yacc while priority function with propagation plays the important roll in cccp

and lex. In 129.compress, the performance improvement is equally distributed

by dynamic priority function, priority function with propagation.

One of the important considerations in the region-based approach is savings

in compile time. As we illustrate in the Table 6.1, it turned out that compilation

time overhead for our priority function is minimal. In some cases, the complex

priority function has smaller compile time than its counterpart because the time

consumed in priority function can be compensated by smaller spill code insertion.

More details about the compilation time comparison will be elaborated on a later

chapter.
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Benchmark Compile Time Time Saved
Chow PROPA+PRED+DYN

008.espresso 24439 23913 2.15%
023.eqntott 4325 4272 1.23%
072.sc 10125 10204 -0.78%
085.gcc 93111 93366 -0.27%
124.m88ksim 8430 8568 -1.64%
129.compress 2294 2305 -0.48%
130.li 1652 1689 -2.24%
132.ijpeg 26354 26497 -0.54%
cccp 19906 22038 -10.71%
cmp 86 88 -2.33%
eqn 2020 2089 -3.42%
lex 12699 12570 1.02%
tbl 6922 7192 -3.90%
yacc 14946 14466 3.21%

Table 6.1: The Compilation Time comparison of Chow's approach (Chow) and
the combination of our priority function with changes
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Chapter 7

Calling Convention

In register allocation without inter-procedure analysis, some registers (not all,

but certain { namely callee-save registers) should be freed on procedure entry

points and restored on procedure exit points. This cost should be considered in

register allocation cost and it is called call cost. The call cost is inuenced by

the compiler's calling convention and many compilers divide the registers into

two sets, caller-save and callee-save registers, respectively. When a live range

is allocated with a caller-save register, we need a store and a load operation at

every function call that is crossed by the live range. If a live range is allocated

to a callee-save register in the function f , then this register must be saved and

restored at the entry point and the exit point of a called function g to keep the

semantics of the caller f as well as the function g. Figure 7.1 shows the example
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x(R1):=

:=x(R1)

STORE(R1,M[x])

LOAD(R1, M[x])

B1

B2

B3

foo()

Proc Entry

Proc Exit

x(R1):=

:=x(R1)

STORE(R1, M[x])

LOAD(R1, M[x])

B1

B2

B3

foo()

Proc Entry

Proc Exit

(a) (b)

Figure 7.1: (a) Using caller-save register (b) Using callee-save register

of extra codes when variable x is allocated for caller-save and callee saved registers

respectively. In Figure 7.1 (a), the live range of x is assumed to be allocated to

a caller-save register. It is needed to insert STORE and LOAD operations right

before and after the procedure calls as \foo()". If the live range of x is allocated

to the callee-save register as in Figure 7.1 (b), STORE and LOAD operations are

inserted at procedure entry and exit points.

The distinction between these registers provides the register allocation with

more choices when we are minimizing the call overhead. In this chapter, we explore

many issues related to distinguishing these two sets of registers, including priority

function, live range splitting, and code insertion for the procedure calls. We also

propose a code insertions scheme based on execution frequency.

148



7.1 Background

7.1.1 Priority Function with Calling Convention

Many of the aspects of register allocation in a coloring approach is a�ected by

the calling convention. As we showed in Figure 7.1, allocating di�erent type of

registers to live ranges requires di�erent store and reload costs, and this needs to

be reected in some phases of register allocation like priority function. The two

register classes require di�erent priority functions. For each live range, Chow and

Hennessy use the caller-save priority function Pr(lr) and the callee-save priority

function Pe(lr) for the live range of x. So the basic priority function we explained

in equation 3.3 can be rede�ned as

Priority(lr) =
max(Pr(lr); Pe(lr))

size(lr)
(7.1)

Pr(lr) =
X

lr in B1::Bi

(Di � ST COST + Ui � LD COST

�Ci � (ST COST + LD COST )) �Wi (7.2)

Pe(lr) =
X

lr in B1::Bi

(Di � ST COST + Ui � LD COST

�(ST COST + LD COST )) �Wi (7.3)

where Di is the number of de�nitions, Ui is the number of uses, Ci is the number

of procedure calls in block Bi and Wi is the weight of Bi.
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In the case of caller-save priority function, the cost of store and reload of

the registers around the function calls weighted by frequency is considered in the

priority function. For the callee-save register, the extra cost occurs only once

for each callee-save register at each procedure entry point. Thus only the �rst

live range that uses a given callee-save register needs to account for these savings

and restoring costs. Once these costs have been considered, the same callee-save

register can be used to contain other live ranges for free. So the value of Pe(lr)

for a given live range has two alternatives. When a used callee-save register is

available to the live range, Pe(lr) does not include the extra costs in procedure

entry and exit points.

7.1.1.1 Implications of region-based compilation for Callee/Caller Cost

Models

Many standard assumptions need revision with region-based register allocation

when addressing machines with caller-save registers and callee-save registers. We

will �rst consider caller-save/callee-save cost models. caller-save registers do not

pose major diÆculties: the cost of store and load operations for a caller-save

registers around function calls are absorbed by the live range in the region.

There are many ways to assign the cost of callee-save and restore to the live

ranges that use a callee-save register. Let us �rst consider a region that is a
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function. The �rst user of a callee-save register can bear both costs of save and

reload, while subsequent users incur the same costs if they were allocated to a

caller-save register[11]. Or, the �rst user of a callee-save register bears the save

cost and the last user the reload cost, though this has not been reported in the

literature. Lueh [32] reports another model that all users of a callee-save register

bear the costs. When the color assignment phase �nishes, his approach spills all

live ranges that were bound to callee-save register e if

X

lr2Æ(e)

spill cost(lr) < callee cost(e)

where Æ(e) is the set of live ranges that was bound to e. It has been reported that

this model gives incremental performance bene�ts on some benchmarks compared

to the �rst model, but has no perceptible di�erence in some benchmarks [31].

Now consider a region that is completely within a function. Since we process

regions based on frequency information, one possibility is that the �rst live range

that uses a callee-save register in a region with the highest weight in the procedure

bears all the costs. If spill cost(lr) > callee cost(e), then we can de�nitely allocate

a callee-save register to the live range in the region (R). Another model is the
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following: if

X

lr 2Æ(e)R

spill cost(lr) > callee cost(e)

Æ(e)R = flrijlriis the live range that were bound to e in region Rg

then we can allocate a callee-save register to the live range in the region R. Oth-

erwise, we are in a diÆcult situation concerning with our current region-based

vertical model of compilation, as we are not in a position to know about the live

ranges in other regions (even adjoining ones in the same function) as they have not

yet been processed. However, we use the heuristic that live ranges in regions with

larger frequencies can absorb all the callee-save costs due to the larger number of

accesses in them.

Next, consider a region across more than one procedure. The live ranges can

now possibly be across functions. Allocating a caller-save register on one side of

the function implicitly results in splitting the live range on a function call whereas

allocating a callee-save register may or may not result in splitting the live range.

