
Dreme: for Life in the Net

by

Matthew Fuchs

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Computer Science

New York University

September, 1995

Approved

cMatthew Fuchs

All Rights Reserved 1995

In Memory of Harry and Sylvia Landes

but also for

Annie, Yael, and Elie

All treasures beyond reckoning

iii

Acknowledgments

At NYU, special mention must go to David Fox for pointing out that NYU

wants a mixture of cotton, dead trees, and �ne black dust, not magnetized mylar.

Otherwise I'd have probably never taken the time out from programming to produce

the current pav�e. David also deserves mention for being a great o�cemate and

having eclectic tastes in music (and a stereo in the o�ce).

I want to thank Ken for leaving me alone when he could have insisted I Do

Something as Required. Now that this is �nally over, I hope we'll be able to work

together, and he'll see the fruits of his investment. I've been remarkably lucky in

�nding bosses who leave me alone, and I hope they won't all be disappointed.

David Bacon and Marco Antonietti also deserve mention for disagreeing relent-

lessly. Fortunately that required physical displacement. I also want to thank Gary

and the crew at the Courant Library. I enjoyed talking with them immensely.

At CERC, I want to especially thank Ramana Reddy and V. J. Jagannathan

for an inordinate amount of faith { 20 minutes on the phone and no letters of

recommendation. Much of what you will soon read about was perfected at CERC,

where I have been given wonderful support for the past year.

In the background lie David and David of cfX, who paid me good money to do

what I wanted, on their time. I hope they derived as much bene�t as I did. Alex

Mogielnicki made life in�nitely easier as I prepared for grad school. Alex claimed

he was repaying those who enable him to get his doctorate. Makes me anxious to

have an employee so I can pay him back. And, of course, there's Ken Garvey and

Bill Meckel.

My parents have given me unrelenting support for longer than I can remember,

for obvious reasons. This is my �rst chance to thank them publicly, in writing.

iv

Recounting the reasons this would not have been possible without them would

require another tome. I love them.

Harry Landes, my maternal grandfather, didn't live to see me enter graduate

school. I regret not having had the opportunity to attempt to explain to him what

I was doing. I can only hope he'd have been pleased.

Finally, there are the important people. Ch�ere Annie has put up with innu-

merable explanations of theory, networks, SGML, etc., not to mention my typing

through most of many nights, with remarkable humor. France, fortunately, has a

tradition of supporting its intellectuals. Yael and Elie probably don't realize that

there are parents who aren't working on dissertations, but they'll �nd out soon.

v

Title: Dreme: for Life in the Net

Author: Matthew Fuchs

Advisor: Prof. Ken Perlin

Dissertation Abstract

This dissertationmakes four contributions towards supporting distributed, multi-

user applications over open networks.

Dreme, a distributed dialect of the Scheme language in which all �rst-class

language objects are mobile in the network. In particular, various distributed

topologies, such as client/server and peer-to-peer, can be created by migrating clo-

sures with overlapping scopes around the network, correct inter-process communi-

cation being assured by Scheme's lexical scoping rules and network wide addressing.

Threads of control are passed around through �rst-class distributed continuations.

A User Interface toolkit for coordinating events in multi-threaded, multi-user

applications by organizing continuation callbacks into nested lexical scopes. Each

event has certain attributes, such as synchronous/asynchronous. Certain events

create new scopes with new events. Continuation callbacks allow both synchronous

events which return values to their callers, and asynchronous ones. Application

needn't be spread throughout the application, as with applications using an event-

loop.

A distributed garbage collection algorithm that collects all cycles on an open

network. The basic algorithm depends on maintaining the inverse reference graph

(IRG) among network nodes (i.e., if a->b is in the regular graph, b->a is in the IRG).

A single IRG traversal from any object determines the status of each object touched.

Communication is decentralized (any object can choose to determine its status),

garbage is touched O(1) times (in the absence of failures), it is fault-tolerant, and

vi

can handle malicious or faulty neighbors. Each operation uses messages linear in

the size of the IRG. Overlapping operations perform like parallel quick sort.

An approach to using the Standard Generalized Markup Language (SGML)

over the network to support distributed GUIs, intelligent clients, and mobile agents.

SGML is a meta-grammar for creating domain speci�c document markup languages

to which a variety of semantics (display, reading/writing databases, etc.) can be

applied. The document, its grammar, and some semantics, are retrieved over the

network. Applications normally create interfaces directly out of graphic objects to

communicate with the user. However, if the interface has some semantics (and is

parsable), a computational agent can interpret the interface and talk directly to the

application on behalf of the human.

vii

viii

Chapter 1

Introduction

In the early days of computing, computers stood alone. Today, computers are

linked in ever greater numbers, but processes are still seen as standing alone, or

gingerly communicating with one or two \servers" or remote procedures. Current

parallel or distributed languages generate any number of communicating elements,

but these are usually self-contained, communicating only with each other, as if

they were colonizing the virgin territory of an empty network. When �nished,

they disappear. But most of the networks of the future will not be empty. They

will consist of lots of individual inhabitants, humans or otherwise, who wish to

communicate with each other. This environment will be very di�erent from both

the splendid isolation of the single threaded past and the geometric purity expected

by functional languages. Some expect it to be a well run military unit. But, in

truth, it will be more like lunchtime in midtown Manhattan!

We postulate a world divided into many users with their own discrete and

private domains. Distributed around a network of unknown size and topology,

each user is both a provider and consumer of information and services. Users will

typically need to browse around the network, locate some group of entities and

then orchestrate their cooperation to ful�ll some user goal. This environment is

implicit in the current debate about national high-speed data networks, interactive

1

TV, and the predicted spread of personal communications systems and \information

appliances". Part of the challenge of creating this world is strictly engineering in the

classical sense { creating the high-speed network infrastructure the communication

will travel on. Another part is producing the software tools that will facilitate

building the distributed, multi-user applications that will run on this network and

exploit its resources.

This dissertation attacks the latter part of this challenge by describing three

speci�c elements { a language, a garbage collection algorithm, and a graphical

user interace (GUI), all distributed { which together greatly ease the production of

networked applications. The structure of these elements is based on four ideas and

their implications:

1. Networks should only speak when spoken to and otherwise be invisible. As

we shall see, this implies that objects in the network (i.e., code and data)

can move through the network as necessary. Nevertheless, facilities should

be available for applications to query and manipulate the network when nec-

essary.

2. If we elide the network, as suggested in the previous point, then client/server

computing is just an example of using higher order functions.

3. Garbage collection will still be necessary in large networks. However, when

the network is too large for centralized control of the process, responsibility

falls on the object to manage its own collection.

4. A graphical interface is necessary to orchestrate numerous distributed ob-

jects. Current human-computer interface technology is insu�cient because

it does not adequately support the multi-threaded nature of user-interfaces.

2

By developing the appropriate support at all levels of the interface, we can

correct the de�ciencies.

We will examine each of these ideas in turn, show how they relate to each other,

and then discuss Dreme, a system built on these ideas which includes the elements

mentioned above, and which is the subject of the rest of this work. Security issues

are not addressed exhaustively by the present work, but extensions to support

secure computation are mentioned where relevent, and a longer discussion will be

provided in the conclusion.

1.0.1 Speak when spoken too

Ever since computers started to be connected, there has been a continuous e�ort

to remove this connection from the programmer's list of concerns. Manifestations

of this e�ort include sockets, RPC protocols, and the ISO/OSI layered network

model, not to mention the development of the client/server model for distributed

computing. We could also add automatic parallelization and coordination lan-

guages, such as Linda, to this list. All attempt to reduce the importance of loca-

tion as a signi�cant factor in developing computer systems. Following in the line of

Emerald[50, 28], we propose to go farther by allowing application objects to move

around the network during the course of computation.

With object mobility, we can support the same basic software components in

a changing environment in a fashion that is much more di�cult without mobility.

Among these bene�ts are:

1. On-demand delivery of new software components. In a large distributed

network, people will need to communicate with services, or participate in

distributed applications, for which they do not have the requisite software.

3

The necessary components can be delivered to them as they are required.

This extends from application code to instantiated objects and threads of

control.

2. More exible use of network resources. Part of a computation can be moved

from a workstation to a local supercomputer or back again, depending on

the deadline for the results. Applications running on, for example, hand-held

devices with limited memory can o� load parts of the computation to more

powerful machines elsewhere on the network.

3. Fine-grained load balancing, as any element of a computation is potentially

movable over the course of a computation (although the cost of moving a com-

putation must be balanced against the cost of performing it). This implicitly

assumes a two-layer architecture with a layer of application objects and a

location manager which dynamically changes the location of these objects.

4. Greater security control. In the face of possible malicious intent, it must be

considered that any information arriving at a particular node is freely accessi-

ble, despite any language constructs enforcing encapsulation. While mobility

allows better exploitation of the client's resources, selective immobility can

keep information o� of untrusted systems and allow it to be moved to trusted

ones, without changing the application.

There are times when it is important to talk to the network, particularly in a

heterogenous network where resources are not evently distributed. For example,

multi-user applications may need to locate their users (and vice-versa), clients need

to locate servers, and non-replicated data must be tracked to its source. Neverthe-

less, conversing with the network should be at as high a level as possible. Separate

4

processes, with their attendant address spaces, are just as much of an impediment

as the hardware network. To completely expunge the network from consideration,

even processes must be seen as no more than containers for the objects actually

performing computation.

Their are two fundamental categories of interaction that an application must

have with the network.

1. Find an object. Every time an application wishes to communicate with an ob-

ject, that object must be found; there is no guarantee the object is in exactly

the same place as it was for the last communication. We can distinguish,

however, between locating an object for the �rst time, an arbitrarily compli-

cated process possibly involving database queries, etc., and keeping track of

that object. We can assist in the �rst process by placing the network in a

uni�ed name space and providing a low level uniform reference mechanism

to mask the topology of the network. We can support the second by having

the run-time system keep track of object movements, relieving applications

of this task.

2. Place objects around the network. Di�erent nodes of a network have di�erent

features. To take advantage of this, applications may need to ship objects to

other nodes for special handling. They may also need to start applications on

the target node if they are not already present. If we push this to the limit,

then our (possibly unrealizable) goal should be that the processing node in

the network on which an instruction is executed may be arbitrarily chosen at

runtime.

Several researchers have dealt with the issue of uniform distributed addressing[7,

54, 6, 1]; we shall present our variation on this, which provides some asymptotic

5

improvements, when discussing garbage collection.

Placing an object, and in particular, placing an instruction, on a node, is a more

complicated task. Given a large heterogenous network with ad hoc communication

patterns, we must be able to move not just data, but the executable code as well;

if the recipient has it already, that is �ne, but we cannot assume that is generally

true. To make this mobility useful, the code and data need to be ready to perform

as soon as they arrive at the receiver, otherwise the network intrudes again (the

data transmission rate is an unavoidable exception to network transparency). The

more traditional means of moving code around the Internet, ftp and the postal

service, require too much user intervention. In the current work we will mostly

consider explicit mobility, although in the larger sense, we must consider automatic

parallelization, and we will allude to that later.

If we wish to communicate with end users, location transparency also means

that an object arriving on a particular node must be able to display its interface to

a user at that location. As this should be a graphical interface, we must handle one

aspect of the heterogeneity of the network, the variety of GUI systems, cleanly, so

that an object needs only one interface which can be displayed on any node. Our

approach to this problem will be discussed in the chapter on user interfaces.

1.0.2 Servers and higher-order functions

Client/Server is an oft used term whose meaning seems to be as follows:

A Client and a Server are two processes, or two objects, which have a pattern

of communication in which the Client makes requests of the Server and the Server

ful�lls them, independent of the locations of the Client and Server in the network.

In practice, Client/Server is mostly used to refer to systems where each part

resides in a separate process, or even a separate network node. Frequently there

6

is an attempt to make the Server appear to the Client as just another function call

through a remote procedure call mechanism, although Servers may service several

Clients at the same time, so the relationship is not symmetric. If we accept that the

network be quasi-invisible, though, we can arbitrarily place the Client and Server

in the same or di�erent processes { the communication should appear the same

whether they are in consecutive bytes in memory or on di�erent continents.

If we examine the Client/Server interaction more closely, we see that the Server,

wherever it is, exists to provide access to information or services which the Client,

removed from that information, cannot directly manipulate. From the Client's

perspective, then, the Server is a preexisting function providing an interface to

some amount of encapsulated information. The Client sends a request or data, and

the Server manipulates it based on this encapsulated information.

A Server, then, is fundamentally a closure of the type found in high-level lan-

guages such as ML, Scheme, or Haskell, except that Servers are usually built in

an environment (C, C++, Cobol) which does not have an easy representation for

higher-order functions and where signi�cant work needs to be done to overcome

process/network boundaries. If we have a language which has higher-order func-

tions and can unify local and remote communication, then Servers are ordinary

higher-order functions which don't require special support except as they have

special requirements (eg., multi-threading and security control). A higher-order

function can be called to generate a Server. The Server becomes distributed when

its location is known on another node. The network should play little or no explicit

role; concurrency adds su�cient complexity on its own.

The Client in a typical application is either application code itself that talks

directly to the Server through some form of IPC, or may consist of special Client

code linked into the local application. This Client code knows how to communicate

7

with the Server, and serves as an intermediary between it and the application. In

this case, the Client plays the same role vis-a-vis the application that the Server

does vis-a-vis it, except that here, the Client encapsulates special information about

the structure of the server. This private shared information can be thought of as

an overlapping environment.

We can obtain this situation quite easily if the Server, like its hypothetical

creator, also returns a function when called. In this case, the Server returns the

Client. Again, if we ignore the network, then the communication between the Client

and Server can take place through shared functions and variables. Server and Client

can also behave as coroutines, such as when a Client sends a request and takes the

responses one at a time.

If we generalize this, and combine it with the mobility discussed in the last sec-

tion, we can evolve from present Client/Server systems, where the choices available

are the run-time binding of RPC stubs, to a very uid one. Users can communi-

cate with any Server by receiving an appropriate Client. By providing a standard

interface to the local GUI, as described later, the Client can communicate with the

user, and if it provides a known programmatic interface, then it can also commu-

nicate with other local objects. Current technology, which makes the distribution

of Clients di�cult, naturally tends to produce large Clients and Servers. Once they

are free to move around the network, Clients and Servers can be, like any other

closures, of any size. In fact, the technology would now favor smaller Clients, as

they take less time to transmit.

Mobility also means we can distribute the components of Clients and Servers

around the network and yet still have each appear as a single object.

8

1.0.3 Garbage Far and Wide

Once applications start to dynamically allocate their own data, they need to start

managing it. This are two general approaches:

1. Memory is explicitly deallocated when the programmer can be sure that it is

no longer needed.

2. The available memory is periodically searched to �nd unreferenced objects,

and their memory is then recycled.

The �rst method is used in real-time applications, where all operations must

have bounded durations, or where the environment has no automatic means of

scavenging memory. The second method, Garbage Collection (GC), is used by

functional-style languages. The kind of distributed system described so far really

favors GC over explicit deallocation. Explicit deallocation requires an a priori un-

derstanding of memory access patterns to determine exactly when memory becomes

garbage. This can be extended to distributed systems as long as the distributed

access patterns are clear, but in the situation we have described they are not. While

some objects may be explicitly deallocated, others may be referenced by remote

objects about which the application designer knows nothing.

As will be discussed in greater detail in the chapter on GC, distributed strategies

divide along two lines:

1. Reference Counting, where each object keeps track of how many other objects

refer to it. An object which receives a new reference must explicitly tell the

referenced object to increment reference count and then tells it to decrement

the count when it \forgets" the reference. When an objects reference count

9

reaches 0, the object is automatically recycled. Although there are some tim-

ing considerations to implementing distributed reference counting, the major

drawback of reference counting is its inability to deal with cycles.

2. Mark and Sweep, where the system periodically sweeps through all memory,

determines which objects are garbage, and recycles them. The system starts

with a root-set of objects which are known to be live (i.e., not garbage), marks

their transitive closure as also alive, and deletes everything else as garbage

(since they cannot be reached from some other live object).

Despite it's inability to handle cycles, reference counting is well suited for dis-

tributed systems because the coordination overhead is very low; GC related com-

munication is strictly between between the objects concerned. Each object is re-

sponsible for itself, even at the local level.

Current algorithms that collect cycles, distribute or otherwise, are universally

of the mark-and-sweep variety. The distributed ones are all divided into local

and distributed phases and require signi�cant coordination both at the local and

distributed levels. In essence, all the processes which contain references, directly

or indirectly, to an object must agree that it is garbage before it can be collected.

Responsibility for the object becomes a matter of distributed consensus.

In general, cycles cannot be avoided, but the burden imposed by mark-and-

sweep is equally undesirable. The solution we propose is a new distributed GC

algorithm which eventually collects all cycles, distributed or otherwise, but which

has reference counting's desirable property of making each object responsible for its

own collection, thereby eliminating the coordination overhead of mark-and-sweep

algorithms. The actual burden, in number of messages, of this algorithm is depen-

dent on the frequency with which distributed collections are attempted, and it is

10

shown how to keep this within reasonable bounds.

1.1 How the Event Loop alters a program

Developing a good user interface is a hard problem involving social/psychological

issues as well as technical ones. Meyers (1993) provides a list of these di�cul-

ties. Beyond the human-computer interface and graphics issues, however, stands

the computer-programmer interface | graphical user interface (GUI) toolkits use

a reactive, or event-driven, style that is di�cult for programmers, but which seems

necessary to handle the ever increasing complexity of the user interface. The prob-

lem is even more pronounced in distributed applications, where there are several

event-loops to contend with, as well as the thread of control of the application.

We will now take a careful look at reactive programming (and at its underlying

architectural feature, the event-loop) to determine if this is essential for a exible

user interface. The analysis will indicate that onerous aspects of the reactive style

are more artifacts of the software technology being applied than they are inherent

to the problem. We will use the results of this analysis later to propose an alter-

native architecture that is easier for the programmer without limiting, in any way,

the complexity of the user interface. On the contrary, it is easily expandable to

distributed applications with multiple threads of control. This is done by returning

to the run-time system many decisions which are currently handled by the pro-

grammer. The paper concludes with a survey of other attempts to deal with this

issue.

11

1.2 How the event loop alters a program

The event-loop is an essential characteristic of modern Graphical User Interface

programming. A program sits inside a tight inner loop which continuously gets

an event, dispatches it to the appropriate handler, and then returns to waiting

for the next event. The event-loop is (and, as we will see, must be) memoryless.

Any state needed across events must be maintained explicitly through the handlers.

The kind of information (variables and return addresses) that the run-time system

automatically maintains for a process normally sits on the stack; this is gone after

each event. Loss of this information has serious consequences for how programs

are written and is a major reason for the di�culty of GUI programming.

1.2.1 A reactive example

We will start with a somewhat complicated example { the card game, bridge. Bridge

is played by four persons seated around a table with a standard deck of �fty-two

cards. Opposite persons are partners. We will concentrate on the rubber, which is

composed of two or more games (one set of partners must win two games to win

the rubber). A game has four parts:

1. All 52 cards are dealt to the players. Each player has a hand of 13 cards,

which will be played in 13 rounds, called tricks.

2. The players bid. In a round-robin fashion, the players make claims about

how many rounds of play they can win. This goes on until three players pass.

The highest bidder, called the declarer, establishes a contract. At the end of

the game, the score will depend on the declarer's success.

3. All 13 tricks are played. We won't go into all the rules here.

12

4. The play is scored.

Figure 1.1 shows the control ow of a rubber (leaving out the rules) in pseudo-

code. As a serial process, a rubber is a series of nested loops, the outermost for

each game, the innermost for each trick. We will later consider a parallel version,

where any number of tricks can be played simultaneously.

Suppose we have four players sitting in front of their screens with a complex GUI

that lets them consult help facilities, previous games, etc., while playing bridge.

Each sees approximately the same screen, only the actions they can take at a

particular time is di�erent. After the cards are dealt, it is impossible to program

anything approximating this simple control ow with an event-loop.

Concentrating just on the play of a single game (i.e., disregarding other GUI

elements), in an event-loop implementation, only the callbacks enabling a single

player to bid must be active at the start. That player then clicks on a button

indicating his bid. The callback must place the bid in some globally accessible

place, and disable itself. It must then check if this is the last bid. If so, it must

determine who won the bidding, set things up for the game. If not, then it must

enable the next bidder to bid. Finally, it must return to the event-loop. After

bidding is �nished, a similar process occurs for each round of play. Each callback

must determine where in the play it is and set up conditions for the next player's

actions.

In other words, in the reactive style, the thread of control is spread out among

the callbacks. Each callback must ascertain the current state of the computation,

react appropriately, and prepare for the next state. This adds an extra degree

of complexity; the straightforward control ow of �g. 1.1 must be systematically

transformed. In an application where there is little control ow, such as a drawing

13

procedure rubber(players playerArray[4]) returns integer

{

array gamesWon[2] of integer;

do

contract := 0;

declarer := 0;

leader := 0;

array game[13][4] of card;

for player := 0 to 3 do

playerArray[player].deal(cards);

od

do

get the next player's bid

if the bid is higher than contract then

contract := the new bid

declarer := the current bidder

leader := the current bidder

endif

until three passes in a row

for trick := 0 to 12 do

for player := 0 to 3 do

game[trick][player] :=

playerArray[(player + leader) mod 4].playCard();

od

leader := (scoreTrick(game[trick]) + leader) mod 4;

od

gamesWon[scoreGame(game, declarer)]++;

until (gamesWon[0] = 2 or gamesWon[1] = 2);

return if (gamesWon[0] = 2) then 0 else 1 endif;

}

Figure 1.1: Rubber Control Flow

14

program or a chess game, this is not particularly onerous; where there is signi�cant

control ow, as in bridge, it is more so.

The usual justi�cation given for this transformation is user freedom. Graphical

programs are user driven, the user should be given the widest possible latitude,

the traditional programming style (in which input is all synchronous) constrains

this freedom, therefore it must be abandoned. In the current case, the control

ow follows the playing of a hand. Without the event loop, if a player wishes to

do some other action, involving menus, help, or whatever, they are blocked from

doing this; all input is captured by the routines for bidding or playing cards. A

more radical example would be altering bridge to allow multiple rubbers to be

played simultaneously. Although maximizing the user's freedom of action (within

the semantics of the program) is important, we will show that the solution most

widely used, the event-loop, is actually a side e�ect of the technology chosen for

implementation.

1.2.2 The essence of the event loop

In the old days when graphical systems were rare and application user interfaces

were variations on the menu, the choices open to a user at any point in an application

were quite limited and could be handled in a case statement. When the program

needed more information from the user, it could call a function to prompt the user.

The application could be structured as a set of hierarchical menus accessed through

nested function calls, relying on the language to keep track of state (applications

written in languages which allowed nested functions, such as Pascal or Ada, could

also use scoping to help communicate information from one level to another). This

made writing a user interface very straightforward.

GUIs are inherently multithreaded leading to the event-loop. Suppose that there

15

B

A

C

A
D

B

E

C

F

a) b)

Figure 1.2: Stacks and Threads

is a path through the interface for which history is important, i.e., completing form

A requires the results of form B, which in turn requires the results of form C. C,

then, needs to know how to return to B, which needs to know how to return to A.

One solution, along the lines used by the old-style menus, would be for the handler

that creates form A to recursively call the handler that creates B when necessary.

B's handler then likewise creates C. When C terminates, it hands its results to

B, etc. (See �gure 1.2a.) However, if we have another group of history-sensitive

interface objects (D, E, and F), then we have a problem. In our Bridge example, a

novice user might invoke an interactive tutor facility while choosing a bid. Since the

user is free to develop both of these histories in parallel (working consecutively in

A, D, B, E, C and then F), A would have to call the handler for D, D the handler

for B, etc., and the stack will have the two sequences interleaved. As shown in

�gure 1.2b, C is inaccessible until F completes. In essence, it is impossible to use

the stack for control in a modern GUI, and so the stack has been abandoned. The

event-loop is a control regime which doesn't require a stack.

16

With the event-loop, for A to communicate with B, A needs to be divided into

two parts, A and A', one doing the work before the call to B and the other doing

the work afterwards. To \call" B, A calls a separate function � passing a pointer

to A' and whatever data is associated with the current invocation of A (in C++,

this is an object and a method). � stores this information, creates the GUI for B,

and returns to A which then returns to the event-loop. When B terminates (or

actually B', since B must also be split in two pieces) it calls A', passing in the

data. A' does a little work (updating �elds, activating/deactivating buttons, etc.)

and then returns to B' to get back to the event-loop. As a result, for example, it is

impossible for a handler to call another piece of interface as if it were a function;

the handler must �rst return to the event-loop for the next event to be retrieved.

The event-loop forces the application programmer to explicitly maintain all

the information which in other applications is implicitly maintained on the stack,

such as the values of variables and the return location after the next event. The

resulting program is, in fact, written in continuation passing style (CPS) (Appel

1992). Compilers for functional-style languages, such as Scheme and ML, frequently

transform source code into CPS as an intermediate step. Humans normally don't

program directly in CPS; it can be quite complex.

In CPS, each function in a program takes an extra parameter, called the con-

tinuation. Functions never return to their caller. When they have done their piece

of work, they call this extra continuation parameter, passing in the result. Since no

function ever returns, but simply calls another, a program in CPS, like an event-

loop program, cannot use a stack. The GUI programmer programs in this style,

but with extra complications (a callback cannot directly call its successor).

When source code is transformed to CPS, the process starts from the outermost

functions and works its way in, eventually transforming the body of each source

17

code function into a group of little continuation functions which call each other in

sequence after performing a small amount of work. Although a GUI programmer

has not explicitly performed any such transformation, A' and B' in the previous

example are continuation functions organized around user events. By creating

several callbacks and then returning to the event-loop, the event-driven program

allows the user to \non-deterministically" choose which of several continuations

to jump to. The objects created by the programmer in an object-oriented GUI

are a replacement for the stack frame; the members are the local variables and the

continuation.

Our goal is to provide a \best of both worlds" approach: on the one hand, to

allow control ow and other dependencies among events to be programmed in a

straightforward fashion, on the other to support the freedom for the user provided

by the CPS approach of the event-loop. Given the tension between the two, it is also

desireable that it be easy to specify and change these relationships. One resolution

to this dilemma, which has been tried (Pike, 1988), would be the wholesale us of

explicit threads. We will explore an equivalent, but more exible, approach here

through the use of �rst-class continuations. The essential insight is, if we use a

continuation for a callback, then when the desired event occurs, the program will

continue with the next statement, as if it had just been blocked for input. As we

shall see, there is still plenty of work to make a usable system from this; the range

of behaviors that a user interface needs to support is quite complex.

1.2.3 First-class continuations and callbacks

A �rst-class continuation is an object that represents the remainder of a compu-

tation (Dybvig 1987, Reynolds 1993, Wand 1980). A more concrete description

would be an object containing the process stack, �, and the return address, �, just

18

Stack (α)

Return Pointer (β)

Call Parameters

Figure 1.3: Continuations and stack frames

before execution of a function call (�g. 1.3). This continuation acts as a one param-

eter function; when called with a parameter, , it overwrites the current process

stack with �, places in the return register (or appropriate position in the bottom

stack-frame) and jumps to �. In other words, whenever the continuation is called,

it is as if the original function call had just terminated, returning the continuation's

parameter as answer. The closest C/Unix analog are the functions setjmp and

longjmp, where setjmp stores the current values of the registers, including the

stack pointer, in a structure, and longjmp restores them, peeling the stack back

to the point at which setjmp was called, as if returning from the initial setjmp

call. Unlike setjmp/longjmp, a �rst-class continuation can be called at any point

in the future computation, repeatedly if desired. (Continuations do not necessarily

require copying the stack. Compilers or interpreters using CPS, such as SML/NJ

(Appel 1992), do not employ a stack.) The analogy between continuations and

setjmp/longjmp would be an equivalence if setjmp stored the stack as well as the

registers.

19

Figure 1.4: Juggling Continuations

Suppose, at the start of a game, a user is engaged in a dialog with a bridge

tutor function. When her turn to bid arrives, she starts another dialog with the

tutor, and also calls up the help facility (where the help concerns the mechanics of

the interface, not the game), before choosing a bid. A number of threads are now

mixed on the stack, as in 1.2. While the user ponders, each of these is waiting for

input. In other words, each has called some function, beta, to retrieve input from

the user. Normally the input would go to some callback. Let beta instead �rst

take the current continuation of the caller, and store it in a list of pairs, mapping

from input events to continuations (�g. 1.4). Now, when the user even occurs, it is

passed to the appropriate continuation, restarting that thread. Following the user's

actions, beta acts as a scheduler (without a timer interrupt, threads only give up

control when they require input). Because continuations can be called repeatedly,

a dialog with the tutor can be started more than once. Bidding must be more

strictly controlled to prevent multiple bids.

Continuation callbacks allow a traditional programming style to be combined

20

with the multiplicity of events in a GUI. Despite the presence of several concur-

rent threads of control, continuations have allowed us to avoid explicitly creating

threads. The next step is further simplify this by hiding the continuations and com-

bining the ow of control of the application with the appearance and disappearance

of graphical objects.

We will later present the full graphical user interface, which not only supports

a high degree of concurrency, but is also designed to be platform independent, so

that objects can display their user-interfaces regardless of the underlying GUI.

1.2.4 Dreme

In order to explore the implications of these ideas, we have built Dreme, a language

having a very high level view of the network, an Internet-wide addressing mech-

anism, garbage collection, object mobility, �rst-class higher-order functions and

�rst-class continuations. Rather than building this language from scratch, how-

ever, we have chosen to modify Scheme, a language which already has garbage

collection, �rst-class higher-order functions and continuations, but no particular

policy regarding distribution and interfacing with a network. We have attempted

to make minimum alterations to Scheme to support our experimentation. If fact,

little was needed, as a single Scheme process on a single machine already has three

of the elements we have identi�ed as important, so much of our work has been to

cleanly project them onto the distributed world. Conversely, Dreme projected onto

a single process is regular Scheme.

