
Optimizing Machine Translation by Learning to Search

by

Daniel Galron

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 2012

I. Dan Melamed





c© Daniel A. Galron
All Rights Reserved, 2012



Acknowledgements

I could not have done this work without the help and encouragement of many
other people.

First, I would like to thank my advisor, I. Dan Melamed for his advice, sup-
port, patience, and kindness. He has shaped how I approach problem solving and
research. He has taught me how to be a scientist, which is something for which I
will be eternally grateful.

I would also like to thank Srinivas Bangalore, Ralph Grishman, Mehryar Mohri,
and Satoshi Sekine for serving on my dissertation committee, suggestions for
strengthening this dissertation, and for the pointers to the literature and other
fruitful discussions on this work.

Additionally, thank you to Anca Brates-Galron and Sarah Witman for their
help in manually evaluating the translation outputs of the systems presented in
this work.

I would also like to thank Sergio Penkale, Andy Way, and the Centre for Next
Generation Localisation for the fruitful research we did during my stay in Ireland,
Srinivas Bangalore for the work we did at AT&T Research, and Pascal Fleury for
the great internship at Google.

On a personal note, I’m so grateful for the kindness, love, support, and en-
couragement of my family and friends. My deepest thanks and love to my parents
for their words of encouragement and advice. To Clair, I couldn’t have done this
without your love, support, patience, and rational reassurances.

Finally, I would like to thank the coffee shops around NYU for the copious
amounts of espresso needed to complete this work.

iv



Abstract

We present a novel approach to training discriminative tree-structured machine
translation systems by learning to search. We describe three primary innovations
in this work: a new parsing coordinator architecture and algorithms to generate
the required training examples for the learning algorithm; a new semiring that
provides an unbiased way to compare translations; and a new training objective
that measures whether a translation inference improves the quality of a translation.
We also apply the reinforcement learning concept of exploration to SMT. Finally,
we empirically evaluate our innovations.

v



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures viii

List of Tables x

1 Introduction 1

2 Literature Review 7
2.1 Correspondence Structures . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Generative models . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Mildly discriminative models . . . . . . . . . . . . . . . . . . . . . 14
2.4 Fully discriminative models . . . . . . . . . . . . . . . . . . . . . . 17

3 System Overview 22
3.1 Translation prediction . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Translation Model Training Algorithm . . . . . . . . . . . . . . . . 23
3.3 Parsing Coordinator . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Comparison to other work on learning to search . . . . . . . . . . . 30

4 System Details 34
4.1 Generalized parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Semiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Search strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Termination Conditions . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Parsing Coordinator Revisited . . . . . . . . . . . . . . . . . . . . 70
4.8 Global Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.9 Comparison to other work on tree-structured SMT . . . . . . . . . 80

vi



5 Experiments 84
5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Shared experimental conditions . . . . . . . . . . . . . . . . . . . . 86
5.3 Independent variables . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Dependent variables . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.7 Lesioning Experiment: MinMerge vs. Viterbi Semiring . . . . . . . 127

6 Conclusions 129
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3 Other applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Bibliography 135

vii



List of Figures

3.1 An example binary multitree for an English-French sentence pair. . 24
3.2 An illustration of the distance measure between predictor items and

supervisor-approved items. . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 A sequence of inferences capped by a finish inference . . . . . . . . 47
4.2 Two parse trees illustrating distribution of costs . . . . . . . . . . . 51
4.3 A grammar hierarchy used by a multiparser in one of our experi-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Sentence pair with monolingual parse tree and word alignment con-

straints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 An example decision tree . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 An example of a bitext grid . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Matching runs of translation candidates against the reference trans-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 The data-flow diagram for all our experiments. . . . . . . . . . . . . 87
5.2 The number of allowed CBs vs. percentage of completely parsed

sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Four possible source/target fuse pairs with different fertilities . . . 91
5.4 The supervisor’s grammar hierarchy. . . . . . . . . . . . . . . . . . 95
5.5 The predictor’s grammar hierarchy. . . . . . . . . . . . . . . . . . . 96
5.6 Single tree strict labeling English-French translation accuracy on

development set across iterations. . . . . . . . . . . . . . . . . . . . 104
5.7 Forest strict labeling English-French translation accuracy on devel-

opment set across iterations . . . . . . . . . . . . . . . . . . . . . . 107
5.8 Single tree permissive labeling English-French translation accuracy

on development set across iterations. . . . . . . . . . . . . . . . . . 108
5.9 Forest permissive labeling English-French translation accuracy on

development set across iterations . . . . . . . . . . . . . . . . . . . 109
5.10 Single tree strict labeling English-Hindi translation accuracy on de-

velopment set across iterations. . . . . . . . . . . . . . . . . . . . . 110

viii



5.11 Forest strict labeling English-Hindi translation accuracy on devel-
opment set across iterations. . . . . . . . . . . . . . . . . . . . . . . 111

5.12 Single tree permissive labeling English-Hindi translation accuracy
on development set across iterations. . . . . . . . . . . . . . . . . . 112

5.13 Forest permissive labeling English-Hindi translation accuracy on de-
velopment set across iterations of the forest update target. . . . . . 113

5.14 Two multitrees covering “sets out the conditions”. . . . . . . . . . . 120

ix



List of Tables

4.1 Logic MonoC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 The specification of Logic MP – Part 1 . . . . . . . . . . . . . . . . 42
4.3 The specification of Logic MP – Part 2 . . . . . . . . . . . . . . . . 43
4.4 The specification of Logic T – Part 1 . . . . . . . . . . . . . . . . . 44
4.5 The specification of Logic T – Part 2 . . . . . . . . . . . . . . . . . 45
4.6 A sample inference lexicon. . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Results of a pairwise comparison of the accuracy of the translation
systems based on manual evaluations. . . . . . . . . . . . . . . . . . 100

5.2 Automatic evaluation measures of our five English-French transla-
tion systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Automatic evaluation measures of our five English-Hindi translation
systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 The optimal regularization penalties λ for each experiment . . . . . 104
5.5 p-values for the English-French test set . . . . . . . . . . . . . . . . 105
5.6 p-values for the English-Hindi test set. . . . . . . . . . . . . . . . . 106
5.7 Most frequently used feature types in straw-man English-French ex-

periment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.8 Most frequently used feature types in the English-French single-tree

update with strict labeling experiment . . . . . . . . . . . . . . . . 123
5.9 Most frequently used feature types in the English-French forest up-

date with strict labeling experiment . . . . . . . . . . . . . . . . . 124
5.10 Most frequently used feature types in the English-French single tree

update with permissive labeling experiment . . . . . . . . . . . . . 125
5.11 Most frequently used feature types in the English-French forest up-

date with permissive labeling experiment . . . . . . . . . . . . . . 126
5.12 Translation accuracies of the English-French forest permissive label-

ing system using the Viterbi-derivation semiring and the MinMerge-
derivation semiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

x



Chapter 1

Introduction

Over the last several decades, statistical approaches have come to the forefront
in the natural language processing research community. Statistical approaches
have been especially beneficial to automatic translation of natural language. In
statistical machine translation (SMT) an automatic translation system uses an
automatically learned model to choose between candidate translations.

In many NLP tasks, the size of the output space, that is, the number of possible
outputs for an input sentence is polynomial or exponential in the size of the input.
For finite-state SMT the size of the output space is exponential, since the trans-
lation of each source phrase can be placed anywhere in the target string. When
the placement of translations is not constrained, the set of possible outputs con-
tains all permutations of phrase translations. For tree-structured SMT, the size of
the output space is a high-order polynomial of the size of the input, as discussed
in [Melamed and Wang2004].

Because the size of the output space is prohibitively large, all approaches to
SMT must infer outputs incrementally by constructing the structured labels (i.e.
possible translations of an input sentence) from their constituent substructures
(i.e. possible translations of parts of the input sentence). The process of con-
structing outputs can be viewed as a search in a weighted hypergraph [Klein and
Manning2001]. Each hyperedge in the hypergraph represents an inference taken
by the search algorithm to infer a larger structure from constituent substructures.
Translations are incrementally inferred by the search algorithm as it traverses the
hyperedges in the hypergraph.

Most current state-of-the-art approaches to SMT use machine learning to learn
how to traverse the hypergraph. A commonly held view is that to apply machine
learning techniques to solve a problem well, one must train a model according to
an objective function that is well-correlated with the quality of the output. If
the quality can be quantified, ideally the objective measure will be exactly the
quantified measure of output quality.

1



In current state-of-the-art approaches to SMT, the translator’s search proce-
dure is guided by a model with a very large number of parameters. However, very
few of them are selected (i.e. optimized) for the search task on the hypergraph.
For example, in generative models (e.g. [Brown et al.1993,Och et al.1999,Alshawi
et al.2000,Yamada and Knight2001]) the parameters are all estimated according to
maximum likelihood estimates (MLE) of the features they weight. In mildly dis-
criminative models, most weights are also estimated according to MLE, but these
weights are multiplied by a handful of other model weights1 that are estimated ac-
cording to minimum error rate training [Och2003] or maximum entropy [Och and
Ney2004]. Discriminative approaches such as MIRA [Watanabe et al.2007,Chiang
et al.2008] estimate more weights discriminatively than mildly discriminative ap-
proaches, but still have a very large number of weights trained by MLE. For other
discriminative approaches, for instance [Wellington et al.2006a], the weights are
chosen by optimizing proxy objectives that receive no feedback from, nor are oth-
erwise informed by the search procedure. Such models are unlikely to be optimal
for the search process.

Although [Liang et al.2006,Tillmann and Zhang2006] have presented fully dis-
criminative finite-state approaches to SMT, recent research, such as [Chiang2005,
Galley et al.2006,Chiang et al.2008,Mi et al.2008] has shown that tree-structured
systems can better represent translational equivalence patterns and generate better
translations than finite-state approaches. Our goal is to develop fully discrimina-
tive methods for tree-structured SMT utilizing millions of fine-grained features for
prediction to maximize the predictive capability of the model selected by the train-
ing procedure. Furthermore, we would like all the features to be parameterized
using a training objective that is well-correlated with translation accuracy.

Most current approaches to SMT training attempt to model the quality of
whole translations, thereby teaching the translator a preference between complete
translations. A popular method for discriminative training in the SMT literature
is by reranking. In reranking approaches, the translator generates an n-best list
of translations for an input sentence according to the preferences encoded by the
current model. Depending on the algorithm, the weights of the model are adjusted
so that either: 1) the translations in the n-best list are ordered according to de-
creasing accuracy, where the lowest-cost translation has the highest accuracy; or
2) that the highest-accuracy translation in the n-best list is selected as a posi-
tive example, and all others as negative examples, and the model is trained by
maximizing the margin between the positive and negative examples. One of the
advantages of reranking is that the model can be iteratively improved by having it
learn to discriminate between low-cost predictions made under the current model
and a low-cost prediction that has the highest accuracy, an idea related to max-
imizing the smallest margin between the candidate translations and the decision

1Usually 15-30 parameters

2



boundary. We suspect, however, that training in this manner may be sub-optimal
for two primary reasons:

1. The process by which the translations are constructed is not being learned.
The translator’s search procedure is being guided by the model’s preferences
among whole translations, which might not correctly choose between partial
translations proposed by the translator.

2. To train millions of features, we need a sufficient number of training examples.
To achieve good prediction accuracy, one should have many more training
examples than parameters. Since training examples contain features on the
input and the structured output, enumerating enough of the output space to
generate enough training examples is computationally infeasible.

In this work, we’ve decided to take a different approach. The approach we
utilize learns the inference procedure the translator should use at test time by
learning to predict whether the translator should fire a given inference, or, equiv-
alently, whether it should traverse a given hyperedge in the search hypergraph.
Doing so directly addresses the two issues above:

1. By learning to predict inferences, the search procedure is guided by a measure
of the utility of each inference in outputting a good translation, thereby
training it for the task actually undertaken during test-time.

2. By learning to predict inferences, we can utilize more training examples be-
cause we do not need to infer whole translation candidates to use for train-
ing the model. We can utilize inferences that are not expanded to infer full
translations, thereby saving us some computational cost in constructing a
large-enough training set.

By learning the search procedure, we’re not only solving a more general prob-
lem, but we’re actually learning to directly model the method the translator uses
to construct translations. A potential argument against our approach is summa-
rized by Vladimir Vapnik’s comment: “When solving a problem of interest, do not
solve a more general problem as an intermediate step. Try to get the answer that
you really need but not a more general one” [Vapnik1995]. Unfortunately, the only
way we know how to solve the translation problem is through hypergraph search.
By utilizing our proposed training method, we are directly solving the problem of
how to infer good translations by learning which inferences the translator should
make to infer them.

To achieve our research objectives, we had to solve many problems – some
theoretical, some empirical, and some architectural. In this dissertation, we present
solutions for some of these problems. Here we give a brief overview of some of our
contributions to research on SMT.

3



Synthesizing training data The ideal training set for learning how to search
the hypergraph would consist of inferences with indicators as to which inference is
the best to make from each possible node. We know of no such dataset. The best
approximation we know of are parallel treebanks, but they tend to be too small
for SMT and they exist only for a handful of language pairs (e.g. [Ahrenberg2007,
Megyesi et al.2008]). We therefore had to rely on automatically sentence-aligned
bitexts, which do not specify the optimal sequence of inferences. Thus, in addition
to learning to search for a translation for a given input sentence, the training
algorithms we apply must guess the optimal search path through the hypergraph,
even given a reference translation.

To facilitate controlled experimentation, we present a novel parsing coordinator
architecture that allows us to control both the search procedure undertaken by the
translator and the space in which it searches. The coordinator contains an “expert”
supervisor that limits the space of allowed derivations for each sentence pair. The
supervisor is constrained to infer the reference translation. The coordinator also
contains a predictor translator that is not constrained to infer the reference. The
coordinator consults with the supervisor to determine whether the inferences fired
by the predictor are on a path towards the reference translation. The supervisor’s
determination is given to an example generator that extracts a feature vector from
the inference and assigns a label to the example indicating its utility in finding the
reference. The coordinator can also guide and restrict the search procedure of the
predictor by telling it which inference it should take next, or by telling the predictor
that it should not make a particular inference. Using the generalized parsing
paradigm [Melamed and Wang2004] and the GenPar toolkit [Burbank et al.2005]
facilitated building the coordinator and allowed us to ensure that the predictor and
supervisor are searching the same hypergraph under the same constraints, except
for those that we wish to vary. An additional contribution is the algorithm utilized
by the parsing coordinator. It is efficient in the sense that it doesn’t do any more
work than is necessary for learning at any given time – it lazily generates only the
training examples needed to represent the inferences we wish to learn from. The
parsing coordinator architecture can be applied to other NLP problems as well,
including parsing and finite-state SMT.

Training objectives To learn at the inference level, we need a suitable objective
function. Current objective functions that are utilized in the research literature are
not well suited for this task. The maximum likelihood objective function of gener-
ative approaches is not well correlated with the search procedure. The minimum
error-rate objective [Och2003], max-margin objective [Watanabe et al.2007,Chiang
et al.2008], and cost-sensitive margin objective [Tillmann and Zhang2006] do not
decompose to be applicable to the inference level. The discriminative approach
of [Wellington et al.2006a] does decompose to the inference level, but it tries to

4



learn a single multitree over each sentence pair in the bitext. Doing so restricts
the set of legal multitrees their translator attempts to learn and may make it
harder to learn consistent tree structures if similar sentence pairs have dissimilar
tree structures. So we describe a novel class of objective functions, the whole
inference quality (WIQ) criterion, which measures the quality of an item’s yield
relative to the quality of the yields of its antecedent items. We also experiment
with exploration, in the sense used in reinforcement learning. We are not aware of
any other SMT methods that control exploration in the same deliberate manner
as we do. Our experiments in Chapter 5 demonstrate the usefulness both of the
WIQ objective and of controlling the amount of exploration.

Comparing inference sets Having the translator make each inference in a
locally-optimal manner does not guarantee that the entire structure that the trans-
lator infers will be globally optimal. One of the challenges in finding the optimal
inference set is that the traditional method of comparing sets of inferences by sum-
ming over their costs is biased against larger sets. Furthermore, in summing over
the costs, we lose information about which inferences were good and which were
bad, information that can help us compare the quality of inference sets. We ex-
pect that having this information is beneficial since it would allow us to determine
which inferences are responsible for mistakes in the translation, which the sum of
costs does not reflect. To address this problem we invented an unbiased way to
compare inference sequences. Our primary innovation to address this problem is a
new semiring, which we call the MinMerge semiring. The domain of the MinMerge
semiring is sorted sequences of real numbers, representing each partially-ordered
set (poset) of inferences. The semiring is not limited to tree-structured SMT.
It can be applied to any search problem. The lesioning experiment presented in
Chapter 5 show that the MinMerge semiring gives better translation results than
the Viterbi semiring for our model and training method.

The primary disadvantage of our approach is that it currently does not scale
up very well. However, this work was a necessary step in learning how to build
a system that learns a model according to an objective for the search procedure
the translator undertakes. We describe such a system in this work and show that
learning to search is beneficial for SMT. Since we think that our system can be
scaled up to learn from corpora of millions of sentence pairs, as we will discuss in
Chapter 6, we believe that our work is a valuable contribution to the field.

While the focus of this dissertation is on statistical machine translation, we
conjecture that many of the techniques we have innovated for SMT are applicable to
a wide range of other structured prediction problems. Many structured prediction
problems, both in natural language processing and in other subfields of artificial

5



intelligence, utilize an incremental search procedure for constructing outputs. We
believe that the example generation framework, the concepts behind our objective
functions, and the MinMerge semiring may be applicable to NLP problems such as
parsing and named entity recognition, as well as non-NLP problems in computer
vision and robotics.

The dissertation is structured as follows. We first discuss the relative advantages
and disadvantages of other approaches to SMT in Chapter 2. In Chapter 3 we
present a high-level overview of our training algorithm and our example generation
framework in terms of a generic translation algorithm. In Chapter 4 we present
the details of the translation algorithms employed by the training algorithm and
example generator. Finally, we experiment with our innovations and present and
analyze the empirical results in Chapter 5. Finally, we discuss future work and
other applications of our approach in Chapter 6.

6



Chapter 2

Literature Review

2.1 Correspondence Structures

Recall that most approaches to MT search for a hidden correspondence struc-
ture between an input sentence and a translation candidate that represents trans-
lational equivalence between the input and translation. There are three prominent
formulations of the hidden correspondence structure in the research literature,
which are distinguished by the types of translational equivalence patterns they
can represent. While the distinction is somewhat orthogonal to the focus of this
dissertation, it is important to note the differences, as the hidden structure types
can have a great effect on how the model can be parameterized.

Finite-state word models Finite-state word models use words as the basic
unit of translation. They are frequently referred to as “word-based models” in the
research literature (e.g. in [Koehn and Hoang2007]). Finite-state word translation
systems tend to view the translation problem as bag-of-words translation, where: 1)
each word in an input sentence is translated into a target-language word (possibly
an ∅ token indicating a word deletion); 2) words are possibly inserted on the target
side; and 3) the target-language words are reordered to adhere to target-language
word order rules. Examples of these approaches include [Brown et al.1988,Brown
et al.1993, Vogel et al.1996, Tillmann et al.1997, Och and Weber1998]. Typically,
finite-state word models are comprised of several sub-models, including a lexical
translation model for the words in the input sentence, a language model and a
word distortion model for determining the target-language word order, and some
form of word insertion model. Most finite-state word translation algorithms make
strong independence assumptions in their models, for example, by assuming that
all source words are independently translated of one another (as in IBM model
1 of [Brown et al.1993]), or by assuming that the position of each target word
depends only on the position of the target translation of the previous source word

7



(as in [Tillmann et al.1997]). The hidden correspondence structure for finite-state
word translation approaches tends to be a word alignment, which is a partial
bipartite matching between the words in the source sentence and the words in the
target sentence.

Finite-state phrase models Rather than assuming each word is independently
translated from every other word, finite-state phrase translation systems model the
translation of word sequences, which they call “phrases”, thereby capturing some
inter-dependencies in how adjacent words are translated. Finite-state phrase ap-
proaches to SMT often work as follows: they first segment the input sentence
into phrases of varying lengths, translate each source phrase, and re-order the
phrase translations to conform with the target-language word order model. Exam-
ples of these include [Och et al.1999, Koehn et al.2003, Och and Ney2004, Koehn
and Hoang2007]. The translational equivalence patterns expressed by the mod-
els tend to be phrase pairs. The hidden correspondence structure still tends to
be a word alignment (as in the finite-state word approach), but where various
heuristic or statistical methods are used to estimate a mapping over phrase pairs.
Finite-state phrase translation approaches tend to yield higher-accuracy transla-
tions than finite-state word translation approaches because rather than translating
and ordering words independently, by utilizing (possibly) multi-word phrases as the
atomic unit of translation, the translator essentially memorizes how adjacent source
words jointly translate into locally adjacent target words. Because the resulting
phrases are atomic, there is a hard-coded dependency between the words within
each source phrase and each target phrase. This structural dependency relaxes the
independence assumptions made in finite-state word models and allows the model
to memorize local target word reordering patterns.

The length of the phrase pairs determine how much context is captured by
the phrases. Short phrases only capture the immediate context for the words in
the phrases. To model long-distance dependencies and re-orderings, one would
need to extract long phrases from the training bitext. However, there are fewer
occurrences of the longer phrases than the shorter ones, so the model estimates over
the longer phrase-pairs may be unreliable for rare phrases. Finite-state phrase SMT
approaches tend to be very good at capturing local translational equivalence and
reordering patterns, but not very good at modeling long-distance dependencies.
For example, if one is translating from a Subject-Verb-Object (SVO) word-order
language such as English to a SOV language such as Hindi, it tends to be difficult
for finite-state models to invert the object noun phrase and verb phrase when
translating.

Tree-structured models Tree-structured models use synchronous parse trees
or multitrees [Wu1997, Melamed2004] to represent the hierarchical structure of a

8



sentence pair and to capture long-distance re-orderings and dependencies. Hier-
archical models can be learned from an (automatically or manually) annotated
treebank, for instance, [Galley et al.2006, Liu et al.2006, Mi et al.2008], or can
have no relation to any linguistic notion of constituency, but merely represent a
hierarchical nesting of phrases, for instance the approach of [Chiang2005]. The
hidden correspondence structure in tree-structured models tend to be constrained
by synchronous grammars that model the translational equivalences between the
source and target languages.

2.2 Generative models

The first approaches to SMT parameterization were generative. Generative
models present a “story” for how a set of observed data was generated by a stochas-
tic process parameterized by a set of probability distributions. Most generative
systems followed the so-called noisy-channel model or source-channel model, that
attempted to model the probability of a target-language translation t for a given
source-language sentence s by applying Bayes’ rule:

Pr(t|s) =
Pr(s|t) Pr(t)

Pr(s)

These systems typically apply a decoder to search for the translation that maxi-
mizes the following:

t̂ = arg max
t

Pr(t|s) = arg max
t

Pr(s|t) Pr(t)

Since the denominator Pr(s) is constant for a given input sentence s, it has no effect
on the maximization. The Pr(t) term represents the language model, which gives
the likelihood that a translation t is a valid sentence in the target language, and
the Pr(s|t) term represents the translation model that models the likelihood that
sentence s has been generated from t. Modeling Pr(s|t) directly is intractable.
Most systems that follow this approach decompose the translation model into
smaller tractable sub-models which can then be estimated, usually by making very
strong independence assumptions about the translation process (e.g. [Brown et
al.1993, Och et al.1999, Yamada and Knight2001]). The estimation is often done
with the aid of hidden correspondence variables modeling translational equivalence
patterns.

2.2.1 Finite-state generative word models

The finite-state word models of [Brown et al.1993] are commonly viewed as
the first statistical approaches to SMT. They present five translation models of in-
creasing complexity and decreasing number of independence assumptions. The first

9



model, IBM Model 1, assumes that every target-language word in a target sen-
tence of length m is generated independently as a mixture of the source-language
words in a sentence of length l given a set of hidden correspondence structures
consisting of possible alignments ak: Pr(s|t) ∼

∑l
a1=0 . . .

∑l
am=0

∏m
j=1 Pr(sj|taj).

This model assumes that all possible alignments a1 . . . am are equally likely. IBM
Model 2 removes this assumption by introducing a probability distribution over
alignments: Pr(s|t) ∼

∑l
a1=0 . . .

∑l
am=0

∏m
j=1 Pr(sj|taj) Pr(aj|j,m, l). IBM Model

3 decomposes Pr(s|t) into three models: a fertility model that models the prob-
ability that source word si generates a given number of target words1; a lexical
translation model; and a distortion model which models the probability of a per-
mutation of target-side word order into source-side word order. IBM Model 4
further decomposes the distortion model of Model 3 into two sub-models, to bet-
ter capture the fact that word sequences tend to move together (i.e. as phrases).
Models 3 and 4, however, are deficient in that they assign probability mass to
structurally impossible events (e.g. two source words being moved into the same
target position). IBM Model 5 is a non-deficient version of Model 4. All the
distributions in the IBM models are estimated via the Expectation-Maximization
algorithm [Dempster et al.1977] using the maximum approximation, where rather
than summing over all possible alignments for a sentence they take the most likely
one.

[Tillmann et al.1997] follow [Vogel et al.1996] in formulating the translation
model as a Hidden Markov Model (HMM), and assume that all word-to-word
alignments are one-to-one. They decompose the translation model into two sub-
models: the lexicon model modeling the lexical translation probability Pr(sj|taj)
and the alignment model modeling the conditional probability of a word-to-word
alignment aj given the preceding alignment aj−1:

Pr(s|t) =
∑
a

J∏
j=1

Pr(aj|aj−1) Pr(sj|taj)

This formulation corresponds to an HMM where the transition probabilities are
given by the Pr(aj|aj−1) term and the emission probabilities are given by the
Pr(sj|taj) terms. To make their model tractable, they make the assumption that
the alignments are mostly monotonic, which allows them to make a Markov as-
sumption over alignments.

The translation approach described in [Och and Weber1998] is a combination
of the statistical approach of [Brown et al.1993] with an example-based approach
to machine translation. Their approach consists of a statistical translation lexicon
model (a variant of IBM Model 2, where instead of an absolute position model,

1Thus, the distribution of source-language words is now a mixture conditioned on a subset of
words in t.

10



they use a relative one, as in [Vogel et al.1996]); a word-class model that assigns
each source word to a class; and a set of translation rules. A translation rule is
a triple (S,T,Z) where S is the sequence of source-language word classes for a
sentence, T is the sequence of target-language word classes, and Z is an alignment
matrix between the two (where the alignments are induced using their variation of
IBM model 2). Their model is given by:

Pr(t|s) =
∑
S,Z

Pr(T,Z|s) · Pr(t|T,Z, s)

In practice, rather than taking the sum they take the max (i.e. the maximum
approximation) and approximate Pr(t|T,Z, s) as the product of a language model
probability, a translation model probability, and a word class probability:

Pr(t|T,Z, s) ≈ p(tj|tj−1
1 ) · p(tj|s,Z) · p(tj|Tj)

These models are estimated with the relative frequency maximum-likelihood esti-
mator.

2.2.2 Finite-state maximum likelihood phrase models

[Och et al.1999] observe that finite-state word models fail to capture depen-
dencies between groups of words when translating, meaning that, for example,
translating compound nouns is very difficult for this model. They provide a new
alignment model which takes into account both dependencies between single words,
and dependencies between phrase structures. Their approach follows that of [Och
and Weber1998] in that they utilize alignment templates (defined in much the
same way as Och and Weber’s translation rules). An alignment template is a tuple
z = (S̃, T̃ , Ã) where S̃ is a source word class sequence, T̃ is a target word class
sequence, and Ã is the alignment matrix between the two word sequences. In
order for an alignment template to match a subsequence of the source sentence,
the classes of all the words in the subsequence of the input must match S̃. Their
“generative story” then is: 1) A segmentation model segments the source sentence
into phrases; 2) A phrase alignment model generates the positions at which to
fill in the target phrases relative to the source phrases; 3) the lexical alignment
model determines where to generate each target word in each phrase relative to
the source words; 4) the lexical translation model determines which translation to
generate for each word in each phrase. Using this method, their model can capture
local dependencies between words, making this model better suited for translating
between syntactically-similar languages. However, their method still suffers from
not being able to handle non-monotonicity very well. Their underlying approach
assumes that the alignment is monotonic with respect to the word order for most
word alignments.

11



[Marcu and Wong2002] present a generative joint probability model that mod-
els word and phrase equivalency. They assume that each sentence in their training
bitext is produced by the following stochastic process:

1. Generate a bag of concepts C

2. Initialize T and S to be the empty sentences ε

3. Randomly select a concept ci ∈ C and generate a phrase pair (ti, si) according
to the distribution pt(ti, si). Remove ci from C

4. Append phrase ti at the end of T . Let k be the start position of ti in T .

5. Insert phrase si at position l in S if there is no phrase occupying any positions
between l and |si|. Then, the probability of the alignment between si and ti
is given by:

∏k+|si|
j=k pd(j, (l + |ti|)/2) where pd(·, ·) is the distortion model.

6. Repeat steps 3 to 5 until C = ∅

The joint probability of the sentence pair (s, t) is given by:

p(T, S) =
∑

C∈C:L(T,S,C)

∏
ci∈C

pt(ti, si) |si|∏
k=1

pd(pos(s
k
i ), pos(|ti|)/2)


where pos(ski ) is the position of the kth word of phrase si, and pos(|ti|/2) is the
position of the center word of phrase ti. The two models pt(·, ·) and pd(·, ·) are
estimated via EM. First, they determine the high-frequency n-grams in the bitext.
They estimate an initial model pt from the n-grams that meet a pre-specified
frequency threshold and from unigrams. They then apply EM on the Viterbi
alignment for each sentence pair to estimate pt(·, ·) and pd(·, ·). Finally, to apply
this model, they marginalize over ti to compute the conditional distributions pt(·|·)
and pd(·|·).

[Koehn et al.2003] present a noisy-channel finite-state phrase model composed
of four sub-models:

t̂ = arg max
t

p(t|s) = arg max
t

p(s|t)× pLM(t)× ω|t|

p(s|t) =
I∏
i=1

φ(si|ti)d(ai − bi−1)

where ω is a length penalty that penalizes shorter translations, pLM is the language
model, φ is the phrase translation probability model, and d is the distortion model.
They use a variety of heuristics to extract phrases from an automatically word-
aligned bitext, and estimate the models using relative frequencies.

12



[Tillmann2003] presents a generative block model for machine translation.
A block is a pair consisting of contiguous source- and target-side spans. They
present an algorithm for generating the blocks from the intersection of bidirec-
tional HMM alignments, and expanding them using the union of the alignments.
The model computes the probability of a block sequence covering the source
sentence: Pr(bn1 ) ≈

∏n
i=1 Pr(bi|bi−1) =

∏n
i=1

[
pα(bi) · p(1−α)(bi|bi−1)

]
where α is

a hyperparameter that controls the weights in the mixture. Like [Marcu and
Wong2002], [Tillmann2003]’s model is a joint model. The probabilities are esti-
mated via relative frequencies.

2.2.3 Tree-structured maximum likelihood models

Maximum likelihood models have been applied to tree-structured SMT ap-
proaches as well. [Wu and Wong1998] present a grammatical channel model for
SMT using stochastic inversion transduction grammar (SITG) [Wu1997]. They
seek the translation t̂ that maximizes t̂ = arg maxt Pr(s, t,q) Pr(t) where q is a
synchronous parse tree over the sentence pair s, t. They produce an ITG from
a monolingual target side treebank by mirroring : for every target-language CFG
production, they create two ITG productions – one whose RHS is monotonic with
respect to the original order, and one whose RHS is inverted. They map part-of-
speech tags between the source and target languages using a translation lexicon. In
their experiment, they constructed their lexicon by aligning a bitext via EM, and
extracting the highest-likelihood alignments as lexicon entries. The probabilities
of the ITG productions are then estimated via EM.

[Alshawi et al.1998,Alshawi et al.2000] present a finite state translation model
using collections of head transducers, which can be thought of as a synchronous
dependency grammar. The role of each transducer is to translate a specific source
word w into a particular target word, and to recursively translate the dependents
of the head word w. Unlike the finite-state word or finite-state phrase methods,
their approach generates translations outwards from the head, rather than left-to-
right. A head transducer for translating sentence s to t in language T consists of
a set of states Q(w : v) for each w ∈ s and v ∈ T, and transitions between states
are given by (qi(w : v), qj(w : v), wd, vd, α, β), where upon transitioning from qi to
qj, reading a source dependent word wd at relative position α to the head w, it
generates translation vd for wd at the relative position β to v. The transitions are
parameterized by probability Pr(qj(w : v), wd, vd, α, β|qi(w : v)), which is estimated
via maximum likelihood estimation by counting the head transduction derivations
on a bitext. This method has the advantage of capturing the nested structure of
natural language while still being a finite-state model.

[Yamada and Knight2001] apply the noisy channel model to tree transduction.
They assume that a source-language parse tree is fed into a noisy-channel model

13



and is translated into a target-language sentence. Their method has several steps.
First, the nodes of the source parse tree are stochastically re-ordered. Then, an
extra target-language word is stochastically inserted at each node. Finally, each
source-language leaf is translated into a target-language word. They define and
parameterize a stochastic model for each operation. The probability of getting a
target-language sentence t given source-language tree S is:

Pr(t|S) =
∑

θ:yield(θ)=t

Pr(θ|S)

Pr(θ|S) =
n∏
i=1

Pr(θi|θ1, θ2, . . . , θi−1,S1,S2, . . . ,Sn) ≈
n∏
i=1

Pr(θi|Si)

Pr(θi|Si) = p(νi|N (Si))p(ρi|R(Si))p(τi|T (Si))

where each Si is a node in tree S, νi, ρi, τi represent an insertion, reorder, or trans-
lation on node Si respectively, and N ,R, T are the respective feature functions
over the node. The parameters are estimated via EM.

2.3 Mildly discriminative models

The source-channel model approach to SMT has a few disadvantages. First,
the objective the generative models optimize is not necessarily well-correlated with
the measure by which the translations are evaluated. Furthermore, it is not clear
that all the sub-models should have equal weights. For instance, in the source-
channel model the distortion model and the language model contribute the same
amount to the probability of translation. It may be that the language model gives
more reliable estimates as to target-language word positions than the distortion
model, due to data sparsity. Finally, the source-channel model allows us to use only
probabilistic sub-models. If there is some information that we wish to incorporate
in the model that does not have a probabilistic interpretation (e.g. a bias against
shorter translations), we cannot do so in the probabilistic source-channel model.

To overcome some of the problems with the source-channel model, researchers
have shifted towards mildly discriminative models. Like the source-channel model,
mildly discriminative models model the probability of the target sentence given the
source: Pr(t|s). However, unlike the source-channel model, mildly discriminative
models directly model the posterior probability Pr(t|s) by defining a set of feature
functions hm(s, t), and parameterizing each feature function by parameter λm. The
posterior probability is then given by:

Pr(t|s) =
exp[

∑M
m=1 λmhm(s, t)]∑

t′ exp[
∑M

m=1 λmhm(s, t′)]

14



The translator searches for the translation that maximizes:

t̂ = arg max
t

{
M∑
m=1

λmhm(s, t)

}

Typically, the feature functions range over a hidden correspondence structure a as
well:

Pr(t, a|s) =
exp[

∑M
m=1 λmhm(s, t, a)]∑

t′,a′ exp[
∑M

m=1 λmhm(s, t′, a′)]

Mildly discriminative approaches differ in their choice of feature functions hm
and in their methods of selecting parameters λm. Two promising methods for
tuning the weights λm are Minimum Error Rate Training (MERT), which uses a
measure of translation accuracy as the objective [Och2003]; and maximizing the
mutual information criterion, derived from the maximum entropy principle [Och
and Ney2004].

The idea of MERT [Och2003] is to find the values of λm that lead to the lowest
translation error rate on some tuning set. For a given tuning set of sentences S,
let rS1 denote a set of reference translations rs for each sentence s ∈ S, and let
Ts = {ts,1, . . . , ts,K} be the set of candidate translations output by the translation

system for sentence s. Finally, let E(rS1 , t
S
1 ) =

∑S
s=1 E(rs, ts) be the translation

accuracy metric comparing the candidate translation to the reference. MERT
minimizes the following objective:

λ̂M1 = arg min
λM1

{
S∑
s=1

K∑
k=1

E(rs, ts,k)δ(̂t(ss;λ
M
1 ), ts,k)

}
with

t̂(ss;λ
M
1 ) = arg max

t∈Ts

{
M∑
m=1

λmhm(t|ss)

}

This objective function finds the parameters λM1 that re-rank a topK list of transla-
tion candidates so that the lowest-cost candidates have minimum error. [Och2003]
presents a grid search algorithm based on Powell’s method for finding a set of
optimal λm. Given that the objective is non-convex, it is not guaranteed that
the algorithm will find the global optimum. Furthermore, it has been found that
MERT can reliably scale to no more than 15-30 parameters [Chiang et al.2008].

