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Chapter 1

Introduction

1.1 The IEEE Standard for Floating-Point Arithmetic

The floating-point units of most general-purpose processors in use today conform to the IEEE
Standard for Binary Floating-Point Arithmetic [47], from hereon referred to as simply “the
IEEE Standard.” (There is a corresponding international standard [46].) One of the reasons
this standard has become so widely adopted is that its designers restricted its applicability to
floating-point arithmetic engines (perhaps at least partially for pragmatic reasons). Accordingly,
the IEEE Standard specifies such things as data formats and what values are representable in
them, basic operations that can be performed on representable values, and detailed descriptions
on how these operations are to be carried out. These descriptions stipulate how results are to
be rounded to fit within the constraints of these data formats, what the behavior should be
when special (or exceptional) computational situations arise, and in which areas control can be
effected on a conforming engine’s behavior at the time a computation is proceeding. However,
the IEEE Standard stops short of specifying what high-level language constructs are to be used
to take advantage of the features it describes.

In actuality, there is a second, more general standard for floating-point arithmetic: the
IEEE Standard for Radix-Independent Floating-Point Arithmetic [48]. This second standard
can apply to either binary or decimal floating-point systems, for example. Also, whereas the
former specifies for at least some of the data formats it defines what bit patterns are to be used
to encode representable values, the latter does not go to this extent, and in fact does not even
give a specific width for any of the data formats it describes.

Although it is theoretically possible to devise implementations of [47] that do not conform to
[48], in practice, many binary floating-point arithmetic engines conform to both standards. In
addition to specifying the behavior in edge cases more completely in a few situations, the latter
standard requires the inexact exception to be signaled appropriately during certain conver-
sions, and adds two more functions to the list of recommended functions in the appendix—see
chapter 7.

Instead of exhaustively describing the IEEE Standard here, most subsequent chapters ex-
plore one aspect of the IEEE Standard in detail, noting how much of that aspect is typically
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2 CHAPTER 1. INTRODUCTION

implemented in hardware, and to what extent that aspect is or could be supported in high-level
languages. The penultimate chapter outlines how to support the IEEE Standard in two popu-
lar high-level languages, Ada and Java, and the appendix contains a more detailed description
showing how the IEEE Standard could be supported in Ada.

1.2 What does it mean to support the IEEE Standard?

Some language definitions, especially recent ones, now make reference to the IEEE Standard.
Haskell 98 [13] is an example (picked at random) of such a definition. On target platforms in
which IEEE-Standard-conforming floating-point arithmetic engines are available, a couple of
data formats defined by the IEEE Standard are available, as are most, if not all, the opera-
tions described therein. Presumably, special computational situations are handled as the IEEE
Standard requires as well. One could ask, “What more could one want beyond this (level of
support)?” The next chapter mentions specific criteria that language designers should keep in
mind if they truly wish to fully support the IEEE Standard, and will make clear that providing
full support for the IEEE Standard is not as trivial as many language definitions, including
that of Haskell 98, would make it appear.

1.3 Considerations in deciding how to support the IEEE Stan-
dard in high-level languages

In deciding how to support the IEEE Standard in programming languages, it is important to
become familiar with how this standard is implemented in various floating-point arithmetic
engines, as well as what features tend to be implemented in hardware, and what features
are commonly implemented in software. This way, one can avoid making access to the IEEE
Standard’s features costly. Otherwise, the effort in figuring out how to support the IEEE
Standard can be in vain, since programmers will be unlikely to frequently use features that
cause their programs to run more slowly. This is especially true for many who write programs
that intensively use floating-point arithmetic, since these programs need to perform as efficiently
as possible.

Perhaps the most widely used floating-point arithmetic engine today is the one incorporated
in Pentium processors from Intel [6], as well as other processors conforming to this architec-
ture. Subsequent chapters cover this processor’s support for IEEE Standard in detail. Other
interesting or commonly-used architectures, such as the Motorola 68000 series [1] and PowerPC
architecture [8], Sun’s SPARC [70], Hewlett-Packard’s PA-RISC [5], DEC Alpha [2], and In-
mos T9000 [9], are also examined. (Although Intel’s and Hewlett-Packard’s upcoming IA-64
architecture is not discussed, it is similar to Intel’s x86 architecture [3].)

Floating-point arithmetic engines that support floating-point formats with differing preci-
sion will often round results more than once—first to fit some intermediate destination, and
then again to fit the final destination. (Chapter 6 discusses this in greater detail.) This double
rounding can cause results to differ from what would be obtained if results were rounded just
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once, so understanding when double rounding matters and when it does not, and what the
consequences are in avoiding double rounding (especially in terms of a program’s performance)
is important from the context of programming language design.

It is also important to consider how programmers may want to use the features of the IEEE
Standard. Subsequent chapters discuss these matters as well.

Finally, current languages’ support (or lack thereof) for the IEEE Standard needs to be
assessed, and different ways of supporting the IEEE Standard’s features need to be considered.
Hundreds of languages have been designed over the years. Writing about each of them would
make this work excessively long, so only a few languages are discussed in any detail. These
include languages in which numerically intensive programs have traditionally been written, such
as Fortran, C, C++, and Ada. In addition, some extensions to these languages are mentioned,
as well as how the IEEE Standard’s features are (or are not) made available in implementations
of these languages. Some newer languages are also mentioned, such as Java and variants thereof,
Limbo, and the author’s own µln.

1.4 Prior Related Work

There have been several attempts to support the IEEE Standard in high-level languages. As
previously mentioned, some newer languages, like Haskell 98 [13], Modula-3 [63], and Java
[38], tend to support those features that are fairly trivial to support with traditional language
facilities, but which many older languages don’t even support explicitly. (This is not to say
that it is impossible to largely achieve the same level of support in implementations of some of
these older languages, such as what the Optimizing Oberon Compiler [64] does for the Oberon-
2 language [62], only that these older languages generally do not mention how conforming
implementations should support the IEEE Standard.)

More complete and serious attempts to support the IEEE Standard in (existing) high-level
languages include: the Standard Apple Numeric Environment (SANE) [12], which includes
bindings for C and Pascal; a set of extensions to the C language from the Numeric C Extensions
Group (NCEG), whose work is being incorporated into the upcoming revision of the C language,
popularly known as C9X [17]; and RealJava [21] and Borneo [22], both of which are dialects of
Java. These efforts are discussed in subsequent chapters.

In all of these efforts, and in contrast to this thesis’ proposal for how to support the IEEE
Standard in Ada [11], the language itself has been modified in some way to achieve some satis-
factory level of support for the IEEE Standard. It was this lack of elegance that motivated this
author to design the µln language [30], which was a study on how well the IEEE Standard could
be supported in a high-level language if there were no constraints on what the characteristics
of the language were. µln is also discussed in subsequent chapters.

