
Pattern Discovery in Biology: Theory
and Applications

by

Aristidis Floratos

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 1999

Approved:

Ravi Boppana

Approved:

Isidore Rigoutsos

c Aristidis Floratos

All Rights Reserved, 1999

This thesis is dedicated to everybody will ever invest the time to
read it. It was (literally) written for you . . .

iv

Acknowledgements

It was the January of 1993 when I �rst came to New York City and NYU. I still

remember very vividly the �rst thing that made an impression on me: it was

snowing like hell. Coming from a country with a mild climate, I had never seen

an entire city painted white. Yet, unfamiliar as the terrain was, I could not help

but feeling a rush of excitement under my skin. The city was buzzing with life

and promise. Six years later, I stand at the end of yet another personal milestone,

that of completing my graduate studies. These have been six interesting years,

full of challenges, new people and new experiences. It was not always easy. I

had to adjust from a small town environment and code of living to the sometimes

intimidating uidity of situations and characters in this vibrant metropolis. In the

process, I have grown (and still am) both as a person and as a scientist. Amidst

all these changes, though, there still is one feeling that remains the same as the

�rst day I came here: I am still excited. For that, I am thankful.

There are two groups of people that I would like to thank: those that had

something to do with my thesis and those with no relation what so ever.

Starting with the �rst group, I extend my gratitude to NYU and the Computer

Science department for supporting me �nancially all these years. Without this

support I would probably not have been here in the �rst place. I would also like

to thank all the faculty members that I took a class with for providing stimulating

courses and for sharing their expertise and insights, as well as for always being

available to answer even my most naive questions. Thank you all guys.

I would also like to recognize the support that I got from IBM Research. The

work presented in this dissertation started and �nished there. Apart from providing

v

the infrastructure needed for my research, IBM also o�ered me an intellectually

stimulating environment in which to perform this research. Working there during

the last 2 and a half years I had the opportunity to interact with several talented

people. I am thankful to all of them for sharing their ideas and visions with me.

At an individual level, there are several people that I had the pleasure and the

privilege to work with and learn from. First, my advisor Ravi Boppana. Ravi has

been a delight to work with, coupling his deep understanding of theoretical issues

with a human kindness and modesty that is extremely rare in an environmentwhere

overblown egos sometimes abound. I am thankful to him for sharing his ideas

and experience, for teaching me how to think analytically, for always providing

insightful directions for work and for never complaining, even when I was less than

productive.

My second advisor, Isidore Rigoutsos, introduced me to the area of Computa-

tional Biology in 1996, when I �rst went to work as a summer student at IBM's

T.J.Watson Reseach Center. He was the one who drew my attention to the many

applications of pattern discovery in the context of Biology. For the past two years

and a half, we have had a very proli�c cooperation. During this time, I have come

to appreciate his innovative thinking, his ability to quickly concentrate on the most

crucial aspects of a problem, his knack for identifying important problems as well

as his focus and dedication to whatever problem we are working on.

Paul Spirakis, my advisor in Greece, has been both a good friend and a source

of inspiration. I am grateful to him for being my teacher, for sharing with me his

enthousiasm about Science, for all the exciting and funny discussions we have had

over the years, for always being there to listen to me and for encouranging me to

pursue graduate studies in the US.

I would aso like to thank Davi Geiger, Ken Perlin and Ben Goldberg for accept-

ing to be members of my committee. Special thanks to Ben not only for teaching

me one of the most interesting classes I've ever taken (his Honors Compilers) but

also for showing the value of the lobe in squash . . .

There are also a lot of other people with whom our paths crossed while all at

NYU. With Laxmi Parida and Saugata Basu I shared o�ces and had the pleasure

vi

of knowing them both as friends and as scientists. With Arash Baratloo and Peter

Wycko� we have traded ideas, jokes and occassionaly smokes.

Regarding the second group of people (those that had nothing to do with this

thesis), I would like to start from my family. They have always been there for me,

giving me their unconditional love and supporting me in all my decisions. There

are no words to express my gratitude to them. Their a�ection has been a source

of energy for me both during good and bad times.

I consider myself lucky because I have been blessed with good friends. With

my college buddies, Kostas Pantazopoulos, Dimitris Kehagias, Alex Terzis, Yannis

Apostolidis and Dimitris Spartiotis, we all found ourselves in the US either for

studies or for work. Having them around, made coping with things so much easier.

Our common experiences and mutual support has helped our bond grow stronger

and I am sure that it will stay like that for years to come. I am also thankful

to Yiorgos Kaouris, Iosif Iosi�dis and Christos Papadimakis for remaining good

friends even after all these years that we have been apart. Whenever I return

home for a few days of vacation they make me feel as if I never left.

vii

Contents

Dedication iv

Acknowledgements v

List of Figures xi

1 Introduction 1

1.1 Human Genome Project: History and Perspective 1

1.2 Scope of the thesis . 4

1.3 Contributions . 7

1.4 A Biology Primer . 9

1.4.1 Introduction . 10

1.4.2 Cells and Heredity . 11

1.4.3 History . 29

1.5 Biological Data Repositories . 36

1.6 Research Portfolio . 39

2 Pattern Discovery Algorithms 60

2.1 Problem Description . 60

2.2 Previous Work . 65

2.2.1 Alignment Algorithms . 66

2.2.2 Pattern Enumeration Aglorithms 69

2.2.3 Conclusions . 75

2.3 TEIRESIAS . 76

viii

2.3.1 Terminology and Problem De�nition 77

2.3.2 Hardness . 78

2.3.3 Implementation . 80

2.3.4 Correctness . 83

2.3.5 Time Complexity . 85

2.3.6 Experimental Performance 91

2.4 Results . 93

2.4.1 Core Histones H3 and H4 93

2.4.2 Leghemoglobins . 97

2.5 Discussion . 100

2.6 Pattern Discovery Revisited . 102

3 Large Scale Pattern Discovery 124

3.1 Introduction . 125

3.2 Why Seqlets? . 126

3.2.1 Seqlet Vistas In The Sequence Space 128

3.2.2 The Biology of Seqlets . 130

3.3 Methodology . 132

3.3.1 Treating Redundancy . 132

3.3.2 Low Complexity Regions . 133

3.3.3 Seqlet Statistics . 134

3.4 Results . 139

3.4.1 The three data bases . 141

3.5 Seqlets and Clustering . 143

4 Sequence Homology Detection 164

4.1 Introduction . 164

4.2 Existing Methods . 167

4.2.1 FASTA . 167

4.2.2 BLAST . 170

4.2.3 BLOCKS . 173

4.3 Motivation and De�nitions . 175

ix

4.4 Implementation . 176

4.4.1 Searching . 177

4.5 Results . 180

4.5.1 Information Gathering . 181

4.5.2 Searching . 183

4.6 Discussion . 189

5 Other Applications And Future Work 202

5.1 Multiple Sequence Alignement . 202

5.2 Computer Security . 208

5.3 Future Work . 213

5.3.1 Improvements in TEIRESIAS 214

5.3.2 Validation of Seqlets . 216

Bibliography 227

x

List of Figures

1.1 Accumulation of data in the GenBank database 4

1.2 Evolution of a primordial protein into its present-day instances . . . 42

1.3 Amino acids and formation of proteins via peptide bonds. 43

1.4 The amino acids Alanine and Leucine. 44

1.5 Formation of the DNA polymeric chain. 46

1.6 Three dimensional representation of the DNA double helix. 47

1.7 The genetic code. 48

1.8 Coding and non{coding regions on a DNA molecule. 49

1.9 DNA trasncription. 50

1.10 Translation of mRNA to protein. 51

1.11 Transcrition and Translation. 52

1.12 Replication of the DNA double helix. 53

1.13 Sequencing a long DNA molecule. 54

1.14 Example of a genetic map. 55

1.15 Three dimensional structure of protein backbone. 56

1.16 An �{helix. 57

1.17 Primary and tertiary structure of a hemoglobin protein. 58

1.18 Pro�le building from a set of homologous protein regions. 59

2.1 Generating a pattern from aligned sequences 108

2.2 Example of a multiple sequence alignment. 109

2.3 Multiple sequence alignment of histone sequences. 110

2.4 The domain{swap problem in multiple sequence alignment 111

xi

2.5 List of o�sets generated by TEIRESIAS. 112

2.6 A convolution operation used by TEIRESIAS. 113

2.7 Pre�x-wise and su�x-wise orderings. 114

2.8 Formal de�nition of the pre�x-wise and su�x-wise relations. 115

2.9 Pseudo{code for the TEIRESIAS algorithm. 116

2.10 Generating patterns from a template and a sequence. 117

2.11 Experimental running times; W = 10. 118

2.12 Experimental running times; W = 15. 119

2.13 Patterns shared by both Histone H3 and H4 sequences. 120

2.13 (Continued from last page.) Patterns common to proteins of both

the H3 and the H4 core histone families. 121

2.14 Patterns belonging to either the H3 or the H4 histone family. . . . 122

2.15 Patterns belonging to the Leghemoglobin family. 123

3.1 Multidimensional scaling protein regions containing the seqlet \KP-

KLGL". 149

3.2 Example of domain{sharing by proteins. 150

3.3 Redundant group with a multidomain leader. 151

3.4 A protein with a low complexity region. 151

3.5 Chemotaxis proteins containing the seqlet \ALNAA..AA..A". . . . 152

3.6 Pattern Distribution in the cleaned{up version of SwissProt vs.

Random. 153

3.7 Coverage of the \cleaned{up" data base of the 6 genomes. 155

3.8 Coverage of the \cleaned{up" SwissProt Rel. 34. 156

3.9 Coverage of the \cleaned{up" non{redundant data base. 157

3.10 Amino acid composition of most frequent patterns in the non re-

dundant data base. 158

3.11 Example of ambiguous clustering. 161

3.12 Using seqlets to cluster porteins . 162

3.13 Intersecting seqlets and the respective o�set lists. 163

4.1 Example FASTA table for two sequences. 168

xii

4.2 Distributions of FASTA scores. 191

4.3 Block de�ned by a generator pattern in BLOCKS. 192

4.4 Sample hash table for query sequence. 193

4.5 Segment chaining. 194

4.6 Distribution of SwissProt patterns characteristics. 195

4.7 Homology search for the protein H31 HUMAN. 196

4.8 Homology search for the protein YZ28 METJA. 197

4.9 Homologies induced by the kinase pattern \Y..S..I...DLK" 198

4.10 Distribution of patterns on YZ28 METJA. 199

4.11 Pattern{induced alignments using the SwissProt annotation. . . . 200

4.12 Charactrerization of regions of YZ28 METJA by using the Swiis-

Prot annotation. 201

5.1 Alignment conicts induced by patterns. 220

5.2 A consistent ordering of patterns. 221

5.3 The architecture of the intrusion detection system. 222

5.4 Translating a set of sequences using a reduced alphabet. 223

5.5 Problem with the convolution of bracketed expressions. 224

5.6 Distribution of RMS errors. 225

5.7 Alignment of backbones corresponding to a seqlet. 226

xiii

Chapter 1

Introduction

Molecular Biology studies the composition and interactions of life's agents, namely

the various molecules (e.g. DNA, proteins, lipids) sustaining the living process.

Traditionally, this study has been performed in wet labs using mostly physico-

chemical techniques. Such techniques, although precise and detailed, are often

cumbersome and time consuming. On top of that, recent advances in sequencing

technology have allowed the rapid accumulation of DNA and protein data. As

a result a gap has been created (and is constantly being expanded): on the one

side there is a rapidly growing collection of data containing all the information

upon which life is built; and on the other side we are currently unable to keep up

with the study of this data, impaired by the limits of existing analysis tools. It is

obvious that alternative analysis techniques are badly needed.

In this work we examine how computational methods can help in drilling the

information contained in collections of biological data. In particular, we investi-

gate how sequence similarity among various macromolecules (e.g. proteins) can be

exploited towards the extraction of biologically useful information.

1.1 Human Genome Project: History and Perspective

(The reader is advised to start by skimming through the Biology Primer of Sec-

tion 1.4. Through out the text there will be references to de�nitions and concepts

1

introduced therein.)

The Human Genome Project (HGP) was o�cially launched in the United States

on October 1 1990, under the joint control of the department of Energy and the

National Institutes of Health. The goal of the project, in the words of the National

Human Genome Research Institute (http://www.nhgri.nih.gov/HGP/) is:

\. . . to construct detailed genetic and physical maps of the human geno-

me, to determine the complete nucleotide sequence of human DNA, to

localize the estimated 50,000-100,000 genes within the human genome,

and to perform similar analyses on the genomes of several other organ-

isms used extensively in research laboratories as model systems."

Soon after the launch of the US program the e�ort became international in

scope with several other countries (United Kingdom, France, Japan, Canada e.t.c.)

joining in with similar, government{funded projects. The original schedule called

for the completion of the human genome sequencing by the year 2005. Recently

[23], the schedule has been revised and now the year 2003 is projected as the end

date for the project.

The HGP is mostly concerned with the task of sequencing i.e. obtaining the

sequence of nucleotides comprising selected genomes. Its goals are restricted in

the construction of high{resolution genetic and physical maps of the organisms

studied. This process, however, is well understood to be only the �rst step in the

analysis and study of the organization of the genome (a research endeavor which

has become known as Genomics). The real value is hidden in understanding the

biological function of the various macromolecules (proteins and DNA) within their

host organisms. In particular, there is a number of questions that can be asked:

� Under what conditions does a gene express its corresponding protein?

� What is the function of a protein within the cell? How does it interact with

other molecules and what are the results of this interaction?

� What is the result of a mutation to a gene? How does this a�ect the operation

of the protein the gene encodes? How does the phenotype of the host organism

2

change (if at all)?

� What is the role of the control regions on DNA in the expressibility of neigh-

boring genes.

� Which genes (or combinations of genes) are related to diseases?

� What is the 3-dimensional structure of a protein? Is there a way to predict

it directly from its sequence?

� Are there any basic building blocks of amino acids reused in the construction

of proteins? Which are they? Is it possible to put them together in order to

build new proteins?

Answering these questions using traditional biochemical techniques is a very

time consuming proposition. For example, the straightforward way to determine

the 3-dimensional structure of a protein involves the use of physical methods like

x-ray crystallography or (for smaller molecules) NMR spectroscopy. Such methods

can take months, even years, to produce the desired results. Furthermore, due to

physical constraints, these techniques are not applicable to all types of proteins

(for details, see chapter 17 in [17]).

The inherent di�culty of applying physicochemical analysis methods in con-

junction with the exponential increase in the size of genomic databases (Fig. 1.1)

necessitates the development of new techniques which will allow the rapid study

of the above questions. The invention and application of such techniques to the

study of the functional and structural properties of genes has been termed func-

tional genomics (in contrast with the technologies developed for the sequencing of

the genome and which are collectively refered to as structural genomics). Com-

puter science is expected to play a key role in this new area, much more than just

provide the tools for organizing and dissiminating the sequencing data; as Hieter

and Boguski put it in [48]:

\Computational biology will perform a critical an expanding role in this

area [of functional genomics]: whereas structural genomics has been

3

characterized by data management, functional genomics will be char-

acterized by mining the data sets for particularly valuable information."

Figure 1.1: Yearly increase of the size (in millions of sequenced bases) of the GenBank

database (http://www.ncbi.nlm.nih.gov/).

1.2 Scope of the thesis

In the spirit of the above quote, this work examines how mining massive data

sets of genetic sequences can reveal hidden information of substantial biological

importance. What we will be looking for (the object of the mining process) is

sequence similarities, i.e. stretches of residues which are shared by several di�erent

4

sequences. Similarities of an unexpected nature are then used to draw relationships

between the sequences containing them.

It is interesting to notice that our data will almost invariably be just strings

of characters (the 1-dimensional representation of biosequences); this is almost an

oxymoron as DNA and proteins are organic entities and it seems hardly possible

that they could be studied without taking into account their chemical properties.

Fortunately, this is not the case. In what Gus�eld [41] refers to as the �rst fact of

biological sequence analysis:

\In biomolecular sequences (DNA, RNA or amino acid sequences), high

sequence similarity usually implies signi�cant functional or structural

similarity."

This fact allows the introduction of analysis methodologies that exploit the

sequence homology between compared biosequences in order to infer useful infor-

mation about them. The underlying priniple here is that of \information transfer".

If, for example, a protein Q under examination is su�ciently similar to another

protein A of known functionality then by using the fact quoted above, one can

transfer the functionality of A to Q and guess that Q must also play a related (if

not the same) biological role (this is actually the idea behind a number of very

popular homology detection tools such as BLAST [3, 4] and FASTA [72, 84]). The

exact notion of \su�cient similarity" varies between di�erent methods of sequence

comparison but is invariably de�ned in terms of the edit distance (using appropri-

ate cost matrices) between Q and A and the statistical distribution of this distance

[72, 61, 60].

Other methods [112, 50, 98, 51, 79, 96, 87, 95, 57, 77, 89, 108, 117, 103, 90]

exploit the �rst fact of biological sequence analysis in a di�erent manner: they

start with several proteins from the same family (e.g. all the hemoglobin proteins

from di�erent mammals) and try to identify sequence signatures diagnostic of that

protein family. A sequence signature is usually a restricted regular expression

matching all (or most) of the proteins in the given family: we will be referring to

such regular expressions as patterns. In other cases, weighted matrices of amino

5

acids (called pro�les) [40, 39] or hidden Marko� models (HMMs) [64] are used as

signatures. After a signature is derived it is used as a diagnostic device: when a

new sequence is checked for membership in the protein family at hand, one checks

if the new sequence contains some substring described by the signature for that

family.

In order to appreciate why sequence signatures and in particular patterns are a

good way to represent features characteristic of families of proteins it is helpful to

take a look in the way that nature works. The dominant theory in Biology today

sustains that the species evolve by diversi�cation. This process occurs through

mutations accumulated on the DNA of individual members of a species and the

inheritance of such mutations from one generation to another. Mutations in coding

regions of the DNA propagate (through the transcription/translation mechanism)

to the proteins that the regions code for. As a result, it is possible to describe the

evolutionary history of a given protein strain as a tree (Fig. 1.2). At the leaves of

that tree we �nd all the proteins of the given strain surviving today across various

organisms; these are the proteins forming a protein family like the hemoglobin

proteins mentioned above. The root of the tree is occuppied by that primordial

protein (the mother protein) which gave rise to all the proteins of the tree. In-

termediate nodes contain the various forms of the protein through evolution. The

branches emanating from a node indicate diversi�cation events where mutations

gave rise to new proteins (the children of the node)1. The result of this process

(Fig 1.2) is an ability to �nd remnants of the mother protein in the descendant

sequences. This is made possible by another biological fact: Speci�cally, although

mutations happen randomly over the entire length of a protein, the results of in-

dividual mutations can vary wildly. This happens because not all the areas of a

protein are created equal. Roughly speaking, a protein can be decomposed into

1Evolutionary trees such as that in Fig. 1.2 can only be guessed since the only data

available are the sequences at the leaves of the tree. Formally, the reconstruction takes

the form of a minimization problem. What we seek to minimize is an objective function

describing the overall mutation cost of the tree. For a detailed discussion of the problem

the reader can look at chapter 17 of [41] and chapter 14 of [111]

6

two types of sub-regions: those which are vital for the operation of the protein

(e.g. active sites of catalytic activity) and those which play more of a supporting

role. The latter are much more tolerant to mutations than the former. In other

words, mutations that occur in the vital regions of the protein are more likely to

result in the death of the resulting o�spring, thus resisting the modi�cation of

the original sequence. Consequently, preservation of the mother protein in these

regions is much stronger (and detectable) than in the less important areas of the

protein. It is exactly these conserved regions that the notion of a sequence signa-

ture intends to capture. Because patterns are capable of modeling both conserved

amino acid positions and sites of mutations (don't care regions) they have been

used extensively as representations of sequence signatures [9, 46, 6].

1.3 Contributions

The importance of patterns in the analysis of biological sequences was the original

motivation behind the work presented in this thesis. Discovering such patterns in

families of related proteins has been the centerpiece of several important databases

of signatures (e.g. the PROSITE database [9], the PRINTS database [6], the

BLOCKS database [46]) which play a central role in the every day practice of

molecular biology.

Originally, the small amount of available data made it possible to obtain pat-

terns for protein families by manual alignment and inspection (this was the process

used originally in generating the PROSITE database). However, as more and more

sequences come out of the sequencing machines, this approach is becoming inef-

�cient. Tools for the automatic discovery of patterns are needed. Unfortunately,

for any reasonable de�nition of a pattern it turns out that the relevant discovery

problem is NP{hard. As a result, existing algorithms take one of two approaches:

either they settle for incomplete results (approximation algorithms) in order to

achieve reasonable performance, or, their running times render them impractical

for even medium{sized inputs.

In this work we present TEIRESIAS, a new combinatorial algorithm for the

7

pattern discovery problem with a number of desirable features:

1. It only focuses on maximal patterns. Non{maximal paterns are redundant in

that they o�er no new knowledge and tus it makes no sense spending time to

compute them. Computing such patterns is, as we are going to discuss, one

of the main reasons for the horrible performance of exact pattern discovery

algorithms.

2. It introduces a novel concept of density in the de�nition of patterns, thus

resulting in biologically more relevant patterns.

3. It is general in nature and can be used for the discovery of patterns in any

domain where the data can be represented as strings of characters. As such,

it can be thought as a general purpose data mining algorithm.

4. Experimental results show that the algorithm is output sensitive i.e. its run-

ning time is quasi{linear to the size of the generated output. This property

is very imporant for algorithms that solve hard problems exactly because it

guarantees that these algorithms do not waste time in unnecessary computa-

tions.

The last of the algorithm's properties (i.e. its output sensitivity) makes it par-

ticularly appropriate for large inputs. This was a design requirement as our inten-

tion right from the beginning was to be able to use this tool in order to discover

patterns using as input all the known proteins. Thus, we hoped to compile a

vocabulary of life, i.e. a set of sequence fragments which are the building blocks

used by Nature in the construction of proteins. If such a vocabulary does indeed

exist (and there is evidence that it does) then its discovery could o�er invaluable

insights into the workings of proteins and, possibly, help in the de novo engineering

of novel, \designer" polypeptides. In Section 3.4 we discuss the results of running

the algorithm over the entire non{redundant database (containing all the publicly

available proteins) from NCBI, the National Center for Biotechnology Informa-

tion (http://www.ncbi.nlm.nih.gov/). We also address a host of other issues

8

pertaining to large scale pattern discovery such as appropriate statistical frame-

works for deciding which patterns are important and which are within the levels

of statistical noise.

Finally, we show how the vocabulary of patterns compiled above can be used

in order to perform homology detection searches (in the spirirt of BLAST and

FASTA) in a novel way. We describe a new tool that we have developed for

performing this task and give examples where, using this tool, we are able to

annotate previously uncharacterized ORFs. We believe that our approach is a

very promising one and that it can prove very helpful in annotating new proteins,

especially since current homology{detection tools fail to annotate between 60%

and 80% of the newly sequenced genes.

In the �nal chapter, we discuss some more applications of our algorithm. From

the �eld of Biology we focus on the problem of multiple sequence alignment and

show how TEIRESIAS can be used as part of a solution to that problem. The

second application comes from the area of computer security. In particular, we

describe a system (developed in cooperation with the IBM research lab in Zurich)

designed to intercept malicious attempts that exploit bugs in popular network

utilities (e.g. ftp or mail). We also present some research directions for the future.

Most notable among them is an approach to attack the protein folding problem

using the vocabulary of patterns compiled from the non-redundant database in

conjunction with crystalographic data from the PDB.

1.4 A Biology Primer

This section does not intend to be a full edged introduction to Molecular Biology.

There exist excellent books that serve that purpose [114, 70]. Here, we will provide

just enough information so that the reader is able to understand the terms used

in the thesis.

9

1.4.1 Introduction

Life is the subject of Biology. What is a valid de�nition for all things alive? This

is not just a question intended to get someone's attention. It is a real concern. To

understand why, it helps to realize something that many scientists had di�culty

accepting as late as the 1940s. Namely that there is nothing special (a supernat-

ural force, a \vital" quality) that is speci�c to living organisms. The laws that

govern and explain life at the microscopic level are merely the laws of physics and

chemistry.

This being the case, it seems natural to ask what distinguishes living from

non{living \chemical forms". At what level of complexity, or organization do we

draw the line that leads from non{life to life? In the 19th century the answer

was thought to be linked to the predominant role of carbon compounds found in

living matter (the manifestation of this belief is evident even today in the division

of chemistry into \organic" and \inorganic" branches). However, it soon became

clear that this is not the case; any carbon{based chemical compound found in

living organisms could also be produced at the laboratory. A di�erent answer was

needed.

Nowdays, the predominant approach is to characterize life by its properties. In

particular, a system is thought to be \living" if it has the following three general

characteristics:

� metabolism

� growth

� reproduction

The most elementary unit exhibiting these properties is the cell. The cell the-

ory, was �rst suggested in 1839 by the German microscopists Matthias Schleiden

and Theodor Schwann. The theory asserts that all living organisms are constructed

from small fundamental units, the cells. Furthermore they showed that cells pro-

liferate by the process of division during which a cell creates an identical copy of

10

itself, the so caled daughter cell. Later on, it was discovered that cells are sur-

rounded by a membrane, the cell wall and that the most advanced cells contain an

inner body, the nucleus, which is surrounded by a nuclear membrane.

Since its inception, the cell theory has been put to test numerous times without

ever failing: indeed, all living organisms (unicellular or multicellular) are made up

from self{replicating cells 2.

By the mid 19th century it was known that higher organisms begin their circle

of life as unicellular embryos. Furthermore, it was clear that parents pass on to

their children a number of their physical characteristics. It was becoming then

obvious that at least the �rst cell of an embryo must contain a genetic material of

sorts that allows heredity information to be transmitted across generations. The

branch of genetics began as an e�ort to understand the nature of this material and

the precise way in which it is utilized. Great discoveries were made in the process.

Their cummulative e�ect is that today we have the technology to start probing the

fascinating machinery of life. Several key facts about cells and heredity are already

known. We will look at them in the subsection that follows. After that, a short

history of modern genetics is presented. The intention is to put into a historical

perspective the achievements of today.

1.4.2 Cells and Heredity

(The discussion in this section is kept as simple as possible. We only present

the general concepts behind the phenomena discussed. It should be kept in mind,

though, that in reality those phenomena appear with a certain amount of organism{

dependent variability. Wherever possible, an e�ort has been made to focus on only

those characteristics of a process that remain invariant across organisms.)

Cells come in two basic varieties. Procaryotic cells are the simplest form, com-

posed of a single compartmentwhich is protected from the outside with amembrane

2An interesting variation in the theme of life are the viruses. Viruses do not own a

cellular mechanism but must infect other cells in order to use the life machinery of the

latter.

11

called the cell wall. Eucaryotic cells have a central, all encompasing compartment

(also protected by a wall) which contains many smaller compartments. The most

important among these compartments is the nucleus, which contains the genetic

material of the eucaryotic cells. Procaryotic cells are found only in bacteria while

higher organisms are composed of one or more eucaryotic cells.

Most of the cell (about 90%) is composed of water. The remaining 10% contains

two types of molecules:

Elementary molecules: these are small molecules created by a variety of chem-

ical reactions in the cell. Most important among them are the nucleotides

and the amino acids. Elementary molecules provide the building material for

polymeric molecules.

Polymeric molecules: these are the structural components of the cell. They

are formed when elementary molecules bind together into long chains. The

polymeric molecules that we will be focusing on are (i) the nucleic acids

(DNA, RNA) and (ii) the proteins. Nucleic acids are polymeric assemblies of

nucleotides while the proteins are chains of amino acid. Nucleic acids and pro-

teins are sometimes collectively referred to as macromolecules or biosequences

or biological sequences.

Proteins

Proteins are the most important macromolecules. They are responsible for almost

the entire repertoire of biochemical reactions taking place inside the cell. Proteins

come in many avors and with a variety of functionalities. Some of them include:

� Structural proteins: They are the building blocks of the various tissues.

� Enzymes: they catalyze vital chemical reactions that would otherwise take

too long to complete.

� Transporters: they carry chemical elements form one part of the organism to

another (e.g. hemoglobins carry oxygen).

12

� Antibody proteins: they are part of the immune system.

Because of the wide variety of tasks that they perform, proteins are found dispersed

throughout the cell compartments. Several proteins (the so called receptors) are

partially inside the cell and partially outside the cell. These proteins allow the

interaction of the cell with its surrounding environment. In particular, the part

that is outside the cell senses external conditions and initiates appropriate set of

events through the part that is inside the cell (this process is known as signal

transduction) 3.

Proteins are chains of amino acids. Their length can range from just a few

tens of amino acids up to several thousand; a typical size is between three and

four hundred amino acids. There are 20 di�erent amino acids. All of them have

the basic structure depicted in Figure 1.3.(a). More speci�cally there is a central

carbon atom (denoted as Ca and called the alpha{carbon) to wwhich four chemical

groups attached via covalent bonds: a hydrogen atom (H), an amino group (NH2),

a carboxyl group (COOH) and a side chain (R). What distinguishes the various

amino acids is the particular side chain R that each one has. Figure 1.4 shows

some amino acids with their corresponding side chains. Table 1.1 lists all the 20

amino acids along with the three{ and one{letter codes used for each. The last

column of that table classi�es the amino acids according to the chemical properties

that their side chains bestow upon them. Amino acids belonging to the same class

are said to be chemically similar.

Proteins are formed by amino acids binding together to form polymeric chains.

Binding occurs when the carboxyl group of an amino acid interacts with the amino

group of the next amino acid. The result of this process is (i) the formation of a

bond between the two amino acids and (ii) the generation of a water molecule from

atoms released from the carboxyl group and the amino group (see Figure 1.3.(b)).

The bond holding together the two amino acids is called a peptide bond. For this

reason, a stretch of amino acids is often called a polypeptide. Furthermore, the
3Receptor proteins are often the targets of viruses trying to enter the cell. The are

also the anchor points that drugs use in order to get hold of particular cells. For these

reasons, receptors are especially important in pharmacology.

13

amino acids that are actually part of a protein are also referred to as residues. The

reason for the name is the loss of the water molecule during the formation of the

peptide bond: the amino acid used in the protein is a \residue" of its free form

self.

Figure 1.3.(b) depicts a protein R1R2 : : :Rn. The repetitive part of a protein

(namely, what is left when all the side chains Ri are removed) is called the backbone

of the protein. Notice also that the amino group of the �rst amino acid (R1) and

the carboxyl group of the last amino acid (Rn) are not part of any peptide bond.

As a result, it is possible to use these two groups in order to impose a notion of

direction on a protein. More speci�cally, a protein \begins" at its N{terminal point

(i.e. at the amino acid with the free amino group) and ends at its C{terminal point

(at the amino acid with the free carboxyl group).

DNA

The second macromolecule of interest is the deoxyribonucleic acid, better known as

DNA. DNA molecules are very long polymeric chains of nucleotides: a single DNA

molecule can be millions of bases long (nucleotides are alternatively called bases).

There are four di�erent nucleotides called Adenine (A), Guanine (G), Cytocine

(C) and Thymine (T).

The mechanics of DNA formation are somewhat reminiscent of that of proteins.

In particular, nucleotides have a basic part which is common to all of them. What

distinguishes one nucleotide from the other is the particular side group that is

attached to the basic part. Long chains are formed when series of nucleotides bind

together through sugar{phosphate bonds. These bonds hold together the basic

parts of successive nucleotides, in the same way that peptide bonds hold together

the amino acids of a protein (Figure 1.5.(a)). As was the case in proteins, the

assembly of the basic parts in a DNA molecule is referred to as the backbone.

There is, though, one respect in which the structure of DNA is di�erent than

the structure of protein: while proteins have only one chain, DNA comprises two

interconnected parallel strands of nucleotides (Figure 1.5.(b)). These strands are

connected through hydrogen bonds between the side groups of facing nucleotides.

14

An important point is that there are rules deciding which pairs of nucleotides

can face each other in the DNA double strand: in particular, Adenine is always

paired with Thymine while Guanine is always paired with Cytocine. Because

of these rules, either of the two strands uniquely de�nes the other and can be

used to describe the corresponding DNA molecule. As a result, a DNA molecule

can be represented as a single string over the alphabet of the nucleotides. Finally,

Figure 1.6 gives a three dimensional picture of the arrangement of the DNA strands

in space. This is the famous double helix con�guration, proposed by Watson and

Crick in 1953.

The entire DNA of an organism comprises that organism's genome. The size of

a genome depends on the complexity of the host organism. The human genome,

for example, has an estimated 3 � 109 base pairs (a base pair, or bps, is another

way to refer to a pair of facing nucleotides within the DNA double helix). Simpler

life forms have genomes whose lengths range from a few thousand bps (viruses) to

several million bps (bacteria). In eukaryotes, the DNA is kept inside the nucleus.

Every cell carries the exact same copy of DNA. Actually, in most eukaryotes the

nuclear DNA is not kept as a single molecule but is rather broken up into distinct

linear bodies, the chromosomes. Chromosomes are used in order to compactly

pack the DNA. This is necessary as DNA can be very long. The DNA in a human

cell, for example, if fully extended would be three feet long. Clearly some form

of coiling is required. Chromosomes achieve this coiling by utilizing a number of

proteins that bind the DNA and wrap it around them.

The reason that DNA is so important is that it is the genetic material. It

carries hereditary information from parents to children. DNA is literally a code,

in the computer science sense of the term. What it codes for is proteins. In the

same way that a long binary string can be broken into bytes and every byte can be

translated into an ASCII character, DNA is broken into triplets and every triplet

is translated into an amino acid. The mapping between triplets of DNA bases and

amino acids is called the genetic code. Since there are 43 = 64 possible triplets of

nucleotides but only 20 amino acids, it follows that this mapping is many to one.

The genetic code is shown in Figure 1.7. The nucleotide triplets coding for the

15

amino acids are called codons. Notice that there are several codons encoding what

is marked as [end]. These codons are called STOP codons and do not really code

for any amino acid; they indicate the end of a protein coding region on a large

DNA molecule. Their role will be detailed later.

It is interesting to note that the redundancy present in the genetic code as

the result of having several codons coding for the same amino acid, seems to be

calculated. It was recently shown [107] that among all possible functions that map

triplets of nucleotides to amino acids, the genetic code belongs to the select few

with the highest error tolerance. In particular, let x be a DNA string and let

GC(x) denote the polypeptide that results when the codons of x are traslated into

amino acids using the genetic code. Assuming that x0 results from x with a small

amount of replacements (i.e. changes of one nucleotide to another), then with high

probability GC(x) = GC(x0) (x is assumed to be relatively long).

Not all of the genome is used for coding proteins (with the exception of some

very primitive organisms with very short genomes). In particular, the protein

coding parts of DNA are dispersed throughout the DNA molecule (Figure 1.8).

These coding parts are organized in genes, i.e. distinct regions of consecutive bases.

Every gene codes for one particular protein. Genes are anked by control regions

which mark the beginning and the end of these genes. The remainingDNA seems to

be non{operational and is known as junk DNA. In reality, genes may be themselves

interrupted by non{coding regions (Figure 1.8.(b)). This is especially true in higher

organisms (viruses and bacteria have usually short DNAs that does not allow the

luxury of unused areas). Such regions are called introns while the parts that contain

useful codons are known as exons (for expressed regions).

Interestingly enough, the largest part of the genome in higher organisms is

composed of junk DNA. In humans for example, about 95% of the DNA is non{

coding. This can create some problemswhen sequencing the DNA, as it necessitates

the development of methodologies for deciding which DNA regions correspond to

genes and which do not. We will return to this issue during the discussion on

sequencing.

From Gene to Protein

16

Genes are passive entitites. They just sit there, waiting to be translated into their

corresponding proteins. In this idle state, genes are said to be unexpressed. Events

occuring inside the cell (or originating outside of it) trigger the creation of selected

proteins. At that point, the cellular mechanism responsible for the expression of

genes into proteins takes control. This mechanism locates the appropriate gene(s)

on DNA, reads them out codon by codon and synthesizes the corresponding pro-

teins by putting together the amino acids speci�ed by these codons. This process

has two steps: (i) transcription, which copies the target gene into a DNA{like

molecule called RNA and (ii) translation, which reads the RNA and creates the

�nal protein.

The role of transcription is to make a copy of the part of the DNA that cor-

responds to the gene of interest. The need to copy the gene has to do with the

fact that some proteins must be synthesized in particular parts of the cell (the so

called protein localization problem). It is not possible to generate such proteins in

the nucleus and then have them travel to their corresponding destinations.

The material on which the gene copy is recorded is RNA. RNA (ribonucleic

acid) is another polymer, also made up of nucleotides. Although RNA and DNA

are chemically very similar, there are a few di�erences. First, RNA uses the

nucleotide Uracil (U) where DNA would have used Thymine (T). Second, the

backbone{forming basic unit of the RNA nucleotides is slightly di�erent from the

corresponding basic unit of the DNA nucleotides (that is why the former are ac-

tually called ribonucleotides). Finally, RNA is single stranded. The RNA used for

gene copying is called messenger RNA (or mRNA for short), in order to di�eren-

tiate it from the RNA used for other cell processes.

Trascription is performed by special enzymes known as RNA polymerases. The

�rst thing that an RNA polymerase does is locate the beginning of the gene in

question. It does so by recognizing the start region of the gene. In particular, RNA

polymerases have the ability to chemically bind the start regions (these regions are

also called promoters because in some sense they promote the expression of the

gene). The promoter provides in that way an anchor point for the RNA polymerase

which is now positioned at the right spot to start transcribing the gene. The RNA

17

polymerase then begins \walking" over the target gene (Figure 1.9). As it does so,

it unzips a small part of the DNA helix a few tenths of base pairs in size | the so{

called transcription bubble). The one of the two single DNA strands thus created is

used as a template for the elongation of the progressively growing mRNAmolecule.

In particular, the RNA polymerase collects free ribonucleotides that abound in the

nucleus environment and pairs them with complementary nucleotides of the DNA

strand currently read. At the same time, the newly collected ribonucleotides get

attached to the already formed mRNA chain. As the RNA polymerase proceeds

up the gene, it closes the bubble behind it and opens a new one, continuing the

mRNA elongation process. Eventually, the STOP codon of the gene is encountered,

at which point the RNA polymerase stops the transcription.

The mRNA molecule thus created is called the primary transcript. This mole-

cule contains both the exons and the introns (if any) of the gene just transcribed.

Any introns present in the primary transcript are spliced out. This is achieved by

special proteins that can recognize and remove the introns. The splicing process

creates the �nal version of the mRNA which is called the functional transcript.

This molecule will then travel to the appropriate location in the cell where it will

be translated into the appropriate protein.

The translation phase is responsible for the transformation of mRNA into a

protein. This translation is accomplished by the ribosomes, complex bodies built

from proteins and RNA (the ribosomal RNA is referred to as rRNA). Ribosomes

are the chemical factories of the cell. They operate by walking over an mRNA

molecule, reading the codons on the mRNA one by one, getting the appropriate

amino acid for each codon and binding these amino acids together into the �nal

protein chain (Figure 1.10). In accomplishing this feat, ribosomes utilize tRNA

molecules.

There is one di�erent tRNA molecule for each possible codon. Each one of

them is made of RNA and has the general structure depicted in Figure 1.10.(a).

On one end, a tRNA has its anticodon. This is a triplet of ribonucleotides. This

triplet helps a tRNA molecule bind any mRNA codon X that has a nucleotide

triplet complementary to the anti codon of the tRNA (Figure 1.10.(b)). On its

18

other end, the tRNA molecule has attached the amino acid coded for (according

to the genetic code) by the codon X.

Ribosomes have two cavities, each capable of accomodating a single tRNA

molecule. tRNAs are placed in these cavities so that their anticodons come in

direct contact with the mRNA immediatelly below the cavities. The ribosome

marches over an RNA molecule in steps of one codon at a time. At every step it

looks at the codon that lies under the rightmost cavity and gets into that cavity

a free tRNA (tRNAs exist freely in the cell) whose anticodon is complementary

to the codon at hand. The leftmost cavity of a ribosome is occupied by a tRNA

used to hold the partially grown peptide chain. As soon as the free tRNA enters

the rightmost cavity and binds to the underlying mRNA through its anticodon, an

enzymatic process, called peptidyl transferase, takes place and attaches the amino

acid of the rightmost tRNA to the chain connected to the leftmost tRNA. At that

point the chain belongs jointly to both tRNAs. Then the chain is detached from

the �rst tRNA which is discarded, and the second tRNA along with its attached

amino acid chain and its underlying codon moves to the leftmost cavity. This

movement also forces the entire mRNA to move by one codon, thus revealing the

next codon to be translated under the rightmost cavity. The appropriate tRNA

then moves in the rightmost cavity and the whole process is repeated. Eventually,

the stop codon on the mRNA will signal the end of the translation and the �nished

protein will be detached from the ribosome.

Figure 1.11 gives a schematic representation of both the trascription and the

translation process.

Cell Division

Cell division necessitates copying of the entire DNA of the cell, as this copy must

be passed over to the new, daughter cell. The process by which DNA is duplicated

is somewhat reminiscent of the trasncription phase during the expression of a gene.

In particular, the DNA double helix gets gradually unzipped. Each of the original

DNA strands acts as a template for the creation of a new, complementary strand

(Figure 1.12). As the process proceeds, two new double helices materialize, each

19

one a copy of the original. One of them will become the genome of the daughter

cell.

The new strands are built by appropriate enzymes, the DNA polymerases.

These enzymes walk along each DNA strand of the parent cell and pair the nu-

cleotides of the strand with the appropriate complementary nucleotides. At the

same time they catalyze the generation of the sugar{phosphate bonds between the

incoming nucleotides, thus giving rise to the backbone of the new strand. There

is a number of other reactions that are part of the duplication process (e.g. DNA

must be uncoiled from its highly packed form in the chromosomes) which we are

not going to discuss here.

Mutations

The DNA of all organisms su�ers a number of mutations. Such mutations can

occur at level of single nucleotides or at the level of entire chromosomes.

Macroscopicmutation events a�ect entire genes, sometimes even chromosomes.

They can occur during the DNA duplication process. Translocations, for example,

occur when DNA is interchanged between chromosomes. Another type of muta-

tion occurs when a part of DNA ips its orientation relative to the chromosome

it belongs to. Such problems arise because of the mechanics of the DNA replica-

tion process. Because of the level at which they happen, macroscopic mutations

are usually called chromosome rearrangements. The results of such wide ranging

mutations can be devastating: entire genes can be lost or become non{functional.

In such cases, the result is that the new cell that comes out of the cell division

process dies shortly after it is created.

A second type of mutation (and the one that this thesis mostly focus on)

involves changes of only one or just a few bases. Such mutations can be categorized

as follows:

Replacements which occur when one DNA base is changed into another. Muta-

tions of this type are also called point mutations.

Insertions can introduce one or more nucleotides between any pair of successive

DNA bases.

20

Deletions remove consecutive bases from a DNA molecule.

The mutations described above can happen either during the replication of DNA

because of mistakes made by DNA polymerases, or, as a result of normal cellular

operations which sometimes create such mutations as a side e�ect. The mutations

in this latter case are called spontaneous. The rate at which spontaneous mutations

occur is organism{dependent and is referred to as the background level. Several

events (e.g. presence of pathogenic compounds in the cell, mulfunctioning proteins,

radiation) can increase the mutation rate above the background level.

Spontaneous mutations tend to happen randomly over the genome, both in

coding and non{coding regions. Those in non{coding regions are not usually a

problem. Mutations on genes, however, have a direct consequence on the proteins

coded by those genes. For example, point mutations can:

� create a stop codon where no one previously existed. This shortens the re-

sulting protein, possibly removing regions that are critical for the operation

of the protein.

� change the amino acid encoded by the codon a�ected by the mutation. De-

pending on the importance of the encoded amino acid the impact on the

encoded protein can range from mild (the protein containing the amino acid

can still perform its task) to grave (critical functionality is lost).

It is also possible that a point mutation on a gene does not change the correspond-

ing protein at all. This happen if the changed codon still codes for the same amino

acid. Situations like this arise because of the redundancy built into the genetic

code. Mutations of this type are called silent mutations.

Finally, insertions or deletions of nucleotide strings whose length is not a mul-

tiple of three result in frame shifts, i.e. in changes to the delineation of codons.

Again, the mutated gene might code for a non{functional protein.

It is interesting to note that mutations, despite their potentially devastating

results, are the mechanism that Nature uses in the evolution of the species. As the

environment constantly changes it becomes imperative for the various organisms to

21

change as well or they become obsolete. Mutations are the agents of this change.

While they may lead to malfunctioning proteins (which are not favored by the

evolution i.e. they die) they also allow the generation of new, mutant genes. Such

genes can often be bene�cial for the adaptation of an organism into a changing

environment.

Mutation Matrices

Molecular biologists learn a lot about a new protein just by comparing its sequence

with the sequences of other already known proteins. The most popular method to

compare two protein sequences involves their optimal (or near{optimal) alignment

through the use of biologically relevant edit operations (replacements, insertions,

deletions). Such alignments are scored by aggregating the costs of the particular

edit operations that were involved.

The use of appropriate costs for weighting the various edit operations is an

extremely important issue in biological alignments [1, 2]. Their importance is

more pronounced when comparing proteins which are evolutionary distant (i.e.

their respective sequences are quite di�erent). In such cases, selection of the proper

costs can be the deciding factor in recognizing the biological relation of the proteins

or not. The determination of these costs is achieved with the combination of

biological knowledge, statistics and the meticulous study of existing data in order

to uncover hidden evolutionary relationships.