One of the goals of Dreme is to make it possible to write distributed applications

with little concern for network or process boundaries. Instead, the only boundaries

of interest should be those de�ned by the applications themselves. In Dreme, as in

Scheme, boundaries are maintained by closures. Once an application is developed,

21

however, the network inevitably intrudes, whether for reasons of performance, se-

curity, or access to particular resources. To compensate for this, Dreme includes

several commands as hints to the run time system.

Along with this, we have developed a platform-independent, distributed GUI

in Dreme. By platform-independent we mean that a mobile object can display the

same interface on a variety of platforms without concern for the host windowing

systems. By distributed we mean that parts of an interface can appear in di�erent

parts of the network, and that callbacks likewise can traverse the network. As

alluded to above, this GUI takes advantage of continuations to eliminate recourse

to an event loop.

22

Chapter 2

Dreme: the distributed extensions

As stated in the Introduction, Dreme is a version of Scheme developed for dis-

tributed applications on local area and wide area networks. Excluding these dis-

tributed additions, Dreme acts essentially as an ordinary Scheme interpreter com-

pliant with the Revised 4 Report on the Algorithmic Language Scheme (R4RS)[12].

This chapter will describe the distributed extensions that make up Dreme.

This chapter consists of seven sections. The �rst introduces the new language

objects introduced by Dreme. We will then examine, in turn mobility, remote invo-

cation, remote evaluation, concurrency, related work and �nish with a programming

example.

2.1 Dreme language extensions

Given the goals of Dreme, the most urgent matter is deciding how to present the

network, and then how to refer to objects as they move around in it. The choice

is also somewhat constrained by the choice of the Internet as our target. Methods

which might work for shared memorymultiprocessors or tightly coupled distributed

memory machines are not amenable.

As Scheme itself has no policy towards distribution, Dreme needs a small set of

23

NeighborNeighbor

Process Process

Memory Memory

Address α

ObjectObject

Address β

β α

Figure 2.1: Relationships between new object types

new language objects. These are Processes, Neighbors, Addresses, and Memories.

The �rst three are related to distribution, the last to persistence. They let the code

access the physical topology of the network and manipulate the location of objects.

The relationship between these components is shown schematically in �gure 2.1.

There are any number of Processes which contain a number of Memories and

Neighbors, where each Memory contains objects and Addresses. Each Neighbor

points to another Process and each Address points to an object in another Memory.

As will be seen, the behavior of these objects goes beyond just assuring com-

munication among the parts of a distributed Dreme system. They are designed to

allow a node to establish policies for the execution environment (if any) of migra-

tory objects. The policies a node chooses with respect to other nodes will vary

widely depending on circumstance. For example, a node exposed on the network

handling commercial tra�c will have very di�erent policies than one executing in a

closed environment on a workstation cluster. The former might institute elaborate

security policies to protect itself, whereas the latter might institute practically none,

as only approved objects can arrive. This chapter does not discuss the elements of

these policy decisions, only the mechanisms being provided.

24

2.1.1 Addresses and Forward References

Addresses are used to coordinate object communication and movement across net-

work nodes. Fortunately, the Internet itself endeavors to present itself to its users

at a fairly high level of abstraction. Although divided into several di�erent net-

works, the whole Internet can be seen as organized into a single hierchical address

space of nodes, each of which has a linear set of ports where inter-process com-

munication (IPC) actually takes place. For the assistance of its human users, the

Internet also provides a map from strings to nodes. The ports, however, remain

numbers, although some ports have been assigned to standard applications. Our

naming scheme parallels that of the Internet. Each Address is a string that uniquely

identi�es a Dreme object in the network. At present, the string associated with

the object is its place of origin (Internet node name, Process name, and Memory

name), as well as a unique integer (currently 32 bits). Certain objects, such as the

Process object, the default Memory, and the default functions, have distinguished

Addresses, as they must always exist.

Although all objects implicitlyhave Addresses, in actuality the Address is stored

in a structure that is larger than some application objects. Since each O/S process

has its own address space which objects can use to identify each other within a

Process, network addressing is only relevant when an object needs to be refered to

from another Process in the network. Objects residing in the default Memory and

not directly visible beyond a Process boundary do not have Addresses, and must

be content with the Unix process address space.

The Address string uniquely identi�es an object, but it only speci�es its place

of origin, and not its current location (otherwise an object's identity would change

each time it moves). Addresses can propagate around the network, as described

25

below. To locate mobile objects, each Address comes with a Forward Reference

structure indicating the last known location of the object. The �elds of the Address

object discussed in this chapter are listed in �gure 2.2. Address information related

to garbage collection will be discussed in the chapter on garbage collection.

To summarize, an object is in one of three stages:

1. If the object is only visible to other object in the local host, then the host

process address space is su�cient to identify the object.

2. If a reference to the object crosses boundaries, then the object will need a

network Address to identify it.

3. If an object moves while there is an outstanding reference pointing to its

current location, then run-time systemmust also keep track of its new location

to route messages.

In the third case, it is only necessary to keep track of an object's location if there

is a reference to it at the old node. An object does not need an Address simply

because it moves. For example, an object created and returned at the end of

a remote invocation will not leave any trailing references as it moves across the

network. However, an object which was refered to at its previous node will need

an Address when it moves because, as in the second state, a reference now crosses

a process boundary. When an object migrates it is replaced locally by its Address

and the Forwarding object pointing to its new location.

2.1.2 Processes

A Process is an object that contains, at a minimum, a default Memory and an

evaluation engine. It may additionally contain several objects, as well as pointers

to other Processes and Memories. There is one Process object per Dreme process,

26

Address Information
Address String address string of object
Parent Pointer pointer to Process from which Address was received
Child List list of Processes to which this Process has passed copies

of this Address
Forwarding Information
Current Memory last know location of the addressed object
generation generation id for this forwarding object
Marshalling Information
Lock ID Unique identi�er of the marshalling operation. If negative,

then this is a write lock

Figure 2.2: Address Data Structures

i.e., a unique Process object per operating system process. (From now on we will

refer to the Process object with an upper-case \P" and the actual operating system

process with a lower-case \p.") The Process mediates communication with the

outside world as well as giving Dreme objects a focal point for enquiring about the

local environment. The default Memory is simply the process address space. Each

Process has a host name and a process name, which uniquely identify this Process

on the network. The Process object also keeps a list of Neighbor objects, which

point to all known Processes to whom references exist.

The Process is not just a convenient abstraction; it can also be used to provide

policy and security to the objects residing in its domain. The initial entry point

from an object in one Process to the objects in another is the remote Process object,

which can be queried to locate pointers to objects.

The Process provides four important and overlapping services.

1. It acts as a name server for remote objects through the create-name and

find-name commands. The former allows a (possibly local) object to add a

service and the latter allows a (probably remote) object to �nd the advertised

service. The default behavior for both of these commands is to simply return

27

false #f, which provides no information.

2. It evaluates statements on behalf of external objects, through the remote-exec

command. Depending on the origin of the call, the Process can choose to per-

form the request or not. The default behavior is to evaluate any request.

3. It negotiates for access rights on behalf of its objects when they move to a re-

mote Process. The main rights to be negotiated are for access to remote-exec

and for the composition of the local environment (described below). The de-

fault behavior is to perform no negotiation.

4. The Process decides on the default local environment of any mobile code

which will execute locally. The local environment provides access to top-

level services, as will be explained in the section on remote evaluation. The

default local environment is the top-level environment of the Process.

With the default behavior, each Process looks to the rest of the world like a �rst-

class environment, and the global address space makes the network appear to the

programmer as a large, shared-memory, multiprocessor with a very slow bus. At

the other extreme, the behavior can be set to provide no remote communication at

all, or just a set of services with no mobility at all.

The Process object is a regular Scheme closure in the top-level environment.

As the default behavior will not scale to systems where access must be controlled,

the nature of the services actually provided can be set dynamically by replacing it

with a new one using the set! command. However, no communication can occur

without a Process object supporting the appropriate functions.

Communication among Processes currently occurs in plain text. The security of

the communication would be considerably enhanced through the use of encryption

28

and digital signatures. These features can be added to the handshake protocol

between Processes. We will discuss encryption from time to time, but the addition

of that feature would not signi�cantly alter the rest of the discussion; we will assume

that we can identify the sender of any communication.

Following closely in the path of the Internet, a Dreme Process has a three-part

name:

1. hostName gives the Internet address of the host machine. This is currently

the string representation, as opposed to the actual 32 bit number.

2. procName is a string giving the process name. The process name should be

unique for the given host and is used by other Dreme processes to locate the

port associated with that process. We use a name, rather than simply adopt

the process id (pid) assigned by the operating system because it is highly

unlikely that the same logical process will be assigned the same pid twice by

the operating system if it is restarted.

3. portNum is a number identifying the actual port being used by the process.

This is optional if the process actually has a unique name.

Internet utilities, such as ftp and telnet generally use just the host name with an

optional port number. These utilities, however, are usually assigned to particular

ports which are the same across the entire Internet. Dreme does not currently enjoy

that luxury.

2.1.3 Neighbors

Suppose A is a Process. In order to communicate with other Processes around the

network, A must know where they are and how to communicate with them. These

pointers are encapsulated in objects called Neighbors. Neighbors are created either

29

through a call to make-neighbor, giving the neighboring Process' name, or through

the receipt of a message from an unknown Process. At start-up, the Process opens

up a socket and assigns a thread to listen for connections. When one arrives,

the two Processes engage in a handshake protocol during which each either �nds

or creates a Neighbor object for the other. A starts o� with a prede�ned set of

Neighbors, such as name servers; as A further explores the network or makes itself

visible to other Processes, other Neighbors will be created.

A Neighbor created through make-neighbor initially contains just the Address

of the target Process, a reference to a default local environment, and whether or not

remote-exec is available. The latter two correspond to the permissions permitted

for that Neighbor, and the default values are respectively the top-level environment

and true #t. Were encryption used in the protocol, then the appropriate information

would be stored here as well.

Since a whole neighborhood of mutually acquainted Processes might be started

up simultaneously for a particular application, no attempt is made at creation to

actually connect with the Neighbor (similar to the way Scheme's letrec creates

identi�ers when entering a scope but not assigning them values to support mutual

recursion). At some point, though, a message will need to pass from A to a

Neighbor, and at this point A will attempt to establish communications with the

neighboring Process. If successful, the two Neighbor objects will be �lled in with

information about the connection. If the connection ever fails then the Neighbor

object will raise an exception.

If a local function is called from another Process, then the identity of that

Neighbor is placed in the global variable source-neighbor, and the identity of

the continuation of the call (which, as we have seen, may not be the same) in the

variable destination-neighbor. This provides one mechanism by which a Dreme

30

Process can control access rights from outside sources. The local environment,

discussed below, is another.

2.1.4 Memories

Memories are places for inserting and retrieving Dreme objects. Each Memory is

attached to a speci�c Process and has a name unique among the Memories attached

to that Process. All object migration in Dreme involves moving an object from

one Memory to another, even when an object is sent to another Process. At any

given time, each Dreme object is either in a particular Memory of a particular

Process or in transit between Memories. Each Process starts out with a default

Memory, but can create additional ones as required. Memory was created as a

separate abstraction in the face of numerous elements in the environment that can

segment the locations addressable by a Dreme object, in particular the process

address space and local �le system.

Straightforward uses of Memories are providing checkpointing, persistence, and

temporary storage of large data-structures using indexed �les. For checkpointing,

the entire current state of the in-memory executing Dreme process can be written

to a �le to be reread when the Process is next started up (this is the part of the

closure of the current continuation which resides locally). Objects can be made

persistent by copying them (rather than moving them) to and from Memories.

(If an object is moved from one Memory to another, then its data is no longer

preserved in the �rst Memory. On the other hand, if the object is copied, then both

copies continue to exist.) When moving an object, Dreme generally moves the

mobile portion of the object graph rooted at that object residing in that Memory,

although checkpointing moves everything. When objects not in the Dreme base

set (i.e., new C++ classes) are checkpointed, particular care must be taken to

31

ensure correctness. Certain objects may need to go to speci�c Memories because

of their underlying format. Likewise, care must be taken when using a Memory

for temporary storage { if the granularity of the objects being stored is not well

chosen, very little RAM may be saved.

In a more complex environment, however, Memories can be used to �nely con-

trol the accesses allowed by foreign objects executing locally. Because the current

Dreme implementation is an interpreter, a Memory is just a chunk of the pro-

cess memory or local �le system allocated by a function call. If we consider a

Dreme system as being closer to an operating system, then we can consider rep-

resenting segments of the virtual address space as Memories. A function's access

rights to various Memories represents a particular memory map. Pages which are

not mapped represent Memories which are completely invisible to that function.

Sensitive elements of the local environment could be mapped into segments with

read/write permissions turned o�, meaning that all attempts to access those func-

tions are trapped by the kernel. Only those pages with write permission could be

used for creating new objects, so the function can only use a limited space. Finally,

even having a pointer to an object of another user does not necessarily provide

access, as permission to read the particular page is necessary. These aspects of the

Memory abstraction have not been developed in the current implementation, but

would �ture prominently in any commercial implementation of these concepts.

It has been argued [26] that interpreted code is somehow inherently safer than

object code in the context of mbility, as the interepreted code is easier to control. I

would argue that this conceit is false; the ability of malicious code, such as a virus,

to harm a system depends on the access it is given to system resources, not whether

it is interpreted or compiled. Control of the virtual memorymapping is su�cient to

control access to any system resources; viruses are a problem for microcomputers

32

using single-user operating systems because they give all executables full access to

the entire system. The current version of Dreme is an interpreter not because that

provides greater security, but because interpreted code is more easily ported to

di�erent architectures.

A separate class of Memory objects can help to provide a clean abstraction for

the various external systems, such as at �les, relational and object-oriented data-

bases (OODBMS), or even non-Dreme applications, with which a Dreme Process

might need to exchange objects, so long as the interaction can be described in a

top-down manner (Dreme requests an object of a Memory and receives one back)

or as two co-routines (so to Dreme it appears as a function call). To retrieve an

object, Dreme passes an Address, or some other construct, to the given Memory

which identi�es the desired object. The Memory then searches for the object and

returns it to Dreme. For example, if the Memory encloses a relational database,

then Dreme might pass in the text of an SQL statement. The Memory then passes

back a cons cell whose car contains the �rst row of the result and whose cdr points

to an Address, �, in the particular Memory. To retrieve the next row, Dreme passes

� to the Memory, which uses this to identify the appropriate SQL cursor, get the

next row, and pass back another cons cell like the �rst. The last call to the memory

after the �nal row returns '(). Communication with an OODBMS might use that

database's object IDs in addition to its query language.

2.2 Mobility

The last section sketched out the environment in which Dreme objects live. They

come into existence in a Memory attached to some Process residing in a Node on

the network. Over the course of an object's life it may be subject to a number

33

of events. Most of these will be standard, as would occur in any other system,

however sometimes a Dreme object will move from its current Memory to some

other Memory in the network. This section describes how mobility is managed in

the Dreme system.

Dreme objects are divided between mutable/immutable and mobile/immobile

axes. Determining if an object is mutable or immutable can be determined stati-

cally. Immutable objects are freely copied around the network, as the copies will

remain identical. Mutable objects, currently, exist in only one location at a time.

References to them may exist elsewhere on the network, but these references must

eventually point to the single copy. Whether an object is mobile or immobile (i.e.,

can migrate in a message or must stay in a single process) is decided by the run-

time system with hints from the program itself. (An implementation is free to

provide multiple copies of mutable objects if it can maintain the appropriate se-

mantics.) Objects move either implicitly through access patterns (eg., as the return

value of a function call), or explicitly as the parameter of a move or remote-exec

command. Alternatively, an object may be pinned, and therefore not move at all.

(For immutable objects, replace move by copy.)

Once the decision has been made that an object will move, this must be done

in an e�cient manner. Moving a list one cons cell at a time will create excessive

network tra�c if the recipient will traverse the entire list, and not just some par-

ticular piece. Since most of the delay in a distributed computation is in network

transmission time plus overhead, it is better to err on the side of over transmission.

Therefore we need some straightforward default way to determine a reasonable size

for transmission. As objects are either mobile or immobile, each object can be

seen as the root of a graph whose interior nodes are potentially mobile and whose

leaves either are pinned or are immutable and contain no further references. When

34

an object moves, this whole graph moves (with immobile leaves being replaced

by the addresses of the corresponding objects and the immutable ones by copies).

The policies for designating an object as mobile/immobile, mutable/immutable will

vary from system to system.

2.2.1 Mobility and Addresses

When to give an Address

We have shown it is unnecessary to give Addresses to all objects; only objects

visible from outside the Process actually need addresses. The following conditions

attempt to be parsimonious in the assignment of Addresses:

1. Immutable objects can be copied from Memory to Memory when not pinned.

Nevertheless they must be given Addresses if not all uses can be identi�ed

or if they may be tested for eq?-ness (physical identity). These conditions

can be determined by lexical analysis. Two immutable copies of the same

object on di�erent nodes should be considered the same object and merged

into one if they ever arrive on the same node; eq? should respond #t if two

Addresses are the same. Numbers, characters, and booleans, which never

require pointer comparisons, will not be given Addresses when copied. Of

course, an implementation (or application) is free to pin an immutable object

if it is deemed too large or too rarely accessed to copy.

2. An object which is the argument of a move or remote-exec command gets

an Address (since clearly something refers to it).

3. If objects � and � reside on the same node, with � refering to �, then if �

moves, � must have an Address before � actually moves, so that � can bring

the Address to its new location and use it to refer to �. Note that � does

35

not necessarily receive an Address (for example, if it is the return value of a

function call, there may be no local reference to it when it moves).

4. If a mutable object is referred to in the construction of a new object (such

as with cons or append), or through some kind of set! operation, then it is

marked as referenced (using a ag). If a referenced object is moved (directly

or indirectly), then it receives an Address.

5. If all references to an object being moved are contained in the objects being

moved with it, then it does not need an Address. An obvious example of

this is a list where all external references are to the head. Another, more

interesting example involves moving closures.

The �rst four conditions hand out Addresses conservatively. The fourth last, in

particular, hands them out without consideration for the location of the referencing

objects. The �fth condition allows the possibility of countermanding the previous

one when the transfer is shown to be safe.

When an Object is Moved

When an object, �, is moved, it is replaced locally by the Address, augmented by

a pointer to a Forwarding object. This latter object contains �'s new location (i.e.,

Process and Memory ids) and a generation id (initially 0). Each time the object

moves, the generation id is incremented at the new location; when comparing two

Forwarding objects refering to the same object, the later generation is more up-to-

date.

Object references propagate through the network either when an object moves

or when a reference to it passes from one Process to another (in which case the

Address is copied across the network). To support garbage collection, we will

36

maintain all the copies of an Address in a tree routed at the object itself. (Although

these copies cannot form cycles, other objects in the network can.)

When the Address pointing to object � is copied from node A to node B, the

Address at A keeps a pointer to B on its child pointer list. If B doesn't know of

�, then B makes a new copy of the Address with the parent pointer pointing to

A. Otherwise, if B already has an Address for � (say from D), then it compares

generations. If the Forwarding object from A is from a later generation, then B

switches allegiance (i.e., the parent pointer switches to A). An additional message

passes from B to D, informing it of the change, so that the extra pointer can be

eliminated, along with the new Forwarding object (the Address at D can use this

to change its Forwarding object, but it must keep the same parent pointer, as there

is no matching new child pointer anywhere). As a result, a Process has only one

copy of an Address for a given object. On the other hand, when � moves from A

to B, the Address at A changes its parent pointer to point to B. At B, � places A

on its child list and, if there is already an Address at B, removes its parent pointer.

If the protocol is obeyed, neither parent pointers nor child pointers for a single

object can result in cycles. In the case of parent pointers, a cycle can only occur if

some Address, � has a descendant as parent somewhere. Suppose this is the case.

Then that Address has switched allegiance to some pointer which is a descendant

of itself. However a node will only switch parents if it receives a Forwarding

object from an Address of a later generation than its own. If that is the case,

then somewhere along the alleged cycle, some Address, �, switched allegiance to

an Address of a later generation then �, so � is no longer a descendant of �,

and there is no cycle. This holds even for the latest generation. The root of all

reference chains for the latest generation is the object itself; its Address has no

parent, and therefore cannot be part of a cycle. The (valid) child pointers are

37

just the inverse graph, and therefore also do not contain cycles. This is important

since a cycle would indicate some portion of the reference graph is cut o� from

the rest. If this were to happen through the behavior of some Process not obeying

the protocol, then a certain number of Addresses would be cut o� from the object.

Other Addresses would still function correctly. Although this can be eliminated in

a closed environment, it shows an unavoidable danger of using reference chains in

an open network; there is an implicit contract among all the members of the chain.

This scheme is very similar to the Scion-Stub Pointer Chains proposed by

Shapiro[54], but provides additional support for mobility, without which there is no

need to be concerned for cycles. Emerald[50, 41, 28] uses addresses, but resorts to

broadcast if an object isn't at the last know location. In the DEC Hermes[7] project,

each object has a home site which know the current physical location, although this

requires extra messages to keep consistent. Network Objects[5] maintain the child

pointers, but not reference chains; each object directly knows everyone who refers

to it.

2.2.2 What to Move

In contrast to objects in most systems, which are totally immobile, Dreme objects

are mobile by default. When an object's value is requested by another Process,

the object moves to that Process (possibly carrying some extra baggage with it)

unless the object has been pinned. Therefore it is more interesting to enumerate

the objects which are not mobile.

1. Numbers, booleans, characters, symbols, and the Dreme default function set,

are all immutable. They cannot be removed from a Dreme process, as this

would create severe implementation and semantic problems, but they can

be \copied". References to them in one process can easily be replaced by

38

references to the local versions in another machine. Messages contain su�-

cient information to locate or create the appropriate objects on the receiving

machine.

2. C++ functions are currently both immutable and immobile. With a run-time

linker they may eventually be copyable, if the underlying O/S and hardware

are compatible. C++ objects, on the other hand are mobile if the appropriate

methods have been overloaded. If the receiver does not know how to handle

the incoming object, an exception is thrown to the sender.

3. Monitors are immobile by default. The justi�cation here is that monitors

are used for concurrency control among several threads in the network and

should normally reside at the point where this is needed, rather than spending

time in transit. This is an implementation choice that could be rescinded if

found to be overly restrictive. In any case, it is possible to unpin a monitor

to move it.

4. Continuations are also immobile by default, although they can also be moved

when necessary. Continuations usually represent a point in a particular com-

putation in a particular thread. The point of having a pointer to a remote

continuation is to be able to return a value to that computation at its location,

even if this seems to break the symmetry of the system. It is desirable that a

continuation, some of its environment, and a copy of the function, all reside

in the same location, or else the Process will need to go over the network to

locate each identi�er and fetch each successive instruction.

5. Objects explicitly pinned by the program are immobile. In the case of objects

created by the program, only references to them can be exported in messages,

39

but in the cases of the immutable classes mentioned above, there is no change

in behavior. Likewise, objects unpinned by the program become mobile if

they are created by the program. C++ functions still do not move under the

current implementation.

In the case of an invocation, the expression in the operator position of the S-

expression is considered to evaluate to a function pointer, as in C/C++. If the

function is not local, then this is its Address. If the operator is an Address, then

the whole invocation is packaged and shipped to the site of the function, rather

than moving the function to the invoker, even if it is mobile. This allows closures

to act as communicating objects. When this is the case, parameters that are remote

references are also shipped as is; otherwise the objects would need to be shipped

twice, once to the invoker and once along with the message to the function.

Moving Functions

When moving a function from one Memory to another, we need to know not just

how to move the function, but also how much of its closure to move as well. Let �

be an identi�er whose value may change over the course of the computation. Since

� is mutable, it must be bound to a particular location, �, in the network. If a

function within the scope of � moves, should � move as well? Certainly, if the only

references to � are within that function, then � should move as well.

The code fragment in �gure 2.3 gives an example of this. Each time server is

called, a new client function is created and returned. The clients share access to

the identi�ers a, b, c and c-l, but each has a private set of aa, bb, cc, and dd.

The latter set should move with the client, whereas the �rst set should remain at

the server location (or be replicated with an appropriate consistency protocol).

The correct behavior can be derived by assigning to each identi�er and each

40

1 (define server

(let ((a (lambda (...) ...))

(b ...)

(c ...)

5 (c-l '()))

(lambda (...)

(let ((client

(let ((aa expr1)

(bb b))

10 (letrec

((cc expr2)

(dd (pin expr3)))

(lambda (e f g)

... code referring only to a, aa-dd, e-f ...)))))

15 (set! c-l (cons client c-l))

client))))

Figure 2.3: Deciding what to Migrate

function a nesting level. The number of scopes which a function brings with it

when moving is one less than the di�erence between the level of the function and

the level of the identi�er to which it will be assigned (if the outermost scope is at

the top-level, then it is assigned to level zero and the outermost scope is at level

one). In the example, server is at level 0, the let in line 1 is at level 1, the lambda

in line 6 is at level 2 (as are a, b, c, and c-l). The identi�er client is at level 4

and the lambda in line 13, which is returned by the function, is at level 7. Since

7 � (4 + 1) = 2, the returned function brings two outer scopes with it (aa, bb, cc,

and dd) as desired.

This analysis, as written, only holds for identi�ers. From the code fragment,

we can see that each remote client, in turn, will bring an example of b with it, but

the identi�er dd will point to an Address { the actual object is kept at the location

of the server (although with no local references to it). An extension of the same

41

analysis can be used to determine if the results of expr1 and expr2 need to be

given Addresses when they move. This requires determining if there is a reference

to the returned value at an outer scope.

To the extent that the local environment is not accessed, this is really an im-

plementation issue, as global addressing will maintain the right semantics wherever

the identi�er is located. Nevertheless, there are de�nite performance considerations

associated with the placement of objects around the network.

2.2.3 How to Move in a Concurrent Environment

As mentioned, when an object moves, it brings along the mobile graph of which

it is the root. Turning the graph into a message requires a marshalling process to

linearize the message and place it in a bu�er. Complexity arises from two sources:

1. Other threads in the Process may attempt to access objects while they are

being marshalled, including other marshaling processes.

2. The message graph may not be a tree, so certain objects will appear more

than once in the traversal.

The dangers from concurrent marshalling operations are inconsistent behavior (an

object might end up in two Memories when it should only be in one, or alterna-

tively, an access to an object might precede the object's arrival) and deadlock. The

key to avoiding these problems is ensuring one marshalling operation is always able

to complete and then ordering message transmissions by their dependencies. Con-

current threads of control present a danger in that data which is being marshalled

could be destructively altered, so that the data transmitted is inconsistent with the

current state of the system. This is similar to the serialization constraint placed

on database transaction systems. The simplest solution is stop-and-copy: when a

42

marshalling operation commences, halt all other processing until it completes. This

is not an adequate solution, as there is no �xed limit to the size of a message, and

two processes trying to transmit to each other would immediately deadlock.

The rest of this section describes an algorithm which resolves these issues while

still allowing some concurrency during the marshalling and demarshalling opera-

tions. For the sake of exposition, it is described as requiring three traversals of the

objects graph, although it is possible to combine the �rst two traversals into one by

increasing the communication among marshalling operations. We will also assume

that all interior nodes have Addresses; any that don't can be assigned temporary

ones for the duration of the operation. This is a \worst case" algorithm; better

performance is possible when the visibility of objects is known.

The First Traversal

The �rst traversal determines the contents of the message and resolves the concur-

rency issues among the operations. Contention among marshaling operations and

other threads over access to objects is handled by having each operation �rst place

a read lock and then later a write lock (in the parlance of database transactions)

on the objects it will move. This initially prevents other threads from changing the

state of objects which will be included in a message and later prevents any access

until the object arrives at its destination. Each marshalling operation is assigned

an index and contended locks are assigned to to the lower indexed operation. This

way, the only dependencies among messages will be from higher indexed messages

to lower indexed ones, meaning that the lowest indexed message will always be

free to be sent. In addition, each marshalling operation keeps a list of the opera-

tions it depends on, so each message knows the earliest point at which it can be

transmitted. The traversal proceeds as follows:

43

1. At startup, each marshaling operation is assigned an index.

2. The operation traverses the object graph. If a node in the graph is an im-

mutable base type (number, character, or boolean), then it is a leaf of the

traversal, and can be left as such. Otherwise the operation attempts to read

lock the object. The lock operation is as follows:

(a) If the item is unlocked, then set the lockId �eld of the Address to the

index of the operation. Return Success.

(b) If the item is locked by an operation of lower index, then put that oper-

ation on the current operation's dependency list. Return Fail.

(c) If the item is locked by an operation of higher index, then place the

current index in the marshalId �eld and place the current operation in

the other operation's dependency list. Return Success.

(d) If the item is locked by the current operation do nothing. Return Fail.

If the lock procedure returns Success, then traverse the newly-locked item. If

the item is mobile, then update the Forwarding object to point to the target

of the message.

3. After traversing the graph, the current operation waits for all marshalling

operations of lower index to complete their �rst traversal (until then, the set

of objects locked by the current operation is not stable), and then complete

it as well.

Once an item has been locked by a marshalling operation, it is read only. Any

destructive operation on a locked item causes the o�ending continuation to be

blocked awaiting completion of the message transmission. This way the contents

44

of the message will always be correct with regards to the current state of the system,

but other operations are not blocked. The obvious implication is that an applicaiton

must be very careful about moving objects involved in real-time operations. At the

same time, the contents of the message is now stable.

The Second Traversal

The second traversal determines the size of the message, how many objects, if

any, are at the head of cross edges or back edges in the graph, and how many

are actually locked. As the nodes are traversed, they are marked and their sizes

summed. Nodes that are encountered a second time are given increasing indices

from zero in the marshalId �eld. At the end of this traversal, the operation knows

how large the bu�er needs to be, how many repeated items it will contain, and how

many items it has locked.

The Third Traversal

Before commencing the third traversal, the operation creates the actual message

object. This structure contains the �elds described in �gure X, but the most im-

portant for our current purpose are the indexSize, which will contain the number

of repeated objects, and msgBuffer, which will contain all the objects moving to

the destination. Another array the size of the number of locked objects will be used

to unlock them at the end.