Another problem with some of these efforts, and with Dewar’s binding for Ada 83 [10, 24]
(which provides reasonably complete support for the IEEE Standard), is that making use of
the features the IEEE Standard describes is not always as convenient and natural as one might
wish: access to many of these features is often available only through function or procedure
calls, rather than via higher-level abstractions, as proposed in the next chapter.
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A somewhat different strategy for “supporting” the IEEE Standard is that of the Language
Independent Arithmetic Standard (LIAS) [45]. One way to view LIAS is as a guide as to
how to define and document (possibly without explicitly mentioning the IEEE Standard) the
characteristics and semantics of languages’ floating-point facilities, which is a serious deficiency
in many language definitions. (For example, a Fortran language processor may insist that the
sum of 2 and 2 is 5, and still fully conform to the Fortran standard! Among other things, this is
the kind of nonsense LIAS purports to eliminate.) Brown’s model for floating-point arithmetic
[14], which Ada adopted in a modified form, can also be viewed as an earlier example of this
kind of strategy.

One problem with this kind of strategy is that, in an attempt to be applicable to a wide
variety of machines, both real and imagined, the model of arithmetic these standards provide
is not sufficiently specific [34]. Consequently, one has to program defensively, even to the point
of making one’s programs work on imaginary machines that exhibit highly ludicrous behavior
that will never occur in practice [53]. Indeed, it is sometimes quite challenging to devise
algorithms that will work on machines that could possibly conform to these models of floating-
point arithmetic. The reality is that actual machines’ floating-point behavior, especially that
of the most current computers, does not differ nearly as much as these models allow. That
is, these models of floating-point arithmetic are not sufficiently specific, and thus they fail, for
example, to make available all the features of the IEEE Standard.

In addition, these approaches do not satisfactorily answer the question of what it means to
fully support the IEEE Standard, though some have mentioned some of the issues relevant to
supporting the IEEE Standard in a high-level language [28, 27, 26]. Now, some might argue
that a higher level view of floating-point arithmetic is desirable in high-level programming
languages. After all, they may say, once optimizing language processors start tweaking the
code, the details of floating-point behavior become somewhat fuzzy. However, a hallmark of
good programming languages is allowing for a high level of abstraction, while at the same time
appropriately providing control over the small details that, at least for numerical programs,
can make the difference between code that works reliably every time, and code that provides
satisfactory results as long as all the astrological bodies are aligned just so.



Chapter 2

What Does It Mean to Support the
IEEE Standard?

As was mentioned in the previous chapter, some recent language definitions (Java [38] among
them) seem to equate supporting the IEEE Standard with providing access to one or two data
formats and to most of the operations described therein. Words to the effect of “all operations
are performed as described in the IEEE Standard” may even appear in some of these language
definitions. As will be seen in this chapter, such support falls short of what one should expect
from a high-level programming language that truly supports the IEEE Standard.

Subsequent chapters explain in detail what the features of the IEEE Standard are, but very
briefly, this standard gives specifications for: four different (but not necessarily distinct) data
formats and the set of representable values in each of these formats; a set of operations on
these values; how the results of these operations are to be rounded to fit their destinations (if
applicable); what happens when special computational situations arise; and, though not strictly
part of the Standard, a set of recommended functions (described in an appendix) that ought
to be available.

Though typically implemented as a combination of hardware and software, and sometimes
even purely in software, the IEEE Standard is written in such a way as to allow it to be
implemented purely in hardware. Little guidance is provided as to how its features should be
made available in a high-level programming language. While it could be argued that some
features are more appropriate for low-level programming, the fact remains that some of the
IEEE Standard’s useful features are not generally available in the programming languages that
are commonly in use today.

The question, then, is “What does it mean to support the IEEE Standard in a high-level pro-
gramming language?” The answer this work proposes is as follows: A high-level programming
language properly supports the IEEE Standard if it:

1. Provides access to all the floating-point data formats described in the IEEE Standard
supported by machines that might be executing programs written in the given language.
(It is not good enough to give the excuse that programs written in a given language can

5



6 CHAPTER 2. WHAT DOES IT MEAN TO SUPPORT

only run on some imaginary machine that only supports a certain subset of the data
formats the IEEE Standard describes, and that therefore the language only provides
access to those data formats.) See chapter 3.

2. Provides access to all the operations described in the IEEE Standard (including all 26
predicates related to the comparison of two floating-point values), as well as to the func-
tions described in the appendix of the IEEE Standard for Radix-Independent Floating-
Point Arithmetic [48]. See chapter 7.

3. Provides representations for all special values, such as infinities, NaNs, and negative zero,
in such a way that they can be used as compile time constants, and without incurring
side effects (such as setting status flags, invoking traps, or otherwise signaling that some
special computational situation has occurred) by virtue of simply mentioning them in a
program (that is, without actually using them in some computation). See chapter 8.

4. Provides the ability to specify what rounding mode (and rounding precision mode, if
appropriate) should be used when performing arithmetic at compile time, as well as the
ability to arbitrarily change at run time the rounding mode (and rounding precision mode,
if appropriate) in effect for floating-point operations. See chapters 4 and 5.

5. Provides access to the status flags described in the IEEE Standard, and, if feasible, the
ability to associate and disassociate trap handlers with the various exceptional situations
described in this standard. See chapter 8.

6. Confers upon programmers the ability to write code in such a way that, were the values
of the various operands appearing in any code fragment known, along with enough of
the context in which the given fragment appears, and the basic implementation-defined
characteristics of the language processor being used, one would be able to determine
what the result of the computation would be, regardless of how aggressively the language
processor in question applies various transformations in an attempt to improve the quality
of the generated code. (In other words, results should be deterministic, and not depend
on whether certain optimizations or code improvements were or were not performed.) See
chapter 9.

7. Provides all the above using the natural syntax and facilities of the language. (It is not
enough, for example, to provide access to the operations described in the IEEE Standard
solely through normal function calls, if one would typically use infix syntax to denote
the same kinds of operations when writing programs in a given language. Nor is it good
enough to provide access to the data formats described in the IEEE Standard using
composite types, such as records or structures, if the language already provides primitive
floating-point data types.)

8. Does not gratuitously reduce performance in general, especially when none of the specific
features of the IEEE Standard are being used at a given point in a program. (An example
of unnecessary performance degradation is requiring the status flags to be checked after
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every floating-point operation in order to be able to detect, say, exactly where [if ever] the
invalid operation exception is signaled during the course of a computation. Another such
example is requiring every floating-point result to be explicitly checked in an effort to
avoid double rounding at all costs—Java’s traditional floating-point semantics basically
requires the latter when certain processors simulate the Java Virtual Machine’s behavior
[38]. See chapters 6 and 9.)