[Och and Ney2004] utilize a maximum-entropy approach [Berger et al.1996] to
find the parameters λM1 . They apply the finite-state alignment template approach
of [Och et al.1999] to a mildly discriminative model. Their system generates align-
ments using the HMM method of [Vogel et al.1996] and the IBM Model 4 of [Brown

15



et al.1993]. They symmetrize the alignments by taking the intersection of the di-
rectional alignments in both directions and heuristically augmenting them with
alignments from the union. Phrases that are consistent with the alignments are
then extracted from the training corpus, and alignment templates (e.g. [Och et
al.1999]) are extracted from the phrases. They then use the following feature
functions:

• The alignment template probability given a source phrase s
jπk
jπk−1+1:

log
∏K

k=1 p(zk|s
jπk
jπk−1+1)

• The lexical translation probability:
log
∏I

i=1 p(ti|{fj : (i, j) ∈ A}, Si)

• A measure of the number of crossing alignment templates2:∑K+1
k=1 |jπk−1 − jπk−1

|

• A trigram language model and 5-gram class language model:
log
∏I+1

i=1 p(ti|ti−2, ti−1) and log
∏I+1

i=1 p(C(ti)|C(ti−4), . . . , C(ti−1))

• A penalty that penalizes translations that are too short

• The number of occurrences of bilingual lexicon entries in the given sentence
pair.

They then estimate the λm weights by maximizing the class-posterior probability
using Generalized Iterative Scaling:

λ̂M1 = arg max
λM1

{
I∑
i=1

log pλM1 (ti|si)

}

Unlike MERT, this objective has the advantage of being convex, so a global opti-
mum will be found by the training procedure.

[Blunsom et al.2008] present a method similar to that of [Och and Ney2004]:
a global mildly discriminative model that defines a conditional probability distri-
bution over the translation given the source sentence. They introduce a latent
variable modeling the derivations of the translation, and define the conditional
probability as:

pΘ(d, t|s) =
exp

∑
k Θkhk(d, t, s)

ZΘ(t)

2Because they focus on similar European languages, they expect the alignments to be almost
completely monotonic.

16



where hk(d, t, s) is the k’th feature, and ZΘ(t) is a normalizer. They then marginal-
ize over derivations d. To learn the parameters, they minimize the log-likelihood
objective using a maximum a posteriori (MAP) estimator:∑

(s,t)∈D

log pΘ(t|s) +
∑
k

log p0(Θk)

where p0(Θk) is a Gaussian prior. Their approach effectively places an `2 regularizer
on the objective of [Och and Ney2004].

[Xiao et al.2011] also apply a discriminative latent variable model to SMT using
the grammar of [Chiang2007]. They optimize the same MAP objective as [Blun-
som et al.2008], and introduce a novel linear-time algorithm for generating the
translation forest necessary for training. Given a synchronous parse tree covering
a source sentence and its reference translation (i.e. a reference derivation), their
algorithm greedily generates a forest by iterating over each node in the derivation.
For each incoming hyperedge of each node, they append the list of competing
derivations for the hyperedge to a list from a table of derivation rules. They then
apply a transformation to the node to infer a new reference derivation consistent
with the source and reference sentences. Using this algorithm, they derive a set
of reference derivations and non-reference derivations3 that are used in estimating
the model. While their method may be linear in the number of nodes of a refer-
ence derivation, they still require the initial step of bi-parsing to infer a reference
derivation. Bi-parsing is O(n6) in the worst case. To apply the MAP objective
function, one must have a complete reference derivation. Due to the constraints
of the grammar, however, a reference derivation may not be inferable for many
sentences in the bitext. [Blunsom et al.2008] use only sentences for which a ref-
erence is inferable using an ITG alignment algorithm [Wu1997] and filter out the
rest. [Xiao et al.2011] augment the set of rules allowed by [Chiang2007] with added
rules using the method of [Zhang et al.2008].

2.4 Fully discriminative models

While mildly discriminative approaches have performed well, they tend to
struggle in scaling up to parameterize many features. It has been found that MERT
is only feasible when parameterizing approximately 15-30 terms in the mildly dis-
criminative model [Chiang et al.2008]. Furthermore, the feature functions in the
mildly discriminative models tend to be generative sub-models. Thus, while the
objective on which the λms are tuned may be well-correlated with the objective of
maximizing translation accuracy, the sub-models themselves may not be.

3Derivations that do not yield the reference sentence in a bitext.

17



Fully discriminative approaches to SMT view the task as a structured classi-
fication problem, where the objective is to learn a mapping from input sentences
s to target language translation t. Like the generative and mildly discriminative
approaches, fully discriminative approaches usually assume the existence of a hid-
den correspondence structure between s and t, and for each tuple (s, t,h) they
assume a feature vector Φ(s, t,h) over the tuple. For linear models, the goal is to
parameterize a weight vector w for the classification rule:

t̂ = arg max
t

w · Φ(s, t,h)

A difficulty in SMT is that unlike in many other structured classification problems
there are many possible valid (i.e. “correct”) outputs for a given input, rather
than a single one. The training set, however, usually only has one gold-standard
reference translation for a given input sentence. Furthermore, there may be many
valid correspondence structures h, making the problem of deciding what to learn
rather non-trivial.

[Liang et al.2006] present a finite-state model optimized by an online percep-
tron training algorithm. Their algorithm iterates multiple times over the training
corpus. A beam-decoder generates a translation hypothesis t with hidden corre-
spondence h for each sentence si in the corpus using parameter vector w. They
then use the perceptron update rule to update w after each translation is gener-
ated:

w← w + Φ(si, t
′,h′)− Φ(si, t,h)

where (t′,h′) is the target the algorithm updates towards. Following [Collins2002]
they then average over the parameter vectors estimated on each iteration. They
experiment with three parameter update methods. The first, which they call bold
updates, updates towards the Viterbi derivation under the current model of the
gold-standard reference translation. The second more conservative local update
strategy generates an n-best list of translations for each sentence in the bitext and
updates towards the one that has the highest evaluation measure with respect to
the gold-standard reference. The third is a hybrid update which does a bold update
if the reference is inferable under the model, and a local update otherwise. They
find that the bold and hybrid updates are too aggressive. Often, it’s really hard
for the decoder to derive the reference – the Viterbi derivation cost of the reference
may be very high under the model making it an undesirable target. They achieve
highest translation accuracies on the development and test set using local updates.

[Watanabe et al.2007] apply the Margin Infused Relaxed Algorithm (MIRA),
an online variant of the large-margin training algorithm of [Taskar et al.2004b].
The main idea behind the MIRA update rule is to keep the updates to the weight
vector minimal, but at least as large as the loss of the incorrect classification. Their

18



update rule is:

ŵi+1 = arg min
wi+1

||wi+1 −wi||+ C
∑
t̂,t

ξ(̂t, t)

subject to

wi+1 · h(s, t̂)−wi+1 · h(s, t) + ξ(̂t, t) ≥ L(̂t, t; t′)

where ξ(̂t, t) is a slack variable greater than 0, C is a constant controlling the
strength of the update, and L(̂t, t; t′) is the loss function measuring the difference
between the BLEU score [Papineni et al.2002] of oracle t̂ and candidate t with
respect to gold-standard reference t′. Since BLEU is a document-level evaluation
measure, they accumulate translations for the entire training set to compute the
BLEU score. Like [Liang et al.2006], [Watanabe et al.2007] use local updating,
except that when they select the oracle, they select it from the union of the n-best
list output by the decoder and the oracle of the previous iteration.

[Chiang et al.2008] also employ MIRA to train a discriminative SMT system.
Their learning approach differs from that of [Watanabe et al.2007] in three ways.
First, they use a different update rule than that of [Watanabe et al.2007]. Second,
instead of accumulating translations to compute the BLEU score, they keep an
exponentially-weighted moving average of previous translations. Finally, to select
an oracle, they propose a hybrid local-update method. As an oracle, they select a
translation that maximizes a combination of BLEU score and model score.

[Tillmann and Zhang2005] present a finite-state discriminative phrase lexical-
ized block re-ordering model that parameterizes the generation of a block bi with
orientation oi relative to its predecessor block bi−1. The decoder searches for the
block sequence that maximizes

∏n
i=1 p(bi, oi|bi−1, oi−1). They discriminatively es-

timate a local model that estimates p(bi, oi|bi−1, oi−1). For each block orientation
pair (b, o; b′, o′) they assume a feature vector f(b, o; b′, o′) ∈ Rd, and try to estimate
a parameter vector w for each block orientation pair for sentence s:

p(b, o ∈ {L,R}|b′, o′;w, s) =
exp(w · f(b, o; b′, o′))

Z(b′, o′; s)

The w’s are estimated by an online training algorithm to maximize the conditional
log-likelihood objective.

[Tillmann and Zhang2006] apply a discriminative global training algorithm
to the finite-state phrase block sequence model of [Tillmann and Zhang2005].
Rather than training local models for each block orientation pair, they opti-
mize a global parameter vector w. The score of a block sequence is given by
sw(bn1 , o

n
1 ) =

∑N
i=1w · f(bi, oi, bi−1). To estimate w, they present the Approximate

Relevant Set method. For each block sequence z ∈ V (Si) corresponding to a whole
translation candidate for sentence Si with BLEU score Bl(z), they let VK(Si) be

19



the set of candidates with highest BLEU score. They train to maximize the “cost
margin” so that the cost assigned to the candidates in Vk(Si) is higher than the
costs of the incorrect alternatives in V (Si). Because V (Si) is too large to be
enumerated, they approximate it by iteratively selecting a “relevant set” of incor-
rect alternative translations that have low cost under the model and performing
stochastic gradient descent to maximize the cost margin. Their objective function
is:

ŵ = arg min
w

[
1

N

N∑
i=1

Φ(w, VK(si), V (si)) + λw2

]
where Φ(w, VK , V ) =

1

K

∑
z∈Vk

max
z′∈V−VK

ψ(w, z, z′)

ψ(w, z, z′) = φ(sw(z),Bl(z); sw(z′),Bl(z′))

φ(s, b; s′, b′) = (b− b′) max
(
0, (1− (s− s′))2

)
[Arun and Koehn2007] compare the averaged perceptron approach to MIRA

on a finite-state phrase model. While they find no appreciable difference in the
accuracies of the two models, they validate the finding of [Liang et al.2006] that
local updates outperform both bold updates and the updates of [Tillmann and
Zhang2006].

Like [Tillmann and Zhang2005], [Wellington et al.2006a] present a tree-to-string
discriminative local model for SMT. They approach MT as a structured predic-
tion problem where they classify inferences in a synchronous parse tree. Rather
than discriminating between possible trees, they train a set of confidence-rated
binary classifiers that determine whether to make individual inferences. Their
classifiers are ensembles of `1-regularized confidence-rated gradient boosted deci-
sion trees. For each inference proposed by their translator, a classifier for that
inference type computes a confidence that the inference is correct. The multitree
output by the translator is the one where the sum of inference confidences is high-
est (alternatively, whose cost is lowest). By decomposing their model into a set
of confidence-rated classifiers, they are able to model the distributions of different
inference types, allowing them to parameterize different sets of features for differ-
ent inference types. Furthermore, because different inference types have different
underlying distributions, constructing a classifier for each inference type allows
them to model that distribution rather than to assume one distribution over whole
translations. To train their classifiers they must generate labeled training exam-
ples. Given a synchronous treebank, each node in the treebank corresponds to an
inference. They decompose each synchronous tree in their corpus into a partially
ordered set (poset) of inferences. For each poset, they randomly select a totally
ordered sequence. They generate a positive training example for each inference

20



in the sequence. To generate negative training examples, given each prefix of the
sequence, for each inference that can possibly follow that prefix that differs from
the true inference following that prefix, they add a negative example.

21



Chapter 3

System Overview

3.1 Translation prediction

In this work, a translator is an algorithm that searches the set of possible
translations T of an input sentence s to find the best translation t̂ ∈ T according
to a utility function E(s, t). This function represents translation quality as a cost,
so that

t̂ = arg min
t∈T

E(s, t) (3.1)

To facilitate the search, we follow most other SMT works (e.g. [Liang et al.2006,
Blunsom et al.2008]) and posit a hidden correspondence structure C between s
and t. We define C(s, t) as the set of possible correspondence structures between
s and t, and define E(s, t) as:

E(s, t) = min
C∈C(s,t)

E(C) (3.2)

Each correspondence structure in the set C(s, t) represents the translationally
equivalent components of s and t. For a set of possible translations T for sen-
tence s, the translator searches over the set

⋃
t∈T C(s, t) and selects the structure

with least cost:
t̂ = arg min

t∈T
min

C∈C(s,t)
E(C) (3.3)

After the translator outputs its best guess about C, a post-process deterministi-
cally extracts t. The algorithm used to search over the set

⋃
t∈T C(s, t) can be

constrained by a reference translation t, thereby forcing the translator to search
for the least-cost correspondence structure between s and t. As we will see in Sec-
tion 3.3, this property will be very useful in selecting an optimal scoring function
E(C).

In this work, C is a multitree or synchronous parse tree (e.g. [Wu1997],
[Melamed2004]). Since the translator searches over the set of possible multitrees

22



consistent with a sentence s, the translator can be conceptualized as a generalized
parser [Melamed and Wang2004]. When the translator is also constrained by a
reference translation t, it can be conceptualized as a multiparser. An example
of a multitree is given in Figure 3.1. One side of the multitree covers the input
sentence and the other side covers a translation. Each aligned node pair in the
multitree represents translational equivalence between source and target word se-
quences dominated by the node pair. During parsing, every multitree is represented
by an item. The construction of a multitree can be decomposed into a sequence of
decisions called inferences. In our bottom-up approach, each inference produces a
consequent item representing a multitree from a pair of antecedent items represent-
ing its sub-multitrees. Each inference fired by the translator has a cost given by
the translator’s model. The strategy we use to select the order in which inferences
are fired is such that inferences are fired in ascending order of cost. The cost of a
multitree is a function of the costs of the inferences fired to construct it. Without
any pruning of items, the first item inferred that represents a multitree that fully
covers the source sentence will be ĉ ∈ C(s), where C(s) =

⋃
t∈T C(s, t) and ĉ is the

least-cost multitree covering the source sentence.

3.2 Translation Model Training Algorithm

In SMT, the cost function E(C) must be learned from training data. As dis-
cussed in Chapter 1 we wish for the cost function to model the inference process
undertaken by the translator in inferring structure C for s,t. The task corresponds
to learning which hyperedges to traverse in the hypergraph for

⋃
t∈T C(s, t). There-

fore the function E(C) for C ∈
⋃

t∈T C(s, t) must weight the hyperedges in the
hypergraph, or, correspondingly, assign cost to inferences made by the translator.
We therefore need to train the model on a set of labeled inferences, where the
labels indicate the utility of the inferences in inferring an optimal structure C1.
Unfortunately, such a training set is not readily available. In SMT, models are
usually trained on parallel corpora, or bitexts. The structures we actually wish to
learn are hidden. We must therefore synthesize a labeled training set from the in-
ferences proposed by a translator that is the same as the one used during test time,
and label the inferences according to a criterion of how useful they are in inferring
a correspondence structure yielding a good translation. We refer to the criterion
used for selecting and labeling training examples as the global objective function,
which should be, but need not be, well-correlated with the measure by which the
output is evaluated. We defer discussion of how we synthesize the training set to
Section 3.3.

The training procedure for the translator involves two tasks – determining

1Or the utility of the inferences in inferring an optimal set of structures C.

23



Figure 3.1: An example binary multitree for an English-French sentence pair. The
dashed lines indicate word alignments. The dotted lines indicate node alignments.
The English word “noon” and the French word “heures” are both unaligned.

S

.

.

S*

VP

VP

PP

NP

NN

noon

CD

12

IN

at

VB*

NP

tomorrow

VB*

NP

place

VB

take

MD

will

NP

NN

vote

DT

The

X

X

.

X

X

X

X

X

X

heures

X

12

X

à

X

X

demain

X

lieu

X

aura

X

X

vote

X

Le

the examples to train on and updating the weights of the model based on those
training examples. We therefore train the model by an iterative two-step process.
The first step generates training examples from the inferences proposed by the
translator(s) using the latest model. These examples are added to a global training
set. The second step rebuilds the model. This process iterates for a fixed number
of iterations. The pseudocode for our iterative training algorithm is presented in
Algorithm 1.

We can initialize the model in any way we like in line 4. For example, we
can include an inductive bias for the model on subsequent iterations. In line 7

24



Algorithm 1 The iterative model training procedure

Input: training bitext B, model h, maximum iteration M
1: procedure Train
2: i← 0
3: I ← {}
4: h← InitModel()
5: while i < M do
6: for each (s, t) ∈ B do
7: I ← I ∪ GenerateTrainingExamples(B, h)

8: h← Train(I)

of the algorithm we take the union of the training set generated on the previous
iteration and the training set generated in the current iteration. We retrain the
model in line 8 using all the examples generated on all iterations thus far. Doing
so allows the translator to retain what it has already learned while taking into
account new information about the relative merits of previously unexplored states
(i.e., hypergraph nodes). If we were to discard previous training examples, the
translator would likely fire inferences that it had previously learned not to fire.

3.3 Parsing Coordinator

To synthesize the training set of inferences that we use to train the model, we
present a novel architecture and algorithm for example generation. Our architec-
ture revolves around a parsing coordinator that coordinates the inference processes
of a supervisor and a predictor. The supervisor and predictor are inference engines
each of which keeps an agenda of items. The supervisor is like an “expert” because
it is given the reference translation and is constrained to infer it. It can also be
constrained to infer only certain kinds of correspondence structures c. The pre-
dictor is the same translator as the one used at test time, which doesn’t know the
reference translation. Apart from that, the two parsers are exactly the same. The
parsing coordinator filters and labels the inferences proposed by the predictor to
use as a training set according to an objective function. All the objectives with
which we experimented utilized the supervisor to determine the utility of any given
inference fired by the predictor in inferring a multitree yielding a good translation.
Because the supervisor and predictor have identical configurations2, the supervisor
has the property that the set of items it can infer is a subset of the set of items
that the predictor can infer. The coordinator has a function that can determine

2apart from the fact that the supervisor is constrained by the reference translation whereas
the predictor is not

25



whether an item proposed by the predictor is inferable by the supervisor. If the
function determines that an item is inferable by the supervisor, we say that the
inference that inferred the item is approved by the supervisor.

The coordinator can use the supervisor’s approval of an item in two ways. First,
its objective function can use the supervisor’s approval or lack thereof of an item
to label the inference inferring it, thereby labeling the training example. Second,
the coordinator can use the supervisor’s approval of items to control how far the
predictor strays from inferring a multitree yielding the reference translation. To
do so, we utilize a distance measure counting the maximum number of inferences
between an item inferred by the predictor and an approved item. In terms of the
hypergraph, it measures the number of hyperedges between a node (corresponding
to an item) and the approved predecessor node with the longest distance from the
node being evaluated. The coordinator can place a limit on the maximum distance
a predictor is allowed to have from an approved multitree, thereby limiting the
number of incorrect states the predictor is allowed to explore.

The constraints we apply to the supervisor have an impact on the predictor
items it can approve. In turn, this has an effect on whether the inference inferring
the item becomes part of the training set and how it is labeled by the objective func-
tion. For example, we can constrain the supervisor to infer a single pre-specified
multitree for each sentence pair in the bitext. The only inferences proposed by the
predictor approved by the supervisor will be the ones that are involved in inferring
the pre-specified multitree. If the coordinator employs a strict labeling strategy,
that is, if it labels all inferences inferring approved items as positive and all others
as negative, the translator will be trained to infer the single pre-specified structure
for each sentence pair. Additionally, when constrained to infer a single tree, the
predictor will be allowed to explore only a certain distance from that one tree.
Alternatively, if we allow the supervisor to infer any multitree consistent with the
sentence pair, the translator will learn to infer any multitree yielding the refer-
ence translation. Furthermore, removing the single tree constraint will allow the
predictor to explore more correct and incorrect states, since the predictor will be
allowed to explore a given distance from any reference-yielding multitree.

The parsing coordinator is presented in Algorithm 2. It operates as follows.
First, the supervisor S and predictor P are initialized in lines 2 and 3 and the
training set I is initialized to an empty set. The agendas of both the supervisor
and the predictor are populated by the initialization functions. The main loop in
lines 5–20 iterates until a given termination condition is satisfied by the predictor.
Lines 6–9 of the algorithm check whether the predictor can expand any more items.
Expansion refers to when an item is dequeued from an agenda and is used to infer
new consequent items. If the predictor cannot expand any more items but the
supervisor can, the next item of the supervisor is expanded and returned to the
predictor. The predictor can run out of items to expand for two reasons. Either the

26



Algorithm 2 The abstract parsing coordinator
Input: Supervisor S,

Predictor P ,
Sentence pair (s, t),
Supervisor model hS ,
Predictor model hP ,
Exploration threshold δ

Output: Training set I
1: procedure GenerateTrainingExamples(S,P , (s, t), hS , hP)
2: S.Initialize(hS , (s, t))
3: P .Initialize(hP , s)
4: I ← {}
5: repeat
6: if P ’s agenda is empty and S’s is not then
7: i← S.Dequeue()
8: if S does not prune i then
9: S.Enqueue(S.Expand(i, hS))

10: else if P ’s agenda is empty and S’s agenda is empty then . Abort
11: break
12: else
13: i← P .Dequeue()

14: if S.Approves(i) then
15: S.Enqueue(S.Expand(i, hS))

16: I ← I ∪ MakeExample(i,S.Approves(i))
17: if d(i) ≤ δ then
18: if P does not prune i then
19: P .Enqueue(P .Expand(i, hP))

20: until termination condition is satisfied
21: return I

27



predictor has pruned an item necessary for satisfying the termination condition3,
or the item needed to infer a multitree satisfying the termination condition is not
inferable by the predictor, e.g. because of its logic. The Expand function in lines
9 and 19 takes an item i, finds other items that can participate in an inference with
i, and proposes a new set of inferences weighted by the model. It then computes a
cost for the consequent item of each proposed inference and returns the weighted
items. MakeExample in line 16 makes a set of training examples given i and a
determination of whether they are approved by the supervisor. It first computes
a feature vector for the inference whose consequent item is i. It then determines
whether the example should be positive or negative. Line 17 determines whether
P should try to expand the item. Finally, in line 19, P expands i and puts the
consequent items onto its agenda.

To facilitate limiting the amount of exploration, the coordinator must be able
to determine the distance between an item proposed by the predictor and its
most distant ancestor item approved by the supervisor whose parent item4 is not
approved by the supervisor. d(i) computes this distance for item i. This distance
measure is illustrated in Figure 3.2. If i is approved by S, then d(i) = 0. We call
d(i) the exploration distance. δ, the exploration limit, is a parameter we set that
controls how far we allow the predictor to stray from the search paths allowed by
the supervisor. We also refer to this as the amount of exploration5 the predictor
is allowed. By setting δ to be a high value, we can allow the translator to build
long sequences of incorrect inferences before correcting the predictor and leading
it back to a correct inference. Limiting the amount of exploration in this manner
is related to the early update approach of [Daumé and Marcu2005], except that
as soon as their algorithm makes an error, they restart training from the correct
solution, whereas we allow the translator to explore the space of incorrect solutions
further, to give the model a bigger picture of incorrect states. The approach of
seeding the predictor’s agenda with supervisor items is also related to the early
update strategy of [Collins and Roark2004], where they restart training as soon
as the correct parse falls outside the beam. Our approach guides the predictor
back onto a path followed by the supervisor after the predictor has been given the
opportunity to make incorrect inferences (i.e. make mistakes), which the training
algorithms can use as negative examples.

The parsing coordinator architecture affords us many advantages in terms of
flexibility and efficiency. The coordinator treats the underlying predictor and su-

3if, for instance, the termination condition is that the predictor infer a multitree consistent
with the reference translation

4i.e. the consequent item of the inference for which the supervisor-approved item is an an-
tecedent

5We borrow the term from reinforcement learning. It refers to non-optimal actions taken to
observe previously unexplored states.

28



Figure 3.2: An illustration of the distance measure between predictor items and
supervisor-approved items using only one side of a multitree. The root node cor-
responds to a predictor-proposed item i. Nodes labeled XS correspond to items
approved by the supervisor, and nodes labeled XS̄ correspond to items not ap-
proved by the supervisor. The distance here is 3, since the greatest height from
root to any xS is 3.

XS̄

XS̄

XS̄

XSXS

XS

XS
d(i) = 3

pervisor as black boxes, allowing us in principle to use the architecture not only
for tree-structured translation algorithms as we do here, but, more generally for
many structured prediction tasks. The architecture allows us to explicitly control
the search procedure of the supervisor independently of the predictor to select the
objective on which to update the model. It allows us to explicitly control the
amount of exploration done by the predictor. It has the advantage that it con-
structs training examples while the predictor follows its search procedure, rather
than post hoc. This property allows us to learn from incomplete multitrees as well
as complete ones, allowing us to exploit more of the search space for learning. The
coordinator can determine how to label the training examples without needing the
predictor to infer a complete output. If the predictor runs out of items to expand,
or if we terminate the search prematurely, the coordinator will still generate useful
training examples.

A distinguishing characteristic of our parsing coordinator algorithm is that it
does not generate any inferences that are not required for learning or for guiding the
predictor. The supervisor acts only when the predictor needs guidance (i.e. when
the predictor’s agenda is empty and it has not generated a reference translation).
Furthermore, the predictor does not need to recreate any inferences fired by the
supervisor. The supervisor needs only to pass an item to the predictor, and the
predictor can use it to continue parsing. This process is an advantage over having
each inference engine build up a structure separately, and then comparing the
structures post-hoc.

An alternative architecture we considered was one that one that would have
been sufficient for the perceptron update approach [Liang et al.2006] and MIRA

29



[Watanabe et al.2007], where we first had the supervisor and predictor infer a
whole multitree or set of multitrees. We would have then compared the inferences
generated by the supervisor to those generated by the predictor. This architecture
did not allow us to use permissive example generation to train the model (discussed
in Chapter 4). Furthermore, when the supervisor or predictor were unable to
achieve a complete parse, we could not learn from the inferences generated.

To illustrate the flexibility of our architecture we now demonstrate how it can
be used to implement the training scheme of [Wellington et al.2006a]. Recall that
[Wellington et al.2006a] attempt to learn a single multitree for each sentence pair in
their bitext. Moreover, they randomly selected a single totally ordered sequence of
inferences used to infer each multitree. The inferences in the total ordering became
positive examples for the classifiers. For each prefix of each inference sequence,
they considered the alternative subsequent inferences that could have been made,
and added them as negative examples. This training routine can be implemented
merely by specifying some of the components of Algorithm 2. Specifically, we set
hS to return zero cost for any inference inferring part of the multitree and infinite
cost to all others; we set δ to be 0 (as to allow only the alternative inferences to be
added as negative examples and not allowing for expansion of incorrect multitrees);
and we implement MakeExample so that it makes all inferences proposed by the
predictor that have zero cost under hS positive examples and all others negative.

3.4 Comparison to other work on learning to

search

We pause here to situate our approach in the literature, specifically discussing
the similarities and differences of our approach to other works on learning to search.

[Daumé and Marcu2005] frame the problem of structured learning as a problem
where the objective is to learn a model to rank the items on the agenda of states,
so that “good” hypotheses are expanded before “bad” hypotheses. They assume
that each hypothesis is scored by g+h, where g is a linear function of features of a
hypothesis x, and where h is a heuristic component (thereby allowing for different
search strategies, such as A*). For a given node s in their search graph, and goal
state y, they assume that they can tell whether s is on a path from the start state
to y. Their objective is that the first state that’s dequeued from the agenda should
be on the path to y, and the queue should always contain a state on the path
to y. They train by performing a search. Whenever they dequeue a state that
is not on the path to y or whenever the agenda does not contain a state leading
to y, they update the parameter vector. When one of these situations occurs,
they clear the agenda and insert all the correct states. They experiment with two
parameter update rules – perceptron updates [Rosenblatt1958] and approximate

30



large margin updates (ALMA [Gentile2002]), and apply this learning method to
syntactic chunking and tagging. Unlike [Daumé and Marcu2005], we do allow for
some exploration of the search graph before bringing the predictor back to the
correct path. In this work we do not incorporate a heuristic component to our cost
function, but we can, and might in future work.

Like the experiments of [Wellington et al.2006a], the approach of [Daumé and
Marcu2005] attempts to learn an optimal policy for navigating the search graph.
This target, however, is suboptimal in that it does not allow an algorithm explor-
ing the search graph to recover from mistakes – if a parser or sequence labeler
finds itself considering an incorrect state, any decision it makes thereafter may be
unreliable since it was never trained to deal with this scenario. To deal with these
problems, [Daumé III et al.2009] present SEARN, a meta-algorithm that decom-
poses structured prediction problems into binary classification problems, much as
we do. SEARN can apply to any loss function, feature set, or search space. The
main loop of the algorithm uses a policy (initialized to be the optimal policy) to
generate a set of labeled training examples by running the policy over the search
space for each input in the training data, generating a path through the search
space for each input, thereby creating a single training example for each state on
each path. A new set of binary classifiers is trained from this example set, and is
stochastically interpolated6 with a bias with the previous iteration’s policy. That
is, given the policies estimated on iteration i− 1 and i, an action is randomly se-
lected with probability β from the policy of iteration i and with probability 1− β
from the policy of iteration i − 1. Of all the related published work, SEARN is
closest to our method. While SEARN comes with some theoretical guarantees
on its performance, we cannot apply it to our problem, because we cannot select
an optimal policy with which to initialize our system. There are many possible
policies we can follow to infer translation y from input sentence x, but we have no
good way to a priori decide which one is optimal.

Recall that translation can be viewed as a generalization of parsing
[Melamed2004]. [Neu and Szepesvari2009] note the similarities between the prob-
lem of training a parser and the inverse reinforcement learning (IRL) problem. In
IRL, an agent uses a utility function (called a reward function) to determine which
actions to take in an environment. Given an agent following an unknown reward
function, the goal of IRL is to estimate the agent’s reward function from the sets
of its observed trajectories. The environment and the agent’s search strategy are
modeled as an episodic Markovian decision process (MDP). Formally, an MDP is
a 5-tuple M = (X ,A, T,XT , r) where X is a countable (but possibly infinite) set
of states; A is a finite set of actions; T is a transition function, where T (xt+1|xt, a)

6Meaning they figuratively flip a coin with a bias, and if it comes up heads they use the
most recently trained classifier to score the state, otherwise they use one of the previous ones
(stochastically interpolating between the models).

31



is the probability of transitioning from state xt to xt+1 upon taking action a; XT
is a set of terminal states; and r is a real-valued reward function determining
the reward upon executing action a ∈ A in state x ∈ X . A policy is a function
π : A × X → [0, 1], such that

∑
a∈A π(a|x) = 1. The value of a policy is the

probability of taking action a in state x. The value of a state x under policy π and
reward function r is given by:

V π
r (x) = Eπ

[
H−1∑
t=0

r(xt, at)|x0 = x

]
(3.4)

where the sum is over the set of transitions taken under policy π from state x to
a terminal state and H is the first time when the process enters a terminal state.

In IRL, a training algorithm is given an MDP without a reward function speci-
fied, and a list of trajectories D through the MDP generated by an expert following
a policy in the MDP. The goal of training is to find a reward function r such that
the trajectories that one obtains by following an MDP with that reward function
are close to the trajectories generated by the expert. This is done by defining and
minimizing a dissimilarity function: r̂ = arg minr J(r;D). J(r;D) measures the
dissimilarity between the observed behavior D of an expert and a reward func-
tion hypothesized to be the one followed by the expert. [Neu and Szepesvari2009]
demonstrate how the problem of finding the best parse under a PCFG with the
Viterbi semiring is equivalent to following an optimal policy in a deterministic
MDP (where taking an action can only lead to one possible successor state). They
then show how several standard IRL algorithms can be used to derive well-known
parser training algorithms in the literature when the parsing problem is properly
defined as an MDP, including max-margin parsing [Taskar et al.2004b], a variant of
perceptron parsing [Collins and Roark2004], and max-margin reranking [Charniak
and Johnson2005].

The problem of learning an optimal translation model can also be viewed as a
problem of learning an optimal reward function for an MDP. Our problem consists
of a translator agent trying to learn a reward function that allows it to generate
translations (i.e. trajectories) close enough to those output by the expert. If the
expert is constrained to infer only one hidden correspondence structure for each
sentence pair, there will be a single trajectory for each sentence pair in the bitext.
If the expert is configured to infer any multitree consistent with the sentence pair,
then all of the resulting multitrees become trajectories that the algorithm can
learn from7. Under the Viterbi semiring, the cost of each state is given by the V π

r

function in Equation 3.4. However, under the semiring we will use (described in
Section 4.3), the cost of a state x under a policy π is the lowest reward for taking

7Although not all of them will be used, given that the space of possible multitrees is so large.
Instead, a subset will be used that receive the lowest cost under the current iteration’s model.

32



action a in any subsequent state to x. Therefore, when learning, we will not be
trying to find the reward functions that maximize the cumulative reward earned
by a policy; instead, we will try to find reward functions that maximize the lowest
reward earned by a policy.

33



Chapter 4

System Details

4.1 Generalized parsing

Recall from Chapter 3 that the translator we employ at test time, and by ex-
tension the predictor and supervisor we use during training, predict multitrees
to represent translational equivalence between a source language sentence and
a translation. The algorithms behind the supervisor, predictor, and translator
at test time can be described as parsing algorithms with different constraints
and configurations. One way of specifying the algorithms behind each of these
parsers is by framing them as generalized parsers [Melamed2004, Melamed and
Wang2004]. In the generalized parsing framework a parser is any algorithm that
infers a structure for input text(s). Many NLP tasks can be viewed as generalized
parsing, including ordinary monolingual parsing, synchronous parsing, hierarchi-
cal alignment, some methods of translation evaluation, the inside/outside algo-
rithm [Baker1979], and most methods of statistical machine translation (this is
discussed in depth in [Melamed and Wang2004]). In MT, the parser’s task is to
infer a multitree – a synchronous parse tree covering each component of the input
tuple (e.g. [Wu1997,Melamed2004]) and specifying the hierarchical correspondence
between them.

A parser can be fully specified using five components: logic, grammar, semiring,
search strategy, and termination condition.

Logic The logic defines a parser’s possible states and transitions between states.
It is specified in three parts:

• the set of term type signatures. The logics we use in this work define two
term types: items and grammatical constraint terms. Under the logics we
present, a single item always represents a single node in a multitree, although
this does not hold for parsing logics such as Earley-style logics [Earley1970].

34



• the set of legal inference types. Inferences are expressed as follows: x1,...,xk
y

means that antecedent terms x1, . . . , xk (which can be either items or gram-
matical constraint terms) infer consequent item y. We say the parser “fires”
inferences to create new items.

• the set of axiom terms. Axioms are term instances with which the parser is
initialized. The axioms typically come from the grammar and from the input
sentence(s).

To illustrate these definitions, Table 4.1 presents a logic for a monolingual
bottom-up parser using context-free grammar productions, from [Melamed and
Wang2004]. Two item types are defined in this logic – one for terminal items rep-
resenting a single word in the sentence and its position, and one for nonterminal
items representing a nonterminal node in a parse tree. The grammar constraints
come from CFG production rules in Chomsky Normal Form – unary terminating
production rules and binary nonterminating production rules. The axioms initial-
izing the parser are terminal items for each word in the input sentence and the
production rule instances of the grammar. The logic allows for two types of infer-
ence – one that generates a nonterminal item from a terminal item and a unary
production rule, and one that composes two nonterminal items, using a binary
production rule to generate another non-terminal item. A parser can fire a scan
inference for the i’th word wi if that word appears on the right hand side of a
terminating production rule. It can fire a compose inference when: 1) the labels
of the antecedents match the right hand side of a nonterminating production in
the grammar and 2) the spans of the items are adjacent and their relative order
is the same as that of their labels in the right hand side of the nonterminating
production.