A description of the exact techniques used in order to compute biologically

sound costs is outside the scope of this document (details can be found in [41,

25, 45]). However, we will be using throughout this thesis the outcome of these

techniques, namely the resulting mutation matrices (also known as amino acid

substitution matrices). Mutation matrices give the probabilities of one amino acid

mutations. A mutation matrix is a square, 20�20 table with real or integer entries

where every row and every column correspond to some amino acid. In particular,

the (i; j){th entry of such a table contains a score which describes the probability

of the i{th amino acid mutating to the j{th amino acid (the amino acid ordering

is arbitrary). This score is usually a normalized logarithm of the real probability;

22

logarithms are used in order to employ additions rather than multiplications (which

would be the case if actual probabilities were used) in the computation of aggregate

scores due to successive edit operations.

The most widely used families of substitution matrices are the PAM [25] and

BLOSUM [45] matrices. Each family contains a number of members; depending

on how distant the compared sequences are, a di�erent member{matrix might be

needed in order to \correctly" score an alignment.

DNA Sequencing

From the early seventies and on, a number of discoveries (known today collec-

tively as recombinant DNA technology) have made possible the manipulation of

the cell's DNA in a variety of ways. For example, it is now possible to cleave DNA

molecules at speci�c cut{points, insert DNA from one organism into another, have

one organism expressing genes that belong to another organism and, lately, the

ability to clone mammals!

Recombinant DNA technology is based almost entirely in exploiting existing

cellular mechanisms. The cells themselves need to manipulate DNA in complicated

ways (recall the transcription and translation mechanisms). As a result, they have

developed specialized enzymes that operate on DNA in a multitude of modes.

Molecular biologists identify and isolate such enzymes, and harness them in order

to handle genetic sequences in speci�c ways. One such example is provided by

the technique used for deciphering the sequence of a protein. It is easy to isolate

arbitrary mRNAmolecules as they travel towards the ribosomes that will translate

them. Remember that these molecules are the result of the functional transcript of

a gene, i.e. any existing introns have been removed. This is a wonderful situation

because nature has already taken care of one of the problems associated with

sequencing, namely splicing out introns. So, it seems that in order to identify

the amino acid sequence of the relevant protein all that is needed is to sequence

the mRNA molecule, i.e. �nd the ribonucleotides that it is made of. After that,

the problem reduces to translating codons to amino acids, a trivial task since the

genetic code is known.

23

However, although existing techniques make it possible to sequence DNA, there

are technical reasons that make it very hard to use these techniques on mRNA.

Fortunatelly, nature has provided a shortcut. Retroviruses are viruses that carry

their genetic information in RNA rather than in DNA. When invading a cell, a

retrovirus needs to transform its RNA into DNA so that it can be implanted

into the genome of the attacked organism. For that reason, retroviruses possess an

enzyme called reverse transcriptase. This enzymeperformes the reverse job from an

RNA polymerase: it walks along an RNA strand and builds a complementary DNA

strand. Such enzymes can help trasnform an mRNAmolecule into an \equivalent"

DNA double helix in the following way: �rst, the reverse transcriptase generates a

complementary DNA strand for the mRNA at hand. Then the single DNA strand

is processes by a DNA polymerase (the enzyme used to duplicate the DNA during

cell division) which generates a full edged DNA double helix out of it. The DNA

molecule thus produced is called complementary DNA or cDNA for short. With

the cDNA available, we are almost done: all that is left is to apply standard DNA

sequencing techniques on it.

In the late 80's it was becoming aparent that several of the recombinant DNA

techniques could be combined in order to allow the sequencing of long DNA

molecules. These techniques became the enabling technology behind the Human

Genome Project. As mentioned at the beginning of the chapter, the objective of

this project is the sequencing of the entire genome of selected organisms (humans,

among them).

There is a number of technical challenges associated with this task. The most

salient among them is the sheer length of a complete genome. For higher organisms

it is in the order of billions of bps while even for bacteria it can reach several millions

base pairs (the genome of E. Coli, one of the �rst bacteria to be sequenced, is

about 5 milion bps). Put simply , the problem is that we cannot take a long DNA

molecule, uncoil it, put it under some microscope and read its bases one by one. As

a result, other indirect methods must be employed in order to infer the nucleotides

in a DNA helix.

Such methods have indeed been devised. Gel electrophoresis is probably the

24

most well known among them. Even these methods, though, have their limitations.

In particular, they can be used to sequence only medium size molecules, typically of

no more than a few thousand bps. Overcoming this restriction involves (i) breaking

up DNA in small parts of a few thousand bps (this precess is called digestion),

(ii) sequencing these small parts individually, and (iii) putting them back in the

appropriate order so as to restore the original DNA molecule.

The di�culty here is in the last step: when a long DNA molecule is broken, the

resulting segments loose their order information. To address this problem, a long

DNA molecule must be treated many times: each time the molecule (actually, a

clone of the original) is digested in a di�erent way. Having sequenced the smaller

DNA pieces from each digestion, the next step is to build a tiling path that will

hopefully allow one to reconstruct the original molecule (Figure 1.13). In order

to make sure, though, that there exist enough overlapping segments to allow the

recostruction of the original molecule, many di�erent digestions are needed and

this increases the cost of sequencing. Furthermore, from a theoretical point, the

reconstruction problemmay not have a unique solution as more than one assemblies

might be possible.

The bottom line is that producing physical maps of genomes, i.e. resolving

DNA sequences at the level of individual nucleotides is a complicated and time

consuming process. Fortunatelly, there are also techniques that allow the creation

of alternative descriptions of the genome. A genetic map is a linear representation

of a chromosome where di�erent genes are represented as linear segments and the

relative distance between successive segments is proportional to their distance (in

bps) on the real chromosome. In order to construct a genetic map one does not

have to actually sequence the genes involved. Other studies (called gene linkage

studies) can be used. Figure 1.14 gives an example of a genetic map.

Finally, another issue that arises in sequencing genomes with a lot of junk DNA

(as is the case in humans) is the following: how can we know if a DNA region just

sequenced is non{coding, coding, or a combination of both (which can be the case

if it corresponds to part of a gene that has both exons and introns)? Determining

if this region contains an entire gene (ot part of it) is relatively easy if cDNA for

25

this gene is available: capturing functional mRNA trancripts and turning them

into cDNA is a process that proceeds indepedently of the genome sequencing. As

a result, data bases of cDNA have been developed. When a new DNA region

s becomes sequenced, it is compared against such data bases. If s does indeed

contain a gene part, then the general form of s will be as follows:

s = XE1I1E2I2 : : : EnInY

where Ei correspond to exons, Ii to introns and X;Y to other non{coding regions

or parts of other genes. If a cDNA database contains a cDNA that has E1E2 : : :En

as a substring, then we know that s contains a gene. Chance matches are not a

problem here since the exons Ei are relatively long (several tenths of nucleotides

at least).

Otherwise one of two things happen: either s is a non{coding region or it

contains (part of) a gene for which no cDNA has been captured. In order to

decide

which of the two is true, methods have been devised which exploit the fact

that in all organisms the nucleotide composition of coding regions is di�erent than

that of non{coding regions. Genome regions which are deemed as coding under

these methods are referred to as open reading frames or ORFs. This terminology

indicates that they probably mark the beginning of a gene.

Protein Structure

Up to now, we have been thinking about proteins as sequences of amino acids. This

will be the norm throughout this dissertation. The representation of a protein as

a string of its constituent amino acids (always starting at the N{terminal of the

protein) is called the 1{dimensional representation of the protein or, more often,

its primary structure.

It is, however, important to remember that proteins are molecules. As such,

one of their most de�ning characteristics is their fold i.e. the conformation that

they assume in space. The fold of a protein is of extreme importance because it

typically provides clues about the function of the protein.

26

The ability of a protein to fold is due to the exibility of the covalent bonds of

its backbone. Figure 1.15 makes this point graphically. First of all, the nature of

the bonds is such that the nitrogen and carbon atoms involved in every peptide

bond, along with their accompanying hydrogen and oxygen atoms, are coplanar.

This is indicated in the �gure by a plane that contains them. This plane can

rotate around the covalent bonds that connect it with the two adjacent alpha{

carbon atoms. The angles of rotation are denoted as phii and psii. The possible

combinations of angles are dependent on the side groups of the protein which

impose steric restrictions. The forces acting among the atoms of the protein chain

(being hydrogen bonds, ionic bonds, hydrophobic interactions or Van der Waals

attractions) decide the particular values for the phii and psii angles.

There is clearly the possibility for in�nite variability in the structure of di�erent

proteins. But, it turns out that there is a small number of basic local structures

(each a few tens of amino acids) that are used again and again by proteins. Every

protein is built from a number of copies of these basic building blocks, each protein

combining the blocks in its own, idiosyncratic way. Figure 1.16 describes one such

basic local structure, known as the �{helix. As the name implies, this structure

has a helical conformation. The presence of hydrogen bonds between hydrogen

atoms of the amino group and oxygen atoms attached to the carboxyl carbons

give the helix its spring{like form. The helix completes a full turn every 3.6 amino

acids. The length of naturally occuring helices ranges from below ten amino acids

to several dozen of them.

The 3{dimensional structure of a protein can be described at several levels.

The secondary structure focuses on basic building blocks like the �{helix. At this

level of detail, one is concerned with the identi�cation of relatively short regions

of a protein (a few amino acids) and their characterization in terms of a few well

known basic structures (�{helices, �{sheets, �{strands, helix-turn-helix combina-

tions etc.). Basic structures at that level are also known as motifs. There is also

the tertiary structure of a protein: here, several consecutive motifs are grouped to-

gether forming domains. Domains are potentially long regions of proteins (can be

in the hundreds of amino acids) and represent functional units: every domain per-

27

forms an individual role within the overall protein function. Consider for example

the RNA polymerase protein mentioned during the discussion of the transcription

of DNA into mRNA. We mentioned before that the polymerase �rst needs to bind

the start region at the beginning of the gene. Recognizing and binding this start

region is a distinct part of the protein's activity. The part of the protein that is

responsible for this task constitutes a domain. The importance of domains stems

from the fact that a particular domain may appear in many di�erent proteins. Fur-

thermore, every time it appears it always performes the same task. In summary,

domains are structural blocks which are delineated based on the function that the

block performs.

Figure 1.17 shows both the primary and the tertiary structure of a hemoglobin

protein (responsible for the transfer of oxygen) from the organism sea cucumber

. The tertiary structure is made up of six �{helices. Each helix is a secondary

structure element. The amino acid regions of the protein which code for the helices

are surrounded by boxes on the primary structure of the protein sequence. Notice

that the tertiary representantion describes basically the backbone of the protein

and the various secondary structure elements are represented in a cartoon{like way.

This is a standard representation and is used because it makes it easy to depict

graphically the structure of the protein. Ball and stick models can also be used

but the resulting picture is messy.

In conclusion, it can be said that knowing the three dimensional structure of

a protein is the ultimate solution in understanding the function of this protein.

Unfortunately, existing techniques for solving protein structures, such as X{ray

crystalography and NMR, are very cumbersome and time consuming. Furthermore,

there are many proteins which (for physical reasons) are not amenable to study

by either of these two techniques. It is not then surprising that a lot of research is

focused in devising computational methods for predicting the structure of a protein

from its sequence of amino acids. This is the famous protein folding problem,

decidedly the most important unsolved problem in Molecular Biology today. A

key property of proteins (and the one that make people believe that computational

techniques are an option) is that proteins always assume the same conformation.

28

So, although there is an in�nite number of folds that a protein can assume it

always selects the same one. According to physicists, this is the conformation that

minimizes the protein's energy. This \unique fold" feature indicates that all the

information needed for a protein to fold is in its amino acid sequence.

1.4.3 History

Biology and especially Genetics have a fascinating history. Here, we will just

highlight a few of the most important facts. The intention is to put the research

performed today in Molecular Biology into perspective. The story begins at the

mid 19th century. To appreciate the events, recall that the scienti�c environment

at that time stood as follows: the cell theory had just been proposed, people were

speculating that organisms start their life as unicellular embryos and it could be

observed that children bear resemblance to their parents. It could thus be inferred

that there was some form of a genetic material on which parental features could be

passed down to their o�springs. Clearly, this material must be hiding somewhere

in the cell. But what is it exactly? And how is heredity information recorder and

used? These were the questions that the biologists of that time, with their very

rudimentary technology were trying to answer.

Biology studies life. It seeks to de�ne what \life" is, identify the laws governing

it and explain how these laws are related to the observable expressions of life.

Di�erent branches of Biology address these questions at di�erent hierarchical levels.

Historically, the �rst e�orts to study living organisms were at the macroscopic

level, by focusing on organisms, populations, communities and ecosystems. This

was in part unavoidable since technology that would allow examination of life at

the microscopic level did not exist. Important discoveries were made nonetheless.

The most salient among them was the work of Charles Darwin. In the second

half of the 19th century Darwin, comparing the structural characteristics of many

di�erent species, was led to propose his famous theory of evolution, arguably the

most passionately debated postulate in the entire history of science. The center

stone of this theory is the concept of evolution or diversi�cation which asserts

that all life has evolved in a tree{like manner where branching points indicate

29

diversi�cation events leading in the generation of new species from existing ones.

Species can be placed in di�erent nodes of this evolutionary tree based on the

amount of similarity they exhibit.

Around the same time, Gregor Mendel was discovering the basic facts of hered-

ity. A monk in Austria and an amateur biologist, Mendel experimented with the

cultivation and cross{breeding of peas. What he was studying was a number of

external characteristics like color (e.g. yellow or green) and shape (e.g. round or

wrinkled) of the peas. By using plants that had di�erent combinations of such

characteristics and by hybridizing them, Mendel was able to deduce that each of

the plant features he examined seemed to be controlled by a distinct heredity unit.

Furthermore, these units (which would be later called genes) seemed to operate

independent of each other and followed simple combinatorial rules. For example,

when he cross{bred two types of peas that were identical in every respect except

for their color (one parent was color A while the other was color B), he found out

that all the resulting plants (the children) were of color A. When these children

were combined among them now, the resulting second generation was 75% color A

and 25% color B. This made Mendel realize that the color B phenotype (the term

\phenotype" denotes the particular value of a feature like color in an individual;

so we say that a person has a \blue eyes" phenotype or a \red hair" phenotype)

was not lost in the �rst generation but rather remained dormant. To explain the

re{emergence of this phenotype in the second generation, Mendel proposed the

following model. The color gene has several variations, each variation de�ning a

single color (today such gene variant are called alleles). Let the variation that

codes for color A be GA and let GB be the allele for the color B. Mendel further

postulated that every plant carries color genes in pairs. In the original, purely

bred parents the gene pair is the same: the genotype of one parent is (GA; GA)

and of the other parent is (GB; GB) (the \genotype" of an individual describes the

particular gene variants the individual has). When two peas are cross{bred, the

children take one gene from each parent. As a result the �rst generation o�springs

all have the genotype (GA; GB). Since, however, all these o�springs have the color

A phenotype, Mendel concluded that the two color alleles are not equivalent in

30

power: in particular, GA is the dominant allele while GB is the recessive allele and

the dominant allele decides the value of the characteristic associated with the gene

(in Mendel's case, the characteristic was color). This explanation describes why

the color B phenotype is dormant in the �rst generation of hybrid peas. Looking

now at the parents of the second generation, they all have the (GA; GB) genotype.

As a result, the children of such parents are expected to have (according to the

heredity mechanism described above) either of the following three phenotypes:

(GA; GA); (GA; GB); (GB; GB):

The particular genotype of a child would depend on which color allele it inherits

from each parent. Assuming that a parent will pass either allele with equal prob-

ability, one expects 25% of the (GA; GA) genotype, 25% of the (GB; GB) genotype

and 50% of the (GA; GB) genotype. Keeping in mind that GA is the dominant

allele, this means that one expects to have in the second generation of peas 75%

of the color A phenotype and 25% of the color B phenotype, i.e. exactly what

Mendel observed in his experiments. The above heredity model together with the

dominant/recessive allele hypothesis �t the experimental data perfectly.

The main contribution of Mendel's work was the de�nition of the concept of

the gene (although \gene" was not the word that he was using): one distinct entity

controlling the value of one characteristic. This was a pretty close approximation

to the model that we have today, i.e. one gene controls one protein. Mendel was

very lucky in that he chose to study characteristics that happened to be controled

by a single protein. This is the exception rather then the norm: it is now known

that most macroscopic charecteristics (e.g. the eye color) are arbitrated by several

proteins. Had he chosen one of these, it would have not been that easy to arrive

at the gene model that he proposed. Actually, several people before him tried

similar experiments and failed to get results exactly because they chose to study

multigenic features. Mendel was lucky in other ways too. For example, not all

alleles are related through a dominant/recessive relationship. Some of them are

codominant: in fruit ies, children of one red{eye parent and one white{eye parent

have pink eyes.

31

Despite all the coincidences, the fact is that Mendel guessed the basic properties

of genes quite accurately. He published his results in 1865. His work, however, went

unacknowledged despite his e�orts to promote it. His heredity model, although

explaining observedthe plant phenotypes, was thought to be too arbitrary: it used

too many assumptions (genes are carried in pairs, alleles, dominance/recessiveness,

etc.) that in 1865 were di�cult to believe. Furthermore, the failure of other people

that did similar experiments to get similar results made Mendel's work seem like

an accident rather the bull's eye hit that it really was.

Mendel's theory would remain dormant until new information would corrob-

orate his far reaching assumptions. This information came in the form of new

discoveries about what happens inside the cell. First, in 1868 Ernst Haeckel ob-

served that sperm cells are mostly made from nucleic material. Since it was known

that sperm and egg cells come together in forming the �rst embryonic cell, he

postulated that the elusive genetic material resides in the nucleus of cells. Then,

it was discovered that the nucleus of eucaryotic cells is populated by a number of

linear organelles (the chromosomes). These linear bodies exhibited a very distinc-

tive behavior during the cell division process: they were duplicated and divided

between the two resulting cells, unlike other cell particles that stayed with the

original cell. Furthermore, it was found that sperm and eggs cells (the gametes)

have in their nucleus half the chromosomes that the other regular cells have. Fi-

nally, using microscopy it was observed that the chromosomes of eucaryotic cells

could be grouped together into morphologically similar pairs.

So, by the end of the 19th century all the information was really there. All

that remained was to make the connection with Mendel's forgotten results. This

missing piece was contributed by Walter Sutton in 1903 [102]: he observed the

relationship between the chromosome duplicity in cells and the gene duplicity

proposed by Mendel. Sutton suggested that Mendel's genes live on chromosomes.

He supported his claim by the fact that the gametes get only one chromosome

from every homologous pair. Sutton correctly guessed that this mechanism was

implementing Mendel's hypothesis that children form gene pairs by getting one

gene from each parent.

32

Sutton's work was extremely inuential as it reinforced Mendel's gene model in

the consiouceness of Sutton's contemporaries. Research now had a model to focus

on. A �rst question had to do with the alleles. How do they occur? One hypothesis

was that alleles arise by mutations accumulated on genes across generations.

The legendary American biologist Thomas Morgan set out to check this hypoth-

esis. He realized that he could not use peas like Mendel did: he needed an organism

that (i) can be bred in laboratory conditions, and most important (ii) produces

new generations fairly often. He selected Drosophila melanogaster 4, a very small

fruit y variety that takes 14 days to produce a generation. Breeding experiments

with populations of this y started in 1908. Morgan and his group hoped to wit-

ness the production of a new observable feature. And eventually it happened: after

several generations they observed that one of the ies had white eyes, a phenotype

that had not been observed before in free living ies. A new eye{color allele had

been arti�cially created, substantiating the claim that genes mutate naturally over

time. But it was more than just that: in fact a new species had been created, as

there were no naturally occuring white eyed fruit ies. Morgan's proof of the gene

mutation hypothesis seemed to unify Mendel's and Darwin's theories!

At the same time with Morgan's work other biologists and biochemists were

focusing on reveiling the chemical nature of the genetic material. Sutton's work

suggested in a very substantiated way that this material was hiding in the chro-

mosomes. But what was it exactly? What was its chemical make up? How were

genes positioned on it? By Sutton's time it was already known that chromosomes

are mostly made of protein and nucleic acid. So, there was speculation that either

of the two should be the genetic material. Actually, this speculation was kind of

lopsided: most biologists believed that proteins carried heredity. This belief was

not unfounded: proteins were already known to be of grave biological importance;

all known enzymes and practically all substances that have been found to play an

active role within cells were proteins. On the other hand, DNA had no apparent

function. As a result, most people believed that DNA had some secondary role,

4Incidentally, Drosophila is among the organisms whose genome has been chosen for

sequencing by the HGP.

33

providing merely a substrate for the proteins to operate. The outcome of this

misconception was that most of the research regarding the chemical structure of

the genetic material was actually focused on the wrong direction: proving that

proteins carry the heredity information.

Given the environment described above, it is not surprising that the work of

Avery, MacLeod and McCarty in 1944 [7] which implied that the genetic mate-

rial is really the DNA, created a sensation. Their work was based on previous

results by Frederick Gri�th in 1928. In his e�ort to �nd a vaccine for pneumonia,

Gri�th experimented with two strains of a pneumonia-causing bacterium. One of

the strains (called the S type) was virulent while the other (the R type) was not:

inserting S type bacteria into mice would kill them, while R type bacteria had

no e�ect at all. The contribution of Gri�th was the following observation: when

mixing heat{killed type S bacteria with type R bacteria the result was the transfor-

mation of the benign R type bacteria into virulent S type bacteria. Furthermore,

the change was of a heriditary nature, as the trasformed bacteria gave rise to new

virulent o�springs. Based on these observations, Gri�th hypothesized that heat

left the genetic material of the virulent strains unchanged and this material could

leave the dead cell, �nd its way into the R type bacteria and somehow insert it-

self into the recipient cells' genetic machinery. Other researchers following Gri�th

managed to actually isolate and purify the transformation inducing extract of the

heat{killed S bacteria.

Avery and his co{workers, managed to identify the extract's nature as nucleic

acid. The approach that they followed is in spirit very similar to the one described

in the discussion of turning mRNA to cDNA. More speci�cally, they used three

types of enzymes: the �rst (a recently obtained pancreatic deoxyribonuclease)

was capable of breaking DNA into its constituent nucleotides (a process known

as degradation) while leaving both RNA and protein unaltered; the other two

enzymes had similar degrading activity but for RNA and proteins respectively. The

experiment that leaded in the identi�cation of DNA as the genetic material was the

following: when the transforming extract from the S type bacteria was treated with

the pancreatic deoxyribonuclease before being mixed with the R type bacteria it

34

would loose its transforming power. This, however, was not the case when treated

with the other enzymes: in those cases the transforming power persisted.

Further work by Hershey and Chase [47] in 1952 removed any doubt that DNA

was indeed the genetic material. For their experiments they used T2, a bacterium

attacking virus. By 1952 it was known that viruses comprise almost entirely of pro-

tein and DNA and that they operate by implanting their genetic material into the

cell under attack. Hershey and Chase isolated T2 viruses and labeled their protein

and DNA with di�erent radioactive isotopes. These marked viruses where then

used to infect bacteria. When the infected bacteria were radioactively scanned,

they were found to contain only the isotope that was used to mark the viral DNA.

The conclusion was that in viruses, as with the pneumonia bacteria of Gri�th,

DNA is the agent of heredity.

The �nal challenge was that of solving the structure of DNA. Since Sutton's

time it was already understood that the genetic material must have a structure that

enables its duplication during cell division. In 1949, Erwin Chagra� used paper

chromatographic techniques to discover that the number of adenine (A) nucleotides

in various DNA samples was exactly the same as the number of Thymine (T)

nucleotides and the same was true for the pair Guanine (C) and Cytocine (C).

Then, in 1952, Wilkins and Franklin were able to obtain high quality pictures of

the DNA molecule by using X{ray di�raction methods. Their pictures revealed

that DNA had a helical structure and that the molecule was composed by more

than one nucleotide strands. Around the same time Francis Crick and several

others had just �nished a theory analyzing the di�raction of X{rays caused by

helical molecules (this work had actually originated from an e�ort to analyze the

di�raction data obtained from �{helices in proteins). Using this theory Crick

and Watson [113] proposed the double helix model for DNA (Figure 1.6). They

did so by using Crick's theory in order to �nd the stereochemically most stable

con�guration �tting the data of Wilkins and Franklin.

35

1.5 Biological Data Repositories

Right from the beginning of the Human Genome Project it was very clear that the

success of the entire e�ort would be crucially dependent on the dissemination of

the collected data; the issue of organizing the data in an easily accessible way was

a key consideration from early on.

Today there are several public data bases that provide users with the ability

to access and work with the available information. This information includes

coding and non{coding DNA regions for various organisms, genetic maps, protein

sequences, three{dimensional structures, family signatures etc. More important,

these data repositories are interconnected and allow users to navigate the available

information in smart ways. It is not uncommon today to chemically characterize

a new protein (completely or partially) based on the properties of already known

proteins sililar to the new one. In the words of Stephen Oliver [115]:

\In a short time it will be hard to realize how we managed without the

sequence data. Biology will never be the same again."

Describing the practices of modern day biologists and bioinformaticists is out

of the scope of this work (for those interested in the subject, [10] provides a good

exposition). Throughout this document, however, we use data obtained from ex-

isting data bases. Before proceeding any further then, it is helpful to have some

general idea about what these data bases are.

The simplest data repositories available are sequence data bases. They con-

tain sequence data for proteins. An entry usually contains the actual sequence

of amino acids (or nucleotides of the relevant gene), the organism to which the

protein belongs, its function (if known) as well as other information (e.g. relevant

publications, the person/laboratory that submited the sequence etc.). There are

three main data bases of sequence data which have been at the center of the HGP

e�ort from the very beginning: GenBank in the United States, the EMBL data

base in England and the DNA data base of Japan. All three of them contain

genomic data, i.e. nucleotide sequences from a multitude of organisms, including

humans. Individuals and laboratories can submit sequenced DNA regions using

36

appropriate procedures and forms. The three data bases form a consortium with

the objective to collect and distribute publicly available sequences. Towards this

end, they synchronize on a daily basis by exchanging data. Since, however, data

come from many sources there is always the possibility that a given sequence has

been entered more than once.

It is generally udesirable to have multiple copies of a sequence within a data

base [2]. For this reason the National Center for Biotechnology Information has

automated a process for processing the aggregate contents of the three data bases

mentioned above and producing a non{redundant data base with only one copy

per sequence.

Another widely used sequence data base, and the one that we will mostly refer

to in this work, is SwissProt [8]. It contains amino acid sequences that have

been obtained from reverse transcription of mRNA (this procedure was described

in Section 1.4.2). What makes SwissProt particularly attractive is the fact that

it is curated: every protein entry has been checked for sequencing errors and it is

accompanied by a description of the protein (function, known domains), references

to relevant publications and other information. The availability and reliability of

this information is a major asset in the type of correlation inferences that are

habitually made when comparing sequences with similar primary structures.

Sequence data bases are, in a sense, the most rudimentary tools for representing

genomic information: they just make the plain data available. A lot of additional

information, though, can be extracted by processing (in biologically sensible ways)

that data. Several data bases o�er the results of this kind of processing. The

PROSITE [9] repository contains descriptors of protein families. Descriptors are

constructed by �rst grouping together proteins which are known to be biologi-

cally related and then by identifying (manually!) commonalities shared by these

proteins. The commonalitites are represented either as regular expressions or as

pro�les (Figure 1.18). A typical PROSITE entry contains a set of related proteins

along with their signature (i.e. their corresponding pattern or pro�le). The in-

tention (not always attainable) is for the signature to be diagnostic of the family,

i.e. to be able to capture all the family members while disregarding all sequences

37

that do not belong to the family under consideration. PROSITE is a very useful

resource because it incorporates biological expertise: the grouping of the proteins

into families is based on existing biological knowledge and is not (as is the case

with other systems, like the PRODOM data base to be discussed shortly) based

on automatic processing. PROSITE uses SwissProt as the underlying data base

from which the proteins are drawn.

A similar system is BLOCKS [44, 46]. It also provides descriptors for families

of proteins, the descriptors in this case being pro�les. Unlike PROSITE, the pro-

�les used by the BLOCKS data base are constructed automatically. Also unlike

PROSITE, BLOCKS allows a family to have more than one descriptors. These

descriptors (called blocks) are actually constructed by processing the PROSITE

families. Every family gets assigned an ordered collection of blocks with the prop-

erties that (i) at least half of the proteins in the family contain all the blocks, (ii)

in all these proteins the blocks always appear in the same order, and (iii) all block

appearences are not overlapping. This collection of blocks becomes the descriptor

of the protein family. A more detailed discussion of how the BLOCKS data base

is built is given in Section 4.2.3.

PRODOM [24] (the PROtein DOMain data base) is yet another repository of

descriptors built on the proteins of SwissProt. PRODOM produces a clustering of

SwissProt by �rst �nding homologous regions shared by many proteins and then

placing all these proteins together in a cluster. The alignment of the sequences

implied by their homologous regions (see again Figure 1.18) gives rise to a pro�le

that becomes the descriptor for the family. The pro�les of PRODOM are quite

lengthy (several tenths of amino acids) and are usually descriptors of domains.

Finally, there exist structural data bases that contain information about the

structure of proteins. The most well known among them is the Protein Data

Bank (PDP) maintained by the Brookhaven National Laboratory which contains

protein structures obtained from crystalographic and NMR studies. Every entry

of the PDB data base describes the structure of one speci�c protein. An entry

begins with a title section which gives general information like the protein name,

the publication where the work was described, the authors, the organism where the

38

protein was taken from etc. The title section is followed by the primary structure of

the protein, i.e. the sequence of the amino acids it is made of. After that, a section

describing the secondary structure of the protein is provided. In this section regions

of the protein are characterized in terms of the basic secondary structure elements

(�{helices, �-sheets, loops etc.). Finaly, the actual three{dimensional structure

of the protein is described by giving the coordinates of the protein atoms. More

details for the entry format as well as examples can be found in the web site

http://pdb.pdb.bnl.gov/.

1.6 Research Portfolio

The work upon which this thesis is based can be found in the following documents:

Papers

� \Combinatorial Pattern Discovery in Biological Sequences: The TEIRESIAS

Algorithm", joint work with I. Rigoutsos, Bioinformatics, 14(1):55-67, 1998.

� \Motif Discovery in Biological Sequences Without Alignment or Enumera-

tion", joint work with I. Rigoutsos, Proceedings of the Second Annual Inter-

national Conference on Computational Biology, pp. 221-227, 1998

� \MUSCA: An Algorithm for Constrained Alignment of Multiple Data Se-

quences", joint work with L. Parida and I. Rigoutsos, Discrete and Applied

Mathematics, accepted for publication, December 1998.

� \Sequence Homology Detection Through Large-Scale Pattern Discovery",

joint work with I. Rigoutsos and L. Parida and G. Stolovitzky and Y. Gao,

accepted for publication, Third Annual International Conference on Compu-

tational Biology, April 1999.

� \Unsupervised Hierarchical Motif Discovery in the Sequence Space of Natural

Proteins", joint work with I. Rigoutsos and C. Ouzounis and L. Parida and

G. Stolovitzky and Y. Gao, Proteins, submitted, Proteins, 1998

39

IBM Technical Reports

� \Unsupervised Hierarchical Motif Discovery In the Sequence Space of Nat-

ural Proteins" joint work with I. Rigoutsos, C. Ouzounis, L. Parida, G.

Stolovitzky, Y. Gao

� \A Tool for Discovering Sequence Similarity Using Patterns" joint work with

I. Rigoutsos, L. Parida, G. Stolovitzky, Y. Gao

� \On the Time Complexity of the TEIRESIAS Algorithm", joint work with I.

Rigoutsos

� \Combinatorial Motif Discovery In Biological Sequences Using the Teiresias

Algorithm" joint work with I. Rigoutsos.

� \Tandem{repeat Detection Using Pattern Discovery with Applications in the

Identi�cation of Yeast Sattelites", joint work with G. Stolovitzky, I. Rigout-

sos, L. Parida, Y. Gao

Patent Applications

� \Method and Apparatus for Pattern Discovery in Protein Sequences", joint

work with I. Rigoutsos

� \Method and Apparatus for the Data Compression Utilizing E�cient Pattern

Discovery", joint work with I. Rigoutsos

� \Method and Apparatus for Pattern Discovery in 1-Dimensional Event Streams",

joint work with I. Rigoutsos

� \Method and Apparatus for Discovery, Clustering and Classi�cation of Pat-

terns in 1-Dimensional Event Streams", joint work with I. Rigoutsos

� \Method and Apparatus for Intrusion Detection In Computers And Com-

puter Networks", joint work with M. Dacier, H. Debar, I. Rigoutsos and A.

Wespi.

40

� \MUSCA: An Algorithm for Constrained Alignemnt of Multiple Data Se-

quences", joint work with L. Parida and I. Rigoutsos

41

Figure 1.2: The evolution over time of a primordial protein (the \mother protein" occu-

pying the root of the tree), through a series of mutations, into its present-day instances

(the leaves of the tree). Mutated amino acids are indicated by lower case letters. The

amino acids which are vital for the operation of the protein are marked in bold face.

Mutations that a�ect these amino acids are shown boxed, indicating that the resulting

proteins do not survive. Notice that the vital region of the protein can be modeled by

the pattern

R..FG..K

where the `.' (the don't care characters) represent positions which can be occupied by

arbitrary amino acids.

42

Figure 1.3: (a) All amino acids have the same underlying structure. There is a central

carbon atom, called alpha{Carbon (symbolized here as Ca) and 4 chemical groups at-

tached to Ca: a hydrogen atom, the nitrogen of an amino group, the carbon of a carboxyl

group and an amino acid{speci�c side chain (symbolized here with the letter R). There

are twenty di�erent possible side chains, giving rise to one amino acid each. All the

atoms in the amino acid are connected through covalent bonds.

(b) A protein formed by n amino acids bound together with peptide bonds. Peptide bonds

are formed when the carboxyl group of one amino acids interacts with the amino group of

another amino acid. A by{product of this interaction is the release of a water molecule

(the carboxyl looses an oxygen and a hydrogen while the amino group contributes a

hydrogen). Peptide bonds are shown in the �gure with solid gray lines.

43

Figure 1.4: The chemical make up of the amino acids Alanine and Leucine.

44

Amino Acid Three Letter One letter Chemical

Name Code Code Class

Alanine Ala A H

Valine Val V H

Phenylalanine Phe F H

Proline Pro P H

Methionine Met M H

Isoleucine Ile I H

Leucine Leu L H

Glycine Gly G H

Aspartic Acid Asp D C

Glutamic Acid Glu E C

Lusine Lys K C

Arginine Arg R C

Serine Ser S P

Threonine Thr T P

Tyrosine Tyr Y P

Histidine His H P

Cysteine Cys C P

Asparagine Asn N P

Glutamine Gln Q P

Tryptophan Trp W P

Table 1.1: The 20 amino acids along with their three and one letter codes. The last

column is used to classify the amino acids according to their chemical properties. The

following character codes are used for that column: H = Hydrophobic, C = Charged, P

= Polar.

45

Figure 1.5: (a) Polymeric chains of nucleotides are formed when the basic units of

nucleotides are bound together through sugar{phosphate bonds. The Ri indicate the

side groups of the nucleotides.

(b) The actual DNA molecule is comprised of two paraller chains, connected through

hydrogen bonds between side groups. Not all possible nucleotide pair combinations are

possible: the rule is that A can only bind with T and C can only bind with G.

46

Figure 1.6: Three dimensional representation of the DNA double helix. The two parallel

DNA strands from a right{handed helix, held together by the hydrogen bonds between

complementary nucleotides.

47

Figure 1.7: The mapping of nucleotide triplets to amino acids used by living organisms.

48

Figure 1.8: (a) Di�erent regions of DNA have di�erent functionalities. The so-called

coding regions or genes are consecutive stretches of nucleotides that contain the codons

for given proteins. The area covered by a gene is delineated by a start and an end region.

Furthermore, there exist large chunks of DNA (called junk DNA) that seem to have no

function at all.

(b) Genes are themselves some times composed of both coding regions (called exons) and

non{coding regions (called introns). Here, the gene B of part (a) is magni�ed, revealing

its composition of both exons and introns.

49

Figure 1.9: Two snapshots of the process of transcribing a gene to mRNA. The RNA

polymerase (not shown here) marches over the gene. As it passes through, it locally

unzips the two strands making the DNA helix, temporarily creating a transcription

bubble. One of the two strands is then used as a template in order to elongate the

mRNA molecule being built by the polymerase. When done, the RNA polymerase closes

the current transcription bubble and proceeds to create a new one.

50

Figure 1.10: (a) Example of a tRNA molecule. At one end of the RNA stem there is the

anticodon AGC which is complementary to the codon TCG that codes for the amino

acid Serine. This amino acid is attached to the other end of the tRNA.

(b) The anticodon matches mRNA codons coding for Serine.

(c) Translation of mRNA into protein by a ribosome. The protein chain is gradually

built as the ribosome decodes one by one the codons of the underlying mRNA molecule.

When a tRNA enters the rightmost cavity of the ribosome, it is connected (thick black

line) to the partial chain which is attached to the tRNA in the �rst cavity. Then the stem

of the �rst tRNA gets disconnected from the chain, it gets discarded from the ribosome

and the second tRNA moves to the leftmost cavity, dragging along the entire mRNA

molecule. As a result, the rightmost cavity is left free so that the translation of the next

codon can begin.

51

Figure 1.11: A schematic representation of the transcription and the translation pro-

cesses.

52

Figure 1.12: Replication of the DNA double helix.

53

Figure 1.13: A schematic representation of the process of sequencing a long DNA

molecule. First, the original DNA molecule is digested in two alternative ways ((a)

and (b)). Then the pieces of each digestion are sequenced independently. Finally, in (c)

a tiling path is built combining the areas shared by the various pieces (areas A;B;C and

D).

54

Figure 1.14: Genetic (right) map of chromosome VI of the organism Saccharomyces
cerevisiae, a unicellular eucaryote. Ticks on the rightmost line indicate genes (the names
of these genes are also given). The genes are shown in their relative order of appearance
on the chromosome. For those genes for which their actual physical location is known,
this location is shown on the leftmost line. In this line, numbers indicate distances (in
Kbps) from the beginning of the gene. Dotted lines connect genes (on the right) with
their physical location (on the left). Also shown on the leftmost line are genes of known
location for which there is not enough information in order to place them on the genetic
map.

55

Figure 1.15: The three dimensional structure of protein backbone.

56

Figure 1.16: (a) An �{helix is formed by hydrogen bonds between hydrogen and oxygen

atoms. It looks like a spring with one turn every 3.6 amino acids. The total number of

turns varies from �{helix to �{helix.

(b) A three dimensional rendering of an �{helix. A ribbon is used for representing the

backbone of the helix.

57

Figure 1.17: The primary and tertiary structure representation of a hemoglobin protein.

The tertiary structure is composed of six �{helices. Each one is represented by a distinct

color: red for the �rst helix (the one closest to the N-terminal of the protein), yellow

for the second helix and so on. On the primary structure, the amino acid regions that

correspond to the helices are shown surrounded by boxes.

58

Figure 1.18: A pro�le can be built from any alignment of protein regions. In this

example, �ve sequences (s1; s2; s3; s4; s5) are aligned along a region of 15 amino acids.

The local alignment gives rise to a table (the pro�le) with one row per amino acid and

one column per alignment position. For any given column every amino acids is assigned

a weight indicating its contribution to the alignment column under consideration. In

this example we use as weight the normalized frequency of appearence of the amino acid

in the alignment column (frequencies are normalized so that they sum up to 1). Pro�les

are used to characterize new proteins. Given a pro�le table F [20][n] for an alignment of

length n (in this example, n = 15) and an arbitrary sequence s, it is possible to assign

the following weight to every sequence position i: W (i) =
Pn�1

j=0 P [s[i+ j]][j]. Positions

with a high scores can then be said to mark the beginning of an instance of the pro�le.

59

Chapter 2

Pattern Discovery Algorithms

This chapter provides an in{depth discussion of the pattern discovery problem.

A precise de�nition of the problem is given and its computational complexity is

anayzed. We show that the complexity is dependent on the de�nition of the concept

of a pattern and a number of existing algorithms handling the discovery problem for

several di�erent pattern classes are presented. A new pattern discovery algorithm

called TEIRESIAS is introduced and its design and performance are discussed in

detail. We conclude with applications of TEIRESIAS in a number of test cases,

exhibiting the utility of the algorithm in the biological domain.

2.1 Problem Description

As discussed in Section 1.2, patterns provide appropriate representations of con-

served regions in biosequences. In most cases one is given a set of sequences (DNA

or proteins) and is looking for patterns that appear in some minimum number (or

percentage) of these sequences.

The exact de�nition of a pattern varies from algoritm to algorithm. In general, a

pattern is a member of a well de�ned subset C of all the possible regular expressions

over �1 (the set C is called a pattern language). Being a regular expression, every

1In the sequel, � is used to denote the alphabet from which the biosequences are

drawn, i.e. � is either the set of nucleotides or the set of amino acids. Unless explicitly

60

pattern P de�nes a language L(P) in the natural way: a string belongs to L(P)

if it is recognized by the automaton of P . A sequence s 2 �� is said to \match" a

given pattern P if s contains some substring that belongs to L(P).

For an illustration, consider the following set of strings over the english alpha-

bet:

S = fLARGE;LINGER;AGEg (2.1)

In this case the pattern \L..GE" has support 2 since it is matched by the �rst

two strings of S (`.' is called the don't-care character and is used to indicate

a position that can be occupied by an arbitrary alphabet character). The term

support denotes the number of input strings matching a given pattern. As another

example, the pattern \A*GE" has also support 2 (it is matched by the �rst and

the last strings). Here, the character `*' is used to match substrings of arbitrary

length.

The pattern discovery problem is de�ned as follows:

The Generic Pattern Discovery Problem

Input: A set S = fs1; s2; : : : ; sng of sequences from ��, and an

integer k � n.

Output: All the patterns in C with support at least k in the set S.

The key factor dominating the computational complexity of the pattern discov-

ery problem is the \richness" of the pattern language C. Ideally, one wants to de�ne

C to be expressive enough for describing all the biologically important features of

the sequences under examination. In other words, if a number of sequences con-

tain regions which are biologically related we would like to have a pattern P 2 C

so that all these strings are members of L(P). Unfortunatelly, the amount of

expressiveness allowed in C directly impacts the computational demands of the

problem. In the simplest case, when C = ��, the problem of �nding all patterns

in C with a given minimum support can be solved in linear time using generalized

su�x trees [56]. In almost every other case though, the class C is expressive enough

stated otherwise, the discussion that follows applies to both DNA and protein sequences.

61

to render the problem NP{hard (the hardness result can be usually shown by a

reduction from the longest common subsequence problem [34, 73]). Examples of

pattern languages (in order of increasing expressiveness) are the following:

� C = ��: This is the simplest possible pattern language, comprised by simple

strings over the residue alphabet.

� C = (� [f0:0g)�: here the character `.' (the don't-care character) indicates a

position that can be occupied by an arbitrary residue.

� C = (� [R)�: R = fR1; : : : ; Rng is a collection of sets Ri � � and the

use of a set Ri in a pattern indicates an amino acid position that can be

occupied by any residue in Ri. For example, let R1 = fA;F;Lg be a set of

amino acids. Then the language L(GR1K) contains the amino acid strings

of length 3 that start with a glycine (G), end with a lycine (K) and have in

their middle position any of the amino acids alanine (A), phenylalanine (F)

or leucine (L). (The above mentioned pattern would actually be written as

G[AFL]K.)

� C = (� [f`�0g)�: the character `*' is the Kleene star of � and is matched by

strings of arbitrary length.

� C = (�[X)�: X is a set containing components of the form x(i; j) with i � j

which indicate exible gaps of constrained lengths; x(i; j) is matched by any

string of length between i and j inclusive. Notice that every pattern in this

category can be thought of a union of patterns of the type (� [f0:0g)�. For

example,

Ax(1; 3)B = fA:B;A::B;A:::Bg:

In order to appreciate the nature of the di�culty that the richness of C imposes

on the pattern discovery problem, the following example is instructive. Consider

the following class of patterns:

C = �(� [f0:0g)��

62

i.e. all the patterns that start and end with an alphabet character and contain

an arbitrary number of alphabet characters and don't-cares in between. Let s =

a1a2 : : : an, with ai 2 �. For simplicity, we assume that i 6= j) ai 6= aj. De�ne

now the set of sequences

S = fs1; s2; : : : ; sng; si 2 �� (2.2)

where every si is obtained from s by replacing the character ai in s with a character

a0i 2 �. Furthermore, assume that:

� 8i; j : a0i 6= aj:

� 8i 6= j : a0i 6= a0j:

Then for every Q � S with jQj = m; 2 � m � (n � 1); there exists a unique

pattern PQ 2 C such that PQ is matched by all the sequences in Q and by no

other sequence in S. Figure 2.1 gives an example of how PQ can be obtained by

aligning all the sequences of Q one under the other and substituting every column

containing more than one character with the don't-care.

In conclusion:

Given an integer k; (2 � k � (n � 1)), the number of C patterns that

have support k or more in S are at least

n�1X
m=k

0
@ n

m

1
A

As the above example shows, there can be pathological cases where the number

of existing patterns is exponential in the size of the input (in Section 2.3.6 we will

give a more detailed characterization of such cases). Just reporting these patterns

(let alone generating them) is a formidable task.

In order to put the above observation in perspective, we will borrow some ter-

minology from the area of machine learning. The selection of a particular pattern

language C by a pattern discovery algorithm introduces a search space comprised

by all the patterns that belong in C. Any particular instance of the problem (that

63

is any set S of input sequences along with a minimum support requirement k)

de�nes a corresponding solution space, namely the subset of all the patterns of C

which have the requested minimum support in the given input set of sequences.

Unlike the search space (which is usually huge) the solution space for a given in-

stance is, in many cases, of moderate size (except when dealing with pathological

inputs, like the one given on the example above). The challenge facing any pattern

discovery algorithm is the e�cien computation of the solution space while avoiding

the redundant exploration [88] of the search space.