Note that strictly speaking, the last three requirements do not emanate directly from the
IEEE Standard. However, going through the exercise of making the features of the IEEE
Standard available in a high-level language would clearly be pointless if it were not possible to
predict what the results of a computation would be (see requirement 6 above), since this would
conflict with “the desiderata that guided the formation of [the] standard,” as reported in the
Standard’s foreword [47]. Also, if the IEEE Standard’s features were made available in such
a way that they were either cumbersome to use or imposed a significant performance penalty,
they would be highly unlikely to be used, except perhaps for a few cases in which there were
very clear benefits to their use, again defeating the purpose of the IEEE Standard.

As will be seen in subsequent chapters, very few language definitions fully support the IEEE
Standard as outlined above. It will be shown that, depending on the given language definition,
it is possible in some, though not all, cases to supplement a language in such a way as to fully
support the IEEE Standard, without amending the language definition itself. It will also be
shown how a language can superficially appear to support the IEEE Standard, but yet require
fundamental changes in order to truly support this standard, as outlined above.
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Chapter 3

Supporting Data Formats in
High-Level Languages

3.1 IEEE Standard requirements in regards to data formats

The IEEE Standard defines four data formats: two basic formats and two extended formats.
The basic formats are the single and double formats, and the extended formats are the single
extended and double extended formats. The single format is the only format whose support is
required. Support for the other formats is optional, though the IEEE Standard does recommend
support for the extended format corresponding to the widest supported basic format.

Each of these formats must be capable of representing a certain set of values, including
certain nonzero finite values, at least one signaling and one quiet NaN (Not a Number), and
positive and negative zeros and infinities. (Chapter 8 discusses NaNs, zeros, and infinities in
greater detail.)

The nonzero finite values that must be representable in a given format are all those of the
form (−1)s2Ei, where s is a finite integer, E is an integer between Emin and Emax, both of which
are format dependent, and i is a positive integer less than 2p, where p is a positive integer that
is also format dependent. The values of Emin, Emax, and p are specified for the basic formats;
an upper bound for Emin and a lower bound for Emax and p are specified for the extended
formats1. Table 3.1 lists the approximate range of representable finite magnitudes and decimal
digits of accuracy for the various formats2.

The width of the single format is 32 bits, and that of the double format is 64 bits. Encodings
in both of these formats consist of three fields: the sign, the power of two, and the significand,

1The presentation here is slightly different (and hopefully slightly simpler) from that given in the IEEE
Standard. In particular, instead of the integer i, the presentation in the Standard is based on a significand
strictly between 0 and 2 consisting of at most p binary digits, with the bounds for E adjusted accordingly.

2The ranges in Table 3.1 do not take into account denormalized numbers, which allow smaller magnitudes
to be represented at the expense of less precision. (Denormalized numbers are discussed in greater detail in
Chapter 8.) If denormalized numbers were taken into account, the lower bound of the ranges would be extended
approximately as follows: 10−45, at least 10−317, 10−324 , and at least 10−4951 for the single, single extended,
double, and double extended formats, respectively.

9
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Approximate Approximate Binary
Format Range of Normalized Decimal Digits Digits of

Magnitudes of Accuracy Accuracy
Single 10−38 – 1038 7 24
Single at least at least 9 at least 32
Extended 10−308 – 10308

Double 10−308 – 10308 almost 16 53
Double at least at least 19 at least 64
Extended 10−4932 – 104932

Table 3.1: Format ranges

with the most significant bit of the significand being implied (that is, not stored). The encodings
are fully specified in such a way that, except for NaNs, every representable value in a given
format corresponds to exactly one bit string, and vice-versa.

Special values (that is, infinities, NaNs, denormalized numbers, and zeros) are encoded by
having the bit string in the exponent (that is, power of two) field be all ones or all zeros. (Using
the notation above, a denormalized number is any number which can be written in the form
(−1)s2Ei, and for which no value of E between Emin and Emax would allow the given number
to be written in this form with 2p−1 ≤ i < 2p. In the encodings for such numbers, the most
significant [implied] bit of the significand is zero.)

Neither the width nor how values are to be encoded is specified for the extended formats,
although Table 3.1 of the Standard seems to imply that encodings should not be more compact
than is possible using only binary digits. (Of course, in practice, encodings are unlikely to
consist of anything other than groups of binary digits.) Note that the constraints on both the
double and double extended formats also fit the constraints on the single extended format, that
is, both the double and double extended formats qualify as single extended formats.

3.2 Hardware facilities supporting data formats

The question of whether a given floating-point arithmetic engine supports the data formats
described in the IEEE Standard demands in general a complex answer, particularly if one takes
into account the operations the engine is capable of performing on values represented in these
formats. Even without considering any operations which the arithmetic engine provides, it
is not obvious what it means for an arithmetic engine to support a given data format. For
the purposes of this chapter, however, the discussion will mostly be concerned with whether
the given arithmetic engine is capable of moving an arbitrary value in one of these formats
from primary memory to one of its internal registers with a single instruction, and then move
(that is, store), again with a single instruction, that value to either a different internal register
(assuming the engine has more than one internal register), or back to primary memory, without
any change whatsoever to the value. That is, if the destination is another register, the value
in that register must be an identical copy of that in the original register. If the destination is
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primary memory, the value must be an identical copy of that in the original location in primary
memory.

The floating-point units in implementations of the Intel x86 architecture support the single
and double formats, as well as the double extended format. The width of the latter is 80 bits,
and is subdivided into the same three fields as the other two formats. The format-dependent
parameters corresponding to the double extended format barely fulfill the requirements of the
Standard, and values are encoded similarly to how they are encoded for the other formats,
except that all bits in the significand are stored explicitly. As explained in Chapter 8, this
leads to some illegal encodings, which, if ignored, allow one to affirm that the double extended
format is fully supported in the sense described above.

Support for these data formats is similar in the Motorola 68000 architecture, except that
the width of the double extended format is 96 bits, since it includes an extra 16 bits of unused
padding. Also, there are no illegal encodings in this format.

Most RISC architectures support the single and double formats. Some of them, such as
DEC’s Alpha and Motorola’s PowerPC architectures do not support any other formats. Other
RISC architectures, such as Sun’s SPARC and HP’s PA-RISC, define a 128-bit extended double
format that is similar to the double format, except that the exponent is 15 bits wide and
the significand occupies 112 bits. However, this format is mostly of academic interest, since
implementations of these architectures do not include hardware support for operations on data
in this format. Implementations of the Motorola 88000 architecture included hardware support
for an 80-bit wide extended double format very similar to that of Intel’s x86 extended double
format.

