
Finding Your Match: Techniques for Improving

Sequence Alignment in DNA and RNA

Ofer Hirsch Gill

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Computer Science

New York University
September 2006

Bud Mishra

c© Ofer Hirsch Gill
All Rights Reserved, 2006

“You cannot determine peoples’ destinies, they find it out for themselves.”

- Kevin Sorbo

Dedicated to my family and friends, who never stopped believing
in me.

v

Acknowledgements

I would like to thank my advisor, Bud Mishra, for his continuous patience
during my studies, as well as my thesis review board members Laxmi Parida,
Narendra Ramakrishnan, and Avi Goldstein, for their comments and advice.
Further thanks go to fellow labmates Toto Paxia, Raoul Sam-Daruwalla, Yi
Joey Zhou, Bing Sun, and Venkatesh Mysore for their help and collaboration
throughout the research process. I would not have been able to carry out this
research without all of you.

vi

Abstract

In Bioinformatics, finding evolutionary relationships among species allows us
to better understand the important biological functions of those species and
trace their evolutionary history. This thesis considers sequence alignment, a
method for obtaining these inter-relationships. We improve upon sequence
alignment tools designed for DNA with Plains (Piecewise-Linear Alignment
with Important Nucleotide Seeker), an algorithm than uses piecewise-linear gap
functions and parameter-optimization to measure similarities between remotely-
related species pairs such as human and fugu, while using reasonable amounts
of memory and space on an ordinary computer. We also propose Planar

(Piecewise-Linear Alignment for Nucleotides Arranged as RNA), which is sim-
ilar to Plains, but is designed for aligning RNA, and accounts for secondary
structure. We also explore SEPA (Segment Evaluator for Pairwise Alignments),
a tool that uses p-value estimation based on exhaustive empirical data to better
emphasize key results from an alignment with a measure of reliability. Using
SEPA to measure the quality of an alignment, we proceed to compare Plains

and Planar against similar alignment tools, emphasizing the interesting cor-
relations caught in the process.

vii

Contents

Dedication v

Acknowledgements vi

Abstract vii

List of Figures x

List of Tables xvi

List of Appendices xvii

1 Introduction 1
1.1 Plains Introduction . 1
1.2 Planar Introduction . 2
1.3 SEPA Introduction . 3

2 Literature Survey 6
2.1 DNA Alignment Overview . 6
2.2 RNA Alignment Overview . 11
2.3 p-Value Methods . 20

3 Overview 23

4 Plains 24
4.1 The Plains Alignment Method 24
4.2 Proofs for Non-Trivial Portions of Plains 26
4.3 Plains Log Approximation and Parameter Optimization 30

5 Planar 33
5.1 Details of the Planar Gap Function in Secondary Structures . 33
5.2 Alignment Formulation . 35

viii

5.3 Planar Linked-List Assistance and Space Reduction 38
5.4 Y Secondary Structure Correction 39
5.5 Planar Parameter Optimization 45

6 SEPA 47
6.1 Obtaining High-Scoring Strips from an Alignment 48
6.2 Methods: Analyzing Segment Pairs 49

7 Colorgrid and DNA Results 56
7.1 The Plains ColorGrid Method 56
7.2 Plains Empirical Results . 57
7.3 Planar Empirical Results . 60

8 Conclusions and Open Problems 64

Appendices 66

Bibliography 80

ix

List of Figures

1.1 Here is an example for a secondary structure of an RNA with
bulges, hairpin loops, internal loops, multi-loops, and pseudo-
knots. 4

2.1 In the left drawing, we see a sample secondary structure for an
RNA sequence X with indices numbered 1 thru 11, and bonds
between node pairs (1, 11), (3, 9), (4, 5), and (6, 8). The middle
and right drawings shows how FastR and CMSAA would respec-
tively Binarize X into a tree. The key to notice here is how these
two Binarizations create different trees from the same secondary
structure, with CMSAA’s version making a longer linear chain
directly beneath the top node. CMSAA’s Binarization bulks ad-
jacent positions of X into the same linear chain more often than
FastR. Because doing this allows for an easier implementation
of length-dependent gap penalty functions, Planar Binarizes in
the same manner as CMSAA. 13

x

2.2 Here is an example of two RNA sequences with known secondary
structures. Suppose each rectangle is a linear chain of nodes with
the bottom-most node being either a bifurcation node or a leaf.
Next, suppose that the linear chains corresponding to A and A′

have very high homology (such that aligning A against A′ would
score much higher than aligning A against anything else). And
similarly, suppose chains B and B ′ have high homology to each
other, and chains C and C ′ also have high homology to each
other. The optimal alignment should involve A aligned to A′, B
aligned to B′, and C aligned to C ′. However, if we align both
of these sequences using both of their secondary structures, and
approach aligning each left or right branch in an all-or-nothing
manner, we would miss the optimal alignment. We could get the
optimal alignment if we carefully consider all possible sub-forests
for the two sequences, but being able to correctly do this for
sequences of complex secondary structures becomes prohibitively
expensive in terms of runtime. 22

4.1 The Piecewise-Linear Gap Functions that Plains came up with
in optimizing the score for different species pairs, along with the
rescaled gap-paramters the other tools use. Note that the LA-
GAN gap paramters shown here are its default paramters. LA-
GAN uses a number of unspecified gap parameters in aligning on
a species by species basis. 32

5.1 Suppose we have a bifurcation in our tree TX , with qp nodes above
it forming a linear chain, and ql nodes forming a linear chain in
its left subtree, and qr nodes forming a linear chain in its right
subtree, where ql 6= qr. Suppose the optimal representations of
gaps around this bifurcation involves the bottom up nodes over
the bifurcation, the top ul nodes to the left of the split, and the
top ur nodes to the right of the split, as pictured above. We
would need to consider all valid values of up, ul, and ur in order
to properly know the optimal alignment using a gap around the
bifurcation point. This would make the runtime for Planar

prohibitively more expensive than it needs to be. 35

xi

5.2 LCB(u, v) is a boolean statement that is true only if, for nodes
u and v from TX , we have that u is in the same linear chain as v,
and u is below v. In the trees shown above, LCB(u, v) is true for
the left tree, but false for the middle and right trees. It is false
for the middle tree because u is not in the same linear chain as
v. It is false for the right tree because, although u and v are in
the same linear chain, u is above v. 37

5.3 Part 1 of how Planar “merges” two alignments AX and AY into
the final alignment A. Going from top to bottom, first, IX and
IY represent respectively AX and AY fragmented into important
and unimportant segments based on alignment scores. Below
that, LO consists of the identical segments of AX and AY . Next,
we trim the segments of IX and IY based on LO. 40

5.4 Part 2 of how Planar “merges” two alignments AX and AY

into the final alignment A. Going from top to bottom, we con-
vert the segments of IX , LO, and IY into nodes, directing an
edge from node u to node v only if we can create an alignment
where u’s segment precedes v’s segment. There is one detail not
shown here: We assign a weight to each edge (u, v) as the score
for v’s segment minus the gap penalty for any unused X and Y
characters between u and v’s alignment segments. We also cre-
ate a dummy source and a sink node (called respectively vs and
ve). Note that a few edges have been omitted from this graph for
visual simplicity. We solve maximum path algorithm over this
graph. Below the graph is a drawing using only the nodes and
edges involved in the optimal path. Using the segments corre-
sponding to the nodes on this path, plus gaps for any missing X
and Y characters, gives us our alignment A. 46

6.1 Shown above is the mean length-to-score ratio observed in the
strips from aligning randomly generated DNA sequences. In the
plots shown above, a unique line is plotted corresponding to each
value of n in the thousand lengths ranging from 1000 to 8000.
For these plots, x represents the m value divided by 1000, and y
represents the mean observed for that particular m and n, and
the plots illustrate mean length-to-score ratio for the segment
pairs. 51

xii

6.2 Shown above are the mean segment scores observed in the strips
from aligning randomly generated DNA sequences. In the plots
shown above, a unique line is plotted corresponding to each value
of n in the thousand lengths ranging from 1000 to 8000. For these
plots, x represents the m value divided by 1000, and y represents
the mean observed for that particular m and n, and the plots
illustrate mean segment pair scores. 52

6.3 Shown here is a plot of segment scores to frequency for randomly
generated sequences using our assumption that segment score is
length-independent. The x axis represents segment score, and
the y axis represents frequency. The tail of this plot is an expo-
nential distribution of form P (S = x) = Ke−λx, where we have
approximated K = 8.69×10−2 and λ = 3.26×10−2. This curve is
at its highest when x = 30, and by emprical observation, we have
noticed that strips scoring less than 30 are generally unimportant
portions of an alignment. 54

6.4 From our alignments over the randomly generated sequences, af-
ter adjusting the number of segments r and the total score t for
length-dependent average and deviation behavior, we chose to
plot the frequency of observing certain r and t values. The figure
shown here is a surface plot of this, where lighter spots indi-
cate higher frequencies. From it, we observe that the majority of
the data is concentrated in one area. This area approximates to
ece−atT 2+btT+cte−arR2+brR+cr , where c = −183.90, at = 10.1, bt =
9070, ct = −2.04 × 106, ar = 0.241, br = 4.71, cr = −27.5. 55

7.1 In this figure, we observe the unadjusted r and t values produced
by Plains, LAGAN, and EMBOSS from the hm.3 – 9 experiment
where we vary the ρ variable used to filter our segment pairs. On
each curve, we observed the t and r values of each tool when
varying ρ over various values from 0.1 till 0.9. Recall from table
7.2 that Plains performed poorly in terms of ζ ′ values for ρ = 0.5
for the hm.3 – 9 experiments. However, note from this plot that
for any fixed r where Plains is comparable to a different tool,
Plains receives the highest t value, and therefore if we designed
SEPA using a fixed r value over all alignment tools, then Plains

would have the highest t value, and hence the highest ζ ′ value
(i.e., the best result). Many other experiments from tables 7.1
and 7.2 have a similar plot to this one. 59

xiii

7.2 Match Ratio Color Lines in the Hf2 test for Plains and EM-
BOSS. Here, the Human and Fugu sequence used have six exon
regions that correspond to each other (though not necessarily in
order, as exon region 2 in the Fugu sequence corresponds to exon
region 3 in Human sequences for example). Here, both Plains

and EMBOSS correctly identify the correlation of exon region 2
in Fugu with exon region 3 in Human, but only Plains identifies
the correlation of exon region 5 in Fugu with exon region 5 in
Human. Plains also confidently found two additional correla-
tions between the two sequences not previously known, as shown
above. 61

7.3 Match Ratio Color Lines in the Hp5 test for Plains and LAGAN.
Here, the Human sequence has 8 exon regions that are similar to
areas of the pseudosequence used, and alignments of Plains and
LAGAN for these cases are similar, even by visual examination
of the ColorGrids, and in the fact that they both identified the
same 7 exon region correlations. However, when we contrast the
homologies (i.e., grid colors) within these exon regions identified,
we find that Plains found higher correlations within four of these
exon regions (regions 2, 3, 7, and 8) and therefore identified these
regions with higher confidence. This strengthens our earlier ar-
gument of Plains being able to identify most correlations with
higher confidence. 62

A.1 Shown above are the mean plots for the segment pair length-to-
score ratio from aligning randomly generated DNA sequences. A
unique line is plotted corresponding to each value of n in the
thousand lengths ranging from 1000 to 8000. For these figures,
and others that follow, x represents the m value divided by 1000,
and y represents the mean or variance value obtained for that
particular m and n. 67

A.2 Shown above are variance plots for the segment pair length-to-
score ratio from aligning randomly generated DNA sequences. . 68

A.3 Shown here are the mean plots for segment scores from aligning
randomly generated DNA sequences. 69

A.4 Shown here are the variance plots for segment scores from align-
ing randomly generated DNA sequences. 70

A.5 Shown here are the mean plots for r, the number of segment pairs
obtained from aligning randomly generated DNA sequences. . . 71

A.6 Shown here are the variance plots for r, the number of segment
pairs obtained from aligning randomly generated DNA sequences. 72

xiv

A.7 The plots shown here are the mean plots for t, the total score of all
segment pairs from aligning randomly generated DNA sequences. 73

A.8 The plots shown here are the deviation plots for t, the total score
of all segment pairs from aligning randomly generated DNA se-
quences. Because the variance plot was difficult to quantify in
terms of m and n, we instead model the deviation for total score
in terns of d and i, where i = min (m, n) and d = ‖m − n‖. We
see here the deviation plot, with each curve corresponding to a
unique d value, and the x-axis reprsenting i in units of thousands. 74

xv

List of Tables

7.1 Shown here for Plains, EMBOSS, and LAGAN are the r, t,
and ζ ′ values obtained from aligning genomic DNA sequences of
lengths between 0.5 Kb and 12 Kb within human, mouse, dog,
and fugu, where the pairs are biologically related and mainly non-
coding DNA with expected large gaps and low homology regions. 57

7.2 Shown here is the additional data for the DNA aligmments over
Plains, EMBOSS, and LAGAN that did not fit in table 7.1. . 58

7.3 Shown here for Planar and RSMATCH are the r, t, and ζ ′ val-
ues obtained from aligning noncoding RNA sequences of lengths
between 100 and 200 bases where the pairs are biologically re-
lated, with correlated secondary structures, but poor correlations
within their primary structures. 63

B.1 Sequence Details for the Biologically Related Alignments Ran,
Part 1. All the sequences are retrieved from ENSEMBL database
[www.ensembl.org]. 76

B.2 Sequence Details for the Biologically Related Alignments Ran,
Part 2. All the sequences are retrieved from ENSEMBL database
[www.ensembl.org]. 77

B.3 Sequence Details for the Biologically Related Alignments Ran,
Part 3. All the sequences are retrieved from ENSEMBL database
[www.ensembl.org]. 78

B.4 Sequence Details for the Biologically Related Alignments Ran,
Part 4. All the sequences are retrieved from ENSEMBL database
[www.ensembl.org]. 79

B.5 Sequence Details for the RNA Alignments Ran. All the sequences
are retrieved from CARNAC website [http://bioinfo.lifl.fr/carnac/].
79

xvi

List of Appendices

Appendix A
SEPA Segment Pair Analysis in Further Detail

66

Appendix B
Sequence Details

75

xvii

Chapter 1

Introduction

1.1 Plains Introduction

Since biological sequences like DNA, RNA, and amino acid sequences, did not
arise ab initio, but share a common ancestry and similar selection constraints,
a key focus in bioinformatics has been to enhance our ability to compare large
number of these sequences against each other. An effort of this kind can ulti-
mately catalogue elements that are conserved, motifs that are repeated, regions
that are hyper-mutated or deleted, and segments that are inserted and reinserted
over and over. This process starts with aligning two or more sequences with an
algorithm that optimizes an alignment score, and often ends with organizing a
set of sequences in a global tree structure where the tree-distances roughly cor-
respond to the evolutionary distances. Both the score and distance functions are
determined by the underlying stochastic processes modeling genome evolution,
and must be represented in a flexible manner in order to be faithful to biol-
ogy. But this sort of generality often implies a loss of computational efficiency.
This dilemma is resolved through reliance on simple algorithms, quasi-local cost
functions (e.g., linear gap penalty), and by applying these algorithms only on
short subsequences after most unlikely candidates have been discarded.

To a rough approximation, DNA sequence alignment problem differs marginally
from protein sequence alignment problem. (For instance, at a superficial level,
one may note that DNA alignment is over an alphabet of 4 letters whereas pro-
tein alignment is over an alphabet of 20 letters). However, two key differences
are that (1) there are 3 bp DNA code per amino acid, and that (2) genes in
DNA sequences that ultimately get transcripted and translated into proteins
can be separated by intergenic regions of few thousands of base pairs that do
not get expressed, and perhaps, are subject to strikingly different (or no) se-
lection constraints. Thus these intergenic regions typically vary to a greater

1

extent in one species compared to another. Therefore, we may expect the gap
lengths in DNA alignments to be larger, more variable, and have specie-specific
distributions. Moreover, these distributions characterizing the gap-lengths may
not be memory-less (i.e., exponential distributions). There have been sugges-
tions that power-law distributions may be more appropriate. The evolutionary
processes governing the genomes of species, and the log-likelihood of certain
indel gaps occurring when comparing one species against another suggest that
a logarithmic gap function is more appropriate for DNA sequences. Because
of these discrepancies, the traditional affine (or linear) gap functions used for
aligning proteins are unsatisfactory for DNA sequences, as the ultimate results
may be biologically misleading.

In order to exploit the fidelity of general non-linear gap functions for DNA
sequences, without suffering performance penalites associated with them, we
have chosen to use piecewise-linear gap functions modeled to approximate the
gap functions in a dynamic programming approach. Here, we present an im-
plementation of an alignment algorithm, Plains, that uses reasonable amount
of memory, avoids a major shortcoming associated with generalized gap penal-
ties, and only demands a loss of constant factor (of ≤ 5.6) in time complexity
compared to the best algorithm using an affine-gap model. There have been
other algorithms that also proposed piece-wise linear gap model (see Miller-
Myers [19]), but Plains presents several additional theoretical innovations in
terms of worst-case upper-bound on memory usage, alignment optimization, and
visualization of data. We have Plains available in a powerful bioinformatic en-
vironment, called Valis. Our algorithm uses an innovative learning-heuristic to
determine the best score function and near-optimal gap-penalty model.

1.2 Planar Introduction

Within an organism, a small percentage of its DNA, particularly the coding
regions, transcribe to RNA. A small percentage of that RNA, particularly the
mRNA, gets translated to proteins. The transcription occurs in the nucleus
cued by transcriptional factors and modulated by enhancers and repressions.
The translation occurs in the cytoplasm, and involves ribosomes, initiation fac-
tors, miRNA’s (microRNA’s), miRNA binding sites, and more repression than
activation.

Until recently, it was believed that the cellular functions were primarily
carried out by the protein coding genes, and most cellular functions found in
noncoding RNA (such as rRNA and tRNA) were homologs to coding regions.
This assumption was found to be incorrect because there are 30-40K genes in
the human genome, which is only twice as many genes as Drosophila (and the

2

human genome is far longer than just twice as long as that of Drosophila).
Hence, by eliminiation, many complex cellular functions in humans must be
carried out by noncoding RNA.

The discovery of miRNA’s is regarded as a breakthrough. They suggest
a new large class of eukaryotic regulatory elements in genes. Evidence for its
importance in functional roles can be concluded from phenotypic, expressional,
and evolutionary analysis, in spite of the fact that the number of miRNA’s with
known functions are still fairly small. Understanding its features requires pow-
erful in-vivo/vitro and in-silico methods, and this analysis allows the character-
ization of regulators and their targets. A few known miRNA functions include
leaf development, timing of larval transitions, apoptosis and fat metabolism,
and insulin secretion.

The discovery of miRNA’s have led to the research and identification of other
noncoding RNA, such as tRNA and rRNA. However, identifying correlations in
RNA differs from that of DNA or proteins because, with DNA or proteins,
the sequence similarities are enough to identify the functional correlations. For
RNA, this is not enough. Its functionality is also tied to its secondary structure,
and the fact that it has weaker nucleotide bonds than DNA allows for it to have
far more flexibility in its structure. Therefore, in order to effectively align RNA
sequences, we must account for secondary structures in addition to the sequences
themselves.