As we will see in the next section, pattern discovery algorithms can be catego-

rized according to the strategy they use to explore the search space introduced by

the pattern language that they adopt. Some of them avoid a complete exploration

altogether by exploiting alternative, aproximation techniques which are guaran-

teed to work \fast" but do not necessarily �nd all the patterns for every given

input. Other approaches (the so called \exact" or \combinatorial" algorithms)

just accept the hardness of the problem and proceed head{on to �nd all possible

patterns. Such algorithms are bound to be ine�cient (space and/or time{wise) on

some inputs; however, depending on the domain at hand, their overall performance

(amortized over all \reasonable" inputs) might be quite satisfactory. In such cases

it becomes very important to use a number of heuristics in order to exploit any

structure in the search space. Furthermore, extra speed can be usually gained

by parameterizing the pattern language. This is usually left to the discretion of

the user by providing him/her with the ability to appropriately set a number of

parameters that decide the structure of the patterns to be looked for. A typical

example is to allow the user to de�ne the maximum length that a pattern can

have. Providing the user with that kind of control over the search space is not

unreasonable since an expert user can apply domain knowledge to help a program

avoid looking for patterns that are meaningless or impossible for the domain at

hand. In fact, this expert knowledge is usually an integral part (in the form of

various heuristics) of most of the pattern discovery algorithms that exist in the

literature. The disadvantage of this approach is that most of these algorithms are

usually not applicable outside the biology domain.

64

In the following section we survey a number of algorithms used for the discovery

of patterns on biomolecular data. Both approximation and exact methods are

discussed. In evaluating the algorithms presented it is important to keep in mind

that the traditional computer science quality assesment criteria (i.e. the time and

space complexity) are just one component of the overall value of a methodology

(this is particularly true for the exact algorithms, since the problem is NP{hard).

There are also other criteria which might be more relevant. Some of them are:

� The pattern language C used. In general, it is desirable to have as expressive

a class C as possible. The price for the increased expressiveness is usually

paid in terms of time/space e�ciency.

� The ability of the algorithm to generate all quali�ed patterns. As mentioned

earlier, some approximation algorithms can achieve increased performance

by sacri�cing the completeness of the reported results. Depending on the

domain of the application and the quality of the patterns discovered, this

might or might not be an acceptable trade{o�.

� Themaximality of the discovered patterns. Consider for example the instance

of the input set S in (2.1). In this case \L...E" is a perfectly legal pattern. It

is not however maximal, in the sense that the pattern \L..GE", while more

speci�c, still has the same support as \L...E". Reporting patterns which are

not maximal clutters the output (making it di�cult to identify the patterns

that are really important) and can severely a�ect the performance of an

algorithm. It is thus extremely important for a pattern discovery algorithm

to be able to detect and discard non{maximal patterns as soon as possible.

These criteria are used in the next section for the evaluation of the algorithms

presented therein.

2.2 Previous Work

The pattern discovery algorithms can, in general, be categorized in either of the

following two classes [18]: string alignment algorithms and pattern enumeration

65

algorithms. Below we present a short survey of both categories. The list of algo-

rithms discussed is certainly not exhaustive but it highlights the main trends in

the respective classes.

2.2.1 Alignment Algorithms

Algorithms in this class use multiple alignment of the input sequences as the basic

tool for discovering the patterns in question. There exist more than one ways to

de�ne the mutual global alignment of several input sequences. Below, we provide

a de�nition based on the concept of the consensus sequence as (i) it captures the

\essence" of the problem, (ii) it is simple and clean and (iii) it is su�cient for the

purpose of the discussion in this section. A more formal de�nition along with an

extensive exposition can be found in [41]. We will revisit this problem in some

more detail in Section 5.2.

The Multiple Sequence Alignment (MSA) Problem

Given a set S = fs1; s2; : : : ; sng of strings over an alphabet � and a number of edit

operations (mutation of a character into another character, deletion of a character,

insertion of a character etc.), a multiple alignment of the strings in S is de�ned as:

� a string w 2 �� [f`�0g, called a consensus sequence. The character `-' is

assumed not to be part of � and is used to denote a \gap" introduced by an

insertion.

� for each 1 � i � n, a sequence of edit operations for transforming si into w.

Multiple string alignments are usually depicted graphically, as in Figure 2.2.

In this representation the edit operations that have been applied on the input

sequences are described implicitly by the positioning of the input strings relative to

the consensus sequence. It is worth pointing out that alignments do not explicitly

generate all the existing patterns (except for patterns which are shared by all

the input sequences). They do, however, highlight the conserved areas. Closer

examination of such areas can then produce the desired patterns ([79] describes

66

an algorithm for producing all the patterns with a given minimum support from

blocks of aligned sequence regions). Figure 2.3 shows am alignement of actual

proteins.

As given above, the de�nition of the MSA problem is incomplete. In partic-

ular, what is missing are speci�c restrictions which guarantee that the produced

alignment is biologically relevant, i.e. that it correctly highlights conserved regions

on the aligned sequences. In the absence of such restrictions any consensus string

and any set of edit operations could in principle be used, thus allowing for biolog-

ically non{sensical alignments. Biological relevance of the alignments is imposed

by assigning costs to the various edit operations (through the use of biologically

sensible cost matrices like the PAM [25] and BLOSUM [45] families), and by de�n-

ing an objective function over the space of all possible multiple alignments. The

problem then becomes one of optimally aligning the input sequences, i.e. selecting

a consensus sequence which will minimize the objective function.

A complete description of the problem is outside the scope of this dissertation.

What is important to note, though, is the fact that under any reasonable de�nition

of the objective function the problem of �nding an optimal sequence alignment is

NP{hard [109]. As a result, most algorithms in this class resort to heuristics that

produce suboptimal alignments, thus trading{o� enhanced execution speed with

results that may not be complete. There are also other problems related to global

string alignment (e.g. the problem of domain swapping | see Figure 2.4) which

further complicate the generation of a complete list of patterns for a given input

set. In general, using multiple string alignment for the discovery of patterns can

be e�ective only when the strings aligned share global similarities [95].

In the domain of Biology, most of the algorithms dealing with the MSA prob-

lem begin with the pairwise alignment of all possible pairs of input sequences

and then apply a number of heuristics in order to approximate an optimal global

alignment. Martinez in [51] starts by performing and scoring all such pairwise

alignments. Then an ordering of the input strings is generated, based on the align-

ment scores (the intention is for strings that are similar to be placed close together

in that ordering). The �nal multiple alignment is built in a piece{wise manner, by

67

traversing the ordered list of the input strings: each time a new string is added,

the old alignment is modi�ed (by adding insertions where appropriate) so that the

character-to-character matches of the original, pairwise alignments are preserved.

A slightly di�erent approach is pursued by Smith and Smith [96]. Again, the

starting point is generating and scoring all possible pairwise alignments. Scoring

is performed based on a partition of the amino acid alphabet into amino acid

class covering (AACC) groups (similar to those de�ned by the last column of

Table 1.1), based on the physicochemical properties of the amino acids. Using the

scores obtained during the �rst step, a binary dendrogram is built which, in e�ect,

clusters together those of the input sequences which are similar. Then the internal

nodes of the dendrogram are traversed bottom{up. At the �rst level of traversal,

both children of a node are leaves (the original input sequences). Such nodes are

replaced by patterns, based on the alignment of their children; aligned columns that

contains more than one residues are represented by the smallest AACC group that

contains all of these residues (if none exists, a don't care character is used). The

same procedure is propagated towards the root of the dendrogram patern that

fare further up appearing as children of the internal nodes. Upon termination,

each internal node has been labeled by a pattern which is shared by all the input

sequences that are leaves of the subtree rooted at that internal node.

Another algorithm employing multiple string alignment as the main tool for the

discovery of patterns is Emotif [79]. Here, along with the set S of the input strings,

the user also provides a collection R � 2� of subsets of the alphabet �. A pattern

can have at a given position any element E 2 R and a character c of an input

string matches that pattern position if c 2 E. The set R provides a generalization

of the AACC groups used in [96]. Emotif assumes that a multiple alignment of

the input strings is available. The alignment is used to guide the generation of

the patterns in a recursive way: at each point a subset S0 of the original set S is

being considered (originally S0 = S) and a particular column in the alignment of

the strings in S0 (originally the �rst column). Also, there is a pattern P currently

under expansion; originally, P is the empty string. The pattern P is expanded to

P 0 = PE where E 2 R contains at least one of the characters found in the strings

68

of S0 at the alignment column under consideration. The expansion proceeds as

long as the new pattern has su�ciently large support and is not redundant, i.e.

does not appear in the same sequences where a previously generated pattern has

appeared. At the next expansion step, the set S0 will comprise those strings that

match the new pattern P 0 and the next column of the alignment will be considered.

A di�erent heuristic is proposed by Roytberg [87]. Although his method does

not directly use alignment, it works in a way reminiscent of the other algorithms

in this class in that it gets information about potential patterns by pairwise com-

parisons of the input strings. One of the input sequences is selected as the basic

sequence and is compared with all other sequences for similar segments (the notion

of similarity is a parameter of the algorithm). A segment of the basic sequence

gives rise to pattern if at least k sequences (the minimum required support) have

segments similar to it. The major drawback of this method is that it is crucially

dependent on the selection of the basic sequence. This drawback can be partially

o�set by employing repeated runs of the algorithm, each one with a di�erent basic

sequence.

2.2.2 Pattern Enumeration Aglorithms

This class contains algorithms that enumerate all (or some part of) the solution

space and then verify which of the patterns generated during this enumeration

process have the required support. Since such algorithms explore the space of

patterns they tend to be exponential on the size of the largest generated pattern.

In order to be e�cient, they usually impose some restrictions on the structure of

the patterns to be discovered.

The underlying idea used by all these algorithms is the following: start with

the empty pattern and proceed recursively to generate longer and longer patterns.

At each step enumerate all (or some) allowable patterns (i.e. those patterns that

belong to the subclass C of regular expressions treated by the algorithm) that have

the current pattern as pre�x. For every new pattern check its support. If it is

above a threshold continue the expansion. If not just report the current pattern

and backtrack to the previous step of the expansion procedure.

69

What di�erentiates the various algorithms is the class C of patterns that they

recognize, the e�ciency with which they implement the pattern expansion and

their ability to quickly detect and discard patterns which are not maximal.

One of the �rst algorithms in this class [98] actually appeared as part of a

program for multiple string alignment2. The algorithm works by �rst locating

substrings X common to all the input sequences, each substring having length at

least L. For every such X the set of all possible regions is de�ned: each region is

an n{tuple (p1; : : : ; pn) (n is the number of input sequences) where pi is an o�set at

which the i{th sequence matches X. These regions become vertices in a directed

graph. If RX = (x1; : : : ; xn), RY = (y1; : : : ; yn) are regions corresponding to the

substrings X and Y then a line from RX to RY is added in the graph if the two

regions are non{overlapping and RX comes before RY . In other words, if for every i

xi + jXj � 1 < yi:

Finally the graph is traversed for a longest possible path (they give a particular

function for assigning costs to the edges but any meaningful cost function could

be used in its place).

There is a number of problems with this method. First, it only �nds patterns

supported by all the input sequences. Furthermore, in order for it to be e�cient

the parameter L for the minimum length of substrings to look for must be quite

large. Otherwise a huge number of regions will be generated. As a result, patterns

containing shorter substrings will remain unnoticed.

A more straightforward example of pattern enumeration appears in the work

of Smith et. al. [95]. They proceed by enumerating all patterns containing 3

characters and having the form

c1 x(i) c2 x(j) c3; 0 � i � d1; 0 � j � d2;

where d1 and d2 are user{set parameters, ci are amino acids and x(i) indicates a

rigid gap, i.e. a region that is matched by any string of length exactly i (the term

2 Some programs approximate optimal string alignments by �rst locating patterns

common to all strings and then using these patterns as the anchor points for the align-

ment.

70

rigid is used for wild card regions matched only by strings of a �xed length, in con-

trast with exible gaps of the form x(i; j), i � j, which are matched by any string

with length between i and j). Each pattern thus generated is matched against all

the input strings. If it has su�cient support all sequences where it appears are

aligned along this pattern and the pattern is further expanded according to the

alignment. The main disadvantage of this method is that it actually enumerates all

possible patterns, making it hard to handle patterns with more than 3 characters

and with big values for the parameters d1 and d2.

Neuwald and Green [77] provide an improved extension of the previous method.

Their algorithm allows the discovery of rigid patterns of arbitrary length (obeying

some structural restrictions set up by user-de�ned parameters). Furthermore, they

allow double character pattern positions of the form [c1c2] which can be matched by

either of the characters c1, c2; the number of these positions, though, must be kept

to a minimum or the performance of the algorithm su�ers. Their algorithm starts

by enumerating all possible patterns with a given maximum length, given number

of non{don't care positions and a maximum allowed number of double character

positions. The enumeration is carried out e�ciently in a depth{�rst manner using

blocks, a special data structure that records, for every character, all o�sets of the

input strings that the character has a �xed distance from. The enumeration is fur-

ther sped up by pruning the patterns that do not achieve su�cient support. Using

statistical analysis, they keep just a portion of the patterns thus generated (those

that are deemed \important"). At the �nal step, these patterns are combined

into longer patterns by pairwise comparison: two patterns are expanded into a

new one if they have adequate \compatible" appearances, i.e. if there exist enough

sequences where the two patterns appear separated by a �xed displacement. This

expansion operation is made possible because of the block structure representation

of the patterns which contains the list of o�sets at which the patterns appear.

Based on the work of Neuwald and Green above, Collins et. al. [57] present an

even more powerful pattern discovery algorithm which allows for exible patterns

of the following form:

P = A1x(i1; j1)A2x(i2; j2) : : : A(p�1)x(i(p�1); j(p�1))Ap

71

where ik � jk. The Ai's are character sets (consisting of one or more characters)

and are called components. A component can be of one of two types: identity or

ambiguous, depending on whether it contains one or more than one characters.

The wild-card regions x(i; j) are either rigid (if i = j | such a region is written

in the simpler form x(i)) or exible if (j > i). In addition to the actual sequences,

the input to the algorithm contains a host of other parameters that restrict the

kind of patterns to look for (e.g. maximum pattern length, maximum number of

components, maximum number of ambiguous components, the kind of ambiguous

components allowed etc.) as well as the minimum support k for a pattern. The

algorithm proceeds in two phases. In the �rst phase, the block structure of [77]

is used to enumerate all patterns with length up to the maximum possible. As a

preprocessing step, blocks bi;R are created for every allowable component R (be it

either a single character or a set of characters). Every such block contains o�sets

in the input sequences. A particular o�set is in bi;R if some character in R is at

distance i from that o�set. If only rigid patterns have been requested and P is the

current rigid pattern at any given time, then they check all possible patterns P 0 of

the form P 0 = Px(j)R where x(j) is a rigid wild-card region of length j and R is

either a single character or an allowable ambiguous component. If BP is the o�set

list for P (every pattern carries along the list of o�sets where it appears within the

input sequences), then

BP 0 = BP \ bjP j+j+1;R

where jP j is the length of the pattern P (i.e. the length of every string matching

P).

If, on the other hand, exible patterns have also been allowed then a exible

pattern P is represented by the set F (P) of all the rigid patterns that comprise it.

For example, if

P = Dx(1; 2)Ex(2; 3)F;

then the set F(P) consists of the �xed patterns

Dx(1)Ex(2)F;

Dx(1)Ex(3)F;

72

Dx(2)Ex(2)F;

Dx(2)Ex(3)F:

Every pattern Q 2 F (P) carries its own o�set list.

In this case the current pattern P is extended into P 0 = Px(i; j)R using all

possible values of i � j. The block structure for P 0 is actually constructed by

extending every pattern Q 2 F (P) into a pattern Ql, (i � l � j) using the relation

BQl = BQ \ bjQj+l+1;R

and the set F (P 0) becomes

F (P 0) = [Q2F (P);i�l�jQl

In both cases (exible regions allowed or not), further expansion of P 0 is avoided

if the size of the o�set list of P 0 is less than the minimum support k. If P 0 is a

exible pattern then the size of its o�set list is simply the sum of the sizes of the

o�set list of all �xed patterns in F (P 0).

In the second phase, the discovered patterns are further processed in a number

of ways. Possibilities include replacing some don't care characters by an extended

alphabet of ambiguous components, extending a pattern, etc.

A similar algorithm is described by Sagot and Viari in [89]. Their algorithm

also allows ambiguous components but it only treats rigid gaps. Again, the user

must de�ne (among other parameters like the maximum pattern length) which

ambiguous components to use as well as, for every ambiguous component, the

maximum number of times it is allowed to appear in a given pattern. Their al-

gorithm also proceeds by recursively enumerating all allowable patterns, in a way

very similar to that of [57]. The entire process is made faster by the introduction

of two heuristics.

First, an e�ort is made to avoid creating redundant patterns. Let P be the

currently expandedpattern. If S and S0 are both allowable ambiguous components

with S � S0 and PS; PS 0 are both possible extensions of P and if the o�set lists

of PS and PS0 are the same, then only the pattern PS is maintained { the expan-

sion is pruned at PS0. This heuristic does not detect all non{maximal patterns:

73

because of the way that the algorithm builds the patterns, some redudancies will

go unnoticed.

Second, a clever trick is used in order to reduce the input size. Instead of

considering the ambiguous components speci�ed by the user, they originally replace

all of them by the don't care character. This greatly simpli�es the pattern space

to search and makes the entire discovery process much faster. After this step only

the part of the input matching the (reduced) patterns discovered is maintained;

it is on this subset of the input that the algorithm is rerun, now using the full

pattern speci�cation given by the user.

A di�erent approach in enumerating and verifying potential patterns is pro-

posed by Wang et. al. in [108]. The pattern language they treat is composed of

m{component patterns of the form

P = X1 �X2 � : : : �Xm

where the number m is a user speci�ed parameter. The components Xi are amino

acid strings and the *" stands for exible gaps of arbitrary length.

The algorithm works in two phases. First, the components Xi of a potential

pattern are computed. This is done by building a generalized su�x tree (GST) for

all the su�xes of the input sequences. Each leaf corresponds to such a su�x and

is labeled with the sequence containing that su�x. Every internal node u contains

the number count(u) of distinct sequences labeling the leafs of the subtree rooted at

that node. So, if locus(u) is the string labeling the path from the root of the GST

to an internal node u, then count(u) is the number of distinct sequences containing

the substring locus(u). The �rst phase ends by creating the set Q that contains

all strings locus(u) such that count(u) � k, where k is the minimum support.

The second phase veri�es which m{component patterns (among those that can

be built from the elements of Q) have the minimum support. This is a computa-

tionally demanding process since every possible pattern has to be compared against

all the input strings. To speed things up, the space of all potential m{component

patterns is pruned using the following statistical heuristic: �rst, a (small) random

subset S0 of the original set S of input sequences is chosen. For every potential

74

pattern P , its support k0P within S0 is computed. Then, using k0P and arguments

from sampling theory, the probability that the actual support of P in S is k or

more is derived. If this probability is very small, then the pattern P is thrown

away. At the end of the heuristic, patterns which are unlike to have the required

support in S will have been discarded. The remaining patterns are then veri�ed

by computing their support over the original input set S. Those that appear in at

least k of the input sequences are reported in the �nal results.

The use of the above statistical heuristic makes it possible to treat sets S with

many sequences (although it entails the possibility of not detecting some important

patterns that are not lucky enough to pass the statistical test). Furthermore,

the approach is really e�ective only if the minimum support k is comparable to

the number of sequences in S. Another drawback of the algorithm is that its

performance deteriorates very fast as the parameter m increases. Finally, there is

no provision for the detection of redundant patterns.

2.2.3 Conclusions

Each of the two classes of algorithms described above have their pros and cons. By

permitting insertions and deletions, string alignment methods can locate exible

patterns, a category of increased expressiveness (and, thus, complexity). Also, by

using fast approximations to optimal multiple string alignments, patterns can be

quickly discovered. On the other hand, no matter how one chooses to assign cost

for the allowable edit operations, there will always be inputs containing patterns

that cannot be encapsulated by the optimal consensus sequence. This remains true

even if near{optimal consensus sequenses are considered. The problem becomes

more accute for inputs where the sequences do not have global similarities. As a

result, string alignment methods can be a viable approach only if

� the completeness of the reported results is not an absolute necessity,

� the input sequences can be clustered into groups that have global similarities,

so that the alignment can produce `relevant' consensus sequences.

75

The pattern enumeration algorithms, on the other hand, have the potential

of generating all non{redudant patterns. The price to be paid for completeness,

though, can be steep since a huge space of potential patterns has to be searched.

This search problem is magni�ed many{fold if one allows for exible patterns

and/or patterns that permit multiple character positions. Furthermore, making

sure that only maximal patterns are reported is a non{trivial task.

2.3 TEIRESIAS

The pattern discovery method that we propose in this dissertation belongs to the

pattern enumeration class of algorithms. The main characteristics of our approach

are:

1. The method is combinatorial in nature and reports all maximal patterns

with a minimum support without enumerating the entire pattern space. This

makes our approach e�cient.

2. The patterns are generated in order of maximality, i.e. the maximal patterns

are generated �rst. As a result, redudant patterns can be easily detected

through comparisons to the patterns already generated. No costly post{

processing or complicated bookeeping is required.

3. Experimental results suggest that the algorithm is output sensitive, i.e. its

running time is quasi-linear to the size of the produced output.

4. Unlike existing methods it can handle e�ciently patterns of arbitrary length.

The algorithm operates in two phases: scanning and convolution. During the

scanning phase, elementary patterns with su�cient support are identi�ed. These

elementary patterns constitute the building blocks for the convolution phase. They

are combined into progressively larger and larger patterns until all the existing,

maximal patterns have been generated. Furthermore, the order in which the convo-

lutions are performed makes it easy to identify and discard non{maximal patterns.

76

2.3.1 Terminology and Problem De�nition

Let � be the alphabet of residues at hand (e.g. the set of all amino acids or the

set of all nucleotides). The pattern class handled by TEIRESIAS is

CTEIR = �(� [f0:0g)��:

The language L(P) de�ned by a pattern P 2 CTEIR is the set of all strings that

can be obtained from P by substituting each don't care by an arbitrary residue

from �. For the pattern \A.CH..E" for example, the following oligopeptides are

elements of L(A:CH::E):

ADCHFFE, ALCHESE, AGCHADE

For any pattern P , any substring of P that is itself a pattern is called a sub-

pattern of P . For example, \H..E" is a subpattern of the pattern \A.CH..E". A

pattern P is called a < L;W > pattern (with L � W) if every subpattern of P

with length W or more contains at least L residues.

Given a pattern P and a set of sequences S = fs1; s2; : : : ; sng we de�ne the o�set

list of P with respect to S (or simply the o�set list of P , when S is unambiguously

implied) to be the following set

LS(P) = f(i; j) j sequence si matches P at o�set jg:

A pattern P 0 is said to be more speci�c than a pattern P if P 0 can be obtained

from P by changing one or more don't care characters to residues or by appending

an arbitrary string of residues and don't cares to the left or/and right of P . The

following patterns are all more speci�c than the pattern \A.CH..E"

\AFCH..E", \A.CHL.E.K", \SA.CH..E"

Notice that if a pattern P 0 is more speci�c than a pattern P then for every set

S of input sequences jLS(P 0)j � jLS(P)j.

Given a set of sequences S, a pattern P is called maximal with respect to S if

there exists no pattern P 0 which is more speci�c than P and such that jLS(P)j =

77

jLS(P 0)j. Conversely, if P is not maximal then there exists a maximal pattern P 0

such that jLS(P)j = jLS(P 0)j. We then say that P 0 subsumes P .

Using the above de�nitions we can succinctly describe the problem addressed

by TEIRESIAS as follows:

Problem De�nition

Input: A set S = fs1; s2; : : : ; sng of sequences from ��, and and integers

L;W;K where L � W and 2 � k � n.

Output: All maximal < L;W > patterns in CTEIR with support at least k

in the set S.

In what follows, the letters L;W and K are used to denote the parameters

speci�ed in the Problem De�nition given above and are assumed to have values

which have been provided by the user. Furthermore, when the term \pattern" is

used without further quali�cation it will always imply an < L;W > pattern.

2.3.2 Hardness

In the Problem De�nition given above there is one parameter, namely the variable

W , which makes the problem tractable. In the absense of the restriction that

this density parameter imposes on the pattern language CTEIR, the problem that

TEIRESIAS solves would be NP{hard. In this subsection we explain why.

Consider the following decision problem:

The Longest Common Rigid Patern (LCRP) Problem

Input: A set S = fs1; s2; : : : ; sNg of sequences from a discrete alphabet �.

Question: Is there a pattern in P 2 CTEIR matched by all the sequences

in S?
We will show that the LCRP problem is NP-complete. The LCRP problem is

a restricted version of the Longest Common Subsequence (LCS) problem, shown

to be NP{complete in [73] (in the case of the LCS, the pattern that one looks

for belongs to the pattern language �(� [f0�0g)��). The NP{completeness proof

given below is obtained by modifying the proof for the LCS problem given in [73].

78

We use a reduction from the Vertex Cover problem. Consider an undirected

graph G = (V;E) where V = f1; 2; : : : ; ng and E = fe1; e2; : : : ; erg, where ei =

fxi; yig and without lost od generality we can assume that xi < yi. Given such a

graph we construct (r + 1) strings in the following way:

� s0 = 1 2 3 : : : n.

� For each 1 � i � n:

si = 1 2 : : : xi�1 zi xi+1 : : : yi : : : n 1 2 : : : xi : : : yi�1 z0i yi+1 : : : n

where no two zi; z0i; zj; z
0
j; i 6= j are the same.

Let S = fs0; s1; : : : ; srg. All the strings si are over the alphabet

� = f1; 2; : : : ; n; z1; z
0
1; z2; z

0
2; : : : ; zr; z

0
rg:

The following observation is immediately clear:

Observation: Any pattern that matches all the strings in S cannot contain any

zi or z0i character. Furthermore, due to the string s0, if two regular characters

1 � i < j � n appear in a pattern matched by all strings in S, then i appears

before j in that pattern.

Additionally,

Claim:The graph G has a vertex cover of size k if and only if there exists a rigid

subsequence with n � k regular characters that matches every string in S.

Proof: First assume that Vk = fi1; i2; : : : ; ikg � V is a vertex cover for G. Let P

be the pattern resulting from s0 when we replace all characters in Vk by don't-care

characters and remove any leading and trailing don't-cares. Let l 2 V � Vk be the

�rst character of P . By construction, P matches s0. Consider now an arbitrary

string si; 1 � i � n, corresponding to the edge ei = fxi; yig. Since Vk is a vertex

cover xi or yi belong to that set. Without loss of generality, assume that xi 2 Vk.

79

Consider now the sustring wl of si that starts at character l, in the �rst half of si

and is such that jwlj = jP j. Then, wl 2 L(P). To see why, observe that the only

problem for the match of wl to the pattern P could be the character zi. However,

because of the way P is constructed and the fact that xi 2 Vk, zi is matched either

to a don't-care (which is OK) or falls outside the span of the pattern P (which is

also OK).

For the second part of the proof, assume that some pattern P with (n � k)

regular characters, namely the characters V � fi1; i2; : : : ; ikg, matches all strings

in S. We will show that the the set Vk = fi1; i2; : : : ; ikg is a vertex cover for G.

Again, let l be the �rst character of P . Consider an arbitrary string si 2 S.

The string si matches P at the substring starting with the character l at the �rst

or second half of si. Without loss of generality, assume that the substring at the

�rst half is the one matching P . Then the character zi of si is either outside the

span of P or is matched to a don't-care character (our observation above dictates

that zi cannot be part a regular character in P). In either case, we can conclude

that xi 2 Vk, i.e. the set Vk covers the edge ei 2 E.

2

2.3.3 Implementation

TEIRESIAS begins by scanning the sequences in the input set S and locating all

elementary patterns with support at least K. An elementary pattern is just an

< L;W > pattern containing exactly L residues. Figure 2.5 gives an example of

the scanning process for a particular set S of input sequences and particular values

for the parameters L and W .

The result of the scanning process described above is a set EP containing

all the elementary patterns (and their associated o�set lists) which satisfy the

minimum support requirement. This set is the input to the convolution phase.

To understand how the convolution works, it helps to realize that the scanning

phase of the algorithm breaks up all the patterns that exist in the input into

smaller pieces. The task, then, of the convolution phase is to put these pieces back

together (in a time/space e�cient way) in order to recover the original patterns.

80

The key observation behind the convolution phase is that an original pattern P

can be reconstructed by piecing together pairs A;B of intermediate patterns such

that a su�x of A is the same as a pre�x of B. For example, consider again the set

of sequences S given in Figure 2.5. This set contains the pattern \F.ASTS". It is

possible to reconstruct this pattern in the following way (see also Figure 2.6):

� Combine together the elementary patterns \F.AS" and \AST" into the pat-

tern \F.AST" (observe that \AS" is both a su�x of the pattern \F.AS" and

a pre�x of \AST").

� Combine the newly generated pattern \F.AST" with the elementary \STS"

to get \F.ASTS" (again, \ST" is a su�x of \F.AST" and a pre�x of \STS").

To make the above description more precise, we need the following de�nitions:

given any pattern P with at least L residues, let pre�x(P) be the (uniquely de�ned)

subpattern of P that has exactly (L�1) residues and is a pre�x of P . For example,

if L = 3, then

pre�x(\F.ASTS") = \F.A", pre�x(\AST") = \AS".

Similarly, let su�x(P) denote the su�x subpattern of P with exactly (L � 1)

residues. Again, for L = 3,

su�x(\F.A...S") = \A...S", su�x(\ASTS") = \TS".

We can now describe a new binary operation, referred to herein as convolution

(denoted by �), between any pair of patterns: let P , Q be arbitrary patterns with

at least L residues each; the convolution of P with Q is a new pattern R de�ned

as follows:

R = P �Q =

8<
:
PQ0 if su�x(P) = pre�x(Q)

; otherwise

where Q0 is a string such that Q = pre�x(Q)Q0 (i.e. Q0 is what remains of Q after

the pre�x(Q) is thrown away) and ; denotes the empty string. The patterns P;Q

are called convolvable if P �Q 6= ;. Here are some examples for the case L = 3:

\DF.A.T" � \A.TSE" = \DF.A.TSE", \AS.TF" � \T.FDE" = ;.

81

If two patterns P;Q are convolvable and R = P �Q then the o�set list LS(R)

of the resulting pattern R is the subset of LS(P) de�ned as

LS(R) = f(i; j) 2 LS(P) j 9(i; k) 2 LS(Q) such that k � j = jP j � jsu�x(P)jg;

where jP j denotes the number of characters (counting both residues and don't

cares) in the pattern P .

Opting to use convolution as the main tool for reconstructing the original pat-

terns provides a great e�ciency advantage over the naive \all-against-all" ap-

proach, i.e. examining every possible pair of the intermediate patterns to see if

they can be pasted together into a larger pattern. The challenge now is, while

using the convolution, to still be able to

� generate all the patterns, and

� manage to quickly identify and discard patterns that are not maximal.

In order to achieve the above goals, two partial orderings on the universe of

patterns are introduced. These orderings will be used to guide the way the con-

volutions are performed. Using them, we can guarantee that (a) all patterns are

generated, and (b) a maximal pattern P is generated before any non{maximal

pattern subsumed by P . This way a non{maximal pattern can be detected with a

minimal e�ort, just by comparing it against all patterns reported up to that point

(comparisons can be made very e�ciently using the appropriate hashing scheme

to keep track of the maximal patterns). Before giving a precise mathematical

de�nition, we describe these orderings informally.

Let P;Q be two arbitrary patterns. To decide if P is pre�x-wise less than Q

(we write this as P <pf Q) we use the following procedure. First, the two patterns

are aligned so that their leftmost residues are in the same column. Second, the

columns of the alignment are examined starting at the left and proceeding to the

right. We stop when we see a column (if any exists) in which one of the aligned

characters is a residue and the other is a don't care character. If the residue comes

from the pattern P then P is pre�x-wise less than Q (see Figure 2.7 for a concrete

example).

82

In exactly the same way we can determine if a pattern P is su�x-wise less

than Q (we write P <sf Q) only that now the alignment is done so that the

rightmost residues of the two patterns are aligned together and the examination

of the columns starts from the right and proceeds to the left. A formal de�nition

of the two orderings is provided in Figure 2.8.

Figure 2.9 gives pseudo-code describing the convolution phase. The patterns

are built inside a stack. When the stack becomes empty, a new elementary pattern

P is placed on its top to initiate the next round of convolutions. From that point

on and until the stack gets empty again, all the patterns ever placed in the stack

will have been obtained from P through successive convolution operations.

The algorithm always works with the pattern T that is found at the top of stack

- we call this pattern the current top. First, T is extended to the \left" (pre�x-

wise) by convolving it with all the elementary patterns Q which are such that

Q�P 6= ;. The convolutions are performed in the order prescribed by the pre�x{

wise less relation <pf , the ties being arbitrarily broken. If the pattern R resulting

from such a convolution has support less than K (this can be easily checked by

examining the o�set list of R) or it is redundant then R is discarded, the current

top remains unchanged and the next convolution is tried out. Otherwise, R is

placed at the top of stack, thus becoming the new current top and the procedure

starts over again, this time with the new current top. After the pattern T at the

top of the stack can no longer be extended in the pre�x direction, the same process

is applied trying now to extend T to the right (su�x-wise).

When extension in both directions has been completed, the current top is

popped from the stack. If this pattern is found to be maximal then it is placed in

the output set.

2.3.4 Correctness

In order to prove the correctness of the proposed algorithm, we will show that:

� all the maximal patterns are reported, and

� no pattern that is non{maximal is ever reported.

83

The last of the above two points is also closely related to the performance of the

algorithm. Our means of checking the maximality of a patterns is through the function

IsMaximal() of Figure 2.9. Since this function is called after every successful convolution

(i.e. one that generates a pattern R with the prescribed minimum support K) and it

requires the lookup of the structure Maximal containing the patterns reported up to that

point, it is very important to make sure that (i) the number of successful convolutions

is not unnecessarily inated, and (ii) the size of Maximal is as small as possible. In

order to achieve this goal, the algorithm is so designed as to guarantee that all maximal

patterns are reported before any non{maximal pattern. Based on this property we can

prove that the structure Maximal contains at all times only maximal patterns and that

a non{maximal pattern is recognized and discarded immediately.

For the discussion that follows, we introduce some additional terminology. Any

< L;W > pattern that is the result of a convolution (lines (6), (8) in the pseudo-code

of Figure 2.9) is said to be generated during the convolution phase. The subset of the

generated patterns that make it to the line (9) of Figure 2.9 are called the reported

patterns. All the patterns generated (reported) between the time an elementary pattern

P is placed on the stack and before the next elementary pattern is placed on the stack,

are said to generated (reported) during the expansion of P .

For every< L;W > pattern P de�ne the core set of P as the ordered set of elementary

patterns CS(P) = (e1; e2; :::; ek) such that P = e1 � e2 � :::::� ek . Let seed(P) be that

element of CS(P) which is �rst placed on the stack during the convolution phase. Lemma

1 below is a direct consequence of the de�nition of maximality.

Lemma 2.3.1 Let P 0 be a non{maximal pattern and P the maximal pattern subsuming

P . Then

seed(P) <pf seed(P
0) or seed(P) = seed(P 0)

Lemma 2.3.2 Let P be an arbitrary pattern. If P is generated at all, then the �rst time

that this happens is during the expansion of seed(P). Furthermore, if P is maximal then

P is always generated.

Proof: The proof is an easy induction on the size of the core set CS(P).

2

84

Theorem 2.3.1 Let P be a maximal pattern. Then, when P is generated for the �rst

time, no non{maximal pattern P 0 subsumed by P has been reported.

Proof: From Lemma 2.3.2 it follows that, since it is the �rst time that P is generated,

the elementary pattern currently under expansion is seed(P). Let now P 0 be an arbitrary

non{maximal pattern subsumed by P . If it is the case that seed(P) <pf seedP
0 then

seed(P 0) has not yet been expanded (the order of expansion for the elementary patterns

obeys the pre�x{wise minimum ordering). As a result, P 0 cannot have been reported

since, according to Lemma 2.3.2, it has not even been generated. If, on the other hand,

seed(P) = seed(P 0) then, again by Lemma 2.3.2, P 0 is generated (if at all) during the

expansion of seed(P). Analyzing the pseudo{code in Figure 2.9 reveals that even if P 0

is indeed generated it has yet not be reported at the time of the generation of P .

2

Given Theorem 2.3.1 above it is easy to see that all the maximal patterns are indeed

generated and reported. Furthermore, every maximal pattern is reported before any

non{maximal pattern that it subsumes. Given this, we can substantiate our claim that

the structure Maximal always contains only maximal patterns.

2.3.5 Time Complexity

In the implementation of TEIRESIAS the main object of our manipulations is the data

structure representing a pattern. This data structure is a pair (P; LS(P)) where P is the

string representation of the pattern and LS(P) is the o�set list of the pattern. The list

LS(P) is assumed to be ordered. This means that the o�set (x; y) appears before the

o�set (x0; y0) if (i) x < x0 or (ii) x = x0 and y < y0. Several other data structures are used,

mainly as repositories for patterns. These will be explained as they are encountered.

The remaining part of this section is divided in two parts, one addressing the scanning

phase and the other the convolution phase of the algorithm. In what follows we use the

character m to denote the size of the input set S = fs1; s2; : : : ; sng, i.e. m =
Pn

i=1 jsij.
Furthermore, we assume that m >> W .

85

Scanning Phase

During the scanning phase of the algorithm the input is repeatedly examined in order

to construct the elementary patterns which will be deposited into the set EP (this

set is implemented simply as a linked list of patterns). The components dominating

the complexity of this phase are the for-loops of lines (2) and (4) in Figure 2.9. The

operation of inserting an elementary pattern in the set EP in line (1) takes constant

time while the initialization of the array counts[] is an O(j�j) operation, which can also

be considered constant time since our alphabet is �xed. As a result, all that is needed in

order to determine the time required by the scanning phase is to compute the number

of times the two aforementioned for-loops are executed.

In order to facilitate the discussion that follows we introduce the notion of the tem-

plate. Templates provide a conceptual way for constructing the elementary patterns.

More speci�cally, we de�ne an (L;W) template to be an arbitrary string from the set

1; 0 abiding to the following restrictions.

� it has length between L and W (inclusive),

� it has exactly L '1's,

� it starts and it ends with '1'.

Notice that from an < L;W > elementary pattern we can obtain an (L;W) template

if we turn every residue to `1' and every don't care character to `0'. Reversely, given

an (L;W) template we can produce < L;W > patterns by \sliding" it over a sequence

(see Figure 2.10): when the template is placed over any sequence position a pattern is

obtained by maintaining all residues that are aligned with an `1' and turning into a don't

care each residue aligned with a `0'.

Lemma 2.3.3 For any two integers L;W (with L � W) let A(L;W) denote the total

number of (L;W) templates. Then

A(L;W) =
�
W�1
L�1
�
:

The for-loops in the lines (2) and (4) of Figure 2.9 force each input character to be

examined some number of times. Disregarding any amount of pruning (which occurs

86

when a pattern P 0� in Figure 2.9 is found to have support less than K) each input

character is visited no more than

A(1;W � L+ 1) + A(2;W � L+ 2) + : : :+A(L;W) =
LX
i=1

A(i;W � L+ i)

times (this is actually an overestimate for the characters that are close to the beginning

or the end of a sequence). That this claim is true can be veri�ed by inspection of the

function Extend() used by the code of the scanning phase.

Lemma 2.3.4 The complexity of the scanning phase is O(mWL).

Proof: Each input character is scanned no more than
PL

i=1A(i;W�L+ i) times. Since
the input contains m characters, the total time spent in examining them is at most

m
LX
i=1

A(i;W � L+ i) � mLA(L;W) = mL
�
W�1
L�1

�
� mLWL�1 � mWL

2

Convolution Phase

The convolution phase begins with a preprocessing step intended to facilitate the opera-

tions to follow. This preprocessing involves the ordering of the set of elementary patterns

EP and the generation of the directory structures DirP and DirS. Since the complexity

of these tasks depends on the size of the set EP , we �rst give an upper bound for jEP j:

Lemma 2.3.5 The number of elementary patterns discovered during the scanning phase

is no larger than m
�
W�1
L�1

�
=K.

Proof: Consider the j-th residue of the i-th input sequence. There exist at most

A(L;W) elementary patterns that can start at the o�set (i; j). Consequently, the o�set

(i; j) appears at most A(L;W) times in the o�set lists of all the elementary patterns.

Since the input has size m, the aggregate size of all the o�set lists in EP is then no

larger than mA(L;W). Furthermore, the minimum support requirement dictates that

every o�set list of an elementary pattern must have at least K o�sets. This means that

jEP j � mA(L;W)=K = m
�
W�1
L�1

�
=K

87

2

Before proceeding with the analysis of the preprocessing step let us give a quick

description of the structures DirP and DirS. These directory structures are designed for

the e�cient execution of the lines (5) and (7) in the pseudo{code. Each one of them is

implemented as a balanced tree. In the case of DirP, every node of the tree is labeled

with a string w and contains a non{empty list of all the elementary patterns P with

pre�x(P) = w. The patterns within every such list are ordered according to the <pf

relationship. The implementation of DirS is completely analogous, only that here within

every node with label w we �nd all the patterns P satisfying su�x(P) = w. Using these

structures (and with some minimal bookkeeping inside every pattern) it is possible to

execute the lines (5) and (7) of Figure 2.9 in constant time.

Lemma 2.3.6 The time needed for the preprocessing of the set of elementary patterns

EP and the generation of the structures DirP and DirS is O(WLm logm).

Proof: Generating the structure DirP involves (i) ordering the set EP according to

the <pf relationship and (ii) for every elementary pattern in EP (considered in the <pf

order) locating or creating the balanced tree entry labeled pre�x(P) and appending P

at the end of the corresponding list. The �rst of the above steps requires, using any

standard sorting algorithm, O(jEP j log jEP j) comparison, each comparison in our case

taking time O(W). The second step takes for each pattern P an (amortized) number

of O(log jEP j) comparisons for locating the node with label pre�x(P) and constant time

for inserting P into the node's list. Putting everything together and using Lemma 2.3.5

above, we conclude that the time needed for constructing DirP is

O(W jEP j log jEP j) = O(W
m

K

�
W�1
L�1

�
log(

m

K

�
W�1
L�1
�
)) = O(WLm logm):

The structure DirS is constructed in an analogous way and the same bounds hold there

too.

2

After the preprocessing is done, the main body of the convolution phase commences.

The complexity here is dominated by the time spent in the following two operations (the

notation used refers to Figure 2.9): (i) convolutions of the pattern T at the top of the

stack with appropriate elementary patterns Q, and (ii) checking the resulting patterns

88

R for maximality. We will address each kind of operation separately, starting with the

convolutions.

Lemma 2.3.7 Let T be an arbitrary pattern at the top of the stack. The number of

elementary patterns Q that T is convolved with (lines (6) and (8) of the pseudo{code) is

no more than 2j�jW .

Proof: When T is extended to the left in line (6) of Figure 2.9, it has to be combined

with an elementary pattern Q such that pre�x(T)= su�x(Q). Given that the last (L�1)
residues of Q are thus restricted and that an elementary pattern has size no more than

W , it follows that there are at most j�jW elementary patterns satisfying the requirement

pre�x(T) = su�x(Q). A similar argument holds for the line (8) of the pseudo{code. In

total, T is conlolved with at most 2j�jW elementary patterns.

2

When the convolution R = T � Q is performed, the o�set lists of the patterns T

and Q must be compared in order to compute the o�set list of the resulting pattern R.

Because all o�set lists are maintained ordered, this comparison can be done in a single

traversal of the two lists, thus requiring jLS(T)j+ jLS(Q)j � 2m operations. Combining

this with Lemma 2.3.7 above we get that

Lemma 2.3.8 For any pattern T that ever appears on top of the stack the total time

spent performing convolutions that involve T is O(Wm).

All that is needed in order to bound the time spent doing convolutions is to deter-

mine the number of patterns that are ever placed on top of the stack. As mentioned

earlier, the only case that a non{maximal pattern T can be placed on the stack is on

the way to building the maximal pattern T 0 that subsumes T . If we let rc(T 0) denote

the number of residues (i.e. the non{don't cares) in T 0 then at most (rc(T 0) � 1) such

non{maximal patterns T can be placed at the top of the stack while building T 0. Taking

into consideration that every maximal pattern is also placed on the stack at some point

and using Lemma 2.3.8 we conclude that:

Lemma 2.3.9 The total time spent carrying out convolutions is

O(Wm
X

T 0 maximal

rc(T 0)):

89

We now turn our attention to the operation of checking the patterns R (the results

of the convolutions in Figure 2.9) for maximality. The main data structure used here is

the set Maximal which at all times contains all the maximal patterns which have been

generated up to that point. The setMaximal can be thought of as a hash table (although

it can also be implemented as a balanced tree for space e�ciency). When a new pattern

R (with support at least K) is generated, the function IsMaximal(R) is called in order

to check if Maximal contains a pattern which subsumes R. Since this function is called

very often, it is important that it be implemented e�ciently. Towards that end, every

pattern R is assigned a hash value H(R). Ideally, we would like these hash values to

have the following properties: (i) no two maximal patterns take the same value, and (ii)

for every non{maximal pattern R subsumed by the maximal pattern R0, H(R) = H(R0).

In such a case and under the light of Theorem 2.3.1 of Section 2.3.4, we conclude that

checking a pattern R for maximality is simply a question of computing the hash value

H(R) and inspecting the corresponding hash entry: R is maximal if and only if this hash

entry is empty.