3.3 Making data formats available in high-level languages

One of the most common ways of making a data format available in a high-level language is by
means of a special data type, perhaps associated with a special keyword or identifier. Such a
keyword or identifier provides a means to conveniently refer to values of this data format.

A less convenient, but still common, way of making a data format available is through a
user-defined data type, which is a method one may be tempted to use in order to support a
relatively uncommon data format, such as the double extended format, in an implementation of
a high-level language that lacks support for such a format. Using such a method poses several
challenges. Firstly, a data type must be defined (most likely using one or more predefined data
types) in such a way that the amount of storage associated with objects of the type is not
less than that required by the associated data format, regardless of which implementation of
the language is used. Ideally, the amount of storage should be exactly that required by the
associated data format, and objects of that type should be aligned strategically in primary
memory so as to not impose an undue performance penalty when used.

Secondly, in order for performance to be tolerable, some sort of knowledge would need to be
built into the language processor so maximum advantage of the features of the floating-point
arithmetic engine can be taken. Even for operations as simple as assigning a value to a variable,
the appropriate kind of registers should be used, for example. It would be very inefficient to,
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say, keep all variables of a given type in memory, as some language processors do when dealing
with structures or records, loading to and storing from floating-point registers when operating
on such data, and using (possibly narrower) general purpose registers when copying values from
one variable to another.

Since parameters whose type is user defined may sometimes be passed in memory rather
than, say, in floating-point registers, there may be some issues related to the calling convention.
For example, suppose one associates a record consisting of three 32-bit floating-point quantities
with an extended double format that is 96 bits wide. If such records are passed in memory,
one may want them aligned on a 128-bit address boundary in order to improve performance,
which may be difficult to achieve—the calling convention may only guarantee 64-bit alignment.
Alternatively, the calling convention could require passing such a record using one floating-point
register for each field, or, if such records consisted of three 32-bit integers instead, the calling
convention could require passing them using general purpose registers. In either case, some
trickery may be required in order to force such a parameter to memory so arithmetic can be
performed on it after loading it in a (single) floating-point register.

Chapter 7 has a more detailed discussion of how operations on floating-point values can be
made available in high-level languages, but in order to avoid the overhead of calling ordinary
functions when operating on data of a given type, special “intrinsic” or generic functions may be
provided. A language processor could translate these intrinsic functions directly into assembly
or machine language, possibly based on the data type of the argument or arguments.

In any case, resorting to user defined types is not as elegant as having a built in data type
to specifically support a given data format.

A third way of making a data format available in a high-level language is to basically
combine the two approaches above, and use a preprocessor to translate programs using special
syntax into a form that more closely conforms to the constructs of a given language, or into a
combination of high-level language constructs and (pseudo) assembly language. In an extreme
case, one could even envision such a preprocessor making transformations to make use of the
floating-point arithmetic engine in ways that are not apparent from glancing at the original
program, in much the same way as a vectorizer program may transform, say, a Fortran program
so as to make it easier for a Fortran compiler to recognize opportunities to vectorize a code.

Of course, such an approach would likely have the usual drawbacks associated with the use
of any preprocessor: the process of translating from a high-level language to machine language
is more complicated, as is debugging a program. However, this approach does not require one to
modify every language processor one is interested in using, and avoids many problems inherent
with creating yet another language whose sole reason for existence is to support a new data
type.

If one were to develop a preprocessor and is not constrained by having to produce output
that strictly conforms to a standard language definition or to a subset of a language that more
than one language processor accepts, one could develop a preprocessor that takes advantage of
the peculiar features of a given language processor. The given language processor might, for
example, have partial support for the data format in which one is interested, perhaps including
special intrinsic functions or the ability to specify what kind of register should be used to hold
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a particular piece of data.

3.4 Associating floating-point literals with data formats

Many different ways can be devised to associate floating-point literals with particular data
formats. One way is to implicitly associate floating-point literals with data formats, perhaps
based on the magnitude of the value being represented, or how many digits make up the literal.
Of course, using schemes like these would make programming more of an error prone task than
it already is.

One could resort to calling an appropriate function in order to do the conversion from
the external representation to the internal one, but then the literal would probably not be
usable in places in which a constant expression is required. In addition, this approach adversely
affects performance, and requires one to depend on the quality of the library containing such a
function (or functions). However, unlike some other approaches, this would not likely require
any changes to the definition of the language.

A very similar approach is to make conversion attributes available, the advantages being
that conversion could take place at translation time, and no libraries would be involved.

Perhaps the most common way is to make the data format used depend on the suffix at the
end of the floating-point literal. For example, the suffix d could be appended to a floating-point
literal to indicate that it should be represented internally in (a format not narrower than) the
double format. A disadvantage of this approach is that it can be tedious (and error prone) to
change the format associated with each literal in a section of code, should one desire to do so.
In addition, depending on how the language is designed, it may be difficult to write a program
portably this way, since some implementations may not support certain data formats.

Another common way is to give literals names, and then associate these names with appro-
priate data types. This could make it easier to change the data format used to represent the
literals in a program, especially if these literals are associated with a user-defined data type,
since this would involve simply changing the definition of that data type.

A slight variation on this approach is to allow suitable prefixes, such as names of data types,
to be prepended to floating-point literals. This would have the advantage of not requiring one
to name every floating-point literal, though it could make it cumbersome to write code when a
particular floating-point literal is needed in more than one place in a program.

Finally, a combination of the above approaches could be provided.

3.5 Other issues related to numeric literals

In programs, numeric literals are often represented in decimal notation. Some literals may
be exactly representable in any data format, in which case it is not critical how that literal
is actually stored internally. In general, however, a given value can only be approximated to
varying degrees of accuracy, depending on what data format is used.

Given this, one may be tempted to store numeric literals using the widest data format
available so as to minimize the loss of information in the conversion from the external to
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the internal representation of a number. This could lead, however, to double rounding (on
rare occasions) if, for example, the numeric literal needs to later be converted to a narrower
format. That is, the actual value used in the computation could differ from the value that is
representable in the narrower format and nearest to the one specified in the original program.
(See Chapter 6 for more information on double rounding.) The programmer may have specified
what data format is to be used to represent a given numeric literal, but if not, in general it is
better to avoid converting numeric literals to their internal representations until it is clear in
what format the associated value will actually be required to be represented during the course
of a computation.

One easy mistake to make is to convert a given numeric literal to some data format only once,
and then use that internal representation in every place in which that numeric literal appears,
even if different data formats are appropriate in different places in the program. Another easily
overlooked mistake is to keep track of fewer digits in a numeric literal than are required in order
to be able to correctly round the specified value to the format or formats in which the literal is
used.