It will not result in splitting the live range if the callee-save register is not used

in the called function. It will result in splitting only if it is used in the called

function, but the location of the splitting depends on whether shrink wrapping

has been used. If shrink wrapping is used, the original live range is kept as long

152



as is feasible. Again, assigning callee-save costs to various live ranges in this case

is even more diÆcult, due to the vertical model of compilation. However, it seems

best to allocate callee-registers to live ranges that straddle functions when shrink

wrapping is used.

One way out of these problems is to deviate slightly from the vertical model of

compilation and �rst process all regions only to construct live ranges. In that case,

we can compute the spill costs of all variables beforehand and use that to decide

when to allocate callee registers by using the same formula as before, keeping

in mind the function boundaries. Currently, our system can only handle basic

blocks, super-blocks, and hyper-blocks; so the complex issues of live ranges across

functions discussed above are not that important and we have ignored them.

Another model that needs revision is the allocation of caller-save registers to

live ranges in leaf procedures. In function-based register allocation, caller-save

registers are preferred for leaf procedures. As a heuristic, we have used that same

concept for the region-based approach also: if there are no function calls in the

region, it is a \leaf". Strictly, all of the regions have to be checked to see if

a function is a leaf but because of the frequency-based order for processing the

regions, live ranges in regions of high frequency with no function calls can be

allocated caller registers and this preference is propagated in the reconcile part of

the algorithm to other less frequently executed regions.
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7.1.1.2 A Optimization Formulation

The caller-save/callee-save cost functions should be accurate enough that these

can be negative also (i.e., it is cheaper to spill than to bind to a register even if

registers are available). The model can be local (considering the region alone),

considering only immediate neighbors that have been processed or all connected

regions that have been processed. In the cases of pass-through live ranges, the

bene�t is negative by the di�erence of weighted cost of spill code (=0) and caller-

save/callee-save cost. For a caller register bound to a pass-through live range, if

we assume local cost model, the bene�t can be 0 when there are no function calls,

or negative when function calls need STORE/LOAD bracketing operations. If

immediate neighbors are considered, the reconciliation cost by shu�e code comes

into the picture on the edges incident on the region. But they cannot be known

in all cases due to the vertical model of compilation. Similarly, for a callee-save

register, the bene�t is store and load costs weighted by frequency in a local model

for the �rst live range using the register. Later live ranges use it at no cost (similar

to Chow and Hennessy's strategy as explained earlier) or all the live ranges in the

region that use the register can share this cost.

Let the number of variables be n. Let b(k; i; j); k 2 fER;EEg, be the bene�t

of allocating a caller-save register (ER) or callee-save register (EE) to the ith

variable for its jth segment of the live range. This is equal to the di�erence of
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spill cost and caller-save/callee-save cost. Let c(k; i; j) be the cost of shu�e code

(weighted by frequency) for the jth live range segment of the ith variable in all the

adjacent live regions. As each variable can be split during register allocation, let

the number of split segments of a live range for a variable i be L(i).

The callee-save cost model can be complex and a register allocation with

weighted regions has to use heuristics. Let Ncaller, Ncallee be the number of

available caller-save and callee-save registers in the architecture. Let x(k; i; j) =

1; k 2 fER;EEg if ith variable's jth segment is allocated to a caller-save/callee-

save register. Otherwise, set it to 0. Then at each minimum unit of live range:

x(ER; i; j) + x(EE; i; j) <= 1 8i 2 f1::ng; j 2 f1::L(i)g

X

i:1::n

x(ER; i; j) <= Ncaller 8 j 2 f1::L(i)g

X

i:1::n

x(EE; i; j) <= Ncallee 8 j 2 f1::L(i)g

x(k; i; j) 2 f0; 1g 8 i 2 f1::ng; j 2 f1::L(i)g; k 2 fER::EEg

The optimization problem is to maximize

X

i:1::n;j:1::L(i);k2ER;EE

x(k; i; j) � (b(k; i; j)� c(k; i; j))

while minimizing L(i) for each i. First, L(i) and b(k; i; j) cannot be computed
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straightforwardly as the priority depends on the spill costs, caller(callee) costs

and the current set of shu�e costs but the act of splitting changes the costs and

introduces new live ranges. A combinatorial or iterative method is needed for an

approximate solution. Luckily, the priority function orders the live ranges and

ensures that any costs are borne by less important live ranges processed later:

this happens as the splitting comes into play only after allocation of all available

registers to higher priority live ranges and some or all of the remaining interfering

live ranges are split. Please remember than all pass-through live ranges have

already been set aside as candidates for coloring by the design of the algorithm in

core register allocation. Similarly, L(i) is minimized for the important live ranges.

Second, as c(i; k; ENDS), where ENDS refers to segments of live ranges that

are adjacent to nearby regions, cannot be determined unless other regions have

also been processed by this time, we need again to use some combinatorial or

iterative method for an exact or at least approximate solution. To simplify the

problem, one can ignore c(k; i; ENDS) by setting it to zero where it is not known,

and then solve it. This has the e�ect of incorporating costs of reconcile code only

in later regions; this means that live ranges in regions with bigger weights are

given more exibility in selecting the type of register needed and later live ranges

in other regions are \requested" to use the same type of register.

With this heuristic, we can solve the above problem by ordering all b(k; i; j)�
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c(k; i; j) in descending order (by using the value of c where it is known or 0

otherwise) and pick �rst Ncaller + Ncallee at each minimum unit of live range

while taking care to include only one from caller-save/callee-save registers for each

variable segment and picking only Ncaller and Ncallee registers. Other heuristics

are possible: for example, compute the di�erence of caller-save/caller-save costs

and priorities[33].

The actual priority function with predicate analysis we used in Chapter 1.2.3

is de�ned as,

Priority(lr) = max(Pr(lr); Pe(lr)) (7.4)

Pr(lr) =
X

lr in B1::Bi

(Di � ST COST � PR(Di) + Ui � LD COST � PR(Ui)

�Bi � (ST COST + LD COST ) � PR(Bi)) � wi (7.5)

Pe(lr) =
X

lr in B1::Bi

(Di � ST COST � PR(Di) + Ui � LD COST � PR(Ui)

�(ST COST + LD COST )) � wi (7.6)

7.1.2 Live Range Split by Calling Convention

For the live range which does not includes any function calls, Chow's algorithm

uses up caller-save registers before it starts to use the callee-save ones. The live

ranges with function calls have bigger callee-bene�t than caller-bene�t, and the
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callee-save registers are much more in demand. By the time that all callee-save

registers are used up, the remaining live-ranges can be bound to caller-save reg-

isters. But in many cases, caller-bene�t of each of the remaining live-range is

negative because there are too many calls within the live ranges. Even though

the live ranges have positive caller-bene�t, it is more useful to split the live range

in some cases. In Figure 7.2 (a) shows an example of using caller-save register

for the variable x when callee-save registers are used up but caller-save registers

are available. We need a store operation (STORE) and a load operation (LOAD)

before and after the function call respectively. If the live ranges of x are split as

in Figure 7.2 (b), the upper segment can be bound to callee-save register R2 while

the lower segment is spilled. We need only one STORE and one LOAD operations

in this case.