Unfortunately we can construct reasonable hash functions which satisfy (provably)

only the property (ii) above. It is, however, possible to design hash functions which

almost always satisfy property (i) as well. One such function which has proved particu-

larly appropriate (at least for all test cases we checked it for) maps every pattern R to

a pair H(R) = (jLS(R)j; di� sum). In order to compute di� sum we �rst \atten out"

all o�sets in LS(R) = f(x1; y1); ::::; (xr; yr)g by mapping every o�set (x; y) to the integer
f(x; y) = y +

Px�1
i=1 jsij. The value di� sum is then calculated as

di� sum =
r�1X
i=1

(f(xi+1; yi+1)� f(xi; yi));

that is, di� sum is the sum of all the distances between successive matches of the pattern

R.

Lemma 2.3.10 The time required for all the calls to the function IsMaximal() as well as

for the insertion of all maximal patterns in the set Maximal (line (9) of the pseudo-code)

is

O(W (Cm+ tH)
X

P maximal

rc(P))

90

where C is the average number of patterns found in a hash entry of Maximal and tH is

the time needed for locating the hash entry corresponding to any given hash value.

Proof: The fact that no more than
P

P maximal rc(P) are ever placed on the top of the

stack, in conjunction with Lemma 2.3.7 leads us to the conclusion that there are at most

2j�jWP
P maximal rc(P) convolution operations performed overall and consequently at

most that many patterns ever generated. In the worst case every such pattern R will have

to be checked, through a call to IsMaximal(R), against the set Maximal. This involves

�rst computing the hash value H(R) (which can actually be done in constant time,

or more precicely, can be computed incrementally, as part of the convolution operations

leading to the generation of R), second locating the hash entry inMaximal corresponding

to H(R) (time tH) and, �nally, comparing the o�set list of R with the o�set list of every

pattern found in that hash entry (on the average, time Cm). We note here that if we

select a balanced tree implementation for the hash table Maximal then the time required

in order to locate the hash entry corresponding to any hash value H(R) is logF , where

F is the total number of maximal patterns. As a result, tH � log F .

2

Putting now together Lemmas 2.3.4, 2.3.6, 2.3.9 and 2.3.10:

Theorem 2.3.2 The worst-case time complexity of the TEIRESIAS algorithm is

O(WLm logm+W (Cm+ tH)
X

P maximal

rc(P))

Although we have no theoretical bound for the variable C, in all the experiments that

we have performed the value of this variable is very close to 1 which indicates that the

above described hash function H() will, in the majority of cases, assign distinct values

to distinct maximal patterns. .

2.3.6 Experimental Performance

In the course of experimenting with various input sets we have observed that per-

haps the single most important factor which a�ects the performance of the algorithm

is the amount of similarity between the input sequences. In order to better evaluate

91

the relationship between performance and input composition we carried out a num-

ber of experiments. The starting point for all of them was a random sequence P

of 400 amino acids; the sequence was generated by the random protein generator at

http://www.expasy.ch/sprot/randseq.html using the amino acid frequencies from

the most recent version of SwissProt. We then �xed a percentage X and used the original

protein P in order to obtain 20 derivative proteins, each one of them having a pair{wise

similarity of about X% to P . The derivative proteins were obtained through successive

applications of the appropriate PAM matrix on P , using a methodology described in

[35].

We obtained six such input sets of proteins: for X being 40%, 50%, 60%, 70%, 80%

and 90%. For each set we run TEIRESIAS using a di�erent minimum support (i.e. value

of K) every time. Furthermore, for every choice of the minimum support we used several

di�erent values for the parameter W of the algorithm. The parameter L was set to 3;

the reason for setting L = 3 is that this is the smallest value for which the bene�ts of

convolution become apparent as the pre�xes and su�xes used are non{trivial. For each

execution of the algorithm we kept track of two things: (a) the running time and, (b) the

total number of non{redundant patterns reported by the algorithm. Figures 2.11 and

2.12 provide a graphical representation of the results for the cases W = 10 and W = 15.

The measurements obtained for other values of W are similar.

As expected, the algorithm required just a few seconds when the minimum support

was set at about the total number of sequences in the input. Furthermore, the variation

in the similarity among the di�erent input sets did not have any observable e�ect. The

reason for this particular behavior is that, no matter what the amount of similarity is,

there are not too many patterns that belong to all (or almost all) the input sequences.

When we allow for smaller minimum support values, the degree of similarity in the input

becomes an important factor. More speci�cally, the higher the similarity, the longer it

takes to produce the �nal patterns. This is a direct consequence of the fact that as

the degree of similarity in the input increases so does the number of distinct patterns

that are contained in the input; this observation is typically underestimated by pattern

discovery algorithm developers. Examining the curve corresponding to the X = 90%

similarity case one can see that even small decreases in the minimum support create a

very large number of additional patterns. So, the increase in the running time is in a

92

sense anticipated. The important point to make, though, is that there appears to exist

a quasi{linear relationship between the execution time of TEIRESIAS and the size of the

output. As is evident from Figures 2.11 and 2.12 the rate of increase in the running time

of the algorithm mirrors almost exactly the corresponding rate of increase in the number

of patterns in the output.

From this and additional experiments, we concluded that the size of the output

seems to be the main factor a�ecting the performance of the algorithm: the running time

remains reasonably small even for very large input sets if they contain a moderate number

of patterns. This is a particularly desirable property since it shows that the amount of

work performed by the algorithm is not more than what is absolutely necessary.

2.4 Results

In this section we demonstrate the usefulness of the algorithm by applying it to a number

of test cases. We consider two data sets: core histones (H3 and H4), and leghemoglobins.

In the �rst case, TEIRESIAS is used in order to discover similarities across the (weakly

related) core histone families H3 and H4. For the leghemoglobins the algorithm is used

to extract patterns that are characteristic of the family.

2.4.1 Core Histones H3 and H4

Core histones have been the object of extensive study due to their central role in the

packaging of DNA within the cell. These small proteins are rich in positively charged

amino acids that help them bind to the negatively charged DNA double helix [114]. The

four core histones (H2A, H2B, H3 and H4) bind together into an octameric construct

(reminiscent of a cylindrical wedge) that provides the substrate for 146 bps long DNA

segments to wrap around, thus creating the nucleosome complexes within the cell chro-

matin. Examination of this octamer through crystallographic methods [5] has revealed

the existence of the core histone domain, a particular structural construct found to be

shared by all the core histone proteins. As it turns out, this domain plays a vital role

in the assembly of histone pairs into dimers which are further combined into the core

histone octamer.

Apart from being a deciding factor in the internal architecture of the core histone

93

octamer, the existence of the domain in all of the core histones has also provided ev-

idence towards the validation of a long standing speculation [85], namely the alleged

evolution of the core histones from a common ancestral protein. Recent work [82, 11],

based on the manual alignment of core histone proteins along their common domain has

indeed established this evolutionary relationship: all histones (as well as the eukaryotic

transcription factors CBF-A/C) have been found to contain sequence patterns that are

characteristic of the core histone fold [82]. These patterns contain, among other motifs,

the pentapeptide KRKT[IV] towards the end of the C-terminal domain [82].

In order to demonstrate its utility, we have used TEIRESIAS to analyze the core

histone families H3 and H4. Our intention was to see if we could �nd evidence of the

common evolutionary origin of these two families in the form of patterns preserved in

both H3 and H4 proteins. This is a challenging task, as there is virtually no observable

similarity accross the two protein families (while, within family limits, proteins are highly

conserved).

For the purpose of carrying out the experiments, we selected representative subsets

from both families, making sure to include proteins from a wide range of organisms. We

used subsets instead of the entire subfamilies in order to also check the predictive power

of the patterns found, i.e. their ability to match ohistone sequences not in the original

input set. The input set comprised 20 proteins (13 from the H3 family and 7 from the

H4 family) and is shown in Table 2.1.

H33 HUMAN H32 BOVIN H32 XENLA H3 PSAMI H3 STRPU

H31 HUMAN H3 ENCAL H3 CAEEL H3 PEA H31 SCHPO

H3 YEAST H34 CAIMO H34 MOUSE

H4 HUMAN H4 CAEEL H4 WHEAT H4 YEAST H4 SCHPO

H41 TETPY H42 TETPY

Table 2.1: The SwissProt labels of the 20 sequences from the H3 and H4 families that

were used in the experiments (13 sequences come from the H3 family and 7 from the H4

family).

Processing the input set with TEIRESIAS required only a few seconds on an IBM

94

Power-PC workstation and a large set of patterns was discovered. This set contained

patterns that were common to both families as well as patterns that were common to

only the members of a single family. In Figure 2.13, we are showing all the discovered

patterns (with 4 or more regular characters) which occur in at least 19 out of the 20

sequences (the patterns have been aligned with one representative member of the H3

and H4 families in order to clearly show the patterns' positions in the set). Interestingly

enough, there are quite a few patterns appearing in all the proteins in our input set. In

order to verify the extent to which these patterns indicate evolutionary relationship (and

are not found just by chance) we searched SwissProt (Rel. 34) for sequences matching

the most descriptive among these patterns, i.e. those with the largest number of non

don't-care positions (Table 2.2).

The 3 patterns we used for the search were very sensitive to the H3 and H4 protein

families; they identi�ed almost all the members of these two families. They are also

very speci�c as they generated no false positives. In the same table, we are also showing

the results of searching the given patterns in the non-redundant database of the core

histone sequences maintained at NCBI, the National Center for Biotechnology Informa-

tion [11, 12]. The high sensitivity of the patterns chosen is clearly demonstrated by that

experiment also: the patterns are found to belong in just about all the histone proteins

in the non-redundant database.

In Figure 2.14 we are showing a small part of the results produced by TEIRESIAS

when applied individually to the H3 (13 sequences) and H4 (7 sequences) subsets. In

each case only patterns found to belong in all the members of the respective subset are

shown. The �gure depicts clearly the extensive degree of amino acid conservation within

subfamily boundaries.

Looking at the alignment of the discovered patterns along the H33 HUMAN protein,

one notices that the following two H3 family patterns

P1 = "A.TKQTA.KST..KAPRKQL..KAA.K.AP..GGVKK.H...P.TVAL.EI........L"

P2 = "STELLI...PFQRLV.EIAQDFKT.LRFQ..A..ALQE..EA..V.LFEDTNL.AIH.K.V....KD..L.....GER",

�t almost perfectly the two structural domains reported for the H3 family in the PRODOM

database, namely the domains with accession numbers 687 (pattern P1) and 521 (pat-

tern P2). The �rst of these two domains appears in 29 sequences all of which are anno-

tated as Histones 3, while the second domain is found in 36 proteins of which 30 are in

95

Patterns SwissProt NCBI

H3(33) H4(20) H3(81) H4(59)

G.......................T...I........V..I........R 27 19 79 58

K.A.......GGVK 24 20 77 59

E......V...E...........V....K.........G 27 19 76 58

Table 2.2: For each pattern, the number of H3 and H4 members found to contain the

pattern are shown. The searches were performed over SwissProt release 34 (containing 33

Histones 3 and 20 Histones 4) and the non{redundant data base at NCBI (containing 81

Histones 3 and 59 Histones 4). It is interesting to note that in searching SwissProt, not a

single false positive was generated. Only the pattern \E......V...E...........V....K.........G"

was matched by proteins that were not clearly annotated as histones, namely the pro-

teins CENA BOVIN, CENA HUMAN and YB21 CAEEL. All three of these proteins,

however, are known to be H3-like proteins: the �rst two play the role of histones in

the assembly of centromeres while the last one is a hypothetical histone 3 protein in

chromosome X [9].

the H3 family while the remaining 6 (SwissProt names: YB21 CAEEL, CSE4 YEAST,

CENA BOVIN, CENA HUMAN, YMH3 CAEEL, YL82 CAEEL) are H3{like proteins.

Verifying Observations

In order to verify the correspondence between patterns and PRODOM domains ob-

served in Figure 2.14 we performed the following experiment: each pattern was slid over

all sequences in the SwissProt database. At every o�set we counted all characters of

the sequence that matched a non-don't care character of the pattern (this is equivalent

to generating a scoring matrix from the pattern where every amino acid position of the

patterns contributes a weight of 1 while every don't care character contributes nothing).

The �nal score assigned to a sequence was the maximum among all the scores of its o�-

sets. As it turns out, even our simple scoring strategy is quite e�ective; for both patterns

the highest scoring sequences (29 for P1 and 36 for P2) were exactly those found to be

in the corresponding PRODOM domains. Not a single false positive was generated.

96

2.4.2 Leghemoglobins

Leghemoglobins are plant hemoglobins that show sequence similarity to other members

of the larger globin superfamily, especially to myo{ and hemo{globins from animals [59].

All globins contain a conserved-histidine signature that represents the heme-binding

pocket [59].

BP1 CASGL HBP2 CASGL HBPL PARAD HBPL TRETO

LGB1 LUPLU LGB1 MEDSA LGB1 MEDTR LGB1 PEA

LGB1 SOYBN LGB1 VICFA LGB2 LUPLU LGB2 MEDTR

LGB2 SESRO LGB2 SOYBN LGB3 MEDSA LGB3 SESRO

LGB3 SOYBN LGB4 MEDSA LGBA PHAVU LGBA SOYBN

LGB PSOTE HBP CANLI

Table 2.3: The SwissProt labels of the 22 leghemoglobin sequences as they appear in the

respective entry of PROSITE.

We presented TEIRESIAS with the set of leghemoblogins shown in Table 2.3. This

is exactly the set of proteins comprising the plant globin family in the PROSITE (Rel.

13.2) entry with accession number PS00208. Our intention was to determine whether

the algorithm could identify the heme{binding pocket signature successfully, or any other

important pattern.

Figure 2.15 shows those patterns that have been determined by the algorithm to be

common to at least 21 of the 22 leghemoglobin sequences of the input set; the patterns

are shown aligned with the sequence LGBA SOYBN. Among the patterns belonging

to all the input sequences, we �nd \P.L..HA...F......A..L...G". This is essentially the

leghemoglobin signature reported in the PROSITE database and describes the heme

binding pocket. Another pattern identi�ed by TEIRESIAS and appearing in all the input

leghemoglobin sequences is \A.L.T.K......W..........AY..L....K"; furthermore, a search of

SwissProt reveals that it is speci�c to leghemoglobins and creates no false positives.

As it turns out, this particular pattern spans the last helix in the structure of the

leghemoglobin [59].

97

Determining Descriptive Power

In order to check the descriptive power of the above two patterns in a greater detail, we

used the non{redundant database of proteins at NCBI (including entries from, among

others, the SwissProt, EMBL, GenBank and PIR databases) for extracting a big number

of leghemoglobin sequences. The sequences were obtained using a standard homology

search tool, namely BLAST [3, 4] (the algorithm employed by BLAST is discussed in

Section 4.2.2), to search for proteins similar to the leghemoglobin LGBA SOYBN; from

the search results, only proteins with P value < 0:005 were retained for further process-

ing. The sequences that survived this �rst screening were then aligned and divided into

groups, each group comprising proteins di�ering in at most two positions. Finally, we

constructed a non{redundant set of legehemoglobin sequences by selecting one represen-

tative from each group; we assumed that all sequences within a group really code for

the same protein and that the small di�erences are the result of sequencing errors. The

result of the process described above was a set containing 60 proteins, the 22 SwissProt

proteins listed in Table 2.3 and 38 other leghemoglobins (listed in Table 2.4).

We then proceeded to search the two patterns in this larger leghemoglobin database:

both patterns turn out to be very selective (Table 2.5). Each pattern matches every

sequence either exactly or within one edit operation (mutation, insertion or deletion),

with the exception of one case which requires two mutations. The only sequences missed

are those which are fragments and do not contain the region corresponding to the pattern

at hand.

On Conserved Regions

The results obtained by TEIRESIAS for the leghemoglobin family can be used to highlight

another application for the algorithm, namely the derivation of information regarding

the conserved regions in a family of sequences. The alignment of patterns shown in

Figure 2.15 reveals four such regions, two of them near the N-terminal of LGBA SOYBN,

one in the middle of the sequence, corresponding to the heme binding domain, and one

close to the C-terminal. These regions are also identi�ed in the BLOCKS database as

the blocks BL00208A, BL00208B and BL00208C of the plant globin family. The location

of these blocks on LGBA SOYBN is shown in Figure 2.15: the correspondence between

98

OSU76028 G OSU76029 G ALFLEGHEMA G

ALFLEGHEMB G SESLBDRLA G SESLBDRLB G

VUU33205 G VUU33206 G VFALBA G

VFALBB G VFALBC G PHVLBA G

SOYLBGII G GMU4713 G

S21371 P S21372 P S21373 P

S21374 P S21375 P S46502 P

S08507 P S08508 P S01020 P

S42046 P GPDRNL P GPFJ2 P

GPSYC2 P A20801 P A54493 P

VFLBBMR E VFLBKMR E VFLB1 E

VFLB29MR E VFLB49MR E MSLEGH12 E

AB004549 O 1102189B O 711674A O

Table 2.4: The non-SwissProt proteins included in the non-redudant set of leghe-

moglobins. Each sequence is represented by its locus and a letter code, indicating the

database it came from. The following letter codes are used: E (for EMBL), P (for PIR),

G (for GenBank) and O (other).

our four regions and the BLOCKS entries is clear. The only di�erence is that we �nd two

separate areas corresponding to what is reported as the single block BL00208A in the

BLOCKS database. We are able to identify the aforementioned regions by assigning a

cost to each amino acid position within an input sequence. This cost indicates, roughly,

the degree of conservation of that position by taking into account the number of patterns

where that position appears preserved. Looking at Figure 2.15, for example, it is clear

that the rightmost of the 4 regions shows a heavier concentration of patterns. This is

an indication that the amino acids in that region have been preserved relatively well

during evolution: in [59] the authors reach the same conclusion by studying the multiple

99

Pattern

sequences

matched

exactly

sesquences

matched

within

1 edit

operation

sesquences

matched

within

2 edit

operations

sequen-

ces un-

matched

due to

frag-

mented

data

P.L..HA...F......A..L...G 51 1 1 7

A.L.T.K......W..........AY..L....K 48 9 0 3

Table 2.5: Results of searching the two pattterns discovered by TEIRESIAS in the non{

redudant leghemoglobin database (containing 60 proteins). The term \edit operation"

denotes either a mutation or an insertion or a deletion.

alignment of many globin sequences.

2.5 Discussion

In Sections 2.3 and 2.4 we presented and discussed TEIRESIAS a novel algorithm for the

discovery of rigid patterns in unaligned biological sequences. In order to evaluate the

utility of the algorithm we have applied it to two distinct sets of inputs. In both cases

we demonstrated that the algorithm, in the absence of any context information, is able

to derive results of proven biological signi�cance. Furthermore, we briey discussed how

the complete set of patterns that the algorithm generates can be exploited towards the

automatic discovery of preserved regions along the proteins of the input set. Finally

we described a set of experiments demonstrating the performance and scalability of the

algorithm.

We believe that what distinguishes TEIRESIAS from the existing methods of dis-

covering local similarities in biological sequences, is the combined e�ect of the following

two features:

� it is very fast (and scales well with the number and the composition of the patterns

in the input);

� it �nds all the maximal patterns with (a user speci�ed) minimum support.

100

The main reason for the enhanced performance achieved by our algorithm is the

utilization of the convolution operation. Most of the existing pattern enumeration algo-

rithms start with a seed pattern and extend it by a single position at a time, checking at

every step of the process whether the new pattern has the required support and prun-

ing the search if it does not. This process guarantees completeness of the results but

non{maximal patterns are generated and can be very time consuming, especially if the

input contains long patterns. Non{maximal patterns show up almost invariably when

the minimum support becomes small enough making the performance of algorithms in

this class prohibitive at such parameter settings. Consequently, and in order to achieve

reasonable running times, either the maximum length of a pattern has to be bounded

and/or the minimum support must be set very close to the total number of sequences in

the input set.

The convolution operation, on the other hand, permits the extension of a pattern by

more than one position at a time, allowing for considerable speed up. Furthermore, our

ordering of the intermediate patterns when performing the convolutions gives another

performance boost, by avoiding the generation of redundant patterns. The achieved

speed gains a�ord one the ability to look for patterns with very small supports. This

is particularly useful when the composition of the input is not uniform, i.e. when it is

comprised of sequences that do not necessarily all belong to one group. This was the

case with the core histones; although there were a few weak patterns shared by all the

proteins, when we reduced the support, larger patterns that distinguished the H3 from

the H4 members appeared. In this particular example, the ability to �nd patterns with

small support permitted a �ner{grain analysis of the sequences comprising the input.

Independent research [16] has already validated the use of TEIRESIAS for this kind of

analysis.

Another property that di�erentiates TEIRESIAS from existing work, is the kind of

structural restriction the user is allowed to impose on the sought patterns. Typically,

the speed of the pattern discovery process can be controlled by bounding the length

of the reported patterns. This, however, has the drawback that long patterns either

escape attention or are broken into multiple redundant and overlapping pieces. In our

case, only the parameter W which indicates basically the maximum number of don't

care characters between two successive residues in a pattern needs to be set. It thus

101

becomes possible to discover patterns of arbitrary length (e.g. the case of core histones,

Figure 2.14) as long as preserved positions are not more than W residues away.

Finally, TEIRESIAS is guaranteed to report all the maximal patterns meeting the

structural restrictions set by the user. Other approaches restrict the search space by

incorporating a probabilistic or information{theoretic model of importance that is used

to decide what patterns to seek. We are of the opinion that the assignment of a measure

of importance on the patterns should be disjoint from the discovery process. This way

we can guarantee that all the existing patterns are indeed reported. The task of choosing

which of them to keep ought to be a post{discovery, problem speci�c consideration, and

should depend on the particular reason the patterns were sought for in the �rst place.

For example, when identifying conserved regions along the input sequences (as in the

case of the leghemoglobins) we need the entire set of the existing patterns. On the other

hand, when considering issues of pattern speci�city/sensitivity then what quali�es as

\important" might also be dependent on factors other than the input (e.g. the size and

composition of the data base the patterns are to be searched in).

We should point out that in its current implementation the algorithm does not handle

exible gaps. For example, if this functionality were part of the algorithm we would be

able to see that the two leghemoglobin patterns

\P.L..HA...F......A..L...G" and \A.L.T.K......W..........AY..L....K"

are in fact the two pieces of one larger, exible pattern; in that larger pattern the two

pieces appear separated by a variable number of don't cares that ranges from 27 to 31

positions.

2.6 Pattern Discovery Revisited

Having de�ned the problem of pattern discovery in biology and having seen several

applications of the discovered patterns, it is instructional at this point to take a step

back and attempt to put things into perspective. The discovery of patterns in sets of

biological sequences is, essentially, an instance of the machine learning problem. In this

section we make this connection clear and show how the issues arising in dealing with

the discovery of patterns can be formalized and analyzed using concepts from the theory

102

of machine learning.

The situation we encountered when analyzing the histone and the leghemoglobin

families of proteins in Section 2.4 was the following:

Let U denote the universe of all existing proteins, known and unknown.

Assume now that F � U is a (ideally) well-de�ned subset U which delineates

a protein family, i.e. contains exactly those proteins which are members of

the family. What we are presented with is a set S � F . The challenge is to

�nd, using S alone, one or more patterns P such that:

� P matches all the members of F .

� P matches no member of F = U � F .

This is a typical machine learning problem: in the inductive inference interpretation

of machine learning [99] one is given a set of observables (the so called training set) and

is looking for a compact description (or theory) which (i) explains the observables and

(ii) can predict future phenomena. The parallelism between the two problems is clear:

the training set in our case is the set of sequences S, the theory we are looking for is the

set of patterns P and the future phenomena are the sequences in the set U � S.
So, the pattern discovery problem can be thought of as a restricted version of the fol-

lowing general machine learning problem (also known as the supervised learning problem

using positive examples only):

The Generic Machine Learning Problem (GMLP)

Input: A set S � F of elements of a universal set U , where F � U .

Output: A predicate (also called theory) GOPT such that GOPT (x) = 1; 8x 2 F
and GOPT (x) = 0; 8x 62 F .

It is quite possible that the predicate GOPT cannot be computed from S alone,

either because S is not representative enough of F or because GOPT is uncomputable.

In this case, one looks for predicates g that approximate GOPT as well as possible. The

ideal evaluation of a proposed predicate g is based on the amount of false positives (i.e.

members x 2 F for which g(x) = 1) and false negatives (i.e. members x 2 F for which

g(x) = 0) that it introduces. Such a predicate is called speci�c for the set F if it creates

103

no false positives while it is called sensitive for F if it generates no false negatives. The

speci�city and the sensitivity of a proposed solution g of the GMLP can be quanti�ed

(following [68]) as:

Speci�city of g = F (g) =
jF j

jF j+ f+g

Sensitivity of g = N(g) =
jF j

jF j+ f�g
where f+g and f�g is the number of false positives and false negatives respectively intro-

duced by g. A predicate g of speci�city 1 (F (g) = 1) is called a signature of F . If g also

has sensitivity 1 (N(g) = 1) then g is said to be diagnostic of F .

Designing an algorithm for the GMLP involves addressing the following issues:

1. Select a class F of predicate functions to search when presented with a given

training set S. The class of predicates de�nes the search space of the algorithm.

2. Devise a methodology (the algorithm) which when presented with a speci�c train-

ing set will produce a set H � F (H is called the solution space) containing

predicates that (hopefully) approximate the predicate GOPT .

3. Rank the proposed solutions in H. Since a learning algorithm can produce very

large solution sets, it is usually bene�cial for the end{user to have some means of

locating the most relevant (according to some criterion) of the proposed solutions.

Deciding which class F of predicates to use is a domain{speci�c issue; it depends on

domain knowledge regarding the features/properties that di�erentiate among members

of F and F . In the case of biological sequences, these features are regions of conserved

residues and one can choose to represent them in a variety of ways (e.g. patterns, pro�les,

hidden Markov models). The set F imposes some structure on the chosen representation

in an e�ort to balance two usually conicting requirements: (i) that the search space be

expressive enough to contain signatures for most of the potential inputs, and (ii) that

it allow the design of e�cient algorithms for the exploitation of the search space. For

the pattern discovery problem discussed in this chapter, F was the particular pattern

language used.

Ranking the solution space provides a way of evaluating the predicates in H. In

the discovery problem, every pattern P satisfying the minimum support requirement

104

introduces into the solution space a predicate gP de�ned as:

8x 2 ��; gP (x) =

8<
:

1; if x matches P

0; otherwise

In analyzing the histone and hemoglobin families in Section 2.4, we saw that there can be

a big number of patterns with the requested minimum support. How are these pattens to

be evaluated? Ideally, one would use the speci�city and sensitivity (F (gP) and N(gP))

measures. In practice, though, these values can not be computed since the sets F and

F are not really known. In the text, we have sidestepped this problem by letting F

be the set of all the known members of a family. The speci�city and sensitivity of the

resulting patterns were then evaluated in the context of that F . While being su�cient

for evaluating the utility of a learning algorithm, this approach is merely an instructional

tool and cannot be used in real instances of the GMLP. In such instances the known

members of a family are all in the training set S. Alternative criteria for evaluating

pattern importance are required.

The simplest and most widely used method for ranking the predicates g 2 H is the

size of the set

RS(g) = fx 2 S j g(x) = 1g

i.e. the subset of the training set recognized by g. This is a sensible strategy, as the least

that one expects from g is to identify as many elements of S as possible.

For patterns, more complicated criteria have also been proposed, based either on

probability theory [104, 106, 77] or information theory [57]. In the former case, a pattern

probability is associated with every pattern P , indicating the chance probability that P

would have support jRS(gP)j in a random input with the composition of S. The smaller

the pattern probability of P , the highest its ranking. In the latter case, the pattern is

evaluated by combining the amount of information every position of the pattern carries.

Single residue positions have the highest information content while don't-care characters

and exible gaps are considered of little value.

Elaborate ranking strategies such as those mentioned above are really useful when

evaluating patterns with a relatively small support and/or a rather simple structure (e.g.

containing only a small number of residues), i.e. patterns that can almost be the result

of chance. In the supervised learning problem mentioned above, such a need arises very

105

rarely. The reason is that the training set S is provided by an expert and it is indeed

composed of sequences from the same family. Consequently, the set S will tend to contain

patterns of a high support (unless the sequences in the family are very divergent).

Ranking can be a real help mainly when dealing with the unsupervised learning

variation of the GMLP. In this case, the set S contains samples from more than one

families. The task here is to cluster the sequences in S according to their respective

families and compute signatures for each cluster. This was the situation (in part) with

the histone set we examined in Section 2.4. Although all the sequences in the set were

histones, there was an extra level of grouping into the H3 and H4 subfamilies. In this case

the situation was relatively simple, as there were only two subfamilies and the signature

of each subfamily was much stronger than the signature of the family as a whole.

In the next chapter, we are going to look at a complicated situation, where the input

contains a lot of subfamilies and where signatures can be weak. There we will discuss

how to statistically evaluate the discovered patterns.

Over�tting the Training Set

Another issue arising when evaluating the patterns produced by a pattern discov-

ery algorithm is that of the potential over�tting of the training set. If the training set

comprises of mostly highly similar sequences, then many of the discovered patterns are

going to have high support and a rich composition of residues. We have already encoun-

tered such a situation in the analysis of the H3 family where the following pattern was

discovered:

P2 = \STELLI...PFQRLV.EIAQDFKT.LRFQ..A..ALQE..EA..V.LFEDTNL.AIH.K.V....KD..L.....GER",

From a ranking stand point, this pattern is a perfect speciment: it covers all the H3

members of the training set and it has a high informational content. But it may be too

speci�c, i.e. it might fail to be matched by H3 proteins that are evolutionary distant

from the members of the subfamily that comprise the training set. Such patterns are

said to over�t the training set. The danger of over�tting can be alleviated if we allow

approximate matches ofthe pattern P . In this case, the predicate gP introduced by a

106

pattern P should be rede�ned as:

8x 2 ��; gP (x) =

8<
:

1; if x approximately matches P

0; otherwise

This strategy was used in Section 2.4; in the histones example when the pattern P2

mentioned above was \slid" over the sequences in SwissProt. And in the leghemoglobins

when the seqences in the compiled non{redundant data base where matched to a dis-

covered pattern while allowing a small number mutations and insertions/deletions. The

issue of over�tting will come up again in Chapter 4, when discussing the search engine

proposed there.

107

Figure 2.1: The sequences s1; : : : ; s6 are generated from the sequence s by following

the character mutation procedure described in the text. Then, for the set of sequences

Q = fs1; s4; s5g, the pattern PQ is generated by aligning all the sequences in Q and

turning into don't cares all the columns that contain more than one character. Notice

that although there are other patterns in C that are matched by all strings in Q (e.g. the

pattern \b...f"), PQ is the only one that does not match any sequence other than those

in Q. In that sense, PQ is maximal for Q.

108

Figure 2.2: Multiple alignment of the sequences s1; s2; s3. Capital letters in the consenus

sequence cs correspond to conserved positions in all the input sequences. The set of edit

operations that transform an input sequence si into the consensus sequence cs can be

deduced from the allignment of their respective characters. Assume that x is a character

of si aligned to a character y of cs. If (i) x; y 2 � then the operation is a mutation from

x to y, (ii) x =`-' then the character y is inserted in si at the position occupied by x,

and (iii) y = `-' then the character x is deleted from si.

109

Figure 2.3: Multiple sequence alignment of histone sequences from di�erent organisms.

Histones are proteins used for packing the DNA in chromosomes. Here we show members

of two distinct histone subfamilies: core histones 3 (proteins named H3 *) and core

histones 4 (proteins named H4 *). Regions of these proteins have been aligned and the

consensus sequence is shown here. Capital letters in the concensus sequence indicate

positions conserved in all proteins. For the other positions we have used lower case and

selected for every alignment column the amino acid that appears more often.

110

Figure 2.4: The sequences s1 and s2 contain two domains, denoted by the patterns A and

B. The domains are swapped with respect to one another between the two sequences

(this is a common situation in amino acid sequences [43]). This domain{swap forces any

global alignment of the two sequences to miss one of the two domains.

111

Figure 2.5: The scanning process builds the set EP of all < L;W > elementary patterns

with support at least K. Each elementary pattern in the set has an associated o�set

list. For the set S here, the only < 3; 4 > patterns that appear in all the three input

sequences are the following: \F.AS", \AST", \AS.S", \STS", \A.TS".

112

Figure 2.6: Reconstructing the maximal pattern \F.ASTS" from the elementary charac-

terpatterns gathered in the scanning phase.

113

Figure 2.7: Deciding which of two patterns is pre�x-wise (or su�x-wise) less than the

other.

114

Let �1; �2 2 � and x; y 2 (� [f0:0g)�. Then:
� �1x <pf ;; ; <pf :x; �1x <pf :y � x�1 <sf ;; ; <sf x:; x�1 <sf y:

� �1x <pf �2y i� x <pf y � x�1 <sf y�2 i� x <sf y

� :x <pf :y i� x <pf y � x: <sf y: i� x <sf y

Figure 2.8: The de�nition of the two partial orderings on the elements of (� [f0:0g)�.
For any two strings x; y we say that \x is pre�x-wise less than y" when x <pf y and that

\x is su�x-wise less than y" when x <sf y. If neither x <pf y nor y <pf x, then x; y

are said to be pre�x-wise equal and we then write x =pf y (su�x-wise equality is de�ned

similarly).

115

S = fs1; s2; : : : ; sng: set of input sequences
si[j] : the j-th character in the i-th sequence

EP : set of elementary patterns

DirP(w): subset of EP containing all the elementary patterns starting with w

DirS(w): subset of EP containing all the elementary patterns ending in w

counts[i]: O�set list corresponding to the i-th character in � (� is arbitrarily ordered).

Maximal: set of maximal patterns

IsMaximal(R): returns 0 if R is subsumed by a pattern in Maximal, and 1 otherwise.

Scanning Phase

EP = null

for all � 2 �

if support(�) � K

Extend(�)

end-if

end-for

Extend(Pattern P)

o�set list counts[j�j]

A = # of regular characters in P

if A = L

Add P to EP (1)

return

end-if

for i = 0 to (W � jP j � L + A) (2)

for all � 2 � (3)

counts[�] = empty

end-for

P 0 = P concatenated with i dots

for (x; y) 2 LS(P) (4)

if (y + jP j + i) < jsxj
� = sx[y + jP j + i]

Add (x; y + jP j + i) to counts[�]

end-if

end-for

for all � 2 �

if support(P 0�) � K a

Extend(P 0�)

end-if

end-for

end-for

asupport(P 0
�) is computed from

counts[�].

Convolution Phase

Order EP according to pre�x{wise less and let

all entries in EP be unmarked.

Build DirS and DirP .

Maximal = empty

Clear stack

while EP not empty

P = pre�x{wise smallest unmarked element in EP

(ties are resolved arbitrarily)

mark P

if IsMaximal(P) then

push(P)

else

continue

end-if

while stack not empty

start:

T = top of stack

w = pre�x(T)

U = fQ 2 DirS(w) j Q; T have not

been convolved yetg
while U not empty

Q = minimum element of U

(according to su�x{wise less) (5)

R = Q� T

(6)

if jLS(R)j = jLS (T)j then
pop stack

end-if

if support(R) � K and IsMaximal(R)

push(R)

goto start

end-if

end-while

w = su�x(T)

U = fQ 2 DirP (w) j Q; T have not

been convolved yetg
while U not empty

Q = minimum element of U

(according to pre�x{wise less) (7)

R = T �Q

(8)

if jLS(R)j = jLS (T)j then
pop stack

end-if

if support(R) � K and IsMaximal(R)

push(R)

goto start

end-if

end-while

T = pop stack

Add T in Maximal (9)

Report T

end-while

end-while

Figure 2.9: Pseudo{code for the scanning and the convolution phases.
116

Figure 2.10: The template \10011" placed over the sequence AAFGIKLAKTRAASEGF-

TAAF at o�sets 1 and 13. The solid lines indicate the alignment of the `1' characters

and the residues of the sequence preserved in the resulting patterns. Broken lines point

to those residues which are turned to don't care characters.

117

Figure 2.11: For every similarity level (ranging from 40% to 90%) we ran TEIRESIAS

on the input set corresponding to that level. For every such input set (containing 20

sequences) we performed a number of experiments each time allowing a di�erent value

for the minimum support (the values ranged from 20 down to 12). For each execution of

the algorithm we recorded the running time (left graph above) and the total number of

patterns reported by TEIRESIAS (right graph). In every run, the value of the parameter

W was set to 10.

118

Figure 2.12: Same as Figure 2.11 but with the parameter W taking the value 15.

119

>
H
3
3
_
H
U
M
A
N

A
R
T
K
Q
T
A
R
K
S
T
G
G
K
A
P
R
K
Q
L
A
T
K
A
A
R
K
S
A
P
S
T
G
G
V
K
K
P
H
R
Y
R
P
G
T
V
A
L
R
E
I
R
R
Y
Q
K
S
T
E
L
L
I
R
K
L
P
F
Q
R
L
V
R
E
I
A
Q
D
F
K
T
D
L
R
F
Q
S
A
A
I
G
A
L
Q
E
A
S
E
A
Y
L
V
G
L
F
E
D
T
N
L
C
A
I
H
A
K
R
V
T
I
M
P
K
D
I
Q
L
A
R
R
I
R
G
E
R
A

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

P
a
t
t
e
r
n
s
s
h
a
r
e
d
b
y
2
0
/
2
0
s
e
q
u
e
n
c
e
s G

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
T
.
.
.
I
.
.
.
.
.
.
.
.
V
.
.
I
.
.
.
.
.
.
.
.
R

E
.
.
.
.
.
.
V
.
.
.
E
.
.
.
.
.
.
.
.
.
.
.
V
.
.
.
.
K
.
.
.
.
.
.
.
.
.
G

K
.
.
.
.
.
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
V
.
K

P
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
L
.
.
.
.
E

V
.
.
.
.
.
T
.
.
.
.
.
.
.
K
.
V
.
.
.
.
.
.
.
.
L

A
.
R
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
G

K
.
.
L
.
.
.
.
.
.
.
.
.
.
.
E
.
.
.
.
.
.
V

D
.
.
.
.
.
.
H
.
.
.
.
.
.
.
.
.
D
.
.
.
.
.
.
.
.
G

P
a
t
t
e
r
n
s
s
h
a
r
e
d
b
y
1
9
/
2
0
s
e
q
u
e
n
c
e
s G

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
T
.
.
.
I
.
.
L
.
.
.
.
.
V
.
.
I
.
.
.
.
.
.
.
.
R

K
.
.
.
.
.
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
V
.
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
T

I
.
.
.
.
.
.
R
L
.
R

R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
L
.
.
.
.
.
D
.
.
.
.
.
.
H
.
.
R
.
.
.
.
.
.
D
.
.
.
.
.
.
.
.
G

K
.
.
.
.
.
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
V
.
K
.
.
.
.
.
.
.
.
.
A

I
.
K
.
.
.
.
R
L

V
.
.
.
.
.
T
.
.
.
.
.
.
.
K
.
V
.
.
.
.
.
.
.
.
L
.
R
.
.
R

G
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
G
.
.
K
P

L
.
.
.
.
.
.
.
.
.
.
.
E
.
A
.
.
.
.
.
.
.
.
.
.
.
.
A

D
.
.
.
.
.
.
H
.
.
.
.
T
.
.
.
.
D
.
.
.
.
.
.
.
.
G

R
.
.
.
T
.
.
.
.
.
.
.
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
G

K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
K
.
.
L
.
.
.
.
.
.
.
.
.
.
.
E
.
.
.
.
.
.
V

D
.
.
.
.
.
.
H
A
.
.
.
.
.
.
.
.
D
.
.
.
.
.
.
.
.
G

F
ig
u
re
2.
13
:
S
ev
er
al
of
th
e
d
is
co
ve
re
d
p
at
te
rn
s
th
at
ar
e
co
m
m
on
to
b
ot
h
th
e
H
3
a
n
d
H
4
fa
m
il
ie
s.
T
h
e
p
a
tt
er
n
s
a
re

sh
ow
n
al
ig
n
ed
w
it
h
on
e
p
ro
te
in
fr
om
th
e
H
3
fa
m
il
y
(H
33
H
U
M
A
N
)
an
d
on
e
p
ro
te
in
fr
o
m
th
e
H
4
fa
m
il
y
(H
4
H
U
M
A
N
)

|

th
e
la
tt
er
al
ig
n
m
en
t
is
sh
ow
n
on
th
e
n
ex
t
p
ag
e.
T
h
e
u
n
d
er
li
n
ed
p
or
ti
on
o
f
ea
ch
p
ro
te
in
m
a
rk
s
th
e
lo
ca
ti
o
n
o
f
th
e

co
re
h
is
to
n
e
fo
ld
on
th
at
p
ro
te
in
.
O
n
ly
p
at
te
rn
s
th
at
o
cc
u
r
in
at
le
as
t
19
se
q
u
en
ce
s
o
f
th
e
in
p
u
t
se
t'
s
2
0
se
q
u
en
ce
s
a
re

sh
ow
n
.
It
is
in
te
re
st
in
g
to
o
b
se
rv
e
th
at
fo
r
se
v
er
al
of
th
e
d
is
co
ve
re
d
p
at
te
rn
s
th
e
re
la
ti
v
e
o
rd
er
h
a
s
n
o
t
b
ee
n
p
re
se
rv
ed

d
u
ri
n
g
ev
ol
u
ti
on
.

120

>
H
4
_
H
U
M
A
N

S
G
R
G
K
G
G
K
G
L
G
K
G
G
A
K
R
H
R
K
V
L
R
D
N
I
Q
G
I
T
K
P
A
I
R
R
L
A
R
R
G
G
V
K
R
I
S
G
L
I
Y
E
E
T
R
G
V
L
K
V
F
L
E
N
V
I
R
D
A
V
T
Y
T
E
H
A
K
R
K
T
V
T
A
M
D
V
V
Y
A
L
K
R
Q
G
R
T
L
Y
G
F
G
G

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

P
a
t
t
e
r
n
s
s
h
a
r
e
d
b
y
2
0
/
2
0
s
e
q
u
e
n
c
e
s

G
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
T
.
.
.
I
.
.
.
.
.
.
.
.
V
.
.
I
.
.
.
.
.
.
.
.
R

E
.
.
.
.
.
.
V
.
.
.
E
.
.
.
.
.
.
.
.
.
.
.
V
.
.
.
.
K
.
.
.
.
.
.
.
.
.
G

K
.
.
.
.
.
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
V
.
K

V
.
.
.
.
.
T
.
.
.
.
.
.
.
K
.
V
.
.
.
.
.
.
.
.
L

P
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
L
.
.
.
.
E

D
.
.
.
.
.
.
H
.
.
.
.
.
.
.
.
.
D
.
.
.
.
.
.
.
.
G

K
.
A
.
.
.
.
.
.
.
G
G
V
K

A
.
R
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
G

P
a
t
t
e
r
n
s
s
h
a
r
e
d
b
y
1
9
/
2
0
s
e
q
u
e
n
c
e
s

G
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
T
.
.
.
I
.
.
L
.
.
.
.
.
V
.
.
I
.
.
.
.
.
.
.
.
R

L
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
K
.
.
.
.
.
.
.
.
.
.
L
.
.
.
.
R

G
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
G
.
.
K
P

L
.
.
.
.
.
.
.
.
.
.
.
E
.
A
.
.
.
.
.
.
.
.
.
.
.
.
A

I
.
.
.
.
K
.
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Y

L
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
K
.
.
.
.
.
.
.
.
.
A
L

A
I
.
.
.
.
.
.
.
.
.
K
.
I

V
.
.
.
.
.
T
.
.
.
.
.
.
.
K
.
V
.
.
.
.
.
.
.
.
L
.
R
.
.
R

G
.
.
K
.
.
.
R
.
.
.
.
.
.
.
.
.
.
I

V
.
.
.
.
.
T
.
.
.
.
.
.
.
K
.
V
T
.
.
.
.
.
.
.
L

K
.
.
.
.
.
L
A
.
.
.
.
.
K

D
.
.
.
.
.
.
H
A
.
.
.
.
.
.
.
.
D
.
.
.
.
.
.
.
.
G

L
.
.
.
.
.
.
.
R
.
.
.
.
I
.
.
.
.
.
.
.
L

T
.
.
.
.
.
.
.
K
.
.
.
.
.
.
.
.
.
A
.
.
.
.
.
.
.
.
.
G

A
.
.
K
.
.
.
.
.
.
.
V
.
.
.
.
R

R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
L
.
.
.
.
.
D
.
.
.
.
.
.
H
.
.
R
.
.
.
.
.
.
D
.
.
.
.
.
.
.
.
G

F
ig
u
re
2.
13
:
(C
on
ti
n
u
ed
fr
om
la
st
p
ag
e.
)
P
at
te
rn
s
co
m
m
on
to
p
ro
te
in
s
of
b
ot
h
th
e
H
3
a
n
d
th
e
H
4
co
re
h
is
to
n
e
fa
m
il
ie
s.