For a generalized parser to act as a translator between two languages, its logic
must have the following properties:

• It must take a single sentence as input

• Its item signatures and inference types must be bilingual

• Its logic must have a way to generate lexical items of the target language. In
other words, the logic’s axiom set must include items for each word in the
vocabulary of possible translations of the sentence.

The predictor utilized by the parsing coordinator described in Chapter 3 satisfies
these three properties. The supervisor also satisfies these properties, except that
the target-language lexical items the logic proposes are constrained by a reference
translation for the source-language sentence. In terms of the taxonomy of parsing
algorithms described in [Melamed and Wang2004], the predictor is a translator
and the supervisor is a multiparser.

35



Table 4.1: Logic MonoC. wi are input words; X, Y, and Z are non-terminal labels;
t is a terminal; i and j are word boundary positions; and n is the length of the
input

Term Types
terminal items 〈t, i〉

nonterminal items [X; (i, j)]

terminating productions X ⇒ t

nonterminating productions X ⇒ Y Z

Axioms
input words 〈wi, i〉 for 1 ≤ i ≤ n

grammar terms as given by grammar
Inference Rule Types

Scan
〈t, i〉, X ⇒ t

[X; (i− 1, i)]

Compose
[Y ; (i, j)], [Z; (j, k)], X ⇒ Y Z

[X; (i, k)]

Grammar A grammar is a function that assigns a value to a grammatical con-
straint term instance in an inference. In this dissertation, we define the value of
the inference as the value of the grammatical constraint term used as an antecedent
in the inference. This value can range over booleans (in the case of determining
whether an inference is valid); over real numbers bounded by [0, 1] (in the case
of determining the probability of an inference); or over arbitrary real numbers
(for instance, confidence estimates [Turian et al.2006] or feature weights [Chi-
ang2005]). For instance, a PCFG is a function mapping the set of productions in
the grammar R → [0, 1], so that a nonterminating production X ⇒ Y Z would
have probability P (X ⇒ Y Z) and a terminating production X ⇒ t would have
probability P (X ⇒ t). In this work, we restrict ourselves to grammars that assign
a real-valued cost to each inference. The grammar determines the weight of each
hyperedge in the search hypergraph that the predictor, supervisor, and test-time
translator traverse. To learn to search well, we must evaluate at least some of the
weights of the hyperedges based on the corresponding inference’s utility in inferring
a good translation. The training set output by the parsing coordinator is used to

36



learn some parts of the grammar. We elaborate on grammar learning in Section
4.5.5

Semiring The grammar assigns a cost to an inference. To assign a cost to an
item, and consequently the multitree it represents, we use a semiring. A semiring
R is an algebraic structure consisting of a set (the domain of the semiring), two
binary operators (the additive operator ⊕R and the multiplicative operator ⊗R),
and two identity elements (the additive identity 0R and the multiplicative identity
1R). When the identity of the semiring is clear, we omit the subscript. In this
work, a semiring is used in the semiring equation to map items to values in the
semiring’s domain:

V (y) =
⊕

x1,...,xk
such that

x1,...,xk
y

k⊗
i=1

V (xi) (4.1)

Like the grammar, the values (i.e. domain) of the semiring can be boolean values,
probabilities, or other real-valued cost domains. However, the domain can also
consist of complex structures. For instance, the Viterbi-derivation semiring pre-
sented in [Goodman1999] computes the most likely parse tree for a sentence, in
addition to its likelihood. The Viterbi-n-best-derivation semiring computes the n
most likely parse trees for a sentence and their likelihood. The derivation-forest
semiring computes a packed parse forest of trees for a sentence and their costs.
Parsers use the cost assigned to items by the semiring equation to encode a pref-
erence between alternative items/multitrees.

Search strategy The search strategy determines the order in which inferences
should fire. Common search strategies include the strict bottom-up search strategy
(for instance, CKY search in which smaller-span items must be inferred before
larger-span items [Kasami1965, Younger1967]) and the best-first search strategy
(in which the inference operating on the highest-scoring/least-cost consequent is
selected first, for instance [Klein and Manning2003,Turian et al.2006]).

Termination condition The termination condition is a predicate that defines
the conditions under which the parsing algorithm terminates. This predicate can
be defined in terms of a single goal item (i.e. an item that must be inferred for
parsing to stop); a set of goal items (i.e. any item within a pre-defined set must be
inferred for parsing to stop); and/or another kind of limit on the parsing algorithm,
for instance, the number of items generated, the amount of time spent parsing, or
the amount of memory consumed by a parsing algorithm.

37



The generalized parsing algorithm in Algorithm 3 is a notational variant of that
in [Melamed and Wang2004]. The algorithm first instantiates the axioms and
evaluates them under the semiring. It then iteratively asks the search strategy
S for a set of antecedent items. It looks for a grammatical constraint term that
unifies with the antecedent items. It then fires an inference for those items and
grammar term. Finally, it uses the semiring equation to compute a value for the
consequent item y of the inference and stores it in S. This loop proceeds until
termination condition C is satisfied.

Algorithm 3 The Generalized Parsing Algorithm
Input: Logic L

Grammar G
Semiring R
Search Strategy S, which also keeps track of items participating in a parse
Termination Condition C
Text tuple T

1: for each axiom p′ ∈ L corresponding to a grammatical constraint p ∈ G do
2: V (p′)← G(p) . G(p) is the value that the grammar assigns to p

3: for each non-grammar axiom w′ ∈ L do
4: V (w′)← 1R

5: while C is not satisfied do
6: Let X = {x1, . . . , xk} be a set of antecedents given by S
7: for each grammar term γ ∈ L such that γ unifies with X do

8: inference I ← X; γ

y
9: for all possible terms y that unify with consequent of I do

10: Ants(y)← {X ′ = {x′1, . . . , x′l} : ∃x
′
1, . . . , x

′
l; γ

y
∈ L}

11: V (y)←
⊕

X∈Ants(y)

⊗|X|
i=1 V (xi)

12: add y to S

In the rest of this chapter, we specify the components of the supervisor and
predictor used by the parsing coordinator in our experiments.

4.2 Logics

The logics (along with the grammars) define the search space explored by the
supervisor and predictor. By firing inferences, they should be able to infer hid-
den correspondence structures representing patterns of translational equivalence
between sentences. These patterns include:

38



• single word translation

• source word deletion (i.e. the translator should be able to decide not to
translate a source word)

• target word insertion (i.e. the translator should be able to insert a target
language word into the translation candidate even if it has no direct trans-
lational equivalent in the source)

• multiword translation (i.e. be able to jointly translate a sequence of source
words into a sequence of target words)

• reordering of syntactic structures

Although individual words tend to be the atomic unit of meaning in natural
languages that are written with spaces between words, most languages have multi-
word compounds that should be analyzed as a single unit of meaning. Examples
in English include “would like” and “give shelter”. These compounds might (and
likely do) have translations in other languages that are not literal or one-to-one.
The French word for “would like” is “voudrais”, the word for “give shelter” is
“héberger”, and the phrase for “please” is “s’ il vous plâıt”. We would like a logic
that can support selecting the source- and target-language word sequences that
should be translated as a unit. To have the translator perform insertion, deletion,
and multiword translation, we utilize monolingual composition inferences that we
call fuse inferences. A source fuse inference creates a segment of the source sentence
that should be translated as a unit. A target fuse inference creates a target word
sequence that can be a translation of a source-side word or segment. We can allow
word deletions by adding any source word we wish to delete into a source fuse.
We can allow word insertions by adding any target word we wish to insert into a
target fuse.

4.2.1 Multiparsing Logic

Our multiparsing logic, Logic MP (LMP), is a specialization of Logic C pre-
sented in [Melamed and Wang2004]. It is utilized by the supervisor in the parsing
coordinator. The logic takes a sentence tuple containing both a source sentence
and reference translation as input. Logic MP can be found in Table 4.2. Like Logic
MonoC, Logic MP defines two item types: terminal items and non-terminal items.
A terminal item i is a triple 〈t; d, i〉 denoting a leaf node: word t is located at
position i on tuple component d. A non-terminal item i is a pair 〈X;σ〉 contain-
ing a bilingual node label X and a bilingual span σ indicating the word positions
dominated by the node in both components of the sentence tuple.

39



A label X = [X1;X2] is a length-2 vector of nonterminals. When an item covers
a single word on a single component of the sentence tuple, the NT will be the word’s
part-of-speech (POS) tag. We refer to such non-terminal items as monolingual
items. The label of the other component will be ∅. A monolingual item label
active on the source component is denoted as X1

∅ = [X1;∅2], and a monolingual
item label active on the target component is denoted as X∅

2 = [∅1;X2].
A span is a length-2 vector of word index pairs covering a possibly empty subse-

quence of each component of the sentence tuple. We denote a span as σ =

[
i1, j1
i2, j2

]
.

Monolingual spans are represented as σ1
∅ =

[
i1, j1
∅

]
and σ∅

2 =

[
∅
i2, j2

]
. We re-

fer to the non-empty component of a monolingual span as the active component.
In this work, we restrict our spans to those that are contiguous. [Wellington et
al.2006b, Sogaard and Kuhn2009] and references therein showed that this restric-
tion will render the parser incapable of generating complete multitrees over some
sentence pairs. We hope to incorporate discontinuous constituents in future work.

Inference types Logic MP uses four kinds of inferences. These are:

• Scans – Scan inferences take a terminal item and a terminal grammar con-
straint as antecedents, and generate a monolingual non-terminal item as a
consequent.

• Monolingual compositions – Monolingual compositions take two mono-
lingual items as antecedents, where the two have the same active component.
The resulting consequent is also a monolingual item. When the active com-
ponent of an item is the source, we call the inferences source fuses. When
the active component of an item is the target, we call the inferences target
fuses.

• Bilingual compositions – Bilingual compositions take two monolingual
items as antecedents, where the two have different active components. The
resulting consequent is a bilingual item. A bilingual composition inference
posits translational equivalence between a source-sentence substring and a
target-sentence substring. It is a generalization of the word transduction
inferences of [Wellington et al.2006a].

• 2x2 compositions – 2x2 compositions take two bilingual items as an-
tecedents, and return a bilingual item as a consequent. The inference can be
monotonic or inverted. In a monotonic composition, the target components
of the antecedents are in the same order as the source components. In an in-
verted composition, the target components of the antecedents are in inverted
order with respect to the source components. [Melamed2004] presented more

40



general inference types by utilizing role templates (also called precedence ar-
ray vectors (PAVs) in [Melamed and Wang2004]) that can represent any sort
of synchronous reordering patterns. However, since our logic is restricted
to contiguous items, there are only two possible relative re-orderings so we
explicitly list them to decrease the symbolic complexity of their description.

The manner in which LMP defines the inference types imposes a partial or-
dering on the inferences: monolingual inferences must be fired before bilingual
inferences, and bilingual inferences must be fired before 2x2 inferences. A mono-
lingual item cannot compose with a bilingual item. This decision was taken so
that the translator first selects the terminal sequences of the source sentence and
candidate translation that should be translated as a unit, then determines the
translationally equivalent units, and then orders the target-side translations. In-
ferences allowing monolingual items to compose with bilingual items were a part
of extension logics, discussed in Section 4.2.3. We found that it was difficult for
the model to learn these kinds of inferences.

Axioms Finally, the axioms of the logic are defined as follows. For each word
wi in the input on component d, we create a terminal item 〈w; d, i〉. For each
production allowed by the grammar, we add a grammar term to the logic.

4.2.2 Translation Logic

Our translation logic, Logic T (LT) can be found in Table 4.4. It can represent
the same patterns of translational equivalence as Logic MP. However, whereas
LMP is constrained by both the source and target components of the bitext, LT
is constrained by just the source.

Items Monolingual items that are active on the source component are defined
in the same manner as in LMP. However, monolingual items that are active on
the target component no longer have spans, since the absolute positions of target
terminals are unknown until the translation is complete. The items are represented
as follows:

• Source-side terminal items: 〈t, i〉 covers word t at source position i.

• Target-side terminal items: 〈t〉 represents word t on the target compo-
nent.

• Non-terminal items: 〈X;σ〉, with label X and source span σ.

41



Table 4.2: The specification of Logic MP – Part 1
Term Types
terminal item 〈t; d, i〉

non-terminal item 〈
[
X1

X2

]
;

[
σ1

σ2

]
〉

grammar terms γ(·, ·, ·)
Axioms

input words 〈w; d, i〉 for each word w at position i on component d
grammar terms as given by the grammar

Inference Rules

Source Scan
〈t; 1, i〉, γ(t,∅, X)〈[
X
∅

]
;

[
i− 1, i

∅

]〉
Target Scan Analogous to Source Scan

Source Fuse

〈[
Y
∅

]
;

[
i, j
∅

]〉
,

〈[
Z
∅

]
;

[
j, k
∅

]〉
,

γ(

[
Y1

Y2

]
,

[
Z1

Z2

]
,

[
X1

X2

]
)

〈
[
X1

X2

]
,

[
i, k
∅

]
〉

Target Fuse Analogous to Source Fuse

Inference types The inference types of LT are the same as those of LMP, but
with target-side position information removed. LMP renames the target scan in-
ference as a load inference.

Axioms This logic replaces the target-side axioms of LMP with a target terminal
item for each word in the target vocabulary.

The inferences fired by LMP and LT are those that can be evaluated by gram-
mars in the class of Inversion Transduction Grammars (ITG) [Wu1997]. Align-
ments allowed by grammars in the class of ITG allow only one-to-one phrase
matchings, as do our bilingual composition inferences. Furthermore, ITG allows
only for inferences yielding items with contiguous spans, as the inferences in our
logics do.

42



Table 4.3: The specification of Logic MP – Part 2
Inference Rules

Bilingual
Composition

〈[
Y1

∅

]
;

[
i, j
∅

]〉
,

〈[
∅
Z2

]
;

[
∅
k, l

]〉
,

γ

([
Y1

∅

]
,

[
∅
Z2

]
,

[
X1

X2

])
〈[

X1

X2

]
;

[
i, j
k, l

]〉

Monotonic 2x2
Compositions

〈[
Y1

Y2

]
;

[
i1, j1
i2, j2

]〉
,

〈[
Z1

Z2

]
;

[
j1, k1

j2, k2

]〉
,

γ

([
Y1

Y2

]
,

[
Z1

Z2

]
,

[
X1

X2

])
〈[

X1

X2

]
;

[
i1, k1

i2, k2

]〉

Inverted 2x2
Compositions

〈[
Y1

Y2

]
;

[
i1, j1
j2, k2

]〉
,

〈[
Z1

Z2

]
;

[
j1, k1

i2, j2

]〉
,

γ

([
Y1

Z2

]
,

[
Z1

Y2

]
,

[
X1

X2

])
〈[

X1

X2

]
;

[
i1, k1

i2, k2

]〉

4.2.3 Extension Logics

Our initial attempt to model translational equivalence utilized an improved ver-
sion of the logic used by [Wellington et al.2006a]. In addition to bilingual inferences
and 2x2 composition inferences our extension logic used extension and finishing
inferences, and added a flag to each item indicating its stage. An item can have
one of two stages, finished or unfinished. A finished item was inferred by a finishing
inference. An unfinished item is one that was inferred by a bilingual composition
or extension inference. A target extension inference takes an unfinished bilingual
item and a monolingual target item and infers an unfinished bilingual item. Thus,
target extension inferences take a translation of a source word and insert a word to
the left or right to augment the translation. Rather than representing word dele-
tions as translations of a source word to a null token as [Wellington et al.2006a] do,
we define source extension inferences to model word deletions. When proposing
that a source word should be deleted, the parser/translator fires an inference to
make the word to be deleted an extension of an adjacent source word. When 0 or

43



Table 4.4: The specification of Logic T – Part 1
Term types

source terminal
item

〈t; i〉

target terminal
item

〈t〉

non-terminal
item

〈
[
X1

X2

]
;

[
σ1

σ2

]
〉

grammar terms γ(·, ·, ·)
Axioms

input words 〈w; i〉 for each word w at position i on the source component
target language

vocabulary
〈w〉 for each word w in the target-language vocabulary

grammar terms given by the grammar
Inference

Rules

Source Scan

〈t; i〉, γ(t,∅,
[
X
∅

]
)〈[

X
∅

]
;

[
i− 1, i

∅

]〉

Target Load

〈t〉, γ(∅, t,
[
∅
X

]
)〈[

∅
X

]
;

[
∅
∅

]〉

Source Fuse

〈[
Y
∅

]
;

[
i1, j1
∅

]
;∅
〉
,

〈[
Z
∅

]
;

[
j1, k1

∅

]
;∅
〉
,

γ(

[
Y
∅

]
,

[
Z
∅

]
,

[
X
∅

]
)

〈
[
X
∅

]
,

[
i1, k1

∅

]
〉

44



Table 4.5: The specification of Logic T – Part 2
Inference Rules

Target Fuse

〈[
∅
Y

]
;

[
∅
∅

]〉
,

〈[
∅
Z

]
;

[
∅
∅

]〉
,

γ(

[
∅
Y

]
,

[
∅
Z

]
,

[
∅
X

]
)〈[

∅
X

]
;

[
∅
∅

]〉

Bilingual
Composition

〈[
Y1

∅

]
;

[
τ
∅

]〉
,

〈[
∅
Z2

]
;

[
∅
∅

]〉
,

γ

([
Y1

∅

]
,

[
∅
Z2

]
,

[
X1

X2

])
〈[

X1

X2

]
;

[
τ
∅

]〉

Monotonic 2x2
Compositions

〈[
Y1

Y2

]
;

[
i1, j1
∅

]
;Y
〉
,

〈[
Z1

Z2

]
;

[
j1, k1

∅

]
;Z
〉
,

γ

([
Y1

Y2

]
,

[
Z1

Z2

]
,

[
X1

X2

])
〈[

X1

X2

]
;

[
i1, k1

∅

]〉

Inverted 2x2
Compositions

〈[
Y1

Y2

]
;

[
i1, j1
∅

]〉
,

〈[
Z1

Z2

]
;

[
j1, k1

∅

]〉
,

γ

([
Y1

Z2

]
,

[
Z1

Y2

]
,

[
X1

X2

])
〈[

X1

X2

]
;

[
i1, k1

∅

]〉

45



more extensions have been generated, a finish inference can be fired to generate a
finished item. A left target extension inference looks like:〈[

∅
Y

]
; [ |τ2]; unfin

〉
,

〈[
Z1

Z2

]
; [σ1|σ2]; unfin

〉
, γ(

[
∅
Y

]
,

[
Z1

Z2

]
,

[
X1

X2

]
)〈[

X1

X2

]
; [σ1|τ2 + σ2]; unfin

〉
Similarly, a left source extension inference looks like:〈[

Y
∅

]
; [τ1| ]; unfin

〉
,

〈[
Z1

Z2

]
; [σ1|σ2]; unfin

〉
, γ(

[
Y
∅

]
,

[
Z1

Z2

]
,

[
X1

X2

]
)〈[

X1

X2

]
; [τ1 + σ1|σ2]; unfin

〉
Right target and source extensions are analogous. Finally, a finish inference has
the form 〈[

X1

X2

]
; [σ1|σ2]; unfin

〉
, γ(

[
X1

X2

]
,

[
X ′1
X ′2

]
)〈[

X ′1
X ′2

]
; [σ1|σ2]; fin

〉
Bilingual inferences and source/target extensions apply only to unfinished an-
tecedent items. 2x2 composition inferences apply only to finished antecedent items.
The logic cannot extend a finished item. An illustrative example is in Figure 4.1.
Diagram a) contains two source terminal items and three target terminal items. In
diagram b), the parser fires a bilingual composition inference creating a bilingual
item out of “Greens/Verts”. In diagram c), the parser proposes a source exten-
sion to the left, composing the determiner with the noun. In diagram d), “des” is
proposed as a left extension of “Verts”, and in e) “groupe” is proposed as a left
extension of “Verts”. Finally, in diagram f) a finish inference is proposed, finishing
the multitree translating “the Greens” to “groupe des Verts.”

We expected this logic to work well because of the degree of freedom given
by extension inferences. We could have source-extended or target-extended any
source/target word pair, and let the model learn which are correct and which are
incorrect. In general, our design philosophy was to reduce the number of hard
constraints we imposed on the system, and let the model learn the soft constraints
necessary to disambiguate between candidates. In practice, however, it was difficult
to train classifiers to correctly predict the extensions. It turned out that the most
useful features for predicting the cost of an extension inference were the lexical
head on the source component of the consequent, its translation, and the lexical
yields of all other extensions in the poset of inferences. These lexical features,
however, tend to be very sparse and so do not make very strong signals. They

46



Figure 4.1: A sequence of inferences capped by a finish inference for the pair “the
Greens”/“groupe des Verts”.

a)

X

groupe

DT

the

X

des

NNS

Greens

X

Verts

=⇒

b)

X

groupe

DT

the

X

des

NNS

Greens

X

Verts

=⇒

c)

X

groupe

NP

NNS

Greens

DT

the

X

des

X

Verts

=⇒

d)

X

groupe

NP

NNS

Greens

DT

the

X

X

Verts

X

des

=⇒

e)

NP

NNS

Greens

DT

the

X

X

X

Verts

X

des

X

groupe

=⇒

f)

NP’

NP

NNS

Greens

DT

the

X’

X

X

X

Verts

X

des

X

groupe

47



therefore led to many incorrect extension inferences being made, which turned out
to be a major source of translation error. The logics we ended up using allowed us
to impose harder constraints on the translational equivalence of word sequences,
which reduced the entropy of the training set for the relevant inferences.

4.2.4 Item Mapper

Recall from the description of our example generation framework in Section
3.3 that we wish for the coordinator to determine whether an item inferred by the
predictor is one that is inferable by the supervisor. Conversely, the coordinator
needs to give items proposed by the supervisor to the predictor when the predictor’s
agenda is empty. To do so, we will need to map items inferable by one logic to
items inferable by the other. Therefore we define a mapping function φ : IA → IB
mapping items from Logic A to the items inferable under Logic B. The algorithms
underlying the mapping functions are logic-specific. In our case, any item inferable
under LMP is inferable under LT by ignoring the target-side spans. The inverse,
however is more complicated. Only a subset of items inferred by LT will be in the
set of items inferable by LMP. The two mapping functions φMP→T and φT→MP are
given in Algorithms 4 and 5.

Conceptually, both algorithms operate recursively. Given an item i inferred
as a consequent of inference f under a logic, the mapping function first maps the
antecedents of f into items inferable by the target logic. In the case of mapping
items from LT to LMP, each item might map to several items in LMP, for instance,
if the same word appears in multiple positions in the target sentence. In that case,
the mapper finds a set of items that map to i, as in Lines 4-8 of Algorithm 5. If all
antecedent items are inferable by the target logic, the mapper finds an inference of
the target logic that takes the mapped antecedents and an appropriate grammar
production g, and generates the target-logic consequent. For the terminal items
that are the base case for the recursions, we map them to the appropriate axioms
in the target logic if they exist. Otherwise, we map them to ∅. In practice we
employ the bookkeeping that is necessary to avoid recomputing the mappings of
antecedent items.

4.3 Semiring

The Viterbi-derivation semiring [Goodman1999] is commonly utilized in many
natural language processing tasks to find the least-cost (or most probable) struc-
tured output for an input sentence along with its cost. For probabilistic pars-
ing, the structured output is the most likely parse tree along with its probability
(e.g. [Charniak1997]). For probabilistic sequence labeling, such as part-of-speech

48



Algorithm 4 The mapping function φMP→T

Input: Item IMP generated by Logic MP,
Inference f such that IMP is the consequent of f

Output: the corresponding item IT inferable under Logic T
1: procedure φMP→T(IMP, f)
2: if IMP has the form 〈t; 1, i〉 then
3: return 〈t; i〉
4: else if IMP has the form 〈t; 2, i〉 then
5: return 〈t〉
6: else
7: AntsMP ← antecedents(f)
8: AntsT ← {}
9: for a ∈ AntsMP do

10: fa ← the inference such that a = consequent(fa)
11: AntsT ← AntsT ∪ φMP→T(a, fa)

12: γ ← grammar constraint that unifies with set AntsT

13: g ← AntsT,γ
j

14: return j = consequent(g)

tagging, the structured output is the most likely tag sequence (e.g. [Church1988])
and its probability.

In contrast, the elements in the domain of the Viterbi semiring are the costs
of the possible structures, without the structure itself. The semiring equation for
the Viterbi-derivation semiring returns the least-cost structure and its cost. In a
probabilistic task, the domain of the semiring ranges over the values [0, 1]. The
additive operator is the max operator. The multiplicative operator is the arith-
metic multiplication operator. The probability of a partially-ordered set (poset)
of inferences is the product of the probabilities of the inferences in that poset.
The probability of an item is the maximum of the probabilities of all the inference
posets that inferred that item. In the negative log-space, that is, where the domain
consists of the negative logs of probabilities, the domain of the Viterbi semiring is
[0,∞]. The additive operator is the min operator. The multiplicative operator is
the arithmetic addition operator.

The Viterbi-derivation semiring accumulates the cost for a poset of inferences
into a single value, leading to a loss of information about which inferences in
the sequence had high cost versus those that had low cost. This information
might be important for selecting between posets of inferences both during test-
time translation and during training set synthesis. For example, consider the two
trees in Figure 4.2. Both trees have total cost α according to the semiring, and
both have n inferences. All the inferences in tree a have cost α

n
, whereas all but

49



Algorithm 5 The mapping function φT→MP

Input: Item IT generated by Logic T,
Inference f such that IT is the consequent of f

Output: the set of corresponding items IMP inferable under Logic MP
1: procedure φT→MP(IT, f)
2: if IT has the form 〈t; i〉 then
3: return 〈t; 1, i〉
4: else if IT has the form 〈t〉 then . It might map to multiple target

positions
5: r ← {}
6: for i : 〈t; 2, i〉 ∈ Axioms(Logic MP) do
7: r ← r ∪ {〈t; 2, i〉}
8: return r
9: else

10: AntsT ← antecedents(f)
11: AntsMP ← {}
12: for a ∈ AntsT do
13: fa ← the inference such that a = consequent(fa)
14: AntsMP ← AntsMP ∪ φT→MP(a, fa)

15: if AntsT = {} then
16: return ∅
17: else
18: γ ← grammar constraint that unifies with set AntsT

19: if γ = ∅ then
20: return ∅
21: else
22: g ← AntsMP,γ

j

23: return {j = consequent(g)}

one of the inferences in tree b have cost 0, and one has cost α. If the costs of the
inferences are a good measure of their quality, then tree b has one inference of very
poor quality, whereas all the inferences in tree a have the same quality. For some
objectives, the accumulated cost assignment may be very useful, for instance, if the
task is to minimize the total cost of a poset or sequence of inferences. For SMT,
however, this function might not be ideal. We conjecture that when people evaluate
translation quality, a single major error is typically seen as worse than several fairly
minor errors. For example, if the system translates a word that is important to
capture the meaning of the sentence incorrectly, the single mistranslation might
be seen as worse than a few mistakes of, say, gender agreement.

Another problem with using the Viterbi-derivation semiring for SMT is that

50



Figure 4.2: Two parse trees, parse a and parse b. Both have total cost α under
the Viterbi-derivation semiring.

X

X

X

. . .

X

. . .

X

. . .

α
n

α
n

α
n

α
n

α
n

(a) Parse a

X

X

X

. . .

X

. . .

X

. . .

0

0 α

0 0

(b) Parse b

posets of inferences for a given source span can have different sizes: an inference
poset that yields a translation with fewer words will typically have fewer inferences
than a poset that yields a translation with more words. Under this semiring,
the translator is biased towards shorter translations. Several other works add a
heuristic counter-bias in their cost functions to penalize short translations (e.g.
[Koehn et al.2003,Och and Ney2004,Chiang2005]) as a workaround.

To overcome these two problems, we define a semiring that, to our knowledge,
is novel. The MinMerge semiring (and the corresponding MinMerge-derivation
semiring) assigns a sequence of costs to each item y. The sequence contains one
element for the cost of each inference in the poset of inferences that derived y,
sorted in descending order. Items are compared on their highest differing cost.
Given two competing items, the additive operator of the semiring selects the one
whose highest cost is the least. In other words, if the values are seen as a measure
of the quality of the inference, where higher costs represent lower quality, under
the MinMerge semiring, the additive operator will select the item whose inference
poset has the least bad worst inference.

Formally, the semiring is defined as follows:

Definition 1. The MinMerge semiring is a tuple 〈D,Min,Merge, 〈∞〉, 〈〉〉 con-
sisting of:

• Domain D – The domain is the set of sequences of real values in descending
order.

• Additive identity 〈∞〉 – The additive identity is a sequence of length 1
whose single element is ∞.

• Multiplicative identity 〈〉 – The multiplicative identity is the empty se-
quence.

• Additive operator Min – The additive operator does an element-wise com-
parison of two sequences d1 and d2. It returns the sequence whose highest

51



differing element is the least. If given two sequences such that one is a prefix
of the other (i.e. if d2 contains only the n highest elements of d1, or vice-
versa), the shorter one is returned by the operator. Refer to Algorithm 6 for
the details of this operator.

• Multiplicative operator Merge – The multiplicative operator takes two
sequences d1 and d2 and merges them so that the elements remain in sorted
order. Refer to Algorithm 7 for details.

Theorem 1. The tuple 〈D,Min,Merge, 〈∞〉, 〈〉〉 is a semiring.

Proof sketch To prove that the tuple is a semiring, we must prove the semiring
axioms:

(a) (D,Min) is a commutative monoid with identity element 〈∞〉.
The Min operator in Algorithm 6 performs an element-wise comparison be-

tween the entries in the two sequences. The commutativity of the operator follows
from the commutativity of the min function (lines 5-8 of Algorithm 6). To show
that for a ∈ D Min(a, 〈∞〉) = Min(〈∞〉, a) = a, we note that the single entry in
the sequence 〈∞〉 is positive infinity, so if there exists a finite value in a, Algorithm
6 will return a. Otherwise, a = 〈∞〉, since no sequence in the domain can contain
an ∞ other than 〈∞〉.

(b) (D,Merge) is a monoid with identity 〈〉.
There are two properties that must hold. The first is that for a ∈ D,

Merge(a, 〈〉) = a. 〈〉 is an empty sequence, and because of lines 12-17 of Al-
gorithm 7, a will be copied to the output. The second is that for a, b, c ∈ D,
Merge(a,Merge(b, c)) = Merge(Merge(a, b), c). This property follows from
the implementation of the Merge operator in Algorithm 7.

(c) The multiplicative operator distributes over the additive operator.
(I.e. for a, b, c ∈ D, Merge(a,Min(b, c)) = Min(Merge(a, b),Merge(a, c)).)

To show that the MinMerge semiring upholds this axiom, let a = 〈a1, a2, . . . , aL〉,
let b = 〈b1, b2, . . . bM〉, and let c = 〈c1, c2, . . . , cN〉. Without loss of generality,
suppose that Min(b, c) = b, and that the LHS of the equality, Merge(a, b) =
〈a1, . . . , b1, . . . , ax, . . . , by〉. We must show that the RHS,
Min(Merge(a, b),Merge(a, c)) = Merge(a, b). First, assume that for some
k < M,N b1, . . . , bk = c1, . . . , ck. The first distinct elements between b and c will
be bk+1 and ck+1. Since we assumed that Min(b, c) = b, we know that bk+1 < ck+1.
Therefore, there exists a prefix a1, . . . , bk of Merge(a, b) and a prefix a1, . . . , ck
of Merge(a, c) such that a1, . . . , bk = a1, . . . , ck. If, in the sequence returned
by Merge(a, b), bk+1 follows bk, then in the sequence returned by Merge(a, c),
ck+1 follows ck, meaning that the Min operation on the right hand side will return
Merge(a, b). Otherwise, if some sequence of ai, . . . , aj separates bk from bk+1, then
ai ≥ ck+1 > bk+1, meaning that the sequence returned by Merge(a, c) will have

52



the highest distinct element ck+1. The other reason that Min(b, c) could be b is if
b is a prefix of the sequence of costs c. That implies that Merge(a, b) is a prefix
of Merge(a, c), meaning that Min(Merge(a, b),Merge(b, c)) = Merge(a, b).

(d) Applying the multiplicative operator to the additive identity annihilates D
(i.e. Merge(a, 〈∞〉) = 〈∞〉).

This axiom follows from the special case in Line 1 of Algorithm 7 where if one of
the arguments of the Merge operator is 〈∞〉, we return 〈∞〉. �

The MinMerge-derivation semiring is similarly defined, except that the domain
consists of pairs of cost sequences and posets of inferences. The structural compo-
nent of the MinMerge-derivation semiring is the same as the structural component
of the Viterbi-derivation semiring presented in [Goodman1999]:

Definition 2. The MinMerge-derivation semiring is a tuple〈
D× 2E,MinDeriv,MergeDeriv, 〈〈∞〉,∅〉, 〈〈〉, {〈〉}〉

〉
consisting of:

1. Domain D× 2E – The cross product of the set D from Definition 1 and the
power set of all inference posets E

2. Additive operator MinDeriv – The additive operator1

MinDeriv(〈d1, E1〉, 〈d2, E2〉) =


〈d1, E1〉 if Min(d1, d2) = d1

〈d2, E2〉 if Min(d1, d2) = d2

〈d1, E1 ∪ E2〉 if d1 = d2

3. Multiplicative operator MergeDeriv – The multiplicative operator

MergeDiv(〈d1, E1〉, 〈d2, E2〉) = 〈Merge(d1, d2), E1 ∪ E2〉

following [Goodman1999].

The choice of semiring is closely tied into the training objective, that is, the
criteria by which the parsing coordinator selects and labels inferences to train
the model. Recall from Section 4.1 that the semiring assigns cost to an item,
and thereby to the multitree rooted at the corresponding node. Furthermore,
recall from Section 3.1 that the objective towards which the algorithm updates
the model is a set of multitrees. Because we utilize a uniform cost search in
exploring the search graph (Section 4.4), under the Viterbi-derivation semiring the

1In practice, when d1 = d2 we select between E1 and E2 randomly. However, we follow the
method of [Goodman1999] and use a union of the sets to ensure associativity of the additive
operator.

53



Algorithm 6 The additive operator Min of the MinMerge Semiring

Input: sequences d1, d2

Output: sequence R
1: i← 1
2: while i ≤ |d1| ∧ i ≤ |d2| ∧ d1[i] = d2[i] do
3: i← i+ 1

4: if i > |d1| then
5: return d1

6: else if i > |d2| then
7: return d2

8: else if d1[i] > d2[i] then
9: return d2

10: else
11: return d1

predictor, supervisor and test-time translator will explore states in order of the
accumulated cost of the multitree rooted at the item representing the consequent
state. This means that under the Viterbi-derivation semiring, the items inferred by
the predictor (and therefore the inferences inferring them) will be those that have
lowest accumulated cost. The inferences that will become part of the training set,
therefore, will likely have relatively low cost. The low cost would imply that the
predictor’s model considers the inferences as inferring multitrees yielding relatively
good translations, even if they do not yield the correct translation. The model will
be updated to correct the predictor’s preferences for these relatively minor errors
by training it to assign higher cost to these inferences. On the other hand, under
the MinMerge semiring, the predictor will expand items in ascending order of the
highest-cost inference in the multitree rooted at the added item. This means that
inferences with higher cost will be proposed by the predictor and will become
part of the training set. The model will be trained to assign an even higher
cost to these incorrect inferences, thereby teaching the translator a further bias
against them. In this way, the translator will learn to avoid making these kinds of
supposedly egregious errors, rather than expending computation time learning to
avoid making relatively minor errors at the expense of larger ones. Furthermore,
with the MinMerge semiring, it is easier to do blame assignment to the inferences
inferring a poor item, since we can determine which is the offending inference in
the poset of inferences. Trying to minimize the highest-cost inference in a poset
of inferences is a similar idea to maximizing the minimum margin in the machine
learning literature.

One should not confuse the MinMerge semiring with the k-Tropical semirings
presented in [Mohri2002]. k-Tropical semirings are used to find k-shortest paths,

54



Algorithm 7 The multiplicative operator Merge of the MinMerge Semiring

Input: sequences d1, d2

Output: sequence R
1: if d1 = 〈∞〉 or d2 = 〈∞〉 then
2: return 〈∞〉
3: R← 〈〉
4: i← 0, j ← 0
5: while (d1[i] > 0 ∨ d2[j] > 0) ∧ i < |d1| ∧ j < |d2| do
6: if d1[i] ≥ d2[j] then
7: R← R.d1[i] . . is a concatenation operator
8: i← i+ 1
9: else

10: R← R.d2[j]
11: j ← j + 1

12: while i < |d1| do
13: R← R.d1[i]
14: i← i+ 1

15: while j < |d2| do
16: R← R.d2[j]
17: j ← j + 1

18: return R

and are more closely related to the Viterbi n-best derivation semiring of [Good-
man1999].