It is not clear from Chow's literature what the condition of splitting is if

no callee-save register are available. In our implementation, we use callee-save

registers when caller-save registers are all used. But we aggressively split the

live range when callee-save registers are all used, even if caller-save registers are

available and its caller-bene�t is positive.
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x(R1):=

:=x(R1)

:=x(R1)

:=x(R1)

:=x(R1)

foo()

foo()

foo()

ST(x)

ST(x)

ST(x)

LD(x)

LD(x)

LD(x) Live Range of

x y z

(a)

x(R2):=

:=x(R2)

:=x(R2)

:=x(R2)

:=x

foo()

foo()

foo()

split point
ST(x)

LD(x)

(b)

Figure 7.2: Aggressive Live Range Split by Calling Convention
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7.2 Shrink Wrapping

As we covered in the last section, the store and load operations for callee-save

registers are done at the entry and exit points of the function. But the saved reg-

ister may not be used for the execution path in some invocations of that function

unlike a caller-save register where store and load always happens before and after

the function call. Chow [34] tries to optimize the placement of the store and load

for callee-save registers so that they occur only over regions where the registers are

used. This optimization is called shrink wrapping and Figure 7.3 shows an exam-

ple of how shrink wrapping can help to reduce the callee-save register overhead,

where shaded block(B3) denotes the use of a callee-save register RE.

Chow's approach has two simple rules;

1. They always insert register save code at basic block entries, which will not

limit the e�ects of their optimization.

2. The insertion should be at the earliest points in the program leading to one

or more \contiguous" regions where the register is used.

In his experiment [34], his approach shows limited performance improvement

with negative result in some cases. The negative impact in some cases may occur

when each individual use of RE is in the block Bi which has less frequency than the

entry block, but the sum of every Bi is larger than the frequency of the procedure
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B0

B1

B2 B3

B4

B5

(100)

(100)

(90) (10)

(100)

(100)

STORE(RE, M[])

LOAD(RE, M[])

Proc Exit

Proc Entry

(a) STORE and LOAD of the callee-save register RE is inserted at
the entry and the exit points of a function

B0

B1

B2 B3

B4

B5

(100)

(100)

(90) (10)

(100)

(100)

STORE(RE, M[])

LOAD(RE, M[])

Proc Exit

Proc Entry

(b)STORE and LOAD of the callee-save register RE is inserted at
the entry and the exit points of a live range

Figure 7.3: The Bene�t of Shrink Wrapping
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as illustrated in Figure 7.4. The variable x is live-in in the block B1 and the

variable y is live-in the block B4, and both of these live ranges are bound to the

same callee-save register. Without shrink wrapping we need store and reload at

the entry and the exit of the procedure (B0 and B5 respectively) as in Figure 7.4

(a) and it is more eÆcient than the shrink wrapping by Chow's approach as we

showed in Figure 7.4 (b).

In our approach, we extend Chow's shrink wrapping in our register allocation

by selectively using shrink wrapping when the frequency of the live range assigned

to callee-save register is less than the frequency of the procedure. Dominator trees

and post-dominator trees are used for �nding the best place to insert the callee-

save register wrapper code. The algorithm consists of the following steps:

1. For each callee-save register, identify all the blocks Bi sharing the register.

2. Create the dominator tree for �nding the store point (or post-dominator

tree for �nding the load point) from all Bi's with the weight of the block.

3. For each Bi in the dominator (or post-dominator) tree repeat

(a) Select minimum weight node n along the path from the root s to Bi as

point.

(b) Ignore every child nodes of n.

(c) Deduct the weight of n from the all nodes from s to n.
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B0

B1

B2 B3

B4

B5

(100)

(90) (10)

(100)

ST(RE)

LD(RE)

(a) The E�ect of Shrink Wrapping by Chow's approach(a) store(ST) and
load(LD) of the callee-save register RE is inserted at the entry

and the exit points of the function

B0

B1

B2 B3

B4

B5

(100)

(90) (10)

(100)

ST(RE)

ST(RE)

LD(RE)

LD(RE)

(b) ST and LD of the callee-save register RE is inserted at the
entry and the exit point of the live range

Figure 7.4: E�ect of Shrink Wrapping
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Figure 7.5 and 7.6 show that how our algorithm works. The program control

ow graph is shown in Figure 7.5 (a) and a callee-save register is assumed to

be used in region B4, B5, B6, B8, and B9. Our approach eventually chooses

region B4, B5, and B3 as insertion points for shrink wrapping store operations.

A symmetric approach is performed to �nd the points for load operations and B4,

B5, and Bb will be used in this example.

7.2.1 Shrink Wrapping on the Edges

The previous algorithm based on dominator and post-dominator trees works well

in most cases and it always produces better quality code compared to register

allocation without shrink wrapping. But more eÆcient code of shrink wrapping

can be generated by inserting wrapping code on control edges. In Figure 7.7,

a callee-save register is used inside of B2 only. By using our shrink wrapping

algorithm based on the dominator and post-dominator trees, the wrapping point

can be moved to B1 and B4 but if we insert wrapping code on the edge of e1

and e3, the frequency of wrapping code can be reduced to 100 to 10 and the

execution performance can be improved further. The problem of �nding optimal

edges for inserting register saved code can be reduced to the max-ow min-cut

problem [17] [30] [37] [47].

Given directed graph G = (V;E), a special node s called the source, a node
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Figure 7.5: The execution of the shrink wrapping based on a dominator tree. (a)
Control ow graph of example program. Edges are annotated with frequency. (b)
Constructed dominator tree with the callee-save register used block. (c) B4 is
selected as the insertion point since it has least frequency along the path from B4
to B1. The frequency of B4 to B1 is decreased by 10. (d) B5 is selected as the
insertion point. The frequency of B4 to B1 is decreased by 10.
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Figure 7.6: The execution of the shrink wrapping based on a dominator tree. (e)
B6 is selected as insertion point. The frequency of B3 and B1 is decreased by 20.
(f) From the path of B8 to B1, B3 is chosen. All descendants of B are ignored
and the frequency of B1 is decreased by 60.
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Figure 7.7: The Better Shrink Wrapping by inserting on the control ow edge
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t called the target, and positive numbers c(i; j) representing the capacity of the

edge (i; j) 2 E, the max-ow problem of G is to maximize the total ow from s to

t. A min-cut of graph G = (V;E) is a partition of V into S and T = V � S such

than s 2 S and t 2 T and the sum of edge frequencies from source partition to

destination partition is minimized where s is the single source and t is the single

destination of G.

Theorem 1 The maximum weight among all (i; j)-ows in G equals the mini-

mum capacity among all sets of edges in E whose deletion destroys all directed

paths from i to v.