During the third traversal, the objects are placed in msgBuffer. Each object

type has its own particular representation. Immobile objects or objects locked by

other marshalling operations are represented by their Addresses (the Forwarding

information will be correct regardless of the state of the other operation because

it was changed in the �rst traversal). When an object is encountered for the

45

second or later time, its index value is used instead. Each time an object locked

by the current operation which is to move is encountered, the lock is raised to a

write lock, meaning that any other thread attempting to access that object will be

blocked awaiting successful completion of the message transmission.

After the third traversal, the message is ready to send. Each message must wait

until all messages it depends on (as determined during the �rst traversal) has been

sent. Once a message is successfully received and the objects reconstituted, each

moved object is replaced by its Address, all the locks are relinquished and all the

threads blocked by the message operation can be restarted.

Demarshalling

Demarshalling involves a single pass through the bu�er. Pointers to objects in-

volved in cycles are maintained in an array. Since the bu�er contains a depth-�rst

traversal, the �rst time such an object is encountered, it will contain the body of the

object. Subsequent references will only contain the object's index. As each object

is entered by the demarshalling operation it is write locked. The lock is lowered to

read when the object is exited. Finally, when all objects are locally reconstituted,

all locks are lifted and all threads restarted.

In the underlying implementation, marshalling and demarshalling are accom-

plished by recursive descent using C++ virtual functions. This allows C++ classes

linked into the implementation to bene�t from mobility as well (although the object

must be implemented on both sides).

The algorithm is presented for the general case, on the assumption of concur-

rent traversals with little information about the objects encountered. In a more

sophisticated system, information can be derived about the accessibility of objects

to limit the amount of locking. For example, if there is only one access path to a

46

Remote Execution Message contains a thunk to be evaluated by
the receiving process, which will send the result to the
continuation of the call

Asynchronous Execution Message contains a thunk to be evaluated by the
receiving process. No response is expected

Remote Invocation Message contains a function pointer and one
or more parameters. The function is to be applied
to the parameters, and the result sent to the continuation

Asynchronous Invocation As above, except no reply is expected.
Return Value Message is the reply from a Remote Execution or

Remote Invocation message

Figure 2.4: Message Types

Sender Address address string of sending object
Continuation Address Address of the continuation of the message

(including forwarding information)
Sequence Number all messages between two Processes are numbered.

Only garbage collection messages are necessarily ordered.
Message Type The message is one of �ve types
Index Size Number of items encountered more than once while

marshaling the operation
Index locations in bu�er of all the indexed items
Message Buffer Contents of the actual message

Figure 2.5: Message Bu�er Elements

subgraph, only the pivotal object actually needs to be locked, or if the object was

created by the sender, no locking may need to take place.

2.3 Remote Invocation

So far we have discussed how objects move about, but not how they are used.

Eventually some node A will want to access a value residing at a remote node

through local object �. When this occurs, the remote location sends the message

to the location indicated by the Forwarding object. After some time, a response will

arrive from
, the node containing the target of the invocation. The structure of a

47

message and of the response is shown in �g ?. From the perspective of Addresses

and Forward references, we can break this into four cases:

1. �'s parent pointer and Forwarding object both point to
. In this case, the

Address at
 also has a pointer back to A and can tell (from the message)

that the message took no indirect hops.
 need return only the answer to the

continuation of the call.

2. Neither �'s parent pointer nor Forwarding object points to
. In this case,

at the �rst hop, the message is marked as forwarded. When it arrives at
,

the Address at
 will create a child pointer to A. If the continuation of the

call is at A, then
 will pass a copy of the Forwarding object directly back to

A with the response. Since this structure is of a more recent generation than

the one currently at A, � will change both its parent pointer and Forwarding

object. If the continuation of the call is not at A, but at another node, C, then

 will send the response to C, rather than back along the call chain to A. In

either case,
 will send the new Forwarding object back along the call chain,

where each node will change its Forwarding object but not its parent pointer

(since the Address at
 has not created pointers to any of them). This second

step is the key improvement of this algorithm, as explained below.

3. Only �'s Forwarding object points to
. If the Address at
 doesn't have a

pointer to A, then it adds one to its list.
 sends an update parent message to

A (which may piggy-back on the answer), and � updates its parent pointer.

The answer, again, goes to the continuation, which might be in A

4. Only �'s parent pointer points to
. This means that the object has moved

to
 since the Address arrived at A. The invocation will proceed as in step

48

Α Β Γ

α

∆

Parent Pointer

Child Pointer

Forward Reference

Ε

Figure 2.6: Object � migrates from A to E.

Α Β Γ ∆

Ε

α

Figure 2.7: After � is invoked from node A.

2.

Figure 2.6 shows the case where object � migrates from node A through to node

E (or a reference to � migrates from node E to node A). Figure 2.7 shows the

situation after a message passes from node A to the object.

The location mechanism here is complicated by the inability to resort to broad-

cast in a very large network, forcing the algorithm to track its target one step

at a time. The use of path compression, as in [58], for longer chains means the

amortized worst case number of messages is nlogn if the reference graph is a tree,

where n is the number of links added by Address propagation plus object move-

ment. The invocation, however, only traversed n+ 1 links: from the source to the

49

destination, and then to the continuation. Where newer generations of Forwarding

objects encounter older ones, the path is compressed automatically.

The reference mechanism in SSP is similar, except that the forward references

of intermediate Addresses (called weak locators) are not updated, which can lead

to a large number (O(n2)) of messages in the case of long chains with bad access

patterns. LII also uses path compression, but does so by treating the sequence of

references (called tads) as a stack, so the messaging system cannot take advantage

of distributed tail-call optimization, which eliminates half the round trip. Path

compression is also important because it allows interior nodes to become leaf nodes,

which makes them easier to garbage collect.

2.4 Remote Evaluation

In keeping with Scheme, Dreme identi�ers are generally lexically scoped. If this

were completely true, however, then objects executing on a remote Process would

have great di�culty accessing local resources. All such resources would need to

have been negotiated between the object's originating Process and the current host

Process, and then placed in the scope of the mobile object. Unfortunately even this

expedient fails when the object moves again; there needs to be a solution which

provides a mobile object with access to local resources regardless of the Process it

is currently executing on, while allowing the local system to control just what that

access is. There are two main reasons for requiring this:

1. Code originating remotely may be buggy or malicious. It is important that

other objects residing at the same host be protected from harm. Of course,

even locally developed code might do damage, particularly if it is executing

in a persistent environment which must provide services continuously. Any

50

mechanism for controlling code of remote origin can control code of local

origin.

2. Lexical scoping means that any information accessed by the local function

is potentially visible to other objects in the originating Process. Because it

is not generally possible, and (given the overhead it would require) not gen-

erally desirable, to constantly monitor the behavior of every local executing

function, preventing sensitive information from being accessed in the �rst

place is probably the best way to keep it private.

To overcome this problem, Dreme introduces a limited form of dynamic scoping

called a host escape. When a function arrives, it is assigned a local environment.

The contents of this environment is decided by the Process object, which may

simply be the top level environment (providing no control over the function's exe-

cution), or might be the result of negotiations between the sending and receiving

Processes. During the course of execution of the function, any identi�er with a

prepended percent sign (%) is evaluated in this local environment rather than in

the lexical environment. In this way, for example, a call to write-line writes a

line at the originating Process, while %write-line writes one on the current host

Process (if write-line is, in fact, in the function's local environment). Assigning

the local environment is the link phase in receiving a remote object.

Members of the top level environment present a general di�culty for Lisp-

type languages because top level variables are all mutable and it is impossible to

determine lexically all the sites at which they may be changed, since the user is

capable of changing them at any time. Nominally they must always be checked

before being used. This represents a problem for compilation, as it means that

the pointer to the function must always be checked, and it is a problem for a

51

distributed Dreme program, as it means that each reference to a Dreme default

function requires traveling over the network, even though the exact same function is

available locally. We handle this by dividing the default function set into a primitive

set, such as car, cdr, and cons, and others, such as file-open, or display which

can adversely a�ect the local environment (we assume that the local process can

control the local time and space usage of objects). Primitive functions are treated

like numbers and booleans; they give the appearance of migrating, but they really

exist the same in every Process. Other default functions are pinned; they cannot

be moved, and so can only be called on the site from which the object originated.

Local access to these latter functions is only available through the host escape

mechanism.

For each Process, the local top-level environment is assigned as the default lo-

cal environment for that Neighbor (i.e., itself) and for the default set of Dreme

functions. When a message is received from a Neighbor, as the message is recon-

stituted locally, any functions encountered are given the default local environment

assigned to that Neighbor. Whenever a new function is created, it is assigned the

current local environment. Since all functions entered at the command line or read

in with load are created from the read-eval-print loop, or some function created

from it, all functions of local origin will have the top-level environment as the local

environment unless explicitly speci�ed otherwise. Likewise, any locally resident

code of foreign origin is only accessible through functions brought from the foreign

Process; any new closures will inherit the appropriate local environment. The local

environment of any function can be changed with change-local-environment,

but this is not necessarily accessible to foreign code. As mentioned before, the

same mechanism can be used to give untested code access to a test environment,

instead of the actual one, during development and testing. An attempt to access a

52

non-existent identi�er on this environment �rst generates an exception to a local

exception handler, which can then turn the exception over to the normal handler

for the executing code.

This simple scheme provides the local system with extensive control over access

to the local environment by locally executing code. The decision to assign by

Neighbor assumes that the inclusion/exclusion decision for code from a particular

Neighbor generally holds for all such code, since any exposed information can be

sent to that Neighbor by any piece of code with that origin. The contents of the local

environment can be negotiated between Processes, and the local Process always

has access to this environment, and therefore has the ability to alter or expand

it. Nevertheless, this mechanism, by itself, is not su�cient to deter a determined

opponent and needs to be integrated with a reliable means of authentication, such

as one based on digital signatures.

2.5 Concurrency constructs in Dreme

As soon as more than one (physical) processor is available to a system, the pos-

sibility of concurrency arises; Dreme is scarcely the �rst Lisp/Scheme derivative

to confront this issue. Concurrency breaks down into two aspects, creating it and

controlling it. We will examine the Dreme approach in the reverse order.

2.5.1 Controlling Concurrency

The main Dreme construct for controlling concurrency is the monitor. A monitor

is a lambda expression which serializes entry; once a continuation occupies the

monitor any other continuation that attempts to enter is blocked until the currently

executing continuation explicitly calls release to allow one of the waiting contin-

uations to enter the monitor. Release must be called explicitly, as tail recursion

53

(define release-proc #f)

(define monitor-proc

(let ((mon (let ((flag #f))

(monitor ()

(if (not flag)

(set! release-proc

(lambda () (release)))

(.... monitor-body))))))

(mon)

mon))

Figure 2.8: Monitor with an escaping release

elimination makes it di�cult to determine exactly when a scope has been exited,

although it would be possible to ensure this with a wind/unwind construct[14].

Dreme monitors are lexically-scoped but are weakened by the presence of �rst-

class functions. The thread inside the monitor can expose the associated release

statement outside its scope. This is demonstrated by the code fragment in �gure

2.8, which creates a monitor and then assigns access to the release call to the

globally available release-proc.

The underlying implementation contains a few critical sections, however these

are hidden from the application programmer. It is hoped that applications will not

need to create critical sections, as these will unilaterally stop all threads from all

applications. Monitors can be used to create critical sections among the threads

of a single application.

The other means for controlling concurrency is through a call to rep-loop, the

Dreme read-eval-print loop. This essentially terminates the calling continuation, as

it never returns, but either handles the next communication from the environment

(such as a command line entry, a user interface event, a message from another

54

Process) or schedules a waiting thread.

2.5.2 Creating Concurrency

Concurrency in Dreme is created by one of the following methods:

1. Assign a continuation to a port. Concurrency requires nonblocking communi-

cation with the external environment. Nevertheless, many applications wish

to interact synchronously with the environment. Dreme assigns a continua-

tion to the port and calls it when input (or output) is possible. A thread can

choose to block at the call, or continue to execute. In the latter case, a new

thread is e�ectively created to handle the communication. Communication

with Neighbors is handled in the same fashion.

2. Assign a continuation to a User Interface event. This is analogous to the

previous case, except that (at least in the case of X Windows) all events are

coming over the same port.

3. Create a local task to be evaluated asynchronously by calling the scheduler

(called tasker). Tasks may be added to the front of the list by calling

(tasker 'front thunk), or to the back. Thunk is a parameterless function

encapsulating the task to be performed. This function returns immediately,

and thunk will be scheduled to be evaluated.

4. Invoke a function asynchronously. If the function is local, then this behaves

essentially as in the previous case, otherwise the invocation is sent to the

destination and the local thread continues to execute.

5. If the Process has a preemptive scheduler, then threads will be interrupted and

rescheduled when their quanta expire. Although this is not strictly required

55

by Dreme, it is necessary if the Process is going to give any guarantees of

service to locally executing code. The current implementation uses a variation

on engines [17] to implement preemptive scheduling.

All of these add to the number of threads being controlled by Dreme Processes,

although the additional threads may be remote. Although preemption is not fun-

damental to Dreme, the scheduler is, as it is otherwise impossible to implement

certain concurrency constructs.

The automatic parallelization of Scheme programs is a well-researched topic

beyond the scope of the current work[23]. Any work done in that area is immediately

applicable to Dreme, particularly if the parallel program is to be run over a network

of workstations, as opposed to a single, shared-memory machine. Although the

development of Dreme emphasizes distributed applications, instead of concurrent

ones per se (a distributed application can be just as serial as a non-distributed

one), an automatic parallelizer could take an ordinary Scheme program, parallelize

it by adding Dreme commands for distributing the application, and then run it

over a network. By drawing a strong separation between the location dependent

and location independent elements of an application, Dreme routines to handle load

balancing, error recovery, etc., could be built underneath the original application

to manipulate the parallel pieces.

2.6 Distributed Programming Languages and Sys-

tems

Distributed systems is a large and constantly growing area of computer science.

In this section we will concentrate on distributed languages, and particularly on

languages similar to Dreme, such as such as Emerald, Obliq, and Telescript, which

56

explicitly support mobility, as well as actor languages and distributed lisp imple-

mentations. We will also examine Sun Microsystem's Java, which promises to have

signi�cant impact, despite its novelty.

When development �rst started on Dreme, the only signi�cant languages explic-

itly supporting physical mobility of objects in a network were Emerald [50, 41, 28]

and, to a lesser extent, Eden [2, 6], which we will examine �rst. A number of

systems have come into existence contemporaneously with Dreme. Excluding Tele-

script [26], about which so little is known, the most sophisticated, and the most

similar to Dreme is Obliq [10, 9], an object-oriented language which also uses

lexical scoping to support correct IPC.

2.6.1 Eden

Eden [6, 2] is an early example of an object-based distributed system. Although

originally intended to be implemented as an operating system, it was eventually

developed on top of Unix. The Eden programming language (EPL) was developed

as a superset of Concurrent Euclid, itself an expansion on Pascal to add support for

processes, modules, and monitors (in fact, an earlier implementation of Eden was

programmed using Pascal; movement to a concurrent language superset became

evident through the inability to express parallelism and invocation in Pascal).

The essential characteristics of Eden objects are that they:

1. are large-grained objects occupying an entire Unix process. In addition, each

object must contain all the Eden support code, which might be an order of

magnitude larger than the code for actually implementing the object.

2. are accessed by synchronous invocation. Invocations are type-checked partly

at compile time and partly at run time.

57

3. are referenced by capabilities, which are composed of the unique identi�er of

the object and a set of sixteen rights. The unique identi�er is used by the

system to locate the object when an invocation is made.

4. conform to an Edentype, which speci�es the interface to the object. An ab-

stract Edentype might be implemented by any number of concrete Edentypes.

5. are mobile and can move from machine to machine without their clients being

informed. It is possible to refer to speci�c machines; they are called nodes in

Eden and can be accessed by capability, as can all other system objects. Mo-

bility, however, is provided only to quiescent objects not currently responding

to invocations.

6. are active at all times. Since Eden objects are written in EPL, they will have

one or more active processes, although they might temporarily deactivate

themselves to conserve resources. Synchronization inside objects is provided

by monitors.

7. completely encapsulate local data.

8. potentially persistent through checkpointing.

Although EPL is statically type-checked, capabilities, interestingly enough, are

not. When a capability is declared, the user speci�es the abstract Edentype that

it is for. The compiler will check that all uses of the capability correspond to the

alleged type. At run time, however, the capability will be assigned to some Eden

object, which may or may not correspond to the desired Edentype. The run-time

systemwill only check to make sure that the invoked operations are supported by the

referenced object. This unusual loophole in the type system is considered necessary

58

for supporting system extensibility in the absence of inheritance. Otherwise a

capability in a continuously running program could not be assigned to an object

of an Edentype that was not created when the program started. In fact, a given

Edentype might conform to any number of other abstract Edentypes, but no means

is given to determine this conformity. This issue will be resolved in the typing

system for Emerald, discussed below.

Eden has a sharp distinction between system objects, which are large, univer-

sally locatable, accessible using capabilities, etc., and any other object. This leads

to Eden objects being used \sparingly". Other uses of concurrency are built from

the Concurrent Euclid subset of EPL; a concurrent construct must be written twice

if it is to be used both locally and globally. Again, this problem will be addressed

by the Emerald system.

2.6.2 Emerald

Emerald [50, 35, 28] is an object-based distributed language (although the complex-

ity to support the language brings it almost to the level of a distributed operating

system) whose most innovative feature is its complete support of mobility for ob-

jects of every type and granularity. Associated with this is an explicit recognition

of location. Most concurrent languages, in fact, completely �nesse the question

of where threads run. This makes sense for a language for a uniprocessor, like

Concurrent C++, or for a shared memory multiprocessor, like PRESTO, where

all locations look exactly the same. In such situations, concern with location is

irrelevant at best, and positively damaging if it forces the programmer to make

compile time decisions that can only be made optimally at run time. In a network

of heterogeneous systems, however, location can be very important. Closely coop-

erating components should be placed near each other to minimize network delays;

59

components communicating with the outside world, such as device controllers, may

have to reside on certain equipment. And in some situations it might be neces-

sary to move them around. In addition, there are some interesting aspects to the

Emerald language which bear mentioning as well.

Emerald has �ve primitives for implementing mobility:

1. Locate an object by �nding the node it resides on.

2. Move an object to a given node or to the node that another given node is

presently on.

3. Fix an object at a particular node so that it cannot subsequently be moved.

4. Un�x an object so that it can be moved.

5. Re�x an �xed object at another node by atomically Un�xing, Moving, and

Fixing it.

In addition, Emerald supplies call by move and call by visit as parameter passing

modes, along with call by object reference. In the �rst case, the parameter object is

colocated with the invoked object and remains there after the invocation terminates.

In the second, the parameter object is returned to the node it was at before the

invocation. Since invocations are synchronous in Emerald (i.e., the executing thread

physically moves to the remote node) and the caller will not be accessing the

parameter while it is moved, this is quite useful, since the cost of piggy-backing

some information on the invocation is much less than additional round trips while

processing the invocation. In some cases, as in mail delivery, the object would have

been the subject of a later Move command anyway.

60

The Emerald language does not have a class construct or inheritance. Instead,

Emerald uses types and object constructors to convey the same, or similar, proper-

ties. In traditional Object Oriented languages, classes and inheritance provide two

services: they provide common interfaces, and they support code reuse. Emerald

takes the former capability and embeds it in its typing system, but rejects the latter.

Code reuse assumes that similar interfaces imply similar construction, and so the

same function can be used on any object of that class. (C++ is particularly egre-

gious in this regard. Friend functions or friend classes allow uncontrolled access to

the internals of objects of the class. Even overloaded binary operators do the same.)

The Emerald compiler, however, must be free to modify the internal construction

of various objects to ensure mobility. This is transparent to other objects, since

all interaction is through the unchanged public interface. This has other bene�ts,

since it allows developers to be as free as necessary with optimizing operations for

di�erent environments (or languages) or changing them with subsequent releases

without worrying about making old code (which might still be running) obsolete.

An object, A, can be used wherever an object of type T is expected if the

type of A, S, is conformant with T (S o> T). There are four conditions for such

conformance:

1. S provides at least the operations of T (S may have more operations).

2. For each operation in T, the corresponding operation in S has the same number

of arguments and results.

3. The types of the results of S's operations conform to the types of the results

of T's operations.

4. The types of the arguments of T's operations conform to the types of the

61

arguments of S's operations.

The �rst three imply that anything that can be asked of a T can be asked indis-

tinguishably to an S. The last says that if an S is acting like a T, no argument will

be passed to it that cannot respond to messages that an S would send it, given the

type of object that the S object expects.

Emerald types are �rst class objects and can be passed around as parameters

and be declared as variables, with the proviso that all operations on them be re-

solvable at compile time. The type is a collection of Signatures (where Signature

is an Emerald type) and is created by invoking a type constructor with a number

of function declarations. The generality of this scheme means that not all type

checking can be done statically at compile time; the run-time system will still need

to check conformance in some cases. The error, however, will be caught at the

invocation level, and not by some error in the middle of an operation. Emerald

does not currently have an exception mechanism to handle these cases.

Emerald objects are created by calling an object constructor and assigning the

value returned to some program element. This allows the creation of both one-of-a-

kind objects and classes of objects (by wrapping the constructor in another function

that calls it as requested and returns the new objects). An interesting example of

this is the Array constructor, which is a routine which exports an of method which

expects an abstract type parameter and returns an object that exports a Create

method, which returns an object with various array methods. If Create also sup-

ports a getSignature method, then it is an abstract type and an integer array is

declared:

var IntArr:Array.of[Integer].Create

62

Object location and mobility demand signi�cant run-time support and impacts

even the structure of objects. Each object is composed of four components:

1. A network unique name or id.

2. A representation, which is the data stored in the object. User de�ned objects

contain references to other objects.

3. A set of operations, some of which are exported and can be invoked externally,

some of which are private to the object.

4. An optional process. Objects with processes execute independently of each

other and of any invocations on the associated objects (although certain oper-

ations may be placed within monitors, allowing for some concurrency control.

Note that, conceptually at least, each object carries around not only its data,

but all the code for its operations. Each object is assumed to have a completely

di�erent implementation, so even objects from the same constructor cannot access

each others internal data. This allows the compiler to actually create di�erent

implementations for the objects returned from the same constructor, depending on

their potential uses. Emerald divides objects into three categories, according to

how the compiler determines they might be used. These are:

1. Global Objects, which can move around the network and be called by external

objects not known at compile time. They have global scope and so references

to them can be passed around. They are allocated from the heap by the

kernel, since they may need to move. An invocation of one might require a

remote procedure call.

63

2. Local Objects are local to some other object. References to them never go be-

yond the local scope, so they are never called or moved except in conjunction

with the outer object. They are allocated on the heap by compiled code.

3. Direct Objects are local objects allocated directly within the enclosing object,

such as built-in types or simple objects.

Since they are all accessible only through their interfaces, the compiler can choose to

implement an object in any of three ways. In terms of the physical representations,

these are direct for Direct Objects, indirect for Local Objects and doubly indirect

for Global Objects. In the latter cases, the local pointer has the address of an area

of memory whose �rst word has a tag, a G bit and an R bit. If the G bit is set, then

the object is global, and the area in memory is an Object Descriptor. The code

then checks the R bit. If it is set, then the object is on the same node, and the next

word of memory is a pointer to the Object Data Area, which becomes the target

of the invocation, otherwise the system traps to the kernel for a remote invocation.

If the G bit is not set, then the object is local and the memory area is the Object

Data Area.

Mobility is an essential part of the Emerald system. Moving a simple data object

is straightforward. The kernel uses a template to build a message containing �rst

the data area and then mapping information to allow the receiving kernel to map

location dependent addresses. Since the data area can contain references to other

objects, information on them must also be sent. For global objects, the unique

OID, forwarding address, and address of the object descriptor on the sending node

ar included. For local objects, the appropriate information is sent recursively. The

receiver allocates space for the new global object, builds a translation table for

all the objects received, and then uses their templates to traverse the structures,

64

correcting pointers. For unknown global objects, new descriptors are built using

the information received.

The process becomes much more complicated when there are invocations active

in the object, since they are moved as well. When an Emerald process is preempted,

the list of outstanding activation records is scanned and they are linked to the

objects in whose bodies they executed (at each return the process must unlink the

activation record, although most of these should occur between preemptions, so no

work should be done except checking a ag). When an object is moved, the list of

activation records is scanned and they are packaged similarly to the data portions.

If an invocation record is moved from the inside of a stack, then the stack is split

into three parts, with one being sent, and all three being modi�ed to appear as if

remote invocations had occurred. Finally the list of invocations must be scanned to

locate any spill registers that the moving portion needs that are stored elsewhere on

the machine, and any spill registers that it contains are linked into the appropriate

place.

2.6.3 Obliq

Obliq, developed by Luca Cardelli at DEC SRC, is an object-oriented programming

language supporting mobile closures in a network. Obliq is an interpreted language

written in Modula-3 that uses network objects, a distributed object system, also

developed at DEC SRC, for Modula-3 objects.

Objects in Obliq are a collection of named �elds, where each �eld is a value, a

method, or an alias. Values and methods have their usual meaning. An alias is a

reference to a method in another object, so that invoking the method in the ostensi-

ble target of a method invocation actually invokes the method which it aliases. The

Oblique object system contains no classes; inheritance is approximated through the

65

cloning an object, similar to Self, where objects can serve as prototypes for other

objects. A single object can be created by cloning several other objects.

As a distributed system with some mobility, Obliq provides a network-wide

distributed memory similar to Dreme. The global address space is divided into

sites, which represent physical address spaces in the network. Each site contains

a number of locations where mutable values are placed. Locations are �xed to

particular sites and do not migrate. Transitively, entities that encapsulate locations

also cannot migrate. These include:

1. objects which are both bound to locations and contain locations for their

updateable �elds.

2. arrays since the array elements are mutable.

3. variables as their values are also updatable.

In other words, mutable Obliq entities, unlike mutable Dreme entities, are �xed to

their sites.

Unlike mutable objects, Obliq closures are mobile, but di�erently than are

Dreme ones. An Obliq closure consists of its code and a table of its free vari-

ables. The code can be transmitted, but not the variables. In Dreme, objects are

ordinarily transmitted if they are completely encapsulated in the closure, as they

are no longer accessible on the originating node. There are two possible reasons

for this di�erence:

1. Obliq depends on Modula-3 network objects, which do not migrate once cre-

ated. Therefore, once a location is created, it is �xed. Since all object

management in Dreme was developed with the interpreter, Dreme does not

have this restraint.

66

2. Obliq considers objects to be structures with named �elds. Although Dreme

does not currently have an object system, our preferences are towards treating

objects as a particular type of closure, where an object is, above all, the

locations it encapsulates. [kamin+reddy] discuss both approaches to objects

and show they are equivalent, although [reddy88] asserts that the closure

model is more abstract.

Obliq applications locate foreign objects through calls to very simple name

servers. A name server is a process with a distinguished IP address. The protocol

between the application consists of four calls:

1. net export(``obj'', NameServer, obj1), where \obj" is a string identi-

fying the object, NameServer is a string with the IP address of the name

server, and obj1 is a reference to the object. Obj1 must be an Obliq object,

as opposed to a closure.

2. net import(``obj'', NameServer) returns the location of obj1.

3. net exportEngine(``Engine1@Site1'', NameServer, arg), exports an ex-

ecution engine. An execution engine receives single-parameter Obliq closures

and executes them, passing in arg as the single parameter. The argument can

serve as the access point to the local environment.

4. net importEngine(``Engine1@Site1'', NameServer) imports a reference

to an execution engine to which closures can be sent.

Obliq is very similar to Dreme, and either one could be programmed in the

other. Certainly the Obliq object system is implementable in Dreme. Where Dreme

extends beyond Obliq is in its support for complete mobility, even down at the

67

implementation level. This allows the exploration dynamic topologies, which would

not be possible with Obliq. In this sense, Dreme remains closer to Emerald.

2.6.4 Telescript

Telescript, from General Magic, is another interpreted language supporting some

kind of mobility, although General Magic has released almost no concrete informa-

tion about their language. The name is a pun on postscript, the ubiquitous printer

language; Telescript hopes to ful�l the same function in the network. Telescript is

an agent based language; agents reside at particular hosts and move to other hosts

when executing the go command. When arriving at a host, the agent must access a

name server to communicate with other local agents, and use a rendezvous mecha-

nism to communicatewith agents at other hosts. General Magic was very concerned

with securing in developing Telescript. Agent identities are veri�ed with digital sig-

nitures, and each agent travels with a ticket which states the desired capabilities

of the agent and the amount of resources which it is authorized to consume. Hosts

may reject agents outright, or terminate them when their authorizations terminate.

General Magic further claims that interpreted languages are inherently safer than

compiled languages.

It is di�cult to compare Dreme to an unknown such as Telescript. By explicitly

supporting the agent paradigm and concentrating heavily on security issues, the

designers may have limited the exibility of the language. The use of a rendezvous

mechanism for remote communication seems to indicate that this will be more

complex than it is in Dreme, making it di�cult to write a multiuser, distributed

application in Telescript. Their concern for security may have led them to an

architecture which creates unnecessary overhead when security is less of an issue.

68

2.6.5 Actors

The actor model was introduced by Carl Hewitt [36] as a paradigm for distributed

AI applications. As such, it predates Communicating Sequential Processes [21],

although the latter has been far more inuential in the development of concur-

rency in Algol-like languages. Nevertheless, actors have been very inuential in

the development of object-oriented concurrent languages. Actors support both

�ne and medium grained parallelism. \The point of actor architectures is not

so much to simply conserve computational resources, but rather to provide for

their greedy exploitation { in other words, to spread the computation across an

extremely large-scale distributed network so that the overall parallel computation

time is reduced."[1]

2.6.6 Act

The most complete elaboration of the actor model is found in [1], and the following

description is based on it. An actor system is built of a set of autonomous compo-

nents called actors which sit around waiting for tasks (synonymous with messages

in other languages). When an actor receives a task it can:

1. Create some new actors

2. Send tasks to actors it knows of

3. Perform some computation

4. Specify a replacement behavior for itself

Most actors will respond to a task by creating new actors and sending them

tasks, but the model does include provisions for a limited number of base actors

(integers, reals, etc.) which respond to a task by performing a computation and

69

(optionally) sending back a task. The last step, specifying a replacement behavior,

is the only requiredone, in that an actor which does not specify a replacement

behavior (even if it is "do the same thing") cannot respond to the next task. On

the other hand, there is no speci�c order in which these steps are to be performed,

so once the replacement behavior is speci�ed, the next task can be received and

processed, even while work on the previous task continues, thereby increasing the

degree of concurrency in the system. Strictly following the model implies that any

computation more complex than arithmetic requires creating new actors, implying

very actor-intensive systems. Garbage collection of abandoned actors is, of course,

essential for any actual implementation.