4.4 Search strategy

The supervisor, predictor, and the test-time translator all utilize a greedy
uniform-cost search [Russell and Norvig1995] to explore the search graph. Without
pruning, the uniform-cost search strategy finds a least-cost multitree when items
are scored using a semiring whose domain is ordered, such as the Viterbi-derivation
semiring or the MinMerge-derivation semiring. We order items using an agenda
(e.g.
[Caraballo and Charniak1998]), sorted on an item’s figure-of-merit. Following
[Wellington et al.2006a], we use the item cost as the figure-of-merit, where the
item cost is given by the MinMerge semiring, thereby yielding a best-first search
strategy, where lower-cost items are expanded before higher-cost items. In addition
to an agenda, the search strategy employs a chart to store locally optimal items.
The chart consists of cells, in which inferred items are stored based on their spans.

55



For each item i popped from the agenda, the logic first memoizes i in the chart. It
then searches for other chart items (called matching items) that, along with i and
an appropriate grammar term γ, are antecedent terms to some inference. Once
the logic makes an inference and the grammar scores it, the cost of the consequent
is computed using the semiring equation, and the consequent is pushed onto the
agenda. We present the pseudocode for a generalized parser utilizing a chart and
an agenda in Algorithm 8.

Algorithm 8 Concrete Generalized Parsing algorithm

Input: Logic L, Grammar G, Semiring R, Termination Condition D, Agenda A,
Chart C, Pruning Strategy P, Text tuple T

1: for each axiom item w′ ∈ L corresponding to word w in T do
2: V (w′)← 1R
3: Push(A, w′) . Seed the agenda with the axioms of the Logic

4: repeat . Main Loop
5: x← Pop(A)
6: if ¬Prunable(P, x) then
7: Memoize(C, x)
8: M ← MatchingItems(C, x)

9: for m ∈M such that ∃I =
x,m, γ

y
∈ L where γ is a grammar term do

10: V (I)← V (γ)
11: V (y)← V (y)⊕ (V (x)⊗ V (m)⊗ V (γ))
12: Push(A, y)

13: until x satisfies D

As argued in [Melamed and Wang2004], the worst-case computational complex-
ity of Algorithm 8 under Logic MP or Logic T is O(n6). To keep the exploration
of the search space manageable, we employ two pruning strategies to constrain the
number of items the parsers expand. One places a hard limit on the number of
items stored in each chart cell (a beam-pruning strategy, e.g. [Roark2001, Ratna-
parkhi1999]). The other prunes away all items whose cost is greater than some mul-
tiple of the cost of the least-cost item in the same cell (e.g. [Burbank et al.2005]).
Pruning has the disadvantage of introducing search errors, since an item constitut-
ing part of the globally optimal multitree might be pruned because it is not locally
optimal with respect to items in the same chart cell.

One can reduce the risk of search error by employing better item cost estimates.
A technique that is frequently used is to incorporate an estimate of outside cost
to the figure-of-merit of an item. For example, [Klein and Manning2003] apply
an A* search strategy to parsing by incorporating outside cost estimates that
are monotonic upper bounds on the true cost of a final parse tree. In the ITG-
constrained word alignment literature, [Zhang and Gildea2005] use IBM Model-1

56



costs in the outside cost estimates of word alignments falling outside the span
being considered, [Haghighi et al.2009] use HMM alignment posteriors as outside
cost estimates, and [Cherry and Lin2007] use fixed-link pruning to prune cells
for spans that are inconsistent with the initial word alignment. We have not yet
explored outside costs in our approach to SMT. We leave that to future work.

4.5 Grammars

The semiring presented in Section 4.3 derives the cost of an item inferred by
an inference poset from the cost of each inference in the poset. The inference costs
are given by the grammar, which can impose constraints on the inferences that
are allowed to fire. If, for instance, we wish to disallow an inference completely,
we can have the grammar assign it infinite cost. Grammars are a versatile way to
control the inferences made by the parser according to many kinds of criteria.

4.5.1 Composite Grammars

We define a grammar hierarchy for use by the supervisor, predictor, and test-
time translator, following [Wellington2007]. The grammar hierarchy uses composite
grammars to incorporate many sources of information. A composite grammar is
a mechanism that composes two or more subgrammars, each of which contributes
to the cost of an inference. For instance, we can utilize a grammar as a filter that
assigns 0 cost to some inferences and infinite cost to all others. Or we can utilize a
grammar that allows only the grammar terms that are consistent with a set of word
alignments and a monolingual parse tree. We can then score the inferences that
received 0 cost using another subgrammar, for instance, a PCFG or a confidence
rated binary classifier.

We define two kinds of composite grammars: additive composite grammars
and sequential composite grammars. When an inference is scored by an additive
composite grammar, the grammar assigns a cost to the inference that is the sum
of the costs of its subgrammars. When an inference is scored by a sequential
composite grammar, all but the last subgrammar act as a filter and specify whether
the inference is allowed, and the last subgrammar supplies the scoring function for
allowed inferences.

The subgrammars utilized by our composite grammars are:

• a multitree inference filter (MTIF) that filters out inferences that are incon-
sistent with a given multitree

• a Pseudo Inversion Transduction Grammar (or PseudoITG)

• an inference lexicon

57



• confidence-rated classifiers

• a Gaussian fertility grammar that models the probability Pr(nt
ns
|X) that a

target word sequence of length nt is a translation of a source word sequence
of length ns dominated by a nonterminal label X. We discuss the Gaussian
fertility model in Chapter 5 when discussing initialization of the translation
model.

A sample grammar hierarchy used by a supervisor multiparser is shown in
Figure 4.3. Under this grammar hierarchy, an inference is passed into the root
sequential composite grammar. The composite grammar first consults the MTIF
as to whether the inference is compatible with the MTIF’s multitree. If it is,
the inference is passed to the additive composite grammar, which adds the cost
given to the inference by the PseudoITG to the cost given to the inference by
the fertility grammar and returns it. Both the supervisor and predictor use a
grammar hierarchy. The example presented here is used by the supervisor before
any of confidence-rated classifiers have been parameterized.

Figure 4.3: A grammar hierarchy used by a multiparser in one of our experiments.

Sequential Composite Grammar

Additive Composite Grammar

PseudoITG Fertility Grammar

Multitree Inference Filter

4.5.2 Multitree Inference Filter

The Multitree Inference Filter (MTIF) is a grammar that contains a multitree
for every sentence pair in the bitext. For a given sentence pair, the MTIF assigns
infinite cost to any inference not consistent with the multitree and 0 otherwise.
We use this grammar to replicate the experiments of [Wellington et al.2006a] in
Chapter 5. The MTIF is used by the supervisor only, both for example generation
and to constrain the exploration performed by the predictor.

58



4.5.3 Pseudo Inversion Transduction Grammar

For a given sentence, the PseudoITG allows inferences consistent with a set of
monolingual syntactic constraints (possibly on both source and target dimensions)
and a set of word alignments. It is a generalization of the grammar used for hier-
archical alignment by [Wellington et al.2006a,Wellington2007]. The PseudoITG is
so called because it evaluates all the inference types allowed by grammars in the
class of ITG, but does not contain any production rules.

The PseudoITG takes two optional parameters: a word alignment and zero,
one, or two monolingual parse trees. For instance, suppose the multiparser is
parsing the sentence pair in Figure 4.4, and the logic attempts to compose the
antecedents

A =

[[
JJ
X2

]
; [ 1 2 | 2 3 ]

]
and B =

[[
NN
X1

]
; [ 2 3 | 1 2 ]

]
, in inverted order. The

PseudoITG will return a cost of 0 for the inference because the composition is
consistent with the word alignments. If, however, the logic attempted a mono-
tonic 2x2 composition with the antecedents, the PseudoITG would return infi-
nite cost. Furthermore, if the logic attempts to compose the antecedents C =[[

JJ
X

]
; [ 4 5 | 4 5 ]

]
and D =

[[
NNP
X

]
; [ 5 6 | 5 6 ]

]
in either monotonic or in-

verted order, the PseudoITG would return infinite cost because any composition
of the two antecedents would be inconsistent with the source-side parse tree. By
default, the PseudoITG gives 0 cost to any allowed inference, and infinite cost to
any disallowed inference. The PseudoITG can also be configured to give non-zero
cost to allowed inferences. The grammar can take weighted monolingual trees and
weighted word alignments as parameters, and compute a cost for each inference
from their weights.

Figure 4.4: A sentence pair with source-side monolingual parse tree and word
alignment constraints

S

.

.

NP

NNP

President

NNP

Mr.

VP

ADVP

JJ

closed

VBZ

is

NP

NN

debate

JJ

joint

DT

The

La discussion commune est close MonsieurlePrésident .

59



To support efficiently constraining the inferences to match the monolingual
tree constituents, each item has a pointer to the node in the monolingual tree that
immediately dominates the span. If that span matches a constituent boundary,
the pointer will point to the non-terminal node of that constituent. If it does not
match a constituent boundary, then the pointer will point to the nonterminal node
of the smallest constituent that dominates the constrained span2. In the example
above, for instance, antecedent A would contain a pointer to the JJ node domi-
nating “joint”, antecedent B would contain a pointer to the NN node dominating
“debate”, and the consequent of their composition would contain a pointer to the
NP node dominating “joint debate”.

When used by the predictor and test-time translator, the PseudoITG has only
a monolingual parse tree on the source component as a constraint. Since the
translator does not know the correct translation it also cannot know the word
alignments. The PseudoITG used by the translator serves only to constrain the
source side of the resulting multitree.

Unlike [Wellington2007], our use of the PseudoITG does not require the mono-
lingual tree to strictly constrain the set of possible inferences. We include a hyper-
parameter in the grammar that allows us to specify how many source constituent
boundaries (i.e. brackets) a multitree is allowed to violate. We refer to each vio-
lation as a crossed bracket, or CB. Doing so is necessitated by the fact that many
idiomatic expressions are not valid syntactic constituents. For example, in the Eu-
roparl corpus [Koehn2005] the English phrase “we are talking about” is frequently
translated as “il s’agit de.” “We are talking about” is not a legal constituent
according to most off-the-shelf monolingual parsers. However, for translation, it
might be useful to generate an item that translates the English word sequence “we
are talking about” to “il s’agit de” even though it breaks the constituent boundary.
A PseudoITG can assign a cost to crossed brackets, allowing us to bias the super-
visor against breaking constituency constraints but still permitting them when
needed. Instead of the source-side parse trees acting as hard constraints on the
inferences that can be fired, they are instead used as soft constraints. As we will
see in Section 4.5.5.2, we add the syntactic constraints as features in our model.

There is evidence in the literature that soft syntactic constraints, rather than
hard syntactic constraints, improve translation accuracy. [Marton and Resnik2008]
apply syntactic features extracted from a treebank to Hiero [Chiang2005] and
achieve accuracy gains over the baseline Hiero system. These features are expanded
upon in [Chiang et al.2008]. Soft syntactic constraints appear to be useful in
SMT subtasks as well. For instance [Cherry and Lin2007] use dependency features

2We can have an item that does not match a span if the monolingual tree is not binary.
Because we allow only binary inferences, we might infer an item that is consistent with the
monolingual tree, but does not match a complete span (e.g. if a non-terminal node has three
constituent children, but the item composes antecedents corresponding to only two of the three).

60



to improve alignment accuracy in their discriminative word alignment algorithm,
rather than a hard constraint on one or both of the components being aligned.
To our knowledge, our use of loosely constraining monolingual trees is novel. Our
approach combines the advantages of soft syntactic constraints by incorporating
them as features as well as the advantage of increased parsing efficiency due to
a smaller search space by still imposing a hard upper bound on the number of
allowed CBs.

4.5.3.1 Binarization

As demonstrated in Figure 4.4 the monolingual parse tree constraints might not
be binary. However, LMP and LT are binary. PseudoITG allows any binary infer-
ence consistent with the monolingual parse trees and word alignments. [Wellington
et al.2006a] had the constraint that for a parent node with more than two children,
the two or more children that were not the head of the parent were not allowed to
be antecedents to a composition. A non-head child node can only compose with
a node that subsumed the head child node of the parent. Our PseudoITG elimi-
nates this constraint because we observed that it precludes many useful translation
inferences from being fired. The PseudoITG does not have a preference between
different binarizations

Binarization is not an issue for the other sub-grammars. The classifiers can
score inferences regardless of the number of antecedents. The multitrees used by
the MTIF should already be binary if they have been inferred under LMP or
LT. The fertility grammar and inference lexicons only consider the yields of the
consequent of an inference, without reference to the antecedents. Binarization for
SMT has been studied extensively in the literature (e.g. [Zhang et al.2006, Wang
et al.2007, Xiao et al.2009]). We can experiment with their binarization schemes
in future work.

4.5.3.2 Role of PseudoITG in the item mapper

Recall that the item mappers implemented in Algorithms 4 and 5 are passed
an inference generated under some Logic A to be mapped onto an inference gener-
ated under another Logic B. The algorithms first recursively find the mapping for
the antecedent items of the input inference under Logic B. They then determine
whether there are any inferences that contain the antecedents that are allowed by
the grammar. To illustrate the grammar’s role in the mapping function, suppose we

have a predictor that passed the item

[[
NN*
X

]
; [ 1 3 | ]; commune discussion

]
with

antecedents

[[
JJ
X2

]
; [ 1 2 | ]; commune

]
and

[[
NN
X1

]
; [ 2 3 | ]; discussion

]
. The an-

tecedents are first mapped onto antecedents inferable under Logic MP. The mul-

61



tiparser’s grammar then searches for an inference that has the antecedents that
is allowed by the PseudoITG. In this case, the only composition allowed by the
PseudoITG is an inverted 2x2 composition, which does not match the inference
passed to the item mapper. Therefore, φT→MP will return ∅ as the mapped item for[[

NN*
X

]
; [ 1 3 | ]; commune discussion

]
since it is not inferable by the supervisor.

4.5.4 Inference Lexicon

The inference lexicon is a generalization of a translation lexicon or phrase table
(e.g. [Koehn et al.2003, Och and Ney2004]). It constrains the set of monolingual
compositions (both source and target) and bilingual compositions a parser is al-
lowed to make by specifying sets of source and target word sequences that are
yields of the antecedent items allowed to participate in these inferences. The in-
ference lexicon is used by the predictor to restrict the hypothesis space it explores,
and by the supervisor to ensure that it doesn’t propose items that are not inferable
by the predictor. An example inference lexicon is given in Table 4.6.

To facilitate fast look-up, the grammar terms of the inference lexicon grammar
are keyed on the yields of the antecedent items to an inference. Each grammar
term contains an anchor and a set of extensions. For monolingual compositions,
the anchor is the active component yield of the left antecedent and the extension
is the active component yield of the right antecedent3. For bilingual compositions,
the anchor is the active component yield of the source monolingual item and the
extension is the active component yield of the target monolingual item (essentially
mapping a source fuse to a target one). For each item source or target yield, the
inference lexicon stores a count for how many times it was observed in the data
used to construct the inference lexicon. This frequency can be used to assign a
cost to an inference and for pruning the inference lexicon.

To prune the inference lexicon, we use the following procedure (used by [Welling-
ton2007] for word transduction inferences). For each anchor:

1. Compute the total number of extensions N for that anchor by accumulating
the counts for each extension.

2. For each extension, if all of the following hold, we prune the extension:

(a) the count c < N
5

(b) the count c < 1
2

of the count of the most frequent extension of the
anchor

(c) the count c < threshold α

3We constrain it to use the order of antecedents in this manner to avoid spurious ambiguity
in the lexicon.

62



Table 4.6: A sample inference lexicon for the phrase “we are talking about”
Anchor Extension Frequency

Source Fuses
we are 58
we are talking 3
we are talking about 2
are talking 8
are talking about 5
talking about 12

Target Fuses
il s’ 108
il s’ agit 81
il s’ agit de 11
s’ agit 179
s’ agit de 22
agit de 22

Bilingual Compositions
we are nous 22
we are en 3
we are talking nous parlons 1
we are talking il s’ agit de 2
talking parler 2
talking parlons 1

To disallow pruning, we set α to 1, so that no extension will be pruned. In our
experiments, we set α to 3 for bilingual compositions, and 1 for source and target
fuses (thereby not pruning any monolingual composition terms from the grammar).

4.5.5 Confidence Rated Classifiers

The training set synthesized by the parsing coordinator described in Chapter 3
is used to train the confidence-rated binary classifiers. For all our experiments, it
is this subgrammar that is the primary mechanism by which the translator encodes
a preference between different inferences and therefore different translations. This
subgrammar first uses a feature generator to extract a vector of features from
the inference, and then computes a score for the feature vector4. The confidence-
rated binary classifiers return a real-valued confidence for each inference. The

4We partition inferences into types and induce classifiers for different inference types to allow
us to train classifiers in parallel. The different classifiers can be seen as subtrees of one big
decision tree where we hand-craft the top split of the tree on the inference type.

63



confidence can be either positive or negative. Rather than assigning a confidence
to an inference i, we assign a cost, which is the logistic function of the confidence
µΘ(i):

V (i) = ln(1 + exp(−µΘ(i))) (4.2)

The confidence rated classifier is the only subgrammar whose parameters are re-
estimated on line 8 of Algorithm 2. When we refer to the model in this work,
unless otherwise noted, we are referring to the confidence rated classifiers.

A classifier hΘ(i) is a linear real-valued cost function parameterized by vector
Θ of weights for the features of inference i:

hΘ(i) = Θ ·X(i) =

|Θ|∑
f=1

Θf ·Xf (4.3)

where X(·) is a vector of boolean features for inference i with 1 representing true
and 0 representing false. The classifiers are trained by finding the parameter vector
Θ that minimizes the value of a local objective function5. The sign of hΘ(i) indicates
whether the classifier believes the inference is correct. The magnitude of hΘ is the
confidence of the classifier in its prediction.

4.5.5.1 Gradient Boosted Decision Trees

We represent the hypothesis function for each inference type as an ensemble
of gradient boosted decision trees (GBDTs), trained using the discriminative ap-
proach described in [Turian et al.2006]. In this section, we briefly review GBDTs
and their training.

The linear hypothesis function hΘ(i) = Θ·X(i) is represented by an ensemble of
confidence-rated decision trees [Schapire and Singer1999]. Each internal node splits
examples on whether an example satisfies the atomic boolean feature represented
at the node. The path from the root to a leaf in each tree represents a compound
feature, a conjunction of the atomic features at the nodes on the path. For instance,
in the decision tree represented in Figure 4.5, the compound feature represented
at node (a) is x ∧ y with parameter value 0.1; the compound feature represented
at node (b) is x ∧ ¬y ∧ z with parameter value 0.25; and the compound feature
represented at (c) is x∧¬y ∧¬z with parameter value −0.25. Each leaf n in each
decision tree t is parameterized by a vector θ(n) where all entries are 0 except for
the compound feature terminating at the leaf, so that the parameter vector for
each classifier is the sum of these vectors:

Θ =
∑
t∈T

∑
n∈t

θ(n)

5We use the term “local objective function” to distinguish the objective of each classifier from
the global objective of learning whole paths through the search space. We expand on local versus
global objectives in Section 4.8.

64



Figure 4.5: An example decision tree
x

y -1.25

(a) 0.1 z

(b) 0.25 (c) -0.25

To compute the cost of an inference, the inference is percolated down to a leaf of
each tree in the ensemble, by following the sequence of nodes in the tree corre-
sponding to features present in the inference’s feature vector.

Each classifier is trained to minimize its expected generalization error, which
is estimated by the empirical risk objective function RΘ(I) over a labeled training
set of inferences I. The empirical risk has two terms, a loss function LΘ(I), and a
regularization term ΩΘ.

RΘ(I) = LΘ(I) + ΩΘ (4.4)

The loss function is a sum of biased example-wise loss functions:

LΘ(I) =
∑
i∈I

b(i) · lΘ(i) (4.5)

where, b(i) is the bias of the example, and lΘ is the log-loss function [Collins et
al.2002]:

lΘ(i) = ln(1 + exp(−µΘ(i))) (4.6)

µΘ(i) is the margin of example i:

µΘ(i) = y(i) · hΘ(i) (4.7)

where y(i) is the label of example i.
The ΩΘ term is the regularizer which penalizes complex models to reduce over-

fitting. We follow [Turian et al.2006] and use the `1 regularizer:

ΩΘ =

|Θ|∑
f=1

λ · |Θf | (4.8)

`1 regularized GBDTs have many advantages for natural language classifica-
tion tasks, including efficient exploration of an exponentially-sized feature space
[Ng2004]; the ability to jointly parameterize atomic features, thus capturing atomic
feature inter-dependencies; and the ability to model non-linear separability while
maintaining most of the simplicity of a linear model.

65



The λ hyperparameter (or regularization penalty) sets the strength of the regu-
larizer. We use the same regularization penalty for all trained classifiers. We select
the regularization penalty by translating a tuning set of sentences with several dif-
ferent penalties, and selecting the penalty yielding highest translation accuracy
over the set. In pilot experiments, we attempted to set different regularization val-
ues for different inference types, namely one regularizer for bilingual composition
inferences and one for 2x2 composition inferences. This strategy did not yield sig-
nificant improvements in translation accuracy, but greatly increased training time
because we had to use a grid search instead of a line search. When we were ex-
perimenting with the extension logic described in Section 4.2.3 under the Viterbi-
derivation semiring, we also attempted to estimate two regularization penalties,
one for inferences yielding unfinished consequents, and one for inferences yielding
finished consequents. Applying this strategy lead to slightly increased translation
accuracy at the expense of increased training time.

The training algorithm for an ensemble is as follows. Given a labeled training

set of inferences I with size |I| , we initialize the bias of each example b(i) =
1

|I|
.

We initialize the regularization penalty λ to a high value, and start constructing
trees. On each iteration of the GBDT training algorithm we build a tree (using the
method detailed in the next paragraph). We determine whether the tree reduces
the risk over the training set (Equation 4.4) by a given threshold. If it does, we add
the tree to the ensemble, and re-weight the examples in the training set. Otherwise,
we decay λ by some fixed factor η. This procedure continues until RΘ(I) converges
to a sufficiently small threshold. This approach applies the regularization path
method of [Park and Hastie2007] to gradient boosted decision trees.

We normalize the bias of each example to ensure that during training all the
classifiers are partitioning the same weight mass regardless of the size of their
training set. We found that doing so brings the costs assigned by the classifiers
in line with one another. Initially, we attempted to make do without example
bias. We observed, however, that the magnitudes of the confidences given by clas-
sifiers trained on fewer examples tended to be lower than the magnitudes of the
confidences given by classifiers trained on more examples. This effect means that
when we had two alternative inferences, and their respective classifiers both as-
signed negative confidence, the confidence given by the classifier trained on more
examples tended to have disproportionately higher magnitude than the classifier
trained on fewer examples. Because most of the examples on which the classifiers
were trained were negative, more often than not, the highest confidence of an infer-
ence within a set of competing inferences was negative. Thus, the classifiers had an
inherent bias towards inference types that were not seen as often in training data.
We initially attempted to solve this problem by standardizing the confidences. We
did so by estimating the standard deviation of costs given by each classifier on a

66



held out development set, and standardizing the confidences by the standard devi-
ation. There were several complications with this approach, however. We had to
deal with standard deviation estimates of 0 (since some classifiers might have only
been applied once in the development set). We also had to re-estimate the optimal
regularization penalty given the standardized confidences followed by having to
re-estimate the standard deviations given the new regularization penalty.

To construct the decision trees we use greedy feature selection. Initially, a root
node is constructed in which all training examples fall. If the root is not split,
the parameter value it is assigned is the bias term of Θ. The tree construction
algorithm selects an atomic feature on which to partition the example set by finding
the feature that maximizes the expected gain:

GΘ(I; f) = max

(
0,

∣∣∣∣∂LΘ(I)

∂Θf

∣∣∣∣− λ) (4.9)

Such a split creates two new leaves in the tree, one for the subset of examples that
satisfy feature f and one for the subset of examples that does not. We then select
the confidence ∆Θ(n) at each node n that minimizes RΘ + ∆Θ(n)(In), where In
is the set of examples falling into node n, using a line search.

Features pertain to inferences. Our features can encode information on an-
tecedent items, the grammar term, the consequent item, and the entire source
sentence and monolingual parse tree. Since GBDTs do feature selection for us,
in contrast to most other work on SMT, all our experiments use the same set of
features, which include: language model features, window features, dependency
features, production features, and other miscellaneous features.

[Wellington et al.2006a] were able to include some scalar-valued atomic features
by decomposing them into binary features. For example, to represent a feature that
some word x was within two positions to the left of a constituent, they added two
binary features: “word x at position ≥ −1” and “word x at position ≥ −2”.
Then the training algorithm can select either of the features to split on, depending
on whether x at position −1 or at position or −2 had more discriminative power
(i.e. greater gain). This approach, however, is limited only to scalar features whose
values are discrete and whose range is bounded. They could not, for example, add a
language model feature to their feature set, since the values of n-gram probabilities
are continuous. Furthermore, pre-encoding the features increases the number of
atomic features we would have to define manually. To overcome this limitation, we
have implemented the GBDT training algorithm to convert features with scalar
values into binary features, by finding the scalar value that partitions the training
examples in such a way as to maximize the gain. The node partitions examples on
whether the feature value is greater than the value at the split.

67



4.5.5.2 Features

Language Model (LM) Due to our modification to GBDT training that allows
the model to express continuous scalar-valued features, we can incorporate various
language model features into our model. Instead of computing smoothed probabil-
ity distributions over n-grams, we directly utilize the frequencies of n-grams found
in a target-language training set. Because the n-gram frequencies are not used in
hΘ (since all the features parameterized by the model are binary), there is no need
for normalization – all the model needs to know is whether the n-gram count is
above or below a certain value. Doing so removes a potentially costly step from
our training pipeline, in that we no longer need to normalize and smooth n-gram
counts. We incorporate the following LM features for each inference:

• Frequency of the least frequent unigram, bigram, and trigram in the target
yield of the consequent of the inference

• Mean frequency of all unigrams, bigrams, and trigrams in the target yield of
the consequent of the inference

• A measure of the “informativeness” of the minimum n-gram counts. The
“informativeness” is a measure of how significant the n-gram is relative to
its longest constituent (n− 1)-gram or 1-gram. For an n-gram (w1, . . . , wn)
with count c(w1, . . . , wn) the “informativeness” is defined as:

i(w1, . . . , wn) =
c(w1, . . . , wn)

max(min(c(w1, . . . , wn−1), c(wn)),min(c(w1), c(w2, . . . , wn)))
(4.10)

The intuition behind the “informativeness” feature is that we wish to determine
the relevance of each n-gram. Knowing the count is not enough. The distribution
of n-grams is long-tailed, so that most n-grams, especially higher order ones, will
be rare. We can determine how informative an n-gram is by measuring the ratio of
its count to the count of its constituent (n − 1)-gram. To illustrate why, suppose
that a consequent yield’s least-frequent bigram is “colonne vertébrale”. There are
6 instances of this bigram in the language model. There are 7 instances of the
unigram “colonne” and 6 instances of the unigram “vertébrale”. The bigram is
relatively uncommon. When a node splits on the feature, it is likely that the
split value will be greater than 6, so that inferences with minimum bigram count
less than 6 receive a negative confidence. However, in addition to knowing that
the minimum bigram count is 6, we know that the minimum constituent unigram
count is also 6. The high ratio of the two provides a signal that despite the low
frequency, the yield is still likely to be valid in the target language, since the two
words in the bigram co-occur almost as often as they occur separately.

68



Window features Window features include all the source words and their part-
of-speech (POS) tags within a two-word window around the consequent of the
inference along with their relative positions. In addition, we include the source
words on the left and right ends of the consequent, their POS tags, and their
candidate translations.

Dependency features Dependency features express the syntactic dependency
structure implied by the lexicalized constituency parse rooted at the consequent
of the inference. These features include:

• the source-language head word of the consequent, the target-language can-
didate translation of the head word, and the POS tag of the head word

• each dependent of the source-language head word, their POS tags, and the
nonterminal labels of the items of which they are the head

• the nonterminal label of the maximal projection of the lexical head

• the nonterminal label, POS tag, and lexical head of the parent of the maximal
projection

• the lexical heads and nonterminal labels of the siblings of the maximal pro-
jection

Production features Production features include the monolexicalized, bilex-
icalized, and and delexicalized grammar constraint terms utilized in the infer-
ence. These are similar to the soft syntactic constraint features of [Marton and
Resnik2008].

Miscellaneous features In addition to the features above, we also include the
following features: the ratio of source-span length to target-yield length of the con-
sequent; the identity and part-of-speech tag of the last word of the source sentence
(which is frequently a punctuation mark); and features denoting the type of infer-
ence inferring the antecedents (i.e. source fuse, target fuse, bilingual composition,
monotonic 2x2 composition, or inverted 2x2 composition).

4.6 Termination Conditions

There are four termination conditions relevant to this work. The first is when
we infer a multitree whose source component covers the input sentence. This is the
termination condition for the translator when it’s used for tuning the regulariza-
tion parameter (discussed in Section 4.5.5.1) and when it’s used for testing. The

69



second termination condition is when the predictor infers a multitree that is con-
sistent with the source/target sentence pair in the bitext6. This is the termination
condition for the predictor as used by the parse coordinator (discussed in Chapter
3). The third termination condition is a timer that terminates a parse when it has
gone on for more than a set period of time. In our experiments, we set this time to
30 minutes per sentence. In practice, this termination condition very rarely fired
in our experiments. The fourth termination condition is when the supervisor’s
agenda is empty. This termination condition is satisfied somewhat often during
training, because oftentimes the supervisor is not capable of inferring a multitree
over a sentence pair due to the constraints of the monolingual parse trees and word
alignments utilized by its PseudoITG (refer to the discussion in [Wellington2007]
for details). When this happens, we have no way to infer a full parse. Instead,
when this occurs we extract a maximum cover for the sentence. A maximum cover
is a minimal set of items representing the fewest number of trees needed to cover
the sentence. When we can extract multiple maximum covers, all of which have
the same number of trees, we select the cover whose trees have least cost. We use
a maximum cover to get the largest possible multitrees covering the sentence. To
extract a maximum cover, we consider all the items inferred by the parser. We
order them according to the number of source and target words covered by each
one, followed by their cost as a secondary criterion. We greedily select the largest
one, and filter out all the other multitrees that overlap it. We then select the
next largest one that is consistent with the one already selected, and further filter
down the set. We repeat this until we have a set of items covering every word in
the sentence pair. If we want to extract a set of maximum covers, we extract one
maximum cover, remove its items from the set, extract another maximum cover,
and repeat.

4.7 Parsing Coordinator Revisited

By framing translation and multiparsing and therefore the predictor and su-
pervisor as generalized parsing algorithms, we can now fully specify the concrete
details of the parsing coordinator described in Chapter 3.

The concrete parsing coordinator algorithm is given in Algorithm 9. First, the
agendas of the supervisor and predictor are initialized in lines 2 and 3, and the
returned set of examples is initialized to empty in line 4. The main loop in lines
5 – 27 iterates until the predictor has inferred an item satisfying the termination
condition of the supervisor or until the supervisor runs out of items to expand. In

6The predictor does not have knowledge of the reference. This termination condition, how-
ever, is used by the parsing coordinator, which can retrieve the relevant information from the
supervisor.

70



Algorithm 9 Concrete generalized parsing coordinator

Input: Supervisor Logic LS, Predictor Logic LP,
Supervisor Grammar GS, Predictor Grammar GP,
Supervisor Agenda AS, Predictor Agenda AP,
Supervisor Chart CS, Predictor Chart CP,
Supervisor Pruning Strategy PS, Predictor Pruning Strategy PP,
Supervisor Termination Condition DS,
Semiring 〈D,⊕,⊗,0,1〉,
Item mappers φMP→T and φT→MP,
Exploration threshold ψ.

Output: Training set I
1: procedure GenerateTrainingExamples((s, t))
2: Seed Agenda AS with axioms from s, t, and GS

3: Seed Agenda AP with axioms from s and GP

4: I ← {}
5: repeat
6: if AP.Empty() ∧ ¬AS.Empty() then
7: xS ← NextSupervisorItem(LS,GS,AS,CS,PS)
8: if xS 6= ∅ then
9: AP.Push(φMP→T(xS))

10: if AP.Empty() ∧AS.Empty() then
11: break
12: xP ← AP.Pop()
13: xS ← φT→MP(xP )
14: if xS 6= ∅ then . xS 6= ∅ iff it is supervisor approved
15: AS.Push(xs)

16: I ← I ∪MakeTrainingExample(xP , xS)
17: if d(xP ) < ψ then . d(·) is the exploration distance of the item
18: if ¬PP.Prunable(xP ) ∧ xP /∈ CP then
19: CP.Memoize(xP )
20: M ← CP.MatchingItems(LP, xP )
21: for m ∈M do

22: if ∃γ ∈ GP ∧ ∃I =
xP ,m, γ

y
∈ LP for some y then

23: if y /∈ CP ∧ y /∈ AP then
24: V (y)← 0

25: V (y)← V (y)⊕ (V (xP )⊗ V (m)⊗ V (γ))
26: AP.Push(y)

27: until xS satisfies DS or AS is empty
28: return I

71



Algorithm 10 Procedure that returns a supervisor item for the predictor to ex-
pand

Input: Logic LS,
Grammar GS,
Agenda AS,
Chart CS,
Pruning Strategy PS

1: procedure NextSupervisorItem
2: while ¬AS.Empty() do
3: xS ← AS.Pop()
4: if ¬PS.Prunable(xS) ∧ xS /∈ CS then
5: break
6: xS ← ∅
7: if xS = ∅ then
8: return ∅
9: CS.Memoize(xS)

10: M ← CS.MatchingItems(xS)
11: for m ∈M do

12: if ∃γ ∈ GS ∧ ∃I =
xS,m, γ

y
∈ LS for some y then

13: if y /∈ CS ∧ y /∈ AS then
14: V (y)← 0

15: V (y)← V (y)⊕ (V (xS)⊗ V (m)⊗ V (γ))
16: AS.Push(y)

17: return xS

lines 6 – 11 the coordinator calls NextSupervisorItem (listed in Algorithm 10)
so that the predictor has some elements on its agenda if its agenda is empty at the
beginning of the main loop. If, in line 10, the predictor’s agenda is still empty after
having called NextSupervisorItem in line 7 (i.e. if NextSupervisorItem
returns ∅, meaning that the supervisor’s agenda is empty as well), the algorithm
breaks out of the main loop and returns the example set in line 28. Regardless of
whether the coordinator requested an item from the supervisor, it pops the next
item from the predictor’s agenda, maps it to a supervisor item, and then makes a
labeled training example in line 16. The conditional statement in line 17 checks
whether the distance between the predictor’s item and the last supervisor-approved
item is below a certain threshold. If it is and if the predictor does not prune it (line
18), the predictor memoizes the item in its chart in line 19. It then finds matching
items in line 20, according to the constraints imposed by the inference types of the
logic. For each matching item, it sees whether it can participate as an antecedent

72



in an inference in line 22. For each legal inference, the item cost is computed in line
25 and the item is pushed onto the agenda in line 26. The NextSupervisorItem
(Algorithm 10) first pops items from the supervisor’s agenda until it finds one that
it has not yet memoized or pruned (lines 2 – 6). It then memoizes the item, finds
matching items, and proposes inferences, in lines 11 – 16. In line 17 it returns the
item that was popped from the agenda in line 3.

4.8 Global Objectives

The criteria by which we select and label the training examples, or global
objective, for the model can be fully determined by the configuration of the su-
pervisor multiparser, the details of the MakeTrainingExample function (line
16 of Algorithm 9), and the amount of exploration the predictor is allowed to per-
form. The configuration of the supervisor determines the hidden correspondence
structure c that the algorithm tries to learn. The details of MakeTrainingEx-
ample determine how we label the training examples output by the coordinator.
The exploration distance we specify determines the number and type of incorrect
inferences the model will be trained to avoid.