In other words, the sum of the capacity of all the links in the cut is equal to the

maximum ow through the graph when all the edges in the cut are fully utilized

without more capacity.

To apply the max-ow min-cut algorithm to the control ow graph, we need

some modi�cations to the control ow graph. We need to have all blocks using

same callee saved register into one side of the partition. For each callee saved

register EE considered, we need to create a pseudo destination node for the store

point decision or a pseudo source for the load point decision. Every block which

uses EE is connected to a pseudo destination node with in�nite frequency edge

capacity and the edge frequencies of the control ow remain as the capacity. This
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ensures that all blocks use EE is considered as target of the problem so the source

block will be located in at least one side of the partition and all blocks sharing

callee-save register will be located in the other side of the partition. Likewise,

Every block which uses EE is connected to a pseudo source node with in�nite

frequency for the load point decision.

7.2.2 Experiment

Figure 7.8 shows the results of our experiment with shrink wrapping. Our exper-

imental machine has 32 GPR and 32 FPR's as before, and all these registers are

allocated within each region-based on hyper-block. The chart shows the saved ex-

ecution cycles compare to the total execution cycles when the caller-save registers

are saved and loaded upon the entry and exit points of the function.

Shrink wrapping based on the dominator and post-dominator trees (DOM)

shows performance improvement in every case of our experiment. The second

approach by min-cut algorithm (CUT) performs better than DOM in some cases,

but it may have negative e�ects in other cases, or may perform worse than the

base case. We account for this as the overhead resulting from creating a new

block when we need code in control ow edges. As we covered in Section 5.1,

there are many cases that the code inserted between two blocks cannot be moved

to either source or destination region and a new region is needed. Creation of new
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Figure 7.8: Performance comparison of shrink-wrap algorithm

blocks requires the introduction of extra branches into the program code, which

lengthens the execution time. To avoid this case, Chow's approach always inserts

register save code to the basic block entries. The number of cycles increased by

creating a new block in compile time to ILP compiler is measured about 4% of

the total execution cycles.
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Chapter 8

Register Allocation with Region

Restructuring

In previous chapters, we explored several techniques to improve the execution per-

formance of the region-based register allocation by generating code that performs

as well as or even better than the global register allocation. Our interest was how

we can get at least the same quality of code as that derived by global register

allocation while paying the lower compilation cost. We have conducted several

experiments to validate the above.

In this chapter, we �rst compare the execution performance and compilation

time of two types of region-based register allocation; one where the region is whole

function (i.e, function-based register allocation) and the other where the region
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is based on blocks commonly constructed in EPIC compilation like basic blocks,

super-blocks and hyper-blocks. Then, we present the comparison of our global

register allocation to IMPACT global register allocation showing how our global

register allocation compares to other state-of-art global register allocation.

Next, we explore the relationship between region size and performance. One of

the parameters in a region-based register allocation is the size of the base regions

where we perform the intra-region register allocation. The size of the base region

a�ects spill and shu�e costs. Our experiment shows that there is an interesting

relationship between them, and there is a region size where both compile time

and quality of code generated can be improved than function-based regions or

hyper-block-based regions.

Finally, based on our observation, we propose fast region restructuring with

register pressure thereby improving execution performance and compilation time

over a given compilation unit. We introduce two approaches of estimating register

pressure for restricting regions, and compare them to lead us to formulate it.
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8.1 Comparison of Global-based and Region-based

Register Allocation

8.1.1 Parameters of Comparison

The performance comparison of optimizing compiler tends to show dramatically

di�erent output according to all sorts of di�erent parameters. We will describe

the parameters we use in our experiment in this section. We used the combination

of best possible techniques from our heuristic for each granularity of the region.

For each region granularity, the e�ectiveness of each technique varies and they are

summarized as follows.

8.1.1.1 Live Range and Interference Graph Construction

Live ranges are constructed as multiple hierarchies of sub-regions based on each

operation, for both region-based and global register allocation. A live range may

include one or more sub-region like loop, basic block, super-block or hyper-block

and each sub-region consists of smaller sub-regions recursively all the way down

to the operation level. Each operation is augmented with predicate expression

and predicate analysis is used for interference graph construction.
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8.1.1.2 Live Range Splitting

Frequency-based live range splitting is used for the experiment. Live range split-

ting becomes more e�ective when there is high register pressure, and this register

pressure tends to increase along with the size of live range. The region hierarchy

of a live range is used to decide live range splitting so a live range is split at region

boundaries �rst. Live range spitting algorithm works exactly same in region-based

and global register allocation, once the region considered reaches at the level of

blocks like basic blocks or hyper-blocks.

8.1.1.3 Register Binding

Frequency-based propagation, propagation of unavailable registers, delayed bind-

ings and clock hand register selection as described in Chapter 5.4 are used for

the experiment in this chapter. These techniques shows more e�ectiveness for

a smaller region where more propagation is required. In global register alloca-

tion when the register allocation is one function itself, the techniques for register

binding is not required usually except the cases where the live-ranges are split.

8.1.1.4 Priority Function

We used the combinations of dynamic priority function and priority function with

propagation presented in Chapter 6 for the comparison. Priority function with

173



predicate analysis is not used, since it shows very minimal performance improve-

ment with much bigger compilation time. The compilation time overhead is pretty

constant regardless of region granularity. Dynamic priority function and priority

function with predicate analysis are e�ective regardless of the size of the region,

but the priority function with propagation is more e�ective for a smaller region

where more register propagation is required.

8.1.1.5 Machine Model

The Trimaran has �ve di�erent types of register �les: General purpose regis-

ter(GPR), oating-point register �le(FPR), predicate register �le(PR), branch-

target register �le(BTR) and control register �le(PR). Because each variable is

assigned to a speci�c type of register �le and they do not overlap, the interference

of variables can be de�ned for each register �le type separately.

There are many di�erent machine factors that e�ect the performance of register

allocation. One major factor is the size of various register �les, and the other is

the the number of functional units. In our experiment, we measure the register

allocation performance primarily for GPR and FPR �les. We varies the size of

GPR and FPR �les to 32, 64 and 96. We also vary the number of integer functional

units as 4 ALU, 6 ALU and 8 ALU's.

Unlike Chow's original implementation, but more like the implementation of
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Briggs and the Yorktown allocator [2], our register allocation is performed on

lower level intermediate language after all optimizations, address mode selection

and instruction scheduling have been completed. We do post-pass instruction

scheduling again for register allocated code. The advantage to using the low-level

form is a greater accuracy in allocation; the advantage to using the high level

form is allocation speed and greater machine-independence. It seems to be more

suitable to perform register allocation on a lower-level form for the EPIC. One of

the most important optimization, the instruction scheduler, needs to be done by

the EPIC compiler, and it cannot be done on high level intermediate language.

8.1.2 Region-based register allocation and function based

register allocation

We perform experiments to compare two di�erent types of region. In one case, a

region is a basic block, a super-block or a hyper-block; in the other case, a function.