Formally, an actor is an element a�A = f(m; b) j m�M, the set of all mail

addresses, and b�B, the set of all behaviorsg. The local states function, l, of a

set of actors is a mapping from the addresses in the system (M � M) to their

behaviors, i.e. l : M ! B. Each mail address is unique in the system, in that

there will not be more than one actor waiting for a task at a given address. A

task is de�ned as a tuple from the set t�T = fI �M �Kg, where I is the set of

tags, M is the set of addresses, and K is the set of all possible communications,

where a communication is simply the information that one actor wishes to send to

the other, a command, return value, or whatever. The tuple t is guaranteed to be

unique { there is only one task with a given tag. A con�guration is a pair (l;T),

i.e., the current actors and the outstanding tasks. Both elements are �nite. As the

set of behaviors is the centerpiece of the model, the behavior of an actor, a, is an

element of B = (I � fmg �K ! Fs(T) � Fs(A) � A), or a mapping from tasks

to a new con�guration, where the �rst two elements are new tasks and actors, and

the �nal element is the replacement behavior (with the same mail address). Agha

also places the following restrictions on new tags and addresses: the tag of the

70

processed task is a pre�x of the tags of all newly generated tasks, and also of the

mail addresses of newly created actors (since there is the further restriction that no

tag or mail address can be the pre�x of any other, this implies that tasks disappear

from the system once they are accepted by an actor). This �nal restriction has

obvious utility for controlling an application, as all the actors are now organized in

a forest of trees branching by task (it is a forest if the application is seen as starting

with some initial set of actors, but it would be a tree if the application starts with

a single initial actor which receives a startup task). Actors in the same subtree

can be located by changing the last element of the address, and the actors can be

garbage collected when the task is completed by string matching on the address.

The basic actor model assumes that all messages are eventually delivered, but

assumes nondeterminism in the order of arriving messages, a very reasonable as-

sumption since there is no global clock and no guarantee of maximum delay in a

su�ciently large network. The guarantee of delivery is an assumption only that

the physical network will not lose messages. Actors have no direct access to mail

addresses, but come into being with a �nite set of acquaintances and create more

acquaintances. Since they only communicate with members of these two sets, all

messages go to �xed addresses. In addition, since all actors, during the course of

processing a message, must specify a replacement behavior, there will eventually

be an actor at that address waiting to receive the message (garbage collection is

not part of the underlying semantics, so a garbage collector would need to prove

that an actor will never get another message). Note that this, if taken seriously,

severely restricts the body of an actor. For example, loops and iteration must be

implemented by communication between actors, since in�nite loops could prevent

the speci�cation of a new behavior (although an in�nite loop among actors is �ne).

For example, recursion is performed by an actor sending a message to itself. In a

71

certain sense, each actor functions as a single line of code in the actor program.

As a result of this, mail address generation must be part of the run-time system

and addresses must be treated like atomic objects inside the language (even though

they might be very large atoms), or else a task could be send to a non-existent loca-

tion. This is somewhat in contrast to the Lisp world, from which actors originated,

in which almost everything is manipulable. Of course any given actor language

could provide operations on mail addresses, although at the loss of some theoretical

purity.

[1] provides two bare bones actor languages, SAL (Simple Actor Language) and

Act. SAL has algol-like syntax and Act has lisp-like syntax. A program in SAL is

composed of a series of behavior de�nitions, let statements, and send statements.

A behavior de�nition is of the form:

def <behavior name> (<acquaintance list >) [<communication list>]

<command>

end def

where <acquaintance list> gives the actors which an actor with this behavior

knows when it starts, <communication list> includes the kind of communication

that is sent, as well as the parameters (this is generally in a case statement of the

form:

case operation of

op1: (<parameter list>)

op2: (<parameter list>)

: : :

end case

72

providing a way of interpreting the parameters based on the �rst element of

the list). The command is a non-empty sequence of if-then-else, become, let, send,

or def statements. The become statement (including acquaintance list) determines

how the actor will act on its next communication, and the send statement send a

communication to some acquaintance. The let command, whose form is:

let x = new actor(p1, p2, ...) [and let ...]* f <command>g

creates a series of new actors which can then be used within the inner scope.

Act is essentially the same, but with a Lisp style syntax. In both languages, actors

are referred to by name. An actor cannot infer the existence of another actor simply

from what it knows from its own subset.

Although computationally su�cient (with the addition of operations on base

objects, such as integers, etc.), these languages are not easy to program with.

Several more sophisticated constructs are added for the sake of ease of use. These

include:

1. the use an intermediary object (called a customer) for receiving return com-

munications from an actor in the context of a let statement. Here, we use the

construct:

<statement list 1> let future = (call server[p1, p2]) f<statement list 2>g

<statement list 3>

In this case, future is a hidden parameter in the call to server. Server will use

a reply statement to send its value back to future, at which time <statement

list 2> will be executed. In the meantime<statement list 1> and <statement

list 3> can execute concurrently. Creating an object to perform a duty like

this is also called delegation.

73

2. insensitive actors are rather the opposite. They enter a wait state in which

they bu�er all communications while they wait for a reply which will tell

them how to process future communications. This can be done by using a

customer as above, and then switching to a behavior in which the actor puts

all communications on a queue (which is done by creating a list of actors,

each holding a communication and waiting to hand it back with a reply) until

it receives a message from the customer, at which time it switches to the

appropriate behavior to read back the queue.

3. sequential composition, which is done using semicolons, i.e.,

f<command list 1>g;f<command list2>g.

<Command list 1> is performed before <command list 2>.

4. delayed evaluation of in�nite structures can be handled using delay and force

commands. Delay essentially creates an actor but does not actually send it

the message to evaluate the rest of the structure. Force causes it to evaluate

the next part of the structure (since it should then hit another delay command

at some point, stopping further evaluation).

2.6.7 ABCL/1

A more \heavy duty" actor language is provided by ABCL/1 (Actor Based Con-

current Language) [62, 55]. ACBL/1 contains a number of modi�cations to the

original model to ease actor programming and to \serve as an executable lan-

guage for : : :modeling and designing various parallel and/or real time systems

such as operating systems, o�ce information systems, : : : factory automation sys-

tems, : : : rapid prototyping : : : [and] the AI �elds : : : ." As with many other Object

Oriented languages, this means restricting message passing to heavier weight ob-

74

jects. \inter-object message passing is entirely based on the underlying object

oriented computation model, but the representation of the behavior (script) of an

object may contain conventional applicative and imperative features : : : . Control

structures (such as if-then-else and looping) used in the description of the behavior

of an object are not necessarily based upon message passing."[62]

Objects can be in one of three states: active, which means in the process of

running its script; waiting, which means blocked on the receipt of a message (which

may be any in a set, as in a select statement) before continuing a script; or dormant,

which means the script is terminated, and the object is waiting for a new message

to restart the script. In the raw actor model, waiting and dormant simply represent

di�erent behaviors. Objects may have local memory, in which case they are called

serialized, or are without, or unserialized (in the raw model, local variables are

passed with the become statement).

There are two kinds of message passing in ABCL/1. An ordinary message, M,

sent to an object, T, is serviced according to T's state. If T is dormant, then M

is checked to see if it is accepted by T's script. If so, it is processed, otherwise it

is discarded. If T is waiting, then M is checked against the current conditions that

T is waiting for, and accepted if it matches, otherwise it is placed on the ordinary

message queue. If T is active, M is placed on the waiting queue. An express

message, E, bypasses this. If T is processing an ordinary message, M, in either

active or waiting modes, then M is suspended and E processed. If T is already

processing an express message, then E is placed on the express queue. Express

messages function much like interrupts. (It is possible, however, to designate certain

sections of code as atomic.)

Each kind of message comes in three avors: past type message passing, in

which A sends a message to B and A continues with its own computation (written

75

[B <= A] in ordinary mode and [B <<= A] in express mode; now type, in which

A sends to B and blocks waiting for B's reply ([B <== A], and [B <<== A],

respectively); and future mode, in which A additionally passes a result object to B

into which the result will be put for A to access at some point in the future ([B <=

A $ x] and [B <<= A $ x]). In the last type, x can be queried to see if it can be

accessed, and any number of results can be picked o�, one at a time (a premature

access suspends the reader). Naturally, both of the latter types can be reduced to

past type messages.

ABCL/1 does not have a become statement, but this can be mimicked by having

the object move from wait state to wait state, where each desired behavior corre-

sponds to a di�erent wait state. The top level messages designated by the script

are never returned to, and would therefore only be available to express messages.

They would serve as an interrupt table.

Objects are de�ned in ABCL/1 with the following syntax:

[object object -name

(state local state declarations)

(script

(=> message-pattern1 where constraint1

actions1)

(=> message-pattern2 where constraint2

actions2)

...

)]

Scripts can recursively contain object de�nitions, so it is possible to create

76

constructor objects, whose purpose is to create new objects of a given type, like

constructors in class-based languages like C++.

ABCL/1 is a continually evolving experimental language. In the version dis-

cussed here it has been used for numerous programs, including English parsers,

parallel discrete simulation, robotic control, and some AI work [62]. A distributed

version in Lisp running on a network of Sun workstations was developed [8]. Later

versions of ABCL/1 have added support for exception handling and reection [22].

Exceptions are trapped by enclosing some part of a script with a catch-signal con-

struct:

(catch-signal

: : : actions : : :

(handler

(=> signal-pattern

handler-body)

: : :

))

There are a few ways to raise signals. For instance, various constructs can have time

periods attached, such as a message that expects a reply [T <== M % 100], which

will raise a signal if it is not performed in 100 units, explicitly call (raise : : :),

encounter a system-de�ned error condition (i.e., divide-by-zero), or encounter an

unacceptable message (i.e., a message sent to an actor for which there is no script).

In the last case, the signal is [:unaccepable M :from sender :to T], which is

sent either to the sender or to an explicitly stated complaint destination that was

77

included in the original message.

2.6.8 Actors and Dreme

In papers such as [19, 20], it is clear that actor semantics are equivalent to a

restatement of denotational sematics. As such, all languages can be seen as variants

on actor languages, Dreme included. As a version of Scheme, Dreme is closely

connected to actors, as Scheme's original development was partly to concretize

some of Hewitt's ideas for actors.

If we look at actors in a more restricted sense, as message passing languages

with the particular become semantics and a continuation-passing style, then we see

that Dreme remains more closely wed to traditional languages, although imple-

menting an actor language would be quite straightforward. Dreme also has some

elements which are not found in actor languages, such as mobility, an awareness of

the physical topology, and the ability to set policies for the behavior of objects in

a particular process.

2.7 Lisp Systems with Mobile Objects

Parallel Lisp systems date back to early Actor work. Multilisp [52], for example,

is an early parallel implementation of Scheme which introduces two important

constructs, the future and the pcall. These systems have tended to be on shared

memory multiprocessors or multithreaded on a single processor. Here we will

look at some systems which assume distributed memory and even some degree of

mobility.

78

2.7.1 Concurrent Scheme

Concurrent Scheme (CS)[31, 56] is a dialect of Scheme developed for the Mayy

[30], a distributed memory multiprocessor, but which also runs on networks of

workstations. CS borrows the concept of a domain from Hybrid[42]. Domains are

analogous to monitors. Only one thread can be active in a domain at a time, provid-

ing protection against concurrent access, but also elevating threads and requiring

a set of primitives to handle them. All computation takes place within some do-

main, providing mutual exclusion for data access, but requiring other threads to be

queued. Inside a domain, the primary form of encapsulation is the closure, which

is treated like an object. The entirety of a closure should reside within a single

domain; global variables are discouraged. Data is copeid when it moves from one

domain to another. Only domains, threads, placeholders and closures, which must

enclose state, are passed by reference.

Operations on domains include:

� make-domain, which optionally takes a network node and heap size.

� (apply-within-domain <proc> <arglist> . <domain>) invokes <proc>

on <arglist> in <domain> and returns the result. The domain parameter is

optional if the procedure is a closure. The current domain remains occupied,

so this is similar to RPC.

� (delegate <proc> <arglist> . <domain>) acts as above, except the cur-

rent domain is vacated while the thread is migrated. When the result arrives,

the thread of the continuation must wait on a queue if the domain is occupied.

CS also includes primitives to manipulate threads, as they are critical to the

domain approach. The language uses placeholders as an analogue to futures with

79

the same semantics.

The fundamental di�erence between CS and Dreme is in the former's insistence

on tying all closures and mutable data to particular locations on the network. This

is partly intended as a means of single threading access to mutable data, but it is

not clear why a construct such as monitors is not su�cient. Semantically, CS is a

restricted subset of Dreme where closures are automatically pinned upon creation

at its site of origin, and all other data is copied rather than moved when sent from

node to node.

2.7.2 ICSLAS

ICSLAS[49], a successor to the language described in [47], is a distributed Scheme

dialect with similar goals to Dreme, but with a very di�erent emphasis. At the

lowest level, ICSLAS depends on an object-oriented system using generic dispatch,

similar to CLOS [32] and the developer's own Meroon[48].

In such a system, grosso modo, objects are records and are completely separated

from the code that manipulates them, which is hidden in generic functions. Each

generic function contains one or more method bodies; each method body has a

di�erent signature and can be placed in a lattice accordingly. When a generic

function is invoked, a dispatch mechanism examines the types of the parameters

and chooses the most appropriate method body and applies the method to the

parameters.

The natural means to accomplish distribution in such a system, and the ap-

proach taken by ICSLAS, is to make the generic functions constant on all nodes

and to have the objects migrate to them when the function is invoked. In ICSLAS

these objects are very small. The source code is converted to a network of �ne-

grained objects representing the executable code in a CPS format. When a generic

80

function on some node requires one of these objects it is brought over, and husks

(an empty chunk of memory that a remote object can later overwrite) created for

its neighbors. When the object has been used and the next one required, that is

brought over to replace its husk.

ICSLAS and Dreme disagree in two pragmatic aspects and one philosophical

one. Dreme is byte code interpreted so a function or object executing on a single

node of the network does not pay a price in performance because it could have been

distributed. The representation of the \compiled" program as a network of small

objects organized in CPS is very similar to the approach taken in an early version

of the Dreme interpreter. This was rejected in favor of the less object-oriented

byte-coded alternative uniquely for reasons of performance; a later version might

ship platform-independent byte code and convert it to platform-dependent object

code on arrival. Also, given that round trip network latencies are relatively �xed,

and that processing often maintains some locality of reference (a thread entering

a function or closure is likely to spend time there), it is better to send more data

over the network together. Dreme uses Scheme's own scoping mechanisms to help

determine how large this is.

The more philosophical issue is related to the use of generic functions for imple-

menting an object oriented system in the network. Generic functions and message

passing represent two di�erent styles of object oriented system. In a distributed

system where objects are developed independently, the use of generic functions can

be problematic. Given two objects, a thread, a call to a generic function, and

various method bodies scattered around the network, it is not obvious where pro-

cessing should take place. By contrast, message passing clearly distinguishes the

recipient of the message as the next location of the thread of control. In addition,

the message passing approach better handles encapsulation, a prerequisite for any

81

security.

2.8 Java

A very recent development which deserves some mention here is Java[16], an object-

oriented language developed by Sun Microsystems. Java originally started as a

project to extend C++ to support run-time linking, but then evolved into a type-

safe interpreted language depending on a fast byte-coded virtual machine (VM).

Java's visibility has risen considerably through the recent release of HotJava, a

WWW browser which allows applications to be imported from a Web server.

The fundamental aspect of Java is its support for implicit run time linking of new

classes. All object code is divided into classes which reside in separate �les. A Java

program starts through the instantiation of an object of a particular class. As the

object runs, it creates other objects from other classes, however the code for those

classes does not need to be physically present in the program. Trying to instantiate

an object of a non-existent class generates an exception which is handled by a class

loader object. The object code for the class is located, imported and linked into the

interpreter, and the instantiation attempt is retried. By incorporating an exception

handler which can access a network, a Java class can reside anywhere.

This implicit linking has an interesting impact on Java syntax. Because classes

must be self-contained units (as they can be called from anywhere), Java programs

do not contain global variables. However some of the functionality of multiple

scopes can be recovered through the inheritance mechanism. Java supports single

inheritance and, following in the tradition of C++, has static variables (called static

members in C++). These static variables are members which exist once for a class,

instead of once for each object. These variable could be used to create a tree of

82

(define name-server '())

(set! name-server (cons (cons 'service-name service-function) name-server))

5 (let ((service (assoc name-server 'service-name)))

(if service (service args)))

(let ((service (assoc (remote-eval server '%name-server)

'service-name)))

(if service (service args)))

10

(let ((service (remote-exec server

(lambda () (assoc %name-server 'service-name)))))

(if service (service args)))

Figure 2.9: Minimal Distributed Object

scopes of static variables with each subclass adding its own group, until at the

leaves there are objects with traditional members. This would not be equivalent to

true nested scoping; in Java there are an unlimited number of objects with private

members, but the number of static variables is �xed by the number of classes.

Java di�ers from Dreme by only supporting run time transport of object code,

i.e., the distributed delivery of self-contained applications, while Dreme, by con-

trast, supports movement of both code and data for the distributed delivery of

distributed applications. Implementing Dreme's features in Java would not be an

easy task. An interesting alternative, which we are contemplating, would be to port

Dreme to use the Java VM.

2.9 A Dreme Example

Having introduced Dreme's extensions to Scheme, we will now give a brief example

of a distributed application. We will show three iterations of making a distributed

83

(define add-svc #f)

(define name-server

(pin (letrec

((serv-list '())

(add-func

(lambda (name service)

(if (and (symbol? name) (function? service))

(set! serv-list (cons (cons name service) serv-list))))))

(set! add-svc (pin add-func))

(lambda ()

(lambda (name . args)

(if (symbol? name)

(let ((service (assoc name serv-list)))

(if service (apply service args)

(throw 'not-available)))

(throw 'invalid-name)))))))

(define name-server (remote-eval server '(%name-server)))

Figure 2.10: Minimal Server Object 2

84

(define add-svc #f)

(define name-server

(pin (letrec ((serv-list '())

(add-func

(lambda (name service)

(if (and (symbol? name) (function? service))

(set! serv-list (cons (cons name service)

serv-list))))))

(set! add-svc add-func)

(lambda ()

(let ((client

(lambda (name . args)

(if (symbol? name)

(let ((service (assoc name serv-list)))

(if service (apply service args)

(throw 'not-available)))

(throw 'invalid-name)))))

(if (eq? (assoc security-level ??sender??) 'trusted)

client

(fix client)))))))

(define name-server (remote-eval server '(%name-server)))

Figure 2.11: Minimal Server Object

85

(define add-svc #f)

(define del-svc #f)

(define name-server

(pin (letrec ((serv-list '())

(client-list '())

(add-func

(lambda (name service)

(if (and (symbol? name) (function? service))

(set! serv-list (cons (cons name service)

serv-list)))))

(del-func

(lambda (name)

(par-map (lambda (x) (x 'delete name)) serv-list)

(removeq serv-list name)))

(set! add-svc add-func)

(set! del-svc del-func)

(lambda ()

(let* ((letrec

((priv-list '())

(manip-list

(monitor (action name)

(cond

((eq? action 'add)

(set! priv-list (cons name priv-list)))

((eq? action 'good?)

(if (%assoc priv-list name)

(cdr (assoc serv-list name)) #f))

((eq? action 'delete)

(removeq priv-list name))))))

(set! client-list (cons manip-list client-list))

(lambda (name . args)

(let ((val (manip-list 'good? name)))

(if val (apply val args))))))))))))

Figure 2.12: Minimal Server Object

86

name server in Dreme, each more complex than the previous.

Figure 2.9 gives a minimal, and not very elegant, version without any lexical

scoping. The define creates a list in a Process we will call server and gives it

the name name-server. Name-server can be manipulated locally like any ordi-

nary Scheme object. For example, we can add services using set!. Other Dreme

Processes can access name-server using the remote-eval macro. Remote-eval

wraps the quoted expression in a thunk and sends it to the appropriate Process,

which might be the local one, to be executed (the call (remote-eval server

'%name-server) is equivalent to (remote-exec server (lambda () %name-server))).

The expression in line 8 would execute correctly both locally and remotely. The

call to remote-eval evaluates to the object name-server refers to, which is the list

of (name . service) pairs. If the call is actually remote, then the mobile portion

of the list will migrate to the remote Process. Were there several remote Processes

accessing the list concurrently, the elements of the list would be shuttling between

them as they iterate down its length (the identi�er name-server would remain at

the same location, but the object it refers to would be constantly moving). This im-

plementation of a name server is not particularly e�cient, and it is not particularly

safe, as access to the server is completely unrestricted. The expression starting on

line 11 is more e�cient, as it ensures that the service is looked up on the server.

There may be several clients looking at once, but they will all be looking in the

same place. Nevertheless, the list of servers remains completely exposed.

Figure 2.10 provides a slightly more sophisticated server in which the list is

encapsulated by two functions, add-svc and name-server. The �rst one adds

services to the list, and the second one searches for them on behalf of clients. A

client gets access to this second function by calling name-server in the server

prcess. In this version, each client receives its own copy of name-server. In

87

general, though, there are a number of ways in which the server Process and various

client Processes can interact, based on the degree of trust between the two parties

or other considerations, while maintaining the same client interface. 2.11 provides

two basic interfaces, one in which the client is shipped over the network and one

in which only a pointer is sent, based on the identity of the caller. As written, the

list of services will be spread among the clients if there are multiple simultaneous

accesses. This shuttling can be eliminated by pinning the cons cells that form the

list; since the list would be immobile, the list woudl be searched at the server.

The last version 2.12 is far more complex and has the server updating the

clients as services arrive and disappear. This breaks the "normal" client server

architecture in that the interaction is not all initiatted by the server. This kind

of interaction, however allows the client to, for example, display an up-to-date

list of services. The assoc operation on the private list is guaranteed to occur

locally, where as the assoc operation on the shared list will occur at the server site.

The private list and the manip-list function which accesses it are guaranteed

to be local as they are only accessible through the client closure returned with the

invocation. It also includes some concurrency control between the parties { services

are not removed at the server until they have been removed from the clients. The

clients are informed with a parallel map par-map. This contacts all remote clients

asynchronously, but does not terminate until all the calls are completed (since it

must return a list to the caller). The private lists at the client sites are guarded

by monitors so that the server cannot delete services while clients are looking for

them.

88

Chapter 3

Previous Experiments

The conceptual seeds of Dreme grew out of work on computer-integrated manufac-

turing (CIM) and on the Pad next-generation graphical user interface. Although

somewhat brief, my irtation with the former led to the use of mobility and lexi-

cal scoping in Dreme; while the latter work led me to reduce the role of operating

system processes in Dreme and to eliminate them from the GUI, where they do

not present a relevant user interface metaphor (unless the application is directly

concerned with managing operating system components). Both led me to support

a uniform distributed object space. Another area of interest, although I didn't do

any experimentation, was managing interactions with multiple online services.

The common thread running through all of these was attention to distributed

programs linking together already existing objects and services in the network, a

opposed to a \stand alone" parallel or distributed program which functions as if it

were in an empty network.

89

3.1 From Programming to Manufacturing and Back

Again

My �rst e�ort in CIM was an object-oriented graphical front end for the NYU open

architectured machine tool. In this innovative device, all the components of the

machine tool were placed on an industry standard VME bus, controlled by a real-

time UNIX variant, and addressed over a TCP/IP network. Any workstation on

the network could access the machine tool, either to send it machining commands,

or to receive back information.

For this machine, I developed a GUI in X to allow the user to manipulate a

block, describe various machining operations to be performed on it, and generate

the appropriate commands to be sent over the network to the machine tool.

After this initial success, there were two dimensions to expanding the interface:

increase the depth of the interface in communicating with this particular machine,

or start considering more complex objects (such as cars, etc.) which require assem-

bling many components and controlling many machines. It was the latter which

most inuenced my further work.

From a high level, there were three aspects to building complex devices which

were immediately evident:

1. The system would need to run on a network. This was a problem, in that

the commonly available tools for network programming, such as RPC, were

cumbersome and not designed for a dynamically evolving application. In

addition, any concern for the factory network was a conceptual nuisance

for a designer, as it would have little, if any, relevance to the parts to be

manufactured, and would impede portability of the design. It had to be

possible to address the network when necessary, but otherwise ignore it.

90

2. Any design for manufacturing a set of objects that relied on particular ma-

chines being available at any given timewould eventually fail; machines would

break, or priorities and rush orders would alter the set of available machines.

Therefore it was imperative that any code to perform an action needed to

be dynamically migrateable to some other machine without a�ecting the rest

of the manufacturing process. At the same time, the network could not be

seen as just a massively-parallel processor { a factory would present a very

heterogenous network, and certain operations required certain resources.

3. Manufacturing an object such as a car takes place in several locations and

reliance on a central computer to continuously orchestrate everything cre-

ates both a single point-of-failure and a potential network bottleneck. If we

consider manufacturing as a decentralized process, then di�erent parts of

the \program" need to reference each other. The location of parts of this

distributed program might change constantly, as machines fail and sched-

ules change; the underlying system must ensure that communications always

arrive at the correct place in a transparent manner, regardless of the migra-

tory behavior of sender and receiver. This requirement leads directly to the

concept of distributed lexical scoping.

Although I did not continue to develop the CIM prototype, I brought these

ideas back to the more general �eld of distributed programming. Each of these

plays a role in the development of Dreme.

3.2 Backends for Pad

Pad is a graphical user interface developed at NYU using a \whiteboard" metaphor.

A Pad surface is an in�nite plane of in�nite resolution. Since the resolution is

91

in�nite, it is always possible to place more information in a given area of the plane

by \writing smaller" and to retrieve it later by \looking closer" (zooming). Pad

also contains mechanisms, similar to hyperlinks, for refencing an area of a surface

from another, so either the same object is seen at more than one location, or there

is a portal with a view on other location on the surface, so that on looking closer,

one would �nd oneself at the other location.

Upon seeing Pad, I was immediately struck by its appropriateness as a GUI for

truly distributed applications. It made me realize that the \traditional" windowing

metaphor, as exempli�ed by X, was a stumbling block to building a system that

could adequately handle meaningful access to remote resources.

In a typical windowing system, the available screen space is divided by tiny

rectangles. Each rectangle is connected to a particular process and all events asso-

ciated with that window go to the particular process. Processes do not ordinarily

communicate except through \cut and paste" of text strings. From this perspec-

tive, X appears as a visual metaphor of the underlying Unix operating system: the

screen is the CPU, which is multiplexed by the processes competing for \turf"; the

user is the scheduler and moves the mouse to designate the \current" task; �nally,

\cut and paste" replaces pipes.

This metaphor provides little assistance to users who want to have several on-

line services cooperate with one another in ful�llment of a particular task. It is

possible for each to display its own particular interface, but then they all exist in

isolation. Interaction is being forced into the metaphor of the operating system,

instead of following metaphors more appropriate to the domain. The windowless

architecture of Pad opened the possibility to a distributed user interface in which

a seamless space of interacting objects could be presented visually, even though

behind that the objects resided in di�erent processes on di�erent network nodes.

92

An example would be a distributed CAD system where two components could

be connected on the screen, but the actual implementation code was running in

two di�erent servers and being controlled locally by a third process. In an ideal

implementation, manipulating the distributed CAD representations would be in-

distinguishable from manipulating non-distributed one. If these two components

were actually manufactured by two separate companies, then Pad, combined with

the proper backend, could provide an appropriate substrate for commerce on the

Internet.

Providing that back end was obviously more than an afterthought. If the goal

was distributed commercial services, then there was the implication of a general

distributed application architecture which could run over a public network. This

brought with it a whole host of issues; in the fall of 1990 I started to explore them.

I built two backends for Pad to support distributed clients with a seamless

interface before stopping to develop Dreme. The �rst one used a single Pad and

multiple clients; the second allowed multiple Pads and multiple clients.

3.2.1 The Pad Factory

The Pad factory attempted to convey a uni�ed interface to a distributed system. In

the foreground was a single Pad, in the background were several di�erent processes

representing machine tools, robots, and parts in a factory. The GUI, although quite

primitive, was divided into a \factory oor" section, which directly represented the

objects; and a menu-style section, which provided another view of the same system.

One could interact with the machines and robots through either path; the Pad's

redirection features meant that the same commandwidgets were accessed. For each

class of object (whether robot, machine, or part) where a graphical component (such

as pull-down menus) were shared, only one copy would appear on the Pad; the path

93

from an event to that component would determine which background object was

noti�ed.

At the software level, the system was divided into clients and Pads sending

messages to each other. In the one direction, these were commands to change the

graphical appearance of the Pad; in the other these were user events. To minimize

potential processing delays in each direction, each workstation running a client or

Pad also had a post-o�ce daemon which maintained mailboxes for local processes.

When a Pad or client wished to communicate, it would send the message to the

post o�ce on the receiver's machine. This would then, in turn, signal the receiver

that a message was ready. The receiver could then pick up the message when it

was convenient to do so. Neither Pad nor client would be blocked due to a slow

partner; the post-o�ce processes remained potential bottlenecks, but their function

was very simple and they were therefore rather quick.

Since there was a desire to drop the turf-based windowing paradigm, each

graphic object on a Pad had its own unique identi�er and was addressable by

any client on the network. Each Pad object had a list of possible events that

could occur to it. Clients would announce the events which interested them on a

per-object basis; when an event occurred, all interested clients would be noti�ed,

whether the creator of the object or not. Likewise, any client could send commands

to any object, or create new objects in any Pad. On the factory prototype, most of

the object types were �xed and shared among the client, so they could be loaded

at run-time. As clients connected with the Pad, they would query the object data

base to locate the objects they needed and create any that were not present.