3.6 Issues related to mixed-language programming

The most obvious issue related to mixed-language programming is whether data formats used
when passing parameters between functions or procedures processed by different language pro-
cessors, or to store the return value of a function match the expectations of the receiver of these
values.

Also, if processed by different language processors, functions or procedures which access
global variables need to make the same assumptions as far as what data formats are used for
these variables.

A more subtle issue has to do with numeric literals, and can be illustrated with the following
example. Suppose one were to compute some multiple of π, and subsequently pass this value to
a library function whose source code was processed by a different language processor. Suppose
that library function divides the value passed into it by π. Even if the numeric literal used in
both functions to represent π were written identically, if this literal is represented internally
using different formats, the quotient computed in the library function is unlikely to be an
integer, thus possibly leading to unexpected results. In order to avoid such surprises, the same
format needs to be used for such literals, even when processed by different language processors3.

3Actually, this problem can occur even when the same language processor is used to process the entire
program, since some language processors can use different data formats for different numeric literals, even if they
are written identically.
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3.7 What support exists in high-level languages

3.7.1 Traditional language designs

Many language definitions do not specify what data formats must be supported. Instead,
language definitions are usually more concerned with the concept of data types. Discussion
about data types may refer to sets of values that must be representable, but such discussion
usually stops short of explaining how such values are to be encoded, or claiming to exhaustively
enumerate the full set of values that an object of a given data type may have. An implementation
is usually free to map data types to the data formats supported by the implementation, subject
to a few minimal constraints.

The definition of the C language [16] is typical of the approach that many language defi-
nitions take. It defines three floating-point data types: float, double, and long double. There
are few constraints on what values must be representable and how values are to be encoded,
among them that the set of values that objects of type long double can have must include all
those that objects of type double can have, which in turn must include all those that objects
of type float can have. Thus, the same data format can be associated with all three of these
data types.

Constraints on the standard header file float.h, which characterizes some salient features of
the implementation’s floating-point system, require values whose magnitude is between 10−37

and 1037 to be representable as normalized numbers. In addition, the precision of representable
numbers must be such that one must be able to convert arbitrary 6- or 10-decimal-digit numbers
(depending on whether one is referring to the float or double data type) to their internal
representation, and then back again to decimal notation, with the result being the original
number. Thus, if the radix for floating-point numbers were two, and the encoding were similar
to that of the basic formats as specified in the IEEE Standard, the exponent range would have
to at least include integers between −123 and 123, and the number of bits in the significand
would have to be at least 21 and 35 for the float and double data types, respectively. The
constraints on the long double data type are the same as for the double data type.

Fortran is slightly different in that implementations are strongly encouraged to use different
data formats to encode values of type REAL and DOUBLE PRECISION, which are the only
two floating-point data types that all implementations must support4. Fortran is otherwise
similar to C, except that it provides a way for implementations to support any number of
different floating-point data types5.

Ada [11] also provides a way for implementations to support any number of different floating-
point data types. Similarly to Fortran, one can select from among these, for example, by
specifying how much precision is desired, possibly in combination with the desired range of

4Since the range (but not the precision) of these two data types can be the same, one could theoretically use
the same data format, say, the double format, for both data types. On an implementation of the x86 architecture,
the rounding precision mode could be altered depending on the precision corresponding to the data type of the
result.

5Fortran 77 [31], an earlier version of Fortran, did not provide a way to support more than two floating-point
data types.
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representable numbers. Floating-point literals can be named or unnamed. They can be written
in any base between two and sixteen. Unnamed floating-point literals are of type universal real,
whose set of values can be thought of as being the set of rational numbers. (Such values are
typically converted to some other data type before being used in an expression.) Named floating-
point literals can be associated with any floating-point data type. In addition, certain attributes
can be used to associate a floating-point literal with a data type.

In C, C++, and Fortran, every floating-point literal is associated with some floating-point
data type, depending on what the suffix, if any, at the end of the literal is. (In Fortran, the
associated data type can also depend on what letter is used to separate the power of ten from
the rest of the literal.) Conversely, for every predefined floating-point data type, there is a
corresponding syntax for writing floating-point literals of that type.

3.7.2 Implementations of traditional languages

Although in the past this was not always the case, many language implementations now sup-
port the floating-point data formats implemented in hardware on the target processor. Thus,
implementations targeting SPARC and PA-RISC processors tend to support the single and
double formats, but not either of the extended formats, even though both of these architec-
tures define a double extended format. On the other hand, implementations targeting Intel’s
x86 architecture usually support the single and double formats, as well as the double extended
format, provided the language definition defines more than two floating-point data types. For
example, Fortran 77 compilers, such as Microway’s NDP Fortran compiler, may lack support
for the double extended format. SunSoft’s Fortran compiler only supports the double extended
format when targeting SPARC processors; surprisingly, their C compilers support the double
extended format, regardless of whether the target processor is an implementation of the SPARC,
PowerPC, PA-RISC, or x86 architecture. Presumably, on RISC processors, software is used to
perform arithmetic involving the double extended format.

3.7.3 Extensions to traditional languages

The main advantage that extensions to traditional languages typically offer in the area of
data formats is standardization as to how one can refer to the data formats described in the
IEEE Standard. For example, implementations of the Standard Apple Numerics Environment
(SANE) support the single, double, and double extended formats, adding predefined data types
as necessary for this purpose. The SANE does not support the single extended format. Floating-
point literals are always converted to the double extended format in SANE Pascal and C.

The extensions to the C language described in [75] are somewhat less stringent in that, while
support for the single and double formats is required, support for the double extended format
is optional. Thus, implementations must provide access to at least two distinct data formats.
In addition, there are aliases for the most efficient floating-point formats that are at least as
wide, respectively, as the single and double formats. This set of extensions does not make any
effort to provide access to the single extended format. Floating-point literals are allowed to
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be represented internally in a format wider than that associated with their corresponding data
types. Floating-point literals can optionally be written in hexadecimal notation.

3.7.4 New language designs

µln [30] provides three floating-point data types: one is associated with the single format,
another with the widest format that the target processor supports. The third data type is
associated with the double format if the target processor supports it; otherwise, this data type
is associated with a format whose width is (strictly, when possible) between that of the other
two data types. Floating-point literals are all of type decimal, which is a special composite
data type consisting of two integers: one containing the significand, and another the power of
ten. Unnamed floating-point literals are converted (possibly at translation time) to the widest
supported data format before use; named floating-point literals are converted to the data format
corresponding to the precision mode in effect. (Chapter 5 discusses precision modes.) Unnamed
floating-point literals could suffer double rounding in certain cases.