The secondary structure of RNA features many loops (both internal and
external hairpin loops), multi-loops, bulges, and pseudoknots. See Figure 1.1
for details. The hairpins help to stabilize the formation of complexes for co-
working elements, such as proteins. In order to reduce the runtime of our
alignment algorithms and also to simplify, we will ignore pseudoknots. See Eddy
and Rivas [27] for a more detailed discussion of aligning using pseudoknots.

1.3 SEPA Introduction

In addition, to draw our attention very quickly to the most pertinent similar
subsequences, it is necessary to compare the important areas of alignments and
rank them in order of their relevance. For instance, by comparing alignments
in related sequences to those of unrelated sequences with no common biological
function, we may derive, for any alignment, the probability that its important
areas occur by mere coincidence. This probability measure is also known as a
p-value, and low p-values relate to high relevance rank.

Many p-value estimation techniques have been suggested and examined pre-
viously, for instance, Karlin-Altschul [13] and Siegmund-Yakir [28], but none
have proven completely satisfactory. Hence, we discuss SEPA (Segment Eval-

3

Figure 1.1: Here is an example for a secondary structure of an RNA with bulges,
hairpin loops, internal loops, multi-loops, and pseudoknots.

uator for Pairwise Alignments), which focuses on using empirical results in its
p-value approximation. We will emphasize alignments typically dealt with in
Plains, which is those of noncoding nucleotide sequences of lengths varying
from .5 Kb to 12 Kb, with expected large gaps and low similarities.

We will demonstrate how SEPA selects and scores important segments pairs.
Furthermore, for random sequences, we also empirically characterize how various
alignment statistics, such as the segment pair lengths, scores, and magnitudes,
distribute as a function of sequence lengths. From this analysis, the parameters
for a p-value approximation are estimated, and used to demonstrate the method
of sensitivity in distinguishing important homologies from unimportant chance
occurrences of subalignments within sequences. Furthermore, SEPA is non-
subjective, since it can easily be applied to any alignment tool. We will illustrate
this advantage by using it to compare the results of Plains with LAGAN and
EMBOSS. We will also use SEPA to compare the results of Planar with
RSEARCH and Vienna. Because of these strengths and despite its empirical
foundation, SEPA fulfills a practical computational need by speeding up the
core search processes in comparative genomics.

As we hope to demonstrate here by an extensive set of experimental results,
Plains works satisfactorily for DNA sequences, and can better reveal the under-
lying biological significances than other existing algorithms (e.g., needle, swat,

4

emboss, etc.). As a concrete example, we present our alignment results for the
genomic sequences of a pair of orthologous genes in Human and Fugu. While
all the alternative alignment algorithms either fail by mis-aligning the exons
in the Fugu sequence, or by not identifying important correlations, PLAINS is
able to recover the orthologous relation between exons in the Fugu and Human
sequences with good reliability. (See Fig. 7.2) Furthermore, Planar shows
similar promise for RNA secondary structures.

5

Chapter 2

Literature Survey

2.1 DNA Alignment Overview

2.1.1 Dynamic Programming Intro

Suppose there are two strings to be aligned denoted as X and Y , and their
respective lengths are m and n with m ≥ n. We can generate an alignment
for X and Y by maximizing V (m, n), where V (·, ·) is a two-dimensional scoring
function such that V (i, j) denotes the best score for aligning X[1 : i] with Y [1 : j]
(i.e., characters 1 thru i in X, and characters 1 thru j in Y). For now, we will
assume we score ma for each match, ms for each mismatch, and wc for each
gapped character (corresponding to an insertion or deletion in transforming X
to Y), where ma is a reward and everything else is a penalty. Also, suppose
s(c, d) yields ma when c = d, and −ms when c 6= d.

We hence compute V (m, n) as follows:

V (0, 0) = 0

V (i, 0) = wc · i
V (0, j) = wc · j
V (i, j) = max{V (i − 1, j − 1) + s(X[i], Y [j]), V (i − 1, j) − wc, V (i, j − 1) − wc}

The V (i, 0) case corresponds to X[1 : i] being aligned against a gap. The
V (0, j) case corresponds to Y [1 : j] being aligned against a gap. In the V (i, j)
recursion, the V (i− 1, j − 1) + s(X[i], Y [j]) case corresponds to X[i] aligned to
Y [j], V (i − 1, j) − wc corresponds to X[i] being aligned to a gap, and V (i, j −
1) − wc corresponds to Y [j] being aligned to a gap. Computing V (m, n) takes
O(mn) time, and requires O(mn) space. We can then backtrace from V (m, n)
to obtain the alignment.

6

2.1.2 Smith-Watermann Formula

The Smith-Waterman formula is similar to the previous formula, except that
instead of representing a gap of length i with penalty wc · i, we would like to
represent it with penalty wo +wc · i. That is, we wish to include a wo penalty for
opening a gap, which is typically much larger than the wc penalty for extending
a gap. This encourages fewer gaps, but allows for a gap to be more easily
extended once it already exists.

To assist the computation of V (·, ·), we will use functions E(·, ·), F (·, ·), and
G(·, ·), where E(i, j) is the score for aligning X[1 : i] with Y [1 : j] when we end
with the “solid” character at the end of Y ’s suffix aligned against a gap, F (i, j)
is the score for aligning X[1 : i] against Y [1 : j] when we end with the “solid”
character at the end of X’s suffix aligned against a gap, and G(i, j) is the score
for aligning X[1 : i] against Y [1 : j] when we end with the “solid” characters at
the end of the suffixes of X and Y aligned against each other (and they can be
matched or mismatched). Then:

V (0, 0) = 0

V (i, 0) = E(i, 0) = −wo − i · wc

V (0, j) = F (0, j) = −wo − j · wc

V (i, j) = max{E(i, j), F (i, j), G(i, j)}
G(i, j) = V (i − 1, j − 1) + s(X[i], Y [j])

E(i, j) = max{E(i, j − 1) − wc, V (i, j − 1) − wc − wo}
F (i, j) = max{F (i − 1, j) − wc, V (i − 1, j) − wc − wo}

For E(i, j), we get two cases. The E(i, j − 1)−wc case corresponds to con-
tinuing a gap that is already existing. The V (i, j−1)−wc−wo case corresponds
to opening up a brand new gap. A similar idea goes for the cases in F (i, j).
Computing V (m, n) and our overall alignments takes O(mn) time and O(mn)
space.

2.1.3 Hirschberg Table Space Reduction

The Hirschberg space-optimal approach, in addition to using X and Y to com-
pute tables V , E, F , and G, also uses Xr and Y r (the reversed strings of X and
Y) to compute tables V r, Gr, Er, and F r.1 We save only the t most recently

1Here, V r(i, j) denotes the score for the first i entries of Xr and the first j entries of
Y r—in other words, the last i entries of X and the last j entries of Y . And, Er(i, j), F r(i, j),
and Gr(i, j) behave similar to E(i, j), F (i, j), and G(i, j) over the first i entries of Xr and
the first j entries of Y r.

7

computed columns of V , E, F , G, V r, Er, F r, and Gr, where t is some fixed
constant.

In this manner by computing V , E, F , G for X[1..m/2] and Y [1..n], and V r,
Er, F r, Gr for Xr[1..m/2] and Y r[1..n] (which are really X[(m/2) + 1...m] and
Y [1..n]), we can use a “maximum criteria” to obtain a “middle” subalignment
from the saved portions of V , E, F , G, and V r, Er, F r, Gr. Let gr(k) denote
V (m/2, k) + V r(m/2, n − k). Note that V (m, n) = maxk[gr(k)], so our “max-
imum criteria” is to select a k such that gr(k) is maximized. We then trace
the V (m/2, k) solution t columns until V (m/2 − t, l); where l ≤ k, saving the
alignment portion Ml obtained thus far. We also trace the V r(m/2, n−k) table
t columns until V r(m/2− t, r), where r ≤ n− k, saving the reversed alignment
portion Mr obtained thus far. We next glue Ml and Mr to make a middle align-
ment M . We proceed recursively to align X[1 : m/2− t] with Y [1 : l] to obtain
the left alignment L, and recursively over X[m/2 + t : m] and Y [n − r : n] to
obtain the right alignment R. We then glue together L and M and R to get
our alignment A of X[1 : m] with Y [1 : n].

If T (m, n) represents the amount of computational time consumed by the
Hirschberg process, then we can quantify it as:

T (1, 1) = O(1)

T (m,n) = O(mn) + T (m/2, n − k) + T (m/2, k)

Where k need not be a constant. From this, we see that T (m, n) = O(mn).
Hence, Hirschberg method, while using O(n) space for the tables to get an
alignment, does not increase overall runtime by more than a constant factor
compared to the intuitive O(mn) space method of saving all columns of all
tables. Hence, the overall runtime for Smith-Waterman in creating an alignment
with Hirschberg reduction is O(mn), but the space used is reduced from O(mn)
to O(n).

2.1.4 Needleman-Wunsch Formula

Next, suppose that we wish to assign a gap of length i a penalty w(i), where
w(·) is some arbitrary mathematical function (hence, w(i) need not necessarily
be wo + i · wc). The Needleman-Wunsch formula answers this issue as follows:

V (0, 0) = 0;

V (i, 0) = E(i, 0) = −w(i),

V (0, j) = F (0, j) = −w(j);

8

V (i, j) = max{E(i, j), F (i, j)G(i, j)},
G(i, j) = V (i − 1, j − 1) + s(X[i], Y [j]),

E(i, j) = max
0≤k≤j−1

[V (i, k) − w(j − k)],

F (i, j) = max
0≤k≤i−1

[V (k, j) − w(i − k)].

Because the slope of increase for gap penalty from w(i) to w(i + 1) is not
contsant in Needleman-Wunsch like it was with Smith-Watermann, computing
E(i, j) requires us to inspect V (i, k) for all k < j in order to fairly compute
the best alignment for X and Y , and similarly for F (i, j). This means at each
cell in our tables, we make O(m + n) lookups to previously computed values.
Therefore, computing V (m, n) takes O(mn·(m+n)) = O(m2n) time, and O(mn)
space2. Needleman-Wunsch has the flexibility to model any gap function, but
the runtime and memory usage is unacceptably large for most computational
biology applications.

2.1.5 Miller-Meyers Linked-List Assistance

Miller and Myers [19] uses the same formula as Needleman-Wunsch, but they
assume w(·) is convex (meaning that it has a negative double-derivative). This
assumption enables them to take advantage of a Linked-List Assistance tech-
nique to improve on runtime. This technique involves considering possible solu-
tions for the E(·, ·) and F (·, ·) entries before one explicitly computes them. To
gain an intuition into this technique, first suppose that j is fixed in order to keep
the discussion simple for the moment. Next, let eval(k, i) = V (k) − w(i − k),
and let candk(i) denote the k′ value, where k′ ≤ k, such that eval(k′, i) is max-
imized, and let cand(i) denote the k′ value, where k′ < i, such that eval(k′, i)
is maximized. (Note that candi−1(i) = cand(i).)

Then, on the i′th iteration, with i′ < i, once we figure out what V (i′) is, we
can simply take k′ = candi′−1(i), and compare eval(k′, i) with eval(i′, i), and
whichever of these two values is greater dictates candi′(i). When i′ = i− 1, this
gives us cand(i), and thus on the ith iteration, we know F (i) (and subsequently
V (i)) in O(1) time without needing to look backwards at previous V (·) entries.
Next, note that:

• (S1) If by the kth iteration of our algorithm, we know that, for some a,
b, q and for all i′ in [a, b], q = candk(i

′). Then we can represent this fact
with one data structure, instead of b − a + 1 of them.

2The O(m + n) lookups to previous rows and columns implies we can’t take advantage
of the Hirschberg reduction to cut down on space, unless we can make certain assumptions
about the gap function w(·).

9

• (S2) In all practical cases, our gap function w is convex (meaning that
w(i) increases as i gets larger, but the rate of increase itself decreases
as i gets larger). In this situation, we know that if for some i′ > i,
eval(i, i′) < eval(cand(i′), i′), then for all i′′ > i′, we also know that
eval(i, i′′) < eval(cand(i′′), i′′). Therefore, if at the end of the ith itera-
tion, we were to scan the candi(·) values in the order: candi(i+1), candi(i+
2), . . . , candi(m), then we would see that the candi(·) entries are nonin-
creasing (each next candi(·) entry is either smaller or equal to the previous
one).

From these facts, we conclude that we can coalesce adjacent indices with the
same candi(·) values into a single group. We can maintain one element per group
in a data structure. Each group can be represented by a single element. This
element will contain the winner = candi(·) value for all indices represented by
the group, as well as the value v = V (winner), and the leftmost and rightmost
indices of the group, lwb and upb. The elements will be listed in order from
leftmost to rightmost indices in this list L. Clearly, we will have to add or delete
elements from L to correspond to groups being split off or merged when we go
from the ith iteration to the (i + 1)st iteration. See example below:

-------------- -------------- --------------
winner = i		winner = 3		winner = 2
v = 56		v = 12		v = 7
lwb = i+1	<---->	lwb = x+1	<---->	lwb = r+1
upb = x		upb = r		upb = q
-------------- -------------- --------------

Furthermore, from (S2), we know that on the ith iteration, if candi(i+1) 6= i,
then for all i′ > i, candi(i

′) 6= i. Supposing that there exists an a such that for
all ĩ such that i+1 ≤ ĩ ≤ a, candi(̃i) = i, and candi(a+1) 6= i, then for all i′ > a,
candi(i

′) 6= i. Hence, on the ith iteration, we can proceed on the elements of L
from left to right to find the rightmost value a such that candi(a) = i, delete
any element of previous winner entries, and add in a single leftmost element to
L with i as its winner, and lwb and upb set accordingly.

In the case that on the ith iteration, the algorithm discovers an element in
L such that candi(lwb) = i, but candi(upb) 6= i and needs to know which index
within the group is the largest a such that candi(a) = i, then, it simply takes
the element’s previous winner value of k, its v value, and considers for x the
plots of v − w(x − k) versus V (i) − w(x − i). Thus, we seek the point where
the first plot intersects the second one. A binary search over these curves takes
O(log m) time to find the intersection. From this search, we discover the largest
a such that candi(a) = i, with lwb ≤ a ≤ upb, and then update the elements of
L accordingly.

10

Note that if for some i, we inspect q elements of L, then we must delete the
left q − 1 elements of L. Also, the number of elements in L is O(m). With this
in mind, the number of elements we inspect in L over all iterations of i is O(m).
When we combine this step with the binary intersection, we are able to use list
L to obtain solutions for F (·) in O(m logm) time.

For now, suppose that we are to return to our two-dimensional computa-
tional model, but use it in the manner outlined here. Plains computes entries
to the V , E, F , and G tables column by column. For each row j, we compute
F (·, j) with the help of a list Lj (so we maintain lists L0, L1, . . . , Ln and each list
is updated in the manner explained earlier), and for each column i, we compute
E(i, ·) using the help of a list R (which gets updated in a manner similar to that
of L for the F entries, except that when we finish computing a column of our
table, we empty R so it can be reused when proceeding to the next column).
Clearly, the updates for R and each Lj list are interweaved.

This observation implies O(mn log m) time complexity, and further implies
that all lists combined take up O(mn) space, since each Lj list uses O(m) space
and the R list uses O(n) space. Hence, the Miller-Meyers Linked-List Assistance
uses the same space as Needleman-Wunsch, but uses up less time.

2.2 RNA Alignment Overview

2.2.1 FastR Binarization

Binarization is the process of converting a sequence X of length m into a binary
tree based on its secondary structure. Depending on how we binarize X, the
alignment result could differ. FastR’s Binarization implementation used in [34]
works as follows. Note: (i, j) is in S if and only if X[i] and X[j] are bound to
each other in X’s secondary structure.

Node Binarize(i,j) {

/* Binarize the interval(i,j). */

if (i == j) {

/* Return a dotted note with no children. */

return (new Node(i, j, dotted, NULL));

}

else if (i, j) is in S {

/* Return a solid node with one child v. */

v = Binarize(i+1, j-1);

return (new Node(i, j, solid, v));

}

11

else if for some k where i < k < j,

we have (k, j) is in S {

/* Return a dotted node with two children,

vl and vr. */

vl = Binarize(i, k-1);

vr = Binarize(k, j);

return (new Node(i, j, dotted, vl, vr));

}

else if (i < j) {

/* Return a dotted node with one child v. */

v = Binarize(i, j-1);

return (new Node(i, j, dotted, v));

}

}

Note that in creating the tree TX from X using the approach mentioned here,
solid nodes denote positions where elements of X are bound to each other,
and dotted nodes denote unbound positions of X and structural bifurcations
(positions in X’s secondary structure where the structure branches off in two
or more directions). The tree TX created from X in this manner has at most
2m − 1 nodes, and this fact can be proven inductively.

Tne method mentioned here is one way to create a binary tree from X.
Suppose for some values i and j that X[i] and X[j] are not bound to each
other, but are located in the same hairpin. One binary tree TX could place
the nodes containing nodes X[i] and X[j] near each other, but another tree T ′

X

could place X[i] and X[j] in completely separate branches. See figure 2.1 for
more details. Hence, if we use a length-dependent gap function ww(·) to align,
much like that used by Plains, and we are aligning X to a gap, we can easily
bulk X[i] and X[j] together in computing ww(·) for tree TX (and it might make
sense to do this), whereas it is difficult (possibly inefficient algorithm-wise) to
achieve the same effect for tree T ′

X .

2.2.2 Structural Alignment

Often in this thesis, we will be concerned primarily with aligning X against
Y where we only concern ourselves with X’s secondary structure. We will
adjust the alignment afterwards using Y ’s secondary structure as needed. The
Liu paper [18] contains a discussion of aligning X and Y using both X and
Y ’s secondary structures to generate the original alignment. However, it is
achieved by accounting for multi-branches in X and Y with an all-or-nothing
style, becoming over-reliant on the secondary structure.

12

Figure 2.1: In the left drawing, we see a sample secondary structure for an RNA
sequence X with indices numbered 1 thru 11, and bonds between node pairs
(1, 11), (3, 9), (4, 5), and (6, 8). The middle and right drawings shows how FastR
and CMSAA would respectively Binarize X into a tree. The key to notice here
is how these two Binarizations create different trees from the same secondary
structure, with CMSAA’s version making a longer linear chain directly beneath
the top node. CMSAA’s Binarization bulks adjacent positions of X into the
same linear chain more often than FastR. Because doing this allows for an easier
implementation of length-dependent gap penalty functions, Planar Binarizes
in the same manner as CMSAA.

This approach is flawed, since it gives us an incorrect result when X and Y
have trees looking like that of figure 2.2.

2.2.3 FastR Alignment

We will begin describing the FastR alignment method by first introducing some
notation. Our goal is to align X and Y using just the tree TX (of size O(m))
generated for X by FastR’s Binarization. Suppose S ′ denotes the set of all the
nodes in TX , and S denotes the bound nodes in TX (i.e., the solid nodes in TX).
Then, S ′−S are all the dotted nodes of TX , i.e., they are the nodes representing
either unbound positions of X, or bifurcations, or extra positions.