121

(
a
)

>
H
3
3
_
H
U
M
A
N

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

A
R
T
K
Q
T
A
R
K
S
T
G
G
K
A
P
R
K
Q
L
A
T
K
A
A
R
K
S
A
P
S
T
G
G
V
K
K
P
H
R
Y
R
P
G
T
V
A
L
R
E
I
R
R
Y
Q
K
S
T
E
L
L
I
R
K
L
P
F
Q
R
L
V
R
E
I
A
Q
D
F
K
T
D
L
R
F
Q
S
A
A
I
G
A
L
Q
E
A
S
E
A
Y
L
V
G
L
F
E
D
T
N
L
C
A
I
H
A
K
R
V
T
I
M
P
K
D
I
Q
L
A
R
R
I
R
G
E
R
A

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

P
R
O
D
O
M
d
o
m
a
i
n
#
6
8
7

P
R
O
D
O
M
d
o
m
a
i
n
#
5
2
1

P
a
t
t
e
r
n
s
s
h
a
r
e
d
b
y
a
l
l
t
h
e
1
3
H
3
p
r
o
t
e
i
n
s

A
.
T
K
Q
T
A
.
K
S
T
.
.
K
A
P
R
K
Q
L
.
.
K
A
A
.
K
.
A
P
.
.
G
G
V
K
K
.
H
.
.
.
P
.
T
V
A
L
.
E
I
.
.
.
.
.
.
.
.
L

A
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
A
.
L
.
.
.
.
.
.
.
.
.
.
.
I
H

A
.
.
.
.
.
.
.
.
G
.
.
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
S
T
E
L
L
I
.
.
.
P
F
Q
R
L
V
.
E
I
A
Q
D
F
K
T
.
L
R
F
Q
.
.
A
.
.
A
L
Q
E
.
.
E
A
.
.
V
.
L
F
E
D
T
N
L
.
A
I
H
.
K
.
V
.
.
.
.
K
D
.
.
L
.
.
.
.
.
G
E
R

(
b
)

>
H
4
_
H
U
M
A
N

S
G
R
G
K
G
G
K
G
L
G
K
G
G
A
K
R
H
R
K
V
L
R
D
N
I
Q
G
I
T
K
P
A
I
R
R
L
A
R
R
G
G
V
K
R
I
S
G
L
I
Y
E
E
T
R
G
V
L
K
V
F
L
E
N
V
I
R
D
A
V
T
Y
T
E
H
A
K
R
K
T
V
T
A
M
D
V
V
Y
A
L
K
R
Q
G
R
T
L
Y
G
F
G
G

P
a
t
t
e
r
n
s
s
h
a
r
e
d
b
y
a
l
l
t
h
e
7
H
4
p
r
o
t
e
i
n
s

G
.
.
.
G
.
.
.
.
.
.
G
.
.
.
.
.
.
.
.
.
.
.
.
I
.
G
I
T
K
P
A
I
R
R
L
A
R
R
G
G
V
K
R
I
S
.
.
.
Y
.
.
.
R
.
V
L
K
.
F
L
E
.
V
.
R
D
.
V
T
Y
.
E
H
A
.
R
K
T
V
T
.
.
D
V
V
Y
.
L
K
R
Q
G
R
T
.
Y
G
F
G
G

G
.
.
G
.
G
.
G
.
.
.
.
.
R
.
.
.
.
.
N
.
.
.
I
.
.
.
.
.
.
.
.
.
R
G
G
.
K
R
.
.
.
.
.
.
.
.
.
.
.
.
.
K
.
.
.
.
.
.
.
R
.
.
.
.
.
.
.
.
A
.
.
.
.
.
T
.
.
.
.
.
.
.
L
.
.
.
.
R

G
K
G
G
K
G
.
G
K
.
G
A
K
R
H
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
R
.
.
.
R
.
G

G
.
.
.
G
K
G
.
.
K
.
.
.
K
.
.
.
.
.
.
.
.
.
.
.
.
.
I
.
.
.
A
.
R
.
.
.
.
R

G
.
.
.
.
.
.
.
.
.
.
R
.
.
.
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
V
.
R
.
.
.
.
.
.
E
.
.
R
.
.
.
.
.
.
.
.
.
V

G
.
.
.
.
.
.
.
.
.
.
R
.
.
.
V
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
V
.
R
.
.
.
.
.
.
E
.
.
.
.
.
.
.
.
.
.
.
.
V

G
G
.
K
R
.
.
.
.
.
.
.
.
.
.
.
.
.
K
.
.
.
.
.
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
T
.
.
.
.
.
.
.
L
.
.
.
.
R

G
G
.
K
R
.
.
.
.
.
.
.
.
.
.
.
.
.
K
.
.
.
.
.
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
T
.
.
.
.
.
.
.
L
.
.
.
.
R

I
.
R
.
.
.
.
G
.
.
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
L
.
.
.
.
.
.
A
V
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
A
.
.
.
.
.
.
.
L

G
.
.
K
.
.
.
.
R
.
.
.
.
.
.
.
.
.
I
.
.
.
.
.
.
.
.
R
.
.
.
.
.
.
.
.
.
.
I
.
.
.
.
.
.
.
.
.
.
.
.
K
.
.
.
.
.
.
V

G
.
.
.
.
.
.
.
.
.
.
R
.
.
.
V
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
V
.
R
.
.
.
.
.
.
E
.
.
.
.
.
.
.
.
.
.
.
.
V

R
.
.
.
.
.
G
.
.
K
.
.
.
.
.
.
.
.
.
.
R
.
.
.
.
.
.
.
.
.
.
.
R
.
.
.
.
.
.
.
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
L
K

I
.
.
.
A
.
R
.
.
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
V
.
.
.
.
V
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
V
.
.
.
.
.
.
.
.
.
.
.
.
G

I
.
.
.
A
.
R
.
.
.
.
R
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
V
.
.
.
.
V
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
V
.
.
.
.
.
.
.
.
.
.
.
.
G

F
ig
u
re
2.
14
:
D
is
co
ve
re
d
p
at
te
rn
s
th
at
ar
e
sh
ar
ed
b
y
al
l
of
th
e
se
q
u
en
ce
s
o
f
th
e
(a
)
H
3
,
a
n
d
(b
)
H
4
fa
m
il
ie
s.
F
o
r

ea
ch
fa
m
il
y,
th
e
p
at
te
rn
s
ar
e
sh
ow
n
al
ig
n
ed
w
it
h
th
e
co
rr
es
p
on
d
in
g
h
u
m
a
n
p
ro
te
in
.
In
th
e
H
3
3
H
U
M
A
N
p
ro
te
in
,

w
e
h
av
e
al
so
m
ar
ke
d
th
e
tw
o
st
ru
ct
u
ra
l
d
om
ai
n
s
of
th
e
H
3
h
is
to
n
e
fa
m
il
y
a
s
th
ey
a
re
re
p
o
rt
ed
in
th
e
P
R
O
D
O
M

d
at
ab
as
e
(h
t
t
p
:
/
/
p
r
o
t
e
i
n
.
t
o
u
l
o
u
s
e
.
i
n
r
a
.
f
r
/
p
r
o
d
o
m
/
p
r
o
d
o
m
.
h
t
m
l
):
th
e
�
rs
t
d
o
m
a
in
(P
R
O
D
O
M

#
6
8
7
)
co
v
er
s

th
e
u
n
d
er
li
n
ed
p
ar
t
of
th
e
se
q
u
en
ce
w
h
il
e
th
e
se
co
n
d
d
om
ai
n
(P
R
O
D
O
M
#
52
1
)
st
re
tc
h
es
ov
er
th
e
ov
er
li
n
ed
p
a
rt
.
A
s
it

ca
n
b
e
se
en
in
(a
)
ab
ov
e,
th
e
tw
o
su
b
st
an
ti
al
p
at
te
rn
s
fo
u
n
d
fo
r
th
e
H
3
fa
m
il
y
�
t
th
es
e
tw
o
d
o
m
a
in
s
a
lm
o
st
p
er
fe
ct
ly
.

122

>
L
G
B
A
_
S
O
Y
B
N

V
A
F
T
E
K
Q
D
A
L
V
S
S
S
F
E
A
F
K
A
N
I
P
Q
Y
S
V
V
F
Y
T
S
I
L
E
K
A
P
A
A
K
D
L
F
S
F
L
A
N
G
V
D
P
T
N
P
K
L
T
G
H
A
E
K
L
F
A
L
V
R
D
S
A
G
Q
L
K
A
S
G
T
V
V
A
D
A
A
L
G
S
V
H
A
Q
K
A
V
T
D
P
Q
F
V
V
V
K
E
A
L
L
K
T
I
K
A
A
V
G
D
K
W
S
D
E
L
S
R
A
W
E
V
A
Y
D
E
L
A
A
A
I
K
K
A

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

B
L
0
0
2
0
8
A

B
L
0
0
2
0
8
B

B
L
0
0
2
0
8
C

P
a
t
t
e
r
n
s
s
h
a
r
e
d
b
y
2
2
/
2
2
s
e
q
u
e
n
c
e
s

T
.
K
.
.
.
.
.
.
.
S
.
E
.
.
.
.
.
.
.
.
Y

A
P
.
.
.
.
.
F
.
.
L

P
.
L
.
.
H
A
.
.
.
F
.
.
.
.
.
.
A
.
.
L
.
.
.
G

T
.
K
.
.
.
.
.
.
.
S
.
E
.
.
.
.
.
.
.
.
Y

T
.
K
.
.
.
.
.
.
.
S
.
.
.
.
.
.
.
.
.
.
Y

P
.
L
.
.
.
.
.
.
.
.
.
.
.
.
.
.
A
.
.
L

T
.
K
.
.
.
.
.
.
.
S
.
.
.
.
.
.
.
.
.
.
Y

T
.
K
.
.
.
.
.
.
.
S
.
E

L
.
.
.
A
.
.
.
.
.
.
.
.
.
.
A
.
.
.
.
.
.
G

T
.
K
.
.
.
.
.
.
.
S
.
E

T
.
.
Q
.
A
L

T
.
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Y
.
.
L

A
.
L
.
T
.
K
.
.
.
.
.
.
W
.
.
.
.
.
.
.
.
.
.
A
Y
.
.
L
.
.
.
.
K

K
E
A
.
.
.
.
.
.
.
.
.
.
.
.
W

F
.
.
.
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
L
.
.
.
.
K

V
.
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
L
.
.
.
.
K

A
.
L
.
T
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
K

P
a
t
t
e
r
n
s
s
h
a
r
e
d
b
y
2
1
/
2
2
s
e
q
u
e
n
c
e
s

T
.
.
Q
.
A
L
.
.
.
.
.
.
.
.
.
.
N

F
.
.
.
.
.
.
.
A
P
.
A
.
.
.
F
.
.
L

P
.
L
.
.
H
A
.
.
.
F
.
.
.
.
.
.
A
.
Q
L
.
.
.
G

H
.
.
.
.
.
.
.
.
.
F
.
V
.
.
.
A
.
L
.
T
.
K
.
.
.
.
.
.
W
.
.
.
.
.
.
.
.
.
.
A
Y
.
.
L
.
.
.
.
K

T
.
K
.
.
.
.
.
.
.
.
.
.
.
.
.
A
.
.
.
.
Y

E
.
A
P
.
.
.
.
.
F
.
.
L

T
.
K
.
.
.
.
.
.
.
.
.
.
.
.
.
A
.
.
.
.
Y

T
.
.
.
.
.
L
V
.
.
.
.
.
.
.
K

A
P
.
.
K
.
.
F
.
.
L

A
.
L
.
T
.
K
.
.
.
.
.
.
W
S
.
E
.
.
.
.
W
.
.
A
Y
.
.
L
.
.
.
.
K

T
.
.
Q
.
A
L
.
.
.
S

A
P
.
.
.
.
.
F
S
.
L

A
.
L
.
T
.
K
.
.
.
.
.
.
W
.
.
.
.
.
.
.
.
.
.
A
Y
.
.
L
.
.
.
I
K

T
.
.
Q
.
A
L
V

S
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
A
P
.
.
.
.
.
F
.
.
L

A
.
L
.
T
.
K
.
.
.
.
.
.
W
.
.
.
.
.
.
A
.
.
.
A
Y
.
.
L
.
.
.
.
K

T
.
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Y
.
.
L
.
.
.
I

T
.
K
.
.
.
.
.
.
.
S
.
.
.
.
.
.
.
.
.
.
Y
.
.
L

V
V
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
L
.
.
.
.
K

T
.
K
.
.
.
.
.
.
.
S
.
E
.
.
.
.
.
.
.
A

T
.
K
.
.
.
.
.
.
.
S
.
E
.
.
.
.
.
.
.
.
.
.
.
L

K
.
.
.
.
.
.
F
.
.
.
.
E
.
.
.
.
.
.
K

H
.
.
.
.
.
.
.
.
.
.
.
V
.
.
.
A
.
L

E
.
.
.
A
.
.
.
A
Y

A
.
.
.
.
.
K
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
D
.
.
.
.
.
.
K

F
.
.
.
.
E
A
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
A

F
ig
u
re
2.
15
:
S
om
e
of
th
e
d
is
co
v
er
ed
p
at
te
rn
s
th
at
ar
e
co
m
m
on
to
at
le
as
t
21
o
f
th
e
2
2
se
q
u
en
ce
s
in
th
e
le
g
h
em
o
g
lo
b
in

in
p
u
t
se
t
(s
h
ow
n
al
ig
n
ed
w
it
h
th
e
L
G
B
A
S
O
Y
B
N
p
ro
te
in
).
T
h
e
u
n
d
er
li
n
ed
re
g
io
n
s
o
f
th
e
p
ro
te
in
co
rr
es
p
o
n
d
to
th
e

th
re
e
b
lo
ck
s
of
th
e
le
gh
em
og
lo
b
in
se
q
u
en
ce
fa
m
il
y,
as
th
ey
ar
e
re
p
or
te
d
in
th
e
B
L
O
C
K
S
d
a
ta
b
a
se
[4
4,
4
6
].
T
h
e

co
rr
es
p
on
d
in
g
b
lo
ck
n
am
es
ar
e
B
L
00
20
8A
,
B
L
00
20
8B
an
d
B
L
00
20
8C
.

123

Chapter 3

Large Scale Pattern Discovery

Using TEIRESIAS we have explored protein sequence databases and discovered the most

frequently occurring sequence patterns. This deterministic identi�cation of patterns

has provided us with vistas of the so-called \sequence space", a much larger, but ill{

de�ned set. The observed patterns, henceforth named seqlets, form a �nite number of

descriptors for this complex space and can be e�ectively used to describe almost every

naturally occurring protein. Seqlets can be considered as building blocks of protein

molecules. In many cases they are critical for the function of the proteins the appear

in. In other cases they correspond to structural elements of a supporting role. Thus,

seqlets can either de�ne conserved family signatures or cut across molecular families

and undetected sequence signals deriving from functional convergence. Examples of

vicinity in the pattern space are shown both for well known and some interesting newly{

discovered cases. This approach delineates the full extent of sequence space and explores

the limits of architectural constraints for functional and designed proteins. Pattern

discovery results are presented for: (a) a database of six genomes, (b) SwissProt Release

34, and (c) NCBI's non{redundant database of proteins. The coverage obtained by

the discovered seqlets ranges from 74.0% for the six genome database, to 98.3% for

NCBI's non{redundant database. The availability of seqlets that have been derived in

such an unsupervised, hierarchical manner is providing new opportunities for tackling a

variety of problems which include reliable classi�cation, the correlation of fragments with

functional categories, faster engines for homology{searches, and comparative genomic

124

studies, among others.

3.1 Introduction

Protein sequences de�ne an immensely complex space, with 20N possible combinations

for any sequence of length N . For 100 amino acids, the possible number of protein

sequences is 20100 � 1:27 � 10130, an astronomical number. Yet, this space is sparsely

populated because proteins are related by divergence and form molecular families, which

are believed to be evolving by random drift and natural selection processes. The com-

mon elements of molecular families are particular conserved positions, often modelled as

patterns [52].

Currently, the pattern determination process is based upon the identi�cation of sim-

ilar proteins, the subsequent generation of multiple alignments and, �nally, the selection

of the most conserved sites as protein domain signatures [78, 14]. There are two funda-

mental problems with this approach.

First, due to the lack of appropriate computational tools, it has not been possible to

this date to enumerate the most frequent patterns in a large dataset such as a protein

database, for example SwissProt; as a result, existing e�orts have been con�ned to the

analysis of smaller sets of sequences (mostly containing the members of a single family).

Second, most de�nitions are based on an underlying assumption that patterns can be

found only within divergent families [81]. The few convergently{related patterns for

functional motifs [29] such as nuclear localization signals are usually not su�ciently

speci�c and cannot be readily discovered by alignment [55].

Ideally, one wishes to carry out pattern discovery in an unsupervised manner. When

one subselects a set of proteins from a given database and uses any of the available tools

to discover the patterns present in this set, one has made the following two implicit

assumptions: �rst that the members of the formed set are assumed to be indeed related,

and second that the member sequences are indeed a single set (as opposed to the union

of two or more smaller sets). One would like to discover the most commonly occurring

patterns in a sequence database without the above assumptions. Achieving this goal

requires, at the very least, the ability to (a) handle very large datasets, and (b) discover

all existing patterns. Patterns obtained from datasets of such diverse composition are

125

expected to unveil previously unobserved protein features both within and across family

boundaries, lead to a better understanding of protein architecture, and illuminate the

relationships between families that have traditionally been assumed to be unrelated.

Additionally, these patterns can be used to derive a natural pattern vocabulary with uses

that include automated annotation, reliable classi�cation, sensitive homology derivation,

and others.

Up to now, the unsupervised motif discovery has been hampered by the unavailability

of pattern discovery techniques that were able to handle data sets of the required size.

TEIRESIAS however, is not thus constrained. Furthermore, the ability of TEIRESIAS to:

� guarantee the discovery of all existing patterns with a given minimum support,

and

� report only maximal patterns

makes the algorithm particularly appropriate for the task at hand.

In this chapter we present the results obtained from applying TEIRESIAS on three

datasets: the �rst comprises all the ORFs from 6 complete genomes; the second is the

Release 34 of Swiss-Prot, whereas the third is NCBI's non-redundant database of proteins

from November 15, 1997. In addition to reporting on and giving a qualitative analysis

of the set of discovered patterns we study some of them in more detail; we also describe

and discuss potential uses for this set.

3.2 Why Seqlets?

The problem we are addressing here is analogous to the problem of processing an un-

known language when the only thing known is the set of its basic units: such basic units

can be either syllabic signs (e.g. Linear B, Japanese Kana, etc.) or alphabet letters

(e.g. Hebrew, Greek, English, etc.). One attempt to understand such a language would

proceed, in the absence of any other information, in a bottom{up manner. From the

basic unit we would move to the next level of the hierarchy, that of the vocabulary, then

to the level of the syntax. Given the availability of large amounts of sample text in the

unknown language, it could be possible to determine not only the vocabulary but the

syntax as well, using statistical or combinatorial methods [36]. In fact, it was precisely

126

this approach that led to the decipherment of Linear B by Michael Ventris in 1953: fol-

lowing the observation that some of the basic units appeared in groups that had the same

�xed{size pre�x, it was initially suggested that Linear B contained declension. Another

observation was that of \...the frequency of certain units and the regularity with which

they appeared in a particular context...". Both of these elements, combined with the

assumption that Linear B was a syllabic system, allowed Ventris to build the \syllabic

grids" which led to the eventual decipherment of the language [86].

Of course, one would also be interested in determining the semantics for each entry

of the vocabulary. However, and unlike the natural language analog given above where

deriving semantics is not easy, the same task in the biological context is more plausi-

ble: the availability of laboratory analysis methods that can corroborate or refute any

hypothesis may facilitate the task of attaching semantics to a word. Finally, it is clear

that having access to the semantics of the vocabulary entries and the language's syntax

can in turn allow one to actually use the language and form sensible sentences in it.

Returning to the biological problem that we are examining, the 20 natural amino

acids form the alphabet of the unknown language. The seqlets will then correspond to

words of this language, and we conjecture that these words are combined together into

sentences (and thus viable 3D structures) through a syntax that is imposed on seqlets.

Clearly, not all actual syntactic rules are known at the moment. Attaching semantics

to the seqlets forming the vocabulary is part of the functional annotation task which we

will not examine in detail during this discussion.

Recapitulating, we have been given the alphabet of 20 amino acids and a great

number of sentences; the task at hand is that of determining as many of the words of the

language's vocabulary as possible. We believe that this task is the �rst, necessary step

towards the comprehensive study of the language used by Nature for building proteins:

doing as good a job as possible in determining a complete biological vocabulary is a

prerequisite for any future e�ort that intends to also describe the subsequent levels of

the underlying hierarchy (syntax and semantics).

The basic assumption behind our approach is that nature is parsimonious: there

exists a �nite number of basic blocks (i.e. structural and/or functional elements) from

which all natural proteins have been built [21, 30]. For any such building block, B, let

CS(B) denote all the distinct sequence{fragments which code for it. It is well known

127

that although similarity at the sequence level implies structural/functional similarity

[92], the opposite does not always hold true. As a result, the members of CS(B) can

exhibit considerable variability at the sequence level, despite the fact that they code

for the same chemical behavior. Clearly, with the approach we are presenting, we can

capture only those cases where there still remains sequence similarity among the elements

in CS(B); this sequence{level similarity will exhibit itself in the form of seqlets that are

shared by the sequence{fragments in CS(B).

Of course, the idea of using sequence descriptors (in the form of patterns, pro�les, or

HMMs) for representing protein segments of biological importance is not new. Indeed, it

has been used successfully in a variety of tools, e.g. PROSITE [9], BLOCKS [46], PFAM

[100], PRINTS [6], to name a few. The novelty of our approach is in the methodology

employed, the extent of the resulting analysis, and the rami�cations of the generated

results. To date, sequence descriptors have been obtained by operating on rather small

sets of related proteins. Consequently, these descriptors identify regions that play a role

in the speci�c function performed by the sequences of the respective set. In our study,

the input set comprised a very large collection of diverse sequences and was processed

in an unsupervised manner. Naturally, and with nature's parsimony as a given, one

expects to identify not only family{speci�c functional elements, but also elements of a

more elementary and, most importantly, reusable nature: in fact, the algorithm's ability

to discover very weak patterns makes it particularly useful for identifying motifs that

span multiple families of proteins.

3.2.1 Seqlet Vistas In The Sequence Space

Protein sequences de�ne a complex, multidimensional space which is only a small subset

of the theoretically possible sequence space. In essence, this multidimensional space is

sparse and the actually encountered proteins occupy only a small subspace of it [71, 67,

38, 101]. A striking demonstration of this statement is the hexapeptide \KPKLGL". To

the best of our knowledge this seqlet has not been reported in the literature before, it is

very speci�c for a given family, and accounts for a vast area of sequence space.

In particular, the seqlet \KPKLGL" is very well conserved in the members of the

ribulose biphosphate carboxylase (RuBisCo) family. Searching NCBI's Non-redundant

database (November 15, 1997) with this hexapeptide retrieves a total of 2646 proteins of

128

which 2640 are RuBisCo's and 6 are false positives. In order to compare the sensitivity

of this pattern with that of chemically neighboring patterns, we have tried replacing the

charged amino acid Lycine (K) with Arginine (R), another charged amino acid. Search-

ing the same database with each of the resulting three patterns, namely \KPRLGL",

\RPKLGL", \RPRLGL" retrieves 1 (gi 1171129), 2 (gi 1310725 and gi 2088720), and

7 (gi 1708568, gi 220141, gi 267359, gi 267360, gi 549365, gi 1017788, and gi 2454644)

proteins respectively. Clearly, the original seqlet \KPKLGL" is very di�erent than even

close neighbors. For comparison, we note that the pattern listed in the PROSITE

database entry PS00157, namely the pattern G:[DN]F:K:DE, retrieves 2618 proteins

with one of them being a false positive (the notation [XY] indicates a position that can

be occupied by either of the amino acids X; Y).

Given the sensitivity of this seqlet we extracted a region of 16 amino acids around

this hexapeptide (5 amino acids + KPKLGL + 5 amino acids). This set of sequence

fragments can be thought of as a set of points in a 16{dimensional lattice of 2016 vertices.

Using multidimensional scaling [65, 66] we progressively projected these points down to

three dimensions. As is shown in Figure 3.1, the vast majority of the projections of

the oligopeptides aggregated around two attraction points, with 2278 projections in

the vicinity of the �rst attraction point and 261 in the vicinity of the second one; the

remaining projections formed two intersecting, almost{planar curves that passed by the

attraction points.

Generally, protein sets that share a common motif in many dimensions will look like

lines that come very close to one another at a certain neighborhood of the underlying

multidimensional space (Figure 3.2 shows a representative such example taken from

[15]). In fact, one can think of each seqlet pattern as a compact description of the

multidimensional neighborhood that is occupied by the domain that the proteins under

consideration share. Clearly, the higher the degree of conservation across the sequences

that contain it, the less the spread of the domain's neighborhood. Recalling the de�nition

of patterns handled by TEIRESIAS this will translate into a seqlet description of the

domain containing fewer don't care characters. As the variation, however, among the

domain's instances increases so will the spread of the domain in this high{dimensional

space: progressively more don't care characters will be necessary in order to describe the

neighborhood. In this discussion, we con�ne ourselves to domains that can be captured

129

accurately by the pattern language TEIRESIAS uses.

3.2.2 The Biology of Seqlets

Seqlets are patterns which appear unexpectedly often in a data base of proteins (later on

we will de�ne precisely what is meant by \unexpectedly often"). Both in Section 1.2 and

throughout this chapter we have provided evidence why biologically crucial stretches of

amino acids are expected to have been conserved much better than their less important

counterparts. This evidence is the basis of our working hypothesis, namely that patterns

that appear often must have \some" biological importance. But exactly how is this

statement quali�ed? What can we say about two sequences that match the same seqlet?

Is the seqlet su�cient to describe the function or even the structure of the particular

sequence regions matching this seqlet?

Drawing an analog with the natural language problem we described previously, an-

swering these questions amounts to assigning semantics to the words of the language. We

mentioned already that assigning this kind of semantics to the discovered seqlets is out

of the scope of our work. Although possible, doing so requires extensive physicochemi-

cal tests which are both expensive and time consuming. It is, however, possible to get

some indication of the potential utility of seqlets by exploiting the existing annotation

of known biological sequences. In particular, if a seqlet is matched by protein regions

that all share a given functionality then it seems quite resonable to associate the seqlet

with this functionality. Next we are the situations that have been observed. Notice that

the seqlets that follow contain bracketed expressions; the brackets can be created after

a seqlet has been obtained, by dereferencing those don't-care characters that exhibit a

low variability, i.e. are matched exclusively by only a few, speci�c amino acids. These

amino are then placed within a bracket and this bracket replaces the relevant don't-care

character. This way, seqlets become more speci�c.

1. one seqlet is speci�c to a single protein family: Here, a single family gives rise to a

unique seqlet. As an example case, let us consider the family of bacterial histone{

like DNA{binding proteins. These are small DNA{binding proteins belonging to

two subfamilies: the HU proteins that stabilize DNA from denaturation under

extreme environmental conditions and the IHF (integration host factors) with roles

130

in recombination and transcription initiation [74]. The respective prosite entry,

PS00045, lists 35 true positives, 4 partial, 1 false negative and no false positives.

The seqlet

F[GLT].[FIV]....[RKPQA].[APQES][RST].[GA][RVFH][NK]P.T

appears in 36 of them (all the true positives matching the PROSITE pattern plus

the one false negative which goes unnoticed); there is no other motif that is shared

by these sequences.

2. two or more seqlets are speci�c to a single protein family: in this case, there are

multiple seqlets that are speci�c to a given family. The family of DEAD box

helicases [94] is such an example. The prosite entry PS00039 lists a total of 91

sequences (85 positives, 5 false negatives, and 1 partial). The seqlet

[IVLCTA]..[LFVIMK][VI][LMIFV]DE[AS]D.[MLIFC][LFIGMNY]...[FGHLRW]

appears in 90 of the prosite's member sequences (i.e. all of the sequences except

the partial one, and generates no false positives). A second seqlet appearing in 86

of the member sequences is

RG[ILMTV][DHN][IVFL][QPEKSNHDA].[VIL]..[VI][IVFLM][NQLHIS][YFVLI]

[DENTHQG][LFIMPVYACT][PASV]...[EDKAQRIHST].[YFLH][VILMQ]H[RT][IVSTAC]G

This seqlet also capturesYK04 YEAST and YL76 YEAST, both of which are RNA

helicases belonging in this superfamily.

3. one seqlet is speci�c to more than one protein families : these seqlets correspond

to motifs that have been preserved within the members of di�erent families. A

typical example of this case is a known structural motif, namely the ATP/GTP

binding P{loop

G....GK[ST]TL.

Detection of the P-loop is not su�cient to classify a sequence into a protein fam-

ily as there is a wide variety of functionally diverse proteins [93] that exhibit

ATP/GTP binding activity. In this case, a seqlet only contains structure informa-

tion i.e. describes sequence regions that share local 3-dimensional conformation.

131

In summary, seqlets can describe protein domains (or parts of domains), functional

and structural signatures, as well as other sequence characteristics (e.g. traces of common

evolutionary origins) not easily amenable to alignment{based analysis. At the end of the

Section 3.4 we give a detailed annotation of several frequently occuring seqlets

3.3 Methodology

Unlike the processing of small data sets of related proteins (as were the histone and

leghemoglobin families considered in Chapter 2, dealing with large inputs like the protein

data bases that we examine here raises a number of technical issues including:

� How should we treat the bias present in a data base (due to the over representation

of some families)?

� How should low{complexity protein regions be handled?

� What are the statistics of seqlets?

In this section we address these issues in detail.

3.3.1 Treating Redundancy

Several databases contain groups of highly homologous sequences (e.g. the hemoglobin

alpha chain proteins). Such groups not only slow down the pattern discovery process

by introducing a huge number of patterns (Sections 2.1 and 2.3.6) but they can also

spuriously elevate the signi�cance of a pattern; this happens for patterns that appear

many times within a family of highly homologous sequences and only occasionally outside

of it.

In order to deal with these problems an input data base D has to be \cleaned up"

before the pattern discovery process begins. The cleaning up process that we describe

below involves identifying and grouping together highly similar proteins (a technique

similar to ours has been independently proposed by [53]).

In particular, we consider the sequences in D in order of decreasing length. At each

point we are working with the (currently) longest sequence sLong in D. The sequence

132

sLong is aligned with every other sequence s currently in D. For the alignment we are us-

ing BLAST [3] with the mutation matrix BLOSUM62 [45]: an approximation algorithm

like BLAST is su�cient for our purposes as we are only interested in identifying highly

similar proteins. If, after aligning the two sequences, s has at least X% of its positions

(in this work we used X = 50) identical to corresponding positions of sLong , then s is

removed from D and is associated with sLong . Finally, sLong itself is removed from D

and forms a group G(sLong) containing sLong as well as all the sequences associated with

it. The sequence sLong is called the leader of the group.

Every group among those resulting from the process described above is either (i) a

singleton set containing a protein that is dissimilar to all other sequences in the database,

or (ii) a group of highly similar proteins with the leader of the group being the longest

among them. Groups in this last category (i.e. groups containing at least two members)

are called redundant groups.

The set D0 on which the pattern discovery process will operate is comprised of the

leaders of all the groups, redundant and otherwise. After the treatment of D0 is �nished,

each of the redundant groups is separately processed by TEIRESIAS collecting patterns

until all the sequences of that group match at least one of the patterns. This approach

guarantees that even groups containing multi-domain proteins are treated correctly, by

generating at least one pattern per domain (see Figure 3.3. The �nal set of seqlets is

formed by combining the discovered patterns in both D0 and the redundant groups. In

what follows, the term D0 will be used to denote the cleaned{up version of the data base

under consideration.

It is worth pointing out that patterns resulting from the processing of the redundant

groups will typically be dense (the number of residues is going to be much larger than the

number of don't care characters) and long. This is a consequence of the high homology

of the group sequences.

3.3.2 Low Complexity Regions

It is known [2] that many proteins contain regions of low complexity, characterized by

tandem repeats and/or over-representation of particular amino acids (see the example

of Figure 3.4). The existence of such proteins within a database creates a number of

problems during the process of pattern discovery because they can give rise to seqlets

133

which, although statistically important, can be attributed to the compositional bias of

the data base.

Several methodologies have been proposed for identifying low complexity regions

[91, 116]. Any of them can be used with our approach as well. One should be aware,

though, that an extensive masking of such regions can sometimes lead to loss of useful

information. Such a situation is exempli�ed by the pattern \ALNAA..AA..A" which was

discovered while treating the data base of the six genomes. Although of low complexity,

this pattern forms a highly speci�c signature for proteins involved in chemotaxis. Fig-

ure 3.5 shows the proteins from SwissProt Rel. 34 which contain this signature, together

with a 23{residue region around the seqlet. It is interesting to note that the seqlet \AL-

NAA..AA..A" allows us to \zoom-in" to a region that exhibits exceptional conservation,

and is apparently associated with a functional property common to these proteins.

Other cases of low complexity seqlets with clear{cut functional speci�city are also

known (e.g. the leucine{zipper motif [16]). Examples likes these prompted us to adopt a

rather moderate approach in masking low complexity regions. In particular, we decided

to

� ignore single amino acid stretches (like \FFFFFFFFFFFF") of length L or more.

We do so by replacing all such stretches with random strings of the same length.

� disregard, when computing the o�set list of a pattern, matches due to overlapping

substrings of a sequence. I.e. if a pattern P is matched twice by a data base

sequences s, at the o�sets i and j of s and the number jj� ij is less than the length
of P (i.e. these are overlapping instances of P within s) then neither i nor j is

placed in the o�set list of P .

Again, although we have chosen the approach described above for handling low com-

plexity regions, any other technique can be applied as well. The pattern discovery process

proposed in this chapter is independent from the particulars of treating these regions.

3.3.3 Seqlet Statistics

Having cleaned up the data base D to be processed and having removed all the low

complexity regions as described above, we are ready to start running TEIRESIAS on D0.

134

Doing so, requires the speci�cation of three parameters: the minimum support Kmin

and the density variables L and W . Here we will discuss the methodology used for

determining the values of Kmin; L and W . For the exposition of the material we will use

results obtained from our treatment of SwissProt Rel. 34.

As mentioned in Section 2.6, when dealing with large and diverse inputs it is imper-

ative to have some methodology for deciding which patterns are important. Most often

\importance" is characterized statistically [104, 106, 77] although information{theoretic

descriptions have also been used [57]. Here, we will follow the statistical approach. The

idea is to focus on those seqlets which are \unexpected" and by virtue of that quality

they are also (hopefully) of biological relevance. For our purposes, the signi�cance of

a pattern will be described by its support within D0. More speci�cally, we will seek

to de�ne a number Kmin such that every pattern with support at least Kmin can be

shown to be statistically important. Deciding which minimum support to use is directly

dependent on our choice for the parameters L and W . We start by discussing how these

density variables are set.

The ratio L=W describes the amount of local homology captured by the discovered

patterns. More speci�cally, consider an < L;W > pattern P , two sequences s1 and s2

matching P and let A and B be the substrings of s1 and s2 respectively that match P ,

i.e. A;B 2 L(P). Then by the de�nition of an < L;W > pattern the regions A and B

have at least L=W of their residues identical. In that respect, the ratio L=W is a lower

bound on the homology between any two regions matching a pattern. Consequently,

a small L=W will permit the detection of weak similarities. Since several value pairs

(L;W) lead to the same ratio L=W what should the exact settings for L and W be?

Opting for a large value of L will usually result in a long running time for the pattern

discovery process (unless L=W is close to 1). Furthermore, selecting a large L would

ignore weak patterns with only a few amino acids. Selecting too small an L on the other

hand (e.g. 2 or 3) is useless since in that case the distribution of < L;W > patterns with

L + i residues (for small i) in the input data base D0 is not signi�cantly di�erent from

the corresponding distribution in a random database with the amino acid composition

of D0.

To make the above point more clear, consider Figure 3.6 which compares the distri-

bution of patterns in the cleaned{up version of SwissProt rel. 34 (for convenience, we

135

call this version CleanSP) with the corresponding random distributions. For CleanSP we

computed the support of each < L;W > pattern with exactly L residues (for the values

of L;W shown in Figure 3.6). Then the results were tabulated creating one row for each

possible template (see Section 2.3.5 for the de�nition of a template): the i-th column of

the row corresponding to a given template B indicates the number of patterns (of that

template structure) with support i within CleanSP. The random distributions where

obtained by following exactly the same approach for 2000 randomly shu�ed versions of

the entire CleanSP database. In this case the row for a given template B is obtained by

averaging the rows corresponding to B in all the 2000 tables. As a result, the i-th column

gives a pretty accurate estimate of the mean number of patterns with template B that

appear in exactly i sequences within a random data base having the residue composition

of CleanSP. In Figure 3.6 we plot the CleanSP results of selected templates against the

distribution of the means for the same templates. Although the results presented involve

particular templates, there is no qualitative change if other templates are used.

As Figure 3.6 implies, we start distinguishing the compositional bias (in terms of

patterns) in CleanSP versus a random data base only when L becomes 5 or larger. In

general, the value of L will depend on the size of the underlying data base D0: the larger

the data base, the higher this value should be. The results presented in this dissertation

have been obtained using the value L = 6. For W we chose the value 12, so that the

ratio L=W (i.e. the minimum local homology) is 50%.

Having set the values of L and W it remains to decide what the minimum support

Kmin should be. We focus only on patterns with exactly L residues since every larger

pattern contains at least one subpattern with exactly that many amino acids. One

approach is to select Kmin so that the probability of a pattern appearing in Kmin or

more distinct sequences is small. Similar signi�cance criteria have been proposed and

used before [104, 106, 77]. A closer look at Figure 3.6(d), though, reveals that this

approach may be too strict. In particular, consider a support level of K = 15. The

random distribution indicates that one expects, by chance alone, between one and two

patterns at that support level. If the aforementioned criterion were to be used then a

pattern with support 15 within CleanSP would be deemed not important. However, the

two distributions have a striking di�erence at that support level. In particular, while the

mean of the random distribution at K = 15 has a value of about 1:5, there exist about

136

180 patterns with support 15 within SwissProt .

It seems that if one were to consider the probability of a pattern in isolation the

result would be to discard many patterns which, according to the above distribution,

are above the level of noise. This observation prompts us to use a di�erent criterion

for signi�cance. Instead of looking at individual patterns, we consider together all the

patterns of a particular template structure. More speci�cally, for any given template B

and an underlying data base D0 let NB;K be:

NB;K = number of patterns with template B which have support K within D0.

Let also XB;K be the random variable (de�ned over the space of all shu�ed versions

of D0) corresponding to NB;K. The minimum support Kmin is then the �rst number K

for which the following inequality is true:

max
B
fProb[XB;K � NB;K]g � threshold (3.1)

where threshold is a user-de�ned probability imposing a level of con�dence on the mini-

mum support Kmin coming out of the above inequality. A smaller threshold leads to a

larger value for Kmin and to a greater statistical importance for the patterns that will

be eventually selected.

Since we do not have an analytical description for the distribution of the random

variables XB;K we will resort to standard sampling techniques: using the experiments

described above with the shu�ed version of CleanSP it is possible to compute quite

accurate point estimates for both the mean and the deviation of XB;K.

More speci�cally, for any B and K let mB;K and sB;K denote the sample mean

and the sample deviation of the random variable XB;K: the values of mB;K and sB;K

are computed from the 2000 experiments performed on the su�ed versions of CleanSP.

Let also �B;K and �B;K be the actual mean and deviation of XB;K. Using elementary

statistics [80] we can deduce that with probability at least 0.95 (in the relations below

n stands for the number of trials, i.e. n = 2000):

�B;K � sB;K

1+ 1:96p
2n

�B;K � mB;K + 1:96
�B;Kp

n

137

and consequently, with probability no less than (0:95)2 � 0:9

�B;K � mB;K + 1:96
sB;Kp

n(1 + 1:96p
2n
)
:

Notice that there is no particular reason why we selected to use a con�dence level of

95%. Any other value would be applicable as well.

The above inequalities for �B;K and �B;K can be used in conjunction with Cheby-

chev's inequality in order to provide upper bounds for the probabilities Pr[XB;K � NB;K]

used in inequality 3.1. In particular, consider any value NB;K and let C be a constant

such as:

NB;K = (mB;K + 1:96
sB;Kp

n(1 + 1:96p
2n
)
) + C(

sB;K

1 + 1:96p
2n

)

Then:

Pr[XB;K � NB;K] =

= Pr[XB;K � (mB;K + 1:96
sB;Kp

n(1 + 1:96p
2n
)
) + C(

sB;K

1 + 1:96p
2n

)]

� Pr[XB;K � �B;K + C�B;K]

� 1=C2:

So, using the sample mean and deviation of XB;K we can compute the constant C

for the value NB;K at hand. Subsequently, C can be employed to obtain an upper bound

for the probability Pr[XB;K � NB;K]. It is this bound that we use in inequality 3.1. In

the results reported here for SwissProt, we chose to use a threshold value of 10�11. The

value of Kmin resulting from 3.1 for these settings turned out to be equal to 15.

To select the threshold, a certain amount of reverse engineering has been employed.

More speci�cally, we \conveniently" set the threshold value to be 10�11 so that Kmin =

15, i.e. the support level where only 1:5 patterns of a given template structure are

expected by chance. There is a tradeo� at play here: we are willing to allow a small

number of pattern-induced local homologies which can be the result of chance (the 1:5

patterns above) in order to be able to capture the many more statistically important

similarities implied by the other patterns at that same support level present within

CleanSP.

A similar procedure as the one described above has been applied in treating the

remaining two data bases used in this work, namely NCBI's non{redundant data base

138

and the data base of the 6 genomes. The resulting values for the parameters L;W and

Kmin are reported in the second column of the Table 3.3.

3.4 Results

In this section, we report on the results we obtain when treating three datasets: (a) a

database comprising the sequences from six of the publicly available, completed genomes;

(b) the Release 34.0 of the SwissProt database; and, (c) NCBI's non-redundant database

of proteins from November 15, 1997.

Covering the Input

An important quality criterion for the discovered seqlets is their ability to cover the

sequences in the input set from which they were generated. A sequence is assumed to

be \covered" if it matches at least one seqlet. In order to characterize the quality of the

seqlet set obtained from a data base D we use the process described below for obtaining

a set U � D. Every sequence in U is covered by at least one seqlet. The quality of the

coverage will take into account both U and a set Pkept of seqlets (the computation of

Pkept is also discussed below). In what follows, the notation �P is used to denote the

set of all the sequences from D that match a given seqlet P .

Computation of U; Pkept

� initialize both sets Pkept and U to the empty set;

� add the most frequent seqlet Pmf (i.e. the seqlet matched by the most input se-

quences, ties broken arbitrarily) to Pkept and augment U with the set �Pmf ;

� consider the remaining seqlets in order of decreasing frequency and repeat: if P

is the seqlet under consideration, P will be added to Pkept and �P to U if and

only if j�P j � j�P \ U j � d, i.e. if and only if the seqlet P covers a minimum of d

additional sequences from the input set D.

Clearly, the value of d can be a parameter of the analysis. In our discussion below,

we are showing results for the values d = 1; 3; 5, and 7.

139

The procedure just described will be used later on for measuring the quality of

coverage in the various test data bases. Ideally, one would prefer that jU j � jDj and
that jPkeptj be as small as possible.

Amino Acid Composition

An additional measure of interest is that of the actual amino acid composition of

the seqlets in the set Pkept. Given the large number of the involved seqlets and the fact

that each seqlet contains a variable number of amino acids, we normalized each seqlet

as follows. Let us assume that TEIRESIAS has discovered that the seqlet \G..G.GKST"

is matched by 122 input sequences. We begin by creating a 20{counter array where the

i-th counter corresponds to the i-th amino acid from the list A G C D E F Y H I L M

V K R N Q P S T W. We use the number of occurrences (in this example 122) and the

seqlet's composition (in this case 3 instances of G, and 1 instance of K, S and T) to

assign values to the twenty counters as shown in Table 3.1. Finally, the counters' values

shown in the table are normalized so that they all sum up to 1. the new resulting array

can be plotted by color-coding the values of each counter. An example will be shown

later on.

A G C D E F Y H I L

0 3x122 0 0 0 0 0 0 0 0

M V K R N Q P S T W

0 0 1x122 0 0 0 0 1x122 1x122 0

Table 3.1: Amino acid composition of the pattern \G..G.GKST" matched by 122 input

sequences. There is one counter for each amino acid and every counter contains the

number of times the amino acid appears in the pattern multiplied by the number of

sequences (in this case 122) matching the pattern.

140

3.4.1 The three data bases

The �rst database comprised the reported sequences from the following six organisms:

Mycoplasma genitalium [33], Mycoplasma pneumoniae [49], Methanococcus jannaschii

[19], Escherichia coli [13], Synechocystis sp. [58], and Haemophilus inuenzae [31]. The

second database was the Release 34.0 of SwissProt. The third database was an instance

of NCBI's non-redundant database from November 15, 1997.

In each case we began with the original database, D, and using the methodology of

Section 3.3.1 we created the cleaned{up version D0 of the original data base along with

its associated set of redundant groups. Let GD denote the number of redundant groups

generated. In Table 3.2, we are giving details on the sizes of the various sets.

Sequences in Sequences / aa

Sequences / aa in redundant groups / in cleaned-up

Databases original database Redundant groups database

6 genomes 12,018 / 3,804,214 3,859 / 1,678 9,837 / 3,094,735

SwissProt 34 59,021 / 21,210,388 40,407 / 9,165 27,779 / 10,596,414

NonRedundant 265,536 / 79,287,496 219,180 / 32,455 78,811 / 28,099,451

Table 3.2: For each of the three cases, we are showing the number of sequences and size

(in amino acids) of the three databases. Also shown is the number of highly{similar

sequences in each case together with the number of groups they form. After removing

the redundant groups of highly{similar sequences from the original input, we augment

the resulting set by adding the longest sequence from each redundant group. This �nal

product is referred to as the \cleaned-up" database and its size and number of member{

sequences is reported as well.

TEIRESIAS was �rst run on each of the cleaned{up databases and a number of seqlets

was discovered. In Table 3.3, we show the parameter choices for each case, the time

required to process the respective \cleaned-up" database and the number of discovered

seqlets (all processing was carried out on a single, 166 MHz IBM Power-PC processor).