Although the factory used only one Pad, the model had no such restriction.

The intention was to expand to having several Pads displaying all or part of the

factory. Since each user might have di�erent rights and responsibilities, each user

94

might see a di�erent subset of the objects in the factory and even view di�erent

representations of them. Security questions, such as access rights for clients to

di�erent objects, would have been considered. This would have led to an interesting

problems both for the back-end and for the front-end, but this work was put aside

when the version of Pad that had been used was abandoned by the project.

This prototype demonstrated the possibility of an \open architectured" user

interface for distributed systems. At the same time, the possibility of expanding

to multiple Pads demonstrated the need to move to multi-threaded clients. Both

clients and Pads functioned around event loops. In the case of the Pad, this was

not a problem, as no process state was needed between events. Clients, however,

might be required to handle events from multiple Pads simultaneously. This may

have also been at the root of my decision to �nd a platform independent solution

to the user interface; the distributed back-end was entirely dependent on the use of

a particular version of Pad. Although I still think that a version of Pad will be the

best front end for Dreme, Dreme is not dependent on any particular user interface.

3.2.2 Multiple Pads

The second distributed Pad backend was written in C++ and used remote method

invocation to create a shared whiteboard. C++ classes were created for elements

of Pad, each with a corresponding proxy class, so that methods could be invoked

remotely. In this scenario, there were several participating Pads. One of the Pads

acted as server. Whenever an event happened at a particular Pad, the event would

be relayed to the server, which would notify all the participants.

The obvious drawback of this approach was the existence of the centralized

server as a bottleneck for the whole system. Another problem was the lack of an

automatic means for generating proxy classes, which meant that all the marshalling

95

and demarshaling code needed to be written by hand. Solutions to both of these

existed for distributed C++ objects, the former with more sophisticated resource

sharing techniques, and the latter with a stub generator or CORBA implementation.

The fundamental problem of a C++, or other approach with a compiled ex-

ecutable, is the inability to support new classes and procedures at runtime { the

structure of all applications is decided at compile time. This is a very rigid struc-

ture for supporting a network full of objects and services. Either all objects �t a

very rigid framework, with an inevitable loss of exibility, or there are services we

cannot access. Neither is acceptible. Another drawback of this approach is a lack

of exibility in load balancing the work of the server. Since the server appears as

just an interface to the client process, the client process cannot assist the server

in more than the most cursory fashion. If the server can provide some information

to the client on how data is to be handled, however, the client has the ability of

o�oading much of the work that the server needs to do.

3.3 Conclusions

Once I had done the work described here, I had several criteria for the system

I wished to build. The next breakthrough was realizing that Scheme provided

a framework which I could expand naturally to cover almost all of them. The

remaining pieces, involving the user interface, are handled by the SGML-based

user interface.

96

Chapter 4

A Multithreaded User Interface

The Dreme distributed run-time system allows users to communicate with objects

all over the network and allows objects to come to the users as necessary, but so far

we have not discussed any aspects of the user interface. While it might be possible

to map all Dreme communication into a command-line interface, the richness of

possible actions and the variety of objects that can be in the environment calls for

a graphical interface. The Dreme architecture makes three strenuous requirements

for this:

1. The interface must be multithreaded. We have already discussed the under-

lying reason that GUIs should be multithreaded, but Dreme objects able to

spin o� threads easily, so this is even more signi�cant in the case of Dreme.

2. The interface must not require any particular underlying architecture. Since

Dreme objects may �nd themselves on any node in the network, they must

be able to display their interface regardless of whether the host is a Unix,

MacIntosh, MS Windows, or other system. For the sake of developers, it

should be possible to develop a single interface for an object that runs on all

systems.

97

3. The interface should make it easy for users to combine objects. Most current

interfaces, even multithreaded ones like X (in the sense that it can display

windows for multiple clients), are essentially \turf-oriented", meaning that

the available real estate is divided into sections, each owned by a single pro-

cess. Processes rarely communicate, and when they do they exchange \dead"

information| such as character strings. In Dreme all objects are individually

alive and able to communicatebe, and the interface should reect that.

We have chosen to develop a three level architecture for GUI based applications

which will be outlined in the �rst two parts of the remainder of this chapter. In

order to �nish the chapter with a fairly complete example, we will �rst treat the

visual appearance of the application. Our approach equates user interfaces with

documents, in the sense of SGML, and describe how to create platform independent

user interfaces through the concept of a \logical" interface. We will then briey

show how this approach can be combined with the World Wide Web (WWW)

to support a general purpose intelligent WWW browser of functionality between

that of Dreme and current browsers, one that can not only display a wide variety

of hypermedia information, but also actively manipulate it. After that we will

describe the mechanisms used for concurrency control and linking the application

to the GUI in a multi-threaded distributed application, based on the techniques

laid out in chapter 1. Using the example of a game of bridge, we will show how

appearance and behavior are related.

4.1 The Logical GUI - on beyond X

The previous section presented a new style of GUI programming based on closures

and continuations, which let the application be written in a natural style as opposed

98

to a continuation passing one. In this section we will show how we have separated

the application user interface from dependence on a particular platform and widget

toolkit by allowing the UI to be speci�ed in a logical manner and only later mapping

that into a particular widget set. This allows a mobile object to present its interface

to users on a variety of platforms. This is achieved through extensive use of the

Standard Generalized Markup Language (SGML), an international standard for

specifying markup languages for document types. The same techniques can be

used to browse and manipulate network-linked hypermedia documents, such as

the HTML documents of the World Wide Web, but in a wide variety of formats,

signi�cantly beyond the current abilities of the Web.

4.1.1 A Brief History and Explanation of SGML

The Standard Generalized Markup Language (SGML) grew out of an IBM project

in the early 1970's by Charles Goldfarb for storage and printing of legal documents.

That e�ort was spearheaded by Charles Goldfarb, the editor of ISO 8879 (SGML),

and resulted in the development of GML.

Although SGML is ordinarily used for document processing, SGML difers from

ordinary word processing systems through its distinction between logical markup

and procedural markup. In order to display a plaintext document with the ap-

propriate fonts and formatting, word processing system generally insert control

codes, called markup, among the characters of the text to describe various sub-

strings. Procedural markup inserts codes that tell the formatting program exactly

how these strings should appear, whether on the string or on the printed page.

Logical markup, on the other hand, identi�es substrings as syntactic elements of

a document, and leaves the direct mapping to formatting codes to a later stage in

document processing.

99

Logical markup provides much greater exibility than procedural markup for

document processing because, when done properly, it reects the structure of the

document. This makes it possible to search a document for particular elements, to

disassemble it into its constituents, to store the parts in a database, and to create

new documents automatically. This is almost impossible with procedural markup,

as the same visual appearance may be given to di�erent semantic elements of the

logical document.

Logical markup, as exempli�ed by SGML, has the additional bene�t of strongly

separating the de�nition of the markup which represents the syntax of the docu-

ment, from the manipulation of the document, which represents its semantics. This

allows a variety of di�erent semantics, eg. a presentation semantics and a database

storage semantics, to be used for the same class of documents.

4.1.2 The Elements of SGML

This is not the place for an exhaustive description of SGML, but we will provide a

su�cient description for the reader to follow the examples.

SGML is a system for specifying a class of context sensitive grammars. An

SGML application consists of four parts:

1. A document type de�nition (DTD) which describes the grammar to be used.

2. A document, which is a string in that language

3. A parser, which takes the �rst two elements as input and outputs the abstract

syntax tree of the document.

4. An application program which uses the parsed document in some way.

100

The DTD The DTD consists of a series of records. We will need four of them:

1. Elements de�ne the production rules of the language. An element de�nition

consists of six parts:

(a) The keyword element.

(b) The name of the element. The substring of the document is bracketed

by an opening tag, of the form <element-name>, and a closing tag, of

the form </element-name>.

(c) Whether the opening tag is optional, or is to be inferred by the parser.

This is either an \O", for optional, or a \-", if it is not. The parser may

reject this if it is not always possible to infer where the tag open should

occur.

(d) Whether the closing tag is optional. The same conditions apply as above.

(e) The content model of the element. This is the right-hand side of a

production rule in a traditional context-free grammar. It consists of a

list of terminals (the plaintext of the document) and non-terminals (other

elements). These can be grouped by parentheses and separated by the

following: * for zero or more repetitions, + for one or more repetitions,

? means the element is optional, | means one (but not both) of the

elements on either side must occur, and a comma (,) means both must

occur in that order.

(f) Inclusions and exclusions, which we won't use, but mention for com-

pletenes.

For example, the following element de�nition:

101

<!ELEMENT (set | append | prepend) O -

(path+, (tag-text | attribute | comp-list*))>

de�nes three elements (set, append, and prepend) with the same structure.

Each of these consists of one or more occurences of a path element followed

by either a single tag-text element, a single attribute element, or zero

or more comp-list elements. The \O" after prepend indicates that start

tag for any of the de�ned elements is optional, but the closing tag is not, so

<path><tag-text></set> is legal, but <set><path><tag-text> is not.

2. Entities are references to chunks of information to be substituted elsewhere

in a DTD or document. Given an entity declaration such as:

<!ENTITY www ``World Wide Web''>

The character sequence &www; in a document would be replaced by World

Wide Web by the parser. A slightly di�erent form of entity is used within a

DTD.

3. Attribute lists represent attributes which can be added to an element. These

occur as sequences of attribute name = attribute value, or just attribute value

within the start tag. An attribute de�nition, such as:

<!ATTLIST set attr1 (val1 | val2) val2

attr2 (val3 | val4) #IMPLIED

attr3 CDATA #REQUIRED

attr4 ID #REQUIRED

attr5 IDREF #IMPLIED>

102

de�nes �ve attributes for the element set. The �rst, attr1, has a value of

either val1 or val2. If it is not present in the document, then the parser

will substitute val2 as the default value. Attr2 does not have a default

value; #IMPLIED indicates to the parser that the application can determine

the appropriate value. Attr3 is composed of character data and is required.

Attr4 is a required unique character string which identi�es this tag, and

attr5 is an optional string referring to the identi�er of some other tag. A

start tag for set might look like:

<set attr1 = val1 attr3 = ``This is required'' attr4=just-me>

4. Short reference maps (shortrefs) specify short character strings, such as paren-

theses, which can be used in a document in place of longer open and close tags.

When a short reference is seen by the parser, the longer tag is substituted.

The rules for creating short references are more complex than for entities,

elements, and attributes. In the examples given below, we will use shortrefs

to give a more concise \programming language" look to some documents.

The Document, Parser, and Application An SGML document is just a string

of text with markup embedded at various points. The markup may be more or

less intrusive, depending on whether tags may be dropped or substituted for with

shortrefs. Figure 4.3, below, provides an example with a large ratio of markup

to text. The document must be grammatically correct, given the DTD. This is

determined by the parser, which, given a DTD and a document, must determine

if there is a correct parse for the document and present it to the application. The

application then communicates with the rest of the environment, based on the

contents of the document.

103

4.1.3 An Evolving Perspective on SGML

Our use of SGML was originally rather limited. We developed a small language,

called the User Interface De�nition Language (UIDL), to capture the shared func-

tionality underlying most UI toolkits. Each node/user had a UIMS understanding

UIDL. Objects passed their UIs to the UIMS. It generated the appropriate UI

objects and returned a handle to the originating object. Afterwards, the object

communicated directly with its interface, occasionally passing additional UIDL

speci�cations to the UIMS when new interface elements were needed. SGML was

a convenient mechanism for specifying UIDL.

We then considered merging UIDL and the the World Wide Web's (WWW)

HyperText Markup Language (HTML)[3], another SGML-based UI language. A

merger of the two would have had the desireable outcome of making made all

Web clients become Dreme clients as well. Nevertheless, HTML, and by extension

UIDL, or any single document type, was deemed too limiting. An SGML doc-

ument is a sophisticated record type, much of whose information is contained in

the markup and is lost when the document is converted to some single-purpose

document type. Display, the reason for converting to HTML, is only one of many

potential applications. HTML is of little use to programs, which require the ex-

plicit structural information of the original document. HTML's utility decreases as

client intelligence increases, particularly in the presence of mobility. If code and

data can migrate transparently around the network, documents can be transported

with their original markup; any additional information, such as the DTD or the

display semantics, can be retrieved as necessary. Therefore we chose to support

SGML in toto.

From this new perspective, a UI is just an SGML document of some type,

104

manipulable by many applications, one of which may be the UIMS. Each UI must

supply two additional elements: the DTD, and a default display semantics. These

may be shared with other applications, but must be available for the recipient to

treat the document as more than a bit stream. At the same time, documents can

become applications by being read and interpreted by waiting local software having

di�erent semantics than just display, treating them as programs. Our approach

attempts to support all these by considering them as aspects of the mobility of

information.

4.1.4 Documents are programs: linking the document to the
application

The SGML standard, and associated standards such as DSSSL [24] and HyTime

[25], are explicitly application independent; no constraints are made on the struc-

ture of the application. Our applications, however, need to be as transportable as

documents. We also anticipate a proliferation of document types, so applications

should be easy to construct. For this reason we impose a common architecture on

our SGML applications, one which is succinct, portable, and controllable by the

client. Although the power of any particular application may vary, the architecture

can support Turing-complete computation, so there is no loss of expressive power

vis-a-vis other architectures.

We consider a DTD as de�ning a language, and the marked-up document as a

program, with tags representing commands or other sytactic elements. Unlike most

programming languages, these languages may have several semantics, depending

on the purposes to which they are put. SGML applications are interpreters, one

for each semantics to be applied to the underlying language.

105

4.1.5 The structure of an interpreter

Our interpreters require three components (this is not intended as a de�nitive

statement about interpreters, but only our particular needs):

1. A virtual machine (VM) describing the world on which the program operates.

This is a set of operations and a set of classes delineating the objects which

can exist in this world. The goal of an interpreter is to map from language

statements to VM operations. The VM can be seen as providing a semantic

domain for the interpreter.

2. A (potentially empty) set of objects existing when program interpretation

starts. These objects represent the start state of the VM.

3. A mapping from operations in the programming language to one or more

VM operations. These operations may add new objects to the current state,

or change the state of existing objects. The mapping provides the semantic

actions for the interpreter. The most complex part of the mapping is the

mechanism for locating objects in the current environment, which includes

both the VM state and the nodes of the document,

VM operations represent the interface to the local host and must be supplied

locally; otherwise the intepreter is self contained. By controlling the VM operations,

the local host retains control over the interpreter. The same program may be run

in two di�erent environments, depending on circumstances.

An interpreter is also a program, written as a document. Our interpreters

are SGML documents, transmittable around the Internet, and just as manipulable

as the documents they are intended to manipulate. Figure 4.1 provides a DTD

for simple interpreters that construct UIs. More speci�cally, the DTD provides

106

1 <!ENTITY % tkw1 "toplevel | button | checkbutton | radiobutton ">

<!ENTITY % tkw2 " listbox | label | entry | radiobuttonlist | text ">

<!ENTITY % tkw3 " message | frame |menu | menubutton | menubar">

<!ENTITY % tkwidgets "%tkw1; | %tkw2; | %tkw3;">

5

<!ELEMENT tkmap O O (name, widget-list)>

<!ELEMENT widget-list O O (comp-list, tag-list)>

<!ELEMENT comp-list O O ((cname | tag-text | attribute), widget-def)*>

<!ELEMENT cname - O (#PCDATA)>

10 <!ELEMENT name O - (#PCDATA)>

<!ELEMENT widget-def O O ((%tkwidgets;), comp-list?, bindings?)>

<!ELEMENT (%tkwidgets) - O EMPTY>

<!ATTLIST (%tkwidgets) initstr CDATA #IMPLIED

packstr CDATA #IMPLIED

15 textstr CDATA #IMPLIED>

<!ELEMENT bindings - - (binding+)>

<!ELEMENT binding - O (event-name, bind-spec)>

<!ELEMENT event-name - O RCDATA>

<!ELEMENT bind-spec - - RCDATA>

21 <!ENTITY % cmd-list " set | append | prepend ">

<!ENTITY % tagging "(tag, (%cmd-list;)*, tag-list?, (%cmd-list)*)*">

<!ELEMENT tag - O (#PCDATA)>

<!ELEMENT tag-list O - (%tagging;)>

25 <!ELEMENT (set | append | prepend) - -

(path, (tag-text | attribute | comp-list))>

<!ELEMENT path - O (up*, clist)>

<!ELEMENT up - O EMPTY>

<!ELEMENT clist O O (#PCDATA)>

30 <!ELEMENT add - - (path, widget-def?)>

<!ELEMENT tag-text - O EMPTY>

<!ELEMENT attribute - - (#PCDATA)>

<!ELEMENT component-path - - RCDATA>

Figure 4.1: DTD for Interface Interpreters

107

the syntax for tkmap, a language whose programs interpret for SGML documents

(the syntax is very loose, but providing a stricter syntax would have signi�cantly

expanded the size of the DTD).

Interpreters of type tkmap take a document and convert it to a set of widgets

using the Tk[43] toolkit. This is a weakness of our current implementation, but

we are examining the STFP part of the DSSSL proposal as a means of specifying

a more independent geometry. Lines 1 to 4 enumerate the widget classes used.

(These are fairly generic; the real Tk dependence comes in the attributes (lines 13

- 15) which de�ne strings to be passed to the widget constructors.)

The default VM state contains one object, a top level window (a window which

is not contained in any other). During interpretation, widgets can be added to

this window, or additional top level windows can be generated and used to hold

information. An interpreter architecture restricting all UIs to a single top level

window would exclude toplevel from the content model of the tkwidget element.

Adding more widget classes expands the possible interfaces.

Before interpreting the document parse tree, an interpreter can add widgets to

the initial environment, such as UI elements generic to an application class (eg.,

menu bars and certain buttons), or which will be used by other widgets constructed

during the parse (eg., a list to contain a table of contents for the document). These

widgets are enumerated in a component list (comp-list). Since Tk widgets all

form a tree of strings, each widget requires a name as well as a de�nition. The

name for a default widget must be in the program text, but the name of a widget

constructed during the parse of the document may also come from the element's

character data or from an attribute.

The de�nition of a widget has three parts:

108

1. The widget class. This element has three optional attributes which contain

Tk speci�c strings for the creation of the widget.

2. A list of subcomponents describing the widget's children. These subcompo-

nents are de�ned in the same way as the parent.

3. Any event bindings, such as mouse clicks, particular letters, etc. As Tk only

runs on X Windows, these bindings are speci�c to that environment. The

bindings are given names accessible to the application for the callback. As

these names are not speci�c to X, the bindings do not imply an application

dependency on X.

Once the initial set of widgets is created, the document parse tree is traversed,

starting at the root. At each point there is a particular tag map in force which

indicates how each tag is to be handled. These maps nest, so the handling of a

particular tag can be di�erent depending on which subtree it is encountered in.

There are three parts to the handling of a particular tag:

1. A (possibly empty) set of before commands. These commands are executed

when the node containing the tag is �rst encountered. In particular, these

commands can create new widgets that will be needed for traversing the

subtree routed at that node. The available commands will be described below.

Any new widgets created at this level are accessible while traversing the

subtree as the parent set. This parent set is the child of the parent set that

was in force before the commands were executed. The initial environment

becomes the parent set of the root node of the document, so it is possible to

traverse up the ladder to the starting environment.

109

2. An optional tag map to be used while traversing the subtree rooted at that

element.

3. A (possibly empty) set of after commands. These commands are executed

after the subtree has been traversed and can be used to organize the results of

the subtree traversal, similar to the way a parent widget might alter the sizes

of its children. These commands have access to any new widgets created by

the children

The part of an interpreter actually a�ecting the current environment is con-

tained in the commands associated with the tags. Tkmap supports a very small

set of commands, reecting its role as a system for enumerating a tree, not for

performing sophisticated computation. Each command takes two arguments:

1. A path expression, which leads through the current environment to a par-

ticular widget. The path either starts with the root of the enviroment and

works its way down the tree, or starts with the parent set and works its way

up some number of levels before starting down some part of the widget hi-

erarchy. A path is therefore a series of zero or more up elements followed

by a list of strings and integers separated by periods. Each up ascends one

level through the tree of parent sets. Each element in the list descends one

level, either choosing the child of the current widget with the same name as

the current element in the list, or the nth child. The end of the path is a

particular location in the widget hierarchy.

2. A value, where that value is either text or the de�nition of a subtree of widgets.

If the value is text, then it either the character data of the element, or it is the

value of one of its attributes. If the value is a widget subtree, then the widgets

will be created and placed in the hierarchy as speci�ed by the command.

110

1 <!ENTITY % entry-type "string | number | date | boolean">

<!ELEMENT form O O (section)+>

<!ELEMENT section - O (heading, instruction?,

(%entry-type;)*)>

5 <!ATTLIST section name ID #REQUIRED>

<!ELEMENT heading - - RCDATA>

<!ELEMENT instructions - - RCDATA>

<!ELEMENT entries O O (%entry-type)*>

<!ELEMENT (%entry-type;) - O (label, instruction?, value?)>

10 <!ATTLIST (%entry-type;) name ID #REQUIRED>

<!ELEMENT entry-list - O (%entry-type;)*>

<!ELEMENT label - - RCDATA>

<!ELEMENT instruction - - RCDATA>

<!ELEMENT value - - RCDATA>

Figure 4.2: Sample DTD for Entry Forms

The three available commands are set, append, and prepend. Set places its value

argument at the location in the widget hierarchy designated by the path, append

adds its value to the end of the list of children of the path, and prepend places its

value at the head of that list.

4.1.6 Generating an Interface

The general interpreter architecture described here is very powerful, although the

language de�ned by the tkmap DTD is not. Nevertheless, it can already be used

to describe a large variety of UIs which do not require general computational abil-

ity. This section provides an example \logical interface" and shows three similar

interpreters creating three di�erent concrete UIs for the same application.

Figure 4.2 provides a small DTD for creating entry forms. A form has sev-

eral sections, each of which has a heading, an optional instruction, and some

number of entries, where an entry is one of string, number, date, or boolean.

Each entry has a label and may (optionally) have an instruction �eld and and

a default value. A small medical form with three sections and eight entry �elds

111

<!doctype form SYSTEM>

<section name = patient-info>

<heading>Patient Information Section</>

<instruction>Enter general patient information</>

<string name = pat-name><label>Name</>

<instruction>Enter patients name</>

<date name = dob><label>Date of Birth</>

<instruction>Enter date-of-birth</>

<boolean name = insured><label>Insurance (Y/N)</>

<instruction>Toggle if patient is insured, else no.</>

<section name = practitioner>

<heading>Practitioner Information</>

<string name = doc><label>Doctors Name</>

<string name = address><label>Address</>

<boolean name = insure><label>Insurance (Y/N)</>

<instruction>Toggle if doctor is insured, else no.</>

<section name = visit-information>

<heading>Visit Information</>

<instruction>Enter information on this visit</>

<number name = price><label>Price</>

<instruction>Enter what you charged the patient</>

<date name = dov><label>Visit Date</><instruction>Enter date of visit</>

Figure 4.3: Sample Document

conforming to this DTD is presented in �gure 4.3.

A straightforward interpreter, which formats all this information in a single

window, is contained in �gure 4.5, and a generated UI in �gure 4.4. SHORTREFs

(not included in the DTD given here due to length) have been used liberally to give

the appearance of a program and considerably lessen the number of keystrokes.

After the doctype declaration is the name of the document type being interpreted,

in this case, form. Next comes the list of default widgets. All widget subtrees

are surrounded by square brackets. Finally comes the tag map. Tag maps are

surrounded by curly braces. Each tag name is preceded by \--" and followed by

a colon.

The default widget set consists of a frame (topframe) containing a menu bar

(with two pulldown menus), a frame into which the sections can be placed, and

112

Figure 4.4: Basic UI

another frame containing submit and clear buttons. The name of a widget comes

from either the program text, the character data of the current widget, or one of

the widget's attributes. If it comes from the text, then it is the quoted string

immediately preceding the widget type. If it is the text, then the tag tag-text is

used, and if an attribute, the tag attribute followed by the attribute name and a

colon.

The outermost tag map gives commands for the di�erent entry types (only

string is given in the �gure, but the others are identical, except boolean, which

is a checkbutton), labels, values, instructions and sections. Each entry tag

creates a new frame in the current section and creates label and value widgets for

it. Encountering the label or value tags �lls in the text for the appropriate widgets.

Locating an instruction tag within an entry prepends a text �eld containing the

instruction to the frame.

When a section tag is encountered, it adds a new frame to contain its infor-

mation. A new tag map containing de�nitions for heading and instruction is

113

<!doctype tkmap SYSTEM>

form:

<widget-list>

["topframe"<frame>

["menubar"<menubar packstr = "-fill x">

["file"<menubutton packstr = "-side left" textstr = File>

"help"<menubutton packstr = "-side right" textstr =Help>]

"sections"<frame>

"buttons"<frame>

["submit"<button packstr = "-side left">

"clear"<button packstr = "-side right">]]]

{--string:<append><path>^1,

[<attribute>NAME:

<frame initstr = "-relief ridge -borderwidth 2" packstr = "-fill x">

["LABEL"<label packstr = "-side left">

"VALUE"<entry packstr = "-side left">]];

...

--value:<set><path>^1.VALUE,<tag-text>;

--label:<set><path>^1.LABEL,<tag-text>;

--instruction:

<prepend><path>^1,

["INSTRUCTION"<text initstr = "-height 1 -width 30"

packstr = "-fill x" textstr = "INSTRUCTIONS:">];

<append><path>^1.INSTRUCTION,<tag-text>;

--section:

<append><path>TOPFR.SECTIONS,

[<attribute>NAME:

<frame initstr = "-relief raised -borderwidth 3"

packstr = "-fill x">];

{--heading:<append><path>^1,["HEADING"<label>];

<set><path>^1.HEADING,<tag-text>;

--instruction:

<append><path>^1,

["INSTRUCTION"<text initstr = "-height 1">];

<append><path>^1.INSTRUCTION,<tag-text>;}

}

Figure 4.5: Interpreter for Basic UI

114

Figure 4.6: UI with Hypertext

introduced. Since tag maps are lexically scoped, instruction appears in the in-

terface in two separate ways: instructions associated with an entry are prefaced

with \INSTRUCTIONS:", since they refer to the outermost tag map, and instruc-

tions at the beginning of a section are not, since they refer to the inner tag map.

Figure 4.7 contains a fragment of an interpreter that creates the variant UI

in �gure 4.6. The only changes are to the commands associated with the entry

and instruction tags; label becomes a widget of class button instead of class

label, and instructions are placed in separate pop-up windows, providing a more

hypertext style interface. The di�erences between the interpreters are minimal; the

application doesn't even need to be aware of the di�erence if the widget set can

internalize the di�erences.

Another alternative is provided by the fragment in �gure 4.9, resulting in �gure

4.8. Each section now has its own top level window, instead of being contained in

topframe. A new button, Sections is now placed in the menubar. This button

brings up a menu which serves as a table of contents for the sections; each section

115

{--string:<append><path>^1,

[<attribute>NAME:

<frame initstr = "-relief ridge -borderwidth 2" packstr = "-fill x">

["LABEL"<button packstr = "-side left">

"VALUE"<entry packstr = "-side left">]];

...

--instruction:

<append><path>^1,["INSTRUCTION"<toplevel>

["INSTR"<label> "OK"<button>]];

<set><path>^1.INSTRUCTION.INSTR,<tag-text>;

...

}

Figure 4.7: Interpreter for Hypertext UI

adds a button to the menu which pops up the section's window. Each entry now

appends itself to the entries frame in its section's window.

Although these alternative grammars represent signi�cant changes to the look

and feel of the interface, they do not represent a change to the logical interface

requirements underlying all three; the application is not required to be aware of

di�erences so long as any additional events created by the look and feel are handled

outside of the applications purview.

4.1.7 Interaction between an Application and its Interface

Applications interact with their UIs at three particular points: when setting call-

backs, when processing a callback, and when modifying the UI. This section dis-

cusses these in turn, with an emphasis on graphical applications.

116

Figure 4.8: UI with Multiple Windows

Setting Callbacks

After the entire interface is interpreted, the root widget is handed back to the

application. The concurrency control layer is now able to set callbacks through

interrogating the widget hierarchy. The application expects to �nd a particular tree

of widgets and events corresponding to its logical requirements. The tree returned,

however, may be sign�cantly larger than this, if a local interpreter was used instead

of the default one. So long as the desired tree is unambiguously embedded in the

actual tree this is not a problem. The application can descend the hierarchy and

place callbacks at the desired nodes.

Receiving Callbacks

The signature of our callback functions is standard and should be platform inde-

pendent. So long as callbacks do not rely on speci�c structures, such as the X event

structure, there should be no di�culty in migrating to all platforms. Current expe-

rience, though, is limited to Unix-based X Windows toolkits. The SGML-related

117

form:

["topframe"<frame>

["menubar"<menubar packstr = "-fill x">

["file"<menubutton packstr = "-side left" menu = file

textstr = File>

"sections"<menubutton packstr = "-side left" menu = sections

textstr = Sections>

["sections"<menu>]

"help"<menubutton packstr = "-side right" menu = help textstr =Help>]

"buttons"<frame>

["submit"<button packstr = "-side left">

"clear"<button packstr = "-side right">]]]

...

{--string:<append><path>^1.ENTRIES,

...

--section:

<append><path>.,

[<attribute>NAME:

<toplevel initstr = "-relief raised -borderwidth 3"

packstr = "-fill x">

["entries"<frame>;

"ok"<button>;]]

<append><path>TOPFRAME.MENUBAR.SECTIONS.SECTIONS,

[<attribute>NAME:<button>];

<set><path>TOPFRAME.MENUBAR.SECTIONS.SECTIONS.0,<attribute>NAME;

...

}

Figure 4.9: Interpreter for Multi-Window UI

118

techniques discussed here, however, are independent of X and should generalize

easily.

Modifying the Interface

Once created, the UI remains an active entity in the environment. GUI widgets

maintain links both to the application objects they represent and to the original

document locations from which they were generated. Certain widgets also retain

the virtual machine environment and tag map that existed when they were created.