Next, suppose A[i, j, v] is the best alignment for the subtree of node v (a node
within TX) aligned against Y [i : j] (the substring of Y ranging from position
i to j). Let lv and rv denote respectively the indices for the left and right
characters which node v represents from X. In the case that v only represents
one position in X, we will assume that position is rv. This representation relies
on the manner in which TX was constructed from FastR’s Binarization process

13

mentioned earlier.
Let b(·, ·, ·, ·) denote the bound position score (i.e., match or mismatch score

between X and Y for positions of X that are bound), and let s(·, ·) denote the
unbound position score (i.e., match or mismatch score between X and Y for
positions of X that are unbounded).

FastR assumes that the cost of each gapped position is constant. I.e., for
a gap of length i, the penalty is w(i) = d · i where d is some constant. This
assumption implies that there is no penalty for opening a gap, or a length-
dependent change in penalty.

With all of this, the formulation for A[i, j, v] is as follows:

• If v is in S (v represents a solid bound node):

A[i, j, v] = max

A[i + 1, j − 1, v.child] + b(Y [i], Y [j], X[lv], X[rv])
A[i, j − 1, v] + s(′−′, Y [j])
A[i + 1, j, v] + s(′−′, Y [j])

A[i + 1, j, v.child] + s(X[lv], Y [i]) + s(X[rv],
′ −′)

A[i, j − 1, v.child] + s(X[lv],
′ −′) + s(X[rv], Y [j])

A[i, j, v.child] + s(X[lv],
′ −′) + s(X[rv],

′ −′)

• If v is in S ′ − S and v has one child (v represents an unbound dotted
node):

A[i, j, v] = max

A[i, j − 1, v.child] + s(X[rv], Y [j])
A[i, j, v.child] + s(X[rv],

′ −′)
A[i, j − 1, v] + s(′−′, Y [j])
A[i + 1, j, v] + s(′−′, Y [i])

• If v is in S ′ − S and v has two children (v represents a bifurcation node):

A[i, j, v] = max
i≤k≤j

{A[i, k − 1, v.left] + A[k, j, v.right]}

If m1 and m2 denote the number of nodes in Tx with one/two children,
where m1 + m2 = O(m) and generally, m2 << m1, then the runtime for FastR
is O(n2m1 + n3m2), and the space usage is O(n2m). We can reduce speed and
memory using banding. The idea for banding is to, for each node v in TX , limit
the number of positions of Y applied based on the width of v’s endpoints. If
dm is the size of this banded region, where dm << m, then the runtime and
memory reduce respectively to O(n2d2

m) and O(n2dm).

14

All of this makes FastR fast for most noncoding RNA’s of length 100-200
bp. Its accuracy in checking the majority of valid endpoints for Y against TX

in the alignment allows it to predict the secondary structure for Y with good
accuracy, especially when Y is a riboswitch.

However, this technique has some disadvantages. A length-dependent gap
formula will not correctly work with TX in the manner built by FastR. Further-
more, length-dependent gap formulas are useful for noncoding regions. Also,
narrow-banding fails to correctly align sequences of expected large and varying
gap lengths. Therefore, later on, we will present Planar, which addresses some
of these issues.

2.2.4 CMSAA Binarization

In Eddy’s paper [5], we are introduced to the CMSAA (Covariance Model Struc-
tural Alignment Algorithm). This algorithm features a few changes from FastR.
The first change is in the manner of Binarization for X to make TX based on
its secondary structure. The other change is that, instead of labeling nodes as
solid or dotted, we will label them as ’P’, ’L’, ’R’, ’B’, or ’E’ depending on if
the node corresponds to representing a “Pair” of bound positions in X, just the
“Left” position in X, just the “Right” position in X, a “Bifurcation” position
in X, or an “Endpoint” in X (corresponding to leaf nodes in TX , and from
an algorithmic perspective, this makes exploring TX simpler). For simplicity
purposes, we are omitting the “Start” node, or ’S’ node mentioned in the Eddy
paper, but the construction of TX from X remains the same otherwise. Note
here that like before, (i, j) is in S if and only if X[i] and X[j] are bound to each
other in X’s secondary structure. CMSAA’s Binarization to make TX from X
works as follows:

Node CMSAA_Binarize(i,j) {

/* Binarize the interval(i,j). */

if (i > j) {

/* Return a leaf node with no children. */

return (new Node(i, j, ’E’, NULL));

}

else if (i, j) is NOT in S and X[i] is unpaired {

/* Return an ’L’ node with one child v. */

v = CMSAA_Binarize(i+1, j);

return (new Node(i, j, ’L’, v));

}

else if (i, j) is NOT in S and X[j] is unpaired {

/* Return an ’R’ node with one child v. */

15

v = CMSAA_Binarize(i, j-1);

return (new Node(i, j, ’R’, v));

}

else if (i, j) is in S {

/* Return a ’P’ node with one child v. */

v = CMSAA_Binarize(i+1, j-1);

return (new Node(i, j, ’P’, v));

}

else if for some k where i < k < j,

we have (i, k) is in S {

/* Return a ’B’ node with two children,

vl and vr. */

vl = CMSAA_Binarize(i, k);

vr = CMSAA_Binarize(k+1, j);

return (new Node(i, j, ’B’, vl, vr));

}

else if (i <= j) {

/* Return a leaf node with no children. */

return (new Node(i, j, ’E’, NULL));

}

}

In figure 2.1, we see a comparison of the same secondary structure made
into trees using FastR’s Binarization versus CMSAA’s Binarization. Notice
how with CMSAA’s version, we bulk adjacent positions of X into the same
linear chain more easily, resulting in slightly fewer bifurcations. Also, note that
the asymptotic size of TX constructed from CMSAA’s Binarization remains as
O(m).

2.2.5 CMSAA Alignment Formula

The CMSAA alignment formula is similar to that of FastR, except that the
solid and dotted node cases are substituted with appropriately labeled ’P’, ’L’,
’R’, ’B’, and ’E’ node cases. Using notation similar to FastR, the formulation
for A[i, j, v] for CMSAA is as follows:

• If v’s label is ’E’, or i > j (these are the base cases), then:

A[i, j, v] = 0

• If v’s label is ’P’, then:

16

A[i, j, v] = max

A[i + 1, j − 1, v.child] + b(Y [i], Y [j], X[lv], X[rv])
A[i, j − 1, v] + s(′−′, Y [j])
A[i + 1, j, v] + s(′−′, Y [j])

A[i + 1, j, v.child] + s(X[lv], Y [i]) + s(X[rv],
′ −′)

A[i, j − 1, v.child] + s(X[lv],
′ −′) + s(X[rv], Y [j])

A[i, j, v.child] + s(X[lv],
′ −′) + s(X[rv],

′ −′)

• If v’s label is ’L’, then:

A[i, j, v] = max

A[i + 1, j, v.child] + s(X[lv], Y [i])
A[i, j, v.child] + s(X[lv],

′ −′)
A[i + 1, j, v] + s(′−′, Y [i])
A[i, j − 1, v] + s(′−′, Y [j])

• If v’s label is ’R’, then:

A[i, j, v] = max

A[i, j − 1, v.child] + s(X[rv], Y [j])
A[i, j, v.child] + s(X[rv],

′ −′)
A[i, j − 1, v] + s(′−′, Y [j])
A[i + 1, j, v] + s(′−′, Y [i])

• If v’s label is ’B’ (v represents a bifurcation node), then:

A[i, j, v] = max
i−1≤k≤j

{A[i, k, v.left] + A[k + 1, j, v.right]}

Ignoring the banding discussion mentioned earlier, the runtime and space
usage are O(n2m1 + n3m2) and O(n2m) respectively, just like for FastR, where
m1 is the number of nodes with one child, and m2 is the number of nodes with
two children. However, the interesting thing here is how CMSAA extends this
alignment method to reduce the space used at runtime.

2.2.6 CMSAA Space Reduction

CMSAA is able to reduce its space from O(n2m) to O(n2 log n) in a way similar
to Hirscherg’s space reduction from section 2.1.3, except modified slightly for
RNA secondary structure.

The space reduction works as follows. First, we only save the t most recently
computed values for nodes v from TX , where t is a constant ≥ 2. One way of

17

putting this is that we only save the t most recently computed n × n “decks”.
This reduces our space from O(n2m) to O(n2t). Next, our alignment computa-
tion is split into the following methods: INSIDE(), OUTSIDE(), VINSIDE(),
VOUTSIDE(), V SPLIT(), WEDGE SPLIT(), and GENERIC SPLIT().

INSIDE([r, z], [g, q]) computes A[i, j, v] in the manner mentioned in the pre-
vious section for all nodes v from TX with indices ranging within interval [r, z],
and the row-column Y indices i and j ranging within interval [g, q], and we
only save the t most recently computed values for v. Later on, we will cre-
ate an alignment tree TA that features linear chains of nodes corresponding to
single/double match/mismatch positions and gapped positions over TX and Y ,
plus bifurcations corresponding to places where TX bifurcates. Representing
an alignment as a tree TA makes it more convenient to conceptualize how the
indices of Y are split at bifurcation points in TX , and we could always linearize
TA by simple depth-first-search traversal over it later on, if we so desire.

OUTSIDE([r, z], [g, q]) computes Ar[i, j, v] where nodes v from TX proceed
in reverse over the interval [r, z], and row-column Y indices i and j proceed in
reverse over interval [g, q], and we save only the t most recently computed values
for v. We require that nodes r through z form a linear chain in TX with none of
the nodes from r through z being bifurcation nodes.3 Assuming interval [r, z]
saitsfies this requirement, note that Ar[·, ·, ·] is computed as the perfect reverse
of A[·, ·, ·], and this resembles how table V r is computed in the reverse-direction
of table V for DNA alignments in section 4.1.2.

VINSIDE([r, z], [g, i′], [j ′, q]) works the same way as INSIDE([r, z], [g, q]) ex-
cept that the Y indices proceed differently. For VINSIDE, the Y row-index
i iterates over interval [g, i′], and the Y column-index j iterates over inter-
val [j ′, q]. This gives us the luxury of saving the computation of z’s subtree
aligned against Y indices within [i′+1, j ′−1] for another point in our algorithm
where it is needed more.4 Predictably, VOUTSIDE([r, z], [g, i′], [j ′, q]) works
like OUTSIDE([r, z], [g, q]) except that the Y row-index i iterates over interval
[i′, g], and the Y column-index j iterates over interval [q, j ′]. (We still require
nodes r through z to form a linear chain in TX without any of those nodes being
bifurcations.)

V SPLIT([r, z], [g, i′], [j ′, q]) works over a linear-chain of unbifurcated nodes
from Tx within interval [r, z], using Y row-index i within interval [g, i′] and
column-index j within interval [j ′, q] in the following way: Let w denote the half-
point index of interval [r, z]. We proceed to align VOUTSIDE([r, w], [g, i′], [j ′, q])
and VINSIDE([w + 1, z], [g, i′], [j ′, q]), saving the t most recently computed

3This differs from the computation of INSIDE, which allows bifurcation nodes in its com-
putation.

4Note that for INSIDE, both the Y row-index i and the column index j iterate over the
same interval [g, q].

18

decks of Ar and A. Next, of the entries saved, we select (v, i, j) such that
A[i, j, v] + Ar[i, j, v] is maximized, and use it to trace backwards over A and Ar

as far back as we can, saving the results as the alignment tree TM2. Suppose
tracing tables Ar and A backwards got us respectively to entries (ṽ, ĩ, j̃) and
(ṽ′, ĩ′, j̃ ′). We then proceed recursively over V SPLIT([r, ṽ], [g, ĩ], [j̃, q]) to get
an alignment tree TM1, and recursively over V SPLIT([ṽ′, z], [ĩ′, i′], [j ′, j̃ ′]) to get
an alignment tree TM3. We combine TM1 to TM2 and TM3 to get an overall
alignment tree TM , which we return.

Overall, V SPLIT() essentially works by taking an unbifurcated chain in TX ,
and aligning its halfpoint nodes against Y and proceeding recursively over the
upper and lower portions of this chain and the appropriate indices of Y to get
the rest of the alignment.

WEDGE SPLIT([r, z], [g, q]) operates similarly to V SPLIT. It works over
a linear-chain of unbifurcated nodes from TX within interval [r, z], just like
V SPLIT. However for WEDGE SPLIT, both the Y row and column indices i
and j iterate over interval [g, q], and the rest of its behavior is modified accord-
ingly. This means that calls to VOUTSIDE() and VINSIDE() are respectively
substituted with calls to OUTSIDE() and INSIDE(), and TM1 and TM3 are con-
structed by respective calls to V SPLIT() and WEDGE SPLIT() (instead of
two V SPLIT() calls).

Overall, WEDGE SPLIT() works exactly like V SPLIT() except that it also
handles the “middle” indices of Y .

GENERIC SPLIT([r, z], [g, q]) is the starting point to the alignment algo-
rithm. It works over nodes from TX with indices of interval [r, z], and this in-
terval could possibly include nodes with bifurcations (unlike the V SPLIT and
WEDGE SPLIT cases). Its Y row and column indices i and j range over inter-
val [g, q]. It proceeds as follows: If TX does not contain any bifurcation nodes
within the [r, z] interval, then we merely perform WEDGE SPLIT([r, z], [g, q]),
since that will solve our alignment for that case. When TX DOES contain a
bifurcation, then suppose u is the index of the highest bifurcation node within
[r, z]. Note that interval [r, u − 1] does not contain any bifurcation nodes
(though [u + 1, z] might). Therefore, we align OUTSIDE([r, u − 1], [g, q]) and
INSIDE([u + 1, w − 1], [g, q]) and INSIDE([w, z], [g, q]), where w represents the
leftmost index of u’s right subtree, saving the results respectively to tables Ar,
A, and B.5 Note that we are only saving the t most recently computed “decks”
of tables Ar, A, and B, and the saved “decks” are all located next to node u.
We now select (i, k, j) such that Ar[u− 1, i, j] + A[u + 1, i, k] + B[w, k + 1, j] is
maximized. We then use it to backtrace Ar, A, and B as far as we can, recording

5We make two calls to INSIDE() here, so we assume the first call records in table A, and
the second call records in table B.

19

all results in the alignment tree TM2. Suppose backtracing Ar, A, and B gets
us respectively to indices (r′, i′, j ′), (w̃, ĩ, k̃), and (w̃′, k̃′, j̃ ′). We then perform
V SPLIT([r, r′], [g, i′], [j ′, q]) to get the alignment tree TM1, and the recursions
GENERIC SPLIT([w̃, w−1], [̃i, k̃]) and GENERIC SPLIT([w̃′, z], [k̃′, j̃ ′]) to get
alignment trees TM3 and TM4. We then glue TM1 to TM2 and TM3 and TM4 to
get our overall result TM , which we return.

In essence, GENERIC SPLIT() searches for the highest bifurcation node in
TX and records the alignment of all nodes immediately around this node against
Y . We then proceed recursively over the unrecorded portions above and below
this node with the appropriate indices of Y to get the rest of the alignment.

We perform GENERIC SPLIT([1, |TX |], [1, n]) to get the overall alignment,
where the size of TX is |TX | = O(m). The overall runtime for CMSAA is at
most a constant factor larger than FastR, which means that it is asymptotically
the same O(n2m1 + n3m2), where m1 is the number of nodes of TX with one
child, and m2 is the number of nodes with two children. The memory usage
for CMSAA is O(n2t log m). The log m factor is introduced because we make
a recursion at each bifurcation node in TX , as well at each “halfpoint” of the
linear chains within TX . 6 Since t is constant, the memory usage comes out to
be O(n2 log m).

2.3 p-Value Methods

2.3.1 Karlin-Altschul

The Karlin-Altschul approach in [13] to p-value estimation is motivated by the
desire to identify the biological relevance of a generated alignment instead of just
creating an arbitrary alignment with a set of “good” segments. Their methods
provide a way to approximate reliability without requiring excessive biological
information from our two sequences X and Y .

Their method works on gapless local alignments as follows: Suppose for each
letter i that pi is the probability of observing letter i in sequence X, and for
each letter j that p′j is the probability of observing letter j in sequence Y , and
that the score for pairing letter i with j is sij. We may suppose that for a
random pair of sequences, the expected alignment score Σi,jpip

′
jsij is negative;

6Note: The worst case runtime and space usage for CMSAA actually turn out to be
O(n3m2) and O(n2m). However, this is not a serious problem. Changing GENERIC SPLIT
to do its split at a “middle” bifurcation node rather than the highest one in TX reduces the
runtime. And, relabeling the some of the indices of TX prior to aligning so that we visit right
children before left children at certain bifurcation nodes reduces the memory usage. However,
in practice, neither of these need to be done for most RNA cases. Further details can be
found in [5].

20

and nonetheless, it is possible to generate a positive score. Also, suppose each
high-scoring segment is found independently of each other.

Then, for some λ > 0, we have that Σi,jpip
′
je

λsij = 1, and the average strip

score is lnmn
λ

. We also have that for some constant K, the probability of a

strip having score S ′ after adjusting for average score is P (x = S ′) = Ke−λS′

.

And since S ′ = S − lnmn
λ

, we get that P (x = S) = Ke−λS′

= Ke−λ(S− ln mn
λ

) =
Kmne−λS

From this, we can Poisson-approximate P (x ≤ S) as exp(−P (x = S)), and
hence, our p-value of P (x ≥ S), which is the probability of finding one or more
strip of score at least S, becomes:

P (x ≥ S) = 1 − exp(−P (x = S)) = 1 − exp(−Kmne−λS)

2.3.2 Multiple Karlin-Altschul

Building on the previous p-value formula, Karlin-Altschul[14] approximate the
probability of getting r or more strips of score at least S as:

P (xr ≥ S) = 1 − exp(−P (x = S))Σr−1
k=0

P (x = S)k

k!

= 1 − exp(−Kmne−λS)Σr−1
k=0

Kmne−kλS

k!

Furthermore, if there are r strips, and the ith strip has score Si, then let the
adjusted score S ′

i = λSi − ln (Kmn).
If m and n are large, we can approximate the joint density function for

S ′
1, S

′
2, . . . , S

′
r as:

f(x1, . . . , xr) = exp(−e−xr − Σr
k=1xk)

And hence, if Tr = S ′
1 +S ′

2 + . . .+S ′
r, then for large m and n, the probability

density function for Tr approaches:
f(t) = e−t

r!(r−2)!

∫ ∞

0 yr−2exp(−e(y−t)/r)dy
And hence, to find the probability of Tr exceeding some x value becomes:
P (Tr ≥ x) =

∫ ∞

x f(t)dt ≈ e−xxr−1

r!(r−1)!

21

Figure 2.2: Here is an example of two RNA sequences with known secondary
structures. Suppose each rectangle is a linear chain of nodes with the bottom-
most node being either a bifurcation node or a leaf. Next, suppose that the linear
chains corresponding to A and A′ have very high homology (such that aligning
A against A′ would score much higher than aligning A against anything else).
And similarly, suppose chains B and B ′ have high homology to each other, and
chains C and C ′ also have high homology to each other. The optimal alignment
should involve A aligned to A′, B aligned to B′, and C aligned to C ′. However,
if we align both of these sequences using both of their secondary structures,
and approach aligning each left or right branch in an all-or-nothing manner,
we would miss the optimal alignment. We could get the optimal alignment if
we carefully consider all possible sub-forests for the two sequences, but being
able to correctly do this for sequences of complex secondary structures becomes
prohibitively expensive in terms of runtime.