When we perform the register allocation on the whole function, it becomes global

register allocation. Our experiment shows our region-based register allocation

generates comparable quality code to that generated by function based register

allocation with smaller compilation time. Figure 8.1 shows the relative dynamic

execution cycle (Execution) and compilation time (Compile) of the region-based

approach compared to global register allocation. In this experiment, we use 64
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Figure 8.1: Dynamic execution cycles and compilation time performance com-
pared to global register allocation

GPRs and 64 FPRs with 4 integer ALUs.

In most cases, block-based register allocation gives execution performance

comparable to function-based register allocation. In some benchmarks like lex,

023.eqntott or 085.gcc, the execution performance of the register allocation

based on smaller region shows better execution performance, up to 10%, than the

global approach. This improvement of execution time is mostly due to the smaller
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size of the interference graph comes from the smaller number of live ranges in the

region-based approach. Figure 8.2 shows an example of how the register allocation

of smaller region can be bene�cial. The left column of Figure 8.2 shows the CFG

assume that we have only one register available for either variable x or y. The

middle column shows what happens in the global approach. One of the whole live

range needs to be spilled, and y is chosen to be spilled in our example. On the

other hand, register allocation is done at a region level, and both x and y can be

spilled selectively as shown in the right most column of Figure 8.2. Rather than

spill the whole live range of variable y in high frequency region B3, the variable

x was spilled in region B3 and a physical register can be freed for y.

Figure 8.1 also shows the register allocation time for region-based register

allocation. The amount of time required for smaller regions is the sum of the

times required to allocate each region. We show relative compilation time of the

region-based register allocation to the compilation time of function based register

allocation. Register allocation based on regions show signi�cantly faster compila-

tion time in every case. Our experiment shows that we could save almost half the

compilation time on average, by using a region-based register allocation and this

savings may be as much as 60%. The biggest portion of compile time savings is

the interference graph construction which requires O(n2) time for the n variables.

Overall, our region-based register allocation generates code of comparable quality
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in a much shorter time.

8.1.3 Comparison to IMPACT register allocation

To validate the eÆciency of our experiment, we tried to conduct a comparison

of our global register allocators to other global register allocators. An important

alternative approach to global register allocation is developed by Briggs el al.. Un-

fortunately, it is diÆcult to perform useful comparisons to their work, since their

approach is based on the Chaitin style of allocation while our register allocation is

based on Chow and Hennessy priority-based approach. It requires a large amount

of time to implement Briggs style register allocation in our framework, and it is

diÆcult to achieve the best possible performance without extensive testing and

tuning.

Another register allocation based on the priority-based coloring approach is

the IMPACT register allocation [21]. Since, the IMPACT-I compiler [10] has in-

termediate language which is compatible to Trimaran, we could fairly easily test

the performance of IMPACT register allocation by converting our intermediate

language. IMPACT register allocation made many improvements to Chow's ap-

proach like Briggs' style loop-based splitting and many performance tunings.

Figure 8.3 shows the performance improvement data of our global register

allocation compared to IMPACT global register allocation. We have conducted
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three di�erent series of experiments with di�erent register �le sizes; 32 GPR + 32

FPR, 64 GPR + 64 FPR and 96 GPR + 96 FPR. Our register allocation shows

an average execution time improvement of 12%. As the register �le sizes increase,

the bene�t of our register allocation decreases, since both register allocations have

close to the maximum required registers. When there is high register pressure, our

approach produces better quality of code, and this bene�t results mostly from our

live range splitting. In some cases like eqn, IMPACT register allocation shows

better performance than our global register allocation. Our analysis shows that

the di�erent approach of using callee-save register and generating the spill codes

may have minor bene�ts in some cases.

8.1.4 E�ects of register pressure

In an ILP compiler, register pressure is one of the most important factors in de-

ciding the quality of the code generated by register allocation. Two of the major

components that determine register pressure in a compilation unit are register

�le size and the number of functional units of the machine. Today's modern

architectures, like EPIC processors, are designed with much larger register �les,

so that each compilation unit has freedom to use many registers. At the same

time, many functional units sharing the same register �le in EPIC lead to higher

level of ILP, thus introducing higher register pressure by allowing many live vari-
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ables in the program. Our interests is in how region-based register allocation and

function-based register allocation perform when we change register pressure. Our

research in Chapter 4 shows that the register pressure increased by larger number

of functional units is relatively small, and the number of functional units is not

the bottleneck in obtaining the higher level of ILP. In this section, we study the

e�ect of register �le sizes on our register allocation.

With more registers, it is not hard to see execution performance will improve

up to a certain point and stop once there are enough registers for all live ranges

regardless of the size of the region. The compile time can be divided into several

components in our framework: live range and interference graph construction

time, live range coloring time, live range splitting time, and spill code and shu�e

code generation time. The time required for live range construction including

the time to compute priority depends on the total number of live ranges, N ,

and the total number of operations, P , before register allocation. These are not

dependent on region size or the number of registers. However, it is showed that

the interference graph construction time becomes larger as the region size grows in

the order of O(n2), where n is the number of live ranges in each region considered,

and this time is not dependent to the number of physical registers either.

Live range splitting time and coloring time with propagation is closely related

to register pressure. As register �le size decreases, the register pressure in com-
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Function-based Region-based Time saved
008.espresso 140970 83097 41.05%
023.eqntott 23299 12851 44.84%
072.sc 37602 22498 40.17%
124.m88ksim 41872 25618 38.82%
129.compress 14145 8274 41.51%
130.li 5747 4572 20.45%
132.ijpeg 110986 87414 21.24%
cmp 1257 1017 19.09%
cccp 48172 20803 56.82%
eqn 8138 6379 21.61%
lex 98467 45294 54.00%
tbl 52409 21021 59.89%
yacc 112109 57727 48.51%

Table 8.1: The summary of the relationship between register �le size and compi-
lation time with 32 register set.

pilation unit increases. In turn, the number of live range splitting increases as

the register pressure increases. For the coloring phase of register allocation, the

number of propagation remains the same regardless of the register pressure, since

the number of propagation is related only to the number of live ranges across the

regions. But, the register selection algorithm with propagation needs to scan pre-

ferred, forbidden or unavailable register sets, and this required time is correlated

to the number of physical registers. Therefore, both techniques need more time

as register �le size grow.

Table 8.1, Table 8.2 and Table 8.3 show the compilation time for our bench-

marks for di�erent register �le size with the same machine we used in previous
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Function-based Region-based Time saved
008.espresso 108957 77823 28.57%
023.eqntott 15714 12212 22.29%
072.sc 31479 21452 31.85%
124.m88ksim 35641 24952 29.99%
129.compress 9118 7249 20.50%
130.li 5537 4680 15.48%
132.ijpeg 107798 87313 19.00%
cmp 1211 1023 15.52%
cccp 29796 25863 13.20%
eqn 7983 6207 22.25%
lex 63005 45666 27.52%
tbl 31692 19585 38.20%
yacc 78098 52274 33.07%

Table 8.2: The summary of the relationship between register �le size and compi-
lation time with 64 register set.