The links from the interface back to the application objects (which don't need

a GUI to communicate among themselves) allow the user to direct cooperation

among objects. Other information, such as found in a document, has no way of

communicating other than through its own structure, which can only be provided

by refering back to the original (or its parse tree).

This information supports the operations of context-sensitive cut and paste and

drag and drop, essential to creating a completely integrated environment. Without

making these operations context sensitive, only isolated fragments of information,

such as text strings, can be passed around among applications. When they are

context sensitive, then the operations can be seen as manipulating coherent chunks

of information, such as groups of objects, or portions of documents. At the source,

it is important to know just what information is in the scope of the operation;

at the destination we need to know what type of information is being received to

determine how to integrate it with the local environment.

Drop and paste are variations on the creation of the UI. In both cases, a source

object appears (whether an OO-type object or a document) which needs to be in-

tegrated into the existing environment at the destination point. We can distinguish

between an object-to-object communication, which doesn't require any alteration

119

to the GUI, and one in which new information needs to be displayed at the des-

tination. In the �rst case, the system only needs to locate the application object

represented by the destination widget and invoke the appropriate method. This is

done by �ring the event for the drop or paste method of the widget, passing in the

source object as a parameter. If the communication does not result in any change

in appearance for the user it does not interest us further here. In the second case,

the extra information left from the original parsing is necessary, and demonstrates

one of the advantages of our approach.

When some SGML information is to be integrated at some location in the appli-

cation, it should meld semantically at that location as if it had been at that location

in the original document, and not added later. To do that, we need access to the

VM state available at that location and to the tag map in force at that location.

Without the VM state, we don't know what objects to integrate the new informa-

tion with, and without the tag map, we don't know how to integrate them. The tag

map provides the semantics for the interpretation. These two elements almost form

a continuation for the interpreter at the point at which the destination was created

(an actual continuation would consist of the VM state, the tag map that would be

in force after a subtree is interpreted, and the next node to be processed after the

subtree is completed). Container widgets maintain this information. When infor-

mation arrives, it is in the form of a document subtree. The current GUI subtree is

removed, and the document subtree is interpreted and integrated at that location.

Removing a subtree (cut) may also be a complex operation, as a document

subtree may be reected in may parts of the UI. In the third interface from our

example, a menu contains a table of contents for the sections; removing a section

also requires modifying that menu. Complicated situations may require a special

interpreter for removing a subtree. In the general case there is no guarantee that

120

integrating a document in a GUI is reversible.

4.1.8 Expanding the interpreter

The examples used here have been kept simple for purposes of exposition, but

more sophisticated cases are straightforward extensions of the same principles.

We have been working on several extensions which not only support generating a

greater variety of interfaces, but which also support active documents by generally

treating documents as applications:

� Add local variables to the interpreters. Any truly complex functionality re-

quires temporary storage of local computations, implying the need to de�ne

variables. Variables global to an interpreter are de�ned before any widgets

are de�ned. Other variables are local to the processing of a particular tag

and are declared before any of the commands for that tag. Variables follow

the usual lexical scoping rules.

� Add more powerful primitives. To support general computation, interpreters

need if-then-else and looping constructs, as well a larger set of types, such as

numbers, strings, lists and vectors. One promising approach is to \compile"

interpreters into Dreme, which would let interpreters support Dreme's (and

therefore Scheme's) syntax and semantics. An important extension would be

to include the data types and primitives de�ned in the DSSSL standard.

� Expand the path element to a more general tree search mechanism. In the

interpreter, paths are used to navigate around the output tree. If we expand

the interpreter to include variables, etc., there may be any number of trees to

navigate, including the input document. We plan to signi�cantly strengthen

this feature.

121

� Make interpreters callable from each other. The structure of an interpreter

is su�ciently regular that it is straightforward to build a calling mechanism

among interpreters. The caller needs to supply a pointer to a subtree in the

document and an initial VM state. Other parameters may be passed as well.

Submaps can also be placed in local procedures. Combining this feature and

the previous would allow the same piece of subtree to be evaluated several

times, particularly interesting if the source text is a program containing a

loop.

Notably lacking from this list are expanding the number of object types for

the interpreter and the operations they support, i.e., the VM. These really depend

on the domain of a particular class of intepreters. We anticipate that di�erent

application areas will have di�erent domains; interpreters in these domains will

manipulate the corresponding virtual machines, sending transactions over in the

form of documents. A document may also be processed in more than one domain.

The same document can be displayed, stored, forwarded, and used to trigger other

activities. Since documents and interpreters do not have any direct access to the

virtual machines, except as provided by the local host, the local system can exercise

complete control over the behavior of a document.

4.1.9 Expansion to multiple users

Everything discussed so far has been in the context of a single user, although Dreme

is intended to be distributed. Extension to multiple nodes is very straightforward:

an object can send an interface description to any UIMS of which it has the ad-

dress. For example, a button press by user A can cause a window to pop-up on the

screen of user B by having the callback pass a UI description to B 's UIMS. The

callbacks can all be sent to B when they are set, as they would naturally migrate.

122

Alternatively, if it has permission, A's system could migrate the entire code con-

taining both the UI description and all the callbacks to B so that it would all be

present when the interface appears.

4.2 The Ultimate Web Browser

In 1989, Tim Berners-Lee (?) created the World Wide Web (Web), a distributed

hypermedia system consisting of, in particular, a transport protocol, http, and a

markup language, HTML, based on SGML. HTML documents are displayed in a

Web browser and contain hyperlinks to other documents on the Internet. When the

user activates a link, a request goes to an http daemon on the other side of the link,

which retrieves and returns the requested document. The browser then displays

the retrieved document. In other words, the Web implements a distributed shared

address space for HTML documents and, like Dreme, uses mobility to distribute

computation around the network. We could trivially combine the two by supporting

a superset of HTML and considering an HTML document as a particular kind of

inactive Dreme object. The previous sections, however, lay the groundwork for a

much more powerful environment which allows us to move beyond both HTML and

application interfaces to display and manipulate a much wider range of information.

Since 1989, Web tra�c has grown to be a signi�cant part of Internet tra�c.

As the complexity of Web documents has grown and attempts to use the Web

protocol for other applications have increased as well, the limitations of HTML have

become apparent. As a result the Web community has proposed a new standard,

HTML+, to compensate for these de�ciencies. Nevertheless, HTML+ still su�ers

from the main failing of HTML { in order to be displayed by the Web, data must

be translated into HTML(+), leading to a loss of information regarding the data's

123

structure. An application designed to manipulate data of a particular type would

need to reparse the data. In fact, it might require a sophisticated expert system

to retrieve the original structure; there may be any number of mappings from a

particular format to HTML, and there is no way to tell which of those mappings

a particular data supplier used (HTML itself contains no hint of what that might

be).

The spread of HTML is probably having an unnecessary chilling e�ect on the

development of application speci�c data formats, particularly in SGML, because a

tramslator to HTML is needed before documents are accessible through the Web;

the obvious increase in the quantity of available information is hiding a decrease

in quality. Since public domain SGML parsers are available, the technical problem

seems to be that separating the presentation semantics from the document requires

requires executing the presentation code. Of course, current Web browsers (except

tkWWW) are not interpreters, but Dreme processes are, and we have shown how

they can be extended as necessary.

By placing the approach of the previous section in the context of the WWW, we

arrive at the intelligent Web browser, capable of receiving information in a variety

of formats and manipulating that information as desired, whether that is simply to

display, or to place some of a document in a database, send some in email, and

place other pieces in various places in the user's environment.

By default, three elements must be necessary to display any document:

1. the document

2. the document type description

3. a default interpreter for displaying documents of the given type.

124

If these three are present, then the document can be considered to have a minmal

presence on the Web; it can be browsed. The other manipulations mentioned

represent desirable additional functionality, but are not essential to maintaining

upward compatibility with the current Web. We must now show how these basic

pieces can be mapped into the Web, and then how the additional functionality can

be supported.

The universal mechanism for addressing in the Web is the Universal Resource

Locator, or URL; either our extensions can be mapped into URLs, or they cannot

be supported by the Web. URL syntax, fortunately, is very exible. From the

perspective of a browser, an URL consists of a string with, at a minimum, the

protocol for accessing the object (such as http for �les accessed through standard

Web servers, or ftp for those accessed through that protocol), the Internet node

holding the �le, and the local path and �le name. The �le name extension indicates

the data type of the �le (eg., file.html or file.ps).

We can now prescribe the addition of four new su�xes:

1. .sgm indicating that a document is SGML compliant. Proper HTML doc-

uments also �t into this class, but their handling is already optimized by

existing browsers, and there is no reason to lose that ability. This is intended

for the large class of documents which will utilize "application speci�c" DTDs.

2. .dtd indicates a �le containing a DTD. The rest of the �lename must contain

the name of the document type. Servers now provide various means for

redirecting URLs, so the DTD need not be actually present.

3. .dis indicates a display interpreter. The �lename must include the name of

the document type. The �lename would ideally include the widget set being

used for the interpreter; our current implementation does not do so.

125

4. .int indicates that the �le is an interpreter. The �lenameis not required to

indicate the document type, as that is part of the interpreter text.

This section has described how to add general SGML-compliant text to the

WWW. Adding application-speci�c interpreters written in Dreme is straightfor-

ward on the browser side. Sharing these interpreters through the Web, whether

freely or for �nancial gain, will be more complex. The interpreters are also not

general distributed applications; although they may arrive over the Web, and may

access URLs, all the computation occurs in one location. At some point the more

general power of Dreme will be necessary.

4.3 Combining Menus with Events

User actions add an element of concurrency by creating multiple simultaneous

dialogs with an application. So long as these dialogs can be circumscribed within

certain limits (such as being described by regular expressions) where all the possible

actions are known beforehand, the concurrency can be simulated by the interface.

However, if the complexity grows beyond that, then real concurrency must be

supported.

This problem is compounded by Dreme's inherently multithreaded architecture.

Any number of objects may be simultaneously present, each with its own interface,

and each of these might need to support a multithreaded dialog. We will exploit

the simplicity of the menu approach for each individual thread within the context

of an overall event loop through the judicious use of continuations for callbacks. In

essence, before the system processes the next event, all the state that was available

to the old-style menu driven application is stored in a continuation. When the

desired event is received by the system, it can be passed to the continuation so that

126

the event can be handled in the appropriate context. A side e�ect of this approach

is the ability for application code to interact synchronously with the interface, i.e.,

a callback can be the continuation of a function call, making it appear like any

other I/O operation.

Another form of interface concurrency is created by the interaction between

applications. For example, a user might perform some operation, such as drag and

drop, exposing some piece of interface to two objects. Now, one event can cause

changes in both applications, which can be reected back to the interfaces of the

other applications.

This concurrency can not be handled generally by any �a priori analysis of the

application, as the various objects to be displayed cannot be known ahead of time.

Two standard approaches to handling this problem are:

1. Have only one application that knows all the types of objects that might be

displayed, so it can keep track of them with its own data structures. This

severely limits the kinds of objects that can be displayed, but still allows them

to communicate with each other, as they are all in the same application. How-

ever it necessitates extra application constructs to handle the concurrency.

2. Create independent processes to handle each concurrent object or dialog. In

Unix this would be accomplished by using the fork command. This handles

the concurrency by shifting the burden onto the operating system. It also

allows a more heterogenous set of objects to be displayed. However it supplies

no support for communication among objects except in a hierarchical fashion

(i.e., each object passes return information to its parent), implies considerable

overhead due to context switching, and does not easily support any shared

context among all the processes.

127

Each of these approaches has its drawbacks with respect to our goals. Dreme

already allows objects from various sources to coexist and communicate. We will

extend this to the interface; all the objects of all applications share the same space

and therefore communicate in a straightforward fashion. But to maintain this

desirable feature, we must �rst understand the kinds of actions that will arise in

the interface and then determine the constructs which can handle them within a

single Dreme process.

4.4 A continuation-based user-interface

As has been noted before, continuations are considered di�cult and perplexing to

program with. It's scarcely reasonable to hold out the promise of new exibility

only to o�set it with even more new complexity. We resolve this by presenting

the user with an abstraction of how events are related to each other and an API

that implements this abstraction. Manipulating continuations is pushed beneath

the API and out of the programmer's purview.

4.4.1 A taxonomy of events

In order to handle concurrency in the interface, we must �rst understand how user-

generated events can lead to concurrency. We consider only those (user) events

that lead to actions by the application, as only they lead to changes of state. In this

section we will give a short taxonomy of these actions to motivate the description

of how to handle their concurrency. We de�ne an event as some external stimulus

to the application, such as a mouse click, and an action as a piece of application

code, identi�ed by name, which can be called in response to an event.

An action has a lifespan during which it can occur; it is born at some point, exist

for some period of time (which might be forever) and then die. During its lifespan,

128

an action is, at various points, either active or inactive. This is the action's state.

When an interface object comes into being, its actions are born as well, and when

it is destroyed, its actions die as well.

For the purpose of analyzing concurrency, we can further categorize live actions

by where they stand along four axes:

1. global/local : This characterizes the scope of an action. A global action is

always alive once it comes into being, ordinarily at the beginning of an ap-

plication. It remains continually active unless explicitly deactivated. A local

action arises at some point in a computation due either to an event (eg., a

popup menu), or to the ow of the application, and dies at some later point.

A local action's state can be changed either explicitly or implicitly.

2. synchronous/asynchronous: A synchronous action returns to its caller after

it executes. An asynchronous action does not. Some part of the interface,

such as a popup, may also be synchronous; it can be called by an application

and will return a value, just as any regular function does. The asynchronous

counterpart of this returns immediately, although it may create other interface

components that continue to exist independently. Asynchronous actions are

similar to callbacks in ordinary event-loop systems.

3. unique/repeatable: A unique action is essentially non-reentrant. Once a

unique action has started, and until it completes, user events cannot trig-

ger that action again. An example might be a worksheet to calculate the

value of an entry in a tax form application. Since the entry can only have

one value, it would not make sense calculate the same value twice in paral-

lel. A repeatable action is one which can have any number of simultaneous

instantiations { the action can be invoked any number of times before any of

129

the instantiations complete, such as the invoices in our example.

4. blocking/nonblocking : A blocking action is one which inhibits a group of

related actions. An example would be recalculation in a spreadsheet; while

the recalculation takes place, values cannot be altered. Actions which do not

block are simply nonblocking. Certain blocking actions are also exclusive,

meaning there must be no outstanding actions for them to be active.

Not all actions stand at the corners of this hypercube. An action might arise

with other actions and outlive their demise. It may be possible to activate repeatable

actions only a limited number of times, either �xed in the application or dependent

on other factors. Blocking actions might only block certain other actions, and not

all.

In this system, old-style menus have local, unique, blocking actions. No such

obvious model is available for graphical interfaces; their actions are a mixture.

As we have seen, though, it is only with great di�culty that they can be made

synchronous. An application may have some pull-down menus that are available

throughout the run of the application: they are global. Popups are local and

frequently synchronous. Control panels are usually global, unique (there is only

one for the application), and nonblocking. On the other hand, in many applications

there are dialog boxes where the entire application is blocked until the user responds.

We will now apply these concepts to simplify the programming of the appli-

cation. The techniques presented here make it possible to program it in a style

similar to an ordinary program, with the concurrency usually implicit rather than

explicit. The fundamental concept of using continuations for callbacks, however,

is extremely powerful. Continuations allow a program to jump around in fairly

arbitrary ways. Very di�erent abstractions from the ones presented here could be

130

developed under the same overarching framework.

4.4.2 An overview of the toolkit

In describing the toolkit we will �rst examine how the events are built, organized

and connected to GUI components, after which we will show how the code in

the example actually looks and explain how callbacks are created. The toolkit

makes extensive use of continuations. As has been noted before, continuations

are considered di�cult and perplexing to program with. It's scarcely reasonable

to hold out the promise of new exibility only to o�set it with even more new

complexity. We resolve this by presenting the user with an abstraction of how

events are related to each other and an API that implements this abstraction.

Manipulating continuations is mostly pushed on the other side of the API and out

of the programmer's purview.

Our toolkit has been implemented on top of both the Athena and Tk widget sets.

This is possible because the toolkit functions as a scheduler for actions, determining

whether they are available or not, with little concern for what triggers the action,

what occurs during the action, or what the underlying GUI looks like. To convey

how the connection to a particular widget set is accomplished, we will describe the

connection to Athena. Support for Motif would be almost indistinguishable.

The Dreme/Toolkit Interface

The Dreme interpreter provides direct support for C++ classes, so the widgets are

�rst wrapped in C++ and then in Dreme. The description that follows will attempt

to be as X independent and as Dreme independent as possible and can be easily

generalized, although we will start with an brief explanation of the Xt interface.

Athena widgets are created with default callbacks for most events. The spe-

131

cial behavior of a particular application is largely accomplished by substituting a

di�erent function to be called in place of the default one. Since a Dreme function

cannot be so easily substituted for a C language one, the interface must be a little

more complicated.

All callbacks to Dreme code are handled by a pair of C++ functions:

1. the uniCBfunc function, which receives all callbacks that are to be handled by

Dreme functions. The clientData parameter, which is speci�ed by the user

when creating an Xt callback, contains a pointer to a pair whose car contains

the Dreme callback function and whose cdr contains its user-speci�ed argu-

ment. The body of the function sets two global Dreme identi�ers, xtcbfunc

(for the callback function) and xtcbarg (for the single argument), to these

two values, respectively.

2. the addCallBack method, which takes as arguments a Dreme function and

a Dreme object. These are consed and become the client data of the Xt

callback. The method �nally calls XtAddCallback for the appropriate widget.

As is common in Unix, the X Window server communicates with clients, such as

a Dreme process, through a socket. Since this is also the way that Dreme processes

communicate with each other, Dreme simply adds this socket to the list that the

read-eval-print loop waits for and assigns it a special thread, called the xtloop.

When input is waiting on this socket, xtcbfunc is set to #f and the application

context object is told to process one event. After the event has been processed,

xtcbfunc is examined. If it is not #f, then this is a Dreme callback and (apply

xtcbfunc xtcbarg) is called to handle it. Otherwise the system waits for another

event.

The xtloop always returns to the Dreme level after allowing Athena to perform

132

whatever handling the toolkit requires for a particular event, rather than having the

Athena callback recursively invoke the Dreme interpreter. As has been mentioned

before, Dreme (and GUI's) are multithreaded, and Dreme uses continuations ex-

tensively. If the interpreter were called recursively, managing the process stack, as

well as messages from other Processes and continuations, would become extremely

complex.

This event loop is quite straightforward and is handled as a thread by the Dreme

scheduler, although it is usually blocked for input. The next section will show how

it can be made multi-threaded.

4.5 A continuation-based user-interface

As has been noted before, continuations are considered di�cult and perplexing to

program with. It's scarcely reasonable to hold out the promise of new exibility

only to o�set it with even more new complexity. We resolve this by presenting

the user with an abstraction of how events are related to each other and an API

that implements this abstraction. Manipulating continuations is pushed beneath

the API and out of the programmer's purview.

4.5.1 A taxonomy of events

In order to handle concurrency in the interface, we must �rst understand how user-

generated events can lead to concurrency. We consider only those (user) events

that lead to actions by the application, as only they lead to changes of state. In this

section we will give a short taxonomy of these actions to motivate the description

of how to handle their concurrency. We de�ne an event as some external stimulus

to the application, such as a mouse click, and an action as a piece of application

code, identi�ed by name, which can be called in response to an event.

133

An action has a lifespan during which it can occur; it is born at some point, exist

for some period of time (which might be forever) and then die. During its lifespan,

an action is, at various points, either active or inactive. This is the action's state.

When an interface object comes into being, its actions are born as well, and when

it is destroyed, its actions die as well.

For the purpose of analyzing concurrency, we can further categorize live actions

by where they stand along four axes:

1. global/local : This characterizes the scope of an action. A global action is

always alive once it comes into being, ordinarily at the beginning of an ap-

plication. It remains continually active unless explicitly deactivated. A local

action arises at some point in a computation due either to an event (eg., a

popup menu), or to the ow of the application, and dies at some later point.

A local action's state can be changed either explicitly or implicitly.

2. synchronous/asynchronous: A synchronous action returns to its caller after

it executes. An asynchronous action does not. Some part of the interface,

such as a popup, may also be synchronous; it can be called by an application

and will return a value, just as any regular function does. The asynchronous

counterpart of this returns immediately, although it may create other interface

components that continue to exist independently. Asynchronous actions are

similar to callbacks in ordinary event-loop systems.

3. unique/repeatable: A unique action is essentially non-reentrant. Once a

unique action has started, and until it completes, user events cannot trig-

ger that action again. An example might be a worksheet to calculate the

value of an entry in a tax form application. Since the entry can only have

one value, it would not make sense calculate the same value twice in paral-

134

lel. A repeatable action is one which can have any number of simultaneous

instantiations { the action can be invoked any number of times before any of

the instantiations complete, such as the invoices in our example.

4. blocking/nonblocking : A blocking action is one which inhibits a group of

related actions. An example would be recalculation in a spreadsheet; while

the recalculation takes place, values cannot be altered. Actions which do not

block are simply nonblocking. Certain blocking actions are also exclusive,

meaning there must be no outstanding actions for them to be active.

Not all actions stand at the corners of this hypercube. An action might arise

with other actions and outlive their demise. It may be possible to activate repeatable

actions only a limited number of times, either �xed in the application or dependent

on other factors. Blocking actions might only block certain other actions, and not

all.

In this system, old-style menus have local, unique, blocking actions. No such

obvious model is available for graphical interfaces; their actions are a mixture.

As we have seen, though, it is only with great di�culty that they can be made

synchronous. An application may have some pull-down menus that are available

throughout the run of the application: they are global. Popups are local and

frequently synchronous. Control panels are usually global, unique (there is only

one for the application), and nonblocking. On the other hand, in many applications

there are dialog boxes where the entire application is blocked until the user responds.

We will now apply these concepts to simplify the programming of the appli-

cation. The techniques presented here make it possible to program it in a style

similar to an ordinary program, with the concurrency usually implicit rather than

explicit. The fundamental concept of using continuations for callbacks, however,

135

is extremely powerful. Continuations allow a program to jump around in fairly

arbitrary ways. Very di�erent abstractions from the ones presented here could be

developed under the same overarching framework.

4.5.2 An overview of the toolkit

In describing the toolkit we will �rst examine how the actions are built, organized

and connected to GUI components, after which we will apply this to our original

example.

Our toolkit was originally built on top of the Athena widget set. As our Scheme

interpreter provides direct support for C++ classes, widgets were �rst wrapped in

C++ and then in Scheme. More recently we have been migrating to Tk, but this

does not a�ect the current discussion. The description that follows will attempt to

be as X independent as possible and can be easily generalized.

De�ning actions

A toolkit, such as Athena, usually has a set of low level widgets which can be

put together by an application to create more coarse grained objects. It is these

that are signi�cant to the application; our e�orts are concerned with aiding in

manipulating these larger objects. Furthermore, the elements of an application's

UI are not designed as independent entities, but often have some kind of nested

structure; for example, a event in one window can trigger an action that a�ects the

appearance of another. We �nd nested scopes work well for supporting a hierarchy

of windows, whether in a single application or spread around a network. The actions

in an application are grouped in recursive lists that function as scopes, which we

call lexical coordination structures. A single window may contain events triggering

actions in one or more scopes, with the parent scope in a parent window. A user

136

event in a child window can trigger an application action in a parent window by

name. Scheme, our implentation language, also has nested scopes (as well as �rst

class continuations), but there are reasons to have a parallel hierarchy of scopes in

the user interface:

1. There may not be an appropriate one-to-one mapping from the organization

of the application to the appearance of the user-interface.

2. There may be signi�cant interface management associated with an action,

such as displaying or removing windows. This is exactly the kind of manage-

ment from which user interfaces typically try to relieve the programmer.

3. In a distributed application, the user interface may be the best, if not the only,

way for parts of the application to communicate. This, in fact, is evident in

the X Windows inter-client communication mechanism.

To maintain independence from a particular widget set, a GUI is composed of

three layers:

1. A widget layer, whose job is to appear on the screen and pass events up to the

next layer. When an event occurs, a particular scope is called in the upper

layer with the name of the event.

2. A scheduling layer, composed of nested scopes of actions, where each action

has been de�ned with the appropriate set of attributes. The innermost scope

receives a call from the widget layer that an event has occurred { this is the

only callback allowed at the widget layer { and looks up the action associated

with that event. According to the state of the system and the attributes of

the action, it is determined if the action is active. If so, the necessary changes

to the application state are made (essentially setting ags) and the callback

137

of the action is invoked, either synchronously or asynchronously, as the case

may be. Finally, any necessary cleanup operations are performed, and the

result returned to the caller, if appropriate. There should be a one-to-one, or

one-to-many correspondance between this layer and the �rst { events at the

GUI level which don't have a corresponding action are not handled by the

application. We concentrate on this layer here.

3. An application layer, which has access to both of the lower layers. From a

coordination standpoint, the interesting communication is between the appli-

cation and the middle layer, but the application also needs to be able to a�ect

the GUI to provide feedback to the user. How dependent the application is

on a particular GUI platform depends on the nature of this communication.

In this framework, a graphical application starts with the application setting

callbacks in the coordination layer. Before a GUI component is displayed, the

application layer passes it to the coordination layer, which sets all the GUI callbacks

back into the coordination layer and then displays it. When an event occurs with

an associated action, the application is called with the name of the action, any client

data for the action, a pointer to the current scope in the application, a pointer to

the widget associated with the action, and an optional, system dependent, event

structure (if the action is called directly by an application component, then the last

two parameters are not included). If this widget is associated with the creation

of new widgets (such as a pop-up window), then these the new scope for the new

widget and the new widget itself are passed in.

A lexical coordination structure is created by a call to make-event-scope pass-

ing in an optional parent scope and a list of action descriptions. An action descrip-

tion has several attributes to determine the behavior of the action. These are listed

138

Attribute Default Values Description

name none Name of the action

active yes yes, no Whether action is active at startup

unique multiple single, multiple If action can be called a second

time before the �rst �nishes executing

meet asynch synch, asynch If action is synchronous or

asynchronous

blocking no yes, no, excl Whether this action blocks

other actions when active

terminal no yes, no Whether action terminates the

associated interface component.

enabling no yes, no Introducing a set of callbacks

active until the action occurs.

Figure 4.10: Action Attributes

in �gure 4.10, along with their default values. The description need only list at-

tributes di�erent from the defaults. A terminal action removes the associated set

of windows from the screen. If the container widget is part of a synchronous action,

then when the terminal action occurs, the result of the associated action will be

returned as the result of the call which created the container. Any action descrip-

tion may itself contain, as an optional parameter, a list of action descriptions. In

that case, the action introduces a new scope (frequently associated with a popup

window).

Setting callbacks

We will now apply this scheme to the original bridge problem. We will start with

the standard, single-threaded bridge game described above, and then relax the

constraints until almost everything occurs simultaneously. Our implementation

language is Dreme, but SML/NJ, a Standard ML compiler with �rst-class con-

tinuations, or its derivative, Concurrent ML, are logical alternatives, as could be

prototype-based object oriented languages, such as Self (Chambers, 1989). Using a

language-independent structure has the potential advantage of allowing application

components in several di�erent languages to cooperate in a distributed system.

139

(define play-bridge

(lambda (...)

(letrec ((the-scope (scope-maker '((rubber #f 0 (unique single))

(tutor #f 1 (meet asynch)))))

(rubber (lambda ...))

(tutor (lambda ...)))

((the-scope 'find-name 'rubber) 'set-callback! rubber)

((the-scope 'find-name 'tutor) 'set-callback! tutor)

...

(the-scope 'display))))

Figure 4.11: Playing Bridge

Another important aspect of the toolkit is that actions can be triggered either

by a user event or by invocation by some other part of the application.

In the basic bridge example, we mentioned two actions at the outermost level,

both of which are active:

1. Start a rubber. This action is unique and asynchronous. In other words, it

can be chosen immediately after the application starts up, but there can only

be one rubber at a time, and it return value, the �nal score, is discarded when

it terminates.

2. Start a tutorial. This action is multiple and asynchronous, as we've allowed

for concurrent sessions with the tutor.

The code for this in �gure 4.11. The scope is a list of action descriptions. An

action description has the following optional �elds:

1. The name of the action.

2. A path through the GUI to the interface component which corresponds to the

event that invokes the action.

140

3. A default value for the action. This is the value returned by the action if has

not been assigned a callback function.

4. A list of attributes. This need only contain those attributes with values other

than the defaults.

5. An optional scope, if the action introduces an inner scope.

A false value in the second �eld indicates an action which is not represented directly

in the GUI. If only the �rst two �elds have values, then the description refers to an

event in an outer scope, but there is some user event at this level which can initiate

it. This will be the case here; button for both rubber and tutor will appear on

user's screens, but the action are held by the bridge game object. Each action has

a separate function as callback.

Having speci�ed these initial settings, we can alter their relationships without

altering their implementation, to a certain degree. In a tournament, play-bridge

would return a score to the tournament manager. This is accomplished by changing

the de�nition of the scope to:

'((rubber #f 1 (unique single)(meet synch)(terminal yes))

(start-tutorial #f 1 (meet asynch))

In this case, at the conclusion of a rubber, any interface components associated

with the rubber are removed and the resulting score will be returned to the toura-

ment. The The net result of this change is that the display call to the-scope

will return synchronously with the result of start-rubber. The tournament calls

play-bridge synchronously. The actual play of a rubber is initiated by one of the

players.

141

<!entity % suit "club | spade | heart | diamond">

<!element bridge O O (url*, addtl*, (bid, hand, board)?, hand?)>

<!element hand - O (%suit;)*>

<!attlist hand name ID #IMPLIED>

<!element (%suit;) - O EMPTY>

<!attlist (%suit;) name CDATA #IMPLIED

val CDATA #IMPLIED>

<!element bid - - ((%suit;)*, value*, choices*)>

<!element value - O EMPTY>

<!attlist value name ID #REQUIRED

val CDATA #REQUIRED>

<!element choices - O EMPTY>

<!attlist choices name ID #required>

<!element board - O (curr-bid?,player+,hand?)>

<!element curr-bid - O EMPTY>

<!element player - O EMPTY>

<!attlist player position (north | south | east | west) north

bidder (bid-yes | bid-no) bid-no

dummy (dummy-yes | dummy-no) dummy-no>

<!element my-hand - - (hand)>

<!element url - - rcdata>

<!attlist url url CDATA #required

name ID #required>

<!element addtl - O (#PCDATA)>

<!attlist addtl name ID #required>

Figure 4.12: Bridge DTD

It might also be considered unfair to use the tutor while playing a rubber. To

accommodate this, starting a game and starting a tutorial are made blocking. In

the current implementation, calling help would then need to be placed in an outer

scope, so that it is not blocked as well. Concisely �ne tuning these dependencies

will be an important area for extending this model. Nevertheless, we can achieve

large changes in behavior with a small e�ect on the implementation.