4.8.1 Supervisor Configuration

In the experiments of [Wellington et al.2006a] the authors update towards a
fixed multitreebank over the training corpus by labeling all inferences contained in
the multitree as positive examples, and all other ones generated by their example
generation algorithm as negative examples. Doing so limits the generalization of
the model. We can decide whether or not to commit to a particular multitree
by configuring the supervisor with different grammars. To commit to a single
multitree as [Wellington et al.2006a] do, we can apply a Multitree Inference Filter
(Section 4.5.2) so that the only translator inferences approved by the supervisor
are those comprising the multitree. We refer to this kind of supervision as a
single tree update strategy. [Liang et al.2006] also commit to updating towards a
single hidden correspondence structure, in their case a word alignment, on each
iteration of training, but the alignments change across iterations according to the
preference of each iteration’s model. Since a sentence pair may have many possible
correspondence structures (i.e. multitrees), we may not want to update towards a
single fixed multitree. Instead, we may wish to label all inferences that may be part
of the multiforest covering the source sentence/reference translation pair as positive
examples and include them in the inference lexicon. By directing the model to
learn a set of possible multitrees for each bitext sentence pair, during test time the
model can decide which one it prefers. To implement this update strategy, the only
configuration we need to change is to remove the Multitree Inference Filter from

73



the supervisor’s grammar hierarchy so that it can utilize any inference consistent
with the source-side monolingual parse tree and the word alignments – constraints
implemented by the PseudoITG. We refer to this strategy as a forest update. [Mi
et al.2008] also utilize a multiforest in training their translation model, from which
they estimate the statistics for the sub-models in their mildly discriminative model.
The structures that the supervisor is constrained to infer determine the density of
the search space of the predictor. When the supervisor is constrained to infer
a single multitree, the density of the predictor’s search space is low, since the
supervisor can guide the predictor only with the set of inferences predicting the
single tree, and since the inference lexicon will have few elements relative to the
inference lexicon induced using a multiforest. When the constraint is removed, the
density becomes much higher.

4.8.2 Example Labeling

The scheme used to label training examples also affects what the model will
learn. One labeling scheme, the strict labeling strategy, labels every inference ap-
proved by the supervisor as a positive example, and all others as negative examples.
In contrast, the permissive labeling strategy attempts to train the model to recover
from mistakes. Both labeling strategies can be used with either the single tree
update or forest update strategies described in the previous section. We refer to
these as single tree strict update, forest strict update, single tree permissive update,
and forest permissive update.

Strict labeling The strict labeling strategy is analogous to the “bold update”
strategy of [Liang et al.2006]. If we conceptualize it in terms of our parsing coor-
dinator, this strategy treats every inference approved by the supervisor as correct,
and all other inferences fired by the predictor as incorrect. A major disadvantage
of the strict labeling strategy is that the translator cannot learn to recover from
mistakes. To illustrate, suppose we have a set of items X, all of which cover the
same source side span σ, and a set of items Y all of which cover the same source
side span τ such that τ is adjacent to σ. Suppose the target yield of a single
x̂ ∈ X and ŷ ∈ Y exactly matches part of the reference, and that the yield of the
composition of x̂ and ŷ does as well. Also, suppose that ∃ẋ ∈ X where ẋ such
that ẋ 6= x̂, that ẋ is not approved by the supervisor, and that V (ẋ) << V (x̂).
Furthermore, suppose that x̂ falls outside the beam width and is pruned out. Un-
der the strict labeling strategy, any inference that takes ẋ as an antecedent will
receive label −1. Because none of the subsequent inferences will be consistent with
the fixed multitree, the model makes no distinction between composing ẋ with ŷ
and composing it with any other y ∈ Y . The model may assign a high cost to
the composition of ẋ with ŷ, and a lower cost to the composition of ẋ with some

74



other y, so that the latter inference becomes part of the final multitree, leading to
a decrease in translation quality. In other words, as soon as the translator makes
an incorrect inference, it may have too little information to determine which of the
subsequent inferences yield better translations. Under the strict labeling strategy,
they are all equally bad.

Permissive labeling To learn to recover from mistakes we shall define an ob-
jective function that measures the change in translation accuracy of a consequent
relative to that of its antecedents. If the quality of the consequent is better than
that of its antecedents, we label the example as positive. If the quality of the
consequent is worse than at least one of the antecedents, we label the example as
negative. Otherwise, if there is no change in translation quality of the consequent
relative to its antecedents, the parsing coordinator does not include the inference
in the training set.

Figure 4.6: An example of a bitext grid with hits and runs

a

b

c

d

e

a d e d b c d a

T
ex

t
1

Text 2

Before we explain our approach, we first detail the primary automatic evalua-
tion measures we use in our experiments, an application of precision, recall, and
f-measure for SMT [Melamed et al.2003]. Precision and recall are defined in the
standard way for translation t and reference r: Precision(t|r) = |t ∩ r|/|t| and
Recall(t|r) = |t∩ r|/|r|. By appropriately defining the intersection operator, we
determine how the translation is evaluated. For unigram measures, the intersec-
tion operator counts the number of matching words called hits in t and r with no
double-counting of hits. For higher-order n-gram measures, the intersection opera-
tor counts the weighted number of matching runs, a continuous diagonal sequence
of hits. Each run can be represented as a block in a bitext grid. The weight of
each run is proportional to the area of the smallest enclosing block (refer to Figure
4.6). The weight of all runs r in the bitext grid M is given by the maximum match

75



score (MMS):

MMSα(t|r) = α

√∑
r∈M

|r|α (4.11)

Precision and recall are given by: Precisionα(t|r) = MMSα(t|r)/|t| and
Recallα(t|r) = MMSα(t|r)/|r|. The Fα measure is the harmonic mean of
Precisionα and Recallα. By setting the exponent α to a value greater than
1 the measure rewards longer matching substrings. When α = 1, the precision and
recall are equivalent to bag-of-words precision/recall measures.

As a motivating example, suppose that the training corpus contains the sen-
tence pair “So why should EU arms producers profit at the expense of innocent
people ?”/“Pourquoi donc les producteurs d’ armes de l’ UE devraient ils s’ enrichir
sur le dos de personnes innocentes ?”. Suppose that the predictor has inferred a
set of items with the following source and target yields: i1 = [“expense of”,“coût
d’ ”], i2 = [“innocent people”,“personnes innocentes”], i3 = [“expense of”,“dépens
des”], i4 = [“expense of”,“s’ enrichir sur”], and i5 = [“innocent people”,“de per-
sonnes innocentes”]. No composition of these items can yield an item with the
gold standard reference “sur le dos de personnes innocentes”, which is the correct
(but non-literal) translation of “expense of innocent people”. This can happen
due to a word-alignment error in which “expense” is aligned to “enrichir” rather
than “dos”. Under the strict labeling strategy, all compositions involving these
antecedent items are marked as negative examples, and we would get no positive
examples for learning how to translate “expense of innocent people.”

To elaborate on the example, suppose that the training algorithm considers
three compositions in particular: the monotonic composition of i1 and i2, infer-
ring consequent with yields c1 =[“expense of innocent people”,“coût d’ personnes
innocentes”]; the monotonic composition of i3 and i2, inferring consequent with
yields c2 =[“expense of innocent people”, “dépens des personnes innocentes”]; and
i4 and i5, inferring consequent with yields c3 =[“expense of innocent people”,“s’
enrichir sur de personnes innocentes” ]. The bitext grids for these items are shown
in Figure 4.7. The target yields of i1 and i3 each have a single hit against the
reference. The yield of i2 has two hits, and a run of length 2, and the yields of i4
and i5 each have three hits and runs of length 3. The precision and recall measures
use the sum of weights of the runs, that is, the MMS, to compute the quality of the
output. Higher MMS values indicate closer matches to the reference. According
to this criterion with α = 2, of the three translations c3 has highest accuracy, with
a run weight of 4.2426, followed by c1 with run weight 2.2361, and c2 as the worst
translation with run weight 2.

Ideally, when we have sets of competing inferences, we would compute the
F-measure of each output with respect to the reference, select the one(s) with

76



Figure 4.7: Matching runs of translation candidates against the reference transla-
tion. Bold outlined boxes represent the portion of the reference used for computing
the MMS. Grey boxes represent runs, and dots represent hits.

i2

i1

i2

i3

i5

i4

p
ro

d
u
ct

eu
rs

d
’

ar
m

es

d
e l’ U
E

d
ev

ra
ie

n
t

il
s s’

en
ri

ch
ir

su
r

le d
os d
e

p
er

so
n
n
es

in
n
o
ce

n
te

s

coût
d’

personnes
innocentes

dépens
des

personnes
innocentes

s’
enrichir

sur
de

personnes
innocentes

highest score as the positive examples, and the ones with lowest as negative7. For
models such as the ones in our setup, however, doing so is not feasible, because we
have no clear way to construct sets of competing inferences. In the case we just
illustrated, the set is clear. However, if the translator also proposes an inference
with a consequent covering the source text “at the expense of innocent”, it is no
longer clear which inferences belong in the competing set.

To take full advantage of permissive labeling, we need a whole inference quality,
or WIQ criterion, a measure that takes into account not only the quality of the
consequent, but also the quality of its antecedents. The measure we utilize should:
1) reward compositions that concatenate consecutive runs; 2) penalize inferences
composing runs that are not in the same order as seen in the reference; 3) penalize
the consequents in proportion to the length and number of non-matching token

7i.e. The update strategy undertaken by global models, such as [Liang et al.2006, Chiang et
al.2008]

77



sequences they propose; and 4) penalize the consequents in proportion to the length
and number of reference token sequences that are not in the consequent’s yield.
This last criterion is difficult to evaluate, because we need to decide which parts
of the reference translation the output translations are missing. Since we have no
a priori knowledge of the optimal segmentations of the sentence pair, there are no
partial reference translations we can compare against.

We choose to give each item the benefit of the doubt, by comparing it against
the subsequence of the reference translation that minimizes the number and length
of missing runs. For example, to evaluate item i1 in Figure 4.7, we compare it only
against the word “d’ ” in the reference. We treat “coût” as an incorrect word
proposed by the translator, and assume that the translator did not miss any word
sequences in the reference. For item c3, we compare against the subsequence
“s’ enrichir sur le dos de personnes innocentes”. Because our logic does not allow
discontinuous constituent items, there is no subsequent composition that will allow
us to propose an item yielding that string. Therefore, we mark the item as having
missed a reference subsequence of length 2. If later on we compose c3 with another
item that has the target yield “le dos”, the consequent of that composition will
not have any missing reference runs, although it should incur a penalty for having
a run that is out of order with respect to the reference.

To measure the quality of consequents relative to the quality of the antecedents
in an inference, we define a measure called WIQ1 for inference f = a1,a2,γ

c
:

e(i|r) = α

√ ∑
r∈Mt∩r

rα −
β

√∑
r̄∈Mt

r̄β + minMr
γ

√∑
r̄∈Mr

r̄γ

2
− χδ (4.12)

and

WIQ1(f |r) = e(c|r)−max(e(a1|r), e(a2|r)) (4.13)

where: Mt∩r is the set of matching runs between output and reference; Mt is the
set of runs in the output translation that do not match any subsequence of the
reference; Mr is the set of non-matching runs in the reference such that e(i|r) is
maximized; and χ is the number of crossed alignments. In this work, α = β = γ =
2, and δ = 1. As a base case, monolingual items get e score of 0, so as to ensure
that bilingual items will be added to the training set.

The number of crossed alignments is the minimum number of runs that are not
in the correct order relative to the reference. WIQ1 uses MMS as the first term
(Equation 4.11), which rewards the yield of each item for each matching run it
has, with a higher reward for longer matches compared to shorter matches. WIQ1
penalizes the item for each run in its yield that does not match the reference and
for each run in the reference that does not match the item’s yield. The last term

78



imposes an additional penalty for crossing matching runs relative to the reference.
The other terms do not use this information. Suppose we are given a reference
xay, where x, a, and y are all word sequences. Suppose that a consequent has a
target yield xy and is missing the sequence a. That consequent would have the
same e score as another consequent with target yield yx if the WIQ1 measure did
not have a χ term, meaning that both consequents would have the same WIQ1
score, when one of the consequents is better than the other. When dividing the
weights of non-matching candidate and reference runs by 2, we average over the
non-matching runs in the candidate and the reference.

Returning to the example in Figure 4.7, c1 will be added as a negative example
because (e(c1|r) = −4.26393)−max(e(i1|r) = 0.5, e(i2|r) = 2) < 0, c2 will be added
as a negative example because (e(c2|r) = 1)−max(e(i3|r) = −1, e(i2|r) = 2) < 0,
and c3 will be added as a positive example, since (e(c3|r) = 3.24264−max(e(i4|r) =
3, e(i5|r) = 3) > 0.

The permissive labeling strategy can label inferences inferring the same conse-
quent differently for different sets of antecedents. For example, consider a conse-
quent item whose target yield is “sur Union européenne”. If the reference transla-
tion is “sur l’ Union européenne,” and if the yields of the antecedent items of the
inference are “sur” and “Union européenne”, the inference will be labeled as a nega-
tive example, since e(“sur Union européenne”|r) =

√
12 + 22+ 1+0

2
+0 = 1.736, and

e(“sur”|r) =
√

(12)+ 0+0
2

+0 = 1 and e(“Union européenne”|r) =
√

(22)+ 0+0
2

+0 =
2. However, if the yields of the antecedent items are “sur Union” and “européenne”,
the inference will be labeled as a positive example, since e(“sur Union”|r) =√

(12 + 12) + 1+0
2

+ 0 = 0.914 and e(“européenne”) =
√

(12) + 0+0
2

+ 0 = 1.
Initially, we attempted to use F2-measure directly as a WIQ measure. Doing so

was challenging because it was unclear how to normalize the MMS. We tried nor-
malizing the precision using the length of the output translation and normalizing
the recall using the length of the reference. However for most inferences the preci-
sion and recall measures were unbalanced since their consequents did not cover the
entire source sentence. The lack of balance tended to degrade translation quality
by adding too many positive examples to the training set, because the consequent
could never have lower recall than the antecedents. We then attempted to com-
pute the recall of the yield of each consequent with respect to the same reference
we used to compute WIQ1, however we found that doing so ended up not giving
us enough positive examples. We also experimented with other WIQ functions to
compare the e value of the consequent to those of its antecedents. We tried using
the average e-value of the antecedents rather than the maximum which led to a
too-permissive labeling strategy.

Using whole inference quality is critical for learning to search. Using a WIQ,
not necessarily WIQ1, allows the translator to learn whether making a particular
inference improves or damages the quality of the resulting translation. The permis-

79



sive labeling strategy utilizing WIQ gives the learning algorithm some information
about which incorrect inferences8 are better than others, potentially giving the
model more discriminative power when the translator finds itself in an incorrect
state. To our knowledge, we are the first to utilize such a criterion in learning to
search hypergraphs.

The example labeling strategy should not be confused with exploration of the
search space. Exploration refers to the inferences generated by the predictor that
the model can use to learn. The labeling strategy refers to determine whether
we label an inference as a positive or negative example for classifier training. Ex-
ploration and the labeling strategy do interact. With a strict labeling strategy,
increasing the amount of exploration adds only negative examples for training.
We conjecture that with very high amounts of exploration, the models will lose
discriminative power due to being overwhelmed with negative examples. Under the
permissive labeling strategy, however, allowing more exploration might not nega-
tively impact the quality of the model. Because some of the “incorrect” examples
will be positive, the learning algorithm has some information as to the relative
quality of examples, allowing the algorithm to determine whether an inference
helps or hurts when the translator is unable to infer the reference translation.

4.9 Comparison to other work on tree-structured

SMT

Tree-structured machine translation has been studied extensively in the re-
search literature. [Yamada and Knight2001, Yamada and Knight2002] presented
a generative model that transforms a target language tree into a source language
sentence. [Alshawi et al.2000] built a finite-state transducer model over dependency
trees, with a transducer for each head node in the source dependency tree. [Graehl
and Knight2004] formalized the use of tree transducers for tree-structured MT
and present an algorithm for parametrizing stochastic tree transducers (e.g. [Eis-
ner2003]). They presented an EM algorithm for parameterizing their STSG model
based on the inside/outside algorithm [Baker1979]. The tree transducers of [Al-
shawi et al.2000, Graehl and Knight2004] operate under a top-down logic. Data-
Oriented Translation [Poutsma2000, Hearne and Way2003] employs tree-to-tree
translation by parameterizing a maximum-likelihood synchronous tree-substitution
grammar (STSG) from a bitext whose source and target components are parsed.

[Chiang2005] presents a hierarchical phrase SMT system that, like our parsers,
is a bottom-up synchronous CFG parser with beam pruning. They present heuris-
tic methods to extract hierarchical phrase rules from a word-aligned bitext. They

8Incorrect inferences are those that do not infer a contiguous subsequence of the reference
translation linked to the correct source segment.

80



use maximum likelihood estimation to parameterize the phrase rules, and apply
MERT to further weight the MLE parameters. While tree-structured, their model
makes no use of a treebank or any other linguistic annotations in training their
model. The SCFG rules they extract combine terminals and nonterminals on the
RHS, allowing them to model discontinuous phrases, such as translating the En-
glish “not X1” to French “ne X1 pas”, unlike our system which does not yet allow
for discontinuous items. [Chiang et al.2008,Chiang et al.2009] augment the model
of [Chiang2005] with additional features, including source and target-language syn-
tactic features, source word context features, node count features, and word in-
sertion features, bringing about an improvement in translation accuracy, made
possible by adopting MIRA as their training algorithm.

In contrast to [Chiang2005], [Galley et al.2004] present a heuristic method to
extract SCFG rules from bitext with one component parsed. Just like the rules
extracted by Chiang, [Galley et al.2004] give SCFG rules that combine termi-
nals and nonterminals on the right hand side, allowing for their system to model
discontinuous constituents. [Galley et al.2006] build upon [Galley et al.2004] by
constructing and parameterizing what they call composed rules from the “minimal
rules” of [Galley et al.2004]. They then apply these composed rules for translation,
and show that they lead to substantial improvement in translation accuracy over
minimal rules, since by translating using larger tree fragments, their rules capture
more of the context, at the expense of a significantly larger grammar and pos-
sibly fragmenting the training data. By incorporating composed rules into their
model, they are able to model phrase translations that are not constrained by a
treebank. The models of [Galley et al.2004, Galley et al.2006] both translate a
source-language string into a target-language tree.

The tree-to-string alignment template of [Liu et al.2006] is similar to [Galley
et al.2004], except where [Galley et al.2004] constructs the rules from a target-
language treebank, they construct SCFG rules from source-language trees, putting
it more in line with the tree transduction approach of [Graehl and Knight2004].
Just as [Galley et al.2006] construct string-to-tree models with tree fragments,
[Huang et al.2006] construct tree-to-string models with tree fragments rather than
“minimal rules.” They learn two separate models: one for phrase translations
and one for SCFG rules learned from the treebank. [Mi et al.2008] notice that
the fact that the tree-to-string systems translate a single tree leaves the translator
susceptible to source-side parse errors, as well as underspecification and uncer-
tainty in the source-language syntactic model of the monolingual parser. They
present a forest-to-string model where the input to the translator is a packed for-
est (e.g. [Huang2008] and references therein) allowing them to learn from and
translate using many possible parses over the source sentence. Conceptually, our
PseudoITG is most similar to the forest-to-string model of [Mi et al.2008], in that
the PseudoITG allows us to infer multitrees over an implicit forest of source-side

81



parses.
Finally, some works have attempted to build synchronous grammars that in-

corporate both source and target-language trees. These tree-to-tree models are
synchronous CFGs or tree substitution grammars constructed from word aligned
bitext constrained by both source and target parse trees. [Cowan et al.2006] borrow
the concept of extended projections from the lexicalized tree adjoining grammar
(LTAG) formalism and define and parameterize a discriminative model mapping
source language parse trees to aligned extended projections. They parameterize the
model using the averaged perceptron algorithm [Collins2002]. [Zhang et al.2008]
learn a synchronous tree-sequence-substitution grammar (STSSG) from bitext with
both source and target components covered by parse trees, where entire tree se-
quences are jointly substituted at nonterminal nodes, rather than independently
as in STSGs. They then apply a CKY-style parsing algorithm with beam search
to translate. [Liu et al.2009] note that the disadvantages of 1-best tree-to-string
translations are exacerbated in tree-to-tree translation, since issues such as parser
errors, underspecification, and uncertainty now apply to both source and target
languages. They present a method to extract rules from packed-forests on both
source and target languages, following [Mi et al.2008]. [Chiang2010] present a fuzzy
tree-to-tree extraction method that commits to single parses on both source and
target sentences, but allow tree substitutions at any nonterminal node, rather than
matching nonterminal nodes. This approach to substitutions allows them, for in-
stance, to substitute a subtree rooted at nonterminal VBZ (present-tense verb) at
a site labeled VBD (past-tense verb) in another tree.

Synchronous dependency models have been applied to tree-structured MT as
well. [Ding and Palmer2005] utilize a probabilistic synchronous dependency gram-
mar in their tree transducer where tree nodes are individual words. [Quirk et
al.2005] apply synchronous dependency treelets rather than the dependency rela-
tions of [Ding and Palmer2005], thus modeling both continuous and discontinuous
phrases. During translation, they synchronously parse the input bottom-up, where
the partial hypotheses are constrained by a dependency parse.

Synchronous grammars of various types have been used for MT related subtasks
as well. Synchronous grammars have been widely used in word and phrase align-
ment. Stochastic inversion transduction grammar (ITG) [Wu1997] has been used to
constrain the search space for word and phrase alignment [Zhang and Gildea2005,
Cherry and Lin2007,Haghighi et al.2009,Liu et al.2010,Pauls et al.2010,Huang et
al.2011].

Many of the SMT systems described above can be viewed as configurations of
our system. The translator of [Yamada and Knight2001] can be implemented as a
generalized parser with an appropriate logic, using a PseudoITG with target-side
monolingual trees. [Poutsma2000, Hearne and Way2003] can be implemented as
a generalized parser using a generalized multitext grammar [Melamed et al.2004]

82



due to a mapping they use between treelets and SCFG rules. The system of
[Chiang2005] can be implemented by a generalized parser with a logic allowing
discontinuous constituents and a PseudoITG unconstrained by source or target
monolingual parse trees. The approach of [Galley et al.2004, Galley et al.2006]
can be implemented using a generalized parser using the same configuration as the
parser for the approach of [Chiang2005], except that the PseudoITG should be
configured with monolingual parse trees.

The use of a multiparser and a translator to infer translation forests is also found
in the literature on using latent variable models for discriminative SMT. [Blunsom
et al.2008] populates two charts, one for trees that are constrained by both source
and reference sentences, and one for trees that are constrained only by source sen-
tence. Unlike [Blunsom et al.2008], we utilize the supervisor and predictor for more
than populating their respective charts. Our architecture allows the coordinator
to use the supervisor to guide the predictor’s inference process. Furthermore, the
coordinator can use the supervisor to limit the amount of exploration performed.
Finally, in order to determine whether a predictor’s inference is approved by the
supervisor, the supervisor need not have memoized a corresponding consequent
item first. All it has to do is to check whether its logic and grammar admits the
inference.

83



Chapter 5

Experiments

In this chapter we describe our experiments. We first describe our datasets,
and the independent variables whose settings give rise to the five systems we train.
We then present various measures of accuracy of the translations produced by
the five training configurations. Additionally, we present the results of a lesioning
experiment comparing the translation accuracy of a translator using the Viterbi-
derivation semiring and the accuracy of one using the MinMerge-derivation semir-
ing. Finally, we present an analysis of the behavior of the systems on a set of
sentences from our development set, to show how the independent variables affect
the preferences of the translator.

5.1 Data

In this work we experiment with translation of two language pairs: English to
French and English to Hindi. We focus on translating from English due to the
wide availability of bitexts with an English component. We selected English to
French translation because we understand French, making it easier to debug and
analyze the outputs of our system. We selected Hindi because the grammatical
structure of Hindi is quite different from that of English, and we wanted to show
that our methods work on grammatically dissimilar language pairs.

English-French: We extracted 10,000 randomly chosen sentence pairs from
the English-French section of the Europarl corpus [Koehn2005] whose source and
target lengths were at most 40 words. The Europarl corpus contains some errors
in sentence alignments. Some sentence pairs are clearly not translations of one
another, and other sentence pairs are non-literal translations. Of the 10,000 sen-
tences, we filtered out those whose source-to-target length ratio was greater than
2:1 or less than 1:2, leaving us with 9,830 sentences for training. Many other ap-
proaches, such as [Koehn et al.2003], do not filter sentence pairs. Instead, they

84



select the parts of the sentence pair which are useful for constructing the phrase ta-
ble, and disregard the rest. In future work, we hope to be able to incorporate such
a selection strategy. We selected an additional 250 sentence pairs for tuning the
regularization parameter, 1000 sentence pairs as a development set for exploratory
data analysis, and 1000 sentences as the final test set. Unlike the training set, we
did not filter the tuning, development, and test set.

English-Hindi: The English-Hindi data comes from the EILMT Tourism Cor-
pus used in [Venkatapathy and Bangalore2009]1. The data set consists of 11,300
sentence pairs for training, as well as 250 sentence pairs for tuning the regular-
ization penalty, and 500 sentence pairs for testing. We randomly selected 1000
sentences from the training set as a development set for exploratory data analysis.
Our final training set consists of 10,300 sentence pairs. We did not filter out any
of the sentences in this training set.

Data preparation The data preparation steps detailed in this section are used
in all our experiments. For both language pairs, we first deleted all dashes, sin-
gle quote tokens, and double quote tokens. We parsed the English side of all
the bitexts (training, development, tuning, and test) using the Berkeley syntactic
parser [Petrov and Klein2007]. We then lexicalized the resulting parse trees us-
ing Collins’ head finding rules [Collins1999]. Finally, we induced word-alignments
on the training sets using the Berkeley Aligner [Haghighi et al.2009], constraining
the English side with their parse trees. We used the Berkeley aligner rather than
Giza++ [Och and Ney2003] because Giza++ produces alignments that are often
inconsistent with syntactic parse trees.

Giza++ produces unidirectional alignments, and so state-of-the-art systems
such as Moses [Koehn et al.2007] use alignments generated by the following algo-
rithm:

1. Generate source-to-target alignments and target-to-source alignments.

2. Take the intersection and the union of the two alignment sets.

3. Augment the intersection set with alignments in the union set using the
grow-diagonal-and-final heuristic [Koehn et al.2003].

The alignments the Berkeley aligner produces are bidirectional, and, with the
default parameters, tend to be sparse, like the intersection of the two alignment sets
from Giza++. We therefore generate our alignments with the following algorithm,
motivated by the alignment algorithm used by Moses:

1Thanks to Dan Melamed for running these experiments at AT&T Laboratories.

85



1. Generate a bidirectional alignment with the Berkeley aligner using 0.5 as the
posterior threshold, which is the default setting in the aligner.

2. Generate a bidirectional alignment with the Berkeley aligner using 0.35 as
the posterior threshold. This threshold was tuned by trying to match the
density of the union of Giza++ alignments on the English-French training
set.

3. Augment the sparser alignment set with alignments from the denser set using
the grow-diagonal-and-final heuristic [Koehn et al.2003].

To estimate the French language model, we selected 100K sentences from the
French side of the Europarl corpus, where we excluded all sentences that were
present in our 10K sentence training bitext. By excluding the sentences found in
our training bitext from the language model training corpus, we ensure that the
corpus used to train the model will have sentences containing unseen n-grams.
The classifiers can then learn that the translator can propose a correct inference
whose minimum n-gram count is 0, which they otherwise wouldn’t learn since
there would be no positive examples with unseen n-grams. To estimate the Hindi
language models we could not follow this approach because of lack of training data.
We therefore extracted the language model from the same 10,300 Hindi sentences
used for training the translation model. For both French and Hindi, we set a
maximum n-gram length of 3, and did not use a lower-bound frequency cutoff.

5.2 Shared experimental conditions

One of the advantages of using the parsing coordinator and GenPar is the ease
with which we can control the experimental variables. The independent variables
of our experiment are set by configuring the components of our training pipeline.
All our experiments have more-or-less the same data flow. The data-flow diagram
for all our experiments is shown in Figure 5.1. The following configuration details
are constant across all our experiments.

5.2.1 Grammars

All the processes share a common set of grammars – a PseudoITG, fertility
grammar, multitree inference filter, inference lexicon, and set of confidence-rated
classifiers.

PseudoITG

The PseudoITG is used in all the processes in our data flow that involve parsing
(i.e. all the processes except for gradient boosted decision tree training).

86



Figure 5.1: The data-flow diagram for all our experiments. Steps that are only
applicable to certain experiment configurations are specified in their boxes. The
five experiments using this data flow are: (a) straw-man, (b) single tree with strict
labeling, (c) forest with strict labeling, (d) single tree with permissive labeling,
(e) forest with permissive labeling. White boxes represent processes, grey boxes
represent data, solid lines represent data flows used in all experiments, and dashed
lines represent data flows used in some experiments.

Training bitext,
source side

monolingual trees,
and word alignments

(o
n
ly

in
(a

)
(b

)
(d

)

Tuning corpus and
source side

monolingual trees

Test corpus and
source side

monolingual trees

Hierarchical Aligner
(only in (a), (b), (d))

Multitreebank
(only in (a), (b), (d))

(o
n
ly

in
(a

)
(b

)
(d

)

Inference Lexicon
Construction

Inference Lexicon

Example Generation
via Parsing
Coordinator

Example Set

Gradient boosted
decision tree training

Classifiers
n
ot

fo
r

(a
)

Tuning of
regularization

hyperparameter

Optimal regularizer λ

n
ot

fo
r

(a
)

Test

87



The PseudoITG is configured with three sets of constraints and scoring func-
tions – a maximum length on fuses, a set of weighted word alignments and a
monolingual English treebank containing a tree for every English sentence. When
used in the hierarchical alignment process, the inference lexicon construction pro-
cess, and by the supervisor in the example generation process, the PseudoITG
is constrained by source monolingual trees and with weighted word alignments.
When used by the predictor in the example generation process, and in the tun-
ing and test processes, the PseudoITG is constrained only by source monolingual
trees. All bilingual inferences get a cost that is the sum of the costs of the word
alignments consistent with the source/target yields of the consequent of the in-
ference. If a bilingual composition inference violates a word alignment constraint,
it gets infinite cost. We chose not to smooth the costs of word alignment con-
straint violations (unlike CBs) because doing so had a substantial adverse effect
on the running time of our experiments. In all the processes, the PseudoITG has
the constraint that fuses are allowed a maximum length of 3. This constraint is
imposed to limit the size of the search space for efficiency and to reduce training
data fragmentation2.

The PseudoITG uses the English trees to constrain the bilingual and 2x2 com-
position inferences. The PseudoITG is configured to allow an inference to violate
up to three source-side constituency boundaries (i.e. brackets)3. An inference gets
assigned a cost of 10 for each CB, which is higher than all other costs assigned
by the grammars. Under this configuration, the PseudoITG biases the supervisor
against items that violate the constraints imposed by the English trees, but will
still allow them when needed to infer complete multitrees.

Allowing CBs has an effect on the number of sentences in the bitext for which
we can construct complete multitrees. [Wellington et al.2006b] showed that due to
constraining word alignments, monolingual parse trees, and lack of discontinuities
allowed by a logic, one will sometimes not be able to infer a complete multitree
over a sentence pair. We have observed that in the bitexts we use for training
in this work, allowing CBs increases the proportion of fully multiparsed sentence
pairs. Figure 5.2 contains a histogram measuring the number of allowed CBs vs.
the percentage of fully parsed sentences in the English/French and English/Hindi
bitexts, using the monolingual trees and word alignments described in Section 5.1.

The PseudoITG does not encode a preference among different binarizations of
n-ary nodes for n > 2. When the supervisor has more than one way to binarize

2By allowing longer fuses, the classifiers will have to learn bilingual composition inferences for
more source/target pairs. Longer fuses will have fewer training examples due to data sparsity,
and so translation quality will degrade. In pilot experiments we observed a rather dramatic
degradation of translation quality when we increased the maximum fuse length to 5 for both
source and target fuses.

3cf. the discussion in Section 4.5.3

88



Figure 5.2: The number of allowed CBs vs. percentage of completely parsed En-
glish/French and English/Hindi bitext sentences

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5

P
e
rc

e
n
ta

g
e
 o

f 
s
e
n
te

n
c
e
 p

a
ir
s
 w

it
h
 c

o
m

p
le

te
 m

u
lt
it
re

e
s

Number of allowed CCVs

English-French
English-Hindi

a node, it will select randomly. Doing so may be suboptimal, especially when we
constrain the supervisor to infer a single pre-specified multitree for each sentence
pair in the corpus, since we have no way to guarantee that the binarizations will
be consistent across different sentence pairs. On the one hand, inconsistent bina-
rizations would increase the entropy of the training set due to spurious ambiguity.
On the other hand, having higher entropy may be better than learning a bad bias
if we were to choose a binarization scheme that is unhelpful for translation. This
problem may be somewhat mitigated in the experiments where we don’t constrain
the supervisor to allow only a single multitree for each sentence pair.

Fertility grammar

The fertility grammar provides an inductive bias on bilingual composition in-
ferences. It is used when we do not yet have classifiers trained to score inferences.
The parameters of the Gaussian distributions comprising the fertility grammar are
estimated using the bitexts, the word alignments, and monolingual parse trees.
We estimate the parameters of each Gaussian distribution Pr(nt

ns
|X) as follows.

89



For each pair of source/target spans that are consistent with the alignment, we
compute and record the ratio of their lengths. Then, for each source nonterminal
label X, we estimate the maximum likelihood parameters of a Gaussian from the
sample of span pairs whose source non-terminal label is X. In doing so we do
not constrain the number of CBs. Due to the lack of this constraint, the mod-
els are deficient, in that they assign non-zero probability to events (i.e. bilingual
compositions) that will be disallowed by the PseudoITG.

To see why a fertility model is needed, consider the tree-constrained word-
aligned sentence pair in Figure 5.3(a). The target terminal “y” is unaligned.
In multiparsing, y can be grouped with either x or z, leading to two possible
multitrees, as in Figures 5.3(b) and 5.3(c). Additionally, the multiparser can
decide that the string “a b” should be translated as a unit to “x y z”, lead-
ing to the multitree in Figure 5.3(d). We cannot rely solely on the alignment
probabilities assigned by the PseudoITG to disambiguate between these multi-
trees, since all three multitrees would get the same cost. Under the Viterbi-
derivation semiring the sum of the inference costs is the sum of the alignment
log probabilities. When using the fertility model under the Viterbi-derivation
semiring, the cost of the multitree in Figure 5.3(b) would be − log(p`(z, a)) +
− log(p`(x, b)) +− log(pφ(2|A)) +− log(pφ(1|B)), where p` is the alignment prob-
ability and pφ is the fertility probability; the cost of the multitree in Figure 5.3(c)
would be − log(p`(z, a))+− log(p`(x, b))+− log(pφ(2|B))+− log(pφ(1|A)); and the
cost of the multitree in Figure 5.3(d) would be − log(p`(z, a)) + − log(p`(x, b)) +
− log(pφ(1.5|X)).

Fertility models are used in other work on SMT as well. The IBM models
of [Brown et al.1993] use fertility models that model the probability that a target
word ti has generated a number of source words φi: p(φi|ti). Their fertility models
are one-to-many, not many-to-many as ours is, are discrete rather than continuous,
and are conditioned only on lexical information, rather than the syntactic category
dominating the source word sequence.

The fertility grammar is utilized by the hierarchical alignment process, the
inference lexicon construction process, and the supervisor and predictor on the
first iteration of the example generation process.

Multitree Inference Filter

The MTIF is used in the experiments where we constrain the search space to
have low density by constraining the supervisor to infer a single pre-selected tree.
The MTIF uses the multitrees output by the hierarchical alignment process. The
MTIF is used by the inference lexicon construction process to constrain the mono-
lingual and bilingual inferences that populate the lexicon, and by the supervisor
in the example generation process.

90



Figure 5.3: Four possible source/target fuse pairs with different fertilities

X

B

b

A

a

x y z

X

B

b

A

a

∅
∅

z

∅
∅
y

∅
x

X

B

b

A

a

∅
∅

∅
z

∅
y

∅

x

X

B

b

A

a

∅
∅

z

∅
∅
y

∅
x

(a) (b) (c) (d)

Inference Lexicon

The inference lexicon is used to constrain the monolingual and bilingual com-
position inferences fired by a translator. It is used by the predictor in the example
generation process, and by the translators in the tuning and test processes. The
inference lexicon is constructed by a parser constrained by a PseudoITG and fer-
tility grammar. The construction process can be constrained by an MTIF as
well. When the parser is constrained by an MTIF, the inference lexicon that will
be generated will contain a grammar term for every monolingual and bilingual
composition in the multitrees used by the MTIF. Under this configuration, used
in three of the experiments, the English-French inference lexicon contained 20,872
source-language fuses, 33,619 target-language fuses and 51,517 source/target pairs.
The English-Hindi inference lexicon contained 26,881 source-language fuses, 38,413
target-language fuses and 55,925 source/target pairs.