We then sub{selected from the set of discovered seqlets using di�erent values for the

141

Processing Number of

Database L=W=Kmin (in hrs) discovered seqlets

6 genomes 6 / 12 / 10 9.5 33,495

SwissProt 34 6 / 12 / 15 22.5 173,296

Non-redundant 6 / 12 / 20 36 1,326,248

Table 3.3: Parameter choices, single{processor timings, and number of discovered seqlets

for each of the three cleaned{up databases.

parameter d. In Table 3.4, we show the surviving number of seqlets for di�erent values

of d, and the resulting coverage, for each of the three cleaned{up databases.

For each of the three data bases D, the corresponding set of seqlets was augmented

with the results of running TEIRESIAS on each of the GD redundant groups generated

for D. These seqlets were added to those that were discovered by processing the cor-

responding cleaned{up database, and the coverage of the original database was �nally

computed. These �gures are included on Table 3.4 as well. Also of interest is the graph

that shows how the input coverage increases as more and more seqlets get added to the

set Pkept. Figures 3.7, 3.8, 3.9 graphically depict this for each of the three data bases

and for d = 1; 3; 5; 7.

It is interesting to note the di�erence between the genomic database and the two

curated ones. A �xed number of seqlets can cover many more sequences in the cleaned{

up instances of the curated databases than in the genomic one. For example: a little over

500 seqlets can cover approximately 3,500 sequences of the genomic input but almost

8,000 sequences of the cleaned{up Swiss-Prot. Also, almost 4,000 seqlets can cover

approximately 6,700 genomic input sequences and somewhere between 30,000 and 41,500

sequences from the non-redundant database. In other words, a given seqlet achieves

greater degree of coverage as the experimental bias of the target database increases.

This is not unexpected as in over{represented families one pattern might cover all or

most of the family members. On the other hand, as soon as such families are covered by

selected patterns, the degree of coverage imposed by the patterns in Pkept drops to lower

levels. This last observation is made apparent by the plots of Figures 3.8 and 3.9: there

142

is a certain degree of saturation that manifests itself in the SwissProt and non-redundant

database plots; the plot for the genomic database on the other hand exhibits a constant

slope through the maximum achieved coverage.

Let us concentrate on NCBI's non-redundant database. In Figure 3.10, we show

a pseudo{colored matrix for the amino acid composition of the �rst 100 seqlets corre-

sponding to Pkept when d = 7. As is evident from this Figure, there is a clear preference

for certain amino acid composition despite the fact that order information within each

seqlet has not been preserved; the remaining seqlets of Pkept for d = 7 exhibit a similar

composition bias. And the same holds true for the seqlets of Pkept for the other values of

d. Analogous �gures for the database of the 6 genomes and for SwissProt Rel. 34 have

also been produced.

The accompanying set of seqlets that correspond to Figure 3.10 are listed on Table 3.5.

The seqlets are grouped in categories depending on their nature: a given category, e.g. the

category of the P{loop variations includes several seqlets in order of decreasing number

of occurrences; next to each reported seqlet its rank (with `1' corresponding to the most

frequently appearing seqlet) is also shown. Recall that in general as the frequency of

the seqlet decreases the seqlet becomes increasingly more speci�c. Wherever this was

possible, the seqlets of a category have been aligned. Notice the presence of brackets in

some of these seqlets: the lower case letters denote such bracketed expression and are

described in the Table's caption.

3.5 Seqlets and Clustering

Many data{rich disciplines resort sooner or later to techniques for organizing their data

into semantically meaningful subcategories. This becomes necessary not only for practi-

cal reasons, e.g. for enabling a systematic navigation through a vast collection of infor-

mation, but also as a means to impose structure and further exploit this structure for the

generation of new knowledge. Molecular biology is no exception to this rule, especially

with the ever increasing inux of biosequences. Here, the groups of related sequences are

called clusters and the process followed for �lling each cluster is referred to as clustering.

A simpli�ed way to think of a cluster is as a set of proteins C along with a label

that describes the semantics of C, i.e. the particular property associated with all the

143

sequences in the cluster. In most of the clusterings that we are aware of, the semantics

are of a functional nature: they try to describe the functionality of the members of a

cluster. A typical example of a curated clustering of this type is the PROSITE data base.

A PROSITE entry is labeled with a pattern matched by all the sequences associated with

this entry. The sequence regions matching the pattern are all known to play the same

functional role. Clusterings based on structure semantics have also been proposed [75]

but since the available protein structures are fewer than the known protein sequences,

the impact of such e�orts has been limited. To appreciate why a clustering can be a

valuable tool for biology consider the following idealized situation:

� there exists a clustering f(C1; L1); (C2; L2); : : : ; (Cm; Lm)g of all the proteins where
Ci is a cluster and Li is the label of Ci.

� for every i; 1 � i � m, and every protein s the following predicate is computable:

Fi(s) =

8<
:

TRUE, if s 2 Ci
FALSE, if s 62 Ci

If such a clustering did indeed exist then every new protein could be characterized

(according to the semantics of the clustering) by using all the labels Li for which Fi(s)

evaluates to TRUE.

For this reason, clustering of molecular data has always been recognized as a press-

ing need. Early clustering e�orts have been curated i.e. prepared and maintained by

experts. As such, they are extremely valuable since they incorporate domain knowledge.

Unfortunately, curation requires manual inspection and, consequently, cannot keep up

with the continuously increasing volume of experimental data. As a result, automatic

clustering methodologies have been proposed [37, 42, 105, 118, 63, 71].

Automatic clustering techniques ressemble the approach that we have described here

in that they try to extract information from the processing of large sets of diverse pro-

teins. The goal of automatic clustering is to build functionally semantic clusters by

only looking at the primary structure of proteins. In most of the cases, one wants to

create one cluster per domain (see the Biology Primer in Chapter 1 for the de�nition

of domains). This objective cannot be achieved easily: we have already mentioned that

functionally related polypeptides have some times quite diverse sequences and this is a

hard biological fact. Consequently, one has to settle for the best clustering attainable.

144

In all of the clustering approaches that we are aware of, the underlying theme is the

following:

� For every pair of proteins x; y quantify the potential that they share a domain.

This quanti�cation is usually performed by optimally aligning related regions of

the proteins and assigning a cost d(x; y) to the alignement.

� Consider a graph whose verices are all the proteins in the underlying data base

and where the edge between the vertices x; y is weighted with the value d(x; y).

Employ a clustering technique to cluster the vertices of the graph using the edge

weights.

There are several issues arising here. First, optimally aligning every pair of proteins

is computationally intensive and quickly becomes impractical as the size of the input

data base increases. As a result, the alignments are actually performed using aproxi-

mation algorithms like BLAST. Consequently, weak similarities can remain unnoticed.

Furthermore, since fast alignment algorithms tend to disregard insertions/deletions it is

possible that a functional domain shared by two proteins x; y appears as two or more

local alignments, separated by gaps. In order for the d(x; y) metric to correctly mirror

the relationship between x and y, the fragmented alignment has to be repaired [42].

Second, clustering the vertices of a weighted graph necessitates the choice of thresholds

that decide when two vertices should be placed in the same cluster. In general, choices

of thresholds are more or less arbitrary and are usually made according to the type of

clustering that one pursues: high thresholds will allow the detection of only extensive

homologies, whereas low thresholds can detect distant relationships. The problem with

the latter case is that there is no way of knowing beforehand at what threshold level

a \weak" similarity becomes \biologically irrelevant". Figure 3.11 illustrates this point

graphically with a dataset of 16 items. Depending on the selection of thresholds the

correct number of clusters can be 2, 3, 4 or 16.

A third problem arises because of the multidomain nature of many proteins. Consider

again the Figure 3.3. The leader sequence shown there contains the two domains A and

B. Since the other four proteins share extensive similarity with the leader sequence, it

is possible for all �ve proteins to be placed in the same cluster. This, however, would

145

be wrong as A and B are disjoint domains and should really de�ne distinct clusters. So,

special care must be taken in handling such multiple domains.

Clustering entire databases (even with the use of approximation algorithms) is a very

time consuming task. Up to now the argument was that speed is not a crucial factor as

clustering of a database is performed infrequently (usually once for every new release of

the database). These days, however, many new sequences get added to (mostly privately

owned) data bases every day, so taht clustering occurs much more often and speed is

important. Finally, it is important to notice that automatic clustering does not produce

labels for the clusters: assignment of the semantics is still a manual process.

Seqlets naturally induce a clustering of the proteins space in the same way that

PROSITE patterns do: every seqlet P de�nes a cluster CP containing all the sequences

matching P . Furthermore, the second property of an ideal clustering, namely the com-

putabilility of the predicate

FP (s) = TRUE, i� s 2 CP ;

holds as well (we will explore this issue in detail in the next chapter). The main char-

acterisitc of this seqlet{induced clustering is its redundancy. I.e. there may be more

than one seqlets that describe basically the same functional or structural domain. An

example of this situation is the following pair of seqlets: P1 = \G..G.GKST" and P2 =

\G..G.GKST....L". Both of them are variations of the P{loop motif (see Table 3.5). It

is not hard to realize that every region matching the second seqlet will also match the

�rst one. In other words, the o�set list of P2 is going to be a subset of the o�set list of

P1. So does it make sense to have seperate clusters for P1 and P2? Or are they really

describing the same domain?

The answer to this question is not straightforward. In the example given above it

so happens that the two seqlets really describe the same motif. But it might have been

the case that the longest of the two patterns represented a multiple domain and the �rst

pattern was just one part of that domain. In that case, the two seqlets would correctly

model two distinct clusters.

There seems to be no one \correct" algorithmic way to address the question of merg-

ing (or not) seqlet{induced clusters. It is only biological information (namely, the func-

tion/structure of the regions described by the seqlets) that can provide a de�nite answer.

146

This is the reason why we chose not to provide a speci�c clustering here. This, how-

ever, does not mean that one cannot or should not try to use the seqlets in order to

extract more comprehensive clusters of proteins. Any set of criteria can be used for that

purpose. The more biologically sound these criteria are, the more credible the resulting

clustering. For example, for the two seqlets mentioned above one can assert that if the

size of their respective o�set lists are comparable, then they probably correspond to the

same domain. In what follows, we provide a graph theoretic framework general enough

to allow expressing a wide class of such criteria. For the remaining of this discussion, the

notation �P is used to denote the set of sequences (from the input set) that match the

seqlet P . We will also be comparing the o�set lists of seqlets. In this setting, an o�set

(x; y) 2 LD(P1) will be considered to be the same as the o�set (x; y0) 2 LD(P2) if either
(i) y = y0, or (ii) y0 � y and y0 � y � jP1j.

Given an input dataset D and the set of seqlets � associated with D we can de�ne

a directed graph G = (V;E), where V = �. This graph will be called the seqlet graph.

The set of egdes E can be de�ned in a variety of ways, each way describing an approach

for collapsing multiple seqlet{clusters into one. Figure 3.12 graphically shows a seqlet

graph for a small dataset.

In the simplest case, two vertices uP1 and uP2 (corresponding to the seqlets P1; P2 2
�) are connected with an undirected edge uP1 $ uP2 2 E if and only if LD(P1) �
LD(P2). This edge assignment corresponds to a strategy which assumes that two seqlets

describe the same functional domain whenever the appearences of one subsume the

appearences of the other. This approach is applicable to seqlet clusters such as those

described in the example above. Large clusters can then be formed by �nding the

connected components of the seqlet graph.

More sophisticated cluster relationships are also possible. Consider, for example, the

following situation which arised in our experiments. The family of ATP{binding proteins

contains the pair of seqlets P1= \LDEPT..L" and P2 = \L.DEPT..LD". In Release 34 of

SwissProt, there exist 76 proteins in the set �P1 and 74 proteins in the set �P2 . However,

the set �P1 [�P2 contains 108 proteins; clearly, �P1 and �P2 are distinct sets with a

substantial non{zero intersection. Using the edge set described previously, there would

be no edge connecting uP1 and uP2 . However, it may be bene�cial to be able to represent

such intersecting seqlets in this graph.

147

In order to capture this requirement, the edge set de�nition must be rede�ned as

follows: a directed edge uP1 ! uP2 2 E will connect two vertices uP1 and uP2 if and only

if (i) jLD(P1)j � jLD(P2)j and (ii) LD(P1) \ LD(P2) 6= ;. This de�nition will correctly

introduce an edge between the vertices of the seqlets in ATP{binding proteins. However,

it gives no measure of the extent of the implied intersection. Ideally, one would wish to

distinguish between the two cases shown in Figure 3.13.

The obvious extension of this �rst variation is then: a directed edge uP1 ! uP2 2 E
will connect two vertices uP1 and uP2 if and only if:

� jLD(P1)j � jLD(P2)j,

� LD(P1) \ LD(P2) 6= ;,

� jLD(P1) \ LD(P2)j � �jLD(P1)j, where � 2 [0; 1].

I.e. not only should the o�set lists of the two seqlets intersect but the intersection

should be a prede�ned fraction of the smaller o�set list. Finally, depending on which

graph traversal/processing algorithm one intends to apply to the seqlet graph for ex-

tracting clusters, it may be useful to assign weights on the graph edges. For example,

each edge uP1 ! uP2 can be labeled with the cardinality of the intersection of the o�set

lists of LD(P1) and LD(P2).

In conclusion, the seqlet graph provides a convenient representation for the applica-

tion of a large number of clustering approaches. Clustering strategies can be translated in

appropiate edge de�nitions, while the processing task of forming the clusters can utilize

a large number of existing graph algorithms.

148

Figure 3.1: The result of multidimensional scaling of the 23 amino acid region centered

around the hexapeptide \KPKLGL". The three-dimensional projections are shown at

the top of the �gure, whereas the bottom shows a histogram of the cardinality of the

points in the neighborhood of the attractors.

149

Figure 3.2: An example of proteins sharing domains; the �gure is derived from [15].

One pair of sequences (YAP HUMAN, YAP MOUSE) share a Proline{rich domain. The

other pair (RSP5 YEAST, NEDD4 HUMAN) have in common a ligase and a C2 domain.

Finally, a Histidine{rich domain belongs to all 4 proteins.

150

Figure 3.3: Multi-domain groups are generated by leader sequences that contain more

than one domains. In the case depicted here, the leader sequence will attract the two

pairs of the shorter sequences in its group. In order for redundant groups of this sort

to be treated correctly (i.e. no useful information be lost), it is important that patterns

corresponding to both domains A and B are generated.

Swiss Prot Id: PAR1 TRYBB

MAPRSLYLLAVLLFSANLFAGVGFAAAAEGPEDKGLTKGGKGKGEKGTKVGADDTNGTDPD

PE

PGAATLKSVALPFAIAAAALVAAF

Figure 3.4: The protein shown above is an antigen from the organism trypanosoma

brucei brucei. It contains a low complexity region where the dipeptide \PE" is tandemly

repeated.

151

Protein name with

beginning and end Description of

of region Protein region Protein function

>AER_ECOLI_364_385 QTNILALNAAVEAARAGEQGKG AEROTAXIS RECEPTOR

>CPS_CLOTM_344_365 QTNILALNAAVEAARAGQHGKG PUTATIVE SENSORY TRANSDUCER

>DCRA_DESVH_511_532 QTNLLALNAAIEAARAGDAGRG CHEMORECEPTOR PROTEIN A.

>HLYB_VIBCH_391_412 QTNLLALNAAIEAARAGEQGRG HEMOLYSIN SECRETION PROTEIN

>MCP1_ECOLI_374_395 QTNILALNAAVEAARAGEQGRG METHYL-ACCEPTING CHEMOTAXIS

>MCP2_ECOLI_372_393 QTNILALNAAVEAARAGEQGRG METHYL-ACCEPTING CHEMOTAXIS

>MCP2_SALTY_372_393 QTNILALNAAVEAARAGEQGRG METHYL-ACCEPTING CHEMOTAXIS

>MCP3_ECOLI_382_403 QTNILALNAAVEAARAGEQGRG METHYL-ACCEPTING CHEMOTAXIS

>MCP4_ECOLI_370_391 QTNILALNAAVEAARAGEQGRG METHYL-ACCEPTING CHEMOTAXIS

>MCPA_BACSU_489_510 QTNLLALNAAIEAARAGEYGRG METHYL-ACCEPTING CHEMOTAXIS

>MCPB_BACSU_490_511 QTNLLALNAAIEAARAGESGRG METHYL-ACCEPTING CHEMOTAXIS

>MCPC_SALTY_373_394 QTNILALNAAVEAARAGEQGRG METHYL-ACCEPTING CHEMOTAXIS

>MCPD_ENTAE_367_388 QTNILALNAAVEAARAGEQGRG METHYL-ACCEPTING CHEMOTAXIS

>MCPS_ENTAE_376_397 QTNILALNAAVEAARAGEQGRA METHYL-ACCEPTING CHEMOTAXIS

>TCPI_VIBCH_459_480 QTNLLALNAAIEAARAGEQGRG TOXIN CORREGULATED PILUS

>TLPA_BACSU_489_510 QTNLLALNAAIEAARAGEYGRG METHYL-ACCEPTING CHEMOTAXIS

>TLPB_BACSU_489_510 QTNLLALNAAIEAARAGEYGRG METHYL-ACCEPTING CHEMOTAXIS

>TLPC_BACSU_395_416 QTNLLALNAAIEAARAGEQGKG METHYL-ACCEPTING CHEMOTAXIS

Figure 3.5: Labels of SwissProt proteins containing the motif \ALNAA..AA..A", and the

23{amino acid region centered around the seqlet \ALNAA..AA..A\; the two numbers

following the label of each protein correspond to the beginning and ending o�sets of the

region that is shown.

152

Figure 3.6: Distribution of patterns with given template structures in CleanSP (the

cleaned{up version SwissProt Rel. 34) and comparison with the random distribution

of the same templates. The character \o" is used for the distributions obtained from

CleanSP while \+" marks the random distributions. A point (X; Y) in a curve indicates

that there are Y patterns (of the given template structure) matched by X distinct

sequences.

153

D
at
ab
as
e

V
al
u
e
fo
r
d

P
k
e
p
t

%

co
v
-

er
ed

in

cl
ea
n
ed
{

u
p

A
d
d
it
io
n
a
l

S
eq
le
ts

T
o
ta
l
S
e-

q
le
ts

%

co
v
er
ed

in
o
ri
g
in
a
l

th
e

1

3,
91
3

68
.2
%

1,
02
8

4
,9
4
1

7
4
.0
%

si
x

3

51
3

35
.8
%

ge
n
om
es

5

17
1

19
.6
%

7

81

12
.7
%

S
w
is
s

1

13
,7
39

85
.6
%

6,
15
6

1
9
,8
9
5

9
3
.2
%

P
ro
t

3

1,
58
5

43
.4
%

R
el
ea
se

5

58
3

28
.3
%

34

7

32
6

21
.2
%

N
C
B
I'
s

1

39
,5
95

93
.8
%

9,
75
0

4
9
,3
4
5

9
8
.3
%

N
on
-

3

5,
30
7

52
.7
%

R
ed
u
n
d
.

5

2,
07
4

37
.9
%

D
at
ab
as
e

7

1,
10
1

29
.0
%

T
ab
le
3.
4:
T
h
e
n
u
m
b
er
of
su
b
se
le
ct
ed
se
q
le
ts
as
a
fu
n
ct
io
n
of
th
e
ch
oi
ce
fo
r
th
e
p
a
ra
m
et
er
d
(s
ee
te
x
t)
,
fo
r
ea
ch
o
f
th
e

th
re
e
d
at
ab
as
es
.
A
ls
o
sh
ow
n
ar
e:
th
e
p
er
ce
n
ta
ge
of
se
q
u
en
ce
s
in
ea
ch
cl
ea
n
ed
{
u
p
d
a
ta
b
a
se
th
a
t
a
re
co
v
er
ed
b
y
th
e

co
rr
es
p
on
d
in
g
P
k
e
p
t
,
th
e
in
cr
ea
se
in
ea
ch
P
k
e
p
t
b
y
al
so
co
n
si
d
er
in
g
th
e
se
q
le
ts
o
b
ta
in
ed
fr
o
m
tr
ea
ti
n
g
th
e
re
d
u
n
d
a
n
t

gr
ou
p
s,
th
e
�
n
al
n
u
m
b
er
of
su
b
se
le
ct
ed
se
q
le
ts
an
d
th
e
ob
ta
in
ed
co
v
er
ag
e
fo
r
ea
ch
o
ri
g
in
a
l
d
a
ta
b
a
se
u
si
n
g
a
ll
th
e

su
b
se
le
ct
ed
se
q
le
ts
.

154

Figure 3.7: Data base of the 6 genomes: coverage (excluding the highly{similar se-

quences) as a function of the cardinality of Pkept.

155

Figure 3.8: SwissProt Rel, 34: coverage (excluding the highly{similar sequences) as a

function of the cardinality of Pkept.

156

Figure 3.9: NRDB: coverage (excluding the highly{similar sequences) as a function of

the cardinality of Pkept.

157

Figure 3.10: NCBI's non-redundant database: the amino acid composition of the �rst

100 seqlets contained in the Pkept that corresponds to d = 7 after the highly{similar

sequences have been removed

158

A
T
P
/
G
T
P
{
b
in
d
in
g
P
{
lo
o
p
v
a
ri
a
ti
o
n
s

1

G
.
.
G
.
G
K
S
T

2

G
.
.
G
.
G
K
a
T
L

3

G
.
.
G
.
G
K
T
T

4

G
.
.
G
.
G
K
S
.
L

5

G
.
.
G
.
G
K
T
.
L

6

L
.
G
.
.
G
.
G
K
b
T

8

L
.
G
.
.
G
.
G
K
T

9

L
.
G
.
.
G
.
G
K
.
.
L

1
0

G
.
.
G
S
G
K
S

1
1

G
P
.
G
.
G
K
T

1
2

G
.
.
G
S
G
K
c
T

1
4

G
.
.
.
.
G
K
S
T
L

1
5

L
.
G
.
.
G
.
G
K
S

1
9

G
.
.
G
.
G
K
S
.
.
L

2
0

L
.
.
G
.
.
G
.
G
K
T

2
1

G
.
G
K
S
T
.
.
.
.
L

2
3

G
.
S
G
.
G
K
S

2
4

I
.
G
.
.
G
.
G
K
S

2
5

G
.
G
K
S
T
L

2
8

G
.
G
K
.
T
L
.
.
.
L

3
1

L
.
G
.
.
.
.
G
K
S
T

3
3

G
.
.
.
S
G
K
S
T

3
4

G
.
.
.
.
G
K
d
T
L
L

3
5

G
.
G
K
T
T
.
.
.
.
L

3
6

G
.
.
G
.
G
K
T
.
.
A

3
7

G
.
.
G
S
G
K
T

3
8
V
.
.
.
G
.
.
G
.
G
K
T

4
0

G
.
.
.
.
G
K
T
T
L

4
1

I
.
G
.
.
G
.
G
K
T

4
2

G
.
.
.
.
G
K
S
T
.
L

4
4
I
.
.
.
G
.
.
G
.
G
K
T

4
8

G
.
G
K
T
T
L

4
9

G
.
G
K
S
.
L
.
.
.
L

5
0

G
.
.
.
.
G
K
S
.
L
L

5
1

L
.
G
.
.
.
.
G
K
T
.
L

5
5

G
S
G
K
S
T

5
6

G
.
.
G
S
G
.
S
T

5
7

I
.
G
.
.
.
.
G
K
S
T

5
9
V
.
L
.
G
.
.
G
.
G
K

6
0

L
.
G
.
.
.
.
G
K
T
T

6
1

I
.
G
.
.
.
.
G
K
S
.
L

6
2

G
.
.
.
.
G
K
T
.
L
L

6
3

L
.
G
.
.
G
.
G
.
T
.
L

6
4

G
.
.
.
.
G
K
T
T
.
L

6
6

G
P
.
.
.
G
K
T
.
L

6
8

G
.
S
G
.
G
.
S
T

7
3

G
.
.
G
.
G
.
S
.
L
L

7
5

L
.
G
.
.
.
.
G
K
S
.
L

7
8

G
.
G
K
T
.
.
A
.
.
.
A

8
1

I
.
G
.
S
G
.
G
K

8
3

G
.
G
K
T
.
.
.
.
.
L
A

8
4

L
.
e
P
.
G
.
G
K
T

8
6

G
P
.
.
.
G
K
T
.
.
A

8
8
V
.
I
.
G
.
.
G
.
G
K

9
2

T
G
S
G
K
T

9
4

I
.
G
.
.
.
.
G
K
T
T

9
6

G
.
.
.
S
G
K
S
.
.
L

9
8

G
.
S
G
S
G
.
S

9
9

G
.
f
K
S
T
L
.
.
.
L

T
ab
le
3.
5:
T
h
e
10
0
se
q
le
ts
w
it
h
th
e
h
ig
h
es
t
su
p
p
or
t
(s
ee
al
so
th
e
ta
b
le
on
th
e
n
ex
t
p
a
g
e)
.
W
h
er
ev
er
p
o
ss
ib
le
,
th
e

se
q
le
ts
w
it
h
in
a
ca
te
go
ry
w
er
e
al
ig
n
ed
w
it
h
re
sp
ec
t
to
on
e
an
ot
h
er
.
T
h
e
lo
w
er
ca
se
it
a
li
cs
w
er
e
u
se
d
fo
r
co
n
v
en
ie
n
ce
a
n
d

ar
e
p
la
ce
{h
ol
d
er
s
fo
r
th
e
fo
ll
ow
in
g
b
ra
ck
et
ed
ex
p
re
ss
io
n
s:
a
:
[S
T
G
D
A
R
],
b
:
[S
T
G
D
K
],
c
:
[S
T
G
D
K
Y
],
d
:
[S
T
G
K
],
e
:

[G
A
S
M
D
L
],
f:
[G
IS
E
T
V
],
g
:
[L
IV
M
F
Y
],
h
:
[L
IV
M
F
],
i:
[L
IV
M
A
],
j:
[L
IV
M
C
],
k
:
[L
IV
M
F
],
l:
[I
LV
M
F
],
m
:
[Q
K
C
S
],

n
:
[K
R
Q
A
],
o
:
[I
V
T
N
F
],
p
:
[Q
K
C
A
S
N
],
q
:
[Q
K
IA
G
N
],
r
:
[R
K
A
H
Q
N
],
s
:
[K
R
Q
N
E
],
t:
[K
R
Q
M
N
],
u
:
[L
F
Y
IM
S
],
a
n
d

v
:
[A
G
S
P
E
].
A
b
ra
ck
et
in
d
ic
at
es
a
p
os
it
io
n
th
at
ca
n
b
e
o
cc
u
p
ie
d
b
y
an
y
on
e
o
f
th
e
re
si
d
u
es
in
th
e
b
ra
ck
et
.

159

P
ro
te
in
K
in
a
se

C
o
ll
a
g
e
n

H
o
m
e
o
b
o
x

A
T
P
{
b
in
d
in
g
,

a
c
ti
v
e
si
te

P
/
G

re
p
e
a
ts

D
N
A
{
b
in
d
in
g

k
in
a
se
s

7

H
R
D
g
K
.
.
N
.
L

5
8

G
.
P
G
.
.
G
.
P
G

1
6

W
F
Q
N
.
R
.
K

4
6
L
G
.
G
.
F
G
.
V

1
3

H
R
D
h
K
P
.
N

6
5
G
.
.
G
.
P
G
.
.
G
.
P

1
7

W
F
m
N
R
R
.
K

8
5
L
S
G
G
.
.
.
.
.
A
.
A

1
8

H
.
D
i
K
P
.
N
.
L

6
9

G
.
P
G
.
.
G
.
.
G
.
P

2
2

W
F
Q
N
R
R

N
u
c
le
a
r
h
o
rm
o
n
e
re
c
e
p
to
rs

2
6

H
R
D
L
.
.
.
N
.
L

7
0
G
.
.
G
P
.
G
P
.
G

3
0

W
F
Q
N
.
R
.
n
.
K

9
1
C
R
u
.
K
C
.
.
.
G
M

2
7

R
D
j
K
P
.
N
.
L

7
1

G
.
P
G
.
P
G
.
.
G

4
3

V
.
o
W
F
p
N
R
R

9
5
C
.
v
C
.
.
F
F
R
R

3
2
I
.
H
R
D
l
K
.
.
N

7
2

P
G
.
.
G
.
P
G
.
.
G

5
2
Q
V
.
o
W
F
q
N
R

V
a
ri
o
u
s
A
T
P
-b
in
d
in
g

3
9

H
R
D
k
K
.
.
N
I

7
4
G
.
.
G
.
P
G
.
P
G

Z
in
c
�
n
g
e
rs

5
3
L
.
L
D
E
.
.
.
.
L
D

4
5
I
.
H
.
D
l
K
.
.
N
.
L

7
6

G
P
.
G
.
.
G
.
P
G

7
7
H
.
R
.
H
.
G
E
s
P

9
3
L
.
L
D
E
.
T
.
.
L

4
7

H
R
D
L
K
.
.
N

8
2

P
G
.
P
G
.
.
G
.
P

7
9
H
.
.
.
H
T
G
E
t
P

P
ro
te
in
k
in
a
se
s

5
4

I
H
R
D
.
.
.
.
N
.
L

8
7
G
.
P
G
.
P
G
.
.
.
.
P

8
0
H
.
R
.
H
T
.
E
.
P

6
7
G
T
.
.
Y
.
A
P
E

1
0
0

H
.
D
L
.
P
.
N
.
L

9
0

P
G
.
P
G
.
.
.
.
P
G

8
9

R
.
H
.
G
.
K
P
.
.
C

A
B
C
T
ra
n
sp
o
rt
e
r

9
7

G
.
.
G
.
.
G
A
P
G

2
9
L
S
G
G
.
.
.
R
.
.
.
A

T
ab
le
3.
5:
C
on
ti
n
u
at
io
n
of
th
e
ta
b
le
fr
om
th
e
p
re
v
io
u
s
p
a
g
e.

160

Figure 3.11: The di�culty with clustering: it is not clear whether the 16 items above

belong to 2, 3, 4 or 16 natural clusters. Although one could decide on a value for the

distance threshold that would produce the correct answer for this particular dataset, the

value will not necessarily produce the correct results on all possible datasets.

161

Figure 3.12: A schematic representation of the relations between the seqlets and the

sequences in the space of proteins.

162

Figure 3.13: Intersecting seqlets and the respective o�set lists. Left: the intersection is

but a small percentage of either set. Right: the intersection is a substantial fraction of

one of the sets.

163

Chapter 4

Sequence Homology Detection

We next describe a new approach for identifying sequence similarity between a query

sequence and a database of proteins. The central idea is to use a the set of seqlets

obtained from the underlying data base through an o�{line computation. These seqlets

are subsequently searched for in every query sequence presented to the system. A seqlet

matched by a region of the query pinpoints to a local similarity between that region

and all the database sequences also matching that seqlet. In a �nal step, all such local

similarities are examined further by aligning and scoring the corresponding query and

database regions. By using a set of prudently chosen seqlets, the tool presented in

this work is able to discover weak but biologically signi�cant similarities. We provide

a number of examples using both classi�ed and unclassi�ed proteins that corroborate

this claim. Furthermore, the performance is superior to other existing methods since it

depends on the size of the seqlet set used and not on the underlying database. This last

feature is of increased importance given the rate of accumulation of genomic data.

4.1 Introduction

The �rst step following the sequencing of a new gene is an e�ort to identify that gene's

function. The most popular and straightforward methods to achieve that goal exploit

the �rst fact of biological sequence analysis (see Section 1.2): if two peptide stretches

164

exhibit su�cient similarity at the sequence level (i.e., one can be obtained from the other

by a small number of insertions, deletions and/or amino acid mutations) then they are

likely to be biologically related [69, 28, 20, 83]. Within this framework, the question of

getting clues about the function of a new gene becomes one of identifying homologies in

strings of amino acids: one is given a query sequence Q (the new gene) and a set D of

well characterized proteins and is looking for all regions of Q which are similar to regions

of sequences in D.

The �rst approaches [76, 97] used for carrying out this task were based on the tech-

nique of dynamic programming. In particular, a query system is compared with all

the database sequences through pairwise optimal alignments. Unfortunately, the com-

putational requirements of this method quickly render it impractical, especially when

searching large databases (as is the norm today). Simply put, the problem is that dy-

namic programming variants spend a good part of their time computing homologies

which eventually turn out to be unimportant. In an e�ort to work around this issue,

a number of algorithms have been proposed which focus on extensive local similarities

only. The most well known among them are FASTA [72, 84] and BLAST [3, 4]. In the

majority of the cases, increased performance is achieved by �rst looking for ungapped

homologies, i.e. similarities due exclusively to mutations and not insertions or deletions.

The rationale behind this approach is that in any substantial gapped homology between

two peptide strings chances are that there exists at least a pair of substrings whose match

contains no gaps. Locating these substrings (the ungapped homology) can then be used

as the �rst step towards obtaining the entire (gapped) homology.

Identifying the similar regions between the query and the database sequences is only

the �rst part (the computationally most demanding) of the process. The second part

involves the evaluation of these similarities, in order to identify which among them are

substantial enough to sustain the inferred relation (functional, structural or otherwise)

between the query and the corresponding database sequence(s). Such evaluations are

usually performed by combining biological information and statistical reasoning. Typ-

ically, similarity is quanti�ed as a score computed for every pair of related regions.

Computation of this score involves the use of gap costs (for gapped alignments) and of

appropriate mutation matrices giving the evolutionary probability of any given amino

acid changing into another (e.g. the PAM [25] and BLOSUM [45] families of matrices).

165

Then, the statistical importance of this cost is evaluated by computing the probability

(under some statistical model) that such a score could arise purely by chance [61, 60].

Depending on the statistical model used, this probability can depend on a number of

factors as the length of the query sequence, the size of the underlying database etc.

No matter, however, what statistical model one uses there always exist the so called

\gray areas", i.e. situations where a statistically unimportant score indicates a biolog-

ically important similarity. Unfortunate as this might be, it is also inescapable; there

is after all a limit to how well a statistical model can approximate the biological real-

ity. And for as long as we lack hard biological rules to guide our inferences from the

sequence domain to the function/structure domain, statistics will probably keep on play-

ing a central role in deciding which homologies are to be considered important and which

not.

Given these restrictions, it seems that the task of bringing more of the gray area

similarities under the light is synonymous to the task of devising better (more biologically

relevant) statistical models. Here we try to achieve this goal by introducing memory into

our calculations. Existing statistical frameworks are memoryless; whenever a homology

between a region A of the query sequence and a region B of some database sequence

is found, the similarity is evaluated without taking into account that A might also be

similar to several other database regions. So, although seen in isolation the homology

between A and B might seem statistically insigni�cant, this is certainly not the case

when the big picture is considered.

Memory is introduced by using seqlets to identify groups of related oligopeptides that

appear unexpectedly many times in the underlying database. Whenever a query sequence

is presented to the system, we locate all the query regions matching one or more of these

seqlets. Every match acts as a hypothesis of similarity between the query region and all

the database regions also matching that seqlet. In a �nal step all these hypotheses are

further examined by aligning and scoring the areas around the corresponding similarity

regions. The highest scoring among them are then reported to the user.

The success of the method we propose here depends crucially on our ability to identify

a set of seqlets characteristic of the underlying database. Up to now, there were no

computational tools powerful enough to handle the task of pattern discovery in data

sets of the size of existing protein databases. As a result, analogous e�orts [9, 46, 44]

166

were restricted to patterns characterizing groups of proteins already known to be related.

Using TEIRESIAS though, we are able to detect not only family speci�c patterns but also

patterns that cross family boundaries.

4.2 Existing Methods

We will describe here existing methodologies for the task of smilarity searching. There

exist three well established tools for comparing query sequences with an underlying

database: FASTA [72, 84], BLAST [3, 4] and BLOCKS [44, 46]. The �rst two compare

sequences by aligning them. The last, is in spirit similar to the methodology that we

propose here: it constructs pattern{like descriptors for protein families and matches

them against the given query sequence.

All three of these tools work, essentialy, in two distinct phases:

Comparison: The query is pair{wise compared with all the proteins in the underlying

database D and a score is assigned to every comparison.

Evaluation: All the comparisons are evaluated according to their score, and the most

important among them are reported back to the user.

For each of the three tools, each of these phases is discussed.

4.2.1 FASTA

Comparison

Conceptually, given a query sequence Q and a database sequence s, FASTA computes

the entries of the following jQj � jsj binary matrix:

T [i][j] =

8<
:

1; if Q[i] = s[j]

0; if Q[i] 6= s[j]

where Q[i]; s[j] are, respectively, the i{th character of Q and the j{th character of s. The

diagonals of this matrix register, in essense, all possibe ungapped alignments that one

can get by sliding the sequences Q and s over one another. For example, imagine that

167

we slide s to the left so that the j-the character of s is aligned with the �rst character

of Q. Then the diagonal of the matrix T that starts at T [1][j] represents this alignment:

the entry T [i][j+ i� 1] is 1 if and only if the i{th character of Q and the i{th character

of the string s[j::jsj] are the same. Along the same lines, diagonals \below" the main

diagonal of T represent alignents where s is slid to the right of Q (see Figure 4.1).

Figure 4.1: Example FASTA table for the sequences s and Q. The diagonal that has

been marked indicates the most substantial local, ungapped alignment between s and

Q. This alignment is explicitly shown below the table.

Computing T in a brute force manner requires jQjjsj time. FASTA avoids this ex-

pensive computation by building a hash table H for the query sequence Q: the entries of

H are labeled with strings of length ktup and the entry labeled x contains all the o�sets

168

within Q where the substring x appears. The parameter ktup is user{de�ned. For now,

assume that its value is 1.

When s is compared with Q, every position j of s is visited in turn. Let yj be the

substring of length ktup that starts at o�set j within s. If H [yj] is not empty, then for

all i 2 H [yj] the table entry T [i][j] is set to 1.

Substantial local alignments (of the ungapped variety) can be detected as stretches

of closely spaced `1's along the diagonals of T . FASTA identi�es such stretches and

scores them by using a user{de�ned mutation matrix (usually a member of the PAM or

BLOSUM families). Notice that identifying the stretces of `1's seems to require scanning

the entire table T , thus negating the bene�ts of utilizing the hash table H . This is

avoided by using a smart implementation of T . In particular an array LT of lists is used,

with one list per diagonal of T . When the o�set i of Q is found to be in the currently

checked entry H [yj] of the hash table, then the (j � i){th entry of LT is updated by

adding the appropriate element at the tail of the resident list (notice that (j � i) may

be negative; this is not a problem as the resulting array index can be easily recalibrated

by adding the appropriate constant). Thus, locating the substantial local alignments

reduces to traversing entries of LT .

Consider now the running time of the above approach and in particular the time

needed to compute the entries of the matrix T (since this is the dominating factor). For

every j in the database sequence s the required time is proportional to the contents of

H [yj]. If ktup = 1, then assuming a uniform distribution of amino acids in the sequence

Q one expects to �nd about jQj=20 o�sets in every entry of the hash table H . So, the

time needed to treat all input sequences s 2 D is:

O(jQj+ jQjPs2D jsj
20

) = O(jQj+ jQjjDj
20

);

where the �rst additive factor indicates the time needed to build H .

The distribution of amino acids is not, of course, uniform but this assumption is not

unrealistic for the purposes of exhibiting the bene�ts of using the look{up table H . The

improvement achieved (over the naive O(jQjjDj) time that would otherwise be needed)

can be increased by increasing the value of ktup. Again using the uniform distribution

assumption it is not hard to see that, in general, the time will be

O(
jQjjDj
20ktup

):

169

There is a catch, though: for any value of ktup, a local alignment will be recognized i� it

has at least ktup consecutive amino acids preserved in both the query and the database

sequence s under examination. So, large values of ktup, while improving the running

time, run the danger of missing weak homologies.

Evaluation

Among the stretches of `1's thus examined, the highest scoring is recognized and its

score is asscociated with the pair (Q; s). Let this score be denoted by Cs (we only index

it by the sequence s because Q is �xed for all the comparisons). FASTA will report

as homologues of Q the databases sequences s with the highest scores Cs. This is not

enough, though. To understand why, notice that even if Q has no homologues in D,

scores Cs will still be created for all s 2 D. So, one needs a way to tell when the highest

scores correspond to real homologues or not. To do so, FASTA uses the distribution of

all the scores Cs (see Figure 4.2). Strong homologies will appear as clear deviations from

the tail of the distribution.

For weaker homologies, where the above criterio does not give a clear answer, the

following approach is used: let Cs be a score of questionable importance. The sequence

s is shu�ed a number of times (the default value is 50) and each shu�ed version s0 of

s is compared against Q in the way used for the real database sequences. Then Cs is

compared with the distribution of the scores Cs0 . If Cs is more than a given number of

standard deviations above the mean of Cs0 , then Cs is deemed important.

In a �nal step, the top scoring alignments are further re�ned by re{aligning them

and re{scoring them, now allowing gaps.

As a closing remark, we note that the score evaluation method described above was

used in the original version of FASTA. Later on, when analytical descriptions for the

distribution of the scores Cs became available [60, 61, 27], FASTA implementations

begun using them. Since these analytical descriptions were pioneered by BLAST, we

discuss them in the next section.

4.2.2 BLAST

BLAST (and its recent variants gapped{BLAST, �{BLAST and {BLAST) is the most

widely used tool for performing similarity searches. The reason is two{fold:

170

� it provides a rigorous statistical model [60, 61, 27] for evaluating the signi�cance

of local, ungapped alignments with a given score, and

� it can compute these alignments very fast.

In explaining the operation of BLAST, it helps to talk about the evaluation process �rst.

Evaluation

In the terminology of BLAST, any pair of amino acid strings with the same length is

called a segment pair. Given any such pair of strings X [1::m]; Y [1::m] and a substitution

matrix M [i][j] providing the mutation costs between the i{th and the j{th amino acid

(where the amino acid ordering is arbitrary), the score of transforming X to Y is de�ned

in a straightforward way as

CM(X; Y) =
mX
i=1

M [X [i]][Y [i]]:

Consider any pair of sequences Q and s and any positive integer L � minfjQj; jsjg.
Then there exist

(jQj � L+ 1)(jsj � L+ 1)

segment pairs that can be formed by choosing pairs of length{L substrings, one from Q

and one from s. Let now QL
i ; s

L
i denote the length{L substrings that start at o�set i in

Q and s respectively. De�ne the maximal score Cmax(Q; s) of the pair Q and s as

Cmax(Q; s) = max
L;i;j

fCM(QL
i ; s

L
j)g

The maximal segment pair (MSP) for the sequences Q and s is de�ned as any pair of

equal length substrings QL
i ; s

L
j for which CM(QL

i ; s
L
j) = Cmax(Q; s).

What Karlin and colleagues in [60, 61, 27] have found is a limiting distribution for

the MSP scores: these scores obey an extreme value distribution. More speci�cally, given

(i) the probability of occurence of every amino acid, and (ii) a substitution matrix M ,

the work mentioned above describes how to compute constants � and K such that when

two random sequences Q (jQj = m) and s (jsj = n) are compared:

171

� the probability that Cmax(Q; s) is equal or larger than a score S is no larger than

1� e�r (4.1)

where r = Kmne��S .

� the probability of �nding c or more segment pairs with score at least S is no larger

than

1� e�r
c�1X
i=0

yi

i!

Given now a query sequence Q and a database sequence s, the expression above allows

the evaluation of the statistical signi�cance of Cmax(Q; s) (in fact, BLAST assumes

that s is the concatenation of all the sequences in the underlying database D; this

allows to take the overall size of D into account, an important parameter that was

missed by previous analyses). Locating the MSP which achieves the score Cmax(Q; s),

though, is an expensive task that would require time O(jQjjsj). So, BLAST resorts to an

approximatition approach: it will �nd and score all segment pairs that have a particular

property (to be discussed next). The hope is that, with high probability, a MSP will be

among these segment pairs.

Computation

BLAST makes use of two parameters: w (a string length) and T (a score). They will

be explained as they are encountered. For now, it is enough to mention that both the

sensitivity of BLAST (i.e. the probability of actually �nding a MSP) and its running

time are dependent on the values of w and T . In the following discussion we assume

that a substitution matrix M has already been chosen and is used for the computation

of all scores.

Given a query sequence Q, BLAST begins by �rst computing the word list WL(Q)

of Q. This list contains all the length w residue strings sw such that:

CM(Qw
i ; sw) � T; for some i; 0 � i � jQj � w + 1

Computation ofWL(Q) involves scanning Q and at every o�set i compute the neighbors

of Qw
i , i.e. all the length w strings whose similarity with Qw

i is at least T .

172

The next step is to scan the database D for all the instances of the strings in the

word list of Q. Every such instance is called a hit and it denotes an area of potential

similarity between Q and the database sequence where the hit occurs. In order to be able

to scan the database quickly, an automaton in built allowing the concurrent match of all

the strings in WL(Q) [54]. When a hit is found in a sequence s 2 D, the local alignment
between Q and s implied by the hit is extended both left and right, in an e�ort to �nd a

locally maximal segment pair. To speed up the whole process, extension in one direction

is terminated when the score falls a certain amount below the best score computed for

shorter extensions. Finally, the highest scoring local alignments found in this way are

reported back to the user, each one accompanied by its corresponding p{value i.e. the

probability computed from equation (4.1) for the score S of the alignment.

BLAST only computes segment pairs that (i) contain two words of length w with a

similarity score of at least T , and (ii) can be captured by the extension process men-

tioned above. The question, then, becomes: what is the probability that no MSP is

among such segment pairs? An analytical answer to this question does not exist. From

simulations described in [3], it appears that this probability directly depends on w and

T . In particular, it becomes smaller for large w and small T . This is expected, as such

settings allow the consideration of more segment pairs.