22

Chapter 3

Overview

The remainder of this paper is structured as follows: Chapter 4 overviews
how Plains aligns, and describes how Plains handles its “log function to
piecewise-linear function” approximation and parameter optimization. Chap-
ter 5 overviews how Planar aligns, and its uses of secondary structures to
combine alignments and optimize parameters. Chapter 6 describes how SEPA

works over alignments, and how its p-value approximation is derived. Chapter 7
describes Colorgrid scheme used over alignments, as well as the empirical results
found from comparing Plains and Planar to similar algorithms using SEPA.
The final chapter concludes with a discussion of possible future extensions. The
appendix gives the specific sequences used for the tests ran on Plains and
similar alignment tools. It also gives further details for the derivation of the
p-value scheme used in SEPA.

23

Chapter 4

Plains

We now explain several aspects of Plains: its general notations, its align-
ment method, proofs for its non-trivial portions, and an explanation for how it
approximates a log function using a piecewise-linear function, decides what a
“best alignment” is, and optimizes parameters for alignments. Plains stands
for Piecewise-Linear Alignment with Important Nucleotide Seeker.

4.1 The Plains Alignment Method

We will denote a p-part piecewise-linear function as ww(·). This function has a
y-intercept of wo, and the slopes of the linear functions in successive intervals
are wc1, wc2, . . . , wcp, and the x-values at which one interval ends and the next
begins are denoted k1, k2, . . . , kp−1, and ku is the x-value where the uth linear
function of slope wcu ends. Also, assume that k0 = 0, and that the pth function
of slope wcp never ends (i.e., extends off into infinity). Then, for some value i
such that kp̃−1 < i ≤ kp̃, ww(i) is defined as:

ww(i) = wo + [wcp̃(i − kp̃−1)] + Σp̃−1
u=1[wcu(ku − ku−1)].

This p-part piecewise-linear function ww(·) can be modeled to emulate any
general gap function w(·). For practical purposes, we will assume wo ≥ wc1 ≥
wc2 ≥ . . . ≥ wcp, which makes ww(·) a convex function. Also, it is sufficient
to set p to be at most 10. With our reward per match ma fixed at 1, and
a mismatch penalty ms, and our piecewise-linear gap penalty function ww(·)
substituted for w(·), Plains generates an alignment similar to Miller-Meyers
[19], which is valid since Plains uses convex piecewise-linear gap functions.
However, because Plains exclusively uses piecewise-linear gap functions, it is
able to run faster and use less memory. It uses O(mn log p) time and O(np)
space.

24

4.1.1 Modified Linked-List Assistance

Plains uses the same Linked-List Assistance technique mentioned in Chap-
ter 2.1.5, except that because it is exclusely using convex piecewise-linear gap
functions, it is able to do two things differently.

First, instead of considering the plots of v−w(x−k) versus V (i)−w(x− i),
we instead consider the plots of v−ww(x−k) versus V (i)−ww(x−i). What this
modification implies is that we now seek the point where the first plot intersects
the second one, where both plots are p-part piecewise-linear curves. We find
this intersection by performing a binary search over the lines of these curves,
instead of a binary search over the points on this curve, and this takes O(log p)
time instead of the O(logm) time mentioned in Chapter 2.1.5. This technique
reduces the overall runtime from O(mn log m) to O(mn log p).

Second, because we are using p-part piecewise-linear convex functions, each
list L used has O(p) elements in it at any point in time. An explicit proof of
this fact is deferred to section 4.2.1. This property implies that all of our lists
combined take up O(np) space. In section 4.1.2, we show how it is possible to
use O(n) space in the dynamic programming tables and still obtain the correct
alignment. Using these two space reductions together means Plains uses O(np)
space.

4.1.2 Table Space Reduction

The Table-Space Reduction technique used in Plains is similar to that of the
Hirschberg reduction mentioned in Chapter 2.1.3, except that the “maximum
criteria” used is different.

In the case of Plains, the use of Linked-Lists of form Lj to assist in
computing F (·) turns out to come in useful for Table-Space reduction. Let
candL

k (i, j) denote the candk(i) derived from list Lj, and let evalj(k, i) denote
V (k, j) − ww(i − k) (essentially, evalj(k, i) is the two-dimensional version of
eval(k, i), and we are using similar notation to the previous section as well as
Chapter 2.1.5). And let gr(k) denote V (m/2, k) + V r(m/2, n − k). Also, let
er(k, k′) denote V r(m − k′, n − k) + evalk(candL

m/2(k
′, k), k′).

When p is 1, V (m, n) = maxk[gr(k)], as mentioned earlier. Therefore, when
p = 1, it is satisfactory to select our “maximum criteria” to select a k such
that gr(k) is maximized, then use V (m/2, k) and V r(m/2, n− k) to obtain two
subalignments from the saved columns of V and V r based on this. Then, we glue
these subalignments to make a “middle” subalignment (and this is essentially
the subalignment that uses middle bits of X).

When p > 1, each Lj list is computed assuming the indices i can range from
0 to m, not 0 to m/2 (even though that may be sufficient for the V table).

25

Then, at the end of computing the V table, we will use Lj while computing
the V r table and the Lr

j lists1 to obtain rc(j) values2 for each j, denoting an
endpoint for X against a gap that uses row j of our tables. If we let er(k, k′)
denote V r(m−k′, n−k)+evalk(candL

m/2(k
′, k), k′), then our “maximum criteria”

becomes to select a k that maximizes

k∗ = arg max
k

{gr(k), er(k, rc(k))}.

For our chosen k, in the event that er(k) is larger, then we know our optimal
alignment uses X against a gap, with this gap starting in the first half of X
and ending in the second half of X, and we have candL

m/2(rc(k), k) and rc(k)
the right and left endpoints to this gap, and we will use this to construct a
subalignment with this gap, and use whatever we saved of V and V r to obtain
any additional subalignment parts for characters left and right of this gap. All
of this combined gives us our “middle” subalignment.

Similarly, for our chosen k, in the event that gr(k) is larger, then we know
our optimal alignment does not involve X against a gap with this gap starting in
the first half of X and ending in the second half of X. Therefore, we can simply
trace the subalignments from the appropriate points in the V and V r tables the
same way we would for the p = 1 case to get our “middle” subalignment.

The proof of correctness for our selection of k in this manner is deferred
to section 4.2.2. With this in mind, saving rc(j) for all j while computing the
tables allows us to align using O(n) space from the tables and O(np) space from
the Linked-Lists, which means we use O(np) space overall.

4.2 Proofs for Non-Trivial Portions of Plains

In creating an alignment from a given set of parameters, there are two features
Plains has that makes it stand out from the literature it derives from. First,
Plains uses O(np) space in the worst-case scenario. Second, under its given
space and runtime bounds, Plains obtains the correct alignment based on the
given piecewise-linear function ww(·).

These two features of Plains also happen to be nontrivial and tedious,
which was why they were not elaborated and proven earlier, but are done so
here. For the second of these two features, note that proving the correctness
of alignment obtained by Plains boils down to proving the correctness of the

1Note that while computing V r, we are only going to read entries from Lj , not make any
changes to it.

2Formally, rc(j) is the i value in range [m/2, m] such that er(j, i) is maximized. A deeper
intuition for rc(j) is explained in the next section.

26

“maximum criteria” selection employed by Plains when using V and V r tables
to help create our alignment. We will now proceed with these nontrivial proofs.

4.2.1 Proof for the O(np) Space Bound

Earlier, we stated that we are using O(np) space in the worst-case when using
p-part piecewise-linear function ww(·) (and when p � m, as is in Plains, then
this results in a substantial improvement over the quadratic space complexity).
This, in fact, is the main innovation of Plains over the original intuitions of
Miller-Myers.

As explained earlier, Plains uses O(n) space from the tables because it saves
the t most recently computed columns of all tables, and uses recursion to obtain
unknown portions of the alignment. The space taken up by the recursions is
O(log m), however in practice, m and n are assumed to differ from each other
by a constant factor, and hence the O(log m) space used by recursion is less
than the O(n) space used by the tables.

What uses the most space in the Plains algorithm is not the tables, but
the lists of form Lj, Lr

j , R and Rr used to compute the tables. We will now
prove that each list used in Plains uses O(p) space.

Suppose for simplicity that we fix j so that we are dealing with V (i) and
F (i) over all i, and we use linked-list L to obtain the much-needed solutions for
F and V . (I.e., V (i) = V (i, j) and F (i) = F (i, j) and L is how we get values
for V and F .)

Claim: For p-part function ww(·), L will always have at most p elements
in it.

Proof: In the beginning, when i = 0, L starts with one element. Later
on, in some ith iteration, after we just finished computing V (i), if we split an
element of L with winner k and value v (where v = V (k)), then it is seen that,
for some x, the kth plot of v−ww(x−k) intersects the ith plot of V (i)−ww(x−i)
(i.e., V (i) − ww(x − i) = v − ww(x − k) for some x). However, both of these
plots are identical in shape. By translating one horizontally and vertically, this
plot can fit perfectly into the other.

Therefore, in considering the lines from both plots that intersect (assuming
p1th line from the ith plot and the p2th line from the kth plot intersect), since
k < i, the p1th line from the ith plot must have a higher downward slope than
that of the p2th line from the kth plot. Therefore p1 < p2. (So, a given line from
the ith plot intersects a later line from the kth plot.)

Hence, if list L has p elements, this implies that we must have found p − 1
intersections, each from a different plot. Equivalently, we must have had cand(·)
values taken from the ur1th line of some q1 plot intersecting the ul2th line of
some q2 plot, and the ur2th line of the q2 plot intersecting the ul3th line of the

27

q3 plot, and so on up to the qp plot, and therefore:

ur1 < ul2 ≤ ur2 < ul3 ≤ ur3 · · ·urp−1 < ulp.

However, all of these plots have exactly p lines. Therefore, in this case, for each
h from 1 to p, ulh = urh must be true. Hence for all h from 1 to p, the ulh
values correspond to all the lines of our ww function (meaning ulh = h for all
h).

Hence in this case, for each element g in L, if g uses the qh plot for some
value h, then only one line from the qh plot, the ulhth line, can give the best
solution for indices from the [gl, gr] interval (gl and gr are the lwb and upb values
for element g in list L).

Therefore, if during the ith iteration, we have p elements in L, then the i
plot of V (i)−ww(x−i) will have lines of the same slopes as those corresponding
to lines ul1 through ulp. Therefore, if the p′th-line of the ith plot intersects some
qh′ plot (with h′ ≥ 2), then all elements of L derived from qh plots with ulh ≤ p′

will be discarded (i.e., at least one element of L will definitely get discarded,
and one new element with i as its cand(·) value is created, implying that total
number of elements in L overall in this ith iteration will either stay the same or
decrease). Note that it is impossible for the i-curve’s p′th-line to intersect the
q1 plot.

Hence, it is never possible to increase the number of elements in L from p
to p + 1. So L always has O(p) elements in it.

Therefore, in returning to our 2-dimensional model, this argument implies
that our n different linked lists of form Lj and Lr

j all use O(p) space, and
similarly, R and Rr also all use O(p) space. Hence, total space used by all of
the lists is O(np). qed

4.2.2 Definition of rc(j)

Before the next section, where we prove the correctness of the “maximum cri-
teria” selection rule used by Plains, it may help to gain an intuition of the
definition of rc(j).

Suppose for the moment that we fix the index j used by the algorithm in
the V and V r tables so that we flatten to one dimension in order to keep the
arguments simple. Hence, assume V (i) = V (i, j), F (i) = F (i, j), V r(i) =
V r(i, n − j), and F r(i) = F r(i, n − j). We are thus saving the most recently
found t entries from V and V r, where t is some constant3at least 1.

3Saving the t most recently computed entries for V (·) and V r(·) corresponds to saving the
t most recently computed columns of V (·, ·) and V r(·, ·) in our two-dimensional model.

28

During the computations of V and V r, we use a linked list L to maintain
solutions for F , and a linked list Lr to maintain solutions for F r. Next, assume
that we compute all the F and V entries before starting on the F r and V r

entries, and we look at L while computing V r (but we do not modify L while
computing V r).

Suppose also that while computing V , list L maintains cand·(i) for all i from
0 to m, (even though we only need indices of i from 0 through m/2 to complete
computations for F and V), and therefore, when we are done computing V and
L, list L now has the candm/2(i) values for all i from m/2 to m. Hence, after
computing F and V , we know that:

For any i in range [(m/2) + 1, m]: If i′ = candm/2(i), then i′ is the number
in range [0, m/2] such that V (i′) − ww(i′ − i) is maximized.

Note that, during the process of computing the V r entries, one possible best
alignment solution in combining both the V and V r tables could be V (i′) −
ww(i′ − i)) + V r(m − i) (a solution with a gap starting in the first half of X
and ending in the second half of X).

So, now suppose we have some extra variable rc equal to the i in range
[(m/2) + 1, m] such that V (candm/2(i)) − ww(i − candm/2(i))) + V r(m − i) =
eval(candm/2(i), i)+V r(m− i) is maximized. We can figure out the value for rc
while computing the entries for V r using the list L. In considering all possible
alignments that have a gap starting in the first half of X and ending in the
second half of X, we know that rc and candm/2(rc) give us the coordinates in
the right and left halves of X of the gap for the best-scoring alignment of this
type.

Switching over to using all rows in computing our F , V , F r, and V r tables,
we will have, for each row j from 0 to n, a value rc(j) which is equal to the i
in range [(m/2) + 1, m] such that V (candL

m/2(i, j), j)−ww(i− candL
m/2(i, j))) +

V r(m−i, n−j) = evalj(candL
m/2(i, j), i)+V r(m−i, n−j) = er(j, i) is maximized.

4.2.3 Proof of Correctness in “Maximum Criteria” Se-

lection

As mentioned earlier, in the Plains computation of the V and V r tables, the
“maximum criteria” selection is used to find a k that maximizes:

max{gr(k), er(k, rc(k))}

Below we give a proof for the correctness of this method.
In the alignment of X against Y , two general cases may occur.

1. We may have X aligned against a gap of a type starting in the first half
of X, and ending in the second half of X.

29

2. We do not see X aligned against a gap of a type starting in the first half
of X, and ending in the second half of X.

When case (2) occurs4, it is feasible to align X[1..m/2] against Y separately
from aligning X[m/2..m] against Y . Furthermore5, there exists a k′ such that
for all i and i′ and j, V (m/2, k′) + V r(m/2, n − k′) > V (i, j) + V r(m − i′, n −
j) − ww(i′ − i).

Hence, we will obtain the correct alignment by selecting a k that maximizes
gr(k). Therefore, selecting a k such that max{gr(k), er(k, rc(k))} is maximized
gives us the correct alignment in this case.

When case (1) occurs, then there exists an i, i′, and j such that for all
k′, V (i, j) + V r(m − i′, n − j) − ww(i′ − i) > V (m/2, k′) + V r(m/2, n − k′).
Furthermore, for a fixed pair of i′ and j, note that i = candL

m/2(i
′, j), the

candm/2(i
′) value from the Lj list, maximizes V (i, j)+V r(m−i′, n−j)−ww(i′−

i). Next, note that if j is fixed, setting i′ = rc(j) and hence i = candL
m/2(i

′, j)

maximizes V (i, j)+V r(m−i′, n−j)−ww(i′−i) = V (candL
m/2(i

′, j), j)−ww(i′−
candL

m/2(i
′, j)))+V r(m−i′, n−j) = evalj(candL

m/2(i
′, j), i′)+V r(m−i′, n−j) =

er(j, i′). Therefore, we obtain the highest scoring alignment by selecting a
k′ that maximizes er(k′, rc(k′)). Therefore, by selecting a k that maximizes
max{gr(k), er(k, rc(k))}, the algorithm computes the correct alignment in this
case.

4.3 Plains Log Approximation and Parameter

Optimization

Recall our definition for a p-part piecewise-linear gap function ww(·). For a
given piecewise-linear gap function and mismatch penalty, the Plains algo-
rithm does find the best alignment for X and Y . When a user asks Plains

to find the “best set” of gap-mismatch parameters that yield a “best align-
ment,” Plains optimizes over four variables: α, β, d, and ms. The penalty for
each mismatch is denoted ms, as in the previous section. If the gaps follow a
power-law distribution, then the best gap penalty function, determined by the
log-likelihood, follows a log gap function. We have found that such gap functions
give the best alignments. Since piecewise-linear functions can be modeled to re-
semble convex general functions (with some controllable degree of accuracy),
the Plains optimization models piecewise-linear functions to approximate the
continuous logarithmic function. In the extreme case, where p = 1, such a

4This is essentially what the V and V r tables do.
5Therefore for this k′ value, gr(k′) > er(k′, rc(k′)).

30

piecewise-linear function will assume an affine function (corresponding to an
exponential distribution for gap lengths). Hence, it retains the generality for a
wide class of distributions.

More specifically, the log gap penalty function over i is denoted as6: α ln(i+
1) + β. For a given d, α, and β, ww(·) uses k1, . . ., kp values set to d, 2d, ...,
p ∗ d, and for each u from 0 to p, ww(ku) = α log(ku + 1)+ β, and from this, we
can calculate the slope wcu for each uth line7, and wo is set to β.

Computational exploration reveals that varying any of ms, α, β, and d
results in different alignments. Each alignment is given a score “adaptively”
(i.e., the score given to each alignment is not the same score found in the
dynamic programming table) in a way explained in the chapter 6, and among
this collection of alignments, the one with the highest score is considered “the
best.”

One can envision the gap/match-mismatch parameters (α, β, d, ms) as a
vector v, and its corresponding score as a scalar = f(v), where f maps each
vector to its corresponding ratio score. So, for a given vector v ′, we can find
f(v′) by performing an alignment using parameters specified by v ′. Hence, the
problem Plains works over now becomes one of finding a vector v to maximize
f(v), which is a numerical optimization problem.

At the user’s request, Plains can find the v to optimize f(v) using either
Simulated Annealing or Genetic Algorithm. Both are explained in [10]. Empiri-
cal runs over Plains have shown that Simulated Annealing yields better results,
but Genetic Algorithm explores the space of v more thoroughly. However, all
of this is unsurprising, since (1) Monte Carlo related methods are successful in
optimizing Hidden Markov Models (which are similar to sequence alignments),
and (2) Genetic Algorithms typically consider subsequent solutions in a more
random manner than Simulated Annealing. Plains is designed so that any
algorithm to optimize gap/match-mismatch parameters can easily be plugged
in instead of these two methods; for instance, one may search parameters with a
somewhat time consuming MCMC approach, or variants such as Gibbs sampler
or EM.