To play bridge, each participant must retrieve the bridge interface and (eventu-

ally) his hand. The bridge DTD and interface interpreters are in �gures 4.12 and

142

bridge:

<widget-list>

["buttons"<frame>

"help"<toplevel startup = no>

"sections"<frame>

["label1"<label initstr = "Current Bid">

"bid"<toplevel startup = no>

"ready"<toplevel startup = no>

["press"<button textstr = "Ready To Start A Hand?">]

"play"<toplevel startup = no>

["press"<button textstr = "Play a Card">]

"currentbid"<entry>]]

{--url:<append><path>buttons,

[<attribute>NAME:

<button packstr = "-side left">]#

--addtl:<append><path>buttons,

[<attribute>NAME:

<button packstr = "-side left">]#

--pcdata:<set><path>^1,<ttext>#

--hand:<append><path>^sections,

["hand"

<frame>

["spades"<frame initstr = "-relief ridge -borderwidth 1">

["label"<label initstr = "Spades">

"cards"<frame>]

...]]#

{...

--diamond:<append><path>^hand.diamonds.cards,

[<attribute>NAME:<button packstr = "-side left">]#}

Figure 4.13: Bridge Interface Interpreter (con't)

143

--bid:<append><path>sections.bid,

["ding"<frame>

["info"<label textstr = "Your Turn To Bid">

"ready"<button>

"bidpop"<toplevel startup = no>

["instr"<label textstr = "Select your bid:">

"suit"<frame>

["name"<label textstr = "Pick a suit:">

...

"club"<button packstr = "-side left">]

"numtr"<label textstr = "Select number of tricks:">

"tricks"<frame>

"othsel"<label textstr = "Other selections:">

"choices"<frame>

"OK"<button packstr = "-side left">]]]#

{--value:<append><path>^ding.bidpop.tricks,

[<attribute>NAME:<button packstr = "-side left">]#

--choices:<append><path>^ding.bidpop.choices,

[<attribute>NAME:<button packstr = "-side left">]#}

--board:<append><path>sections,

["sections"<frame>

["players"<frame>]]#

--player:<append><path>^sections.players,

[<attribute>POSITION:<frame>]#

...

--diamond:<append><path>sections.hand.diamonds.cards,

[<attribute>NAME:<label>]#}

Figure 4.14: Bridge Interface Interpreter

<!doctype bridge SYSTEM>

<url name = rubber

url="http://bridge.com/nort.sgm">Start a Rubber</>

<url name = help

url="http://bridge.com/help.sgm">On-line Help</>

<addtl name = tutor>Tutor

Figure 4.15: Initial Bridge Interface

144

Figure 4.16: Bridge Startup Screen

4.13. A bridge interface arrives in three separate pieces during a rubber:

1. The outer interface, de�ned in �gure 4.15, only includes the help pages and

buttons for starting the rubber and calling the tutor. for invoking the tutor.

This is seen in �gure 4.18

2. The player's hand and the bidding interface come in a second document. This

document is integrated with the existing interface.

3. The dummy's hand.

We will concentrate on explaining the bidding.

The local scope is shown in �gure 4.20. The bidding event, which does not

appear initially, contains all the events for bidding. The bidding event is actually

called from a method invoked by the game object. Pressing the OK button will

return the choice to the game.

The code for bidding is shown in �gure 4.21. Whenever a bid is needed, the

thread enters a do loop (line 4) until a valid bid is returned. Each time through, the

145

<!doctype bridge SYSTEM>

<bid>

<value name = "one" val = 1>

<value name = "two" val = 1>

<value name = "three" val = 1>

<value name = "four" val = 1>

<value name = "five" val = 1>

<value name = "six" val = 1>

<value name = "seven" val = 1>

<choices name = "pass"></>

<hand>

<spade name = ONE val = 1>

<spade name = THREE val = 3>

<spade name = FIVE val = 5>

<heart name = ONE val = 1>

<diamond name = TWO val = 2>

<diamond name = FOUR val = 4>

<diamond name = FIVE val = 5>

<diamond name = ACE val = 13>

<club name = ONE val = 1>

<club name = THREE val = 3>

<club name = FIVE val = 5>

<club name = QUEEN val = 11>

<club name = KING val = 12></>

<board><player north><player east>

<player west><player south>

</board>

Figure 4.17: Bridge Hand

146

Figure 4.18: Bridge Startup Screen

Figure 4.19: Getting a Bid

147

'((rubber "BUTTONS.RUBBER")

(tutor "BUTTONS.TUTOR")

(help "BUTTONS.HELP" 1

(unique single) (meet synch))

(bidding "SECTIONS.BID" 2

(unique single)(meet synch)

(scope "SECTIONS.BID"

(ready "DING.READY" 4

(unique single)(meet synch)(blocking yes)

(terminal yes)

(scope "DING.BIDPOP"

(spade "SUIT.SPADE" 0)

(heart "SUIT.HEART" 1)

(diamond "SUIT.DIAMOND" 2)

(club "SUIT.CLUB" 3)

(one "TRICKS.ONE" 4)

(two "TRICKS.TWO" 5)

(three "TRICKS.THREE" 6)

(four "TRICKS.FOUR" 7)

(five "TRICKS.FIVE" 8)

(six "TRICKS.SIX" 9)

(seven "TRICKS.SEVEN" 10)

(pass "CHOICES.PASS" 11)

(ok "OK" 12

(unique single)(meet synch)

(terminal yes)))))))

Figure 4.20: Local GUI Scopes

148

1 ((my-scope 'find-name 'bidding)

2 'set-callback!

3 (lambda (obj scope newgui)

4 (do ((suit #f suit)

5 (tricks #f tricks)

6 (choice #f choice))

7 ((or (and (and suit tricks) (not choice))

8 (and choice (not (or suit tricks))))

9 (begin

10 (if choice choice (cons suit tricks))))

11 ((scope 'find-name 'ready)

12 'set-callback!

13 (lambda (obj scope newgui)

14 (map (lambda (cb val)

15 ((scope 'find-name cb) 'set-callback!

16 (lambda x (set! suit val)

17 (display (list 'set-suit val)))))

18 '(spade heart diamond club) '(0 1 2 3 4))

19 (map (lambda (cb val)

20 ((scope 'find-name cb) 'set-callback!

21 (lambda x (set! tricks val)

22 (display (list 'set-trick val)))))

23 '(one two three four five six seven) '(1 2 3 4 5 6 7))

24 ((scope 'find-name 'pass) 'set-callback!

25 (lambda x (set! choice 'pass)))

26 (scope 'display newgui)))

27 (scope 'display newgui))))

Figure 4.21: Getting a Bid

149

bidding event sets a callback for the ready action, which corresponds to a button on

the popup informing the user that it is his turn to bid. When that button is pushed,

callbacks updating the values of suit (line 14), tricks (line 19), and choice(line

24) are created for the main bidding popup. They function asynchronously until OK

is pressed, bringing down all the windows associated with bidding and terminating

an iteration of the do loop. If the loop variables have correct values, the bidding

callback returns that to the game. Other elements of a synchronous bridge game

proceed similarly, however this does only serialized the main thread of the bridge

game. Help and tutoring can proceed simultaneously if desired.

As mentioned, each rubber is composed a number of games, each of which

returns a score. Traditionally, each game is synchronous and unique. This opens

two possible implementations:

1. Place all the logic directly in the function body. This is the approach taken

in the psuedo code of the �rst chapter.

2. Create nested scopes for the actions that take place within a rubber. In this

case, actions can be controlled either programmatically or through the user

interface.

In the former case, little changes behaviorally, but in the latter, if the game action is

made multiple, then any number of games can be active simultaneously. Updating

the score would need to be placed in a monitor to avoid contention if two games end

almost simultaneously. The same e�ect can be obtained by placing the update into

another, unique, action. Other changes would need to be made to the source code,

but the basic control ow could be maintained. The approach allows an application

to migrate back and forth between serial and parallel implementations.

The major change from parallelizing rubbers is the need to rethink the rules

150

of the game to accomodate this new possibility. We leave this question to the

interested parties.

Within each game, actions are also normally synchronous. The same technique

for parallelizing each rubber can be used for parallelizing each game and trick, so

all tricks of all games can be played at simultaneously. Starting a trick can be

done by either a user or the application. Within that, the order of play can also be

parallelized. Supporting such extreme parallelism requires extra work to determine

termination. We are looking at extending the model to support some of this; for

example, there are exactly 13 tricks, and each trick uses four cards, and each card

comes from a di�erent user. It should be possible to automate all three of these

constraints.

The one aspect of a bridge game which is inalterably unique is the playing of a

card { each card can appear in at most one round of play in a single game. In our

system, we model this as a unique action which never terminates. For each user,

for each game, there are thirteen unique actions, corresponding to the cards. They

are accessed through a synchronous action, corresponding to a popup. The contin-

uation associated with playing a card terminates the synchronous action without

returning, so the card-playing action never terminates until garbage collected after

the game.

4.5.3 Combining continuation code with existing systems

It is an important side-e�ect of this approach that we can combine it with existing

applications that were written using an event-loop. With the event-loop, each action

functions as a discrete unit and only communicates with other actions through

shared data structures. If we add new actions which do not write to any of those

structures, such as we have been discussing, then the existing actions are una�ected.

151

Similarly, we can take any set of actions and rewrite the callbacks along the lines we

have laid out without a�ecting other actions, so long as we update the shared data

structures correctly. It is also possible to proceed in the reverse direction by taking

the Scheme code for some set of actions, rewriting it in CPS and then converting

that to C++.

We have taken advantage of this to build the GUI over the Athena and Tk

widget sets. Callbacks are handled by the widgets themselves, except where they

are overridden by Scheme callbacks. The same approach can be used with any other

application, so long as there is a way for Scheme code to access and manipulate

data in the language of the application.

The most complicated part of the interface, in fact, is the relationship between

Scheme's read-eval-print loop and the GUI toolkit's event-loop. They cannot mu-

tually call each other forever, so one must submit to the other and be called as a

routine. As both Athena and Tk give access to the event-loop, we have chosen to

replace the event-loops with event-loops in Scheme that function as threads. When

an event occurs, it is �rst passed to the GUI. If there is a Scheme callback, then two

Scheme variables are set, which are used to execute the callback when the toolkit

returns. This eliminates concern the for process stack, and has the added feature

of allowing both toolkits to coexist simultaneously.

It is also possible to give priority to the event-loop. By using continuations as

callbacks, we have already placed the entire state of the computation in an object.

The Scheme inner loop needs to be modi�ed to call this continuation. In addition,

the Scheme inner loop needs to know when to return to the event-loop. Inside the

toolkit, whenever the application needs input, is a call to get-events. This call

must terminate the Scheme inner-loop, but the rest of the Scheme code need know

nothing of this.

152

4.6 Related Work

Our work has dealt with two separate aspects of user interfaces which we must

consider:

1. The visual appearance of a graphical user interface.

2. Control ow of the application from user events.

We will treat each in turn.

4.6.1 The Appearance of a User Interface

In order to satisfy the requirements of supporting applications distributed across

heterogenous platforms, we have attempted to completely avoid the question of

visual appearance and, instead, focus on transmitting the logical interface, inde-

pendent of any particular GUI platform or toolkit. This is in accord with the

original philosophy of SGML, but appears to be unusual in GUI developments.

Logical requirements for an interface are certainly a part of GUI design, and style

guidelines [18] may approach this, but there does not seem to be any GUI work

in \executable speci�cations." It is more frequently argued that designing a user

interface is an iterative, experimental process that would be di�cult to automate

[40, 53].

Providing a textual GUI description language, separate from application be-

havior, is not unusual. Motif, the OSF standard interface for X Windows, includes

the User Interface Language (UIL). UIL provides a small language with keywords

for all the Motif widgets, bindings, and other pertinent information which develop-

ers can use to specify window appearance, and some interaction, in separate text

�les. These �les are run through a separate \compiler" and are then opened by the

153

application at run time. Another system for X windows is the Widge Command

Library(?) (WCL) which extends the X Resource Database to include the entire

widget hierarchy. Version 4 of the Actor language provided a Window Description

Language, similar to UIL, for MS Windows. To a certain extent, HTML can be

seen as providing the same function for hypertext. Because of the general util-

ity of a textual representation, there are probably also innumerable undocumented

examples in the private sector.

Each of these systems is designed to provide an interface for a particular appli-

cation in a particular GUI toolkit. A UIL description, for example, is not easily

transported beyond Motif. This drawback can be partly overcome by porting the

toolkit to every interesting platform, as is proposed for Fresco, a CORBA com-

pliant GUI toolkit for X11R6[37, 38]. There are also some commercial products

that have taken the same approach. However, these are currently all compile-time

libraries.

All of these approaches are still tied to the display of graphical widgets and are

too low level for our purposes, which are really concerned with the semantics of

the interface. In addition, these systems, with the partial exception of HTML, are

tied to single applications. If there is an explosion of applications on the network,

it will not be possible to slowly handcraft user interfaces one at a time; the SGML

based approach we advocate allows interfaces for an entire range of applications

to be speci�ed simultaneously, as well as support functionality which cannot be

derived at the widget level. Nevertheless, the ready availability of a multi-platform

toolkit would simplify matters.

154

4.6.2 The Behavior of a User Interface

Because of its complexity, extensive work has been done on scripting user interface

behavior. Until recently, this work has been mired in dealing with a single threaded

environment, as we have alluded to previously. We will discuss some of the earlier

work, and then describe more recent multithreaded work.

The Model-View-Controller (MVC) GUI architecture developed for the Smalltalk-

80 system does not address threading, but is otherwise somewhat similar to our

approach. MVC attempts to provide a clean break between the information to

be displayed and its semantics, on the one hand, and the appearance of that in-

formation on the screen, on the other. The former element is called the Model,

the appearance is the View, and the Controller is a mapping from user actions to

functions in the Model. The normal ow of control is that a user event triggers

the Controller to send a message to the Model, which in turn modi�es the View.

This paradigm allows several di�erent Views of the same model to exist simultane-

ously on the screen, each View providing a di�erent display semantics. Views and

Controllers normally are developed in pairs, as the user's actions will depend on

how information is displayed. In our system, the Model is provided by the appli-

cation and/or the SGML document passed to the local interpreter. The View, the

underlying widgets, is generated by the interpreter. The interpreter, however, also

creates the Controller simultaneously, although the application is also capable of

changing the Controller by changing the states of events. Although this is a logical

path for development, and the MVC controller paradigm has been very successful

in the Smalltalk community, other GUI paradigms are also possible.

The Network Extensible Window System[27](NeWS), from Sun Microsystems,

is probably the system most similar to our e�orts in many areas. Had NeWS been

155

more successful, our approach to the User Interface might have been quite di�er-

ent. NeWS assumed the existence of a network separating the application from

the display, so that communication would involve interprocess communication, as

it does for X Windows. The �rst interesting element of NeWS is the adoption of

PostScript, the page description language from Adobe, as its display language. Be-

cause of preexisting work making PostScript device independent, this made NeWS

more easily ported to a variety of system. It also meant that an application GUI

was a piece of code sent from the application to the display server.

NeWS o�ers signi�cant extensions to PostScript to manage GUI interactivity.

There are two that are fundamental:

1. The server runs any number of lightweight PostScript threads. By adding a

fork command and monitors, an application's GUI running at the server is

completely multithreaded. This multithreading does not necessarily spread

to the client.

2. These threads can receive events. Postscript code normally writes to a printer

and does not receive input. In NeWS, PostScript threads can declare their

interest in di�erent events and will be informed when those events occur. As

any thread can express its interest in any event, this implies that di�erent

clients can react to the same event, as a form of implicit IPC.

The NeWS approach to GUI programming saw the GUI Server and its client(s)

as communicating parallel processes. They are connected by a two way pipe.

The client can send a byte-stream of PostScript commands to the server, and the

PostScript routines can, in turn, send another stream back in the other direction,

just as they could write to any other port. This does not enforce a structured

communication, but lets each client establish its own protocol. NeWS attempts to

156

support a more structured format by also supporting tagged data packets moving

from the server to the client. The client can then instruct the server code about

what tags to place in communications and then use these to determine what is being

communicated.

NeWS was a very ambitious system, certainly more ambitious than X11, which

has become the standard Unix windowing environment. If one were to consider

the NeWS server as capable of functionality beyond just display, and there is no

particular reason why it couldn't be used for arbitrary computation, then there is

no fundamental di�erence in capabilities between NeWS on the one hand and any

system using remote execution, such as Telescript, Obliq, or Dreme, on the other.

Obliq and Dreme provide very di�erent models for the way this functionality is

achieved, but it is not known what the di�erence between the Telescript and NeWS

models are, although Telescript wishes to be seen as the Postscript of the networked

world.

From the perspective of GUI systems, our approach is similar to NeWS in the

transmission of programs over the network and support for multithreading. The

fundamental di�erence between the two is Dreme's lack of explicit support for the

concept, inherited from Andrew, of the networked window server. In this model,

also found in X11, the window server runs on the user's machine and applications

all run in separate processes scattered around the network. The ability to reduce

network tra�c by placing more of the processing burden in the server is a basic

justi�cation for the NeWS architectre. However, to place any signi�cant application

logic in the server required writing it in PostScript, a separate language from

the rest of the application. This distinction between server and application is

not particularly meaningful Dreme, since elements of the application can migrate

around the network as necessary without needing to change language. We have also

157

developed a more sophisticated model of controlling user events in a multithreaded

environment.

Another multithreaded graphical user interface residing on similar principals

to our approach, although not explicitly, is eXene[51], developed in Concurrent

ML(CML). This is an extension of Pegasus[39], written in PML, a predecessor of

CML. Before describing eXene and Pegasus, I'll briey describe CML.

CML is an extension of Standard ML and is implemented on top the SML/NJ

compiler, a continuation-passing style compiler which inspired the Dreme inter-

preter architecture. Because of its CPS architecture, SML/NJ could easily add

continuations to the SML language. CML takes advantage of them to provide

threads in the same fashion as Dreme (and innumerable other Scheme systems);

where CML di�ers from other systems is in its extension of the ML typing system

to cover concurrency, particularly communications between threads. All commu-

nications in CML are through synchronous channels, as in CSP. If one thread of

a communication arrives before the other, the �rst blocks waiting for the second.

CML introduces the event, a new �rst-class object representing a potential com-

munication. Examples of events are receive and transmit, where the former

represents receiving a value over a particular channel and the latter represents

sending a value over a particular channel. For these events to actually occur, the

program must accomplish two more tasks. First, wrap is used to bind a particular

event to a function, eg. wrap (receive inCh, fn x => x) represents passing the

value coming from inCh to the identity function. Second, this pair must be passed

to a synchronizing construct, such as sync or select, which actually causes the

thread to block waiting for the (an) event. Sync waits for a particular event, and

select chooses one of a list. CML events are unusual because they are �rst-class,

and can therefore be passed around. CML provides several other constructs with

158

variations on this functionality.

Dreme can support the functionality of CML �rst-class events, although without

static type checking, by providing closures to act as the desired objects. Channels

are essentially closures which must be called by both the sender and receiver with

entry controlled by a monitor (so they don't miss each other) and the continuation

of the �rst caller held. Of course, this also a reection of the fact that Dreme and

CML (within the scope of a single process) are based on very similar constructs.

In Pegasus, each window starts three threads, one each for keyboard events,

mouse events, and control events, as well as any additional ones needed for coordi-

nation and maintaining state. Widgets do not use callbacks to communicate with

their clients, but instead synchronize across typed channels. This handles many

of the GUI programming problems that have been mentioned repeatedly. Some

multithreaded applications, such as an interactive multi-view graph editor, have

been developed on Pegasus. eXene extends Pegasus by providing a multithreaded

X display replacing the C-language Xlib.

The Pegasus/eXene work targets lower level graphics functionality, and cannot

interact with existing systems, although it does provide the added safety of static

type checking. Dreme, on the other hand, is able to coexist with existing GUI

toolkits, but without type safety.

More interesting is comparing Pegasus event handling with Dreme's. Pegasus

depends on CML events (actually PML, which is a subset). As noted above, these

can be implemented in Dreme, so the same mechanism could be used in both cases.

In the Pegasus approach, however, the coordination among events must be handled

by the code. This is not a problem if the coordination is simple. But when the

relationships become complex, this can become a burden, requiring the programmer

to build automata, even with the advantage of multithreading. Creating a separate

159

layer with a speci�c notation automates this. If the software is mostly composed of

reused elements, then the coordination layer may represent most of the development

e�ort. It shoud be entirely possible to create a separate coordination layer for

Pegasus in CML.

160

Chapter 5

Distributed Garbage Collection

5.1 Introduction

In a language such as Dreme, where objects and object references are scattered

around a large, network of autonomously evolving elements, there is no escape from

garbage collection. For Dreme to be a viable element of the distributed systems of

the future, it must be possible to perform e�cient distributed garbage collection,

including collection of cycles, with low network overhead.

We present a decentralized distributed garbage collection (DGC) scheme for

distributed mobile objects. This algorithm is unique in that it collects all garbage,

whether cyclical or not, without requiring (as do other algorithms) the coordination

overhead of a �nding a distributed root set (a set of objects around the network

known to be active from which garbage collection starts).

It is our contention that in dealing with networks of this size, bottom-up algo-

rithms that do not depend on any a priori global data structures, or other long-term

coordination will prove to be more robust. The algorithm in this paper requires

little coordination beyond the already existing links between the nodes involved,

and extends only as long as the algorithm requires.

The algorithm can be seen as an extension of Piquer[44] and Birrell et al.[5],

161

both of which augment reference counting (RC) algorithms by maintaining the dis-

tributed inverse reference graph (IRG): each object, �, maintains a list of pointers

to other sites known to have references to it. In the former case references can

be replicated across sites, forming a tree, while the latter ensures that � always

knows every site containing a reference to it. Neither algorithm is able to collect

cycles. We will show there is enough information in the IRG to collect cycles with

a reasonable overhead.

Maintaining the IRG has several ancillary bene�ts not normally considered:

1. The same information can be used to maintain consistent states among repli-

cated objects, as in a software cache consistency protocol [11].

2. Nodes can implement a variety of garbage collection strategies, such as charg-

ing for the continued existence of an object, migrating objects to accessor

nodes, or arbitrarily collecting an object and informing its referents of their

dangling pointers. These choices are not necessarily reasonable within a single

applications but may be important among distributed objects communicating

across security domains.

3. Objects know which nodes are sending DGC information and can choose to

accept or discount that information accordingly. This provides the possibility

of discerning and responding to malicious behavior.

The remaining sections of this chapter will �rst give a summary of other pro-

posed DGC algorithms, then briey outline the basic concept for our algorithm and

describe the complete algorithm for a single collection and prove its correctness. It

will then expand the algorithm to handle concurrent DGC operations and explain

how to avoid deadlock. The �nal section will show some heuristics to determine

when to start a collection operation.

162

5.2 Related Work

Distributed garbage collection algorithms generally follow one of the two techniques

used for collecting a single address space: mark-and-sweep or reference counting.

Mark-and-sweep algorithms [33, 34, 45] �rst choose an area of distributed memory

(although not blocking processing), determine the distributed root set, and organize

inter-node references. Then they determine the transitive closure of the references

from the root set. Everything else is garbage. Reference counting techniques

[15, 13, 44, 54, 5] require much less coordination. However, they do not locate

distributed cycles. Both kinds of algorithms generally have two phases. In the

local phase, completely unreferenced objects are garbage collected. In the second

phase inter-node information is propagated through the network, identifying more

garbage.

Ladin and Liskov[33] gives an algorithm for collecting cyclical garbage using

a client/server model. Distributed references are tracked by the server, which

can use them to determine where garbage is. For scaling to larger networks, the

article proposes dividing the network into areas, each with its own server and a

global server to sit above for inter-area references. Puaut[45, 46] provides another

client/server model for distributed collection of active objects. This extends Ka-

fura's [29] algorithm for collecting agents by allowing lost messages and removing

synchronization constraints. The various nodes of a system send timestamped

information to a global collector containing intra-node edges. As the objects are

active, the head and tail of each edge is a pair giving the object's name and its state

(one of root, inactive, running, or unknown). Unlike ordinary objects, an active

object is not necessarily garbage if not reachable by a persistent root; an active

object may send its address to another object at some point, making it reachable

163

from a persistent root. A collector for active objects must handle this case. Both

of these methods require dependence on a third party (the global collector), and

on that party's judgments concerning the behavior of objects. Their scaleability is

open to question, as they require cooperation from the entire network.

Lang et al.[34] extends mark-and-sweep to collecting cyclical garbage in large

networks. Processes are organized in hierarchy of ever larger groups, with the

largest containing the whole network. A coordinated mark-and-sweep is performed

at each level to eliminate garbage from the group, until �nally the largest group

removes all garbage. The use of hierarchical groups has several drawbacks:

1. Responsibility is di�use; nodes are dependent on decisions of unidenti�ed

nodes.

2. The entire network must agree to submit to same the algorithm. In a system

as open as the Internet, it is unreasonable to assume that a single algorithm

for a particular functionality will be optimal in all situations. A decentralized

algorithm which depends only on point-to-point communication among the

\interested parties" promises to be easier to integrate with nodes implement-

ing special purpose algorithms.

3. Garbage may need to be examined several times before being de�nitively

established as garbage.

Traditional RC requires increment and decrement messages; incorrectly ordered

messages can lead to collection of live objects. Distributed RC algorithms, starting

with weighted reference counting (WRC) [4, 59], generally eliminate the increment

messages. In WRC, each object is given a large value which is spread around

when a reference is copied. Each outstanding reference contains a weight, and all

164

these weights add up to the weight of the object. Decrement messages are sent

when remote references are collected and are accompanied by the former reference's

weight. Because weights cannot be divided when they sink to one, the initial

algorithm required indirection cells, proxies for the object with their own trees of

references. A number of improvements and alternatives [15, 13, 44] have eliminated

these. None of these algorithms handles cycles, and the object must trust the sender

of the decrement message.

A di�erent approach starts with Piquer[44] and continues with Shapiro et al.[54].

Scion-Stub Pointer Chains [54] exploit the use of parent pointers (called scions) to

track where distributed references to an object reside. These parent pointers estab-

lish the inverse reference chain from an object to its accessors. Because references

or objects may pass from one node to another, these pointers will form a tree rooted

at the object. As with traditional RC, garbage is collected from the leaves in; cycles

are not collected. Shapiro et al.[54] also shows how correct communication can be

assured, even in the presence of lost messages. We will assume the presence of the

same mechanisms for collecting non-cyclic garbage. Birrell et al.[5] provides a very

similar algorithm, but eliminates the chains of references. To assure that site fail-

ures are correctly handled, each object knows all nodes that have references to it,

e�ectively reinstating the the increment message; premature collection is prevented

by forcing the sender of a reference to keep its copy until receipt is veri�ed.

Incremental algorithms which do not halt processing, such as the one we will

present, are frequently explained in terms of a tri-color marking scheme[60, 61].

In such schemes, persistent roots are initially colored grey and all other objects

are white. The algorithm then describes how the children of grey objects are also

turned grey. Whenever all of an object's children are grey, the object is turned

black. At the termination of the algorithm, all nodes are either black (alive) or

165

white (garbage). White nodes can be collected. We will use tri-color marking, but

we will assign a di�erent meaning to the colors, as explained below.

5.3 The Basic Algorithm

To simplify the discussion, we will temporarily disregard questions of physical

implementation in an actual network. For current purposes, each object can be

considered to reside on a separate node. We make the following de�nitions:

1. Objects are named a, b, c, Each object has a unique identi�er (UI).

UI's will be subscripted with the name of the object when necessary to avoid

ambiguity.

2. Network nodes are named alpha, beta, gamma, ...

3. We call the traditional reference graph the forward reference graph (FRG).

We will denote FRG edges with dotted lines.

4. The inverse reference graph (IRG) is obtained by switching the direction of

all the references in the FRG. We assume this is available for all objects. We

will denote IRG edges with solid lines.

5. Objects have a state of either alive or dead. We will mark objects as either

white, grey, or black .

6. An object which is always alive is called a persistent root (PR). PRs will

always be shown in black.

7. Since objects can arbitrarily try to learn their status, each such operation

is called a Garbage Collection Operation (GCO). The object that starts the

166

Figure 5.1: Basic Graph

operation is the Garbage Collection Root (GCR). Each GCO may be sub-

scripted by the name of its GCR.

Figure 5.1 shows a reference graph with a number of objects we will use to

explain our algorithm. Object f is a PR, a is a GCR, (d, b) is an FRG edge,

whereas (d, c) and (c, b) are IRG edges. Objects b, d, and c form a cycle. We

will reuse the same graph, changing the directions of edges and the persistence of

objects.

The fundamental insight behind our algorithm is a dual property of traditional

mark-and-sweep. In a traditional mark-and-sweep, the GCR is a PR, the FRG

is traversed, all touched nodes are eventually marked black, and all white nodes

are eliminated. Suppose, instead, we choose a GCR which is not also a PR, and

traverse the IRG. Since the IRG contains all the objects with references, directly

or indirectly, to the GCR, then the GCR is alive if a PR is touched (meaning the

PR refers to it in the FRG); otherwise it is garbage. Also, because being alive is

transitive, every object on a path from the GCR to the PR in the IRG is also alive.

We will mark objects not involved in a GCO as white, objects that are known to

be alive as black, and other objects in the GCO, whose state is not yet determined,

as grey. This leads to the following coloring rules for the IRG traversal:

167

1. At the beginning, all PRs are black, the GCR is grey, and all other nodes are

white.