When the multiparser used in constructing the inference lexicon is not con-
strained by an MTIF, we use the multiparser to infer a multiforest. The multiforest
is not a complete forest over the sentence pair, since we employ beam pruning with
a beam-width of 10. We populate the inference lexicon with all the monolingual
and bilingual inferences that are part of any complete multitree in the inferred
forest. Furthermore, for each monolingual or bilingual composition inference that
ends up being part of a final tree, if the multiparser fired an inference whose conse-
quent yields were subsequences of the yields of the consequent that ended up being
part of the final tree, that inference got added to the lexicon as well. For instance,
if a final parse tree contained an item yielding [a b c | x y z], and the parser has
fired inferences with consequents yielding [a b | x y], [a | x], [b | y] and [c | z], all
four will be added to the inference lexicon as well, even though they are not part of
a complete parse. If no complete parse tree is found by the multiparser, we instead

91



compute 10 max covers (see Section 4.6) from the chart and proceed to populate
the inference lexicon as described above. Under this configuration, the inference
lexicon for English-French contained 82,115 source fuses, 125,701 target fuses and
284,073 source/target pairs. The lexicon for English-Hindi contained 72,477 source
fuses, 104,900 target fuses, and 202,555 pairs.

The inference lexicon is a model that can be learned from training data. At
this point, we describe an elegant but ultimately infeasible training routine for the
inference lexicon, as a caution to others who might attempt it. For the purposes
of illustration, suppose our training target is a multiforest over each sentence pair
in the bitext, and we use a strict labeling strategy (although the following dis-
cussion applies to single tree updates and permissive labeling as well). The input
to the training algorithm is a bitext with source-side parse trees, weighted word
alignments, and a Gaussian fertility model. The predictor’s grammar hierarchy
consists of a PseudoITG, inference lexicon, and set of classifiers. On the first iter-
ation, the supervisor’s grammar hierarchy consists of a PseudoITG with weighted
alignments and a Gaussian fertility model. On subsequent iterations it consists of
a PseudoITG with boolean-valued alignments and the set of classifiers.

On the first iteration the inference lexicon is empty and no classifiers have
been trained, so the predictor cannot propose inferences. Because the agenda
is perpetually empty, on each iteration of the parsing coordinator the NextSu-
pervisorItem() method will be called (Line 7 of Algorithm 9). The supervisor
will propose inferences and score them using the alignment weights and Gaussian
probabilities. The predictor will pop the item from its agenda. The MakeTrain-
ingExample() function in Line 16 will label the example according to the update
strategy and try to expand it. On the first iteration, all examples will be positive
since they are all approved by the supervisor. Since there are no classifiers the
grammar will assign infinite cost to every inference for which the item is an an-
tecedent. Therefore the predictor will not push anything onto its agenda. Instead,
it will keep asking the supervisor for items to expand. After each sentence in the
bitext has been processed by the parse coordinator, the training set consists only of
positive examples. The coordinator constructs an inference lexicon from the mono-
lingual and bilingual compositions the predictor has been given, and the classifiers
are trained on the positive examples. Because there are no negative examples for
training, no features apart from the bias term will be used in the classifier.

On the second iteration, the predictor has an inference lexicon and classifier,
so it can propose its own inferences. It will propose many inferences that are not
approved by the supervisor that will be labeled as negative examples. Further-
more, the predictor will sometimes be unable to infer a complete parse yielding
the reference translation, so the supervisor will have to provide new inferences for
the predictor to make, based on the current model. Because the supervisor is con-

92



figured to generate inferences for which we do not have classifiers4 the inference
lexicon generated on the second iteration will have new bilingual compositions with
corresponding classifiers to score them.

On the third iteration, the model will contain many classifiers that are trained
to discriminate between inferences. However, for the newly generated inferences
for which we had no classifiers in the second iteration, the new classifiers will give
very low cost to all inferences (since they were only trained on positive examples).
On this iteration, the model will be biased towards those inferences. This process
will continue until convergence (i.e. until no new classifiers for new inference types
are constructed).

Unfortunately, waiting for convergence greatly increases the amount of time
spent training. In our preliminary experiments on English-French data, after fifteen
iterations (making 3 passes over the bitext over 11 days), approximately 7% of the
classifiers updated on that iteration were completely new. Furthermore, due to slow
convergence, as we traced the translation accuracy of the model on the development
set as training progressed, the accuracies were quite volatile across the iterations.
Decreasing the learning rate wouldn’t have helped, because whenever we add a
new fuse pair to the inference lexicon, it will only add corresponding positive
examples to learn from. The classifier will therefore give a positive confidence
to any subsequent inference of the same type, which will in all likelihood be the
least-cost item proposed by the translator (since most other competing bilingual
inferences will have negative confidences, due to the tendency of the training set
to have more negative than positive examples. Decreasing the magnitude of the
confidence assigned to the new inference will not help.

Given the long training time, we were unable to run this setup to completion.
Therefore, we construct the inference lexicon as a preprocessing step by using a
multiparser configured with a grammar to encode preferences among the trees
(namely a PseudoITG and fertility grammar) and generating an inference lexicon
from a single multitree or multiforest. On subsequent iterations we utilize the
model to discriminate between the source/target fuse pairs the lexicon allows.

Confidence-rated classifiers

The confidence rated classifiers are used to score inferences in the example
generation process, and in the tuning and test processes. They are utilized by
the supervisor and predictor in the example generation process only after the first
iteration.

4The supervisor is configured to generate the inferences by assigning a high finite cost when
the classifiers return infinite cost for the inference

93



5.2.2 Parsing coordinator

The parsing coordinator is used in the example generation process of the data-
flow shown in Figure 5.1. The parsing coordinator iterates over the bitext, and for
each sentence pair it coordinates the search procedure of the supervisor and the
predictor.

We refer to each complete pass over the bitext as an epoch. An epoch is not
necessarily the same as an iteration. Rather than reestimating the model after
each pass through the bitext, we can partition the corpus so that we generate
examples from part of the corpus, reestimate the model, generate examples from
the next part of the corpus, etc. Doing so gives us the advantage of updating the
model more frequently allowing the training process to learn to correct translation
errors made by the model more often5. In all our experiments (apart from the
non-iterative straw-man experiment) we partition the bitext into five partitions,
yielding five iterations for each epoch. We partitioned the bitext into five parts
because we wanted to allow more frequent model updates while not substantially
increasing training time. If we were to update the model after every sentence, for
example, the training time would have increased by a prohibitive amount.

The amount of exploration done by the predictor is limited by the exploration
threshold set by the parsing coordinator. The exploration threshold determines
how many states the predictor will explore. With exploration threshold 0, it will
explore only states allowed by the supervisor. As we increase the exploration
threshold the predictor is able to explore more and more states, most of them
inconsistent with the multitree or multiforest inferable by the supervisor.

The predictor is never able to enumerate all the states it can explore under a
high threshold. The coordinator has to select the ones that will be most useful
for learning. One criterion for selecting the inferences to use in the training set
is according to the model’s own biases. The incorrect states that the predictor
will find itself in are those that are given low cost by the model. The distribution
of inferences fired by the predictor during training are likely to have a similar
distribution to those of the inferences fired during test, and therefore we wish to
learn from them to avoid making bad inferences.

Rather than setting a fixed exploration threshold for training we gradually
increase the threshold for each epoch. On the first epoch we set the exploration
threshold to 0. For each epoch, the exploration threshold is incremented. For
all our iterative experiments, we run the coordinator through five epochs, thereby
setting the maximum exploration threshold to 4. By gradually increasing the
exploration radius, we build a series of models that the predictor uses for state
exploration. This idea is similar to curriculum learning [Bengio et al.2009], where

5More frequent model updates in this manner are similar to early updating [Daumé and
Marcu2005].

94



Figure 5.4: The supervisor’s grammar hierarchy. Boxes with solid edges represent
sub-grammars that are the same for all experiments.

Sequential Composite Grammar

Additive Composite Grammar

PseudoITG Fertility Grammar (on
first iteration)
Classifier Grammar
(on subsequent itera-
tions)

Multitree Inference Filter

the idea is to start to learn a simple model, and gradually make the learning task
more difficult.

5.2.3 Supervisor configuration

Recall that the supervisor is used to evaluate inferences fired by the predictor
and to guide the predictor when it is unable to infer a multitree yielding the
reference translation. The supervisor is a multiparser and utilizes Logic MP. The
grammar hierarchy of the supervisor, shown in Figure 5.4, has three subgrammars
that are constant for all experiments – a PseudoITG, confidence-rated classifiers
and fertility grammar.

5.2.4 Predictor

The predictor is a translator, and is parameterized by Logic T. Its grammar hi-
erarchy, shown in Figure 5.5, is nearly identical to that of the supervisor. Unlike the
supervisor the predictor’s PseudoITG contains only monolingual tree constraints.
The predictor has a component in its grammar hierarchy that replaces the MTIF,
namely the inference lexicon. The inference lexicon assigns a cost to fuse inferences
inversely proportional to their frequency in the lexicon – namely for fuse inference
i, V (i) = α

n
where n is the frequency of the consequent of i in the lexicon, and α

is a manually selected value. We found that α = 2 gave the best results in pilot
experiments. In practice, the scores given by the inference lexicon tended to be
the lowest cost in the inference sequence (by design), and were used to order the

95



Figure 5.5: The predictor’s grammar hierarchy. The hierarchy is used by the
predictor for all experiments.

Sequential Composite Grammar

Additive Composite Grammar

PseudoITG Fertility Grammar (on
first iteration)
Classifier Grammar
(on subsequent itera-
tions)

Inference Lexicon

1D fuses on the agenda.

5.3 Independent variables

In our experiments, there are three independent variables – the amount of
exploration allowed by the coordinator, the density of the search space, and the
labeling strategy. For our first experiment, we wished to confirm the utility of
allowing exploration by using the training method of [Wellington et al.2006a] as a
straw-man condition, although with our logic and feature set. After confirming the
utility of exploration, we are left with the density of the search space and labeling
strategy with which to experiment. We have five main experimental conditions
that we run – the straw-man condition without exploration; the baseline single-
tree update using the strict labeling strategy; the single-tree update using the
permissive labeling strategy; the forest update using the strict labeling strategy;
and the forest update using the permissive labeling strategy.

5.3.1 Conditions with single-tree constraints

The first step in these three conditions is to infer a multitreebank over the
bitexts. We used a multiparser called a hierarchical aligner to infer the multitree-
bank over the bitext6. This step is denoted in the first box of Figure 5.1. To be
a hierarchical aligner, the multiparser was configured in the same manner as the

6Refer to [Melamed and Wang2004] for a discussion of hierarchical alignment.

96



supervisor parser described above. The grammar hierarchy was the same as the
supervisor’s, except that it did not include a multitree inference filter, and did
not use the classifiers – it utilized only the PseudoITG and fertility grammar as
described in the previous section.

We then constructed the inference lexicon from the multitreebank. We created
a lexicon entry from each source and target fuse inference and bilingual composition
inference in each multitree, and pruned the resulting inference lexicon according
to the criteria laid out in Section 4.5.4.

The only difference between the straw-man and the baseline single-tree update
experiments was that the straw-man used a maximum exploration threshold of 0,
thereby requiring only a single epoch. When we limit the exploration threshold to
0, all the inferences that the parser is able to fire will be added to the training set
in one epoch. Increasing the number of epochs will not add any new inferences
to the training set. The coordinator for the other two single-tree experiments
ran for five epochs, therefore using a maximum exploration threshold of four.
The only difference between the single-tree strict labeling update and the single-
tree permissive labeling update was the labeling strategy. We utilized the same
multitreebank and inference lexicons for all three experiments.

5.3.2 Conditions with multiforest constraints

Constraining the training routine to update towards a single multitree limits
the coverage of our grammar and forces the learning algorithm to update towards
a path which may be difficult for it to learn7. Some other approaches to SMT
training do not impose such a constraint. The models utilized by the finite-state
translation systems of [Koehn et al.2003,Och2003,Och and Ney2004] allow phrases
consistent with many different segmentations of each training sentence pair, rather
than committing to learning a single segmentation. Similarly, the hierarchical
phrase method of [Chiang2005, Chiang et al.2008] estimates hierarchical phrase
rules from a multiforest over each training sentence pair. The forest approach
of [Mi et al.2008] allows all translation productions consistent with any tree in the
forest over the source sentence.

Instead of constraining the supervisor to allow only predictor inferences that
are consistent with a particular multitree, we can remove the multitree inference
filter from the supervisor’s grammar hierarchy and let the supervisor allow any
predictor inference consistent with the sentence pair and PseudoITG constraints.
Due to the design of the parse coordinator, we need not explicitly compute a
multiforest over the input sentence – we merely need to determine whether each
inference made by the predictor is approved by the supervisor. The only time we

7Where there may be other paths for the same sentences that are more consistent with the
model’s biases.

97



need to build a multiforest is when we infer an initial inference lexicon.
In our pilot experiment for forest strict labeling updates, we applied an example

bias to each example generated by the parse coordinator, by weighting it in inverse
proportion to the number of other inferences yielding a consequent item covering
the same source span of the input sentence. The intuition behind doing so was
that when there are not many inferences that can yield a consequent for that
span, we wished for those to be more highly weighted positive examples than
those inferences with many possible alternatives, because we considered the heavier
examples more reliable for learning. This approach, however, led to a decline in
translation accuracy compared to assigning bias for each inference. We are not
certain why this was the case.

Whereas the first step in the straw-man and single-tree update experiments was
to use a hierarchical aligner to infer a multitreebank over the bitext, we skipped
that step in the forest experiments. Instead, we used the supervisor multiparser
unconstrained by a multitree inference filter to generate an inference lexicon.

The only difference between the forest strict labeling update and the forest
permissive labeling update is the labeling strategy. The same inference lexicons
were used for both experiments.

5.4 Dependent variables

Our primary evaluation measure for English-French translation consisted of
manually evaluating a sample of the test output of our five systems. We selected a
random sample of 100 sentences from the test corpus, and collected the translations
output by each of the five systems for each English sentence. For each English
sentence, we randomly permuted the five translations. We then partitioned the
100 sentences and their five translations among three French speakers8 to evaluate.
We asked them to rank the systems’ translations on two criteria: semantic fidelity
to the source sentence, that is, how well they could reconstruct the meaning of the
English sentence from the French translation, and the grammaticality or fluency
of the translation. No ties were allowed in the rankings. If an evaluator considered
two translations to be equally good or bad, they were asked to tiebreak according to
their personal preference. If two translations of an English sentence were identical,
we did not include them in the comparisons when we compared the systems pair-
wise. The exact instructions were as follows:

Thank you very much for helping me with my dissertation. I’ve sent
you 33 English sentences with five French translations each. Most
translations have both grammatical errors and semantic errors. Your
task is to rank the five French translations for each English sentence

8One of whom was the author.

98



in two ways – in terms of their fidelity to the meaning of the English
without regards to their grammaticality, and in terms of the number
and severity of grammatical mistakes. For example, take the following
English sentence and French translations:

Mr. Anastassopoulos , that is the price of democracy .

___ ___ M. Anastassopoulos , c’ le prix est des garantir .

___ ___ M. Anastassopoulos , c’ est le prix des democratie .

___ ___ M. Anastassopoulos , c’ est une prix de la democratie .

___ ___ M. Anastassopoulos , c’ est le prix de la democratie .

___ ___ M. Anastassopoulos , le est le monnaie des democratie .

I would rank them as follows, where the first column is the semantic
fidelity and the second is the grammaticality

_5_ _4_ M. Anastassopoulos , c’ le prix est des garantir .

_2_ _3_ M. Anastassopoulos , c’ est le prix des democratie .

_3_ _2_ M. Anastassopoulos , c’ est une prix de la democratie .

*_1_ _1_ M. Anastassopoulos , c’ est le prix de la democratie .

_4_ _5_ M. Anastassopoulos , le est le monnaie des democratie .

When determining the ranking based on grammaticality, please rank
them based on the number and severity of grammatical mistakes, in-
cluding poor word ordering, inserted words, incorrect gender/number/person
agreement, etc. When determining the ranking based on semantic fi-
delity, please rank them according to how well you can reconstruct the
original meaning from the French translation. Ties are not allowed! If
you think that two translations are equally good/bad, please break the
tie according to your personal preference.

When you find translations that might be considered correct, even if
they’re not very literal, please mark them with an asterisk.

Finally, I would welcome any comments or questions you have on what
I’ve asked you to do, or on your experience doing it.

Using the rankings, we counted how many translations output by each system
were better than the translations output by each of the other systems. As stated
earlier, if two translations were the same, we did not include them in the count.

We also used an automatic evaluation measure for the quality of translations.
We utilized the Precision/Recall/F-measure measures discussed in Section 4.8.2.

99



Table 5.1: Results of a pairwise comparison of the accuracy of the translation sys-
tems based on manual evaluations. Each entry contains the number of translations
proposed by the system in the row that were better than the corresponding trans-
lation output by the system in the column. Italicized numbers are statistically
significant at p=0.05, and bold numbers are statistically significant at p=0.01.
Statistical significance was computed by the sign test. ST refers to the baseline
experiment, PT refers to single-tree update with permissive labeling, SF refers to
forest update with strict labeling, and PF refers to forest update with permissive
labeling.

Semantic Fidelity
Straw-man ST PT SF PF

Straw-man -
ST 53 -
PT 71 76 -
SF 65 69 52 -
PF 69 72 61 64 -

Grammaticality
Straw-man ST PT SF PF

Straw-man -
ST 56 -
PT 68 71 -
SF 66 67 50 -
PF 67 72 62 61 -

5.5 Results

The results can be found in Table 5.1. For all the hypothesis tests, both for
the manual evaluations and the automatic evaluations, the null hypothesis was
that there was no difference between the quality of the translations output by the
different systems. The manual evaluations confirm our hypothesis that updating
towards multiforests is better than updating towards a single multitree, and that
using permissive labeling is better than using strict labeling.

We were unable to find evaluators to evaluate English-Hindi translation. We
therefore had to rely on automatic evaluations for English-Hindi. To validate
the automatic evaluation measures, we first computed evaluation measures for
English-French translation to show that the automatic measures correlate well with
human judgements for our experiments. The correlation between the automatic
evaluation measures and the manual evaluations validate the automatic evaluation
of Hindi translations as well. The automatic evaluations of the English-French
experiments are presented in Table 5.2 and the evaluations of the English-Hindi

100



experiments are in Table 5.3. We utilized three automatic evaluation measures:
precision/recall/f-measure [Melamed et al.2003], BLEU [Papineni et al.2002] and
NIST [Doddington2002]. Statistical significance on precision/recall/f-measure were
computed using the Wilcoxon signed-ranks test, and statistical significance on
BLEU and NIST scores was computed using bootstrap resampling [Koehn2004].
The matrices of statistical significance on precision/recall/f-measure are in Tables
5.5 and 5.6. To situate the accuracy of systems in the research literature, we also
trained finite-state phrase models for English-French and English-Hindi translation
using the moses SMT system [Koehn et al.2007]. We ran the training procedure
using the default options, except that we limited maximum phrase length to three,
mirroring our constraint on fuse lengths. Statistical significance was computed
with respect to the translation accuracies of our best systems9.

Automatic evaluation of SMT is a difficult problem in and of itself. Automatic
evaluation is usually done by counting the number and length of word sequences in
the intersection between an output translation and a set of reference translations
(e.g. [Papineni et al.2002,Melamed et al.2003,Lavie and Agarwal2007]). However,
given the ambiguity of natural language and given that there may be many valid
translations for a single source sentence, comparing a translation against a finite
(usually small) number of references may lead to some perfectly valid translations
receiving a low evaluation score due to lack of overlap between the output and
reference. Furthermore, some studies have shown that there may be cases where the
automatic evaluation measure does not correlate well with human judgements (e.g.
[Callison-Burch et al.2006]). However, automatic evaluation is inexpensive in terms
of time compared to manual evaluations, and so is widely utilized in the research
community. Also, automatic evaluations are needed to tune our hyperparameters.
The optimal regularization penalties for each experiment are presented in Table
5.4.

The straw-man configuration, which utilizes the training approach of
[Wellington et al.2006a], has the advantage of being comparatively fast to train. On
a cluster of approximately 100 CPU cores, both English-French and English-Hindi
straw-man configurations took a few hours to train. The single tree updated models
took several days, with no discernible difference in training times between strict and
permissive labeling strategies. The forest-updated models each took approximately
two weeks to train. One of the primary disadvantages of our approach compared to
other systems in the literature is the time it takes to train the systems. We translate
the entire bitext multiple times, unlike the translator used by MERT [Och2003]
and MIRA [Chiang et al.2008] that iterate on roughly one thousand sentences.
The only other fully discriminative approaches we found that translate the entire
bitext are [Liang et al.2006], who limit the sentences they train on to have length

9For both English-French and English-Hindi, the most accurate translations were produced
by the system trained using permissive labeling with the supervisor constrained by a multiforest.

101



T
ab

le
5.

2:
A

u
to

m
at

ic
ev

al
u
at

io
n

m
ea

su
re

s
of

ou
r

fi
ve

E
n
gl

is
h
-F

re
n
ch

tr
an

sl
at

io
n

sy
st

em
s.

W
e

co
m

p
u
te

d
P

re
ci

si
on

(P
re

c)
,

R
ec

al
l

(R
e
c)

,
an

d
F

-m
ea

su
re

(F
M

S
)

w
it

h
ex

p
on

en
ts

1
(fi

rs
t

ro
w

of
ea

ch
sy

st
em

)
an

d
2

(s
ec

on
d

ro
w

of
ea

ch
sy

st
em

).
F

or
ea

ch
sy

st
em

,
w

e
al

so
co

m
p
u
te

d
th

e
B

L
E

U
sc

or
e

ov
er

th
e

te
st

se
t.

N
u
m

b
er

s
in

b
ol

d
in

d
ic

at
e

st
at

is
ti

ca
l

si
gn

ifi
ca

n
ce

at
p

=
0.

01
,

an
d

n
u
m

b
er

s
in

it
al

ic
in

d
ic

at
e

st
at

is
ti

ca
l

si
gn

ifi
ca

n
ce

at
p

=
0.

05
.

F
or

th
e

si
n
gl

e
tr

ee
st

ri
ct

la
b

el
in

g
sy

st
em

s,
st

at
is

ti
ca

l
si

gn
ifi

ca
n
ce

w
as

co
m

p
u
te

d
w

it
h

re
sp

ec
t

to
th

e
st

ra
w

-m
an

co
n
fi
gu

ra
ti

on
.

F
or

th
e

fo
re

st
st

ri
ct

la
b

el
in

g
sy

st
em

s,
st

at
is

ti
ca

l
si

gn
ifi

ca
n
ce

w
as

co
m

p
u
te

d
w

it
h

re
sp

ec
t

to
th

e
si

n
gl

e
tr

ee
st

ri
ct

la
b

el
in

g
sy

st
em

s.
F

or
th

e
si

n
gl

e
tr

ee
an

d
fo

re
st

p
er

m
is

si
ve

la
b

el
in

g
sy

st
em

s,
st

at
is

ti
ca

l
si

gn
ifi

ca
n
ce

w
as

ca
lc

u
la

te
d

w
it

h
re

sp
ec

t
to

th
e

si
n
gl

e
tr

ee
st

ri
ct

la
b

el
in

g
an

d
fo

re
st

st
ri

ct
la

b
el

in
g

sy
st

em
s,

re
sp

ec
ti

ve
ly

.
E

n
g
li

sh
-F

re
n
ch

T
ra

n
sl

a
ti

o
n

E
x
p

o-
D

ev
el

op
m

en
t

T
es

t
n
en

t
P

re
c

R
e
c

F
M

S
P

re
c

R
e
c

F
M

S
B

L
E

U
N

IS
T

S
tr

a
w

-m
a
n

1
0.

49
85

0.
46

43
0.

48
08

0.
50

17
0.

47
15

0.
48

61
0.

12
99

4.
65

56
2

0
.2

1
7
7

0.
20

28
0.

21
00

0.
21

81
0.

20
50

0.
21

13
S

in
g
le

tr
e
e

1
0
.5

0
3
9

0
.4

8
5
9

0
.4

9
4
8

0.
50

18
0
.4

8
5
5

0
.4

9
3
5

0
.1

6
3
5

5
.2

6
7
4

st
ri

ct
2

0
.2

2
3
7

0
.2

1
5
7

0
.2

1
9
7

0
.2

2
5
9

0
.2

1
8
6

0
.2

2
2
2

la
b

e
li
n
g

F
o
re

st
1

0.
50

55
0
.4

9
8
6

0.
50

20
0
.5

1
0
3

0
.4

9
4
9

0
.5

0
2
5

0
.1

7
7
8

5
.4

1
8
0

st
ri

ct
2

0
.2

2
9
5

0
.2

2
6
4

0
.2

2
7
9

0
.2

3
2
3

0
.2

2
5
3

0
.2

2
8
7

la
b

e
li
n
g

S
in

g
le

tr
e
e

1
0.

51
10

0.
48

18
0.

49
60

0
.5

1
4
0

0.
48

69
0
.5

0
0
1

0.
16

28
5
.3

6
2
5

p
e
rm

is
si

v
e

2
0
.2

3
2
0

0.
21

88
0
.2

2
5
2

0
.2

3
1
6

0.
21

94
0.

22
53

la
b

e
li
n
g

F
o
re

st
1

0
.5

1
7
8

0.
49

57
0.

50
65

0
.5

1
9
7

0
.5

0
1
5

0
.5

1
0
5

0.
18

19
5
.5

5
1
6

p
e
rm

is
si

v
e

2
0
.2

3
7
4

0.
22

73
0.

23
22

0
.2

3
8
4

0
.2

3
0
0

0
.2

3
4
1

la
b

e
li
n
g

M
o
se

s
1

0
.5

3
2
5

0
.5

3
1
0

0
.5

3
3
7

0
.5

3
2
5

0
.5

3
4
5

0
.5

3
3
5

0
.2

3
3
3

5
.9

2
3
7

2
0
.2

5
8
5

0
.2

5
7
8

0
.2

5
9
1

0
.2

5
8
5

0
.2

5
9
4

0
.2

5
9
0

102



T
ab

le
5.

3:
A

u
to

m
at

ic
ev

al
u
at

io
n

m
ea

su
re

s
of

ou
r

fi
ve

E
n
gl

is
h
-H

in
d
i

tr
an

sl
at

io
n

sy
st

em
s.

W
e

co
m

p
u
te

d
P

re
ci

si
on

(P
re

c)
,

R
ec

al
l

(R
e
c)

,
an

d
F

-m
ea

su
re

(F
M

S
)

w
it

h
ex

p
on

en
ts

1
(fi

rs
t

ro
w

of
ea

ch
sy

st
em

)
an

d
2

(s
ec

on
d

ro
w

of
ea

ch
sy

st
em

).
F

or
ea

ch
sy

st
em

,
w

e
al

so
co

m
p
u
te

d
th

e
B

L
E

U
sc

or
e

ov
er

th
e

te
st

se
t.

N
u
m

b
er

s
in

b
ol

d
in

d
ic

at
e

st
at

is
ti

ca
l

si
gn

ifi
ca

n
ce

at
p

=
0.

01
,

an
d

n
u
m

b
er

s
in

it
al

ic
in

d
ic

at
e

st
at

is
ti

ca
l

si
gn

ifi
ca

n
ce

at
p

=
0.

05
.

F
or

th
e

si
n
gl

e
tr

ee
st

ri
ct

la
b

el
in

g
sy

st
em

s,
st

at
is

ti
ca

l
si

gn
ifi

ca
n
ce

w
as

co
m

p
u
te

d
w

it
h

re
sp

ec
t

to
th

e
st

ra
w

-m
an

co
n
fi
gu

ra
ti

on
.

F
or

th
e

fo
re

st
st

ri
ct

la
b

el
in

g
sy

st
em

s,
st

at
is

ti
ca

l
si

gn
ifi

ca
n
ce

w
as

co
m

p
u
te

d
w

it
h

re
sp

ec
t

to
th

e
si

n
gl

e
tr

ee
st

ri
ct

la
b

el
in

g
sy

st
em

s.
F

or
th

e
si

n
gl

e
tr

ee
an

d
fo

re
st

p
er

m
is

si
ve

la
b

el
in

g
sy

st
em

s,
st

at
is

ti
ca

l
si

gn
ifi

ca
n
ce

w
as

ca
lc

u
la

te
d

w
it

h
re

sp
ec

t
to

th
e

si
n
gl

e
tr

ee
st

ri
ct

la
b

el
in

g
an

d
fo

re
st

st
ri

ct
la

b
el

in
g

sy
st

em
s,

re
sp

ec
ti

ve
ly

.
E

n
g
li

sh
-H

in
d
i

T
ra

n
sl

a
ti

o
n

E
x
p

o-
D

ev
el

op
m

en
t

T
es

t
n
en

t
P

re
c

R
e
c

F
M

S
P

re
c

R
e
c

F
M

S
B

L
E

U
N

IS
T

S
tr

a
w

-m
a
n

1
0.

52
71

0.
49

75
0.

51
19

0.
52

26
0.

50
02

0.
51

12
0.

12
81

5.
15

94
2

0.
20

14
0.

19
01

0.
19

56
0.

20
10

0.
19

23
0.

19
66

S
in

g
le

tr
e
e

1
0.

53
03

0.
50

20
0.

51
57

0
.5

3
3
8

0
.5

0
9
3

0
.5

2
1
3

0.
13

49
5
.2

3
9
9

st
ri

ct
2

0.
19

93
0.

18
86

0.
19

38
0.

20
52

0.
19

58
0.

20
04

la
b

e
li
n
g

F
o
re

st
1

0
.5

5
6
6

0
.5

0
9
7

0
.5

3
2
1

0
.5

5
4
6

0.
51

61
0
.5

3
4
7

0
.1

5
0
3

5
.4

6
2
7

st
ri

ct
2

0
.2

1
5
8

0
.1

9
7
6

0
.2

0
6
3

0
.2

1
8
8

0
.2

0
3
6

0
.2

1
0
9

la
b

e
li
n
g

S
in

g
le

tr
e
e

1
0
.5

3
9
4

0
.5

1
2
4

0
.5

2
5
6

0
.5

4
6
6

0
.5

2
5
4

0
.5

3
5
8

0
.1

5
6
1

5
.5

1
1
4

p
e
rm

is
si

v
e

2
0
.2

0
6
9

0
.1

9
6
6

0
.2

0
1
6

0
.2

1
5
6

0
.2

0
7
2

0
.2

1
1
3

la
b

e
li
n
g

F
o
re

st
1

0.
55

04
0
.5

2
0
7

0.
53

52
0.

55
35

0
.5

3
2
2

0
.5

4
2
7

0.
15

74
5
.5

5
5
9

p
e
rm

is
si

v
e

2
0.

21
69

0
.2

0
5
2

0
.2

1
0
9

0.
21

74
0
.2

0
9
0

0.
21

31
la

b
e
li
n
g

M
o
se

s
1

0.
53

83
0.

52
63

0.
53

22
0.

54
54

0
.5

4
4
9

0.
54

51
0
.2

0
6
5

5.
60

21
2

0.
22

20
0.

21
71

0.
21

95
0
.2

3
4
6

0
.2

3
4
4

0
.2

3
4
5

103



Table 5.4: The optimal regularization penalties λ for each experiment
English-French

Straw-man 0.00585937500
Single tree strict labeling 0.00585937500
Forest strict labeling 0.02343750000
Single tree permissive labeling 0.00585937500
Forest permissive labeling 0.00585937500

English-Hindi

Straw-man 0.00585937500
Single tree strict labeling 0.00146484375
Forest strict labeling 0.00585937500
Single tree permissive labeling 0.00292968750
Forest permissive labeling 0.00585937500

Figure 5.6: Single tree strict labeling English-French translation accuracy on devel-
opment set across iterations. The top graph shows precision/recall/f-measure with
exponent 1; the bottom graph shows precision/recall/f-measure with exponent 2.

 0.45

 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

F
1

Precision
1

Recall
1

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25

F
2

Precision
2

Recall
2

104



Table 5.5: p-values for English-French test set, comparing the minimum statistical
significance levels at which the relevant null hypothesis was rejected for the system
in the row and the system in the column. There are no entries in the table for
which the system in the row is worse than the system in the column.

Straw-man
System Exp Prec: Rec: FMS:
Single tree strict 1 0.7838 1.72× 10−10 0.00062

2 0.00027 1.64× 10−15 2.04× 10−9
Forest strict 1 0.0056 1.20× 10−15 4.48× 10−9

2 6.41× 10−13 3.71× 10−26 7.56× 10−20

Single tree permissive 1 3.292× 10−8 1.197× 10−13 4.29× 10−11

2 1.25× 10−18 1.09× 10−22 1.17× 10−20

Forest permissive 1 5.56× 10−10 9.92× 10−24 8.69× 10−18

2 5.11× 10−24 7.36× 10−38 4.54× 10−32

Single tree strict
Exp Prec: Rec: FMS:

Forest strict 1 0.0033 0.0050 0.0022
2 1.43× 10−4 1.842× 10−5 2.61× 10−5

Single tree permissive 1 2.58× 10−5 0.0099
2 1.16× 10−4 0.0126

Forest permissive 1 1.27× 10−9 4.42× 1−−8 8.9× 10−10

2 1.49× 10−11 1.71× 10−11 2.03× 10−12

Forest strict
Exp Prec: Rec: FMS:

Single tree permissive 1
2

Forest permissive 1 4.68× 10−4 5.38× 10−4 3.62× 10−4

2 4.54× 10−4 6.96× 10−4 6.63× 10−4

Single tree permissive
Exp Prec: Rec: FMS:

Forest permissive 1 0.054 1.11× 10−6 4.13× 10−4

2 9.41× 10−5 1.19× 10−9 2.48× 10−7

105



Table 5.6: p-values for the English-Hindi test set, comparing the minimum statis-
tical significance levels at which the relevant null hypothesis was rejected for the
system in the row and the system in the column. There are no entries in the table
for which the system in the row is worse than the system in the column.

Straw-man
Exp Prec: Rec: FMS:

Single tree strict 1 0.0014 0.0046 0.00062
2 0.393 0.622 0.50

Forest strict 1 1.46× 10−15 2.82× 10−4 3.93× 10−9

2 1.19× 10−9 3.38× 10−4 2.07× 10−6

Single tree permissive 1 1.01× 10−8 1.00× 10−9 4.29× 10−11

2 4.24× 10−8 6.93× 10−10 3.79× 10−9

Forest permissive 1 3.25× 10−13 3.75× 10−13 3.08× 10−12

2 1.69× 10−10 2.22× 10−12 7.52× 10−12

Single tree strict
Exp Prec: Rec: FMS:

Forest strict 1 3.47× 10−8 0.066 2.90× 10−4

2 4.65× 10−8 2.31× 10−5

Single tree permissive 1 0.0017 5.94× 10−5 2.15× 10−4

2 1.4× 10−4 2.58× 10−6 2.34× 10−5

Forest permissive 1 6.42× 10−6 9.05× 10−9 2.87× 10−8

2 4.77× 10−7 1.41× 10−9 8.39× 10−10

Forest strict
Exp Prec: Rec: FMS:

Single tree permissive 1 0.033 0.817
2 0.108 0.768

Forest permissive 1 0.33 5.13× 10−7 0.0092
2 0.55 6.88× 10−5 0.047

Single tree permissive
Exp Prec: Rec: FMS:

Forest permissive 1 0.0098 0.0174 0.012
2 0.096 0.0014 0.0038

106



Figure 5.7: Forest strict labeling English-French translation accuracy on develop-
ment set across iterations. The top graph shows precision/recall/f-measure with
exponent 1, the bottom graph shows precision/recall/f-measure with exponent 2.

 0.48

 0.485

 0.49

 0.495

 0.5

 0.505

 0.51

 0.515

 0.52

F
1

Precision
1

Recall
1

 0.21

 0.215

 0.22

 0.225

 0.23

 0.235

 0.24

 5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25

F
2

Precision
2

Recall
2

107



Figure 5.8: Single tree permissive labeling English-French translation accuracy on
development set across iterations. The top graph shows precision/recall/f-measure
with exponent 1, the bottom graph shows precision/recall/f-measure with exponent
2.