Function-based Region-based Time saved
008.espresso 103350 78979 23.58%
023.eqntott 15227 12416 18.46%
072.sc 30383 19351 36.31%
124.m88ksim 35643 29965 15.93%
129.compress 9144 7311 20.05%
130.li 5385 4741 11.96%
132.ijpeg 105658 86819 17.83%
cmp 1167 1069 8.40%
cccp 27394 26438 3.49%
eqn 8034 6329 21.22%
lex 60233 47710 20.79%
tbl 28421 19481 31.46%
yacc 72140 50763 29.63%

Table 8.3: The summary of the relationship between register �le size and compi-
lation time with 96 register set.
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section for both the function-based approach and the region-based approach. For

function-based register allocation, compile time tends to decrease as register �le

sizes increase up to a certain point in most of our experiments. This change is

closely related to the number of live range splitting. As register �le sizes increase,

register allocation requires less live range splitting, and thus the compilation time

is decreased. On the contrary, compilation times for region-based register alloca-

tion does not show any speci�c patterns. In some benchmarks, the compilation

time remains consistent. The compilation time may increase slightly in some case

like cccp. This is caused when register allocation requires more possible choices

for the register binding propagation.

Overall, compile time bene�t is larger under high register pressure. Even in the

case of lower register pressure with large register �le sizes, the overall compilation

time of region-based register allocation is mostly smaller than that of the function-

based register allocation, since the allocation time is dominated by interference

graph construction. Based on these two observations, we explore the relationship

between region size and register allocation in the following section.
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8.2 Relations of the region sizes and register al-

location

The size of compilation unit has a close relationship to the performance of the

compiler in both the quality of the code it generates and the compilation time. As

the size of the compilation unit increases, the register allocation sees a larger part

of the program, and the quality of register allocation can be improved. But the

super linear complexity of most of the analysis used in register allocation increases

compilation time.

In the previous section, our experiment compared the performance of region-

based register allocation and function-based register allocation where we use hyper-

blocks and basic blocks as a region. Next, we are interested in how size of regions

would e�ect the performance. To verify the actual trends of the compilation time

and execution time related to the size of the region, we have conducted a series of

experiments using each hyper-block as the base unit of our register allocation and

increasing the size of the register allocation unit by merging several hyper-blocks.

Figure 8.4 and Figure 8.5 show the execution time and compilation time for

various region sizes for selected benchmarks. We use a single basic block, super-

block or hyper-block as a basic unit of compilation and increase the region size by

merging them. The results show that execution time is nearly constant regardless
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Figure 8.5: Comparisons for compile time and execution time for di�erent region
size

of the compilation size, while compilation time increases in a super-linear man-

ner. The constant execution time in our framework dues to the following. We

have explored many techniques to overcome the possible coloring mismatches and

performance drawbacks of the region-based approach in the previous chapter. By

combining all these, we can obtain very comparable execution time performance

in region-based register allocation regardless of region size or format. Usually, the

execution time by the region-based register allocation still has less performance

than the execution time by the global register allocation because of the extra

shu�e code. However, region-based register allocation may have better register

allocation quality in some cases as we explained in previous section. This is due

to the cases that a large live range can be divided into several segment voluntar-
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ily and register can be allocated to other live segment which has more savings,

while the live range is split only when there is high register pressure when the

compilation unit size is large.

On the contrary, the results show that the compilation time decreases slightly

to a certain point. Then it increases consistently as the size of the region increases.

Overall, higher compilation time in a large region can be explained by the greater

complexity of live range construction and frequent live range splitting.

8.2.1 Analysis of the e�ect of the region size

Our experiments show that the compilation time increases when the compilation

unit size is either too small or too large. The compilation time increase in large

regions is mostly due to the following two reasons. The building of the virtual

register interference graph consumes a great deal of time. Given the O(n2) nature

of interference graph construction, the compilation time grows in a super-linear

manner as the size of the region grows. The other major factor of compilation

time in a large region is live range splitting. When a live range lr is split, we need

to update information like interfering live ranges, preferred registers, forbidden

registers, and the priorities of two split live ranges of lr, as well as all other live

ranges interfering with lr.

Table 8.4 shows the average number of variables(nodes) in the interference
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graph per region and the number of live range splitting for di�erent compilation

unit sizes. Column RS shows the size of compilation unit. We combine multiple

adjacent hyper-blocks or basic blocks into a region in which register allocation

is performed as in the previous section. A region constructed with all blocks in

a procedure is designated as MAX. Column GS shows the average number of

variables in each interference graph. As the size of compilation increases, we have

more complex interference graph. The third column SC shows the total number

of live range splitting required. We perform the live range splitting only to the

level of block boundaries, since the live range splitting inside of each block does

not show much performance di�erence for the di�erent region sizes as we explored

in Chapter 4. Therefore, when RS is one (each region is made of a single block),

we do not need any live range splitting. As the size of live range increases, the

number of live range splitting grows. But this growth slows down after a certain

size. The last column CT shows the relative compilation time compared to the

case when we use a hyper-block and basic block as a unit of compilation (i.e.

RS is one). This tables shows that if we can construct a region in which the

compilation time is minimum, we still need to perform considerable amount of

live range splitting. For example, the compilation time is minimum for a region

with 4 blocks for \124.m88ksim", and we need live range splitting of 393, which

is about half of the live range splitting needed for region size of \MAX".
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g 023.eqntott 124.m88ksim
RS GS SC CT GS SC CT
1 108.6382637 0 1 44.2345397 0 1
2 178.4726688 242 0.998373022 75.40144728 242 0.96424614
4 304.6495177 444 1.026697234 131.426781 393 0.955713969
8 534.7717042 597 1.110930336 221.8033776 576 0.980350151
12 762.4630225 723 1.128679189
16 971.9099678 701 1.230661145 352.9408163 681 1.027443304
32 494.5671642 797 1.107298515
MAX 1044.693548 791 1.713356012 618.6865079 829 1.547351703

130.li cccp
RS GS SC CT GS SC CT
1 16.60858896 0 1 87.36078615 0 1
2 24.87345647 52 0.982722731 131.7222222 106 0.92931719
4 43.22495736 69 0.956910908 207.1353791 213 0.885054654
8 53.98479300 79 0.977726894 331.9324324 372 0.909367188
12 430.1232227 367 0.975197294
16 70.80958365 83 1.004163197 525.2060606 455 1.006176168
32 90.85275635 109 1.068692756 764.6 669 1.090926915
64 980.3896104 857 1.361845008
96 1026.513889 968 1.94054213
MAX 122.5664063 122 1.162156536 1090.238095 647 2.384441939

tbl yacc
RS GS SC CT GS SC CT
1 108.0980392 0 1 238.6904025 0 1
2 160.6149194 348 0.973155908 381.0866935 919 0.966519092
4 250.2413127 489 0.998296344 622.8127413 1470 0.975568866
8 394.4370629 637 1.08200571 994.6083916 1849 0.96178261
16 592.0346821 757 1.199097523 1521.271676 2076 1.008642859
32 781.9344262 837 1.396813703 2109.877049 2145 1.085240405
64 902.8019802 934 1.760198913 2306.762376 2285 1.167827729
MAX 954.5168539 770 2.38419744 2308.280899 2374 1.890263355