Some languages support only one or two floating-point data types (or formats), even if the
processor actually executing programs written in those languages supports two or three data
formats in hardware. For example, Limbo [59] supports only the double format, and thus merits
no more comment other than to remark that it fails to meet the IEEE Standard’s requirement
that the single format be supported. Java, on the other hand, supports both basic formats,
but none of the extended formats. Every floating-point literal in Java is associated with one of
these two formats, depending on how it is written.

3.8 What support should exist in high-level languages

In order for there to be some standardized means of referring to the data formats specified in
the IEEE Standard, a language (or implementation thereof) intended to be used for numerical
programming ought to make provision for at least three distinct floating-point data types. Two
of these should correspond to the two basic formats, and one of them should correspond to
the double extended format, and not be required to be implemented. Some accommodation
ought to be provided for implementers wishing to support the single extended format, though
in practice, support for this format is mainly of interest when targeting certain digital signal
processors, some of which support the single extended format in hardware. If an implementation
supports a single extended format that is distinct from the double format, the values that are
representable in the single extended format should be required to be a subset of those that are
representable in the double format. Implementations ought to be required to reject programs
which make reference to data types they do not support.

Support for the single format ought to, of course, be mandatory. Although the IEEE
Standard does not require support for any of the other formats, many implementations of the
IEEE Standard do support at least one other data format. Few implementations, if any, support
all four data formats; one or both of the extended formats are usually the ones lacking support.
Thus, it is not critical for a language or implementation thereof to make provision for more
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than three distinct data types.
In addition to these distinct data types, at least two aliases ought to be provided: one

corresponding to the widest format supported (in hardware) by the implementation, and one
corresponding to the most efficient format for the target processor, perhaps with a bias toward
the widest format among those that are equally efficient, in order to benefit programmers who
underestimate their need for precision [55]. In fact, in implementations which do not support
a single extended format that is distinct from (and narrower than) the double format, the data
type corresponding to the single extended format could also be an alias, in this case for the
double format.

All these data types and aliases would allow one to precisely specify what format should be
used to compute some value. For example, if some algorithm specifically required the use of a
particular data format, there would be a way to specify this. On the other hand, if the final
result of a computation were expressed in some basic format, one may wish to compute all the
intermediate results in slightly greater precision in order to improve the accuracy of the final
result, as well as the robustness of the algorithm. This could also be accommodated: The data
type corresponding to the single extended format could be used for intermediate calculations
when the final result is required in the single format. (The double format could actually be
used instead in implementations that do not support a distinct single extended format.) On
the other hand, if the final result is required in the double format, intermediate calculations can
be performed using the widest format supported in hardware, which might be the double or
double extended format, depending on the target processor. (If an algorithm actually requires
the double extended format to be used, then the data type corresponding to this format should
be specified, and implementations which do not support this data type should reject such code.)
Finally, if it really does not matter what format is used for a particular computation, or if speed
is of the essence, then the data type corresponding to the most efficient format for the target
processor could be specified. Note that this format is the most efficient format at least as wide
as the single format.

If one wishes to use the most efficient format at least as wide as the double format, one
should distinguish between “temporary” variables which are likely to be held in registers, and
variables, such as arrays, whose use is likely to cause traffic on the processor’s memory bus.
In the former case, using the widest format supported in hardware (which is likely to be the
double or double extended format) is appropriate. In the latter case, the double format is the
better choice, since this may reduce the traffic on the processor’s memory bus, and is likely to
require less time for operations such as multiplication and square root.

It ought to be possible to determine which data format is actually the widest supported
in hardware, or at least whether the widest data format supported in hardware is wider than
some other data format, such as the single extended format or the double format. This would
allow one to decide which algorithm to use based on which formats are supported in hardware.

As for floating-point literals, it ought to be possible to associate any of them with any of
the formats described in the IEEE Standard, as well as with the widest data type supported
in hardware. In addition, since some implementations may not support all formats, it ought to
be possible to not specify what format should be used to represent a given numeric literal, but
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rather leave it up to the language processor to decide what format to use, depending, perhaps,
on the context in which the literal appears. (Such literals would roughly correspond to the
“efficient” data type mentioned above, except that different data formats might actually be
used in different places, even if the literals are written identically.) The actual data format
used could depend, for example, on the data types of nearby operands. Thus, if the nearby
operands are all associated with the single format, the language processor could use the single
format to represent the literal. On the other hand, if at least some of the nearby operands
are associated with the double format, the language processor might instead use the double
format to represent the literal. The conversion from the external (decimal) representation to
the internal (binary) representation should take place after the language processor decides which
format to use to represent the literal in order to avoid the possibility of double rounding.

If one were to assume that no implementation of a given language will support all four data
formats described in the IEEE Standard, one could provide four ways of specifying floating-
point literals: one associated with the single format; one associated with the single extended
format if supported in hardware, and otherwise associated with the widest format supported
in hardware that is not wider than the double format; one associated with the widest format
supported by the implementation, even if such support is only in software; and one in which
the processor is allowed to pick which data format to use. Note that this scheme provides
ways to conveniently ensure that if literals are written identically to each other, their internal
representations will also be identical, since the only way this would not necessarily be the case
is if the literal is written using special syntax to indicate that the language processor should
choose what format to use on a case-by-case basis.
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Chapter 4

Supporting Rounding Modes in
High-Level Languages

4.1 IEEE Standard requirements in regards to rounding
modes

The IEEE Standard defines four different rounding modes: round to nearest, round toward zero,
round up (toward positive infinity), and round down (toward negative infinity). The user must
be able to select which of these rounding modes is in effect for any of the following operations:

• addition

• subtraction

• multiplication

• division

• square root

• conversion to a narrower floating-point format

• conversion between a floating-point format and an integer format

• rounding a floating-point number to an integer value, and

• conversion between a decimal string and a floating-point number.

Except for the latter, whose accuracy requirements are somewhat weaker in some cases, the
results of these operations are first computed as if to infinite precision, and then rounded ac-
cording to the rounding mode in effect to fit the destination format1. (The remainder operation

1Actually, in certain arithmetic engines, the results of some of these operations may be rounded according to
the rounding precision mode in effect, rather than the destination format. See chapter 5.

21
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Clock cycles Clock cycles Total
Processor to transfer to isolate clock

CR to GPR bits cycles
Intel 486 (fstcw, mov) 4 (and) 1 5
Intel Pentium (fstcw, mov) 3 (and) 1 4
IBM PowerPC 601 (mcrfs, mfcr) 3 (andi) 1 4

Table 4.1: Number of cycles required to get the current rounding mode

does not appear in the list above, since the result of the remainder operation, as defined, is
always exact and independent of the rounding mode.)