We have chosen to use SEPA, explained in Chapter 6 to compare the re-
sults of Plains against the similar alignment tools LAGAN, EMBOSS, and
LALIGN. We made Plains optimize the approximate best gap/mismatch pa-
rameters based on the pair of species aligned, and the nature of the sequence.
This method is resemblant of LAGAN’s techniques to account for the nature

6Note: ln is loge using base e, and ln(i + 1) is used instead of ln(i), with the result that
the function takes the value = β for i = 0.

7Note that for the pth line, wcp is computed assuming that kp = p ∗ d, even though kp is
later assumed to be infinity, and the pth line of the piecewise-linear function is assumed to
continue off into infinity.

31

of certain species in performing its alignments.8 In contrast, EMBOSS and
LALIGN each use a fixed set of gap/mismatch parameters for all species. We
present a figure 4.1 showing the piecewise-linear gap functions that Plains

came up with for each species pair9. A comparison of the alignment results
from Plains and the other alignment tools can be found in Chapter 7.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Gap Length (bp)

G
ap

 P
en

al
ty

LALIGN
EMBOSS
LAGAN
Human−Fugu cDNA
Human−Human cDNA
Human−Fugu Genomic
Human Pseudogene

Figure 4.1: The Piecewise-Linear Gap Functions that Plains came up with
in optimizing the score for different species pairs, along with the rescaled gap-
paramters the other tools use. Note that the LAGAN gap paramters shown here
are its default paramters. LAGAN uses a number of unspecified gap parameters
in aligning on a species by species basis.

Plains can easily align a pair of sequences, each with nucleotides of up
to 8Kb. It can either (1) seek the best gap-mismatch parameters for a given
pair of sequences and align with those parameters, or (2) use a user-specified
set of gap-match parameters to align the pair of sequences. In (1), the runtime
typically ranges from 30 minutes to 2 hours. In (2), the runtime typically ranges
from 10 seconds to 1 minute. Plains can either be used via commandline, or as
part of the Valis tool set.

8LAGAN has special gap-parameters for Human and Mouse, but not Fugu. For the runs
using Human and Fugu sequences, the parameters where LAGAN got the best results was
used.

9Note that all gap parameters are normalized by dividing by the reward-per-match value
of an alignment tool. This is done in order to fairly compare one tool to another. Also, for the
same reason, all scores reported in this paper are also divided by a tool’s reward-per-match
value ma.

32

Chapter 5

Planar

We now explain several aspects of Planar, its general notations, its alignment
method, how it combines two alignments in order to properly account for sec-
ondary structures in both sequences, and how it optimizes parameters. Planar

stands for Piecewise-Linear Alignment for Nucleotides Arranged as RNA.
Planar holds two key differences in its design compared to FastR and

CMSAA. First, it uses length-dependent piecewise-linear gap functions, not
just a linear gap formula without a penalty for opening a gap. Second, after
aligning sequences X and Y using X’s secondary structure, Planar explicitly
“corrects” the alignment using Y ’s secondary structure, if one is supplied.

5.1 Details of the Planar Gap Function in Sec-

ondary Structures

This section is dedicated to explaining the intuition behind the gap system
used over secondary structures by Planar. Planar uses the same p-part
piecewise-linear gap function ww(·) in its alignments as Plains. The secondary
structure involved with RNA alignments might make it optimal to, at some
points, use a small gap, and at other points, use a larger gap. The nature of
the piecewise-linear gap functions used in Plains accommodates this sort of
distribution easily, which is why we have chosen to use it also in Planar. We
chose to dedicate an entire section to the discussion of the gap usage for RNA
by Planar, because FastR and CMSAA bypass some of the issues mentioned
here due to their choice of a different type of gap formula.

In figure 2.1, we see four nodes bulked together in TX even in spite of the
fact that the derived indices of X involved are far apart (with the pairings from
X’s secondary structure bringing them together). For this case, it might better
bring out homologies between other locations in TX if all four of these nodes

33

are aligned against a gap, and this gap be penalized as a reduced ww(4) instead
of a higher value. Furthermore, the reason for penalizing this gap as length 4
instead of length 6 (even though the nodes represent 6 base pairs from X) is
to better encourage an alignment based on the secondary structure. Therefore,
Planar penalizes adjacent nodes within linear chains of TX together based on
the number of involved nodes, regardless of if the indices they are derived from
in X are far apart or are more numerous than the amount of nodes they are
represented by in TX . 1

Next, we recall from section 2.2.4 how CMSAA bulks adjacent positions
of X into the same linear chain more easily than FastR’s Binarization, and
as a result, also has slightly fewer bifurcations, with figure 2.1 elaborating.
Planar binarizes X into TX the same way as CMSAA, since it allows for
easier penalization of adjacent nodes in a linear chain using length-dependent
piecewise-linear gap functions. Furthermore, avoiding unneccesary bifurcations
help to reduce the overall algorithmic complexity of an alignment, even if only
by a constant factor.

However, in spite of all of this, there is still the issue of representing gaps
around bifurcation points. Suppose we have a bifurcation node v with qp nodes
above it forming a linear chain, and ql nodes forming a linear chain in its left
subtree, and qr nodes forming a linear chain in its right subtree, where ql 6= qr.
See figure 5.1 for an example. Now, suppose we wish to consider the alignment
of the bottom-most up ≤ qp nodes directly above v, and the topmost ul ≤ ql

nodes in v’s left subtree, and the topmost ur ≤ qr nodes in v’s right subtree,
where up, ul, and ur are all undetermined. An intuition into the nature of
ww(·) would suggest that the most appropriate gap penalty to use here should
be ww(up + ul + ur). However, we would need to iterate all possible values
for up, ul, and ur over the linear chains directly above and below node v, and
this would make Planar a magnitude of O(m3) times more complex than
it needs to be.2 Furthermore, taking advantage of X’s secondary structure
suggests that, when aligning TX against Y , we should treat the linear chains
above and left/right of v independently of each other. Because of this intuition,
and for algorithmic simplicity purposes, we will treat each linear chain in TX

independently of each other, and not account for gaps across different linear

1As a result of this behavior for ww(·) in Planar, when a node in TX has a label of ’P’,
its left and right characters will either both align to characters of Y , or both align to a gap
(corresponding to the node itself aligning to a gap). We will not see the left character of the
node align to a character of Y while the right character aligns to a gap (or vice versa), which
could happen in FastR or CMSAA.

2One can argue that it is already algorithmically complex enough to find the correct k
such that i < k < j in order to split Y [i : j] when aligning it against a bifurcation point in
TX .

34

chains when aligning at bifurcation nodes. Therefore, the penalty of the case
described here will be ww(up)+ww(ul)+ww(ur), instead of the difficult to find
optimal ww(up + ul + ur).

Figure 5.1: Suppose we have a bifurcation in our tree TX , with qp nodes above
it forming a linear chain, and ql nodes forming a linear chain in its left subtree,
and qr nodes forming a linear chain in its right subtree, where ql 6= qr. Suppose
the optimal representations of gaps around this bifurcation involves the bottom
up nodes over the bifurcation, the top ul nodes to the left of the split, and
the top ur nodes to the right of the split, as pictured above. We would need
to consider all valid values of up, ul, and ur in order to properly know the
optimal alignment using a gap around the bifurcation point. This would make
the runtime for Planar prohibitively more expensive than it needs to be.

5.2 Alignment Formulation

Given two sequences X and Y with X’s secondary structure known, we construct
a tree TX using the same method as CMSAA’s Binarization. We then proceed
with the alignment using notation and conventions similar to Plains. Our goal
is to align table V . Much like earlier, we will use table G to denote alignments
ending at a matched or mismatched position, and table F to denote alignment
ending with X (or TX in this case) aligned against a gap. However, in Plains,

35

we used table E to denote alignments ending with Y aligned against a gap.
For Planar, we will use two tables for this: D and E. D denotes alignments
ending with the left portion of Y aligned against a gap, and E (much like earlier)
denotes alignments ending with the right portion of Y aligned against a gap. As
shown by the alignment formulas for FastR and CMSAA, we need to consider
both ends of Y in the alignment since each node in TX denotes indices from
both ends of X.3

We will also make use in the alignment of a p-part piecewise-linear gap
function ww(·), as well as s(·, ·) and b(·, ·, ·, ·) for unbound and bound position
scores for matches and mismatches. Note that unlike FastR and CMSAA, the
s(·, ·) and b(·, ·, ·, ·) functions are not used for gaps, just strictly for matches and
mismatches.

With all of this in mind, let V (v, i, j), denote the alignment for v’s subtree
aligned against Y [i : j], where v is a node from tree TX . Also, let |v| denote
the number of nodes in v’s subtree, including v itself, and let LCB(u, v) be a
boolean statement that is true only if, for nodes u and v from TX , we have that
u is in the same linear chain as v, and u is below v. See figure 5.2 for more
details. With this preliminary, the alignment formula used for Planar can be
written as follows:

• Base Cases:

– If v’s label is ‘E’, then:

V (v, i, j) = ww(j − i + 1)

– If i > j, then:
V (v, i, j) = ww(|v|)

• Recursive Cases:

– If v’s label is ‘B’, then:

V (v, i, j) = max
i−1≤k≤j

[V (v.left, i, k) + V (v.right, k + 1, j)]

3We could in theory eliminate table D and just use table E to denote alignments of
either ends of Y aligned against a gap, reducing the penalties resulting from applying ww(·).
Unfortunately, this increases the overall alignment runtime by a factor of O(n) from the need
to inspect both the left and right ends of Y simultaneously, and empirically, the alignments do
not differ drastically when contrasted to using both D and E. Therefore, the extra overhead
in runtime is not justified.

36

Figure 5.2: LCB(u, v) is a boolean statement that is true only if, for nodes u
and v from TX , we have that u is in the same linear chain as v, and u is below
v. In the trees shown above, LCB(u, v) is true for the left tree, but false for
the middle and right trees. It is false for the middle tree because u is not in the
same linear chain as v. It is false for the right tree because, although u and v
are in the same linear chain, u is above v.

– If v’s label is NOT ‘B’, then:

V (v, i, j) = max{D(v, i, j), E(v, i, j), F (v, i, j), G(v, i, j)}
D(v, i, j) = max

i+1≤k≤j+1
[V (v, k, j) − ww(k − i)]

E(v, i, j) = max
i−1≤k≤j−1

[V (v, i, k) − ww(j − k)]

F (v, i, j) = max
u s.t. LCB(u,v)

[V (u, i, j) − ww(|v| − |u|)]

– If v’s label is ‘L’, then:

G(v, i, j) = s(X[lv], Y [i]) + V (v.child, i + 1, j)

– If v’s label is ‘R’, then:

G(v, i, j) = s(X[rv], Y [j]) + V (v.child, i, j − 1)

37

– If v’s label is ‘P’, and i < j then:

G(v, i, j) = b(X[lv], X[rv], Y [i], Y [j]) + V (v.child, i + 1, j − 1)

– Otherwise:
G(v, i, j) = −∞

We traceback from V (root, 1, n) to get the alignment for all of TX aligned
to Y [1 : n]. Using an approach similar to Needleman-Wunsch implies that our
runtime is O((m + n)n2m1 + n3m2) = O(m2n2 + n3m) and the space usage is
O(n2m). The extra runtime compared to FastR’s method comes about from
inspecting for the optimal k index to compute the D and E tables, as well
as inspecting for optimal u to compute the F table. However, using Linked-
List Assistance and CMSAA’s space reduction improves both the runtime and
memory usages for Planar, as discussed in the next section.

5.3 Planar Linked-List Assistance and Space

Reduction

In section 2.1.5, we see Miller-Myers Linked-List Assistance applied to reduce
the runtime of the Needleman-Wunsch algorithm. Using a similar tactic for the
Planar alignment formula, when v is fixed, we will treat each n × n deck of
form V (v, ·, ·) separately (and similarly for D, E, F , and G). For each row i,
we will use a list LDi to reduce the lookups in computing D(v, i, ·). For each
column j, we will use a list LEj to reduce the lookups in computing E(v, ·, j).
We finish computing each deck before moving on to the next one, and we can
empty and reuse each list LDi and LEj when changing our v value. For each
i and j, we make a list R(i,j) to reduce the lookups in computing F (·, i, j), and
each list R(i,j) is updated upon inspecting the next deck. Also, the updates for
list R(i,j) can be interweaved with the updates for lists LDi and LEj. With
this in mind, we are able to properly compute entries for tables D, E, and F
by looking up entries from our lists, instead of from previously computed table
entires.

Using an argument similar to section 4.1.1, because Planar uses p-part
piecewise-linear gap functions, the space used by each list is O(p). Next, for
all i and j, the total number of lists of form LDi, LEj, and R(i,j) is O(n2).
Therefore, the total space used by all of the lists is O(n2p). In addition, these
lists reduce the overall runtime for the formula mentioned earlier in section 5.2
from O((m + n)n2m1 + n3m2) to O((log p)n2m1 + n3m2) because at the non-
bifurcation nodes in TX , we are only making O(log p) lookups within our lists

38

LDi, LEj, and R(i,j) instead of the O(m + n) lookups to previously computed
table entries.

In addition to all of this, Planar only saves the t most recently computed
decks of all tables, where t is a constant ≥ 2, and Planar computes its final
alingment tree in a manner similar to that for CMSAA’s GENERIC SPLIT
methodology mentioned in section 2.2.6. This approach implies that the overall
space used by Planar, which is the space used by the table decks plus the space
used by the lists, can be bounded by O(n2t(log m) + n2p) = O(n2(p + log m)),
taking advantage of the fact that t is constant. In practice, this is drastically
smaller than O(n2m).

Furthermore, by using a methodology similar to CMSAA’s GENERIC SPLIT,
which increases runtime by only a constant factor while reducing space, Planar

is able to align with this reduced memory usage in time O((log p)n2m1 +n3m2).
Hence, overall Planar uses O((log p)n2m1 + n3m2) time and O(n2(p + log m))
space, which is asymptotically identical to CMSAA if p is fixed.

However, there is one difference between the methodology in Planar ver-
sus that of CMSAA’s GENERIC SPLIT. We need to properly consider the
effects of aligning a linear chain of TX against a gap where this chain stretches
from table V to V r, our reverse table, 4 during execution of the V SPLIT and
WEDGE SPLIT methods. This issue is resolved in a manner almost identical
to that mentioned in section 4.1.2, and does not change the asymptotic run-
time or space usage. We use each R(i,j) list during the computation of the V r

tables and Rr
(i,j) lists to compute rc(i, j) values, then use rc(·, ·) to account for

a best solution involving V and V r and a gap in between. We compare this
solution against the alternate solution involving V and V r without a gap and
use whichever is the best.

5.4 Y Secondary Structure Correction

In the event that both X and Y have known secondary structures, Planar

works as follows: Planar obtains TX based on X’s secondary structure, and
aligns TX to Y in the manner mentioned earlier to get the final alignment tree
TAX . Planar then obtains TY based on Y ’s secondary structure, and aligns
TY to X to get the final alignment tree TAY , working the exact same way as
aligning TX to Y , except that X and Y are swapped. Using TAX , the alignment
obtained using X’s secondary structure, and TAY , the alignment obtained using
Y ’s secondary structure, we proceed to combine them to form the final alignment

4Note that because Planar treats each linear chain of TX independently of each other, as
mentioned earlier, we therefore need only concern ourselves with representing gap penalties
accurately over linear chains, and treat bifurcations separately.

39

A in the following way:
We linearize TAX and TAY into respective linear alignments AX and AY . We

can make TAX into AX recursively by doing, for each node u in TAX , a procedure
where we place into AX the left indices of u, then we recursively visit all of u’s
children nodes (if u is a bifurcation node, we will visit the left node and then
the right node), then we place into AX the right indices of u. This sequence
of steps creates the correct linearized alignment AX . Converting TAY into AY

uses the same idea. Our goal is to merge AX and AY into a final alignment A.
Figures 5.3 and 5.4 illustrate visually the methodology involved for this. This
algorithm is described in more detail in the remainder of this section.

Our first step is to fragment AX and AY into important and unimportant
strips. These portions will receive special consideration when we combine AX

and AY to form A.

Figure 5.3: Part 1 of how Planar “merges” two alignments AX and AY into
the final alignment A. Going from top to bottom, first, IX and IY represent
respectively AX and AY fragmented into important and unimportant segments
based on alignment scores. Below that, LO consists of the identical segments
of AX and AY . Next, we trim the segments of IX and IY based on LO.

Suppose alignment AX is represented as a list of entries of form (x, y), where,
if AX [i] = (x, y) this implies that the ith position in alignment AX represents
X[x] aligned to Y [y]. If x < 0, this implies that AX [i] represents Y [y] aligned
to a gap. Similarly, if y < 0, this implies that AX [i] represents X[x] aligned to
a gap. We do not have double-gapped positions in our alignment, so we will
not see both x < 0 and y < 0 at the same time. The representation for AY

uses the same idea. Next, suppose that aX and aY are the respective lengths for
alignments AX and AY , and let AX [i : j] denote the subalignment of AX ranging
from indices i thru j, that is AX [i : j] denotes AX [i], AX [i + 1], . . . , AX [j], and
AY [i : j] denotes a similar idea over AY .

40

We fragment AX and AY respectively into sets of strips IX and IY , which is
similar to steps (1), (2), (4), and (5) mentioned in section 6.1. Suppose we have
some fixed constants q and ω, and ρ all assuming real values in the range [0, 1],
let q denote a percentage for the window size to be used, and let ω denote the
value used to prevent portions of AX and AY of lowest match percentage from
becoming considered as important strips. We use the following steps:

1. For all i from 1 to aX − (aXq − 1), we compute the score sax(i), for
subalignment AX [i : i + aXq − 1]. We use ww(·) to penalize gaps, and
s(·, ·) to score match and mismatches at positions in AX corresponding
to unbound positions of X. If for some i, AX [i] corresponds to a bound
position of X that is involved in a match or mismatch, we find the i′

such that the X indices used in AX [i] and AX [i′] are bound to each other,
and apply the corresponding X and Y characters for AX [i] and AX [i′]
into b(·, ·, ·, ·), and place the score at both positions AX [i] and AX [i′]
as 1

2
b(X[AX [i].x], X[AX [i′].x], Y [AX [i].y], Y [AX [i′].y]). I.e., the score that

would normally be applied to both AX [i] and AX [i′] gets equally split be-
tween both of them. Next, let µ and σ denote the mean and standard
deviation of our sax(·) values. For each i, we mark5 sax(i) values as “spe-
cial” if they exceed a threshold value of µ + ωσ. Hence, we filter away
A[i : i + aXq − 1] if it fails to meet this threshold value.

2. For each u and u′ (with u ≤ u′), if sax(u), sax(u + 1), . . ., sax(u
′) are

all marked as “special”, but sax(u − 1) and sax(u
′ + 1) are not, then we

consider the strip A[u : u′ + aXq − 1] as important (i.e., we consider as
important the strip starting the leftmost entry represented by sax(u), up
till the rightmost entry represented by sax(u

′)).

3. Next, we merge together any important strips that overlap. Namely, if we
have two strips AX [i : j] and AX [k : l] such that i ≤ k ≤ j, then we merge
these strips into one larger strip AX [i : max (j, l)].