2. If an edge has a grey tail and a white head, the head turns grey.

3. If an edge has a black tail and a white head, the head turns grey. (This rule

is technically not necessary, but simpli�es demonstrating correctness.)

4. If an edge has a grey tail and a black head, then the tail turns black. In the

FRG, this edge has a black tail and a grey head. Since only PRs are black at

the outset, these edges are part of the transitive closure of some PR in the

FRG.

5. If none of rules 1 - 4 can be applied to any edge, then any remaining grey

objects can be removed.

These rules are in contrast to traditional tri-color marking algorithms where grey

objects are always alive. In both cases, at the end of the GCO, no grey objects

remain.

Figure 5.2 shows four variations of our graph with initial and �nal colorings.

In the �rst case, with no cycles, the state of the grey nodes is unambiguous; the

leaves determine locally that they are garbage and are collected. In doing so they

remove links to their children in the FRG, one of whom must be the parent in the

IRG traversal. When that IRG parent has heard from all its children (cf. object

b), it, too, knows itself to be garbage, and communicates that to its parent, etc. At

the end of the traversal, no grey nodes are left { they've all been collected.

In the second case, there are grey subtrees, with one black branch connecting the

GCR with a PR. As in the previous case, all grey objects can be collected during

the traversal, so only the live nodes remain at the end.

168

Figure 5.2: Graph Colorings

169

This lets us add a sixth rule:

� If a grey node has no outward edges, it can be collected.

The third case contains a cycle attached to a branch with a PR. Rules 2 and

3 ensure that the entire IRG is marked; if a cycle is encountered, all its members

will initially be colored grey or black. However, if any member is marked black, all

will eventually be marked black by rule 4. In the end all members of the cycle will

be correctly marked.

The last case contains a cycle unconnected to a PR. By rule 2, all members

are marked grey. Since no black objects are encountered, and each object has an

outward edge, all remain grey. Once no more nodes can change color, these are the

only grey nodes to remain. They can be eliminated as garbage, as in rule 5.

We can summarize the process succinctly with the following steps:

1. An object chooses to start the operation (rule 1).

2. The set of objects, �, which refer to it are located (rules 2 and 3).

3. If any PRs are found to be in �, then we �nd �, the intersection of � with

the transitive closure of the PRs in the FRG (rule 4).

4. Any object in ��� is collected (rule 5).

The key to an implementation is ensuring that steps 2 and 3 complete before step

4 is undertaken.

5.4 How to Traverse

There are two possible means of traversal, serial and parallel. As they have slightly

di�erent characteristics, we will discuss serial �rst and parallel afterwards. We will

170

show that applications of rules 2, 3, and 4 are exhausted by the end of the traversal,

at which point rule 5 can be invoked. This must be done by the GCR, as only the

GCR knows when the traversal has �nished.

The complication in a serial IRG traversal is �nding the back edges, which

indicate the presence of cycles. These occur when a grey node tries to traverse a

child and �nds it is already grey (i.e., an ancestor). Each grey object must keep

track of all the grey to grey edges for which it is the head, which includes its parent

and the back edges from its descendants. In the third example in �ngure 5.2, if

edge (b,d) is traversed before (b, e), the cycle is traversed and colored grey before

it is found to be alive. When b turns black, rule 4 applies to the edge (c, b). If

b does not keep track of c, then it would have to retraverse the subgraph. Object

b invokes rule 4 on its back edges. Object c recursively does the same, as do its

ancestors in the IRG traversal, back to b. Finally c returns to b, which then returns

to its parent, a, which also turns black.

During the outward traversal, each object, a, (starting with the GCR) applies

rules 2 and 3 to all children, forming a tree from the IRG. By the time the children

have returned, rules 2 and 3 cannot be applied in the subtree, as there are no more

white nodes. If object a is black, it then applies rule 4 to any back edges. As any

back edge comes from an object in the subtree rooted at a, by the time a returns to

its parent, no applications of rules 2, 3, and 4 are possible in the subtree rooted at

a. As no child returns to its parent until this is true, when the traversal terminates

at the GCR, rule 5 can be applied. The algorithm is shown in pseudocode in �gures

5.3 and 5.4. Procedure mark corresponds to rules 2 - 4, blacken colors the back

edges, and terminate handles rules 5 and 6. The purpose of GCID is explained

below.

The only restrictions on the order of events is the requirement that all children

171

1 color myColor := white;

object parent := nil;

backEdges is list of objects:= nil;

identifier GCI := nil;

5

procedure mark(object caller, color callerColor, identifier callerId)

returns color is

if myColor = white then

GCI := callerID;

10 parent := caller;

myColor := grey;

for child in myChildren do

childColor := child->mark(me, myColor);

if childColor = black then

15 myColor := black;

endif

od

else if callerID not = GCI then

return nil;

20 else if myColor = black then

return black;

else if myColor = grey then

backEdges->append(caller);

return grey;

25 endif

if myColor = black then

for neighbor in backEdges do

neighbor->blacken();

30 od;

endif

return myColor;

33 end;

Figure 5.3: Basic Algorithm, part 1

172

34 procedure blacken(identifier callerId) is

35 if callerID not = GCI then

return;

endif;

if myColor = grey then

myColor := black;

40 for neighbor in backEdges do

neighbor->blacken();

od

parent->blacken()

endif;

45 end;

procedure terminate(identifier callerId) is

if myColor = white or callerId not = GCI

then return;

50 for child in myChildren do

child->terminate()

od

if myColor = black then

GCI := nil;

55 myColor := white;

parent := nil;

backEdges := nil;

else

delete(me);

60 endif;

61 end;

Figure 5.4: Basic Algorithm, continued

173

(or all back edges in the case of blacken) be traversed before returning to the

parent. Therefore the for loops in lines 12, 28, 40, and 50 can all be executed in

parallel, so long as they all terminate before the caller proceeds. In this case, some

of the back edges may actually be cross edges.

A slight modi�cation is also necessary to handle active objects, as neither the

IRG nor the FRG is su�cient[29, 45]. If an active object is encountered, then it

must traverse both its IRG and the FRG for which it is the root. This covers

everything which refers to it, and everything it refers to.

5.5 Runtime of the Algorithm

The runtime of this algorithm depends entirely on the nature of the objects in the

graph. We can measure this by considering the number of times an edge might be

crossed, where each edge crossing is a message.

In an acyclic graph of only garbage, each IRG edge is traversed once, and the

graph is collected on the way in. This gives a runtime of O(2E).

In an acyclic graph with a PR or a cyclic graph containing only garbage, the

terminate message is necessary, giving a runtime of O(3E).

Finally, if there is a live cycle, it must be traversed an additonal time, yielding

a worst-case runtime of O(5E).

5.6 Fault Tolerance

As this algorithm is to be implemented in a network, it must be able to cope with a

variety of network problems, from transient communication failures, to dead nodes,

network partitions, and malicious messages.

Transient communication failures correspond to lost or repeated messages.

174

Our algorithm tolerates these so long as each message arrives once. Other than

terminate, messages can only turn a white object to grey, or a grey object to black,

so repeated messages cannot turn a black object to grey, or a grey one to white.

Terminate messages are only sent after the traversal is �nished, meaning that all

messages for the traversal have arrived at least once. However they could cause the

collection of live objects if they arrived during a later GCO. Therefore each GCO

has a unique Garbage Collection Identi�enr (GCI) based on the UI of the GCR.

Messages with an inappropriate GCI are discarded.

Failed nodes and network partitioning require a more complex response, as

some decision may need to be made about their permanence. Before considering

di�cult cases, some observations can be made:

� Partitions and failures are only signi�cant when a GCO starts and can oth-

erwise be ignored.

� If the traversal doesn't complete, no object is arbitrarily collected because of

a failure or a partitioning.

� Parts of the IRG which do not encounter the failure or partition can continue.

If a PR is found, then the problem can be ignored (by the algorithm).

Therefore, in many cases, the algorithm can complete partially and then be aborted.

Regarding other failures, our algorithmmakes no claims to guarantee high avail-

ability. Nevertheless, it can support the sophisticated responses to faults necessary

when such guarantees cannot be made. During execution of a GCO, all communi-

cation is between objects connected by an IRG edge. Problems manifest themselves

along these same edges. We let the tail object of an edge in the IRG be responsible

for determining the edge's state. This is very important if we consider that objects

175

might consume considerable resources and expense. Let an edge, (a, b) exist in the

FRG, but the physical link has been severed. In a client-server model, a informs

the server of its link to b, so b cannot become garbage. However, if b consumes

or reserves large resources, its host may prefer to ignore a in determining if b is

garbage (which may leave a with a dangling pointer if it is the only object refering

to b, but that is a di�erent problem).

The last issue to consider is correctness in the face of malicious or incompetent

neighbors sending spurious messages. We assume pervasive access to encryption

to positively identify the senders of messages. From the perspective of garbage

collection, there are three kinds of error:

1. A live object can be made to appear as garbage. There are three ways

this is possible:

(a) A black object does not blacken its back edges.

(b) A black object returns grey to a mark message.

(c) An object sends a terminate message prematurely.

Although we cannot prevent these, we can consider them to be the same as

the black object removing its references to the grey object. We will treat it

as such. Only the third case can actually cause an object to be collected. We

can guard against this with two modi�cations:

(a) Objects ignore the terminatemessage until they have �nished searching

their own subtrees.

(b) Each object sends the terminatemessage to all its back edges. An ob-

ject isn't collected until it has heard from each grey object encountered

176

in the traversal. Unfortunately, this increases the worst-case runtime to

O(6E)

2. A garbage object is made to appear live, or an object is kept alive

against the host's wishes. The �rst condition is impossible by de�nition,

but the second, denoting an object maintaining a reference just to keep an-

other object from being collected, is quite possible in a client/server system,

especially if it is possible to forge a reference. In our case, each object is

aware of the references to it. It is also possible to periodically contact the

possessor of a reference to verify its continued validity.

5.7 Multiple DGC operations

The algorithm is correct for a single GCO, but in actual practice there will be

numerous concurrent, overlapping GCOs. Letting each operation proceed indepen-

dently of all the others would produce correct results, so long as the objects can

distinguish between GCOs, but would entail considerable duplication of e�orts. If

n interconnected nodes start garbage collecting at the same time, there would be

O(E � n) messages involved. This section will provide a modi�ed algorithm to

decrease the amount of repeated e�ort in overlapping GCOs, although there will

remain a (hopefully rare) con�guration in which the number of messages is still

O(E � n).

If GCOs are not to overlap, then when there is an encounter, one or the other,

or both, must either block or retreat. Blocking and retreating each introduce their

own potential problems.

1. The di�erent GCOs might deadlock. If we consider each object as a resource

the GCO needs to use, then we need to limit this access, leading to the

177

possibility of two GCOs waiting endlessly for each other.

2. GCOs might livelock, perpetually interrupting and restarting, but never com-

pleting.

3. Certain objects might derive erroneous information, and either garbage will

not be identi�ed, or live objects will be prematurely collected.

We will present an algorithm in which certain GCOs will block. Retreat is simpler

and can be combined with a restart policy similar that used in CSMA/CD networks,

such as Ethernet[57]. No performance bounds can be given for such an algorithm,

but it might be quite practical in actual networks; a �nal judgement can only be

given once real information is available about distributed object access patterns.

Our blocking algorithm will enforce two conditions to eliminate the problems

mentioned above:

1. Where there is an encounter among GCOs, one operation will always be able

to complete correctly.

2. Other traversals will block at the point of encounter until the privileged op-

eration completes, ensuring that they do not propogate partial information.

We will enforce these conditions rather strictly here, although there are situations

under which they can be relaxed.

We have already assigned to each GCO a unique key, based on the GCR's UI,

to eliminate spurious terminate messages. Since these are enumerable, they can

be ordered, yielding an ordering of GCOs (some hash function might be used to

randomize this among objects). We will refer to this key as the GCI.

Suppose b is part of GCOa with GCIa and receives a mark message from c with

GCIx. There are three possible cases:

178

1. GCIx = GCIa. Object c is part of the same GCO, so everything proceeds as

before.

2. GCIx < GCIa. Object c is part of a GCO of higher priority. Object b starts

another traversal of its IRG as a member of GCOx; b will not respond to its

parent in IRGa until GCOx is completed. GCOa is now blocked waiting on

GCOx.

3. GCIx > GCIa. Object c is part of a GCO of lower priority. Object b will

not respond to c until GCOa completes.

Case 2 assures completion of the GCO with the highest priority (no deadlock).

Cases 2 and 3 assure that no GCO transmits partial information until the highest

priority case terminates.

This algorithm is e�ectively a parallel sort of the GCOs. Depending on the order

of encounters, the number of messages required varies from O(n) (if encounters are

in order of rising priority) to O(n2) (if they are in order of decreasing priority).

Over the course of time, each GCO divides its neighbors into two groups, those of

higher priority and those of lower priority. It waits until those of higher priority

have sorted themselves (and terminated), terminates, and lets the lower priority

neighbors sort themselves. In other words, this is a concurrent quicksort with an

average of O(nlogn) messages.

Security is di�ciult to ensure in the case of concurrent GCOs because progress

depends on the good will of objects claiming to be engaged in a di�erent GCO.

Coordinated lying among objects can easily lead to deadlock. Unlike lying in the

case of a single GCO, coordinated lying cannot be easily reinterpreted as some form

of acceptable behavior. At this point there are no obvious solutions. However, if

there is reason to believe that an object is obfuscating, it is possible to demand

179

su�cient information to show that there is an ongoing GCO of which it is a part.

This would include producing a valid, fresh GCI, and naming the parents and

children with whom it has communicated. In the �nal analysis, a GCO can be

aborted and links to o�ending objects severed.

5.8 Controlling Cost

Although any single execution of the algorithm is linear in the number of edges

crossed, and all garbage is eliminated in the �rst GCO to encounter it, the total

cost to the network over time depends on how frequently it is run. In particular, the

leaf nodes of non-cyclic garbage will be collected by the host nodes, so the greater

the delay, the more likely that non-cyclic garbage will have collected itself, leaving

only cycles to be collected. In this section we present show a minimum condition

for an object to become garbage based on a \best guess" estimate of the nearest

distance to a PR. We will also use these guesses to minimize the objects touched

during a GCO.

We de�ne theMinimum Distance (MD) of an object as the length of the shortest

path through the FRG from an object to a PR. PRs have MD = 0. For other live

objects this is one greater than the minimum MD among its parents in the FRG.

An object is garbage only if its MD is in�nite.

The MD is useful because it can only decrease if the object is alive. For an

object's MD to decrease, there must be a new link created in its IRG, so it is alive.

On the other hand, for the MD to increase, a link to a PR must be broken, an

indication the object might now be garbage.

It is not feasible to constantly maintain the MD for every object, so we will

use an approximation. Whenever an edge is formed in the FRG, we will mark it

180

with the current MD of its tail object. We can also update these values during

a GCO. Although the MD is now only an estimate, it can still only decrease by

the formation of a new edge or participation in a GCO, and only increase by the

removal of an edge. Therefore an object will only start a GCO when its MD

increases. However, the object will traverse only one IRG child at a time, stopping

when a PR is encountered.

Suppose we have some graph of objects rooted to some number of PRs, and

assume for the moment there are no cycles. As the edges to those PRs are removed,

the number of objects which can have an MD of 1 decreases. As that happens, the

number of objects with MD of 2 must eventually decrease, etc. In other words,

object MDs must eventually increase, triggering GCOs. When the last edge from

a PR to some graph is removed, the objects will remove themselves in order.

To show this also holds for cycles, assume the cycle does not contain a PR

(otherwise the whole cycle is alive). Then there must be some minimum MD

among the objects in the cycle. This can only decrease if the cycle is alive. As

in the acyclic case, every time a connection to a PR is removed, the MD of some

object increases, triggering a GCO. When the cycle becomes garbage, this will

trigger the GCO that removes it.

The above modi�cations arrange for garbage to be collected by increasing MD.

This indicates it may not be necessary for an entire GCO to be performed; the

traversal only need proceed to edges with lower MDs than the edge whose removal

started the GCR, or objects are reached with no outgoing edges. We are considering

a modi�cation to this heuristic which should control the overhead of the algorithm.

Since non-cyclic garbage collects itself, we only need su�cient conditions to

ensure that when a cycle becomes garbage, a GCO will occur that spans the entire

cycle and shows that it is garbage. As we have shown above (again assuming there

181

are no PRs in the cycle), at any given point in time before the cycle becomes

garbage, there is a minimum MD> 0 along the cycle, and any objects with that

MD are referred to by objects not on the cycle with a lower MD (or which had

a lower MD at some point). Once the cycle has become garbage, one of these

connections to the exterior of the cycle will eventually break, triggering one or

more GCOs. Suppose each GCO only traverses the graph down any branch until

it encounters an edge with lower MD than the removed one. This can lead to one

of two outcomes:

1. As no such edge can exist between objects in the cycle (since the removed edge

had a lower MD than any object in the cycle), if the cycle is not connected

to any object outside itself, it will be collected.

2. If any such edges are encountered, they are outside the cycle. The traversal

may change the MDs of all the objects in the cycle, but the cycle is still

connected to something else, meaning that either it is not yet garbage, or the

disappearance of other objects will trigger more GCOs inside the cycle.

We have not yet completed a rigorous analysis of the number of messages in-

curred by this heuristic. If we start to look at the amortized cost of garbage

collection per distributed reference, there is the possibility of very reasonable per-

formance. In the accounting, each distributed reference is allocated O(1) messages

for GCOs. The goal would be to apply the \credits" from self-collecting acyclic

garbage to any excess traversals of edges between live nodes. An edge may be

crossed any time the lowest MD edge to an FRG descendant is removed. However,

for both the lower and higher MD edges to exist, some number of edges needed to

have been created, which can be used to pay for this operation. We hope to show

the amortized cost per live edge to be O(1).

182

5.9 Implementation

Up to this point we have not discussed any actual implementation issues. In terms

of data structures, we can reutilize the algorithms in Birrell et al.[5] and Piquer[44].

We should also be able to adapt the SSP Chains in Shapiro et al.[54]. The major

local e�ort in producing an implementation will be establishing the IRG within

each node, as this is normally not maintained. In the worst case this is O(n2) in

the number of objects { for each incoming and outgoing FRG edge of the node,

we need to determine if they are linked. However, if we are only interested in

which incoming links are connected to any outgoing edge involved in a GCO, the

problem is reduced O(n), although intermediary objects need an extra ag to carry

this information. This can be accomplished after a local GC by a DFS performed

from the incoming links to the outgoing links traversing only objects not marked

by the local GC. When an outgoing link involved in a GCO is encountered, that

information is carried back up the tree. To keep from traversing edges more than

once, objects need to be marked.

It is our intention to implement this algorithm shortly in the context of other

work on cooperative applications in the Internet.

5.10 Conclusion

Garbage collection will be a necessary evil of mobile distributed systems. Here we

present a bottom-up algorithm which eventually collects all the garbage present in

the network without recourse to large-scale cooperation among processes. Individ-

ual DGCs can proceed in tandem. Where they overlap, a resolution mechanism is

provided to minimize the number of extra messages necessary to coordinate among

them.

183

This algorithm is a departure from existing DGC algorithms, in that it com-

pletely breaks with algorithms derived from non-distributed systems. Certainly,

one wouldn't want to go the other way; the overhead of maintaining the inverse

reference graph and other data structures required is prohibitive in a single process,

but the incremental information necessary is much less when only distributed links

are considered.

184

5.11 Current Status and Conclusion

At the current time, implementations exist of all the elements discussed here, with

the exception of the distributed garbage collector, although I expect to undertake

one soon; distributed garbage collection is essential to Dreme and any similar sys-

tems, but there is no system currently available for use in the Internet. These

implementations support most of the functionality described in this document and

have been su�cient to demonstrate the utility of these ideas for supporting dis-

tributed systems. I will continue working to improve this technology.

There have been two major events since I completed the �rst version of Dreme

in early 1993 which will signi�cantly a�ect future implementations. The �rst is the

surge in popularity of the World Wide Web, and the second is the appearance of

Sun's HotJava[16] browser.

Current Web technology, based on HTML, is utterly inadequate to support

the information access needs of sophisticated clients, but has created a venue for

hypermedia information to become generally available on the Internet. This was un-

doubtedly inuential in my move from advocating a single language for describing

interfaces to providing a system to support SGML in general. I am now extending

the little SGML manipulation language described here to a full language with ar-

bitrary Scheme code as the \semantic actions." It should generally handle DAGs

of objects, to create SGML documents from other objects, as well as interpret and

convert SGML to other forms. This will run in a programmable browser which can

accept or send documents via http, SNMP, local �le system, or Dreme objects.

Although Java is less powerful than Dreme as a distributed programming lan-

guage, it, too, requires the wide availability of a byte-code interpreter running on

a variety of platforms. The impending success of HotJava as the immediate next

185

generation of Web browser presents the opportunity for a new implementation of

Dreme to take advantage of the wide availability of Java interpreters. The key to

doing so is rewriting Dreme to use the Java VM. If that is done, particularly if

Dreme code is able to communicate with Java objects as it currently does with

C++ objects, then Dreme objects will be able to migrate to any Java interpreter

and communicate with the user there. The di�cult element of this e�ort is mapping

Dreme's CPS architecture to the Java VM, which is based on a traditional stack

architecture.

Programming in a world of vast distributed information sources and transform-

ers will be qualitatively di�erent than our current procedures. The goal of this

dissertation is to provide some assistance getting there

186

Bibliography

[1] Gul A. Agha. Actors. MIT Press, 1986.

[2] G. T. Almes et al. The Eden System: A Technical Review. IEEE Transactions

on Software Engineering, 11(1):43{58, 1985.

[3] Tim Berners-Lee and Daniel Connolly. Hypertext Markup Language: A rep-

resentation of textual information and metainformation for retrieval and inter-

change. Technical report.

[4] D. I. Bevan. Distributed garbage collection using reference counting. In

PARLE '87, pages 176{187. Springer Verlag LNCS 259, 1987.

[5] Andrew Birrell et al. Distributed garbage collection for network objects. Tech-

nical Report 116, DEC Systems Research Center, 1993.

[6] Andrew Black. Supporting Distributed Applications: Experience with Eden.

Operating Systems Review, 19(5):181{193, 1985.

[7] Andrew Black and Yeshayahu Artsy. Implementing location independent in-

vocation. In 9th Int. Conf. on Distributed Computing Systems. IEEE, 1989.

[8] Jean-Pierre Briot and Jean de Ratuld. Design of a distributed implementation

of ABCL/1. SIGPLAN Notices, 24(4):15{17, 1989.

187

[9] Luca Cardelli. Obliq: a language with distributed scope. Technical Report

122, DEC SRC, 1994.

[10] Luca Cardelli. A language with distributed scope. Computing Systems,

8(1):27{60, 1995.

[11] David Chaiken. Cache coherence protocols for large-scale multiprocessors.

Master's thesis, MIT, 1990.

[12] William Clinger, Jonathan Rees, et al. Revised 4 Report on the Algorithmic

Language Scheme. Technical report.

[13] H. Corporaal. Distributed heapmanagement using reference weights. In Dis-

tributed Memory Computing, pages 325{336. Springer Verlag LNCS 487, 1991.

[14] Daniel Friedman and Mitchell Wand and Christopher T. Haynes. Essentials

of Programming Languages. MIT/McGraw-Hill, 1992.

[15] Benjamin Goldberg. Generational reference counting. In Conference on Pro-

gramming Language Design and Implementation, pages 313{321. ACM, 1989.

[16] James Gosling and Henry McGilton. The java language environ-

ment. Technical report, Sun Microsystems Computer Company, 1995.

ftp://ftp.sun.com/docs/JavaBook.ps.tar.Z.

[17] Christopher Haynes and Daniel Friedman. Engines build process abstractions.

In Symposium on Lisp and Functional Programming, pages 18{24. ACM, 1984.

[18] Dan Heller. MOTIF Programming Manual. O'Reilly and Assocs., 1994.

[19] Carl E. Hewitt. Viewing Control Structures as Patterns of Passing Messages.

Journal of Arti�cial Intelligence, 8(3):323{364, 1972.

188

[20] Carl E. Hewitt et al. Actor Induction and Meta-evaluation. In Symposium on

Principles of Programming Languages, pages 169{182. ACM, 1973.

[21] C. A. R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):666{677, 1978.

[22] Yuuji Ichisugi and Akinori Yonezawa. Exception handling and real time fea-

tures in an object-oriented concurrent language. In T. Ito and A. Yonezawa,

editors, Concurrency: Theory, Languages, and Architectures. Springer Verlag,

1989.

[23] Williams Ludwell Harrison III. The Interprocedural Analysis and Auto-

matic Parallelization of Scheme Programs. Lisp and Symbolic Computation,

2(3):179{396, 1989.

[24] ISO/IEC. DIS 10179.2 Document Style Semantics and Speci�cation Language.

[25] ISO/IEC. IS 10744 Hypermedia/Time-based Structuring Language (HyTime),

1992.

[26] James E. White. Telescript technology: The foundation of the electronic

martketplac. Technical report, General Magic, 1994.

[27] James Gosling and David S. H. Rosenthal and Michelle J. Arden. The NeWS

Book. Springer-Verlag, 1989.

[28] Eric Jul et al. Fine-grained mobility in the Emerald system. ACM Transactions

on Computer Systems, 6(1):109{133, 1988.

[29] Dennis Kafura et al. Garbage collection of actors. In OOPSLA/ECOOP

Proceedings, pages 126{134, 1990.

189

[30] R. Kessler et al. Implementing concurrent scheme for the mayy distributed

parallel processing system. Lisp and Symbolic Computation, 5:73{93, 1992.

[31] Robert Kessler and Mark Swanson. Concurrent scheme. In Parallel Lisp:

Languages and Systems. Springer Verlag LNCS 441, 1990.

[32] Guy L. Steele, Jr. Common Lisp, the Language, 2nd Edition. Digital Press,

1990.

[33] Rivka Ladin and Barbara Liskov. Garbage collection of a distributed heap.

In 12th Int. Conf. on Distributed Computing Systems, pages 708{715. IEEE,

1992.

[34] Bernard Lang et al. Garbage collecting the world. In 19th Symposium on

Principles of Programming Languages, pages 39{50. ACM, 1992.

[35] H. M. Levy and E. D. Tempero. Modules, objects and distributed program-

ming: Issues in RPC and remote object invocation. Software Practice and

Experience, 21(1):77{90, 1991.

[36] Henry Lieberman. Concurrent object-oriented programming in Act 1. In

Object Oriented Concurrent Programming, pages 9{36. MIT Press, 1987.

[37] Marc Linton. Fresco tutorial. ftp://ftp.sgi.com/graphics/fresco/exug94.ps.Z,

1994.

[38] Marc Linton and Chuck Price. Building

distributed user interfaces with fresco. Technical report, Silicon Graphics,

1993. ftp://ftp.sgi.com/graphics/fresco/xconf93.ps.Z.

[39] Brad Myers, editor. Languages for Developing User Interfaces. Jones and

Bartlett Publishers, 1993.

190

[40] Brad Myers. Why are human-computer interfaces di�cult to design and imple-

ment. Technical Report CMU-CS-93-183, Carnegie Mellon University, 1993.

[41] Niels Juul and Eric Jul. Comprehensive and Robust Garbage Collection in

a Distributed System. In Y. Beckers and J. Cohen, editor, International

Workshop on Memory Management. LNCS 637, 1992.

[42] Oscar. M. Nierstrasz. Active Objects in Hybrid. In OOPSLA Proceedings,

pages 243{253, 1987.

[43] John K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, 1994.

[44] Jose M. Piquer. Indirect reference counting. In PARLE '91, pages 150{165.

Springer Verlag LNCS 505, 1991.

[45] Isabelle Puaut. Distributed Garbage Collection of Active Objects with no

Global Synchronisation. In International Workshop on Memory Management,

pages 148{164. Springer Verlag LNCS 637, 1992.

[46] Isabelle Puaut. A Distributed Garbage Collector for Active Objects. In OOP-

SLA Proceedings, pages 113{128. ACM, 1994.

[47] Christian Queinnec. A concurrent and distributed extension of scheme. In

PARLE '92. Springer Verlag, 1992.

[48] Christian Queinnec. Les langages lisp, chapter 11. InterEditions, 1994.

[49] Christian Queinnec. Locality, Causality, and Continuations. In Symposium on

Lisp and Functional Programming, pages 91{102. ACM, 1994.

[50] R. K. Raj et al. Emerald: A general-purpose programming language. Software

Practice and Experience, 21(1):91{117, 1991.

191

[51] John H. Reppy. Higher-Order Concurrency. PhD thesis, Cornell University,

1992.

[52] Jr. Robert Halstead. Implementation of Multilisp. In Symposium on Lisp and

Functional Programming. ACM, 1984.

[53] B. Schneiderman. Designing the User Interface. Addison-Wesley, 1979.

[54] Marc Shapiro et al. SSP Chains. In Symposium on Principles of Distributed

Computing, pages 135{146. ACM, 1992.

[55] Etsuya Shibayama and Akinori Yonezawa. Distributed computing in ABCL/1.

In Object Oriented Concurrent Programming, pages 91{128. MIT Press, 1987.

[56] Mark R. Swanson. Concurrent scheme reference. Lisp and Symbolic Compu-

tation, 5:95{104, 1992.

[57] Andrew S. Tannenbaum. Computer Networks, 2nd Edition. Prentice Hall,

1989.

[58] Robert E. Tarjan. E�ciency of a good but not linear set union algorithm.

Journal of the ACM, 22(2):215{225, 1975.

[59] P. Watson and I. Watson. An e�cient garbage collection scheme for parallel

computer architectures. In PARLE '87, pages 432{443. Springer Verlag LNCS

259, 1987.

[60] Paul Wilson. Uniprocessor garbage collection techniques. Technical report,

University of Texas.

192

[61] Paul Wilson. Uniprocessor Garbage Collection Techniques. In International

Workshop on Memory Management, pages 1{42. Springer Verlag LNCS 637,

1992.

[62] Akinori Yonezawa et al. Modelling and programming in an object-oriented

concurrent language ABCL/1. In Object Oriented Concurrent Programming.

MIT Press, 1987.

193