The default rounding mode is round to nearest. When this mode is in effect, and an
infinitely precise (intermediate) result is equally near to two adjacent representable numbers,
the infinitely precise result is rounded to the number whose least significant (significand) bit is
zero.

The rounding mode in effect must be settable dynamically, since according to section 2
(“Definitions”) of the IEEE Standard [47], a mode is “a variable that a user may set, sense,
save, and restore. . . .” This may come as a surprise to some, since nowhere else does the IEEE
Standard unequivocably require the rounding mode to be settable dynamically. For example,
section 4 (“Rounding”) merely describes how the rounding mode in effect affects the result of
an operation, but says nothing about whether it might be possible for the rounding mode in
effect to be unknown at compile time at a given point in a program.

4.2 Hardware facilities for accessing rounding modes

4.2.1 Processors with dynamic rounding modes

Most floating-point architectures have a special control register to which the user has access in
order to, among other things, find out what rounding mode is currently in effect, and to change
it if so desired. Modifying this register is usually the only means to control what rounding
mode will be used when computing the result of floating-point operations.

The sequence of instructions to find out what the current rounding mode is typically involves
transferring the contents of the control register to a general-purpose register (possibly by way
of memory) and isolating the relevant bits. Table 4.1 shows how many clock cycles are required
to accomplish this on several popular processors.

The clock counts in Table 4.1 and in other tables in this section are taken from the man-
ufacturers’ literature, and assume best-case conditions2. In particular, all instructions and
instruction operands are assumed to be in the internal processor cache, and any needed mem-
ory addresses are assumed to be already available in appropriate registers or as immediate

2It is difficult to measure the exact number of clock cycles required to execute these instruction sequences,
since several factors may affect the timing. For example, in some cases, the timing may be dependent on the
bandwidth between the processor and the external cache or memory.
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Clock cycles Clock cycles to Total
Processor to retrieve CR isolate bits and clock

store to memory cycles
Intel 486 (fstcw) 3 (and) 3 6
Intel Pentium (fstcw) 2 (and) 1 3
IBM PowerPC 601 (mcrfs, mfcr) 3 (andi, stw) 2 5

Table 4.2: Number of cycles required to save the current rounding mode

Clock cycles Clock cycles Clock cycles Total
Processor to retrieve CR to modify bits to set CR clock

cycles
Intel 486 (fstcw, mov) 4 (and, or) 2 (mov, fldcw) 5 11
Intel Pentium (fstcw, mov) 3 (and, or) 2 (mov, fldcw) 8 13
IBM PowerPC 601 N/A N/A (mtfsb) 8 8

Table 4.3: Number of cycles required to set the rounding mode

constants.
The sequence of instructions to save (only) the rounding mode in some memory location

is very similar in principle. However, instead of converting the representation of the rounding
mode to an integer between 0 and 3, (only) the bits representing the rounding mode are simply
saved in a memory location. Table 4.2 shows how many clock cycles are required to accomplish
this on several popular processors.

The sequence of instructions to set the rounding mode to one that is statically known (at
compile time, for example) typically involves transferring the contents of the control register
to a general-purpose register or to some memory location, modifying the appropriate bits, and
transferring the modified value back to the control register. Table 4.3 shows how many clock
cycles are required to accomplish this on several popular processors.

As before, the clock counts in Table 4.3 assumes best-case conditions. In particular, the
desired rounding mode is assumed to be representable as an immediate constant, that is, a
constant forming part of the instruction stream. (The sequence of instructions on the PowerPC
601 is quite different, since this processor has a special instruction called mtfsb, which modifies
a single specified bit in the control register. This instruction can be used twice in order to set
the desired rounding mode.)

Finally, the sequence of instructions to restore a previously-saved rounding mode, or to
set the rounding mode to one that is not known statically, is similar in principle to that of
simply setting the rounding mode as described in the paragraph above, except that the desired
rounding mode can no longer be represented as an immediate constant. Table 4.4 shows how
many clock cycles are required to accomplish this on several popular processors.

In order to put these clock counts into perspective, Table 4.5 shows the maximum number
of pairs of additions and multiplications these processors can issue in the amount of time it
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Clock cycles Clock cycles Clock cycles Total
Processor to retrieve CR to modify bits to set CR clock

cycles
Intel 486 (fstcw, mov) 4 (and, or) 3 (mov, fldcw) 5 12
Intel Pentium (fstcw, mov) 3 (and, or) 3 (mov, fldcw) 8 14
IBM PowerPC 601 (mcrfs, mfcr) 3 (andi, lwz, or) 3 (stw,lfd,mtfsf) 8 14

Table 4.4: Number of cycles required to restore a previously saved rounding mode

Processor Get RM Save RM Set RM Restore RM
Intel 8086/8087 0.19 0.32 0.42 0.51
Intel 80286/80287XL 0.47 0.45 1.2 1.3
Intel 386DX/387DX 0.72 0.76 1.5 1.7
Intel 486 0.26 0.32 0.58 0.63
Intel Pentium 2 1.5 6.5 7
IBM PowerPC 601 4 5 8 14
IBM PowerPC 604 7 8 6 14
DEC Alpha 21164 10 11 20 20

Table 4.5: Number of pairs of additions and multiplications that can be issued in the same
amount of time it takes to manipulate the rounding mode

takes to access or modify the rounding mode3.
As can be seen from Table 4.5, the overhead of accessing or modifying the rounding mode

becomes more significant as the (maximum) floating-point performance of a processor increases,
especially considering that the current rounding mode will often need to be saved before it is
modified.

4.2.2 Processors with static rounding modes

The INMOS IMS T800 is one of a very few processors which does not have dynamic round-
ing modes implemented in hardware. Instead, each floating-point operation which needs to be
performed using a rounding mode other than round to nearest must be preceded by a special
instruction which specifies the rounding mode to be used. The overhead of this special instruc-
tion is 2 clock cycles, as compared to 6–9 clock cycles for an addition and 11–27 clock cycles
for a multiplication. However, if the language requires rounding modes to be dynamic, they
will have to be emulated in software. This means that any time the compiler is not able to
determine what rounding mode should be used for a particular floating-point operation, the
compiler will have to generate code which tests a variable to determine what rounding mode is

3In the case of the PowerPC 601 [7], the information in Table 4.5 is relative to the number of pairs of single
precision additions and multiplications it can issue, which is twice the number of double precision additions and
multiplications it can issued. In the case of the other processors, the information in this table is relative to the
number of pairs of double or extended precision additions and multiplications these processors can issue.
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in effect, and then executes the correct code sequence based on the result of this test. If one
assumes that round to nearest will be by far the most common rounding mode used, the over-
head when this mode is in effect would be a minimum of 5 clock cycles in addition to the clock
cycles required to perform the floating-point operation itself4. The overhead when a different
rounding mode is in effect would be at least 12 clock cycles. This overhead, while significant,
is not overwhelming. However, if the floating-point performance of this chip were as good as
that of some of the more recent processors, this overhead would be intolerable.