4. With all strips now representing non-overlapping regions, we then proceed
to give each strip AX [i : j] its corresponding score S(i, j). We also know
the locations of the unimportant strips, they are merely the subalignments
of AX that do not partcipate in any important strips. For example, j < k
and AX [i : j] and AX [k : l] are both deemed as important strips with
no other important strips between them, then clearly AX [j + 1 : k − 1]
is an unimportant strip. We provide scores for the unimportant strips

5The choice of using µ + ωσ as the cutoff value instead of a fixed constant gives us the
flexibility of catching important regions in the two sequences, regardless of how homologous
they are to each other.

41

as well. At this point, AX has been fragmented into the important and
unimportant strips, and we will let IX denote this collection of important
and unimportant strips.

5. By symmetry, we fragment AY into a collection IY of important and unim-
portant strips in a similar manner.

Based on empirical experimentation, setting q = 0.1 and ω = 0.5 yields
reasonably similar fragments (in terms of their lengths) with important strips
scoring significantly higher than unimportant ones.

Next, unrelated to the construction of IX and IY , we compute the LO col-
lection of strips, which consists of the strips that overlap between AX and AY .
For alignment positions i and i′, if AX [i].x = AY [i′].x and AX [i].y = AY [i′].y
are both true, we will say that AX [i] = AY [i′], otherwise, we will say that
AX [i] 6= AY [i′]. This corresponds to checking if AX [i] and AY [i′] correspond to
the same indices for X and Y . 6

If a strip exists in both AX and AY , we want that in our final result A.
Suppose that for strips AX [i : j] and AY [i′ : j ′], both of these strips are of the
same length, and:

AX [i] = AY [i′], AX [i + 1] = AY [i′ + 1], . . . , AX [j] = AY [j ′]
But, AX [i − 1] 6= AY [i′ − 1] and AX [j + 1] 6= AY [j ′ + 1]. Then we place

(i, j, i′, j ′) within the LO list. Hence, LO consists of a list of coordinates of
endpoints of all locations over AX and AY such that their alignments overlap.

For each entry l in LO, we assign it a score using our match/mismatch and
gap functions s(·, ·), b(·, ·, ·, ·), and ww(·). We use match/mismatch fucntion b()
when a position corresponds to a bounded position of either X or Y , and apply
b to the current position and the other position in the alignment it is bound,
and use half of it to score the current position. This strategy uses the same
approach as the similar cases in step (1) of the methodology that was used to
score important/unimportant strips from AX and AY . 7 The manner in which
we are using b here may seem a bit unsymmetric, but since we are trying to
account for highlights in AX and AY over a linear alignment, and since bound

6If AX [i] corresponds to an index of X aligned against a gap, we will consider AX [i] =
AY [i′] to be true if and only if AX [i].x = AY [i′].x AND AY [i′] also corresponds to X aligned
against a gap. A similar case applies when AX [i] corresponds to an index of Y aligned against
a gap.

7Note that for some indices x and y encompassed by l, and such that X [x] is aligned
to Y [y] in l, it might be possible that both of X [x] and Y [y] correspond to different bound
positions in X and Y . When this happens, we appropriately apply b(·, ·, ·, ·) twice, once to the
alignment position in AX and its corresponding bound position of the alignment, the second
time to the alignment position in AY and its corresponding bound position of the alignment,
and we will “use” whichever score is higher.

42

matches/mismatches are scored higher than unbound matches/mismatches in
the paramters typical to Planar, we argue that this methodology is fair for
scoring common linear alignments using two secondary structures simultane-
ously.

Next, using LO, we trim the fragments in IX and IY generated earlier so
that they do not overlap with any entries in LO. We trim the strips of IX in
the following way:

Given an element t from IX corresponding to strip AX [i : j] (meaning that
its endpoints are (i, j)), suppose that for some element l in LO we see that l’s
endpoint indices over AX are (i′, j ′) (which mean that l corresponds to a strip
AX [i′ : j ′]), and t and l overlap. We get the following cases for this overlap:

• If i < i′ ≤ j ≤ j ′, then t overlaps l on the left side, so we trim t’s endpoints
from (i, j) into (i, i′ − 1)

• If i′ ≤ i ≤ j ′ < j, then t overlaps l on the right side, so we trim t’s
endpoints from (i, j) into (j ′ + 1, j)

• If i < i′ ≤ j ′ < j, then t completely encloses l, so we split t into two entries
t′ and t̃, where t′ has endpoints (i, i′ − 1), and t̃ has endpoints (j ′ + 1 : j).

• If i′ < i ≤ j < j ′, then l completely encloses t, so we remove t entirely.

Note that an element t from IX might overlap with more than one element
from LO. When this happens, we check t against each such element l from LO,
making appropriate modifications to t (as well as for any splits that come about
from t). While these modifications are made, appropriate modifications to the
scores of these intervals are also made.

Elements from IY are modified based on their overlaps with elements from
LO over AY in a similar manner.

After these modifications are made to IX and IY , then for each element l from
LO, IX , or IY corresponding to either interval AX [i : j] or interval AY [i′ : j ′],
we determine the first and last X indices represented by this interval (denoted
respectively as xs and xe), as well as the first and last Y indices represented
by this interval (denoted respectively as ys and ye). If l has no X indices
represented in its interval (meaning that l corresponds to a subalignment that
is all Y characters aligned against gaps), then we discard l entirely. Similarly,
we discard l if it has no Y indices represented in its interval.

Next, we construct a graph, where each element l from IX , IY , or LO is a
node, and for all pairs for nodes u and v, we will direct an edge from u to v if
and only if u.xe < v.xs and u.ye < v.ys, i.e., we direct an edge from u to v if it is
possible for the subalignment corresponding to u to precede the subalignment

43

corresponding to v, where either of these subalignments can be either from AX or
AY . Furthermore, assuming that the score for the subalignment corresponding
to v is S(v) using the s(·, ·), b(·, ·, ·, ·), and ww(·) match/mismatch and gap
functions mentioned earlier, then we will assign edge (u, v) a value of:

S(v) − ww(v.xs − u.xe − 1) − ww(v.ys − u.ye − 1)

This value is the gap penalty for any unused X and Y characters of respective
indices between u.xe and v.xs, and u.ye and v.ys, followed by the score for the
subalignment corresponding to v.

In this graph, we will also add two additional vertices. A start vertex vs with
an edge directed to all other nodes in the graph, and an end vertex ve where
all other nodes direct an edge towards it. For each node u, the weight of edge
(vs, u) is S(u)−ww(u.xs−1)−ww(u.ys−1), which is gap penalty for unused X
and Y characters preceding u followed by the score for u’s subalignment. The
weight of edge (u, ve) is 0 − ww(m − u.xe) − ww(n − u.ye),

8 which is the gap
penalty for unused X and Y characters occurring after u’s subalignment.

We seek to solve the maximal path from node vs to node ve. Note that
our graph is a DAG (Directed Acyclic Graph), so this maximal path involves a
finite number of edges. Our solution can be obtained by keeping track of the
number of in-edges visited thus-far for each node, as well as the predecessor
node and maximal path-length for the maximal-path found thus-far for each
node. This is like Dijkstra’s single-source shortest-path algorithm from [3] in
how we store/update predecesors and maximal path-lengths for each node, and
also in how when we visit a node, we visit all of its out-edges and update the
maximal path for the out-nodes touching these out-edges. However, one key
difference from Dijkstra’s algorithm (besides the fact that we are computing a
maximal path instead of a minimal path) is that we visit a node only after all
of its in-edges were visited, and that node’s correct predecssor and maximal
path-length has already been found9. Once this is done, we trace node ve’s
predecessor backwards to vs to get our maximal path.

This maximal path from vs to ve corresponds to our final alignment A, where
each node u on this path yields a subalignment that is used in A, and unused
X and Y indices for an edge (u, v) on this path correspond to ensuring that the
ununsed X and/or Y characters aligned against a gap between the subalign-
ments corresponding to u and v. Furthermore, the score S(A) for alignment
A is merely the sum of the values for all edges on our maximal path, which in
turn is the sum of the scores for each subalignment on this path, minus the gap
penalties for ununsed X and Y characters.

8Note that m and n are the lengths of X and Y , as mentioned earlier.
9And because our graph is a DAG, every node will be visited once.

44

Note here that for any fixed sequences X and Y with fixed trees TX and TY ,
varying the match/mismatch scores and gap penalties used for s(·, ·), b(·, ·, ·, ·),
and ww(·) will result in different results for AX and AY (the alignments using
just X’s or Y ’s tree), and therefore give a different result for A, with a pos-
sibly different score S(A). The next section uses this approach to develope a
procedure for Planar to perform parameter optimization.

5.5 Planar Parameter Optimization

Planar uses its alignment parameters in a similar manner to Plains. Its p-
part piecewise-linear gap function ww(·) behaves in the same way as Plains.
Also, for unbound positions, where we use s(·, ·), Planar merely checks for
match or mismatch, giving a fixed reward of 1 for match, and a penalty of ms
for mismatch, just like Plains. However, for the case of bound positions, where
we use b(·, ·, ·, ·), Planar checks for equality between the X and Y characters.
If there is a mismatch, we give a fixed reward of 1. If there is a match, we give a
fixed reward of mb, where mb > 1. The idea behind this scoring is that when we
wish to encourage bound characters to align (match or mismatch), but we would
like to give an extra reward when those characters match. Furthermore, the
motivation behind fixing the mismatch reward at bound positons as 1, besides
the fact that this is done in other RNA alignment algorithms, has to do with
the fact that there is an “equivalent” of an unbounded position match when we
align characters of a sequence of unknown secondary structure up with bounded
positions of another sequence with known secondary structure, or thought up
in a different way, we are “matching” a sequence of unknown structure up to a
secondary structure.

Planar uses α, β, and d to approximate a logarithmic gap function as a
p-part piecewise-linear gap function in the exact same way as done in section
4.3. Therefore, Planar has five variables to dictate the gap/match-mismatch
parameters used in generating its alignments: (α, β, d, ms, mb). This is identical
to that mentioned for Plains in section 4.3, except for the fifth variable mb that
is introduced here. Therefore, as before, all our parameters act as a vector v, and
the score of the resulting alignment A from v is quantified as the scalar f(v), and
our goal is to find the v that maximizes f(v), which is numerical optimization,
and is solved with exactly the same techniques described in section 4.3.

45

Figure 5.4: Part 2 of how Planar “merges” two alignments AX and AY into
the final alignment A. Going from top to bottom, we convert the segments of
IX , LO, and IY into nodes, directing an edge from node u to node v only if we
can create an alignment where u’s segment precedes v’s segment. There is one
detail not shown here: We assign a weight to each edge (u, v) as the score for
v’s segment minus the gap penalty for any unused X and Y characters between
u and v’s alignment segments. We also create a dummy source and a sink node
(called respectively vs and ve). Note that a few edges have been omitted from
this graph for visual simplicity. We solve maximum path algorithm over this
graph. Below the graph is a drawing using only the nodes and edges involved in
the optimal path. Using the segments corresponding to the nodes on this path,
plus gaps for any missing X and Y characters, gives us our alignment A.

46

Chapter 6

SEPA

SEPA stands for Segment Evaluator for Pairwise Alignments. It takes a pre-
computed pairwise alignment, identifies its important segments, and uses a p-
value scheme to measure these segments, hence allowing it to “measure” the
quality of an alignment.

Recalling the notation used in Chapter 4, assume that the sequences to
be aligned are X and Y , and their respective lengths are m and n. Let us
suppose that aligning X and Y with some arbitrary alignment tool produces an
alignment A of length a, where m ≤ a ≤ m+n. We will represent an alignment
A as follows: For each i, A[i] denotes the ith position in alignment A, and it is
represented as a pair of index coordinates (u, v) taken from X and Y , and this
corresponds to X[u] and Y [v] being aligned to each other at position i in A if
u > 0 and v > 0, or one of X[u] or Y [v] being aligned against a gap if either
v ≤ 0 or u ≤ 0.

Next, let A[i : j] denote the portion of alignment A[i], A[i+1], . . . , A[j]. We
will refer to A[i : j] as a strip or segment from position i to position j.

Reintroducing other notations from Chapter 4, let ww(i) denote the penalty
for a gap of length i. ww(·) can be any arbitrary function, but for the purpose
of the current discussion, we will assume that it is a p-part piecewise-linear
function where each successive slope is smaller than the previous one. A more
specific and widely-used version of this score-function is where p = 1, which is
the affine function used in the Smith-Watermann algorithm.

With this, let S(i, j) denote the score for strip A[i : j] where the score is
computed by adding following values: ma is a score for each match, ms is the
penalty for each mismatch, and ww(·) is used to penalize the gaps. To compute
S(i, j) from A[i : j], each match and mismatch within it is added or deducted
from the score individually, while each region of X against a gap and Y against
a gap is penalized as a whole using ww(·) based on the length of that region.
We note that S(i, j) is computed after A[i : j] is already found, in contrast to

47

the scoring method mentioned in Chapter 4, where a score is computed in the
dynamic table and used to generate an alignment.

Suppose we have a scheme that marks r non-overlapping strips as important.
Suppose also that the endpoints for these strips are denoted as:

(i1, j1), (i2, j2), . . . , (ir, jr).
For each k, we wish to measure in some way how strip A[ik : jk] provides a

meaningful correlation between X and Y . One common mathematical approach
is to, given a certain null hypothesis, compute the p-value of Pr(x ≥ s) where
s = S(ik, jk). This p-value is known as the coincidental probability of obtaining
a strip with score at least s. For this paper, we will assume the null-hypothesis
is the behavior of important strips taken from pairwise-aligning randomly gen-
erated DNA sequences1. Also, if the total scores of all strips is t = Σr

k=1S(ik, jk),
then ζ = Pr(x ≥ t, y ≤ r), the probability of obtaining at least a total score of
t using at most r strips.

One should note that coincidental probabilities of the segments (both p-
values and ζ) are dictated by the scheme used to determine the segments as
important. One scheme might deem strip A[i : j] as important, but SEPA might
not, and instead SEPA may consider a possibly overlapping strip A[i′ : j ′] as
important. As a result, the formula for the p-values and ζ value could differ from
one scheme to the other. For instance, in the method used to obtain important
segments mentioned in Karlin-Altschul [13], Pr(x ≥ s) = 1 − exp(Kmne−λs)
holds. However, as argued later in this paper, for the way SEPA obtains the
segments from an alignment A, we approximate the p-value as Pr(x ≥ s) =
K
λ
e−λs.

6.1 Obtaining High-Scoring Strips from an Align-

ment

Given an alignment A produced from sequences X and Y , we produce important
strips as follows: Given fixed constants W and ω, and ρ (where W is an integer,
and ω and ρ are real numbers in the range [0, 1]), let W denote the window
size to be used, ω denote the value used to prevent portions of A of lowest
match percentage from becoming considered as important strips, and ρ denote
the value used to filter away areas of A that have too low of a p-value. We
obtain our segment pairs in the following steps:

(1) For all i from 1 to a − (W − 1), we compute pa(i), the percentage of

1For the moment, we are using the same null hypothesis to estimate p-values for DNA and
RNA alignments. We can, in the future, account for secondary structures in evaluating RNA
alignments.

48

entries in A[i : i + W − 1] where a match has occurred. Let µ and σ denote the
mean and standard deviation of our pa(·) values. Next, for each i, we mark2

pa(i) values as “special” if they exceed a threshold value of µ + ωσ. Hence, we
filter away A[i : i + W − 1] if it fails to meet this threshold value.

(2) For each u and u′ (with u ≤ u′), if pa(u), pa(u + 1), . . ., pa(u
′) are all

marked as “special”, but pa(u − 1) and pa(u
′ + 1) are not, then we consider

the strip A[u : u′ + W − 1] as important (i.e., we consider as important the
strip starting the leftmost entry repsented by pa(u), up till the rightmost entry
represented by pa(u

′)).
(3) For each strip A[i : j] deemed important, we trim it so that it starts and

ends at a position in the alignment where a match occurred. Thus, if i′ is the
smallest value such that i′ ≥ i and A[i′] is a match position, and j ′ is the largest
value such that j ′ ≤ j and A[j ′] is a match position, then we trim strip A[i : j]
into strip A[i′ : j ′].

(4) Next, we merge together any important strips that overlap. Namely, if
we have two strips A[i : j] and A[k : l] such that i ≤ k ≤ j, then we merge these
strips into one larger strip A[i : max (j, l)].

(5) With all strips now representing non-overlapping regions, we then pro-
ceed to give each strip A[i : j] its corresponding score S(i, j), as well as its
p-value. We delete A[i : j] if its p-value exceed ρ, since that indicates that
A[i : j] may be coincidental. We can optionally also collect other information
at this point, such as the length of each strip.

(6) The r strips kept at this step are considered the “good” ones. We now
compute t, the sum of the scores of the these strips. Using this value, we can
compute ζ, coincidental probability for all r strips obtained.

Based on empirical experimentation, setting W = 50, ω = 0.5, and ρ =
0.5 yields segment pairs that are reasonably long, non-coincidental, and have
significantly higher matches than the alignment “background”. We reasoned
that since our method of obtaining segment pairs differs from that of Karlin-
Altschul, then the method for computing p-values for each segment pair cannot
build upon their assumptions.

6.2 Methods: Analyzing Segment Pairs

In order to approximate an appropriate p-value estimation for SEPA, we an-
alyzed segment pairs behavior over our assumed null hypothesis of alignments
for randomly generated nucleotide sequences. For length values ranging from

2The choice of using µ + ωσ as the cutoff value instead of a fixed constant gives us the
flexibility of catching important regions in the two sequences, regardless of how homologous
they are to each other.

49

1000 bp to 8000 bp, we generated 25 random sequences. We also generated
25 random sequences of length 500 bp. For each combination of these length
pairs, we ran all 625 possible pairwise alignments using Plains, and analyzed
results using SEPA where ρ = 1 (to avoid filtering any segments out due to
low p-value). The results for mean length-to-score and mean segment scores
are shown in Fig. 6.1 and 6.2. These plots indicate that, for small n values,
the average length-to-score ratio and average score decrease with increasing m.
However, asymptotically (for large n) the average length-to-score ratio and av-
erage segment scores stay roughly constant with respect to m (at 3.1 and 45
respectively) and do not stray too far. These observations lead us to infer that
length-to-score ratio can be well-approximated by a constant, and that segment
scores are independent of m and n. Consequently, we infer that both average
length-to-score ratio and average segment scores are uniform in terms of m and
n. In the appendix, Figures A.1, A.2, A.3, and A.4 elaborate further.

For our random sequences, we also observed the average and variance be-
haviors for r and t in terms of m and n, where r is the number of segment
pairs observed, and t is the total score of all the segment pairs. Further-
more we found that the mean for r, variance for r, and mean for t all scale
roughly to k0 ln (k1mn + k2(m + n) + k3), and the deviation for t scales roughly
to max (k0, k1i · d + k2i + k3d + k4), where i = min (m, n), d = ‖m − n‖, and
k0, k1, k2, k3, k4 are constants3. Figures A.5, A.6, A.7, and A.8 in the appendix
illustrate further how all of this was derived.