Table 8.4: E�ect of di�erent region sizes on interference graph size and live range
splitting. RS: the number of blocks in a region (compilation unit) GS: the aver-
age size of interference graph (number of nodes) SC: total number of live range
splitting CT: compilation time
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The compilation time related to register binding propagation tend to have an

e�ect opposite to live range splitting. The smaller the compilation unit size, the

more frequent propagation it requires. This leads to larger compilation time. For

example, a live range spanning two separate regions needs one propagation pass

for its register binding, while a live range spanning three regions needs more than

two propagation passes. The compilation time is increased by the total number

of propagations. Also, small segments of a live range are more likely to introduce

coloring miss-matches, which is another cause of compilation time increase. Table

8.5 shows the experimental data about how many propagations and delayed bind-

ings are performed. Our experiments indicate that the compilation time overhead

is linear to the number of propagation and delayed bindings.

One of the techniques used in priority function is also closely related to the

performance of our compilation. In the region-based register allocation, we adapt

the register binding information from the neighboring regions and use it in our

new priority function. Therefore, the number of propagations has a positive cor-

relation to the compilation performance of the priority function with propagation,

as above.
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023.eqntott 124.m88ksim 130.li
RS PR DB PR DB PR DB
1 7094 769 33485 1705 32113 3870
2 6223 467 27179 866 23049 1959
4 5329 182 22095 442 15481 889
8 5112 75 17600 268 9814 287
12 4591 55
16 3984 56 13185 150 6511 118
32 11936 97 5163 62
64 11188 51
MAX 2724 1 8990 4 3845 18

CCCP TBL YACC
RS PR DB PR DB PR DB
1 193398 37405 16625 5202 82558 7067
2 165445 16041 15611 2849 70039 3643
4 142769 7738 14137 1028 60075 1664
8 132887 3148 12828 321 51922 1100
12 119036 1791
16 125757 1809 12546 138 49414 1012
32 122822 686 11966 114 48092 624
64 108692 444 11153 79 44617 213
96 102308 906
MAX 83000 368 10164 55 39524 10

Table 8.5: E�ect of di�erent region size on propagation. RS: the number of blocks
in a region (compilation unit) PR: total number of propagation used in coloring
DB: total number of delayed bindings performed.

Region Size
Small Large

Live Range Splitting Less E�ective More E�ective
Propagation More E�ective Less E�ective
Priority Function More E�ective Less E�ective

Table 8.6: The summary of the relationship between region size and the e�ective-
ness of various technique in register allocation.
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8.2.2 Summary of the e�ect of region size

Table 8.6 summarizes the relationship between region size and some of the tech-

niques we studied in region-based register allocation. Live range splitting is more

useful as the size of the region increases because of increasing register pressure.

In smaller regions, propagation and priority function play bigger role, since there

are more live ranges crossing regions. By performing more live range splitting,

we increase the opportunity to produce better quality code but we also increase

compilation time. Likewise, frequent use of propagation means larger compilation

time as well as larger execution time caused by more shu�e code. Overall, the

performance of register allocation, the execution time and the compilation time,

is closely related to register pressure and the number of live ranges in each re-

gion. These observations motivate us to seek more optimal size regions, which

might improve both compilation and execution time. We are interested in �nd-

ing a region size where the compilation time overhead of propagation and live

range splitting can be minimized. In the next section, we propose the concept

of re-partitioning the regions based on register pressure, with the objective of

minimizing such overheads.
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8.3 Region Restructuring

8.3.1 Problems of other region construction methods

A region-based compiler begins by repartitioning the program into regions. The

region selector may select one region at a time or it may select all regions a priori,

before the compilation process begins on any region.

Following criteria can be used for region selection:

� Execution frequency information of the operations

� Memory access information

� Structure of region i.e. basic block, super-block hyper-block, or loop

� Size of the region such as the number of operations.

Frequency-based regions and structure-based regions provide very natural units

of register allocation so that closely related regions are considered together. But

the lack of register pressure information during region formation forces register

allocation to have excessive live range splitting or propagation. If the region is too

large and the register pressure is higher than the available number of registers,

many live ranges are forced to spilt. If regions are too small, the compiler has to

spend more time for propagation and thus may add unnecessary shu�e code due

195



to color miss-matches. Some other approaches use region selection based on reg-

ister allocation [45] [40], but the overhead of determining the regions themselves

are signi�cantly larger and make these techniques impractical for the region-based

approach.

8.3.2 Register Pressure Sensitive Region Restructuring

This thesis proposes linear time region restructuring based on the regions pre-

viously built for other compiler phases, for instance instruction scheduling. We

estimate the register pressure in each region, which can be a basic block, super-

block and hyper-block. These regions are grouped together according to their

frequency information and the register pressure estimated , so that the number of

live range splitting and the number of propagation for register allocation can be

minimized. In this way, we can hope to reduce the compile time and improve the

execution performance. We show two di�erent techniques to estimate the register

pressure; measuring the maximum bandwidth of the live variables and the count-

ing the number of operations in each region. We describe these in the following

sections in detail.
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8.3.3 Region restructuring with register bandwidth

The maximum bandwidth of the live variables is the largest number of live ranges

which are live at a certain point of the program. The maximum bandwidth can be

obtained as a part of liveness analysis, so it does not cause large extra compilation

time for register allocation. Since regions are formed in the previous stage, and

the number of regions is much smaller than the number of operations used in

region formation stage, the region restructuring with register bandwidth can be

done both easily and quickly.

The region structuring for register allocation consists of the following steps.

First, we select a start block s called seed. The seed block is the most frequently

executed block which is not included in any other regions. Second, we expand the

scope of the region to either the successor or predecessor block n of the current

region-based on execution frequency. The block n is included as long as the register

bandwidth of n is less then the number of available registers. The expansion stops

if one of following conditions is satis�ed:

� Every block belongs to some region.

� The next selected candidate block already belongs to another region.

� The next selected candidate block has higher register bandwidth than the

available registers.
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This region restructuring algorithm has many similarity to the frequency-based

region formation algorithm, which is also used in the Trimaran compiler [49]. The

principal di�erence is

� Register bandwidth is considered for region growing.

� The algorithm considers the control ow graph as an undirected graph and

expansion can be to either successor blocks or predecessor block.

� If the next highest block is already selected for the other region, the expan-

sion stops.