 0.46

 0.48

 0.5

 0.52

 0.54
F

1

Precision
1

Recall
1

 0.2

 0.205

 0.21

 0.215

 0.22

 0.225

 0.23

 0.235

 0.24

 0.245

 0.25

 5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25

F
2

Precision
2

Recall
2

108



Figure 5.9: Forest permissive labeling English-French translation accuracy on de-
velopment set across iterations. The top graph shows precision/recall/f-measure
with exponent 1, the bottom graph shows precision/recall/f-measure with expo-
nent 2.

 0.46

 0.47

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

F
1

Precision
1

Recall
1

 0.2

 0.205

 0.21

 0.215

 0.22

 0.225

 0.23

 0.235

 0.24

 0.245

 0.25

 5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25

F
2

Precision
2

Recall
2

109



Figure 5.10: Single tree strict labeling English-Hindi translation accuracy on devel-
opment set across iterations. The top graph shows precision/recall/f-measure with
exponent 1, the bottom graph shows precision/recall/f-measure with exponent 2.

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

F
1

Precision
1

Recall
1

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25

F
2

Precision
2

Recall
2

110



Figure 5.11: Forest strict labeling English-Hindi translation accuracy on develop-
ment set across iterations. The top graph shows precision/recall/f-measure with
exponent 1, the bottom graph shows precision/recall/f-measure with exponent 2.

 0.48

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

F
1

Precision
1

Recall
1

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

 0.21

 0.215

 0.22

 5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25

F
2

Precision
2

Recall
2

111



Figure 5.12: Single tree permissive labeling English-Hindi translation accuracy on
development set across iterations. The top graph shows precision/recall/f-measure
with exponent 1, the bottom graph shows precision/recall/f-measure with exponent
2.

 0.49

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

F
1

Precision
1

Recall
1

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

 0.21

 0.215

 0.22

 5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25

F
2

Precision
2

Recall
2

112



Figure 5.13: Forest permissive labeling English-Hindi translation accuracy on
development set across iterations of the forest update target. The top graph
shows precision/recall/f-measure with exponent 1, the bottom graph shows
precision/recall/f-measure with exponent 2.

 0.5

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

F
1

Precision
1

Recall
1

 0.19

 0.195

 0.2

 0.205

 0.21

 0.215

 0.22

 5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25

F
2

Precision
2

Recall
2

113



at most 15, and [Wellington et al.2006a] who require only a single pass over the
bitext.

We also tracked the accuracy of the systems on the development set as training
progressed. The graphs are presented in Figures 5.6-5.13. They track the transla-
tion accuracy on the development set from iteration 5 through 25. The first model
was trained on iteration 5, using exploration threshold 0. Iterations 6-10 were
trained with exploration threshold 1, iterations 11-15 with exploration threshold
2, etc. for five epochs in total. An interesting point stands out in comparing the
translation quality of the English-French and English-Hindi translation systems as
training proceeds. Increasing the exploration threshold improved the translation
accuracies of the models for English-French translation using strict labeling, but
it tended to degrade the translation accuracy for English-Hindi translation using
strict labeling. We traced the accuracy of the model on the development set across
iterations (refer to Figures 5.6, 5.10, 5.7, and 5.11) and for the English-French sys-
tems, we achieved significant gains after a single iteration where the exploration
threshold was raised to 2. On the English-Hindi systems F 2, P 2, and R2 more
or less steadily decreased as training progressed and as the exploration threshold
was raised. The decline in accuracy suggests that as training progressed, the mod-
els for 2x2 composition inferences, which model the relative order of how partial
translations combine, got progressively worse. We conjecture that the quality of
the bilingual composition inferences did not degrade because in practice all the
relevant examples are generated by the coordinator at low exploration radii. We
conjecture that the rarity of complete multitrees in the English-Hindi dataset may
be responsible for this phenomenon. When we do not have a complete multitree
for a bitext sentence pair, it is often because the supervisor is not able to infer
some of the higher-level 2x2 composition inferences that are required to infer a
complete multitree. Consequently, under the strict labeling strategy the training
set might not contain many positive examples for higher-level 2x2 composition in-
ferences, thereby reducing the predictive capabilities of the trained model. When
translating, the translator will always be able to infer a complete multitree, since
it is unconstrained by word alignments. Thus, the distribution of higher-level 2x2
composition inferences during test time will be different than during training. The
English-Hindi systems trained using permissive labeling probably do not suffer
from this degradation of translation quality as much due to the fact that they can
add high-level 2x2 composition inferences as positive examples even if they are not
part of the multitree or multiforest inferable by the supervisor10.

10Since they will be labeled as positive examples if they have WIQ > 0.

114



5.6 Analysis

In this section we analyze how the experimental conditions of our five systems
impact the translations output by the system. We select representative examples
of sentences in our development set to determine how the experimental conditions
affect the inference process for the sentences. We focus on the output of the
English-French systems11.

5.6.1 No exploration vs. exploration

To illustrate how allowing exploration affects the behavior of the translator,
we examine how the straw-man configuration and the baseline configuration each
translate the following sentence from the English/French development set:

Input: This aspect has been neglected in the motion for the resolution .
Reference: Cet aspect a été négligé dans la proposition de résolution .
Straw-man: Ce aspect a été négligées dans la proposition pour la
résolution .
Baseline: Cet aspect a été négligées dans la proposition de la résolution
.

The straw-man output has three mistakes relative to the reference. First, the
determiner “This” should be translated as “Cet” rather than “Ce”, since the sub-
sequent word begins with a vowel; second, the translation of “neglected” should
be singular masculine rather than feminine plural; and third, “for the” should be
translated as “de” rather than “pour la.” Two of the translation errors are caused
by the same phenomenon. Consider the translation of the noun phrase “This as-
pect”. Among the items the translator considers, it infers ones with the following
source/target yields and costs: a1 = [This | Ce; 1.360], a2 = [This | Cet; 3.336],
and b = [aspect | aspect; 2.598]. The two pairs of antecedent items can be used
in monotonic 2x2 composition inferences. Both the inference taking a1 and b as
antecedents and the inference taking a2 and b as antecedents get a low cost of
0.484 under the straw-man configuration. The low cost is to be expected since in
French determiners tend to precede nouns. This means that, due to the MinMerge-
derivation semiring, the cost of the 2x2 composition inference was unlikely to have
an impact on the cost of the final multitree output. The same problem affects the
translation of “for” as “pour” rather than “de”. The relevant classifiers give the
translation of “for” to “pour” slightly lower cost (1.361) than the translation of
“for” to “de” (1.588), but the compositions yielding both “pour la résolution” and

11Because the author speaks and understands French more insight was gleaned from examining
the French translations.

115



“de la résolution” have very low cost (0.0299) since prepositions12 always precede
noun phrases13 in French prepositional phrases14.

We could potentially multiply the costs of all 2x2 compositions by some value
to elevate their costs so that the cost is higher than the costs of bilingual compo-
sition inferences. However, even if the inference were to have the highest cost in
the multitree it might still not help us decide between translating “This aspect”
as “Ce aspect” or “Cet aspect.” The composition classifiers are trained only to
determine whether the target yields of the antecedents should be in monotonic or
inverted order with respect to the source. The assumption of the straw-man con-
figuration is that the classifiers for bilingual composition inferences are responsible
for selecting the correct translationally-equivalent fuses, and the 2x2 composition
inference classifiers only need to determine the relative ordering of the antecedents.
The 2x2 composition classifiers are not trained to disambiguate between different
sets of antecedents. Doing so would be fine if we can always rely on the classifiers
of the bilingual composition inferences to determine which one to make. In this
case, we would need to know the translation of “aspect” to determine whether to
translate “This” as “Ce” or “Cet,” since the determiner in French must agree with
the noun in terms of gender and in terms of whether the noun begins with a vowel.
The lowest inference in the multitree to which this information is available is the
composition inference. In order for the translator to select between such sets of
antecedent items, the classifier must learn from training examples for inferences
whose antecedents are incorrect.

Under the single tree strict labeling training configuration, “This” is now cor-
rectly translated as “Cet” and “for” is correctly translated as “de”. To see why, we
examine the costs of the items involved in the inferences. Just as under the straw-
man training configuration, the inference translating “This” as “Ce” has cost 1.361
and the inference translating “This” as “Cet” has cost 3.575. However, now the
cost of composing “Ce” with “aspect” is much higher than the cost of composing
“Cet” with aspect – the composition inference yielding “Ce aspect” has cost 3.976,
whereas the composition inference yielding “Cet aspect” has cost 2.927. This is to
be expected because during training, the classifier that assigns cost to the 2x2 com-
position will learn from inferences with antecedent items yielding “Ce” and “Cet”.
Thus, in addition to learning the relative order of the antecedents, the classifier is
now trained to disambiguate between combinations of antecedent items. Since the
dominant cost in the cost sequence of the item with yield “Cet aspect” is 3.575
and the dominant cost of the item with yield “Ce aspect” is 3.976, “This aspect” is
correctly translated as “Cet aspect.” Similarly, for translating “for” as “de” rather
than “pour”, the cost of “for” to “pour” is 1.029 and the cost of “for” to “de” is

12Constituents with nonterminal label IN.
13Constituents with nonterminal label NP.
14Constituents with nonterminal label PP.

116



1.587, but the cost of the inference yielding “pour la résolution” is 2.479 whereas
the cost of the inference yielding “de la résolution” is 2.2247.

5.6.2 Density of the search space

To illustrate the difference in system behavior when we vary the density of
the search space by configuring the supervisor to infer a single tree or forest, we
consider the following example from the English-French development set:

Input: There are other countries , apart from ACP countries , which are
dependent on exports of bananas .
Reference: Il existe d’ autres pays qui dépendent également de l’ expor-
tation des bananes .
Tree update: Il sont d’ autres pays , Hormis les pays ACP , qui sont
dépendent sur les exportations de bananas .
Forest update: Il existe d’ autres pays , provenant pays ACP , qui
dépendent des exportations de bananas .

Although the reference is not a literal translation of the English source sentence,
there are still portions of the output that we can improve. For example, the
baseline tree-update system translates “are” as “sont” rather than “existe”, (and
“are dependent” as “sont dépendent” rather than the verb “dépendent”.) We
could conceivably learn to translate “There are” as “Il existe” because the training
bitext contains the sentence pair

Input: There are five points I would like to highlight because I believe that
sooner or later they will have to be reviewed :
Reference: Il existe cinq points que je souhaite souligner car je pense que
, tôt ou tard , ils devront être reconsidérés :

The word alignment for this sentence pair does not align “existe” to any source
word and does not align “are” to any target word. The multitree contains a con-
stituent covering “There / Il existe” and a constituent covering “are five points /
cinq points”. Because we commit to a single multitree, we cannot learn a bilin-
gual composition inference composing antecedents with yields “There are” and
“Il existe”. In fact, in the 6 sentence pairs in the training corpus containing the
subsequence pair “There are / Il existe”, four of the multitrees have a constituent
covering “There / Il existe” with a different constituent covering “are”, one of the
multitrees has a constituent covering “There are / Il existe déjà”, and one has a
constituent translating “There” to “existe” and “are” to “Il”. This means that
we will not get any positive examples for inferences translating “There” as “Il”
or “are” as “existe”, and we will not observe any positive examples for inferences
composing the source fuse “There are” to target fuse “Il existe.” Therefore, these

117



bilingual compositions will not be in the inference lexicon.
Under the forest-update, the inference lexicon contains a term allowing a bilin-

gual composition of a monolingual item with source yield “There are” and a mono-
lingual item with target yield “Il existe”, which was not available in the inference
lexicon for the single tree update experiments. The inference lexicon also allows for
a bilingual composition of “are dependent” with “dépendent”, thereby correctly
deleting “are”. This advantage can be seen in the rise in translation accuracy, from
F1-measure of 0.4935 to 0.5025, and from F2-measure of 0.2222 to 0.2287 in Table
5.2.

5.6.3 Strict vs. permissive labeling

A problem we observed with strict labeling was that when we trained the
classifiers all incorrect inferences were treated as equally bad. The training scheme
had no way to determine which incorrect inferences led to better translations. As
soon as an incorrect inference is made, all subsequent inferences building upon the
incorrect one will also be incorrect when using strict labeling. The translator is
not taught to select between them.

This issue can be seen in the translation of the following sentence from the
development set by the baseline single-tree strict labeling configuration:

Input: Paragraph 54 of my report sets out the conditions for Parliament
to agree the transfer of funds from the 1998 budget reserve .
Reference: Le paragraphe 54 de mon rapport fixe les conditions pour que
le Parlement autorise le transfert de fonds de la réserve du budget 1998 .
Single tree update with strict labeling: Le paragraphe 54 de mon
rapport contingents applicables jusque les les conditions pour le Parlement
à accord le transfert des fonds partir de l’ 1998 réserve budgétaire .
Single tree update with permissive labeling: Le paragraphe 54 de
mon rapport les fixe les conditions pour le Parlement de accord le transfert
des fonds de réserve budgétaire 1998 la .

There are many mistakes in the output of the systems, but we focus on the trans-
lation of the substring “sets out the conditions”. The baseline translator translates
it as “contigent applicables jusque les les conditions”, whereas the reference trans-
lates it as “fixe les conditions.” When we look at the items output by both systems,
however, the least cost translation for “sets out” is “les fixe”, and the least cost
translation for “the conditions” is the correct translation “les conditions.” The
inference lexicon does not contain a fuse pair translating “sets out” to “fixe”.
However, both translations “contigent applicables jusque les les conditions” and
“les fixe les conditions” are incorrect with respect to the reference. Both composi-
tions get very high cost under the model trained with strict labeling, because the

118



most highly-weighted feature is the frequency of the least frequent trigram. The
least-frequent trigram in both translation outputs has frequency 0 in the language
model. The classifiers, therefore, will give both translations negative confidences,
since both are incorrect. There are no signals to the classifiers that a translation
containing “les fixe les conditions” should be preferred over a translation contain-
ing “contigent applicables jusque les les conditions.” This problem is due to the
strict labeling strategy, since it cannot determine that “les fixe les conditions” is
better than the alternative translation that was selected.

As we can see, under the permissive labeling strategy “sets out the conditions”
is translated as “les fixe les conditions”, which, though not completely correct, is a
much better translation than “contigent applicables jusque les les conditions.” To
see why the alternative is selected, consider the sub-multitrees for the two outputs
in Figure 5.14. Both multitrees are inferred by the two models with different costs.
Under the strict labeling strategy, the highest cost inference for the tree on the
left is the one composing “contigent applicables jusque les” with “les conditions”
which has cost 4.2853. The highest cost inference for the tree on the right is the
one composing “les fixe” with “les conditions”, which has cost 5.3702. Under the
permissive labeling strategy, the highest-cost inference for the tree on the left is
the one composing “contigent applicables jusque les” with “les conditions” with
cost 4.1833, and the highest-cost inference for the tree on the right is the one com-
posing “les fixe” and “les conditions” with cost 2.9031. Under the strict labeling
strategy, both compositions would be labeled as negative examples during training,
since neither is part of the reference translation. However, utilizing WIQ1 in the
permissive labeling strategy allows us to determine that the composition of “les
fixe” and “les conditions” improves the translation quality of the consequent rela-
tive to the antecedents, whereas the composition of “contigent applicables jusque
les” and “les conditions” does not. The e measure of “les fixe les conditions” is√

32 −
√

12+0
2
− 0 = 2.5, whereas maximum e measure of the antecedents is 2 (for

“les conditions” which matches the reference). On the other hand, the e measure

of “contigent applicables jusque les les conditions” is
√

22−
√

42+0
2
−0 = 0, whereas

the maximum e measure of the antecedents is 2. This is a prime example of how
the permissive labeling strategy, along with WIQ1, gives the model a preference
among inferences that do not yield the reference translation.

5.6.4 Feature analysis

To get a sense of how the global training objective affected the induced clas-
sifiers, we examined the model weights of the classifiers induced under the five
training objectives. We wish to gain some insight as to how the different global
objectives affect the predictive power of the atomic features. Recall that GBDT
training algorithm computes weights for compound features (CFs) – that is, the

119



Figure 5.14: Two multitrees covering “sets out the conditions”. The one on the
left is the sub-multitree output by the model trained on single tree updates with
strict labeling, and the one on the right is the sub-multitree output by the model
trained on single tree updates with permissive labeling, but both trees are inferable
by both.

VP*

NP

NNS

conditions

DT

the

VBZ*

PRT

out

VBZ

sets

VP*

NP

NNS

conditions

DT

les

VBZ*

contigent applicables jusque les

VP*

NP

NNS

conditions

DT

the

VBZ*

PRT

out

VBZ

sets

VP*

NP

NNS

conditions

DT

les

VBZ*

les fixe

120



conjunction of features along the path from the root to each node in each decision
tree. For each CF a∧b∧c, we can compute the provisional confidence of CF a∧b if
it were a leaf, and take the difference between the parameter weights of a∧b∧c and
the parameter weights of a∧b to get an estimate of the utility of splitting on atomic
feature c. We assign each CF into a class c based on the type of feature c that it
last splits on. We then accumulate the magnitude of the difference in confidences
of each CF in c and normalize by the sum of the magnitude of the difference in
confidences to give us a distribution of the positive and negative confidence masses
over feature types. To perform the analysis, we randomly selected 2000 classifiers
for bilingual composition inferences and 2000 classifiers for 2x2 composition infer-
ences from the English-French experiments. For each classifier, we selected the
decision trees induced under the optimal regularizer for each translation system.
The results are presented in Tables 5.7 – 5.11.

The first thing to notice is the difference between feature classes that are most
heavily weighted by bilingual composition classifiers versus the classes that are
most heavily weighted by classifiers for 2x2 compositions. Classifiers for bilingual
compositions rely more on the predictive capability of lexical and POS features
such as window features (e.g. “the source word 2 positions left of the consequent
is X”) or dependency features (e.g. “the head of the sibling of the maximal pro-
jection is Y”). 2x2 composition classifiers seem to rely mostly on language model
information, such as the minimum or average uni/bi/trigram count and minimum
uni/bi/trigram informativeness. The second aspect to notice is that by-and-large,
the same atomic feature types are used for prediction regardless of system. Inter-
estingly, there don’t seem to be significant differences between the distributions of
feature types parameterized by the different systems.

We also compared the average magnitudes of confidences of feature types be-
tween the systems. The magnitude of confidences given to features in bilingual
composition inference classifiers tended to be similar for the five systems. The av-
erage magnitude of confidences for feature types weighted by 2x2 composition in-
ference classifiers had a marked difference however, especially between the systems
trained using strict labeling and those trained using permissive labeling. In systems
trained using permissive labeling, the highest magnitude confidence weights, which
were on language model features, tended to be lower than the highest magnitude
confidence weights of the models trained using permissive labeling. The average
magnitude confidence for the 2x2 composition classifiers trained on single tree up-
dates with strict labeling was 0.36 for features with positive confidences and 0.389
for features with negative confidences, whereas the average magnitude confidence
for the 2x2 composition classifiers trained on single tree updates with permissive
labeling was 0.208 for features with positive confidences and 0.224 for features with
negative confidences. The average magnitude confidence for the 2x2 composition
classifiers trained on forest updates with strict labeling was 0.313 for features with

121



Table 5.7: Most frequently used feature types in straw-man English-French exper-
iment

Bilingual Compositions
Fraction of positive confidence mass Fraction of negative confidence mass

Label of source window word
=

0.2713 Label of source window word
6=

0.2980

Source window word = 0.2511 Source window word 6= 0.2350
Source dependent word = 0.1662 Source dependent word 6= 0.1628
Source dependent NT label = 0.1608 Source dependent NT label 6= 0.1609
Source dependent POS tag = 0.0816 Source dependent POS tag 6= 0.0823
Number of siblings of maxi-
mum projection >

0.0356 Number of siblings of maxi-
mum projection ≤

0.0307

Number of children of maxi-
mum projection >

0.0224 Number of children of maxi-
mum projection ≤

0.0197

Source last token = 0.0052 Source last token 6= 0.0054
Position of dependent = 0.0032 Position of dependent 6= 0.0025
Source last POS tag = 0.0004 Source last POS tag 6= 0.0004

2x2 Compositions
Fraction of positive confidence mass Fraction of negative confidence mass

Language model average fre-
quency >

0.2303 Language model average fre-
quency ≤

0.1867

Language model informative-
ness >

0.1125 Label of source window word
6=

0.1191

Label of source window word
=

0.1036 Source window word 6= 0.1058

Source dependent NT label = 0.0943 Language model informative-
ness ≤

0.1021

Language model minimum
frequency >

0.0902 Source dependent NT label 6= 0.1003

Source window word = 0.0870 Source dependent word 6= 0.0974
Source dependent word = 0.0800 Language model minimum

frequency ≤
0.0807

Yield length ratio > 0.0421 Target window word 6= 0.0481
Target window word = 0.0388 Source dependent POS tag 6= 0.0405
Source dependent POS tag = 0.0357 Yield length ratio ≤ 0.0289
Target dependent word = 0.0185 Target dependent word 6= 0.0247
Production = 0.0181 Production 6= 0.0194
Length of sequence of same
production >

0.0173 Length of sequence of same
production ≤

0.0170

Number of children of maxi-
mum projection >

0.0111 Number of children of maxi-
mum projection ≤

0.0107

Number of siblings of maxi-
mum projection >

0.0108 Number of siblings of maxi-
mum projection ≤

0.0104

Target dependent label = 0.0054 Target dependent label 6= 0.0041
Dependent position = 0.0017 Dependent position 6= 0.0016
Source last token = 0.0015 Source last token 6= 0.0013
Source last POS tag = 0.0003 Source last POS tag 6= 0.0001

122



Table 5.8: Most frequently used feature types in the English-French single-tree
update with strict labeling experiment

Bilingual Compositions
Fraction of positive confidence mass Fraction of negative confidence mass

Label of source window word
=

0.2775 Label of source window word
6=

0.3102

Source window word = 0.2531 Source window word 6= 0.2290
Source dependent word = 0.1750 Source dependent label 6= 0.1601
Source dependent label = 0.1515 Source dependent word 6= 0.1569
Source dependent POS tag = 0.0794 Source dependent POS tag 6= 0.0809
Number of siblings of maxi-
mum projection >

0.0360 Number of siblings of maxi-
mum projection ≤

0.0346

Number of children of maxi-
mum projection >

0.0181 Number of children of maxi-
mum projection ≤

0.0185

Source last token = 0.0038 Source last token 6= 0.0047
Dependent position = 0.0027 Dependent position 6= 0.0024
Source last POS tag = 0.0008 Source last POS tag 6= 0.0010

2x2 Compositions
Fraction of positive confidence mass Fraction of negative confidence mass

Language model average fre-
quency >

0.2622 Language model average fre-
quency ≤

0.2331

Source window word = 0.0994 Target window word 6= 0.1116
Language model informative-
ness >

0.0987 Source window word 6= 0.1073

Target window word = 0.0942 Language model informative-
ness ≤

0.099

Source dependent word = 0.0798 Source dependent word 6= 0.0858
Label of source window word
=

0.0761 Label of source window word
6=

0.0720

Language model minimum
frequency >

0.0692 Language model minimum
frequency ≤

0.0702

Source dependent label = 0.0635 Source dependent label 6= 0.0613
Target dependent word = 0.0412 Target dependent word 6= 0.0522
Yield length ratio > 0.0322 Source dependent POS tag 6= 0.0261
Source dependent POS tag = 0.0271 Production 6= 0.0248
Production = 0.0223 Yield length ratio ≤ 0.0244
Production > 0.0146 Production ≤ 0.0139
Number of siblings of maxi-
mum projection >

0.0066 Number of siblings of maxi-
mum projection ≤

0.0062

Number of children of maxi-
mum projection >

0.0060 Number of children of maxi-
mum projection ≤

0.0057

Target dependent label = 0.0043 Target dependent label 6= 0.0037
Source last token = 0.0011 Source last token 6= 0.0010
Dependent position = 0.0010 Dependent position 6= 0.0009
Source last POS tag = 0.0002 Source last POS tag 6= 0.0002

123



Table 5.9: Most frequently used feature types in the English-French forest update
with strict labeling experiment

Bilingual Compositions
Fraction of positive confidence mass Fraction of negative confidence mass

Label of source window word
=

0.2878 Label of source window word
6=

0.3001

Source window word = 0.2394 Source window word 6= 0.2502
Source dependent label = 0.1750 Source dependent label 6= 0.1615
Source dependent word = 0.1458 Source dependent word 6= 0.1574
Source dependent POS tag = 0.0735 Source dependent POS tag 6= 0.0720
Number of siblings of maxi-
mum projection >

0.0426 Number of siblings of maxi-
mum projection ≤

0.0318

Number of children of maxi-
mum projection >

0.0280 Number of children of maxi-
mum projection ≤

0.0209

Source last token = 0.0051 Source last token 6= 0.0039
Dependent position = 0.0013 Dependent position 6= 0.0011
Source last POS tag = 0.0005 Source last POS tag 6= 0.0002

2x2 Compositions
Fraction of positive confidence mass Fraction of negative confidence mass

Language model average fre-
quency >

0.2441 Language model average fre-
quency ≤

0.2170

Target window word = 0.1006 Target window word 6= 0.1128
Source window word = 0.0874 Source window word 6= 0.0911
Source dependent word = 0.0827 Source dependent word 6= 0.0844
Source dependent label = 0.0813 Language model informative-

ness ≤
0.0832

Label of source window word
=

0.0797 Target dependent word 6= 0.0800

Language model informative-
ness >

0.0788 Source dependent label 6= 0.0798

Target dependent word = 0.0649 Label of source window word
6=

0.0765

Language model minimum
frequency >

0.0583 Language model minimum
frequency ≤

0.0612

Yield length ratio > 0.0475 Yield length ratio ≤ 0.0400
Source dependent POS tag = 0.0228 Source dependent POS tag 6= 0.0228
Production > 0.0180 Production 6= 0.0193
Production = 0.0175 Production ≤ 0.0163
Number of siblings of maxi-
mum projection >

0.0054 Number of siblings of maxi-
mum projection ≤

0.0058

Number of children of maxi-
mum projection >

0.0050 Number of children of maxi-
mum projection ≤

0.0048

Target dependent label = 0.0037 Target dependent label 6= 0.0027
Source last token = 0.0009 Source last token 6= 0.0009
Dependent position = 0.0009 Dependent position 6= 0.0008
Source last POS tag = 0.0001 Source last POS tag 6= 0.0001

124



Table 5.10: Most frequently used feature types in the English-French single tree
update with permissive labeling experiment

Bilingual Compositions
Fraction of positive confidence mass Fraction of negative confidence mass

Label of source window word
=

0.2915 Label of source window word
6=

0.3026

Source window word = 0.2320 Source window word 6= 0.2435
Source dependent label = 0.1775 Source dependent label 6= 0.1658
Source dependent word = 0.1455 Source dependent word 6= 0.1484
Source dependent POS tag = 0.0853 Source dependent POS tag 6= 0.0801
Number of siblings of maxi-
mum projection >

0.0322 Number of siblings of maxi-
mum projection ≤

0.0285

Number of children of maxi-
mum projection >

0.0238 Number of children of maxi-
mum projection ≤

0.0216

Source last token = 0.0061 Source last token 6= 0.0042
Dependent position = 0.0031 Dependent position 6= 0.0026
Source last POS tag = 0.0007 Source last POS tag 6= 0.0004

2x2 Compositions
Fraction of positive confidence mass Fraction of negative confidence mass

Language model average fre-
quency >

0.2720 Language model average fre-
quency ≤

0.2134

Target window word = 0.1157 Target window word 6= 0.1367
Source window word = 0.0864 Source window word 6= 0.1043
Language model informative-
ness >

0.0863 Language model informative-
ness ≤

0.0851

Label of source window word
=

0.0734 Source dependent word 6= 0.0846

Source dependent word = 0.0724 Label of source window word
6=

0.0792

Source dependent label = 0.0666 Source dependent label 6= 0.0686
Language model minimum
frequency >

0.0648 Target dependent word 6= 0.0653

Target dependent word = 0.0538 Language model minimum
frequency ≤

0.0628

Yield length ratio > 0.0284 Source dependent POS tag 6= 0.0268
Production = 0.0252 Production 6= 0.0258
Source dependent POS tag = 0.0245 Yield length ratio ≤ 0.0202
Production > 0.0128 Production ≤ 0.0111
Number of siblings of maxi-
mum projection >

0.0064 Number of siblings of maxi-
mum projection ≤

0.0063

Number of children of maxi-
mum projection >

0.0054 Number of children of maxi-
mum projection ≤

0.0050

Target dependent label = 0.0034 Target dependent label 6= 0.0026
Dependent position = 0.0011 Dependent position 6= 0.0008
Source last token = 0.0011 Source last token 6= 0.0007
Source last POS tag = 0.0002 Source last POS tag 6= 0.0001

125



Table 5.11: Most frequently used feature types in the English-French forest update
with permissive labeling experiment

Bilingual Compositions
Fraction of positive confidence mass Fraction of negative confidence mass

Label of source window word
=

0.3077 Label of source window word
6=

0.3264

Source window word = 0.2348 Source window word 6= 0.2322
Source dependent label = 0.1582 Source dependent label 6= 0.1542
Source dependent word = 0.1499 Source dependent word 6= 0.1463
Source dependent POS tag = 0.0775 Source dependent POS tag 6= 0.0738
Number of siblings of maxi-
mum projection >

0.0311 Number of siblings of maxi-
mum projection ≤

0.0322

Number of children of maxi-
mum projection >

0.0291 Number of children of maxi-
mum projection ≤

0.0254

Dependent position = 0.0057 Dependent position 6= 0.0034
Source last token = 0.0030 Dependent position 6= 0.0029
Source last POS tag = 0.0005 Source last POS tag 6= 0.0005

2x2 Compositions
Fraction of positive confidence mass Fraction of negative confidence mass

Language model average fre-
quency >

0.2743 Language model average fre-
quency ≤

0.2565

Target window word = 0.1126 Target window word 6= 0.1162
Target dependent word = 0.0875 Target dependent word 6= 0.0960
Source window word = 0.0777 Source window word 6= 0.0828
Source dependent word = 0.0757 Source dependent word 6= 0.0763
Source dependent label = 0.0741 Source dependent label 6= 0.0727
Label of source window word
=

0.0724 Language model informative-
ness ≤

0.0702

Language model informative-
ness >

0.0654 Source window label 6= 0.0689

Language model minimum
frequency >

0.0509 Language model minimum
frequency ≤

0.0547

Yield length ratio > 0.0430 Yield length ratio ≤ 0.0387
Source dependent POS tag = 0.0191 Source dependent POS tag 6= 0.0193
Production > 0.0187 Production ≤ 0.0176
Production = 0.0159 Production 6= 0.0174
Number of children of maxi-
mum projection >

0.0041 Number of siblings of maxi-
mum projection ≤

0.0044

Number of siblings of maxi-
mum projection >

0.0040 Number of children of maxi-
mum projection ≤

0.0041

Target dependent label = 0.0027 Target dependent label 6= 0.0022
Dependent position = 0.0008 Source last token 6= 0.0008
Source last token = 0.0007 Dependent position 6= 0.0007
Source last POS tag = 0.0002 Source last POS tag 6= 0.0002

126



positive confidences and 0.271 for features with negative confidences, whereas the
average magnitude confidence for the 2x2 composition classifiers trained on single
tree updates with permissive labeling was 0.127 for features with positive confi-
dences and 0.178 for features with negative confidences. The features that were
most affected by this difference were the language model features, which tended
to be the features which had the most impact on the 2x2 composition inferences
that became part of the multitree. Using permissive labeling seems to soften the
predictions made by the classifiers, and also potentially reduces the impact of 2x2
compositions on the score of the final multitree.

5.7 Lesioning Experiment: MinMerge vs. Viterbi

Semiring

In addition to evaluating the effect of the objective functions, amount of explo-
ration, and search space density on translation accuracy, we also ran a lesioning
experiment to measure the effect of the choice of semiring on translation accuracy.
We selected the experimental system that gave us the greatest change over the
straw-man experiment, namely the English-French system trained on a forest with
permissive labeling. We trained two systems according to this objective. One of
the systems’ supervisor, predictor, and test translator were configured to use the
Viterbi-derivation semiring. The other’s supervisor, predictor, and test translator
were configured to use the MinMerge-derivation semiring. The accuracies of the
two configurations are shown in Table 5.12. The unigram precision of the system
trained under the Viterbi-derivation semiring is slightly higher than the unigram
precision of the MinMerge-derivation system, but the two recall measures and two
F-measures of the MinMerge-derivation system are higher than than those of the
Viterbi-derivation. The optimal regularizer λ for the Viterbi-derivation system
was 0.01171875, whereas the optimal λ for the MinMerge-derivation system was
0.0234375.

The average length of translations output by the Viterbi-derivation system was
20.52 words per sentence, and the average length of translations output by the
MinMerge-derivation system was 21.47 per sentence, potentially explaining the
slightly higher unigram precision and the lower unigram recall under the Viterbi-
derivation semiring. We conjecture that another factor in the increase in accuracy
between the Viterbi-derivation and MinMerge-derivation semirings might be that
the objective defined by the MinMerge-derivation semiring used during training15

is better correlated with the evaluation measure than the objective under the
Viterbi-derivation semiring, which minimizes the sum of inference costs.

15The objective that maximizes the minimum margin.

127



Table 5.12: Translation accuracies of the English-French forest permissive-labeling
system using the Viterbi-derivation semiring and the MinMerge-derivation semir-
ing. Numbers in bold are statistically significant over the Viterbi-derivation ex-
periment at p=0.01 using the Wilcoxon signed rank test

English-French Translation
Test

Exponent Prec Rec FMS
Viterbi-derivation 1 0.5204 0.4830 0.5010
semiring 2 0.2285 0.2120 0.2200
MinMerge-derivation 1 0.5197 0.5015 0.5105
semiring 2 0.2384 0.2300 0.2341

128



Chapter 6

Conclusions

6.1 Summary

In this dissertation, we have presented a novel fully discriminative approach
for training machine translation systems. We approached the problem by having
the translators learn a search process by which they can infer high quality trans-
lations. Developing this approach required many innovations. Our three primary
contributions have been as follows:

• We have described the architecture and algorithms of an example generation
framework that gives us a method to both select an approved set of search
paths through the hypergraph and to learn from the set of paths. Our pars-
ing coordinator permits us to explicitly control the amount of exploration
performed by the predictor, thereby allowing us to select which inferences
to learn from. Our architecture also allows us to control the density of the
space of possible translations by selecting the kind and number of derivation
path(s) we wish for the model to learn from. The density is controlled by
specifying the set of multitrees the supervisor is allowed to infer. The pars-
ing coordinator allows the supervisor and predictor to lazily generate only
the inferences needed to train the model. Due to the way that the super-
visor guides the predictor, we can take advantage of early update [Collins
and Roark2004, Daumé and Marcu2005] and its generalizations while still
allowing us to explore the space of incorrect translations.

• We have presented a new semiring allowing us to compare translations in
a manner that, we conjecture, is closer to how a human compares transla-
tions, based on the most egregious error in each translation. The MinMerge-
derivation semiring allows us to do more specific blame assignment over the
Viterbi-derivation semiring since we can determine the worst inference in-
volved in inferring a translation by looking at the first element in the cost se-

129



quence. Finally, the MinMerge-derivation semiring gives us an unbiased way
to compare posets of inferences since, unlike the Viterbi-derivation semiring,
it is not biased towards shorter translation derivations.

• We presented a new whole inference quality class of objective functions that
measures the gain in translation accuracy achieved by firing an inference.
Optimizing the translation model on a WIQ objective allows the translator
to learn the merit of parser states relative to the merit of their predecessor
states, thereby allowing the translator to learn which incorrect inferences are
better than other incorrect inferences and recover from mistakes.

We have empirically demonstrated that our new objective function, WIQ1,
brings about an improvement over a tree-structured fully-discriminative baseline
using strict labeling, and have demonstrated how the parsing coordinator archi-
tecture facilitates controlled experimentation with the objectives and search space
densities. While we focused on tree-structured SMT, we believe our approaches
can be applied to finite-state SMT by configuring the supervisor and predictor to
utilize finite state grammars rather than context free grammars. Furthermore, we
conjecture that our approach can be used for other structured prediction problems
as well.