Since the average ratio of segment lengths to score is almost uniform in
these plots, it suggests that the gap penalty used to score the strips can be
treated as if it is a differently-weighted mismatch. Also, note that the p-values
computed with the model studied by Siegmund-Yakir[28] differs mildly from
the model using the simplifying assumption that gaps are differently-weighted
mismatches. For this reason, it is common for tools to ignore the effects of gaps
in generating their p-values, much like BLAST4. Thus, we may similarly treat
our piecewise-linear gap penalty ww(·) as differently-weighted mismatches in
approximating the p-value. Fig. 6.3 shows a plot of segment scores to frequency
from which we derive our p-value approximation. Using it, we approximate that
P (x = s) = Ke−λs, with K = 8.69 × 10−2 and λ = 3.26 × 10−2. Our p-value of
P (x ≥ s) is therefore:

3For average r, k0 = 103, k1 = 7.95 × 10−10, k2 = 1.54 × 10−7, k3 = 1.01. For variance
of r, k0 = 103, k1 = 1.93 × 10−10, k2 = 1.97 × 10−7, k3 = 1.00. For average t, k0 = 105,
k1 = 4.29 × 10−10, k2 = 1.33 × 10−8, and k3 = 1.00. For deviation of t, k0 = 100, k1 =
−5.54× 10−5, k2 = 4.63× 10−1, k3 = 1.04× 10−2, and k4 = −65.01.

4The main reason we did not use BLAST in comparing alignment results is because BLAST
was unable to align most of the sequences mentioned in tables 7.1 and 7.2.

50

1 2 3 4 5 6 7 8
2

2.2

2.4

2.6

2.8

3

3.2

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure 6.1: Shown above is the mean length-to-score ratio observed in the strips
from aligning randomly generated DNA sequences. In the plots shown above, a
unique line is plotted corresponding to each value of n in the thousand lengths
ranging from 1000 to 8000. For these plots, x represents the m value divided
by 1000, and y represents the mean observed for that particular m and n, and
the plots illustrate mean length-to-score ratio for the segment pairs.

51

1 2 3 4 5 6 7 8
20

25

30

35

40

45

50

55

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure 6.2: Shown above are the mean segment scores observed in the strips
from aligning randomly generated DNA sequences. In the plots shown above, a
unique line is plotted corresponding to each value of n in the thousand lengths
ranging from 1000 to 8000. For these plots, x represents the m value divided
by 1000, and y represents the mean observed for that particular m and n, and
the plots illustrate mean segment pair scores.

52

P (x ≥ s) =
∫ ∞

s
Ke−λxdx =

K

λ
e−λs

And notice that by this construction, P (x ≥ 30) = K
λ
e−30λ ≈ 1. We have de-

signed our p-value estimation this way since strip scores below 30 are empirically
observed to be unimportant.

Our next natural step, after obtaining p-values for each segment pair, is to
provide a p-value estimate ζ for coincidental probability for the whole alignment,
determined by the strips found. As mentioned earlier, we have learned that
both r and t depend on sequence lengths m and n. Hence, if R and T are
supposed to be the number of segment pairs and the total score of the segment
pairs after adjusting for mean and variance based on sequence length, then
the coincidental probability ζ = P (x ≥ T, y ≤ R). More specifically, ζ is the
coincidental probability of seeing a total score of at least T using at most R
segment pairs.

Figure 6.4 shows the distribution of r and t values observed from randomly
generated sequences after adjusting for mean and variance. From it, we approx-
imate for T and R that P (x = T, y = R) = ece−atT 2+btT+cte−arR2+brR+cr , where
c = −183.90, at = 10.1, bt = 9070, ct = −2.04 × 106, ar = 0.241, br = 4.71, cr =
−27.5. This gives us for zeta that5:

ζ = P (x ≥ T, y ≤ R) =

=

∫ ∞

T

∫ R

0
ece−atx2+btx+cte−ary2+bry+crdydx =

=
πe

c+ct+cr+
b2
t

4at
+

b2r
4ar

4
√

atar

(

1 − Er(
−bt + 2atT

2
√

at
)

)(

Er(
−br + 2arR

2
√

ar
) − Er(

−br

2
√

ar
)

)

5Note that Er(z) = 2√
π

∫ z

0
e−x2

dx

53

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

score

fr
eq

ue
nc

y

Figure 6.3: Shown here is a plot of segment scores to frequency for ran-
domly generated sequences using our assumption that segment score is length-
independent. The x axis represents segment score, and the y axis repre-
sents frequency. The tail of this plot is an exponential distribution of form
P (S = x) = Ke−λx, where we have approximated K = 8.69 × 10−2 and
λ = 3.26 × 10−2. This curve is at its highest when x = 30, and by empri-
cal observation, we have noticed that strips scoring less than 30 are generally
unimportant portions of an alignment.

54

0 5 10 15 20 25 30 35 40 45 50
440

450

460

470

480

490

500

number of strips (r)

to
ta

l s
co

re
 (

t)

Figure 6.4: From our alignments over the randomly generated sequences, after
adjusting the number of segments r and the total score t for length-dependent
average and deviation behavior, we chose to plot the frequency of observing
certain r and t values. The figure shown here is a surface plot of this, where
lighter spots indicate higher frequencies. From it, we observe that the ma-
jority of the data is concentrated in one area. This area approximates to
ece−atT 2+btT+cte−arR2+brR+cr , where c = −183.90, at = 10.1, bt = 9070, ct =
−2.04 × 106, ar = 0.241, br = 4.71, cr = −27.5.

55

Chapter 7

Colorgrid and DNA Results

Before describing the results generated by SEPA, Plains, and Planar, we
will describe the Colorgrid method used to visualize the results.

7.1 The Plains ColorGrid Method

For visualization of the computed alignments, the Plains program ported in
Valis uses a coloring grid to summarize high and low matched areas for X
found in the alignment. It works as follows: For some M (different from N),
we color in a grid with at most M spots. We set color spot 1 based on the
match percentage found in X[1, . . . , m/M] in the alignment; we set spot 2 to
a color based on the match percentage found in X[m/M + 1, . . . , 2m/M] in
the alignment; we set spot i to a color based on the match percentage found
in X[(i − 1)m/M + 1, . . . , im/M] in the alignment; and so on. The coloring
grid for Y works in a similar way. Figures 7.2 and 7.3 are examples of this,
with bright colors such as red, orange, yellow, and green signifiying high-match
areas, and dark colors such as blue, purple, brown, and black signifying low-
match areas. White signifies any nucleotides of X or Y on the left/right sides
that were unaligned.

Notice how here, the number of match percentages found is a fixed size. The
color computations in this way has many advantages, such as how it handles
the limited resolution of the computer screen compared to the sizes of X and
Y .

In addition to visualizing color grids for all of X and Y , users also have the
option to view portions of X or Y by specifying a substring range for either X
or Y , with the Colorgrid of the unspecified sequence automatically resized to
represent the corresponding area in the specified sequence’s substring.

56

Test Name PLAINS LAGAN EMBOSS
t r ζ ′ t r ζ ′ t r ζ ′

Hp1 356.71 4 7.37 340.32 4 6.00 340.19 4 5.99
Hp2 285.75 3 3.96 281.84 3 3.94 238.30 3 3.87
Hp3 2181.50 14 47.18 441.58 6 22.98 1708.51 10 18.49
Hp4 511.99 7 3.85 2172.40 14 -Inf 296.84 4 4.59
Hp5 792.64 7 7.29 775.74 7 7.29 176.73 1 13.04
Mp1 389.84 4 13.97 386.88 4 13.40 388.88 4 13.78
Mp2 461.68 6 8.88 453.64 6 7.77 206.02 2 5.56
Mp3 72.19 1 6.75 72.19 1 6.75 83.34 1 6.75
Hf0 534.14 5 11.15 360.22 3 13.05 151.39 2 14.07
Hf1 734.82 7 10.94 349.33 4 14.18 374.35 5 13.05
Hf2 600.22 4 16.78 555.61 4 16.78 327.91 1 20.18
Hf3 637.52 7 14.53 259.44 3 19.05 409.99 5 16.71
Hf4 1004.97 10 21.74 529.16 5 -0.00 367.86 4 -0.00
Hf5 739.71 7 11.07 450.93 5 13.07 453.61 5 13.07

Table 7.1: Shown here for Plains, EMBOSS, and LAGAN are the r, t, and
ζ ′ values obtained from aligning genomic DNA sequences of lengths between
0.5 Kb and 12 Kb within human, mouse, dog, and fugu, where the pairs are
biologically related and mainly noncoding DNA with expected large gaps and
low homology regions.

7.2 Plains Empirical Results

Furthermore, tables 7.1 and 7.2 show a comparison of alignments for Plains,
LAGAN, and EMBOSS over biologically related sequences using unadjusted
r and t values, and ζ ′ values, with ρ = 0.5. Note that ζ ′ = − ln (ζ). The
conversion from ζ to ζ ′ was carried out for convenience in comparing lab results,
where higher ζ ′ indicates results that are less coincidental. We chose to use
ρ = 0.5 in all data shown in this table because with it, SEPA successfully filters
away all segment pairs when aligning randomly generated DNA sequences, while
retaining important segment pairs when aligning biologically related noncoding
sequences, even when they have expected long gaps and low similarity regions.
Also, we note the loss of precision involved in reporting ζ ′ values. Hence, if for
a paricular alignment, Plains and LAGAN receive ζ ′ values that differ by less
than 1×102, then their ζ ′ values would “appear” equal in this table. For further
information regarding the sequences used, see Tables B.1, B.2, B.3, and B.4 in
the appendix.

Also, Plains does not always yield the results of least coincidental proba-

57

Test Name PLAINS LAGAN EMBOSS
t r ζ ′ t r ζ ′ t r ζ ′

hm.1_1 676.29 10 8.46 52.36 1 18.29 186.98 2 17.00
hm.1_3 552.55 6 15.14 406.79 6 15.14 429.51 6 15.14
hm.3_9 1260.69 15 15.47 432.25 7 24.23 801.15 12 18.44
hm.3_16 218.47 3 5.71 x x x 180.05 2 6.77
hm.4_3 262.19 3 15.44 74.91 1 17.79 176.83 2 16.59
hm.4_5 421.71 6 7.35 221.57 3 10.47 401.71 5 8.32
hm.6_17 986.89 12 23.00 240.10 3 -0.00 260.66 4 -0.00
hm.7_11 594.32 8 9.06 164.10 2 15.44 476.71 7 9.99
hm.17_11 608.75 7 13.93 171.96 3 18.57 451.60 6 15.02
hm.x_x 1302.49 18 17.20 636.82 9 -0.00 568.46 9 -0.00
hd.6_1 1239.35 14 18.99 424.59 6 -0.00 688.81 8 26.81
hd.6_12 1284.79 14 13.88 548.19 7 21.23 394.04 6 22.44
hd.6_34 1488.26 16 -0.00 496.14 6 -0.00 900.73 12 -0.00
hd.7_16 1042.19 13 10.45 128.07 2 22.40 309.03 4 19.84

Table 7.2: Shown here is the additional data for the DNA aligmments over
Plains, EMBOSS, and LAGAN that did not fit in table 7.1.

bility in this table, and this anomaly has a simple explanation. Note that the
nature of Plains is to capture the biology faithfully even when the sequences
have expected large gaps and low similarities. Thus it tries to aggressively align
as many regions as possible, and hence in these situations, it produces r and t
values that tend to be higher than those from other tools, even though its high
r causes its overall result to appear more coincidental in spite of the compensat-
ing higher t. However, it turns out that when we fix r for all the tools, Plains

yields higher t and hence better ζ ′ results. In other words, for any given r, each
of the r segment pairs generated by Plains have smaller individual coincidental
probabilities than the best r segment pairs generated by other tools. Figure 7.1
explains the details further, and figure 7.3 provides a supporting example.

Many of the genomic alignments yielded by the three tools have caught
exons in the alignment, but most of these exons caught are not included in the
“good” regions of the alignment, because SEPA removed them for having a ρ
value that was too high.

The Mp (alignments of Mouse genes against corresponding pseudogenes),
and humanHomol (alignment of Human genes against homologous Mouse genes)
runs were, for the most part, a relatively close competition between the three
alignment tools, in terms of the actual alignments obtained, especially between
Plains and LAGAN. This data shows either the difference of linear gap func-

58

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

1600

1800

number of segment pairs(r)

to
ta

l s
co

re
 (

t)

PLAINS
LAGAN
EMBOSS
LALIGN

Figure 7.1: In this figure, we observe the unadjusted r and t values produced
by Plains, LAGAN, and EMBOSS from the hm.3 – 9 experiment where we
vary the ρ variable used to filter our segment pairs. On each curve, we observed
the t and r values of each tool when varying ρ over various values from 0.1 till
0.9. Recall from table 7.2 that Plains performed poorly in terms of ζ ′ values
for ρ = 0.5 for the hm.3 – 9 experiments. However, note from this plot that for
any fixed r where Plains is comparable to a different tool, Plains receives the
highest t value, and therefore if we designed SEPA using a fixed r value over
all alignment tools, then Plains would have the highest t value, and hence the
highest ζ ′ value (i.e., the best result). Many other experiments from tables 7.1
and 7.2 have a similar plot to this one.

59

tions over piecewise-linear gap functions, or the difference of using general-case
gap parameters over using customized gap parameters per species, or possibly
both.

For most of the Hp (alignments of Human genes against corresponding pseu-
dogenes) runs, Plains and LAGAN yielded alignments with many similar exon
correlations, but with Plains being able to identify more homologies within
those exons. One illustration of this is figure 7.3, which compares the results of
Plains to LAGAN for Hp5 in further detail.

However, the most interesting results obtained were in the Hf runs, the runs
involving genomic Human and Fugu sequences. Since the evolutionary distance
between the human and fugu species is significantly long, one expects even the
most conserved exon regions of the orthologous gene in the two genomes to have
diverged quite a lot (despite the protein sequences still sharing high homology).
Futhermore, the two genomes have very different gene structures — the genes
in the Fugu genome have very short introns, while the introns in the Human
genome are usually very long. Hence, the results caught by the alignment tools
here is no small matter.

For Hf2, although the ζ ′ value for Plains is almost identical to that of
EMBOSS, Plains caught more common exons between the two related genomic
sequences, and even confidently identified correlations not previously known.
Therefore, as Plains currently stands, it holds promise of becoming a tool of
choice for aligning several thousand nucleotide DNA sequences, and possibly
also for identifying exons between two genomes as diverged as human and fugu.
Figure 7.2 shows more details.

Each run of Plains to optimize gap/mismatch parameters on a pair of
species took 30 minutes to 2 hours. The relatively long time taken by Plains

is due to its need for computing several hundred alignments under various
gap/mismatch parameters before deciding which gap/mismatch parameters are
the most optimal. When ran using fixed-set gap-mismatch parameters, Plains

ran in just under a minute, a constant factor of at most 5.6 times slower than
EMBOSS. The reason for this slowdown is manifold: (1) Plains uses a linear
space table instead of the quadratic space typical of dynamic programming,
and (2) there is constant extra overhead in using Linked-List Assistance (men-
tioned earlier) to help create an alignment.

7.3 Planar Empirical Results

In table 7.3, we see a comparison of alignments for Planar and RSMATCH
over biologically related sequences using unadjusted r and t values, and ζ ′ values,
with ρ = 0.9. Due to the lower primary structure sequence similarities present

60

Figure 7.2: Match Ratio Color Lines in the Hf2 test for Plains and EMBOSS.
Here, the Human and Fugu sequence used have six exon regions that correspond
to each other (though not necessarily in order, as exon region 2 in the Fugu
sequence corresponds to exon region 3 in Human sequences for example). Here,
both Plains and EMBOSS correctly identify the correlation of exon region 2 in
Fugu with exon region 3 in Human, but only Plains identifies the correlation
of exon region 5 in Fugu with exon region 5 in Human. Plains also confidently
found two additional correlations between the two sequences not previously
known, as shown above.

in these RNA sequences versus the DNA sequences mentioned earlier, we chose
to use ρ = 0.9 here instead of the ρ = 0.5 as used earlier, in order not to risk
missing the most important segments.1 Also as before, there is a loss of precision
involved in the reporting of ζ ′ values, which in some cases “appear” the same
for Planar and RSMATCH, even if they are not. The rnase experiments use
Delta/Epsilon Purple Bacteria RNase P sequences from the RNaseP database,
and the telomerase experiments use ribonucleoprotein reverse transcriptase syn-
thesizing telomeric DNA found from the RFAM database with accession number
RF00025. For further information regarding the sequences used, see Table B.5
in the appendix.

Note from table 7.3 that, as with Plains, Planar does not always yield the
results of least coincidental probability, and the reasoning for this is similar to
Plains. Capturing the biology faithfully when sequences have expected large

1Although SEPA does not account for secondary structure in its p-values or ζ values, the
technique from section 5.4 could fix this issue. However, this requires a separate analysis of
the important segments for that case.

61

Figure 7.3: Match Ratio Color Lines in the Hp5 test for Plains and LAGAN.
Here, the Human sequence has 8 exon regions that are similar to areas of the
pseudosequence used, and alignments of Plains and LAGAN for these cases are
similar, even by visual examination of the ColorGrids, and in the fact that they
both identified the same 7 exon region correlations. However, when we contrast
the homologies (i.e., grid colors) within these exon regions identified, we find
that Plains found higher correlations within four of these exon regions (regions
2, 3, 7, and 8) and therefore identified these regions with higher confidence.
This strengthens our earlier argument of Plains being able to identify most
correlations with higher confidence.

gaps and low similarities causes Planar to aggressively align as many regions
as possible, raising its r and t values, with an increase in the r value high
enough to adversely affect its ζ ′ value. As a result, if we fix r for Planar and
RSMATCH (much like done earlier for Plains), the r segments generated by
Planar will have smaller individual coincidental probabilities.

Using fixed match/mismatch and gap parameters, Planar takes roughly a
minute, the same amount of time to align a pair of RNA sequences of length
200 bp that Plains would use for a pair of DNA sequences of length 12 Kbp.
Planar runs about 3 times slower than RSMATCH. The longer time used by
Planar arises from the extra time needed to align with piecewise-linear gap
functions (compared to the linear gap functions used in RSMATCH), as well as
the time involved in merging two alignments as mentioned in section 5.4.

62

Test Name PLANAR RSMATCH
t r ζ ′ t r ζ ′

rnase.1_2 204.67 3 3.37 118.58 1 5.99
rnase.1_3 134.35 2 4.53 85.55 1 5.99
rnase.3_5 120.76 2 4.51 42.88 1 5.98
rnase.4_5 104.17 1 5.98 93.08 2 4.49

telomerase.1_2 29.58 2 4.47 14.89 2 4.47
telomerase.1_3 79.23 2 4.48 24.67 2 4.48
telomerase.2_3 17.06 1 6.10 2.60 1 6.10

Table 7.3: Shown here for Planar and RSMATCH are the r, t, and ζ ′ values
obtained from aligning noncoding RNA sequences of lengths between 100 and
200 bases where the pairs are biologically related, with correlated secondary
structures, but poor correlations within their primary structures.