Naturally, large values of w and/or small values of T make the run time su�er. The

reason for this is that the size of the word list (which dominates the running time)

depends exponentially on w; T . In an example taken from [3], a 30-residue sequence

generates word lists of size 296, 3561 and 40939 for w = 3, 4 and 5 respectively. So,

deciding the particular values for w and T is a compromise between execution time and

sensitivity. Heuristics for setting these parameters are described in [3].

4.2.3 BLOCKS

BLOCKS [44] generates and uses pro�le{like descriptors for groups of (known to be)

related proteins (the family classi�cation used by BLOCKS is the one described in the

PROSITE database). The generated descriptors are called blocks and can be searched

on any query sequence Q. If a block B from a family of proteins F is found in Q (the

samantics of \found" will be described shortly) then this is an indication (depending on

173

how strong the match is) that Q is a member of F .

Computation

BLOCKS starts with an one{time o�{line computation: given a set

F = fF1; F2; : : : ; Fng

of protein families Fi, it computes for every Fi a set Bi = fBi
1; B

i
2; : : : ; B

i
ji
g of pro�le{like

blocks Bi
r. The set Bi is such that there exist at least ni sequences in Fi containing all

the blocks of Bi and in these sequences the blocks (i) appear always in the same order,

and (ii) do not overlap. The number ni is determined experimentally but is always at

least jFij=2.
A block is as a local alignment generated around a pattern with exactly 3 characters.

This pattern is called the generator of the block. Figure 4.3 shows such a block and its

corresponding generator. Every block gets assigned a score according to how well every

individual column is conserved using the methodology of [95].

The block{computation process for each Fi starts by computing all generator patterns

with 3 amino acids and support at least ni. For that purpose, the pattern discovery

algorithm of [95] is used. Among these patterns, the 50 highest scoring are kept for

further processing. This processing constitutes of (i) merging together generator patterns

that overlap consistently, (ii) extending the local alignments induced by the resulting

patterns left and right, and (iii) for every pattern, keeping the highest scoring among all

the possible extensions.

The above process results in a number of blocks which will be usually overlapping

in complex ways. In order to subselect those that will form the block set Bi, a directed

acyclic graph is built. The vertices of the graph are the blocks computed above. An

arc is drawn from a vertex B to a vertex B0 if there are at least ni sequences where B

appears before B0 and with no overlaps. Edges are weighted using a variety of criteria

including the scores of B and B0, the total number of sequences containing B before B0

etc. Finally, a best path is computed and the blocks in this path form the set Bi. Along
with each block the smallest and largest distance from the previous block is saved. These

distances are computed from the sequences of Fi that contain all the blocks of Bi

174

Computation

The blocks Bi
r of Bi are evaluated using the SwissProt version upon which the PROSITE

database used was keyed. Every block is transformed into a pro�le, using the composi-

tion of amino acids in every column and this pro�le is \slid" over every sequence s in

SwissProt. For all such s the highest score is recorded (see also Figure 1.18). The scores

thus computed are then divided into two groups: those corresponding to the members

of Fi (the true positives) and those corresponding to the rest of the seqences (the true

negatives). The 99.5% percentile of the distribution of the latter scores becomes the

lower mark of Bi
r while the median of the former score distribution is called the upper

mark. These scores are used when evaluating the match of Bi
r with a query sequence Q.

If the score resulting from sliding the weight{matrix of Br
i over Q is above the upper

mark, then the match is considered important. If it is below the lower mark it is not.

For scores in between the lower and upper marks more information is needed, e.g. if Q

�ts well the pro�les of the other blocks in Bi, if the order in which the blocks appear in

Q is the same as the one prescribed by Bi etc.

4.3 Motivation and De�nitions

The homology search tool that we propose here uses descriptors (in the spirit of BLOCKS)

capable of representing related groups of proteins. In our case these descriptors are pat-

terns. Unlike BLOCKS, however, our descriptors are obtained from mining the under-

lying database in an unsupervised manner. The motivation behind using patterns for

describing related polypeptides has already been discussed. In particular, it is known

that there is a number of basic elements (either of structural nature like �-helices, �-

strands, loops etc. or larger, functional units like domains which are the building blocks

that proteins are made of. As explained in Section 1.2, one of the key mechanisms used

by evolution to di�erentiate among species is the mutation of amino acid positions in

a protein sequence. Functionally and structurally important regions, though, are more

resistant to such mutations. It is then reasonable to expect that such biologically re-

lated polypeptides can be identi�ed by discovering conserved positions in their primary

structure and an increased degree of reusability. In our terminology, these properties

175

correspond to patterns with unexpectedly high support.

The approach we propose here is based on the assumption that patterns that appear

unexpectedly often in a large database bear some biological signi�cance. These patterns

are then essentialy used as indices in the underlying database, pinpointing to similaritites

between a query sequence and the sequences residing in that database. More speci�cally,

the proposed methodology is composed of two distinct phases: information gathering and

searching.

Information gathering: First, and before any search is performed, the underlying

database D is mined. During this step, all the statistically signi�cant < L;W >

seqlets are gathered and each such seqlet P is associated with its o�set list LD(P).

The notion of \statistical signi�cance" for our purposes, has already been explained

in Section 3.3.3.

Searching: The second step is the actual search. Given a query sequence Q, we identify

all the patterns P (among those collected in the �rst phase of the process) which are

matched by Q. For every such P , we pair together the region(s) of Q which match

P with the corresponding regions of all the database sequences that also match

P (these regions are easily accessible through the o�set list LD(P)). Finally, the

paired regions are extended and aligned in both directions and scored by the use

of a (user{de�ned) mutation matrix and the highest scoring matches are reported

along with the implied alignments.

It is worth pointing out here that the information gathering phase is an one{time,

o�{line computation over D. The results obtained are stored in a �le and used every

time that a search session is performed over the database D.

4.4 Implementation

As already mentioned, the methodology we propose consists of two phases: information

gathering and searching. Since the information gathering phase was the subject of the

previous chapter, here we will focus only on the search phase.

176

4.4.1 Searching

During this phase, query proteins Q are presented to the system and database sequences

s 2 D similar to Q are identi�ed and reported back to the user. The searching phase

utilizes a set � of seqlets obtained by mining the input database D. For the purposes of

the discussion here it is su�cient to assume that � is a set of < L;W > patterns. Each

seqlet P 2 � is accompanied by its o�set list LD(P) and has support at least Kmin in

D. The way that the parameters L;W and Kmin are computed (given the underlying

database D) was described in Section 3.3.

Pattern Matching

When a query sequence Q is provided to the system, we �rst locate all P 2 � that are

matched by Q. This can be done very fast by using a hashing variation of a technique

described in [41]. More speci�cally, for every position within Q we generate W hash

values, one for every substring of length 2; 3; : : : ; (W + 1) starting at that position.

For every such substring the corresponding hash value depends only on the �rst and

last characters of the substring as well as on the number of residues in between these

two characters. Table 4.1 below provides an example of the process for a given query

sequence.

The hash entry corresponding to a particular value h contains all the o�sets p of the

query sequence Q such that a substring (of length at most W + 1) starting at p hashes

to the value h. Figure 4.4 gives an example of the hash table generated for a particular

query sequence.

In order to check if a seqlet P 2 � is matched by Q we use an array of counters

C[1::jQj] of size equal to the length of Q. Initially, every entry of the array is set to 0.

Starting at o�set 1 in P , we locate all o�sets j within P that correspond to a residue,

excluding the o�set of the last residue. For every such j, let R be the shortest substring

of P starting at j and containing exactly two residues. Let OL denote the list of o�sets

in Q pointed to by the hash table entry corresponding to R. If OL is not empty, then

for every o�set p 2 OL the counter C[p� j + 1] is incremented by one. If the seqlet P

contains exactly m residues, then at the end of this process the counter C[i] will have

177

Q = AFGHIKLPNMKAMGH W = 4, Position = 6

Substring starting at position 6 Hash value

KL (�rst char = K, last char =L, gap = 0) 1,184

KLP (�rst char = K, last char = P, gap = 1) 1,601

KLPN (�rst char = K, last char = N, gap = 2) 1,394

KLPNM (�rst char = K, last char = M, gap = 3) 1,291

Table 4.1: The hash values generated for the W = 4 substrings starting at position 6 of

the sequence Q. The hash value used for a substring s is

H(s) = ((V(�rst char)-V('A'))+(V(last char)-V('A'))*26)*W+gap

where V(c) is the ASCII value of the character c, �srt char and last char are the �rst

and last characters of s respectively and gap is the number of residues in between the

�rst and last characters of s. Notice that because of the < L;W > density restriction

gap is always less than W .

the value (m�1) if and only if Q matches P at o�set i 1. In fact, in order to handle long

and dense seqlets with many amino acids and few don't{care characters (such seqlets

are typically the result of treating the redundant groups), we allow some exibility in

the process described above. More speci�cally a seqlet P with m residues, is assumed to

match the query Q at o�set i when

C[i] � minfL; d0:8meg:
1An advantage of the matching technique described above is that it typically requires

time which is sublinear to the size of the query sequence Q and only depends on the

number of residues in the seqlet P .

178

That is, the seqlet is allowed to match approximately at a given o�set. Approximate

matching counterbalances the potential over�tting of the data, a problem known to be

associated with long patterns (see Section2.6).

Chaining and Scoring

Once a seqlet P 2 � is found to be matched by a substring of Q starting at o�set i,

we relate that substring of Q with all other database regions also matching P . This is

easily done by scanning the o�set list LD(P) which contains exactly these regions. More

speci�cally, each entry (j; k) 2 LD(P) indicates that the substring starting at o�set k

of the j{th database sequence sj is an element of L(P). The local similarity between

the query sequence Q and the database sequence sj is then registered as a quadruplet

(i; j; k; l), called a segment, which gets associated with sj . The number l = jP j is the
length of the local similarity.

Sometimes, two distinct seqlets P and P 0 matching both Q and a database sequence

sj correspond to the same local similarity between Q and sj . An example of such a

situation is depicted in Figure 4.5. In such cases, the individual segments corresponding

to the two seqlets must be chained into one. In particular, two segments (i; j; k; l) and

(i0; j; k0; l0) associated with sj are called compatible if and only if:

k � k0 and k + l+ w len > k0 and k0 � k = i0 � i

where w len is an integer parameter de�ned by the user; w len allows for the chaining of

segments which are not intersecting, as long as one starts no more than w len positions

after the end of the other. The segment resulting from chaining (i; j; k; l) and (i0; j; k0; l0)

together is

(i; j; k;max(l; k0� k + l0))

Chaining of compatible segments takes place every time that a new segment is asso-

ciated with a database sequence sj , as the result of locating a seqlet P 2 � matched by

both Q and sj . If there exist segments already associated with sj which are compati-

ble with the newly arriving segment then the relevant pair of the new and the existing

segment is discarded and replaced by the outcome of their chaining.

Having identi�ed all the local similarities between Q and the database sequences we

are left with the task of evaluating these similarities. This is done by assigning a score

179

(using a user-de�ned scoring matrix) to every database sequence sj that is associated

with at least one segment. Several options are available for the scoring function. One

approach is to score each segment of sj individually and assign to sj the highest of these

scores. Scoring a segment (i; j; k; l) can be done in either of two ways

� no gaps allowed: in this case the score is computed from the ungapped alignment

implied by the segment, namely the alignment of the regions Q[i; i+ l � 1] of the

query and sj [k; k+ l�1] of the sequence. Furthermore, the user is given the option

to extend the alignment \around" the segment by setting the variable extend. If

this value is greater than 0 then the score is computed from the ungapped alignment

of the regions Q[i�extend; i+ l�1+extend] and sj [k�extend; k+ l�1+extend].

� allowing gaps: this option is available only when extend > 0 and permits for a

�ner scoring of the area around the segment, by allowing for gaps in that area of

the alignment.

Other scoring options are also o�ered, taking into account the relative order of the

segments associated with the database sequence sj currently being scored. After scoring

each segment individually as described above, one possibility is to build a directed,

weighted graph. The vertices of this graph are the segments associated with sj and

there is a directed line between the segments (i; j; k; l) and (i0; j; k0; l0) if

i � i0 and k � k0:

Every vertex is assigned a weight equal to the score of the corresponding segment

while every edge is weighted based upon (i) how close the two segments are, i.e. the value

of (i0� i� l), and (ii) how regular is the displacement among the two segments, i.e. how

much di�erent (i0� i) is from (k0� k). The score of a path within this graph is the sum

of the weights of all the vertices and edges of the path. The path with the maximal score

is then computed and that score is assigned to Sj .

4.5 Results

In this section we discuss the results of the proposed methodology when applied to a

test database, in this case SwissProt Rel. 34. We degin by recapitulating the outcome

180

of the information gathering phase on SwissProt and continue with the presentation of

a few example homology searches. In particular, we will consider two query sequences

one of which was up to now of unknown functionality.

4.5.1 Information Gathering

The treatment of SwissProt involves cleaning up the database, identifying the redundant

groups, deciding on the values of the parameters L;W and Kmin, running TEIRESIAS on

the clean database, and �nally, augmenting the seqlets found in the clean database with

the seqlets obtained from the pattern discovery process on the redundant groups (for

details see Sections 3.3 and 3.4). Table 4.2 below summarizes the results of the clean{up

process performed on SwissProt.

Sequences in redundant

Sequences /aa groups / Redundant Sequences / aa in

in original DB groups cleaned-up DB

59,021 / 21,210,388 40,407 / 9,165 27,779 / 10,596,414

Table 4.2: Results of the clean{up process in SwisProt, Rel. 34.

For the parameter settings L = 6;W = 12; Kmin = 15, the �nal set we obtain contains

565,432 seqlets. The coverage achieved on SwissProt by these seqlets is described in

Table 4.3. Notice that for long seqlets we allow for approximate matching, along the lines

described in Section 4.4.1. Figure 4.6 gives distributions for the following characteristics

of the patterns in � (i) length and (ii) number of amino acids.

As shown in Table 4.3, one of the key goals for the success of the search phase to

follow (namely the good coverage of SwissProt) has been achieved. A second important

question is whether the patterns discovered have biological signi�cance. To address this

concern we analyzed the most frequently occurring among these patterns. The resulting

annotation is almost identical to the one presented in Table 3.5 of Section 3.4. The only

181

Total number Number of proteins Nuumber of amino

of seqlets covered acids covered

565; 432 57; 983 12; 567; 345

Table 4.3: Coverage of the entire SwissProt database by the patterns generated in the

information gathering phase. The amino acids covered by a pattern are exactly those

that belong to substrings matching the pattern. Notice that for dense and long pat-

terns (coming mostly from the processing of the redundant groups) we have allowed for

approximate matches, where \most" of the pattern (speci�cally, 80% of the patterns's

residues) is matched by a region. It is worth pointing out that most of the uncovered

sequences are fragments. More speci�cally, only 231 contain more than 50 amino acids.

di�erence is the relative order of the seqlets and the exact form of their variability. The

functional groups identi�ed, though, are the same.

From this analysis it is evident (at least for the examined seqlets) that the pattern

discovery process identi�es sequence features that are biologically important. In all

fairness it should be mentioned that not all the discovered sqlets exhibit such clear

cut functional speci�city. Several of them correspond to regions (e.g. loops, coiled{

coils, transmembrane) which are traditionally considered uninteresting at least from the

standpoint of functional annotation. Occasiobally, though, even such weak similarities

can provide useful hints for characterizing protein regions. We have implemented two

mechanisms that allow the exploitation of this potential. First, the user is provided

with the list of all the patterns which are matched by the query sequence. An expert

user will, in most cases, be able to identify which patterns are of biological importance.

Selection of a particular pattern leads to a scoring re�nement, focusing only on the areas

of the database covered by this pattern. Second, when the underlying database includes

annotations of various sequence regions, this annotation is used in conjunction with the

patterns for the extraction of useful information. Examples of the use of these two

182

mechanisms are given in the next subsection.

4.5.2 Searching

In order to showcase the searching phase (and to explain how it should be used) we

selected two query sequences. The �rst is a well studied and annotated core histone 3

protein (SwissProt ID: H31 HUMAN) while the second is a not yet characterized open

reading frame (SwissProt ID: YZ28 METJA) from Methanococcus Jannaschii.

H31 HUMAN

The release 34 of the SwissProt database contains 33 sequences which are annotated as

Histones 3, among which and H31 HUMAN, the core histone 3 protein found in humans.

The top{scoring results of searching this sequence with our homology detection tool are

tabulated in Table 4.4. The scores mentioned in that table are obtained using the PAM

130 matrix [25] and every matching sequence from the database is assigned the score of

its highest scoring segment.

All 33 core histones 3 of SwissProt Rel. 34 are correctly identi�ed as homologous

to H31 HUMAN. Furthermore, several other proteins (YB21 CAEEL, CENA HUMAN,

CSE4 YEAST,YL82 CAEEL,CENA BOVIN,YMH3 CAEEL) are found to have exten-

sive local similarities with H31 HUMAN. Inspection of the annotation for these proteins

indicates that they are known histone 3{like proteins. As a �nal note, H3 NARPS (a

known histone 3) appears within the release 34 of SwissProt only as a fragment and

that is the reason that is scored lowest in the list of results. Figure 4.7 gives a selected

view (both high- and low-scoring) of the alignments generated for the query sequence

H31 HUMAN.

YZ28 METJA

H31 HUMAN is in a sense an easy test case because the database contains several se-
quences which are highly homologous to it. An interesting question to ask is how our
methodology fares when presented with \borderline" sequences, i.e. sequences for which
no known homology exists. In an e�ort to address this question the system was presented
with the yet not annotated sequence YZ28 METJA, an open reading frame with 1272
residues from the genome of M.Jannaschii.

183

H32 XENLA (298) H3 ACRFO (297) H3 CAEEL (291) H3 VOLCA (289)

H32 MEDSA (288) H3 ENCAL (288) H3 CHLRE (287) H31 SCHPO (286)

H3 PEA (284) H3 MAIZE (284) H33 CAEEL (284) H33 HUMAN (284)

H33 SCHPO (277) H31 TETPY (274) H34 CAIMO (272) H3 EMENI (271)

H3 NEUCR (271) H3 YEAST (269) H32 ORYSA (269) YB21 CAEEL (232)

H3 HORVU (221) H34 MOUSE (204) H3 ENTHI (179) H32 TETAM (177)

H32 TETPY (176) H33 TETTH (168) H32 TETBO (153) H3 LEIIN (110)

CENA HUMAN(100) CSE4 YEAST (96) YL82 CAEEL (86) CENA BOVIN (84)

YMH3 CAEEL (79) H3 NARPS (64)

Table 4.4: High scoring homologies between H31 HUMAN and the SwissProt sequences.

Next to each sequence we give the similarity score (using the scoring table PAM 130) of

the highest scoring local alignment between that sequence and H31 HUMAN.

184

The top scoring alignments produced by our system when presented with this query
sequence are shown in Figure 4.8.

For the purposes of functional annotation of YZ28 HUMAN, the above results are
not very enlightening as the database hits involve quite diverse proteins: the �rst two
(NTNO HUMAN, NTNO BOVIN) are sodium{dependent noradrenaline transporters
while the last one (KAPL APLCA) is a kinase.

With these questions in mind, we proceeded to a closer examination of the similari-
ties between YZ28 METJA and the database sequences. For this analysis every pattern
matching YZ28 METJA was scrutinized individually. As mentioned at the end of Sec-
tion 4.5.1, the search phase allows the user to select any of the patterns matched by the
query sequence at hand and focus on the local alignments induced by that particular
pattern alone, disregarding all the other patterns. This feature was employed for each of
the patters matched by YZ28 METJA. The intention was to discover if any such pattern
is speci�c to a particular protein family, thus giving clues about the functionality of
YZ28 METJA.

As it turned out, there exist three patterns (namely the patterns \Y..S..I...DLK",
\NIL......IKL" and \I.H.DLK......D") which are very speci�c for the kinase family. Fig-
ure 4.9 describes a few among the top scoring alignments produced for the �rst one of
them while Table 4.5 contains a complete listing of all the database sequences contain-
ing that particular pattern. Tables 4.6 and 4.7 give the corresponding listings for the
remaining two patterns. Figure 4.10 graphically represents the distribution of all the
patterns matched by YZ28 METJA and the areas covered by the three kinase{speci�c
patterns.

The pattern \Y..S..I...DLK" generates 24 hits within SwissProt. All of these proteins
(with the exception of NABA RAT, a sodium/bile acid cotransporter) are annotated as
protein kinases (two of them, KD82 SCHPO and KKK1 YEAST, are characterized as
putative/probable kinases) with the majority belonging or showing similarity to the
serine/threonine kinase family. Furthermore, \Y..S..I...DLK" not only belongs to the
kinase domain of these proteins but it actually contains the active site (aspartic acid D)
of that domain.

Similar results (Table 6) are obtained for \NIL......IKL", the second of the three
patterns. In this case the number of database hits is 34 and all of them (excluding
two unannotated ORFs from Yeast and Mycoplasma Hominis) are known (or probable)
protein kinases.

Finally, the third pattern \I.H.DLK......D" generates 30 SwissProt Rel. 34 hits, all
of them known or putative protein kinases. Furthermore, as in the case of the �rst of
the three patterns, the pattern \I.H.DLK......D" includes the active site of the kinase
domain.

It is interesting to notice that all three of the aforementioned patterns are speci�c
instances of (parts of) the following general pattern:

[LIVMFYC].[HY].D[LIVMFY]K..N[LIVMFYCT][LIVMFYCT][LIVMFYCT]:

185

MP38 MOUSE MKK2 DROME MP38 XENLA KRAF CAEEL DAPK HUMAN

PKX1 HUMAN KAPC YEAST KAPA YEAST ASK2 ARATH KCC1 YEAST

CC28 YEAST KD82 SCHPO SPK1 YEAST SGK RAT GCN2 YEAST

FUSE DROME NABA RAT KAPC ASCSU KKK1 YEAST KGPA BOVIN

KGPB HUMAN KGP3 DROME KGP2 DROME KDC2 DROME

Table 4.5: SwissProt Rel. 34 sequences containing the pattern \Y..S..I...DLK". All of

them are annotated as protein kinases or probable/putative protein kinases (almost ex-

clusively of the serine/threonine variety). The only exception is the protein NABA RAT

which is annotated as a sodium/bile acid cotransporter.

This more general pattern is the PROSITE database entry with accession number
PS00108, namely the signature of the serine/threonine protein kinase active site. Notice
that this PROSITE signature is too speci�c for picking up a kinase catalytic site in the
areas of YZ28 METJA covered by the three patterns examined above. This situation
is a manifestation of the over�tting problem discussed in Section 2.6: there is always
the danger that the set of positive examples used (in this case, the speci�c set of known
serine/threonine kinases used by PROSITE) is biased and as a result the features learned
(here the kinase signature) while explaining the observations are not general enough to
extrapolate e�ciently to new instances of the family under consideration (i.e. there are
false negatives). The cure for this problem is the use of as large a training set as possible
and this is the crux of the approach we propose here. Of course, it is also possible
that our methodology creates the reverse problem, that of under�tting in which case the
patterns discovered explain too liberally the observed data and introduce false positives.
Until, though, a de�nite answer is given by the performance of the appropriate lab tests,
we o�er the statistical signi�cance and the functional speci�city of the patterns examined
above as indications that they do correctly model kinase activity.

Using Existing Annotation

Of the 410 patterns matched by YZ28 METJA, only the three patterns analyzed above
exhibit such clear cut functional speci�city. This does not mean that the remaining 407
are useless. As discussed in Section 4.5.1, the kind of biological inference that can be
drawn from a local similarity between two sequences is not always of a functional nature.
Sometimes the homology indicates preservation of structure and yet other times it might
correspond to functional units with a supporting role (e.g. DNA{binding domains) in
the overall function of the sequences compared. In an e�ort to explore such weaker sim-
ilarities we have provided for a way to exploit the annotation available in the underlying

186

CC7 SCHPO CDK2 ENTHI CDK6 HUMAN IPL1 YEAST JKK1 HUMAN

JKK1 MOUSE KG1Z YEAST KKIA HUMAN KNQ1 YEAST KPBG MOUSE

KPBG RABIT KPBG RAT KS61 MOUSE KS62 HUMAN KS62 MOUSE

KS6A CHICK KS6A XENLA KS6B XENLA MKK2 YEAST MPK1 HUMAN

MPK1 MOUSE MPK1 RABIT MPK1 RAT MPK1 XENLA MPK2 HUMAN

MPK2 RAT MPK2 XENLA PAK1 SCHPO PK3 DICDI PKD1 DICDI

PKX1 HUMAN ST20 YEAST YFH8 YEAST YLI1 MYCHO

Table 4.6: SwissProt Rel. 34 sequences containing the pattern \NIL......IKL". All of

them (except from the non{annotated YFH8 YEAST and YL11 MYCHO) are protein

kinases (known or probable). Again, serine/threonine kinases are the majority.

ASK1 ARATH ASK2 ARATH CC2C DROME CC2 DICDI CC2 SCHPO

CDK7 CARAU CDK7 HUMAN CDK7 MOUSE CDK7 RAT CDK7 XENLA

CTR1 ARATH FUSE DROME GCN2 YEAST KCC4 YEAST KD82 SCHPO

KEMK MOUSE KFD3 YEAST KKK1 YEAST KP78 HUMAN KPBG MOUSE

KPBG RABIT KPBG RAT KPBH HUMAN KPBH RAT KPK1 ARATH

KPSC HUMAN SNF1 CANAL SNF1 YEAST SRK6 BRAOL YNA3 CAEEL

Table 4.7: SwissProt Rel. 34 sequences containing the pattern \I.H.DLK......D".All 30

of these sequences are known or probable protein kinases.

database. In the description given below we assume the SwissProt annotation format.
The SwissProt database associates with most of its sequences annotations of sequence

regions (the FT lines [8]). A typical region description looks like

FT DOMAIN 528 779 PROTEIN KINASE

where the keyword \FT" indicates that this is a region description line and the remaining
line describes the region by giving its beginning and ending positions (from residue 528
up to and including residue 779 of the relevant database sequence) and its annotation
(a protein kinase domain).

When presented with a pattern P we can use (as already mentioned) the o�set list

LD(P) to locate all the sequences in the database that match P . Assume that S is

187

such a sequence and that a substring that matches P begins at o�set j within S. If P

happens to fall in an annotated region of S (either entirely or in part) we can associate

this region with P . Performing this process for every sequence S matching P results in

a set RSD(P) of regions associated with P . Figure 4.11 gives an example of part of the

output produced by our system for one of the three kinase patterns described above.

Given now a pattern P matched by a subsequence A of a query sequence Q, the

question is how to use RSD(P) in order to characterize A. A number of approaches

can be used. For example, if RSD(P) is large enough and the majority of its members

agree in their functionality, then it can be inferred that A is quite likely to have the

same functionality. Another consideration is the relative lengths of the pattern P and

the regions described by the FT lines. If, for example, a pattern P has an extent of 15

residues while an annotated sequence region containing P has a length of 300 amino acids

then one might not want to transfer the annotation of that region to P . In conclusion,

the end user is expected to apply his/her expertise in deciding how to best exploit the

information provided by the system.

Figure 4.12 describes two ways to use the sets RSD(P) in order to annotate regions of

YZ28 METJA, thus extending the picture drawn in Figure 4.10.(b). The �rst approach

(Figure 4.12.(b)) assigns an annotationX (e.g. X = transmembrane region) to a pattern

P if (i) the size of RSD(P) is at least 15, (ii) the majority (80%) of the regions in RSD(P)

are annotated as X and (iii) at least 50% of every region of RSD(P) annotated as X is

covered by P . The second approach (Figure 4.12.(c)) shares the �rst two requirements

above and relaxes the third by allowing the percentage of the annotated region covered

by the pattern to be 30% or more.

Performance

The running time of a homology search for a query sequence Q depends on (i) the size of

the set of patterns � used and (ii) the actual number of local similarities (induced by the

patterns matching Q) between Q and the database sequences. For the case of SwissProt

Rel. 34 used here, typical searches for query proteins of size around a thousand residues

take 4{6 seconds on a Pentium 266MHz computer with 256 MB of memory. It should be

mentioned that the running time reported above is achieved by keeping all the program

data (patterns and their o�set lists) in memory. For SwissProt this data occupies around

188

200MB.

However, from preliminary work with the non-redundant protein database fromNCBI

it seems that although the search time components (i) and (ii) mentioned above are

related to the size of the underlying database, this dependence is sublinear. In a sense,

real protein databases induce a saturation of sorts on the size of �: after a certain point,

introducing new sequences in the database does not result in the generation of many new

patterns. As a result, we expect that even as the size of the database used gets larger,

the performance of the search phase (both running time per search and memory used)

will increase at a much slower rate.

4.6 Discussion

We have presented here a methodology for performing sequence similarity searches based

on the discovery of patterns over an underlying database D of proteins and the use of

these patterns for the identi�cation of homologies between a query sequence and the

proteins of the database at hand. The crucial step for the success of the proposed

approach is the collection of a set of patterns which is characteristic of the databaseD. In

Chapter 3, we described a way to precisely de�ne this set using statistical arguments. In

this chapter we discussed how patterns provide more sensitivity in identifying signi�cant

homologies by introducing memory into the statistical computations. It was also shown

how TEIRESIAS can be used to obtain the desired set of patterns. Finally, the utility of

the methodology was exhibited using the SwissProt Rel. 34 database as a test-bed and

showing how the system can be used for annotating query sequences. In this context

we also discussed the potential of exploiting the discovered patterns in conjunction with

the annotation of the underlying database towards characterizing even weak similarities

between the query and the database sequences.

What sets the presented system apart from other pattern{based tools for homology

detection (e.g. BLOCKS [44]) is the completeness of the set of patterns used. The pat-

terns are discovered in an unsupervised manner from a very large training set, that of

all the proteins within the underlying database D. There are no bias{creating prior

assumptions on which sequences \should" be considered as members of the same family.

As a result, the patterns discovered are expected to be more sensitive. Furthermore, by

189

considering together sequences of distinct functionalities we are able to discover weak

similarities that span family boundaries (e.g. patterns that describe transmembrane

regions). Such similarities, although not su�cient for the inference of functional anno-

tations, give nevertheless useful information regarding the role of di�erent parts of the

query sequence under examination.

Another advantage of the system presented here is its performance. The speedup

a�orded by using patterns rather than scanning the entire database for every search is

expected to become a factor as the size of genomic databases increases.

On the down size, the use of patterns is not guaranteed to �nd all existing local

homologies in the sense that systems like BLAST or FASTA do. If there exists a sequence

S within the database which is a singleton (in the sense that it has homologous regions

with none or only a few other database proteins) then a query sequence Q homologous

to S will go uncharacterized as there will be no patterns to associate it with S. It is

expected, though, that such situations will become increasingly more rare as the size of

the database D used gets larger.

190

Figure 4.2: Example distribution of Cs scores for two FASTA queries. The leftmost

graph corresponds to the situation where there are homologues of the query in the

database. These homologues are detected as unexpectedly high scores at the tail of the

distribution. The rightmost graph depictes a borderline case where the highest scores

show a questionable deviation from the same tail.

191

Figure 4.3: The pattern \P........N........F" appears in �ve of the nine sequences shown

here. The regions in the matching sequences around this generator pattern de�ne a

block. The length of the regions is chosen so as to maximize the block score (see text).

192

Figure 4.4: A snapshot of the hash table generated for the sequence Q = AFGHIKLPN-

MKAMGH. Instead of using actual numeric hash values to label the table entries we use

a pattern, describing all the strings that hash to a particular hash value. Each hash entry

points to a list of o�sets. Every o�set in that list marks the beginning of a substring in

Q that matches the pattern labelling the hash entry at hand.

193

Figure 4.5: Each of the segments (i; j; k; l) and (i0; j; k0; l0) indicates a local similarity

between the query sequence Q and the data base sequence sj . In the example shown

here the two segments are compatible and they can be chained together into the single

segment (i; j; k; k0� k + l0).

194

Figure 4.6: Distributions of (a) the number of residues and (b) the lengths of the Swis-

sProt Rel. 34 patterns.

195

Score = 269

Local Alignment(s) with the sequence H3_YEAST

Query 0 ARTKQTARKSTGGKAPRKQLATKAARKS

ARTKQTARKSTGGKAPRKQLA+KAARKS

Seq 0 ARTKQTARKSTGGKAPRKQLASKAARKS

--

Query 33 GVKKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVREIAQDFKTDLRFQ

GVKKPHRY+PGTVALREIRR+QKSTELLIRKLPFQRLVREIAQDFKTDLRFQ

Seq 33 GVKKPHRYKPGTVALREIRRFQKSTELLIRKLPFQRLVREIAQDFKTDLRFQ

--

Query 96 EAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA

EAYLV LFEDTNL AIHAKRVTI KDI LARR+RGER

Seq 96 EAYLVSLFEDTNLAAIHAKRVTIQKKDIKLARRLRGERS

--

Score = 100

Local Alignment(s) with the sequence CENA_HUMAN

Query 45 VALREIRRYQKSTELLIRKLPFQRLVR

L+EIR+ QKST LLIRKLPF RL R

Seq 45 GWLKEIRKLQKSTHLLIRKLPFSRLAR

--

Query 77 FKTDLRFQSSAVMALQEACEAYLVGLFEDTNLCAIHAK

D Q A++ALQEA EA+LV LFED L +HA

Seq 79 RGVDFNWQAQALLALQEAAEAFLVHLFEDAYLLTLHAG

--

Query 111 IHAKRVTIMPKDIQLARRIRGERA

+HA RVT+ PKD+QLARRIRG

Seq 113 LHAGRVTLFPKDVQLARRIRGLEE

--

Figure 4.7: Local alignments of H31 HUMAN with a highly similar (H3 YEAST) and
a moderately similar (CENA HUMAN) protein. For every sequence, a number of local
similarities are reported: in each case the relevant query (\Query") and the data base
sequence (\Seq") regions are listed under one another with the resulting consensus re-
gions between them. We use the character `+' to indicate the alignment of chemically
similar amino acids.

196

Score = 51

Local Alignment(s) with the sequence NTNO_HUMAN

Query 196 VEKDILPHKVAFTGGGLRFILYPERPILEE

E + VA G+GL FILYPE

Seq 369 HEHKVNIEDVATEGAGLVFILYPEAISTLS

--

Score = 51

Local Alignment(s) with the sequence NTNO_BOVIN

Query 196 VEKDILPHKVAFTGGGLRFILYPERPILEE

E + VA G+GL FILYPE

Seq 367 HEHKVNIEDVATEGAGLVFILYPEAISTLS

--

Score = 49

Local Alignment(s) with the sequence KAPL_APLCA

Query 816 NAMIEMFKENYKLLKEYLETDIEVLKELDKNYK

A +F E K LKEYLE+ +E L

Seq 0 MAHNQVFPESQKWLKEYLESSLEQFENLFNKNV

--

Figure 4.8: Top scoring alignments for the query sequence YZ28 METJA. The mutation
matrix used is PAM 130.

197

Local alignments of sequence ----> YZ28_METJA along Y..S..I...DLK

Local alignment with the sequence ---> MP38_MOUSE

Score = 27

Query 24 DKYQINVSGIYNISDDILESDLKLHIAQLLFLI

YQI Y S DI+ DLK +

Seq 129 LIYQILRGLKYIHSADIIHRDLKPSNLAVNEDC

--

Local alignment with the sequence ---> MKK2_DROME

Score = 22

Query 24 DKYQINVSGIYNISDDILESDLKLHIAQLLFLI

I Y S DI DLK

Seq 121 IMHEICAAVDYLHSRDIAHRDLKPENLLYTTTQ

--

Local alignment with the sequence ---> MP38_XENLA

Score = 22

Query 24 DKYQINVSGIYNISDDILESDLKLHIAQLLFLI

YQI Y S I+ DLK +

Seq 130 LIYQILRGLKYIHSAGIIHRDLKPSNLAVNEDC

--

Local alignment with the sequence ---> KRAF_CAEEL

Score = 20

Query 24 DKYQINVSGIYNISDDILESDLKLHIAQLLFLI

Q+ + Y S I+ DLK L+ +

Seq 581 ILKQVSLGMNYLHSKNIIHRDLKTNNIFLMDDM

--

Figure 4.9: Top scoring local alignments for the query sequence YZ28 METJA induced
by the pattern \Y..S..I...DLK". The mutation matrix used is PAM 130.

198

Figure 4.10: (a) There exist 410 patterns (among those discovered in the information

gathering phase) matched by YZ28 METJA. A pattern \covers" a residue position if

it starts before (or at) that position and ends after (or at) that position. The chart

shows, for each residue position (x-axis), how many patterns (y-axis) cover that position.

(b) The three kinase pattern discussed in the text match the sequence at o�sets 35 (pat-

tern \Y..S..I...DLK"), 112 (pattern \NIL......IKL") and 1052 (pattern \I.H.DLK......D").

These o�sets are depicted here relative to the spikes of the pattern distribution in (a).

199

##

ID ASK1_ARATH STANDARD; PRT; 363 AA.

DE SERINE/THREONINE-PROTEIN KINASE ASK2 (EC 2.7.1.-).

--------> I.H.DLK......D: Matching at offset 119

FT DOMAIN 4 260 PROTEIN KINASE.

FT ACT_SITE 123 123 BY SIMILARITY.

##

ID ASK2_ARATH STANDARD; PRT; 353 AA.

DE SERINE/THREONINE-PROTEIN KINASE ASK2 (EC 2.7.1.-).

--------> I.H.DLK......D: Matching at offset 119

FT DOMAIN 4 260 PROTEIN KINASE.

FT ACT_SITE 123 123 BY SIMILARITY.

##

ID CC2C_DROME STANDARD; PRT; 314 AA.

DE CELL DIVISION CONTROL PROTEIN 2 COGNATE (EC 2.7.1.-).

--------> I.H.DLK......D: Matching at offset 126

FT DOMAIN 8 287 PROTEIN KINASE.

FT ACT_SITE 130 130 BY SIMILARITY.

##

ID CC2_DICDI STANDARD; PRT; 296 AA.

DE CELL DIVISION CONTROL PROTEIN 2 HOMOLOG (EC 2.7.1.-) (P34 PROTEIN

DE KINASE).

--------> I.H.DLK......D: Matching at offset 125

FT DOMAIN 10 288 PROTEIN KINASE.

FT ACT_SITE 129 129 BY SIMILARITY.

##

ID CC2_SCHPO STANDARD; PRT; 297 AA.

DE CELL DIVISION CONTROL PROTEIN 2 (EC 2.7.1.-) (P34 PROTEIN KINASE).

--------> I.H.DLK......D: Matching at offset 130

FT DOMAIN 4 293 PROTEIN KINASE.

FT ACT_SITE 134 134 BY SIMILARITY.

Figure 4.11: Analyzing individual patterns using the SwissProt annotation: some of the
data base sequences matching the pattern \I.H.DLK......D". For every such sequence its
ID and DE lines are reported [8], giving the SwissProt name of the sequence and a short
description of its functionality. Next follows the o�set within the sequence where the
match originates. Finally, there are the FT lines for all the annotated regions having an
intersection with the region covered by the pattern.

200

Figure 4.12: Characterization of various segments of YZ28 METJA from the annotation

of the patterns matched by these segments. The annotation of the patterns is obtained

by exploiting the information available for the various regions of the database sequences

also matching these patterns. The segments are shown again relative to the spikes of the

distribution of patterns over the entire YZ28 METJA.

201

Chapter 5

Other Applications And Future

Work

Pattern discovery can be a central element to many applications, both in Biology and

other �elds. In this chapter we briey examine a few such applications. From the

area of Biology we concetrate on the problem of multiple sequence alignment. A second

application comes from the �eld of computer security and involves the identi�cation of

network{based security attacks. For these two problems we discuss the way in which

TEIRESIAS has been instrumental in the proposed solutions.

The chapter concludes with an outline of future research plans. These plans include

(i) improvements and extensions in the algorithm, and (ii) exploitation of the seqlets in

the protein folding problem.

5.1 Multiple Sequence Alignement

The multiple sequence alignment (MSA) problem was informally introduced in Section .

The input to the problem is a set of biological sequences (usually proteins). The objective

is to align these sequences (using a prede�ned set of allowable edit operations) so as to

bring out the commonalities among them. More precisely, given a set S = fs1; s2; : : : ; sNg
of sequences from an alphabet �, a multiple sequence alignment of this set is de�ned as

an N �M table A, where M � maxfjsijg. The entries of this table are characters from

202

the set � [f0�0g, where `-' is a special character (indicating a gap) not in �. The i{th

row of the table corresponds to the sequence si and describes how it is aligned relative

to the remaining sequences. In particular, for each 1 � i � n and for every 1 � j < jsij
there exist j1 and j2 with 1 � j1 < j2 �M such that

� A[i; j1] = si[j],

� A[i; j2] = si[j + 1], and

� 8k; j1 < k < j2 : A[i; k] =0 �0.

In other words, the i{th row of A is generated from sequence si, by inserting zero or

more gaps (i.e. `-' characters) between consequetive characters of si.

In practice, the term \multiple sequence alignment" is used to refer to the optimiza-

tion version of MSA. In this case a cost is assigned to every possible alignment (i.e. every

matrix A) and one is looking for the alignment with the maximum cost. The most often

used cost functions work by examining each column of the alignment A under consid-

eration and by penalizing mismatches and gaps while rewarding matching (or related)

residues [1, 110].

We have already discussed a number of algorithms for the MSA problem (see Sec-

tion 5.1). The majority of them builds an (approximation to the) optimal alignment

in a bottom{up manner, starting from the pair{wise alignment of all possible sequence

pairs. There are, however, algorithms that follow an alternative approach: they begin

by identifying local similarities shared by several input sequences and then use these

similarities as anchor points around which the global alignment is built. One example

of this approach [98] was discussed in Section 2.2.2. In that particular case, the �rst

step was the identi�cation of substrings that belong to all the input sequences. This

requirement (i.e. membership to all input sequences) makes it relatively easy to \chain"

these strings together into a larger alignment. It also makes the algorithm rather useless

as there are very few input sets that would abide to such a restriction.

Consequently, an extension of this approach is almost imperative. In particular, one

must allow for local similarities that may be shared by only some of the input sequences.

MUSCA (see reference in Section 1.6) is a multiple sequence algorithm that does exactly

that: it uses motifs discovered by TEIRESIAS and puts them together in order to build a

203

global alignment of the input sequences. In particular, consider any alignment A of the

input set S = fs1; s2; : : : ; sNg and for any column j of the table A de�ne the following

function:

HK(j) =

8>>>>><
>>>>>:

l; if l � K and A[i1; j] = A[i2; j] = : : := A[il; j] = �;

for some � 2 � and distinct i1; i2; : : : ; il:

0; otherwise

where K is an arbitrary positive integer such that K � N .

The optimization problem addressed by MUSCA is the following varint of the MSA

problem.

The K{MSA Problem

Input: A set S = fs1; s2; : : : ; sNg of sequences and a positive integer K � N .

Output: An multiple sequence alignment A that maximizes the following

expression:

max
A

0
@ X

column j

HK(j)

1
A : (5.1)

In other words, theK{MSA problem (i) imposes the (biologically relevant) restriction

that alignment columns that \count" must have at least K identical characters, and (ii)

looks for an alignment that maximizes the number of aligned characters that agree. The

problem, as de�ned above, can be shown to be MAX-SNP hard. MUSCA provides an

approximation solution. It works by �rst employing TEIRESIAS to �nd patterns with

support at least K and then by combining these patterns into a global alignment. In

particular, the intention is to subselect (among all patterns discovered bt TEIRESIAS) a

subset that admits a feasible ordering leading to a near{optimal alignment.

De�nition 5.1.1 (Feasible ordering) An ordering of patterns R = (P1; P2; : : : ; Pm),

where each pattern Pi has support at least K in S, is said to be feasible for S if there

exists a multiple sequence alignment A such that:

204

1. 8P 2 R; 9jP ; 8(x; y) 2 LD(P):

A[x; jP] = sx[y];

A[x; jP + 1] = sx[y + 1];

� � �
A[x; jP + jP j � 1] = sx[y + jP j � 1]:

2. 8r; r0 with 1 � r < r0 � m : jPr � jPr0 .

Allowing for patterns that can be shared by only some of the input sequences intro-

duces a number of non{trivial problems in building a K{MSA. These problems originate

from potential conicts between the discovered patterns. Figure 5.1 gives an example

of such a situation. Because of such problems, it becomes imperative to characterize

those sets of patterns which can give rise to valid alignments. In what follows, when

referring to a pattern we always mean one that has support at least K in the input set

of sequences S.

De�nition 5.1.2 (Feasible pair) Two patterns P1 and P2 are pairwise feasible if and

only if

1. For all input sequences matching both P1 and P2, the patterns always appear in the

same order (i.e. either P1 always before P2 or P2 before P1).

2. In all sequences in which the matches of P1; P2 are overlapping, the amount of the

overlap in constant. More formally, there is an integer d such that for all o�set

pairs of the form ((x; y1); (x; y2)) where (x; y1) 2 LD(P1) and (x; y2) 2 LD(P2):

y2 � y1 = d:

De�nition 5.1.3 (Consistent ordering) An ordered set of patterns R = (P1; P2; : : : ; Pm)

is said to be consistent with the input set S if and only if whenever two or more patterns

from R appear in some sequence of S, then the order of their matching o�sets is the

same as the relative order of the patterns in R.

It might seem as if a consistent ordering of a set of patterns could be su�cient to

guarantee feasibility. This is not the case, though, as Figure 5.2 depicts.

205

De�nition 5.1.4 (Domain crossing) Given an ordered set of patterns R = (P1; P2; : : : ; Pm)

a domain crossing error is said to occur when R is consistent but not feasible.

It is not di�cult to show now that a given set of patterns � has a feasible ordering

if and only if none of the following is true:

1. There exists in � a pair of patterns which are pairwise infeasible.

2. There exists a subset of � admitting no consistent ordering.

3. There exists a subset of � for which all consistent orderings introduce domain

crossing errors.