6.2 Future Work

The major disadvantage of our approach so far is the difficulty in scaling up
to train on corpora with millions of sentence pairs. This disadvantage is due to
translating the entire training set on each epoch. One way to overcome this dis-
advantage is to train the bilingual composition inferences on a bitext of millions
of sentence pairs, which does not require search over the entire search space. We
can then select a smaller subcorpus to train the 2x2 composition inferences in the
manner we described in this work. This approach is in line with the mildly discrim-
inative approaches of [Och2003,Chiang et al.2008] where they learn most of their
parameters on a large corpus but tune the parameters using the minimum error
rate or max-margin objective on a smaller tuning corpus. In our case, however,
the approach would still be fully discriminative.

The other major modification we would make would be to train the inference
lexicon on the same objective on which the classifiers are trained. Currently, we
precompute the inference lexicon based on the word alignment probabilities and
the fertility probabilities. We described how the ideal training procedure would
reestimate the inference lexicon as well as the classifiers, but noted the computa-
tional cost of doing so. Addressing this issue would allow all the parameters of our
system to be optimized for the same objective.

130



6.3 Other applications

In Chapter 1 we conjectured that the methods presented in this dissertation
could be applied to a wide variety of structured prediction problems. Many prob-
lems in computer science can be formulated as structured classification problems,
including natural language parsing, named entity recognition, handwriting recog-
nition, image segmentation, and robot navigation. In this section, we present a
high-level overview of how the ideas behind the parsing coordinator and the ob-
jective functions presented in this work could be applied to these problems.

Parsing In supervised constituency and dependency parsing, the task is to infer a
tree structure over a single input sentence. In constituency parsing, each parse tree
is a possible label Y consisting of bracket/non-terminal label pairs Y1×. . .×Yk with
the constraint that no two brackets may partially overlap without one containing
the other, that there exist a bracket for each word in the input sentence, and that
there exist a bracket covering the entire sentence. In dependency parsing, each
dependency tree is a possible label Y consisting of head/dependent word pairs Y1×
. . .×Yk, with the constraint that all but one word is the dependent of another word.
The one word that is not a dependent of any other words is the head of the entire
sentence. Many approaches to parsing infer Y by firing inferences to determine the
value of each Yi that minimizes some cost function. Typically, the value for each
bracket/non-terminal label or head/dependent pair Yi is inferred given a subset of
random variables corresponding to the labels on antecedent items (e.g. [Taskar et
al.2004b,Bikel2004,Turian and Melamed2006,McDonald et al.2005]). In supervised
parsing the training set consists of a treebank containing a parse tree Y = ŷ for
each sentence in the corpus. The task is to learn a process by which the correct
“gold-standard” parse tree ŷ can be inferred for a sentence.

Given that the SMT method presented in this work is an instance of gener-
alized parsing, it is possible to train a constituency parser in the same manner
as the translator in this work. Additionally, we conjecture that we could train
a dependency parser in the exact same manner with an appropriate specification
of item and inference signatures. We could utilize the parsing coordinator with
a supervisor constrained to infer the reference parse tree and the predictor con-
strained to infer any tree over the input sentence. One could then utilize both
strict and permissive labeling strategies to determine whether the inferences infer-
ring each bracket/non-terminal label or head/dependent pair yk should be labeled
as positive or negative examples. The strict labeling strategy would work just
as described in this dissertation, by checking whether an inference infers an item
yk ∈ ŷ. To use the permissive labeling strategy, we would need to define an appro-
priate WIQ measure. For constituency parsing, WIQ could perhaps compare the
number of crossed or matching brackets in the subtree rooted at a consequent item

131



relative to the number of crossed or matching brackets of the antecedent subtrees.
For dependency parsing, WIQ could compare the number of correct and incorrect
dependency relations in the subtree rooted at a consequent item relative to the
number of correct and incorrect dependency relations in its antecedents. Given
the examples generated by the parsing coordinator and the labels assigned by the
labeling strategy, we could then train binary classifiers to discriminate between in-
ferences that are useful in inferring a good parse tree and those that are not [Turian
and Melamed2006].

Named entity recognition Another potential application of our techniques
is in named entity recognition. In NER, the task is to find all named entities
in an input document and to label the entities with their type. For example,
given the sentence “The Bank of New York Mellon is located in New York City”,
“Bank of New York Mellon” should be labeled as an organization, and “New York
City” should be labeled as a location. The set of possible label sequences for an
input sentence x is Y , and each Yi ∈ Y can take entity type label yi,1, . . . , yi,`.
Many approaches to NER have been studied (refer to [Nadeau and Sekine2007]
for a survey). A common approach is to use graphical models, such as sequential
Markov Networks or Conditional Random Fields to encode dependencies between
the labels Y , and then use the Viterbi algorithm to find the most-likely or least-cost
sequence of labels ŷ. With an appropriate definition of items and inferences, our
approach for SMT could be utilized to train labelers. For NER, we could define
two types of items: items representing a word xi and items representing a label yi
for word xi. The specification of inferences would depend on the type of model. If
we make a Markov assumption, an inference would take word xi and label yi−1 as
antecedents and infer label yi as a consequent1. We could then utilize the parsing
coordinator architecture and the objective functions to train binary classifiers to
make each inference. The supervisor could be constrained to predict the set of
reference labels for each sentence in the corpus. The predictor would be allowed to
label words according to its model’s biases. Under the strict labeling strategy, any
inference made that infers a correct label sequence would be labeled as a positive
example, and all other inferences proposed by the predictor would be labeled as
negative. We could also apply a permissive labeling strategy, using a WIQ measure
with a task appropriate definition of e-score, for instance the difference between
the number of correct and incorrect labels in a label sequence.

Handwriting recognition Like NER, the problem of handwriting recognition
can be formulated as a sequence labeling problem, where for a segmented, hand-
written text, the goal is to infer the true character each handwritten character

1Note that we could probably use this same specification of inferences without making Markov
assumptions, with appropriately defined feature functions.

132



represents. The difference lies in the complexity of the input space. Many ap-
proaches have been applied to this problem, including Max-Margin Markov Net-
works [Taskar et al.2004a], Conditional Random Fields, and Hidden Markov Mod-
els (e.g. [Feng et al.2006]). Just like in NER, we could train the model to predict
the label of each handwritten character by training a set of binary classifiers to
assign a cost to each step in the process of inferring a label sequence. To infer
training examples we could use the configuration of the parsing coordinator de-
scribed for NER, with appropriate feature functions over sets of pixels and possible
labels rather than text. We conjecture that we could utilize the same definition of
WIQ that we proposed for NER.

Image segmentation The problem of image segmentation is also a structured
prediction problem. The input x consists of a set of pixels. The set of possible
outputs is task dependent, but it typically consists of a set of labels Y , with each
random variable in Y a label on each pixel. The label, for instance, could be
whether the pixel is part of the foreground or background of an image, whether
the pixel is part of an edge, or the type of object the pixel is a part of. A common
approach is to first group pixels together into segments, and then label the pixels
comprising entire segments. As in sequence labeling, a popular method is to model
the dependencies between segments using graphical models, such as Conditional
Random Fields or Hidden Markov Models (e.g. [He et al.2004]). Unlike sequence
labeling, however, the topology of the graph is not necessarily sequential. In se-
quence labeling, each label Yi typically depends on previous label Yi−1 or labels
Y1, . . . ,Yi−1. In image segmentation, this assumption might be suboptimal. A
common approach is to use Markov networks (e.g. [Koller and Friedman2009]) to
encode the dependencies. Unfortunately, exact inference is intractable over Markov
networks in general. Instead, it is common to use approximate inference methods,
such as Markov Chain Monte-Carlo or Belief Propagation [Pearl1982] over the
network.

While we have only experimented with exact inference methods for structured
classification in this work, we hypothesize that the parsing coordinator architec-
ture could be used with approximate methods too. Belief propagation iteratively
updates messages between labels Yc = {Yc,1, . . . ,Yc,`} participating in a clique of
variables c. The messages encode the marginal probabilities of the variables in the
clique. Belief propagation can be used to find the marginal probability of each value
that each {Yc,1, . . . ,Yc,`} can take, which we can use to find the label values that
maximize the marginal probabilities. In the case of acyclic networks, belief propa-
gation is equivalent to the Viterbi algorithm. In the case of both cyclic and acyclic
networks, we believe that we can apply the coordinator architecture to generate
training examples for discriminative classifiers to model the marginal probabilities.
Since the supervisor is constrained to infer the reference value for each Yc,i, the

133



supervisor’s inference procedure would not need to use belief propagation, whereas
the predictor would. Apart from the inference procedure, however, the supervisor
and predictor, and their interaction, would be the same as for sequence labeling.
Strict and permissive labeling could be applied just as for sequence labeling.

Robot navigation In robot navigation, the task is to learn how to make se-
quences of actions in an environment to satisfy a given set of goals. Each action
y undertaken by the robot results in a new state s, where s represents a snapshot
of the robot’s knowledge of its relationship to its environment. The task can be
conceptualized as a structured prediction problem, where we wish to learn how to
make an optimal sequence of decisions Y in an environment to achieve a goal. Each
Yi ∈ Y would be a set of possible actions {yi,1, . . . , yi,`} that the robot can given
its current state s. A common approach to solving this problem is reinforcement
learning (e.g. [Gullapalli1992,Mahadevan and Connell1990]).

We conjecture that our coordinator architecture could be adapted to train a
robot to navigate an environment as well. The predictor would be an instance
of the robot exploring its environment. Given the robot’s current state and steps
potentially resulting from taking a particular action yi,j at each point in its action
sequence, it can decide whether or not to execute yi,j. This decision would be
analogous to an inference made by the translator. How to configure the supervisor
is less clear. One way to configure it would be to simulate a random sequence
of actions that the robot can take from a set of states to arrive at a goal state.
If the robot used as the predictor can make all action sequences simulated by
the supervisor, we can use both strict and permissive labeling strategies. If the
coordinator uses the strict labeling strategy, it would only need to check whether
an action taken by the predictor is one taken by the supervisor. If it uses the
permissive labeling strategy, we would need to define a measure estimating a state’s
distance from the goal. WIQ would be the difference between the distance from
the robot’s current state to the goal and the resulting state’s distance to the goal
upon taking an action. How we define distance would depend on the robot’s task
and its environment.

134



Chapter 7

Bibliography

[Ahrenberg2007] L. Ahrenberg. 2007. Lines: An english-swedish parallel treebank.
In Proceedings of the 16th Conference of Computational Linguistics (NOLADIA
’07).

[Alshawi et al.1998] Hiyan Alshawi, Srinivas Bangalore, and Shona Douglas. 1998.
Automatic acquisition of hierarchical transduction models for machine transla-
tion. In Proceedings of the 36th Annual Meeting of the Association for Compu-
tational Linguistics and 17th International Conference on Computational Lin-
guistics - Volume 1, ACL ’98, pages 41–47, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Alshawi et al.2000] Hiyan Alshawi, Srinivas Bangalore, and Shona Douglas. 2000.
Learning dependency translation models as collections of finite-state head trans-
ducers. Comput. Linguist., 26(1):45 – 60.

[Arun and Koehn2007] Abhishek Arun and Philipp Koehn. 2007. Online learning
methods for discriminative training of phrase based statistical machine transla-
tion. In MT Summit XI.

[Baker1979] James Baker. 1979. Trainable grammars for speech recognition. In
Speech communication papers presented at the 97th meeting of the Acoustical
Society of America, pages 547–550, Cambridge, MA, June. MIT.

[Bengio et al.2009] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. 2009.
Curriculum learning. In International Conference on Machine Learning.

[Berger et al.1996] Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della
Pietra. 1996. A maximum entropy approach to natural language processing.
Computational Linguistics, 22(1), March.

135



[Bikel2004] Daniel M. Bikel. 2004. Intricacies of collins’ parsing model. Comput.
Linguist., 30(4):479–511, December.

[Blunsom et al.2008] Phil Blunsom, Trevor Cohn, and Miles Osborne. 2008. A
discriminative latent variable model for statistical machine translation. In Pro-
ceedings of ACL-08: HLT, pages 200–208, Columbus, Ohio, June. Association
for Computational Linguistics.

[Brown et al.1988] P. Brown, J. Cocke, S. Della Pietra, V. Della Pietra, F. Je-
linek, R. Mercer, and P. Roossin. 1988. A statistical approach to language
translation. In Proceedings of the 12th conference on Computational linguistics
- Volume 1, COLING ’88, pages 71–76, Stroudsburg, PA, USA. Association for
Computational Linguistics.

[Brown et al.1993] Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathematics of statistical machine
translation: parameter estimation. Comput. Linguist., 19:263–311, June.

[Burbank et al.2005] A. Burbank, M. Carpuat, S. Clark, M. Dreyer, P. Fox,
D. Groves, K. Hall, I. D. Melamed, Y. Shen, A. Way, B. Wellington, and D. Wu.
2005. Final report of the 2005 language engineering workshop on statistical ma-
chine translation by parsing. Technical report, Johns Hopkins University 2005
Summer Workshop.

[Callison-Burch et al.2006] Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluation of the role of bleu in machine translation research. In
11th Conference of the European Chapter of the Association for Computational
Linguistics.

[Caraballo and Charniak1998] S. Caraballo and E. Charniak. 1998. New figures
of merit for best-first probabilistic chart parsing. Comput. Linguist., 24(2).

[Charniak and Johnson2005] Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative reranking. In Proceedings
of the 43rd Annual Meeting of the Association for Computational Linguistics
(ACL’05), pages 173–180, Ann Arbor, Michigan, June. Association for Compu-
tational Linguistics.

[Charniak1997] Eugene Charniak. 1997. Statistical parsing with a context-free
grammar and word statistics. In Proceedings of AAAI, pages 598–603.

[Cherry and Lin2007] Colin Cherry and Dekang Lin. 2007. Inversion transduc-
tion grammar for joint phrasal translation modeling. In Proceedings of SSST,
NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in Statistical

136



Translation, pages 17–24, Rochester, New York, April. Association for Compu-
tational Linguistics.

[Chiang et al.2008] David Chiang, Yuval Marton, and Philip Resnik. 2008. On-
line large-margin training of syntactic and structural translation features. In
Proceedings of the 2008 Conference on Empirical Methods in Natural Language
Processing, pages 224–233, Honolulu, Hawaii, October. Association for Compu-
tational Linguistics.

[Chiang et al.2009] David Chiang, Kevin Knight, and Wei Wang. 2009. 11,001
new features for statistical machine translation. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics, pages 218–226, Boulder,
Colorado, June. Association for Computational Linguistics.

[Chiang2005] David Chiang. 2005. A hierarchical phrase-based model for sta-
tistical machine translation. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05), pages 263–270, Ann Ar-
bor, Michigan, June. Association for Computational Linguistics.

[Chiang2007] David Chiang. 2007. Hierarchical phrase-based translation. Com-
putational Linguistics, 33(2), June.

[Chiang2010] David Chiang. 2010. Learning to translate with source and target
syntax. In Proceedings of the 48th Annual Meeting of the Association for Com-
putational Linguistics, pages 1443–1452, Uppsala, Sweden, July. Association for
Computational Linguistics.

[Church1988] K. W. Church. 1988. A stochastic parts program and noun phrase
parser for unrestricted text. In Second Conference on Applied Natural Language
Processing, pages 136–143. ACL.

[Collins and Roark2004] Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceedings of the 42nd Meeting of
the Association for Computational Linguistics (ACL’04), Main Volume, pages
111–118, Barcelona, Spain, July.

[Collins et al.2002] Michael Collins, Robert E. Schapire, and Yoram Singer. 2002.
Logistic regression, adaboost and bregman distances. Machine Learning, 48(1–
3):253–285.

[Collins1999] Michael Collins. 1999. Head-Driven Statistical Models for Natural
Language Parsing. Ph.D. thesis, University of Pennsylvania.

137



[Collins2002] Michael Collins. 2002. Discriminative training methods for hid-
den markov models: Theory and experiments with perceptron algorithms. In
Proceedings of the 2002 Conference on Empirical Methods in Natural Language
Processing, pages 1–8. Association for Computational Linguistics, July.

[Cowan et al.2006] Brooke Cowan, Ivona Kuc̆erová, and Michael Collins. 2006.
A discriminative model for tree-to-tree translation. In Proceedings of the 2006
Conference on Empirical Methods in Natural Language Processing, pages 232–
241, Sydney, Australia, July. Association for Computational Linguistics.

[Daumé and Marcu2005] Hal Daumé, III and Daniel Marcu. 2005. Learning as
search optimization: approximate large margin methods for structured predic-
tion. In Proceedings of the 22nd international conference on Machine learning,
ICML ’05, pages 169–176, New York, NY, USA. ACM.

[Daumé III et al.2009] Hal Daumé III, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Mach. Learn., 75:297–325, June.

[Dempster et al.1977] A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Max-
imum likelihood from incomplete data via the em algorithm. In Journal of the
Royal Statistical Society, volume 39(B), pages 1–38.

[Ding and Palmer2005] Yuan Ding and Martha Palmer. 2005. Machine translation
using probabilistic synchronous dependency insertion grammars. In Proceedings
of the 43rd Annual Meeting of the Association for Computational Linguistics
(ACL’05), pages 541–548, Ann Arbor, Michigan, June. Association for Compu-
tational Linguistics.

[Doddington2002] G Doddington. 2002. Automatic evaluation of machine trans-
lation quality using n-gram co-occurrence statistics. In HLT 2002, Human Lan-
guage Technology conference, San Diego, California.

[Earley1970] Jay Earley. 1970. An efficient context-free parsing algorithm. Com-
mun. ACM, 13(2):94–102, February.

[Eisner2003] Jason Eisner. 2003. Learning non-isomorphic tree mappings for ma-
chine translation. In The Companion Volume to the Proceedings of 41st Annual
Meeting of the Association for Computational Linguistics, pages 205–208, Sap-
poro, Japan, July. Association for Computational Linguistics.

[Feng et al.2006] Shaolei Feng, R. Manmatha, and Andrew Mccallum. 2006. Ex-
ploring the use of conditional random field models and hmms for historical hand-
written document recognition. In the Proceedings of the 2nd IEEE International
Conference on Document Image Analysis for Libraries (DIAL, pages 30–37.

138



[Galley et al.2004] Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In Daniel Marcu Susan Dumais and
Salim Roukos, editors, HLT-NAACL 2004: Main Proceedings, pages 273–280,
Boston, Massachusetts, USA, May 2 - May 7. Association for Computational
Linguistics.

[Galley et al.2006] Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu,
Steve DeNeefe, Wei Wang, and Ignacio Thayer. 2006. Scalable inference and
training of context-rich syntactic translation models. In Proceedings of the 21st
International Conference on Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics, pages 961–968, Sydney,
Australia, July. Association for Computational Linguistics.

[Gentile2002] C. Gentile. 2002. A new approximate maximal margin classification
algorithm. JMLR, 2.

[Goodman1999] J. Goodman. 1999. Semiring parsing. Comput. Linguist., 25(4),
December.

[Graehl and Knight2004] Jonathan Graehl and Kevin Knight. 2004. Training tree
transducers. In Daniel Marcu Susan Dumais and Salim Roukos, editors, HLT-
NAACL 2004: Main Proceedings, pages 105–112, Boston, Massachusetts, USA,
May 2 - May 7. Association for Computational Linguistics.

[Gullapalli1992] V. Gullapalli. 1992. Reinforcement Learning and its application
to control. Ph.D. thesis, University of Massachusetts.

[Haghighi et al.2009] Aria Haghighi, John Blitzer, John DeNero, and Dan Klein.
2009. Better word alignments with supervised itg models. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Processing of the AFNLP, pages
923–931, Suntec, Singapore, August. Association for Computational Linguistics.

[He et al.2004] Xuming He, R.S. Zemel, and M.A. Carreira-Perpinan. 2004. Mul-
tiscale conditional random fields for image labeling. In Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Com-
puter Society Conference on, volume 2, pages II–695 – II–702 Vol.2, june-2 july.

[Hearne and Way2003] Mary Hearne and Andy Way. 2003. Seeing the wood for
the trees: data-oriented translation. In MT Summit IX, pages 165–172.

[Huang et al.2006] Liang Huang, Kevin Knight, and Aravind Joshi. 2006. Statisti-
cal syntax-directed translation with extended domain of locality. In Proceedings
of AMTA.

139



[Huang et al.2011] Shujian Huang, Stephan Vogel, and Jiajun Chen. 2011. Dealing
with spurious ambiguity in learning itg-based word alignment. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 379–383, Portland, Oregon, USA, June.
Association for Computational Linguistics.

[Huang2008] Liang Huang. 2008. Forest reranking: Discriminative parsing with
non-local features. In Proceedings of ACL-08: HLT, pages 586–594, Columbus,
Ohio, June. Association for Computational Linguistics.

[Kasami1965] T. Kasami. 1965. An efficient recognition and syntax algorithm for
context-free languages. Technical Report Technical Report AF-CRL-65-758, Air
Force Cambridge Research Laboratory, Bedford, MA.

[Klein and Manning2001] D. Klein and C. D. Manning. 2001. Parsing and hy-
pergraphs. In Proceedings of the Seventh International Workshop on Parsing,
Beijing, China, October.

[Klein and Manning2003] D. Klein and C. D. Manning. 2003. A* parsing: Fast
exact viterbi parse selection. In Proceedings of the Human Language Technology
Conference and the North American Association for Computational Linguistics
(HLT-NAACL), Edmonton, AB.

[Koehn and Hoang2007] Philipp Koehn and Hieu Hoang. 2007. Factored transla-
tion models. In Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 868–876, Prague, Czech Republic, June. Association
for Computational Linguistics.

[Koehn et al.2003] Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In HLT-NAACL, pages 48–54, Edmonton,
May-June.

[Koehn et al.2007] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-
Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin,
and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine
translation. In Proceedings of the 45th Annual Meeting of the Association for
Computational Linguistics Companion Volume Proceedings of the Demo and
Poster Sessions, pages 177–180, Prague, Czech Republic, June. Association for
Computational Linguistics.

[Koehn2004] Philipp Koehn. 2004. Statistical significance tests for machine trans-
lation evaluation. In Dekang Lin and Dekai Wu, editors, Proceedings of EMNLP

140



2004, pages 388–395, Barcelona, Spain, July. Association for Computational
Linguistics.

[Koehn2005] Philipp Koehn. 2005. Europarl: A parallel corpus for statistical
machine translation. In MT Summit X.

[Koller and Friedman2009] Daphne Koller and Nir Friedman. 2009. Probabilistic
Graphical Models. The MIT Press.

[Lavie and Agarwal2007] Alon Lavie and Abhaya Agarwal. 2007. METEOR: An
automatic metric for MT evaluation with high levels of correlation with hu-
man judgments. In Proceedings of the Second Workshop on Statistical Machine
Translation, pages 228–231, Prague, Czech Republic, June. Association for Com-
putational Linguistics.

[Liang et al.2006] Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and Ben
Taskar. 2006. An end-to-end discriminative approach to machine translation.
In Proceedings of the 21st International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for Computational Linguistics,
pages 761–768, Sydney, Australia, July. Association for Computational Linguis-
tics.

[Liu et al.2006] Yang (1) Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-string
alignment template for statistical machine translation. In Proceedings of the 21st
International Conference on Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics, pages 609–616, Sydney,
Australia, July. Association for Computational Linguistics.

[Liu et al.2009] Yang Liu, Yajuan Lü, and Qun Liu. 2009. Improving tree-to-tree
translation with packed forests. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages 558–566, Suntec, Singapore,
August. Association for Computational Linguistics.

[Liu et al.2010] Shujie Liu, Chi-Ho Li, and Ming Zhou. 2010. Discriminative prun-
ing for discriminative itg alignment. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, pages 316–324, Uppsala, Swe-
den, July. Association for Computational Linguistics.

[Mahadevan and Connell1990] S. Mahadevan and J. Connell. 1990. Automatic
programming of behavior-based robots using reinforcement learning. In Pro-
ceedings of the Ninth National Conference on Artificial Intelligence, Boston,
Massachusetts.

141



[Marcu and Wong2002] Daniel Marcu and Daniel Wong. 2002. A phrase-
based,joint probability model for statistical machine translation. In Proceedings
of the 2002 Conference on Empirical Methods in Natural Language Processing,
pages 133–139. Association for Computational Linguistics, July.

[Marton and Resnik2008] Yuval Marton and Philip Resnik. 2008. Soft syntactic
constraints for hierarchical phrased-based translation. In Proceedings of ACL-08:
HLT, pages 1003–1011, Columbus, Ohio, June. Association for Computational
Linguistics.

[McDonald et al.2005] Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan
Hajic. 2005. Non-projective dependency parsing using spanning tree algorithms.
In Proceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, pages 523–530, Vancouver,
British Columbia, Canada, October. Association for Computational Linguistics.

[Megyesi et al.2008] B. Megyesi, B. Dahlqvist, E. Pettersson, and J. Nivre. 2008.
Swedish-turkish parallel treebank. In Proceedings of the Sixth International Con-
ference on Language Resources and Evaluation (LREC-2008).

[Melamed and Wang2004] I. D. Melamed and W. Wang. 2004. Generalized parsers
for machine translation. Technical report, New York University.

[Melamed et al.2003] I. Dan Melamed, Ryan Green, and Joseph Turian. 2003.
Precision and recall of machine translation. In Proceedings of HLT-NAACL
2003.

[Melamed et al.2004] I. Dan Melamed, Giorgio Satta, and Benjamin Wellington.
2004. Generalized multitext grammars. In Proceedings of the 42nd Meeting of
the Association for Computational Linguistics (ACL’04), Main Volume, pages
661–668, Barcelona, Spain, July.

[Melamed2004] I. Dan Melamed. 2004. Statistical machine translation by pars-
ing. In Proceedings of the 42nd Meeting of the Association for Computational
Linguistics (ACL’04), Main Volume, pages 653–660, Barcelona, Spain, July.

[Mi et al.2008] Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-based trans-
lation. In Proceedings of ACL-08: HLT, pages 192–199, Columbus, Ohio, June.
Association for Computational Linguistics.

[Mohri2002] Mehryar Mohri. 2002. Semiring frameworks and algorithms for
shortest-distance problems. Journal of Automata, Languages, and Combina-
torics, 7(3):321–350.

142



[Nadeau and Sekine2007] David Nadeau and Satoshi Sekine. 2007. A survey
of named entity recognition and classification. Linguisticae Investigationes,
30(1):3–26, January. Publisher: John Benjamins Publishing Company.

[Neu and Szepesvari2009] Gergely Neu and Csaba Szepesvari. 2009. Training
parsers by inverse reinforcement learning. Machine Learning, 77:303–337.

[Ng2004] Andrew Y. Ng. 2004. Feature selection, l1 vs. l2 regularization, and
rotational invariance. In Proceedings of the twenty-first international conference
on Machine learning, ICML ’04, pages 78–, New York, NY, USA. ACM.

[Och and Ney2003] Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models. Computational Linguistics,
29(1), March.

[Och and Ney2004] Franz Josef Och and Hermann Ney. 2004. The alignment
template approach to statistical machine translation. Computational Linguistics,
30(4), December.

[Och and Weber1998] Franz Josef Och and Hans Weber. 1998. Improving statis-
tical natural language translation with categories and rules. In Proceedings of
the 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics - Volume 2, ACL
’98, pages 985–989, Stroudsburg, PA, USA. Association for Computational Lin-
guistics.

[Och et al.1999] Franz Josef Och, Christoph Tillmann, and Hermann Ney. 1999.
Improved alignment models for statistical machine translation. In 1999 Joint
SIGDAT Conference on Empirical Methods in Natural Language Processing and
Very Large Corpora, pages 20–28.

[Och2003] Franz Josef Och. 2003. Minimum error rate training in statistical ma-
chine translation. In Proceedings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 160–167, Sapporo, Japan, July. Associa-
tion for Computational Linguistics.

[Papineni et al.2002] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation of machine translation.
In Proceedings of 40th Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July. Association
for Computational Linguistics.

[Park and Hastie2007] Mee Young Park and Trevor Hastie. 2007. L1-
regularization path algorithm for generalized linear models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 69(4):659–677.

143



[Pauls et al.2010] Adam Pauls, Dan Klein, David Chiang, and Kevin Knight. 2010.
Unsupervised syntactic alignment with inversion transduction grammars. In Hu-
man Language Technologies: The 2010 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, pages 118–126,
Los Angeles, California, June. Association for Computational Linguistics.

[Pearl1982] Judea Pearl. 1982. Reverend bayes on inference engines: A distributed
hierarchical approach. In Proceedings of the Second National Conference on
Artificial Intelligence, AAAI-82, pages 133 – 136.

[Petrov and Klein2007] Slav Petrov and Dan Klein. 2007. Improved inference for
unlexicalized parsing. In Human Language Technologies 2007: The Conference
of the North American Chapter of the Association for Computational Linguis-
tics; Proceedings of the Main Conference, pages 404–411, Rochester, New York,
April. Association for Computational Linguistics.

[Poutsma2000] Arjen Poutsma. 2000. Data-oriented translation. In COLING-
2000, pages 635–641.

[Quirk et al.2005] Chris Quirk, Arul Menezes, and Colin Cherry. 2005. Depen-
dency treelet translation: Syntactically informed phrasal SMT. In Proceedings
of the 43rd Annual Meeting of the Association for Computational Linguistics
(ACL’05), pages 271–279, Ann Arbor, Michigan, June. Association for Compu-
tational Linguistics.

[Ratnaparkhi1999] A. Ratnaparkhi. 1999. Learning to parse natural language with
maximum entropy models. Machine Learning, 34.

[Roark2001] B. Roark. 2001. Probabilistic top-down parsing and language mod-
eling. Comput. Linguist., 27(2), June.

[Rosenblatt1958] F. Rosenblatt. 1958. The perceptron: A probabilistic model for
information storage and organization in the brain. Psychology Review, 65.

[Russell and Norvig1995] S. J. Russell and P. Norvig. 1995. Artificial Intelligence:
A Modern Approach. Prentice Hall, Englewood Cliffs, NJ.

[Schapire and Singer1999] Robert E. Schapire and Yoram Singer. 1999. Improved
boosting using confidence-rated predictions. Machine Learning, 37(3):297–336.

[Sogaard and Kuhn2009] Anders Sogaard and Jonas Kuhn. 2009. Empirical lower
bounds on aligment error rates in syntax-based machine translation. In Proceed-
ings of the Third Workshop on Syntax and Structure in Statistical Translation
(SSST-3) at NAACL HLT 2009, pages 19–27, Boulder, Colorado, June. Associ-
ation for Computational Linguistics.

144



[Taskar et al.2004a] Ben Taskar, Carlos Guestrin, and Daphne Koller. 2004a. Max-
margin markov networks. In Sebastian Thrun, Lawrence Saul, and Bernhard
Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT
Press, Cambridge, MA.

[Taskar et al.2004b] Ben Taskar, Dan Klein, Mike Collins, Daphne Koller, and
Christopher Manning. 2004b. Max-margin parsing. In Dekang Lin and Dekai
Wu, editors, Proceedings of EMNLP 2004, pages 1–8, Barcelona, Spain, July.
Association for Computational Linguistics.

[Tillmann and Zhang2005] Christoph Tillmann and Tong Zhang. 2005. A localized
prediction model for statistical machine translation. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL’05),
pages 557–564, Ann Arbor, Michigan, June. Association for Computational Lin-
guistics.

[Tillmann and Zhang2006] Christoph Tillmann and Tong Zhang. 2006. A discrim-
inative global training algorithm for statistical mt. In Proceedings of the 21st
International Conference on Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics, pages 721–728, Sydney,
Australia, July. Association for Computational Linguistics.

[Tillmann et al.1997] Christoph Tillmann, Stephan Vogel, Hermann Ney, and Alex
Zubiaga. 1997. A dp-based search using monotone alignments in statistical
translation. In Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics, pages 289–296, Madrid, Spain, July. Association for
Computational Linguistics.

[Tillmann2003] Christoph Tillmann. 2003. A projection extension algorithm for
statistical machine translation. In Proceedings of the 2003 conference on Empiri-
cal methods in natural language processing, EMNLP ’03, pages 1–8, Stroudsburg,
PA, USA. Association for Computational Linguistics.

[Turian and Melamed2006] Joseph Turian and I. Dan Melamed. 2006. Advances
in discriminative parsing. In Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 873–880, Sydney, Australia, July. Association
for Computational Linguistics.

[Turian et al.2006] Joseph Turian, Benjamin Wellington, and I. Dan Melamed.
2006. Scalable discriminative learning for natural language parsing and trans-
lation. In Proceedings of the 20th Annual Conference on Neural Information
Processing Systems (NIPS), Vancouver, BC.

145



[Vapnik1995] Vladimir Vapnik. 1995. The Nature of Statistical Learning Theory.
Springer New York.

[Venkatapathy and Bangalore2009] Sriram Venkatapathy and Srinivas Bangalore.
2009. Discriminative machine translation using global lexical selection. 8(2):8:1–
8:23, May.

[Vogel et al.1996] Stephan Vogel, Hermann Ney, and Christoph Tillmann. 1996.
Hmm based word alignment in statistical translation. In Proceedings of the 34th
Annual Conference on Computational Linguistics, pages 836–841, Copenhagen,
Denmark, August.

[Wang et al.2007] Wei Wang, Kevin Knight, and Daniel Marcu. 2007. Binarizing
syntax trees to improve syntax-based machine translation accuracy. In Proceed-
ings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pages 746–754, Prague, Czech Republic, June. Association for Computational
Linguistics.

[Watanabe et al.2007] Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki
Isozaki. 2007. Online large-margin training for statistical machine translation.
In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL), pages 764–773, Prague, Czech Republic, June. Association for Com-
putational Linguistics.

[Wellington et al.2006a] Benjamin Wellington, Joseph Turian, Chris Pike, and
I. Dan Melamed. 2006a. Scalable purely-discriminative training for word and
tree transducers. In Proceedings of the 7th Conference of the Association for
Machine Translation in the Americas, pages 251–260. Cambridge, MA, August.

[Wellington et al.2006b] Benjamin Wellington, Sonjia Waxmonsky, and I. Dan
Melamed. 2006b. Empirical lower bounds on the complexity of translational
equivalence. In Proceedings of the 21st International Conference on Computa-
tional Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics, pages 977–984, Sydney, Australia, July. Association for Computa-
tional Linguistics.

[Wellington2007] Benjamin Wellington. 2007. Tree-Structured Models of Multitext:
Theory, Design and Experiments. Ph.D. thesis, New York University, New York,
NY, USA.

[Wu and Wong1998] Dekai Wu and Hongsing Wong. 1998. Machine translation
with a stochastic grammatical channel. In Proceedings of the 17th international

146



conference on Computational linguistics - Volume 2, COLING ’98, pages 1408–
1415, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Wu1997] D. Wu. 1997. Stochastic inversion transduction grammars and bilingual
parsing of parallel corpora. Comput. Linguist., 23(3), September.

[Xiao et al.2009] Tong Xiao, Mu Li, Dongdong Zhang, Jingbo Zhu, and Ming
Zhou. 2009. Better synchronous binarization for machine translation. In Pro-
ceedings of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 362–370, Singapore, August. Association for Computational Lin-
guistics.

[Xiao et al.2011] Xinyan Xiao, Yang Liu, Qun Liu, and Shouxun Lin. 2011. Fast
generation of translation forest for large-scale smt discriminative training. In
Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pages 880–888, Edinburgh, Scotland, UK., July. Association for
Computational Linguistics.

[Yamada and Knight2001] Kenji Yamada and Kevin Knight. 2001. A syntax based
statistical translation model. In Proceedings of ACL-01.

[Yamada and Knight2002] Kenji Yamada and Kevin Knight. 2002. A decoder for
syntax-based statistical mt. In Proceedings of ACL-02.

[Younger1967] D. H. Younger. 1967. Recognition and parsing of context-free
languages in time n3. Information and Control.

[Zhang and Gildea2005] Hao Zhang and Daniel Gildea. 2005. Stochastic lexical-
ized inversion transduction grammar for alignment. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL’05),
pages 475–482, Ann Arbor, Michigan, June. Association for Computational Lin-
guistics.

[Zhang et al.2006] Hao Zhang, Liang Huang, Daniel Gildea, and Kevin Knight.
2006. Synchronous binarization for machine translation. In Proceedings of
the Human Language Technology Conference of the NAACL, Main Conference,
pages 256–263, New York City, USA, June. Association for Computational Lin-
guistics.

[Zhang et al.2008] Min Zhang, Hongfei Jiang, Aiti Aw, Haizhou Li, Chew Lim
Tan, and Sheng Li. 2008. A tree sequence alignment-based tree-to-tree transla-
tion model. In Proceedings of ACL-08: HLT, pages 559–567, Columbus, Ohio,
June. Association for Computational Linguistics.

147