63

Chapter 8

Conclusions and Open Problems

Plains is able to catch more important correlations than its competition, espe-
cially between highly divergent sequences such as Human and Fugu. Planar

holds promise as well, since it was found to be able to achieve a similar effect for
RNA sequences. Furthermore, the SEPA filtering is capable of distinguishing
unimportant regions from important ones. In addition, our empirical analysis
leads us to the conclusion that the SEPA-based p-value technique models coin-
cidental probabilities quite accurately. Furthermore, we note that aggressively
incorporating too many segment pairs into an alignment can corrupt the over-
all result with false positives, in spite of an apparent improvement in the total
score or in identified exon regions detected, as illustrated by Plains. How-
ever, SEPA can modify the overall alignment to select only the best r segments
from an alignment while keeping the confidence in the final result high. It is
here that the strength of Plains becomes obvious, since its r segments are less
coincidental than its competition, and have higher scores, and hence better ζ ′

values.
It has become apparent that some upwards scaling is essential if Plains

is to be run over sequences with more than 8000 nucleotides, and similarly if
Planar is to be run over sequences with more than 2000 nucleotides. Plains,
as it stands, essentially performs localized alignment (since it discards leftmost
and rightmost nucleotides that would be aligned against gaps), and therefore, it
is only fit for sequences of up to 8000 nucleotides. Planar is only suitable for
sequences of lengths up to 2000 nucleotides due to the higher time and space
needed for it to achieve similar effects to Plains using secondary structures.

Possible future extensions include aligning large sequences (of megabases
of nucleotides), and then using Plains or Planar to refine alignments over
smaller areas, where localized alignments can be performed. For instance,
Plains can potentially refine the results within the locally identified interval
regions found by COMBAT[32] over whole genomes. In addition, Plains could

64

become the ideal tool for aligning EST sequences to a genome, and Planar

could become the ideal tool for aligning rRNA’s or tRNA’s to a genome.
Another possible extension involves incorporating a model to learn expected

alignments over various species, as opposed to just merely approximating the
best gap/mismatch parameters.

We can improve SEPA by using random portions of DNA from Human,
Mouse, and Fugu instead of randomly generated DNA sequences. In that case,
our concern shifts from the coincidental probability of a segment’s score from
aligning random DNA, to the coincidental probability of a segment’s score from
aligning unrelated random regions of organisms under comparison. Further
extension includes development of better statistics that realistically capture
the base-pair and coding/noncoding distributions within the sequences, as well
as the effects of secondary and tertiary structures. Accounting for secondary
structures could especially improve the way SEPA estimates p-values for RNA
alignments.

In addition, Plains at the moment assigns a reward of ma = 1 to a perfect
match, and a penalty ms (specified by user) to any mismatch. Similarly, Pla-

nar at the moment assigns to unbounded positions a reward of 1 for match and
penalty of ms (specified by user) for mismatch, and assigned to bound positions
rewards of 1 for mismatch and mb (specified by user) for match. It may be
useful to have a scoring matrix to assign different scores to different types of
matches/mismatches in these cases. (For example, if aligning a C against a G
is more common than aligning at C against a T , then perhaps we can penalize
the C-G mismatch less than the C-T mismatch when performing an alignment,
etc.)

65

Appendix A

SEPA Segment Pair Analysis in
Further Detail

In order to approximate an appropriate p-value estimation for SEPA, we an-
alyzed segment pairs behavior over our assumed null hypothesis of alignments
for randomly generated nucleotide sequences. For length values ranging from
1000 bp to 8000 bp, we generated 25 random sequences. We also generated
25 random sequences of length 500 bp. For each combination of these length
pairs, we ran all 625 possible pairwise alignments using Plains, and analyzed
results using SEPA where ρ = 1 (to avoid filtering any segments out due to low
p-value), and recorded the results in fig. A.1, A.2, A.3, A.4, A.5, A.6, A.7, and
A.8.

From fig. A.1 and A.2, we observe for segment length-to-score ration that,
for the most part, the mean takes a constant value at 3.1, and the variance
remains below 0.4, leading us to infer that length-to-score ratio can be well-
approximated by a constant.

From fig. A.3 and A.4, we infer that, although for small n values, the average
segment score decreases with increasing m, asymptotically (for large n) it stays
roughly constant with respect to m, while the variance fluctuates wildly around
a constant value. Hence, for our scoring method, we model the segment scores
as independent of m and n.

From fig. A.5 and A.6, we estimate that the average and variance for r (the
number of segment pairs) scale roughly with Θ(log(mn)). More specifically, we
approximate the mean of r and the variance of r, called ra(m, n) and rv(m, n)
respectively, to scale roughly as k0 ln (k1mn + k2(m + n) + k3) where k0, k1, k2,
and k3 are empirically determined constants. In the case of ra(m, n), we observe
that k0 = 103, k1 = 7.95 × 10−10, k2 = 1.54 × 10−7, k3 = 1.01, and in the case
of rv(m, n), we observe that k0 = 103, k1 = 1.93 × 10−10, k2 = 1.97 × 10−7,
k3 = 1.00.

66

1 2 3 4 5 6 7 8
2

2.2

2.4

2.6

2.8

3

3.2

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure A.1: Shown above are the mean plots for the segment pair length-to-
score ratio from aligning randomly generated DNA sequences. A unique line is
plotted corresponding to each value of n in the thousand lengths ranging from
1000 to 8000. For these figures, and others that follow, x represents the m value
divided by 1000, and y represents the mean or variance value obtained for that
particular m and n.

From fig. A.7 and A.8, we estimate that the average total segment score
scales roughly with Θ(log(mn)), and the deviation for total segment score scales
roughly with Θ(i · d) (but never declines below 100), where i = min (m, n)
and d = ‖m − n‖. More specifically, we approximate the average total score
ta(m, n) to scale roughly as k0 ln (k1mn + k2(m + n) + k3), and the deviation for
total score tD(m, n) to scale roughly as max (k0, k1i · d + k2i + k3d + k4), where
k0, k1, k2, k3, and k4 are empirically estimated constants (and the variance
tv(m, n) = tD(m, n)2). In the case of ta(m, n), we observe that k0 = 105,
k1 = 4.29 × 10−10, k2 = 1.33× 10−8, and k3 = 1.00, and in the case of tv(m, n),
we observe that k0 = 100, k1 = −5.54×10−5, k2 = 4.63×10−1, k3 = 1.04×10−2,
and k4 = −65.01.

67

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure A.2: Shown above are variance plots for the segment pair length-to-score
ratio from aligning randomly generated DNA sequences.

68

1 2 3 4 5 6 7 8
20

25

30

35

40

45

50

55

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure A.3: Shown here are the mean plots for segment scores from aligning
randomly generated DNA sequences.

69

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure A.4: Shown here are the variance plots for segment scores from aligning
randomly generated DNA sequences.

70

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure A.5: Shown here are the mean plots for r, the number of segment pairs
obtained from aligning randomly generated DNA sequences.

71

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure A.6: Shown here are the variance plots for r, the number of segment
pairs obtained from aligning randomly generated DNA sequences.

72

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

n = 500
n = 1000
n = 2000
n = 3000
n = 4000
n = 5000
n = 6000
n = 7000
n = 8000

Figure A.7: The plots shown here are the mean plots for t, the total score of all
segment pairs from aligning randomly generated DNA sequences.

73

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

d = 0
d = 1000
d = 2000
d = 3000
d = 4000
d = 5000
d = 6000

Figure A.8: The plots shown here are the deviation plots for t, the total score of
all segment pairs from aligning randomly generated DNA sequences. Because
the variance plot was difficult to quantify in terms of m and n, we instead
model the deviation for total score in terns of d and i, where i = min (m, n) and
d = ‖m− n‖. We see here the deviation plot, with each curve corresponding to
a unique d value, and the x-axis reprsenting i in units of thousands.

74

Appendix B

Sequence Details

Shown in Tables B.1, B.2, B.3, and B.4 are further details for the sequences used
to compare Plains against LAGAN and EMBOSS. Please note that sequences
are expressed in their regular format unless they end with a “:-1” or “-” symbol,
which indicates that they have been reverse-complemented prior to performing
any alignments.

Shown in Table B.5 are further details for the sequences used to compare
Planar against RSMATCH.

75

Name Sequences Used

chr1 8257472 8257969 +
Hp1 NCBI34:19:54160379:54161804:1

chr1 163548408 163549002 +
Hp2 NCBI34:4:174948678:174951482:-1

chr1 212839737 212843396 +
Hp3 NCBI34:19:47480657:47491789:1

chr2 215849936 215850977 −
Hp4 NCBI34:12:52960755:52965297:1

chr3 154761512 154762855 −
Hp5 NCBI34:20:62845714:62856853:-1

chr1 6930250 6930693 +
Mp1 NCBIM32:4:116062392:116064688:1

chr10 34897773 34898331 +
Mp2 NCBIM32:3:111151293:111157009:1

chr1 101195551 101195966 +
Mp3 NCBIM32:19:41974653:41984383:1

Table B.1: Sequence Details for the Biologically Related Alignments Ran, Part
1. All the sequences are retrieved from ENSEMBL database [www.ensembl.org].

76

Name Sequences Used

NCBI34:6:10803176:10817954:1
Hf0 FUGU2:scaffold 3266:7199:8502:1

NCBI34:22:17268346:17274146:1
Hf1 FUGU2:scaffold 115:304567:308251:1

NCBI34:22:19452941:19466562:1
Hf2 FUGU2:scaffold 385:130429:132429:1

NCBI34:21:31952480:31961633:1
Hf3 FUGU2:scaffold 492:107025:110089:-1

NCBI34:4:78536922:78549607:1
Hf4 FUGU2:scaffold 1018:38886:42563:-1

NCBI34:1:23574363:23584195:1
Hf5 FUGU2:scaffold 2020:1332:3570:1

Table B.2: Sequence Details for the Biologically Related Alignments Ran, Part
2. All the sequences are retrieved from ENSEMBL database [www.ensembl.org].

77

Name Sequences Used

hg17 chr1:1045045-1049199
hm.1_1 mm6 chr1:58087808-58093089 −

hg17 chr1:109911-115784
hm.1_3 mm6 chr3:108302834-108307402 +

hg17 chr3:920975-927750
hm.3_9 mm6 chr9:13034270-13040751 −

hg17 chr3:40927-45344
hm.3_16 mm6 chr16:36425494-36426630 +

hg17 chr4:1016348-1026634
hm.4_3 mm6 chr3:43806778-43808958 +

hg17 chr4:33206-37263
hm.4_5 mm6 chr5:116454347-116457564 −

hg17 chr6:1515792-1522464
hm.6_17 mm6 chr17:5319541-5327318 +

hg17 chr7:253979-256656
hm.7_11 mm6 chr11:47406997-47414401 −

hg17 chr17:203511-209188
hm.17_11 mm6 chr11:46304241-46308929 −

hg17 chrX:928373-936336
hm.x_x mm6 chrX:100457186-100463788 +

Table B.3: Sequence Details for the Biologically Related Alignments Ran, Part
3. All the sequences are retrieved from ENSEMBL database [www.ensembl.org].

78

Name Sequences Used

hg17 chr6:48183-58637
hd.6_1 canFam1 chr1:66683762-66688436 −

hg17 chr6:791946-797744
hd.6_12 canFam1 chr1:58385127-58391875 +

hg17 chr6:1248975-1255904
hd.6_34 canFam1 chr34:40546832-40556432 −

hg17 chr7:40725-45009
hd.7_16 canFam1 chr16:22868000-22875215 +

Table B.4: Sequence Details for the Biologically Related Alignments Ran, Part
4. All the sequences are retrieved from ENSEMBL database [www.ensembl.org].

Name Sequences Used

D.desulfuricans RNase P RNA
rnase.1_2 D.vulgaris RNase P RNA

D.desulfuricans RNase P RNA
rnase.1_3 G.sulfurreducens RNase P RNA

G.sulfurreducens RNase P RNA
rnase.3_5 H.pylori-26695 RNase P RNA

C.jejuni RNase P RNA
rnase.4_5 H.pylori-26695 RNase P RNA

telomerase 1: AF417611/283-441
telomerase.1_2 telomerase 2: U10565/50238

telomerase 1: AF417611/283-441
telomerase.1_3 azeAF417612/231392

telomerase 2: U10565/50238
telomerase.2_3 azeAF417612/231392

Table B.5: Sequence Details for the RNA Alignments Ran. All the sequences
are retrieved from CARNAC website [http://bioinfo.lifl.fr/carnac/].

79

Bibliography

[1] Altschul, S.F., Boguski, M.S., Gish, W., and Wooton, J.C., “Issues in
Searching Molecular Sequence Databases.” Nature Genetics, 6:119–128,
1994.

[2] Michael Brudno, Chuong Do, Gregory Cooper, Michael F. Kim, Eugene
Davydov, Eric D. Green, Arend Sidow, Serafim Batzoglou, “LAGAN and
Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic
DNA,” Genome Research, 13(4):721-31, 2003 Apr.

[3] Cormen TH, Leiserson CE, Rivest RL, Stein C, “Single-Source Shortest
Paths” Introduction to Algorithms, 2nd Edition, 24:580–601 , 2001.

[4] Craig G. Nevill-Manning, Cecil N. Huang, Douglas L. Brut-
lag, “Pairwise protein sequence alignment using Needleman-
Wunsch and Smith-Waterman algorithms,” Personal communication
(http://motif.stanford.edu/alion/), 1997.

[5] Eddy S.R., “A memory-efficient dynamic programming algorithm for opti-
mal alignment of a sequence to an RNA secondary structure.” BMC Bioin-
formatics, 3:18, 2002.

[6] Gill O, Mishra B, “SEPA: Approximate Non-subjective Empirical p-Value
Estimation for Nucleotide Sequence Alignment.” Lecture Notes in Comp.
Sci., 3992: 638–645, 2006.

[7] Gill O, Mishra B, “PLANAR: RNA Sequence Alignment with Non-Affine
Gap Penalty.” Unpublished work, 2006.

[8] Gill, O., Zhou, Y., Mishra, B.: “Aligning Sequences with Non-Affine
Gap Penalty: PLAINS Algorithm, a Practical Implementation, and
its Biological Applications in Comparative Genomics.” Series in Math.
Bio. and Medicine 8 (2005). An unabridged version can be found at:
http://bioinformatics.nyu.edu/~gill/index.shtml

80

[9] Gu X, Li WH., “The size distribution of insertions and deletions in human
and rodent pseudogenes suggests the logarithmic gap penalty for sequence
alignment.” J Mol Evol., 40(4):464-73, 1995 Apr.

[10] Hromkovic J, “Heuristics.” Algorithms for Hard Problems, Second Edition,
6:439-467, 2003.

[11] X. Huang and W. Miller, Advanced Applied Mathematics, 12:373-381, 1991.

[12] Iglehart, D.L.: Extreme Values in the GI/G/1 Queue. The Annals of Math-
ematical Statistics 43 (2) (1972) 627–635

[13] Karlin S, Altschul S.F., “Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes” Proc. Natl.
Acad. Sci. USA, 87:2264–2268, March 1990.

[14] Karlin S, Altschul S.F., “Applications and statistics for multiple high-
scoring segments in molecular sequences” Proc. Natl. Acad. Sci. USA,
90:5873–5877, June 1993.

[15] Karlin, S., Dembo, A., Kawabata, T.: Statistical Composition of High-
Scoring Segments from Molecular Sequences. The Annals of Statistics 18
(2) (1990) 571–581

[16] Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin
P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N., “Combinatorial
microRNA target predictions.” Nature Genetics, 37(5): 495–500, 2005.

[17] Lipman, D.J., Altschul, S.F., and Kececioglu, J.D., “A Tool for Multiple
Sequence Alignment.” Proceedings of the National Academy of Sciences
USA, 86:4412–4415, 1989.

[18] Liu J, Wang JTL, Hu J, Tian B, “A method for aligning RNA secondary
structures and its application to RNA motif detection,” BMC Bioinfor-
matics, 6:89, 2005.

[19] Miller, W., and Myers E.W., “Sequence Comparison with Concave Weight-
ing Functions” Bulletin of Mathematical Biology , 50:97–120, 1988.

[20] Miller, W., and Myers E.W., “Optimal Alignments in Linear Space”
CABIOS , 4:11–17, 1988.

[21] Needleman, S.B., and Wunsch, C.D., “A General Method Applicable to
the Search for Similarities in the Amino Acid Sequences of Two Proteins.”
Journal of Molecular Biology , 48: 443–453, 1970.

81

[22] Ophir R, Graur D., “Patterns and rates of indel evolution in processed
pseudogenes from humans and murids.” Gene., 205(1-2): 191–202, 1997
Dec 31.

[23] Pearson, W.R., “Comparison of Methods for Seqrching Protein Sequence
Databases.” Protein Science, 4:1145–1160, 1995.

[24] Pearson, W.R., “Searching Protein Sequence Libraries: Comparison of the
Sensitivity and Selectivity of the Smith Waterman and FASTA algorithms.”
Genomics, 11: 635–650, 1991.

[25] Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T., “Downhill
Simplex Method in Multidimensions.” Numerical Recipes: The Art of Sci-
entific Computing , 10.4: 289–293, 1986.

[26] Rice P, Longden I, Bleasby A., “EMBOSS: the European Molecular Biology
Open Software Suite” Trends Genetics, Jun 16(6):276-7, 2000.

[27] Rivas E, Eddy SR, “A Dynamic Programming Algorithm for RNA Struc-
ture Prediction Including Pseudoknots,” J. Mol. Biol., : 285: 2053–2068,
1999.

[28] Siegmund, D., Yakir, B.: Approximate p-Values for Local Sequence Align-
ments. The Annals of Statistics 28 (3) (2000) 657–680

[29] Smith, T.F., and Waterman, M.S., “Identification of Common Molecular
Subsequences.” Journal of Molecular Biology , 147: 195–197, 1981.

[30] Shpaer, E., Robinson, M., Yee, D., Candlin, J., Mines, R., and Hunkapiller,
T., “Sensitivity and Selectivity in Protein Similarity Searches: A Compar-
ison of Smith-Waterman in Hardware to BLAST and FASTA.” Genomics,
38: 179–191, 1996.

[31] States, D.J., Gish, W., and Altschul, S.F., “Basic Local Alignment Search
Tool.” Journal of Molecular Biology , 215: 403–410, 1990.

[32] Sun B, Schwartz J, Gill O, Mishra B, “COMBAT: Search Rapidly for Highly
Similar Protein-Coding Sequences Using Bipartite Graph Matching.” Lec-
ture Notes in Comp. Sci., 3992: 654–661, 2006.

[33] Waterman, M.S., and Eggert, M., “A New Algorithm for Best Subsequence
Alignments with Applications to tRNA -rRNA Comparisons.” Journal of
Molecular Biology , 197: 723–728, 1987.

82

[34] Zhang S, Haas B, Eskin E, Bafna V, “Searching Genomes for Noncoding
RNA Using FastR.” IEEE/ACM Trans. on Comp. Bio. and Bioinf., 2(4):
366–379, 2005.

[35] Zhang Z, Gerstein M, “Patterns of nucleotide substitution, insertion and
deletion in the human genome inferred from pseudogenes.” Nucleic Acids
Res., 31(18): 5338-48, 2003 Sep 15.

83