A set of patterns for which no feasible ordering exists, is called infeasible. Interest-

ingly, every infeasible set can be grouped into subsets (not necessarily disjoint) so that

every such subset violates exactly one of the above three properties. These subsets are

called basic infeasible sets. Furthermore, it can be shown that removing any member{

pattern from a basic infeasible set renders the set feasible. MUSCA approximates an

optimal solution to the K{MSA problem by �rst locating all the basic infeasible sets in

the output of TEIRESIAS and then removing the minimum number of patterns so that

all the basic infeasible sets become feasible.

The detection of the basic infeasible sets can be done e�cently, using a graph formu-

lation of the problem. In particular, consider a directed graph G = (V;E) where

V = fuP j P is a pattern produced by TEIRESIASg:

An edge is placed between the vertices uP and uQ if there are input sequences matching

both P and Q and in all such sequences the matching o�set for P occurs before the

matching o�set for Q. Every such edge has one of three possible labels. The possibilities

are (i) forbidden if P;Q are pairwise infeasible, (ii) overlap if P;Q overlap, or (iii)

nonoverlap if P;Q do not overlap. A vertex{disjoint path in this graph is called valid if

it contains no edges labelled forbidden. If, furthermore, the path contains only edges

labelled overlap then it is called overlap{only path.

In order to use the graph G for the detection of domain crossing errors, a weight

D(uP ; uQ) is assigned to every edge uP ! uQ that is not labelled forbidden. This

206

weight is de�ned to be the minimum distance between between the o�sets of successive

occurences of the patterns P and Q over all the sequences matching both these patterns.

Furthermore, the weight DH of a valid path H in G is the sum of the weights of its

constiuent edges. Finally, the graph G is said to be consistent with respect to a vertex

uP if for every vertex uQ and for all pairs of vertex-disjoint paths H1;H2 leading from

uP to uQ:

� DH1 = DH2 , if both H1 and H2 are overlap{only paths,

� DH1 � DH2 , if H1 is an overlap{only path while H2 is not.

Having this graph in place, it is not di�cult to prove that the basic infeasible sets

are the following (notice that for the remaining of this section we identify the verices of

G with the patterns that they represent):

1. All sets F1; F2; : : : ; FNf containing pairs of vertices connected with an edge labeled

forbidden.

2. All sets C1; C2; : : : ; Cnc where each Ci de�nes a cycle in the graph G.

3. All sets P1; P2; : : : ; Pnp , where every Pi contains the vertices that form a closed

path in G.

Standard graph traversal algorithms can be used to compute these sets. Let us

assume that all the basic infeasible sets have been found. As mentioned earlier, removing

one vertex from every such set leaves us with a set of patterns which admit a feasible

ordering. With this fact in mind, MUSCA will try to identify (and then remove) the

smallest possible vertex set U � V with the property that each basic infeasible set

contains at least one vertex from U .

The task is achieved by observing that the problem which we are trying to solve is an

instance of the set{covering problem. In set{covering one is given a pair of sets (D;B)

where B � 2D and every element of D is contained in at least one set in B. The question

then is to �nd the minimum number of sets in B whose union is D. In our case,

D = fF1; : : : ; Fnf ; C1; : : : ; Cnc; P1; : : : ; Pnpg

207

and the set B = fU1; U2; : : :Ung contains one element for every vertex ui 2 (([iFi) [
([iCi)[([iPi)). In particular,

Ui = fFj j ui 2 Fjg [fCj j ui 2 Cjg [fPj j ui 2 Pjg:

Using this modeling and any approximation algorithm for the set{covering problem,

we can obtain a feasible set of patterns. There, is though, one detail that has not been

addressed: the resulting pattern set ought to give rise to a near optimal alignment. To

accommodate this requirement the formulation of the set{covering problem has to be

modi�ed. More speci�cally, every set Ui 2 B is assigned a weight w(Ui) that mirrors

the importance of the corresponding pattern ui 2 V relevant to the underlying cost

function given in equation 5.1. In particular, if the pattern ui has r regular character

and support k in the input set S, then w(Ui) = rk. With this formulation, the problem

to solve becomes a weighted variant of the set{covering problem: �nd a subset B0 of B

such that
P

Ui2B0 w(Ui) is as small as possible and so that [Ui2B0Ui = D.

An approximation algorithm to this weighted set{covering problem is given in [22].

The approximation factor is 1+ jDj. Employing this algorithm we can compute a set of

patterns whose removal from the original collection of patterns produced by TEIRESIAS

results in a set admitting a feasible ordering. The alignment A induced by this latter set

can then be easily constructed. Further details along with multiple sequence alignments

produced by MUSCA on real sequences can be found in the relevant reference given in

Section 1.6

5.2 Computer Security

Pattern discovery algorithms �nd applications in many domains other than Biology (in

di�erent contexts they are referred to as either data or knowledge mining algorithms).

Realizing this, we strived right from the start to design TEIRESIAS so as to be a domain{

independent tool. Our intention was to have an algorithm that could be used for the

discovery of patterns in every �eld where the data can be modeled as strings over a �nite

alphabet. In this section we briey present an application of TEIRESIAS in the area

of computer security and more speci�cally in the construction of a detection intrusion

system for network{based utilities such as ftp ot mail. In particular, we are interested in

208

identifying suspicious looking uses of these utilities which usually indicate attempts to

exploit security loopholes in these programs. The research described here was performed

in cooperation with the Global Security Analysis Group of IBM Research in Zurich

and the resulting system is intended to become part of AIX, IBM's version of UNIX.

In a nutshell, the system uses TEIRESIAS to discover patterns in audit trails generated

by normal uses of the utilities. The patterns are subsequently used for the detection

of intrusion attempts against the system: sessions that deviate consistently from the

ordinary behavior prescribed by these patterns are agged as potential attacks.

Generally, an intrusion detection system dynamically monitors actions that are taken

in a given environment and decides whether these actions are symptomatic of an attack

or constitute a legitimate use of the environment. Essentially, two main intrusion de-

tection methods have been proposed. The �rst method uses the knowledge accumulated

about attacks and looks for evidence of their exploitation; this method is referred to

as knowledge{based. The second method builds a reference model of the usual behavior

of the system being monitored and looks for deviations from the observed usage; this

method is referred to as behavior{based.

In the knowledge{based approach, the underlying assumption is that the system

knows all possible attacks. There is some kind of a signature for each attack and the

intrusion detection system searches for these signatures when monitoring the tra�c.

E.g., one may monitor the audit trails on a given machine, the packets going onto the

net, etc. An advantage of this method is that no or only few false alarms are generated,

i.e. the false alarm rate is low; the main disadvantage is that only those attacks which

are already known can be located. Any newly developed intrusion attack would usually

remain undetected since its signature is still unknown and thus the system will never

search for it.

Unfortunately, there are nowadays so many attacks that the set of signatures is

growing very fast. Also, some signatures are di�cult to express and an algorithm to

search for them can be rather time{consuming. Nevertheless, this approach has proven

its usefulness and there are products using this approach available on the market (e.g.

NetRanger by Cisco Systems, Inc., and RealSecure by Internet Security Systems, Inc.).

The behavior{based approach starts from the assumption that if an attack is carried

out against a system, its \behavior" will change. One can thus de�ne a kind of normal

209

pro�le for a system and watch for any deviation from this de�ned normal pro�le. Di�er-

ent techniques can be applied (e.g. statistics, rule{based systems, neural networks) using

di�erent targets (e.g. the users of the system, the performances of the network, the CPU

cycles, etc...). The main advantage of this method over the knowledge{based one is that

the attacks do not need to be known in advance, i.e. that unknown attacks can be de-

tected. Thus, the detection remains up-to-date without having to update some database

of known signatures. But there are disadvantages: deviations can occur without any

attack (e.g. changes in the activity of the user, new software installed, new machines,

new users, etc.). Therefore, all known e�orts in this direction have been facing a rather

high rate of false alarms.

An example of a behavior{based intrusion detection system is given in [32]. It is

described therein how to model the behavior of the \sendmail" daemon (a program

running permanently in the background without user interaction), using the sequences

of system calls that this program generates while running. The idea is to build a table

of all the sequences of a given �xed length (here 5, 6, and 11) of consecutive system

calls that could be found when watching such a sendmail daemon running. The idea

is that if one tries to take advantage of a vulnerability in the sendmail code, then this

would generate a sequence of systems calls not found in a \normal" table, i.e. a table

generated from samples with normal behavior. However, when experimenting with this

approach, one discovers that the table necessary can become fairly large. It must also

be stressed that all the sequences of system calls in this table have the same length, i.e.

lengths of 5, 6, and 11. As it has been shown [26], though, when trying to �nd what

the best length for the sequences is (\best" meaning producing the shortest table of

patterns while covering all possible sequences) the result is that the \best" length is 1.

This means that the system does not search for unseen sequences but for unseen system

calls. The consequence is that if an attack does not use any unseen system call it will

not be detected. This is generally unacceptable since it may be possible to run an attack

without using a previously unseen system call.

Using �xed length patterns to model the behavior of a system utility is not always

a good idea. By monitoring, for example, the audit trail generated by the ftp daemon

in UNIX one �nds several long patterns, each with a di�erent length, that appear quite

often. Since the described �xed{length approach does not consider such a characteristic,

210

any result of an intrusion detection method based on a �xed{length approach is distorted

and certain intrusions and/or misuses cannot be detected.

So, it seems that one has to consider patterns of variable length. Such an approach

is examined in [62] and the results obtained are shown therein to be very promising.

However, the patterns presented in that work are constructed manually due to the lack

of an automated method. It is obvious that such a manual selection or design of the

patterns is inadequate for an automatic intrusion detection of the kind considered here.

In our work, we extend the approach of [32] by introducing the automatic discovery

of variable{length patterns. Our approach works in two distinct phases: an o�{line

training phase and an on{line operation phase. During training, trails of normal sessions

are presented as input to the pattern discovery phase. The resulting patterns are placed

in a pattern table. Patterns from this table are used in the operation phase, in order to

match the audit trail of an ongoing session. If there are large parts of the session that

cannot be matched by these patterns, then this is considred to be a serious deviation from

the normal behavior. In such cases alarms are raised, notifying the operating system of

a potential attack.

The particular features of TEIRESIAS make the algorithm especially appropriate for

the training phase. More speci�cally, TEIRESIAS can discover patterns that are maximal

and of arbitrary length. This is important since a table of long patterns appears to

be more \representative" of a speci�c process than a table of short patterns. Since

longer patterns usually contain more context information, it appears that they are more

signi�cant for a process than short patterns. On the other hand, short patterns are not

necessarily unique for a speci�c process, but may appear in other processes. It is even

possible that short patterns are part of an attack. The longer a pattern is, the lower the

probability that this pattern is part of other processes or of an attack.

Another advantage of long patterns is that the pattern table resulting from the train-

ing phase has a relatively short length. This, in return, allows the pattern matching

process (that takes place during the operation phase) to proceed faster. Speed is an

important consideration since the envisioned use of our approach is in a real{time envi-

ronment, within the context of an operating system.

The general architecture of the proposed system is depicted in Figure 5.3. During the

training phase a number of normal sessions (denoted in the �gure as \Model Process")

211

are used for the characterization of normal behavior. The audit trail of each such session

(which is either the sequence of system calls that the session generates or any other

set of event logs allowed by the operating system) adds one sequence in the input to

TEIRESIAS. The set that TEIRESIAS will process contains then as many sequences as are

the sessions used during the training phase.

A single item in an audit trail usually contains a number of �elds such as the process

name, the process id, the number of the system call etc. Most of this information is not

relevant for the pattern discovery phase and can be discarded. This task is performed

by the Translation module which consistently translates every audit trail item into a

character from a discrete alphabet. The translation in bijective, i.e. identical events are

translated into the same character and a character is used to code for a single event

type. The mapping between the alphabet characters and the audit trail events occurs

on the y ans is recorded into the Translation Table for use in the operation phase.

Finally, before the translated audit trails are passed to TEIRESIAS for processing they

are cleaned{up: this is the function of the Reduction module. This module performs two

types of transformations:

� Duplicate sequences are removed.

� Consecutive occurrences of the same character are collapsed into a smaller number

of the same character.

The �rst task results in a set of unique strings. Duplicate strings do not add any

value to the further processing. The second task removes from the input semantically

uninteresting repetitions of the same event. Such repetitions are not unsual when dealing

with system utilities. For example, the ftp login session has to close several �le handles

inherited from the inetd process. Since the inetd process is not always in the same state,

the number of its �le handles may vary. Closing all the unneeded �le handles results

therefore in a varying number of �le close operations. In general, it has been observed

that subsequences of N;N > 1, identical events are quite frequent, with N exhibiting

small variations.

There are two possible ways to collapse characters:

� The identical consecutive characters are replaced with an extra, not yet used char-

acter.

212

� The N identical consecutive characters are condensed into M; 1 � M � N , char-

acters.

The �rst approach increases the number of unique events and possibly also the num-

ber of patterns. Since the number of patterns should be kept small, the second approach

with M = 1 has been selected. The newly created strings have reduced semantics com-

pared to the original ones, but no case is known where the character aggregation impacts

the operation of the intrusion detection system.

Finally, the cleaned{up set of input sequences are passed to TEIRESIAS for processing.

The parameter settings for TEIRESIAS are usually quite conservative: for ftp we choose

the minimum support to be 2 while L;W are set to 6 and 8 respectively. It turns out that

because of the nature of the data, a smaller ratio of L=W o�ers no noticeable advantage.

This observation has been substantiated through experimentation with many di�erent

settings for L and W . The patterns resulted from the processing of the input are then

stored in the Pattern Table.

The operation phase of the system monitors in real time sessions of the utility (or

utilities) that were modeled during the training phase. As with the model processes,

an Actual Process generates an audit trail which has to be �rst translated (using the

mapping stored in the Translation Table) and then reduced. The resulting string is then

passed to the Pattern Matching module which, in an on{line fashion, tries to match the

part of the input sequence seen thus far with the patterns in the Pattern Table. When this

module identi�es on the input sequence a substring of length n that cannot be covered

by the patterns of the Pattern Table, then an alarm is raised, agging a potential attack.

The parameter n is for the time being decided experimentally, by trying several di�erent

values and checking which one results in the most reliable alarm raising. For ftp, for

example, we use n = 6.

5.3 Future Work

We conclude this chapter with suggestions for future work. There are twomain directions

to follow. One has to do with improvements in the algorithm and the second with the

exploitation of the seqlet sets for the extraction of quality information from the relevant

databases.

213

5.3.1 Improvements in TEIRESIAS

One of the criticisms about TEIRESIAS is that it is not exible enough in its treatmnent

of related amino acids. Recall from Section 1.4.2 that amino acids can be grouped

according to their chemical properties. This grouping mirrors the tendency of amino

acids to mutate with higher probability within their respective groups rather than out of

them (in PAM and BLOSUM matrices this tendency is recorded as higher values for the

entries that correspond to pairs of same-group amino acids). Other types of groupings

are also possible [41].

The most common way to represent such inter{amino acids relationships in patterns

is through the use of the [XYZ] notation, indicating that a given position of the pattern

can be matched by more than one residues (in this example, by residues X, Y or Z). The

user only has to specify the allowable groupings of amino acids, i.e. which amino acids

can appear together in a bracket. There are several algorithms [57, 77, 79, 89, 96] which

can handle this type of pattern.

It is possible to extend TEIRESIAS in order to allow for ambiguous matches involving

brackets. There are two cases to consider. First, when the amino acid groups are disjoint,

i.e. every amino acid belongs to at most one group (this is the case with the classi�cation

shown in Table 1.1. In this particular situation no change to TEIRESIAS is necessary:

all that needs to be done is rewrite the input using a new character for each amino acid

group (Figure 5.4) and then use TEIRESIAS \as is" for processing this modi�ed input.

A second, more complicated case arises when residues can belong to more than one

groups. Table 5.1 shows such an example. One way for TEIRESIAS to allow bracketed

expressions based on such multi{property groupings is to exploit existing tools. It is,

for example, possible to \attach" Emotif [79] as a back end to TEIRESIAS. Emotif can

then process every pattern produced by TEIRESIAS replacing where it is appropriate

bracketed expressions for don't-cares. This approach works �ne as long as one accepts

the restriction that a pattern must have at least L (the TEIRESIAS parameter) regular

characters: by construction, every pattern produced by TEIRESIAS has this property.

Since this might not always acceptable, we discuss below a way to extend TEIRESIAS

so that the discovery of arbitrary bracketed expressions becomes an integral part of the

algorithm. Such an extension also has the advantage of being more e�cient compared

214

to schemes that post process the output of TEIRESIAS.

A, G Small

S, T Small hydroxyl

K, R Basic

F, Y, W Aromatics

H, K, R Basic

I, L, V Small hydrophobic

I, L, V, M medium hydrophobic

E, D, N, Q Acidic/amid

A, G, P, S, T Small Polar

Table 5.1: Grouping of amino acids according to a number of chemical properties.

It is possible to handle bracketed expressions without major changes to the alogrithm

design. What has to be done, is just use an extended alphabet

�0 = � [fr1; r2; : : : ; rmg

where ri are distinct characters not in � and there is one such character for each of

the sets R1; R2; : : : ; Rm (Ri � �) that de�ne the allowable residue groupings. When

building the elementary patterns now, a character � 2 � also contributes an o�set to

every ri for which the corresponding set Ri contains �. After the generation of the

elementary patterns the convolutions are performed as before, using now the alphabet

�0. Complications, however, can arise: one such situation is depicted in Figure 5.5. After

convolving two patterns into a larger one, it may be necessary to replace in the resulting

pattern a character ri 2 (�0 � �) with another character rj 2 �0, where Rj � Ri.

In order to achieve this goal we must rede�ne the pre�x{wise less and su�x{wise less

relationships presented in Section 2.3.3. In particular, we must take into account set{

inclusion relationships between the Ri. We are currently in the process of implementing

a bracketed version of TEIRESIAS that can handle arbitrary groupings, such as those

described above. Results and a detailed description will be presented in an upcoming

publication.

215

5.3.2 Validation of Seqlets

In Chapter 3, we introduced the notion that the set of seqlets obtained from the pro-

cessing of large and diverse databases has the potential of becoming a sort of vocabulary

of life. This claim is based on the assumption that statistical signi�cance (which is the

only criterion that we use when choosing a pattern for becoming a member of the seqlet

set under construction) is su�cient | if not always, at least in the majority of cases

| for inferring biological signi�cance. We also discussed why a full validation of this

assumption would require checking the biological function (i.e. assigning semantics) of

each and every seqlet.

Given the big number of seqlets that we �nd and the substantial e�ort that is re-

quired in order to assign function to every seqlet using wet{lab methods, we tried to

use alternative approaches for evaluating the quality of the discovered seqlets. One such

approach is the exploitation of existing annotation, as described in Section 3.2.2 and

depicted in Table 3.5. The annotation that we used to obtain results such as those

shown in Table 3.5 is of a functional nature: it is describing the function of entire pro-

teins or protein domains. Useful as functional information may be, it nevertheless has

its limitations. For example, it is not possible to identify the importance of a seqlet if

that seqlet only describes structural features (e.g. an �{helix) and not a self{contained

functionality.

Fortunately, repositories of (potentially exploitable) structural information are also

available. One such repository is the Protein Data Bank (PDB) described in Section 1.5.

PDB is a database of protein structures. We plan to use the information o�ered by PDB

in order to structurally characterize seqlets.

Our apporach has the following steps:

� Identify all seqlets that are matched by at least two sequences in PDB.

� For each such seqlet P , �nd all regions of PDB proteins that match P and put

these regions in the set TP . Since we require P to be matched by at least two PDB

proteins it follows that jTP j � 2.

� For every region r 2 TP extract its backbone coordinates from PDB. Create an

optimal multiple structural alignment of the backbones of all the regions of TP .

216

The structural alignment of 3{dimensional objects entails the application of rigid

transformation for superimposing one object on top of another so as to minimize an

objective function. In the case of backbones, the function that we try to minimize

is the root mean square error or RMS error of the multiple alignment (to be de�ned

shortly).

� Assign to each seqlet P a value v(P) equal to the RMS error of the optimal align-

ment of TP .

RMS errors are used in crystallography as standard ways of evaluating the structural

\closeness" of chemical compounds. Consider two aligned 3D protein fragments A and

B of the same length which are expressed as atom sequences (in the N{terminal to

C{terminal direction). More speci�cally, let

A = (a1; a2; : : : ; an)

and

B = (b1;b2; : : : ;bn)

where ai = (xi; yi; zi) gives the coordinates of the i{th atom in A and bi = (x0i; y
0
i; z

0
i)

provides similar information for the i{th atom of B (in real situations, only the back-

bone atoms of the two compared polypeptides are considered). The RMS error of the

alignment is de�ned as

RMS(A;B) =
1

n

vuut
nX
i=1

jai � bij2 = 1

n

vuut
nX
i=1

((xi � x0i)2 + (yi � y0i)2 + (zi � z0i)2):

When dealing with many fragments there are several di�erent ways to de�ne the

collective RMS error of the alignment. We are using the following

RMS(A1; A2; : : : ; AN) = max
i6=j

fRMS(Ai; Aj)g;

where all the A1; A2; : : : ; AN are fragments of the same length.

In general, an RMS value of no more than 2.5 Angstroms indicates identical structures

(the breathing space of 2.5 Angstroms protects against small measurement errors which

are quite common). Consequently, a small v(P) value for a seqlet P indicates that the

seqlet codes for identical local structures.

217

The approach described above was used on the set of seqlets obtained from the

processing of the SwissProt Rel. 34 database. Out of the 565,432 seqlets in that set

342,820 seqlets were found to be matched by one or more sequences in PDB and 57,306

seqlets were matched by 2 or more PDB sequences. Almost 90% of this last group gets

assigned an RMS error value of 2.5 Angstroms or less (Figure 5.6). Furthermore, several

examples provide evidence for the structural speci�city of seqlets. Figure 5.7 depicts

such a case. The seqlet \V..G..G.G.T.L" is shown there along with the two sequences

of PDB matching it. The two proteins are from di�erent families. The speci�city of

the seqlet is deduced by the fact that the two backbones agree only over the amino acid

regions that the seqlet covers while outside these regions the structures di�erentiate.

The process described above results in the generation of a library of 3D motifs,

mapping short sequence descriptors (the seqlets) into local 3D structures. Such libraries

can be used for the prediction of the structure of a new protein: given the sequence of

the protein we identify all the seqlets from our library that are matched by the protein

and then \patch" together the local structures that are associated with these seqlets in

order to predict a global structure for the protein. We are currently in the process of

experimenting with this approach. The preleminary results are promising.

The ability of the motif library to cover new proteins is of course directly dependent

on its size. For this reason it is desirable to include as many 3D motifs as possible.

A potential motif repository lies in the seqlets that are matched by exactly one PDB

protein (there are 342; 829� 57; 306 = 285; 523 of then is SwissProt Rel. 34). For each

one of these seqlets a three dimensional structure is available from the PDB protein

which matches that seqlet. What is not known is the extent to which we can conclude

that all regions matching that seqlet will also have this structure. This requires a closer

analysis of those seqlets which although found to be matched by two or more of the PDB

proteins, they induced alignments with an RMS error of more than 2.5 Angstroms. We

have, for example, observed that many of these patterns contain the amino acid Proline.

This particular amino acid is known to be forcing \unnatural" turns into the structure

of proteins because its side group is bound to the nitrogen atom of the amino group in

the backbone part of the amino acid. Eventually, we would like to come up with a set of

rules that allow us to decide with a high degree of certainty when a seqlet matched by

only one sequence in PDB can become part of the motif library.

218

We also plan to keep on exploiting our sets of seqlets towards the annotation of

uncharacterized proteins, along the lines we used for the annotation of YZ28 METJA

in Section 4.5.2. Among the sequences that we looked at in an e�ort to validate the

homology searching tool presented in Chapter 4 was the BRC2 protein (SwissProt id:

BRCA HUMAN), one of the two known breast cancer repressors. It is known that this

protein is related to repairing DNA damaged by cancerous agents but it is not known

exactly how it works. Using seqlets from the SwissProt database we proposed a model

and presented it to researchers from the Memorial Sloan Katering hospital; they are

currently carrying out experiments that will either validate or refute our �ndings.

219

Figure 5.1: Two patterns A and B are shown on a set of input sequences. Every pattern

by itself induces naturally an alignment of the sequences ((a) and (b)). Problems arise,

however, when trying to synthesize an alignment that respects both patterns. The

problems can be either because the intersections of the two patterns are not consistent

(c) or because their relative order is not the same in all the sequneces that match both

the patterns (d).

220

Figure 5.2: (a) Three patterns A;B;C shown relative to a set of input sequences. The

ordering (A;C;B) is a consistent one; whenever a sequence matches more than one

pattern the matching o�sets respect the ordering. However, there is no feasible ordering

of the set fA;B;Cg. The only possible global alignments induced by these patterns are

shown in (b). None of them respects all three patterns.

221

Figure 5.3: The architecture of the intrusion detection system.

222

Figure 5.4: The classi�cation of amino acids into disjoint groups of hydrophobic, charged

and polar amino acids (see also Table 1.1) is providing a reduced alphabet for rewriting

a set of three sequences.

223

Figure 5.5: (a) An input consisting of the three sequences s1; s2; s3 and only one group of

related anino acids, namely the group R1 = fA;Wg. The character r1 is used to denote

the bracketed expression [AW] introduced by R1.

(b) Two elementary patterns containing the new character r1 along with their o�set lists.

(c) The result of convolving the two above patterns is the new pattern \A::r1C::F". All

the input sequences, though, that match this pattern have only the character `A' at the

pattern position denoted by r1. In order to avoid subsequent unecessary convolutions,

r1 should be replaced by the character A in the new pattern.

224

Figure 5.6: Distribution of RMS errors for the 57,306 seqlets from SwissProt that are

matched by two or more sequences of the PDB database. The solid line describes the

percentage of seqlets with a given RMS error while the broken line gives the cummulative

RMS error.

225

Figure 5.7: The seqlet \V..G..G.G.T.L" is matched by two PDP proteins that belong

to di�erent families: 1ayl is a phosphoenolpyruvate kinase from the organism E.Coli

while 1pox is a pyruvate oxidase from Lactobacillus Plantarum. The backbone regions

matching the seqlet were extracted from both proteins and they were aligned. The

aligned regions (shown here encircled by the dotted line) have an RMS error of 1.92

Angstroms. It is interesting to notice that while the two backbones are very similar in

the area delineated by the seqlet, they immediately become divergent outside of it.

226

Bibliography

[1] S. Altcshul. Gap costs for multiple sequence alignments. Journal of Theoretical

Biology, 138:297{309, 1989.

[2] S. Altschul, M. Boguski, W. Gish, and J.C. Wooton. Issues in searching molecular

sequence databases. Nature Genetics, 6:119{129, 1992.

[3] S. Altschul, W. Gish, W. Miller, E.W. Myers, and D. Lipman. A basic local

alignment search tool. Journal of Molecular Biology, 215:403{410, 1990.

[4] S. Altschul, T.L. Madden, A.A Scha�er, J. Zhang, Z. Zhang, W. Miller, and D. Lip-

man. Gapped blast and psi-blast: a new generation of protein database search

programs. Nucleic Acids Research, 25:3389{3402, 1997.

[5] G. Arents and E.N. Moudrianakis. Topography of the histone octamer surface:

repeating structural motifs utilized in the docking of nucleosomal dna. Proceedings

of the National Academy of Sciences, 90:10489{10493, 1993.

[6] T.K. Attwood and M.E. Beck. Prints - a protein motif �ngerprint database. Protein

Engineering, 7:841{848, 1994.

[7] O.T. Avery, C.M. MacLeod, and M. McCarty. Studies on the chemical nature

of the substance inducing transformation of pneumonococcus types. Journal of

Experimental Medicine, 79:137{158, 1944.

[8] A. Bairoch and R. Apweiler. The swiss-prot protein sequence data bank and its

supplement trembl in 1998. Nucleic Acids Research, 26:38{42, 1998.

227

[9] A. Bairoch, P. Bucher, and K. Hofmann. The prosite database: its status in 1995.

Nucleic Acids Research, 24:189{196, 1996.

[10] A. Baxevanis and F. Ouellette, editors. Bioinformatics: A Practical Guide to the

Analysis of Genes and Proteins. Wiley{Interscience, 1998.

[11] A.D. Baxevanis, G. Arents, E.N. Moudrianakis, and D. Landsman. A variety of

dna-binding and multimeric proteins contain the histone fold motif. Nucleic Acids

Research, 23:2685{2691, 1995.

[12] A.D. Baxevanis and D. Landsman. Histone and histone fold sequences and struc-

tures: a database. Nucleic Acids Research, 25:272{273, 1997.

[13] F.R. Blattner, G. Plunkett III, C.A. Bloch, N.T. Perna, and V. Burland. The

complete genome sequence of escherichia coli k-12. Science, 277:1453{1474, 1997.

[14] P. Bork and T.J. Gibson. Applying motif and pro�le searches. Methods in Enzy-

mology, 266:162{184, 1996.

[15] P. Bork and M. Sudol. The ww domain: a signaling site in dystrophin? Trends in

Biochemistry, 19:531{533, 1994.

[16] E. Bornberg-Bauer, E. Rivals, and M. Vingron. Computational approaches to

identify leucine zippers. Nucleic Acids Research, 26:2740{2746, 1998.

[17] C. Braden and J. Tooze. Introduction to Protein Structure. Garland Publishing,

1991.

[18] A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to the au-

tomatic discovery of patterns in biosequences. Technical report, Department of

Informatics, University of Bergen, Norway, 1995.

[19] C.J. Bult, O. White, G.J. Olsen, L. Zhou, R.D. Fleischmann, G. Sutton, et al. Com-

plete genome sequence of the methanogenic archaeon, methanococcus jannaschii.

Science, 273:1058{1073, 1996.

[20] C. Caskey, R. Eisenberg, E. Lander, and J. Straus. Hugo statement on patenting

of dna. Genome Digest, 2:6{9, 1995.

228

[21] C. Chothia. One thousand families for the molecular biologist. Nature, 357:543{

544, 1992.

[22] V. Chvatal. A greedy heuristic for the set covering problem. Math. Oper. Res.,

4:233{235, 1979.

[23] F. Collins, A. Patrinos, E. Jordan, A. Chakravarti, R. Gesteland, and L. Walters.

New goals for the us human genome project: 1998-2003. Science, 282(5389):682{

689, 1998.

[24] F. Corpet, J. Gouzy, and D. Kahn. The prodom database of protein families.

Nucleic Acids Research, 26:323{326, 1998.

[25] M.O. Dayho�, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary change

in proteins. Atlas of Protein Science and Structure, 5:345{352, 1978.

[26] H. Debar, M. Dacier, M. Nassehi, and A. Wespi. Fixed vs. variable{length patterns

for detecting suspicious process behavior. In ESORICS, 1998.

[27] A. Dembo and S. Karlin. Strong limit theorems of empirical functions for large

exceedances of partial sums of iid variables. The Annals of Probability, 19:1737{

1755, 1991.

[28] R.F. Doolittle. What we have learned and will learn from sequence databases. In

G. Bell and T. Marr, editors, Computers and DNA, pages 21{31. Addison{Wesley,

1990.

[29] R.F. Doolittle. Convergent evolution: the need to be explicit. Trends in Biochem-

istry, 1:15{18, 1994.

[30] R.F. Doolittle. The multiplicity of domains in proteins. Annual Reviews in Bio-

chemistry, 64:287{314, 1995.

[31] R.D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R.

Kerlavage, et al. Whole-genome random sequencing and assembly of haemophilus

inuenzae rd. Science, 269:496{512, 1995.

229

[32] S Forrest et al. A sense of self for unix processes. In IEEE Symposium on Security

and Privacy, pages 120{128, 1996.

[33] C.M. Fraser, J.D. Gocayne, O. White, M.D. Adams, et al. The minimal gene

complement of mycoplasma genitalium. Science, 270:397{403, 1995.

[34] M.R. Garey and D.S. Johnson. Computers and Intractability: a Guide to the

Theory of NP-Completeness. W.H.Freeman, 1979.

[35] D.G. George, W.C. Barker, and L.T. Hunt. Mutation data matrix and its uses.

Methods in Enzymology, 183:338, 1990.

[36] E.M. Gold. Language identi�cation in the limit. Information and Control, 10:447{

474, 1967.

[37] G.H. Gonnet, M.A. Cohen, and S.A. Benner. Exhaustive matching of the entire

protein sequence database. Science, 256:1443{1445, 1992.

[38] P. Green, D. Lipman, L. Hillier, R. Waterston, D. States, and J.M. Claverie. An-

cient conserved regions in new gene sequences and the protein databases. Science,

259:1711{1716, 1993.

[39] M. Gribskov, R. Luthy, and D. Eisenberg. Pro�le analysis. Methods in Enzymology,

Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences,

183:146{159, 1990.

[40] M. Gribskov, A. McLachlan, and D. Eisenberg. Pro�le analysis detection of dis-

tantly related proteins. Proceedings of the National Academy of Sciences, 88:4355{

4358, 1987.

[41] D. Gus�eld. Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, 1997.

[42] N.L. Harris, L. Hunter, and D.J. States. Megaclassi�cation: Discovering motifs

in massive datastreams. 10th National Conference on Arti�cial Intelligence, pages

837{842, 1992.

230

[43] S. Heniko�, E.A. Greene, S. Pietrokovski, P. Bork, T. K. Attwood, and Hood. L.

Gene families: The taxonomy of protein paralogs and chimeras. Science, 278:609{

614, 1997.

[44] S. Heniko� and J. Heniko�. Automatic assembly of protein blocks for database

searching. Nucleic Acids Research, 19:6565{6572, 1991.

[45] S. Heniko� and J. Heniko�. Amino acid substitution matrices from protein blocks.

Proceedings of the National Academy of Sciences, 89:915{919, 1992.

[46] S. Heniko� and J. Heniko�. Protein family classi�cation based on searching a

database of blocks. Genomics, 19:97{107, 1994.

[47] A.D. Hershey and M. Chase. Independent function of viral protein and nucleic

acid on growth of bacteriophage. Journal of Genetic Physiology, 36:39{56, 1952.

[48] P. Hieter and M. Boguski. Functional genomics: It's all how you read it. Science,

278(5338):601{602, 1997.

[49] R. Himmelreich, H. Hilbert, H. Plagens, E. Pirkl, B.C. Li, and R. Herrmann. Com-

plete sequence analysis of the genome of the bacterium mycoplasma pneumoniae.

Nucleic Acids Research, 24:4420{4449, 1996.

[50] Martinez H.M. An e�cient method for �nding repeats in molecular sequences.

Nucleic Acids Research, 11:4629{4634, 1983.

[51] Martinez H.M. A exible multiple sequence alignment program. Nucleic Acids

Research, 16:1683{1691, 1988.

[52] T.C. Hodgman. The elucidation of protein function by sequence motif analysis.

Computer Applications in Biosciences, 5:1{13, 1989.

[53] L. Holm and C. Sander. Removing near-neighbor redundancy from large protein

sequence collections. Bioinformatics, 14:423{429, 1998.

[54] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison{Wesley, 1979.

231

[55] P. Horton and K. Nakai. Better prediction of protein cellular localization sites with

the k nearest neighbors classi�er. International Conference on Intelligent Systems

for Molecular Biology, 5:147{152, 1997.

[56] L.C.K. Hui. Color set size problem with applications to string matching. In

Combinatorial Pattern Matching, pages 230{243, 1992.

[57] I. Jonassen, J.F. Collins, and D.G. Higgins. Finding exible patterns in unaligned

protein sequences. Protein Science, 4:1587{1595, 1995.

[58] T. Kaneko and S. Tabata. Complete genome structure of the unicellular cyanobac-

terium synechocystis sp. pcc6803. Plant Cell Physiology, 38:1171{1176, 1997.

[59] O.H. Kapp, L. Moens, J. Vaneteren, C.N. Trotman, T. Suzuki, and S.N. Vino-

gradov. Alignment of 700 globin sequences: Extent of amino acid substitution and

its correlation with variation in volume. Protein Science, 4:2179{2190, 1995.

[60] S. Karlin and S. Altschul. Methods for assessing the statistical signi�cance of

molecular sequence features by using general scoring schemes. Proceedings of the

National Academy of Sciences, 87:2264{2268, 1990.

[61] S. Karlin, A. Dembo, and T. Kawabata. Statistical composition of high-scoring

segments from molecular sequences. The Annals of Statistics, 2:571{581, 1990.

[62] A.P. Kosoresow and S.A. Hofmeyr. Intrusion detection via system call traces.

IEEE Software, pages 35{42, 1997.

[63] A. Krause and M. Vingron. A set{theoretic approach to database searching and

clustering. Bioinformatics, 14:430{438, 1998.

[64] A. Krogh, M. Brown, I. Mian, K. Sjolander, and D. Haussler. Hidden markov

model in computational biology: Applications to protein modelling. Journal of

Molecular Biology, 235:1501{1531, 1994.

[65] J.B. Kruskal. Multidimensional scaling by optimizing goodness of �t to a nonmetric

hypothesis. Psychometrica, 29:1{27, 1964.

232

[66] J.B. Kruskal. Nonmetric multidimensional scaling: a numerical method. Psycho-

metrica, 29:115{129, 1964.

[67] I. Ladunga. Phylogenetic continuum indicates `galaxies' in the protein universe:

preliminary results on the natural group structures of proteins. Journal of Molec-

ular Evolution, 34:358{375, 1992.

[68] R. Lathrop, T. Webster, R. Smith, P. Winston, and T. Smith. Integrating ai

with sequence analysis. In L. Hunter, editor, Arti�cial Intelligence and Molecular

Biology, pages 211{258. AIII Press { MIT Press, 1993.

[69] A.M. Lesk. Computational molecular biology. In A. Kent and J.G. Williams,

editors, Encyclopedia of Computer Science and Technology, volume 31, pages 101{

165. Marcel Dekker, 1994.

[70] B. Lewin. Genes VI. Oxford University Press, 1997.

[71] M. Linial, N. Linial, N. Tishby, and G. Yona. Global self{organization of all known

protein sequences reveals inherent biological signatures. Journal of Molecular Bi-

ology, 268:539{556, 1997.

[72] D. Lipman and W.R. Pearson. Rapid and sensitive protein similarity searches.

Science, 227:1435{1441, 1985.

[73] D. Maier. The complexity of some problems on subsequences and supersequences.

Journal of the ACM, 25:322{336, 1978.

[74] Schmid M.B. More than just `histone-like' proteins. Cell, 63:451{453, 1990.

[75] A.Z. Murzin, S.E. Brenner, T. Hubbard, and C. Chotia. Scop: A structural clas-

si�cation of proteins data base for the investigation of sequences and structure.

Journal of Molecular Biology, 247:536{540, 1995.

[76] S.B. Needleman, , and C.D. Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 48:443{453, 1970.

233

[77] A.F Neuwald and P. Green. Detecting patterns in protein sequences. Journal of

Molecular Biology, 239:698{712, 1994.

[78] C.G. Nevill-Manning, T.W.Wu, and D.L. Brutlag. Highly speci�c protein sequence

motifs for genome analysis. Proceedings of the National Academy of Sciences,

95:5865{5871, 1998.

[79] C.G. Neville-Manning, K.S. Sethi, D. Wu, and D.L. Brutlag. Enumerating and

ranking discrete motifs. In International Conference on Intelligent Systems for

Molecular Biology, 1997.

[80] J. Newmark. Statistics and Probability in Modern Life. Saunders College Publish-

ing, 1997.

[81] A. Ogiwara, I. Uchiyama, Y. Seto, and M. Kanehisa. Construction of a dictionary of

sequence motifs that characterize groups of related proteins. Protein Engineering,

6:479{488, 1992.

[82] C.A. Ouzounis and N.C. Kyrpides. Parallel origins of the nucleosome core and

eukaryotic transcription from archaea. Journal of Molecular Evolution, 42:234{

239, 1996.

[83] W.R. Pearson. Protein sequence comparison and protein evolution. Tutorial of

Intelligent Systems in Molecular Biology, 1995.

[84] W.R. Pearson and D. Lipman. Improved tools for biological sequence comparison.

Proceedings of the National Academy of Sciences, 85:2444{2448, 1988.

[85] G.R. Reeck, E. Swanson, and D.C. Teller. The evolution of histones. Journal of

Molecular Evolution, 10:309{317, 1983.

[86] A. Robinson. The story of writing. Thames and Hudson, 1995.

[87] M.A. Roytberg. A search for common patterns in many sequences. CABIOS,

8:57{64, 1992.

234

[88] R. Rymon. Search through systematic set enumeration. Third International Con-

ference on Principles of Knowledge Representation and Reasoning, pages 539{550,

1992.

[89] M.F. Sagot and A. Viari. A double combinatorial approach to discovering pat-

terns in biological sequences. Proceedings of the 7th Symposium on Combinatorial

Pattern Matching, pages 186{208, 1996.

[90] M.F. Sagot, A. Viari, and H. Soldano. Multiple sequence comparison: A peptide

matching approach. Proceedings of the 6th Symposium on Combinatorial Pattern

Matching, pages 366{385, 1995.

[91] P. Salamon, J.C. Wooton, A.K. Konopka, and L. Hansen. On the robustness

of maximum entropy relationships for complexity distributions of nucleotide se-

quences. Computational Chemistry, 17:135{148, 1993.

[92] C. Sander and R. Schneider. Database of homology-derived protein structures and

the structural meaning of sequence alignment. Proteins, 9:56{68, 1991.

[93] M. Saraste, P.R. Sibbald, and A. Wittinghofer. The p{loop: a common motif in

atp- and gtp-binding proteins. Trends in Biochemistry, 15:430{434, 1990.

[94] S.R. Schmid and P. Linder. Dead protein family of putative rna helicases. Molecular

Microbiology, 6:283{291, 1992.

[95] H.O. Smith, T.M. Annau, and S. Chandrasegaran. Finding sequence motifs in

groups of functionally related proteins. Proceedings of the National Academy of

Sciences, 87:826{830, 1990.

[96] R.F. Smith and T.F. Smith. Automatic generation of primary sequence patterns

from sets of related protein sequences. Nucleic Acids Research, pages 118{122,

1990.

[97] T.F. Smith and M.S. Waterman. Identi�cation of common molecular subsequences.

Journal of Molecular Biology, 147:195{197, 1981.

[98] E. Sobel and M. Martinez. A multiple sequence alignment program. Nucleic Acids

Research, 14:363{374, 1986.

235

[99] R.J. Solomono�. A formal theory of inductive inference, parts i and ii. Information

and Control, 7:1{22, 224{254, 1964.

[100] E.L. Sonnhammer, S.R. Eddy, and R. Durbin. Pfam: a comprehensive database

of protein domain families based on seed alignments. Proteins, 28:405{420, 1997.

[101] V.B. Strelets, I.N. Shindyalov, and H.A. Lim. Analysis of peptides from known

proteins: clusterization in sequence space. Journal of Molecular Evolution, 39:625{

630, 1994.

[102] W.S. Sutton. The chromosome in heredity. Biology Bulletin, 4:231{251, 1903.

[103] M. Suyama, T. Nishioka, and O. Jun'ichi. Searching for common sequence patterns

among distantly related proteins. Protein Engineering, pages 1075{1080, 1995.

[104] M. Suyama, T. Nishioka, and J. Oda. Searching for common sequence patterns

among distantly related proteins. Protein Engineering, 8:1075{1080, 1995.

[105] R.L. Tatusov, E.V. Koonin, and D.J. Lipman. A genomic perspective on protein

families. Science, 278:631{637, 1997.

[106] G. Thode, J.A. Garcia-Ranea, and J. Jimenez. Search for ancient patterns in

protein sequences. Journal of Molecular Evolution, 42:224{233, 1996.

[107] G. Vogel. Tracking the history of the genetic code. Science, pages 329{331, 1998.

[108] J. Wang, T.G. Marr, D. Shasha, B.A. Shapiro, and G. Chirn. Discovering active

motifs in sets of related protein sequences and using them for classi�cation. Nucleic

Acids Research, 22:2769{2775, 1994.

[109] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal

of Computational Biology, 1(4):337{348, 1994.

[110] M.S. Waterman. Parametric and ensemble alignment algorithms. Bulletin of Math-

ematical Biology, 4:89{92, 1994.

[111] M.S. Waterman. Introduction to Computational Biology: Maps, Sequences,

Genomes. Chapman and Hall, 1995.

236

[112] M.S. Waterman, D.J. Galas, and R. Arratia. Pattern recognition in several se-

quences: Consensus and alignment. Bulletin of Mathematical Biology, 46:515{527,

1984.

[113] J.D. Watson and F. Crick. Molecular structure of nucleic acids: A structure for

deoxyribose nucleic acid. Nature, 171:737{738, 1953.

[114] J.D. Watson, N.H. Hopkins, J.W. Roberts, J. Steitz, and A.M. Weiner. Molecular

Biology of the Gene. The Benjamin/Cummings Publishing Company, 1987.

[115] N. Williams. Closing in on the complete yeast genome sequence. Science, 268:1560{

1561, 1995.

[116] J.C. Wooton and S. Federhen. Statistics of local complexity in amino acid sequences

and sequence databases. Computational Chemistry, 17:149{163, 1993.

[117] T.D. Wu and D.L. Brutlag. Identi�cation of protein motifs using conserved amino

acid properties and partitioning techniques. International Conference on Intelligent

Systems for Molecular Biology, pages 402{410, 1995.

[118] G. Yona, N. Linial, N. Tishby, and M. Linial. A map of the proteins space |

an automatic hierarchical classi�cation of all known proteins. In International

Conference on Intelligent Systems for Molecular Biology, 1998.

237