Unlike frequency-based region formation where multiple paths are expanded

when one path is blocked, the region restructuring stops its expansion whenever

expansion is blocked for the next selected region. This condition prevents shu�e

code from being inserted at high frequency points. Figure 8.6 (a) shows an example

of region structuring by the algorithm we have explained. The �rst region R1

consists of the block B2 alone since the bandwidth of B1 is larger than the number

of physical registers. For the region R2, we choose B3 as a seed. The expansion

may select B2 which already belongs to region R1. Assuming that the expansion

continues to the next candidate block, B4, the region R2 will consist of two blocks,

B2 and B3, as we show in Figure 8.6 (b). If variable x is spilled in R2, but bound

to a physical register in R1, the shu�e code may be required at a more frequent
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Figure 8.6: Two ways of region restructuring

execution point. The last condition in previous list prevents our algorithm from

inserting expensive shu�e code.

Our experiment shows that this approach may not work and produces a large

region in some cases. For example, if we have many basic blocks and none of them

has the maximum bandwidth bigger than the number of registers, our technique

includes very block into the region and it will have similar performance to function-

based register allocation.
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8.3.4 Region restructuring with the number of operations

Another approach of estimating register pressure for region restructuring is count-

ing the number of operations in regions. We estimate the register pressure by as-

suming that every operation in a block creates a new live range and these variables

are live to the end of the block. In very highly parallelized code, this approach

models size the live range closely. Our research shows that this technique works

well all over our benchmarks with even smaller compilation time overhead.

Figure 8.7 and Figure 8.8 shows the experimental result of our region restruc-

turing (RR) compare to global register allocation (FB) and region-based register

allocation (RR). Our approach works well in most cases by partitioning given re-

gions into several groups where it can decrease the compilation time and execution

time.
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Chapter 9

Conclusions

In ILP processors, the compiler needs to use aggressive ILP techniques to achieve a

high level of parallelism. However, the performance improvement by an aggressive

ILP compiler comes with increased compilation time. Many of the analyses used

in optimizing compiler have super linear complexity. As the size of the compilation

unit grows, compilation time increase in a super-linear manner.

As the size of the compilation unit is limited, the compilation time can be

reduced. But the limited scope of compilation may restrict the scope of optimiza-

tion. As a result, the compiler may generate less eÆcient quality of code. Ideally,

we want to get smaller compilation time and the same or better execution time

as that obtained using the global approach.

This thesis achieved this goal in the context of one of the important phases of
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compilation, namely register allocation. In this dissertation, we proposed several

innovative techniques for frequency sensitive region-based register allocation to

improve the code quality generated by the region-based approach. Through our

region-based register allocation framework, we can reduce the compilation time by

almost half of its global counterpart, while maintaining the execution time within

5% of the global approach.

In region-based register allocation, we used a local interference graph and local

register allocation. But the limited scope of register binding caused many coloring

miss-matches at each region boundary. By using inter-region optimizations such

as frequency-based propagation or delayed-binding, we are able to overcome the

problem of shu�e code introduced at region boundaries. Frequency-based propa-

gation works eÆciently since it uses register binding information from one region

to the next. It also moves shu�e code to lower frequency points by maintaining

frequency information. The order of register binding during coloring phase is also

enhanced by using the register binding information from neighboring regions in

the priority function. Unlike previous approaches, our priority function considers

the e�ect of shu�e code required in the region-based approach. Thus, it represents

the bene�t of register binding more precisely.

Even though the region partition provides the natural live range splitting capa-

bility into the region-based register allocation framework, intra-region live range
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splitting gives other performance improvements in some large regions. We propose

another novel technique, frequency based live-range splitting and frequency based

rematerialization. Live-range splitting points are searched in the order of control-

ow frequency from the most frequent point of the program which ensures that

we select the least frequent point. In frequency-based rematerialization, by gen-

erating rematerialization codes only on the splitting point, we are able to reduce

the number of rematerialization instructions dramatically. Moreover, frequency-

based splitting guides rematerialization to generate the rematerialization code at

the least frequent points.

This thesis also presented and evaluated several enhancements to register al-

location. We explored the issues related to predicated instructions and the two

categories of registers related to calling convention: caller-save registers and callee-

save registers. We studied the limitation of live-range splitting related to predi-

cate registers and proposed a heuristics based on PQS. We also try to optimize

the placement of the store and load operations for callee-save registers. We ap-

ply execution frequency to shrink wrapping by constructing dominator tree. We

weight the node of the tree with execution frequency and �nd optimal points to

add spill codes for callee-saved registers by weight reduction.

We showed considerable compilation time savings with comparable execution

time performance by synthesizing our techniques in a region-based register al-
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location. We also showed that the performance of the register allocation varies

according to the region size. We proposed the concept of restructuring the regions

based on register pressure and discussed how we can estimate the register pressure

in order to improve compilation time while maintaining the execution time.

9.1 Contributions

Using the techniques developed in this thesis, we accomplished our goal of reducing

compilation time in our region-based register allocation while maintaining the code

quality (i.e, execution time) comparable to the global approach. We proposed new

techniques in the various phases of region-based register allocation which improved

the compilation time while having comparable execution time. Furthermore, we

quanti�ed the relationship between the region size and the e�ectiveness of our

techniques. Based on our observations and a syntheses of our techniques, we

developed the concept of region restructuring that leads to even lower compilation

cost without sacri�cing performance. Our register allocation is not limited to any

speci�c type of program structures and we can maintain comparable quality of

code in regions of every di�erent size through our techniques. By combining hyper-

blocks, super-blocks and basic blocks into restructured regions based on operation

size and register �le size, we were able to successfully reconstruct regions where the

compilation time is close to the minimal compilation time which can be obtained
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from optimally sized region.

9.2 Future Work

This thesis has demonstrated that region-based register allocation shows superior

compilation time performance with compatible execution time performance com-

pared to other global register allocation. However, there are still some important

areas which require further research and investigation.

We proposed region restructuring by using register pressure. To estimate the

register pressure, we used two di�erent heuristics of selecting the operation count

based on the register �le size and using register bandwidth in each region. Even

though, this gives us better performance compared to the region-based approach

using hyper-blocks or super-blocks, the performance of our approach is not proven

to be optimal. Ideally, the region itself should be constructed in a way to accom-

modate both instruction scheduling as well as register allocation.

Another challenging problem is to integrate region-based register allocation

with instruction scheduling. We have observed that the codes given to register

allocation after instruction scheduling have register pressure to the level that

some of the live ranges assigned to registers need to be spilled. Less aggressive

instruction scheduling will lead to much less spill code and an improvement to the

overall execution time.
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Finally, it is important to consider a register allocation process which use the

available slots in ILP processors. In an ILP processor, adding the spill code into

unused instruction slots does not increase the overall execution time. However,

the traditional model of register allocation does not reect this behavior well. For

example, the priority function we used in our framework is only based on the spill

counts. If we can add the spill code in empty slots in ILP processor schedule, the

actual register allocation bene�t becomes smaller. The register allocator can be

improved by considering no-cost spilling.
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