The DEC Alpha architecture [2] also defines static rounding modes in addition to dynamic
rounding modes. In this architecture, the rounding mode to be used is part of the encoding
for floating-point instructions. Unfortunately, current implementations of this architecture do
not have this feature implemented in hardware. As a result, if one were to make use of this
capability, floating-point performance would slow down quite significantly [57]. However, if
this feature were implemented in hardware, the compiler could issue instructions with the
appropriate rounding mode encoded in the opcode in cases in which it knows what the current
rounding mode in effect is, and use the dynamic rounding mode feature otherwise. In particular,
the ability to use static rounding modes could make it trivial, for example, to guarantee that a
certain section of code will be evaluated using a certain rounding mode (perhaps because that
section of code is not designed to work if a different rounding mode is in effect), regardless of
what rounding mode is in effect in other parts of the program. Also, given how long it usually
takes to change the rounding mode in effect, the use of the static rounding mode feature could
significantly speed up a section of code in which a particular rounding mode is to be used when
executing one or a few specific operations.

4.3 Making rounding modes available in high-level languages

Facilities available to the high-level language programmer for setting rounding modes can be
classified according to the granularity over which the user can control the mode in effect, as
measured by the amount of source code or the amount of run time. The section of source code
over which one request to use a particular rounding mode applies might be restricted to:

• a single arithmetic operation,

• a subexpression,

• a sequence of one or more statements,
4It is possible to reduce this overhead to near zero clock cycles by performing the operation using the round-

to-nearest mode, and concurrently checking to see if the mode in effect is indeed round to nearest. If not, a
complicated sequence would have to be executed to examine the instruction stream prior to the most recent
floating-point operation in order to determine what the operands were, and then re-execute the operation using
the correct rounding mode. So whenever the rounding mode were not round to nearest, floating-point performance
would be severely impacted.

Another way to reduce the overhead is to check what rounding mode is in effect once per basic block, and
to have the compiler generate several variations of each basic block—one for each rounding mode. This scheme
would be particularly effective for basic blocks in which floating-point operations predominate.
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• a scope,

• a portion of a file,

• an entire file, or

• an entire program.

Ways of setting rounding modes can also be characterized by whether the rounding mode
specified affects the rounding mode in effect for the caller or callee of a function or procedure,
that is, the granularity over which the user can control the rounding mode in effect, as measured
by the amount of run time. Whether the rounding mode specified affects the rounding mode in
effect for the caller of a function or procedure is not necessarily related to whether the rounding
mode specified affects the rounding mode in effect for the function or procedure called. There
are several possibilities:

• A function or procedure cannot directly affect the rounding mode in effect of its caller.

• A function or procedure can directly affect the rounding mode in effect of its caller, but
not that of the caller of its caller. This might happen, for example, if the caller’s rounding
mode is normally restored upon return, except when “special” functions are called.

• A function or procedure can directly affect the rounding mode in effect of its caller, and
that of any function or procedure further up in its call chain. This might happen, for
example, if the rounding mode in effect were implemented as a global variable.

• The caller of a function or procedure cannot directly affect the rounding mode in effect
of the function or procedure it calls.

• The caller of a function or procedure can directly affect the rounding mode in effect of the
function or procedure it calls, but not that of any function or procedure further down its
call chain. This might happen, for example, if functions and procedures do not normally
inherit the rounding mode from their callers, unless a special mechanism, such as special
syntax, is used. For example, suppose that in a certain fictitious language, the syntax for
ordinary function calls were:

function name(parameter 1, parameter 2, . . . , parametern)

The rounding mode to be used in the function called might be specified using the following
syntax:

function name(parameter 1, parameter 2, . . . , parametern : rounding mode)

• The caller of a function or procedure can directly affect the rounding mode in effect of the
function or procedure it calls, and that of any function or procedure further down its call
chain. This might happen, for example, if the rounding mode in effect were implemented
as a global variable.
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In addition, the availability of facilities for setting rounding modes may cause the rounding
mode in effect to not be known at compile time at any point in a program, to be known at
compile time at every point in a program, or to be known at compile time in some places, but
not in others. Of course, regardless of whether the rounding mode in effect is actually known
at a given point in a program, it is possible for the compiler or programmer to assume that a
particular rounding mode is in effect at that point.

4.4 Handling static evaluation and numeric literals

Normally, when a (named or unnamed) numeric literal appears in the context of an expression,
its representation as a binary value has to be determined. This process of determining the
proper binary representation of a numeric literal is called evaluation.

Similarly, there are cases in which a compiler can feasibly or indeed must be able to find out
what the binary representation of the result of an expression is. This process of determining
the proper binary representation of the result of an expression at compile time is called static
evaluation. In this section, such an expression is said to be static. Also, in this section, the term
floating-point static expression refers to a static expression involving floating-point operations,
or to a numeric literal whose representation as a binary floating-point value must be determined.

If the rounding mode (and precision mode—see chapter 5) is known at compile time at a
point in a program in which a floating-point static expression appears, it may be possible to
safely evaluate that expression at compile time5. If the rounding mode is not known at compile
time at a point in a program in which a floating-point static expression appears, the compiler
can either pick a particular rounding mode and evaluate the expression using this mode as if at
compile time6, or cause the evaluation to occur at run time using the rounding mode in effect
at that point in the program.

Hopefully, evaluation of a program’s floating-point static expressions will be consistent.
That is, the programmer should hopefully be able to determine whether an expression (static
or otherwise) will be evaluated as if at compile time or at run time, and whether the rounding
mode in effect at that point in the program or some other particular rounding mode will be
used, just by examining the program in which the expression appears.

A language definition will often specify certain cases in which the compiler must statically
evaluate an expression. If that expression involves floating-point operations, then it is reasonable
for the compiler to pick a rounding mode, possibly different from the one in effect at that point
in the program, to use during evaluation of that expression. The rounding mode the compiler
should pick for use during the evaluation of such expressions depends on several factors, such
as:

5As explained below, whether a floating-point expression can be evaluated at compile time depends in part
on the semantics of floating-point exceptions. Of course, if a language definition requires the expression to be
evaluated at compile time, whether or not an exception might occur during its evaluation does not change the
fact that the expression has to be evaluated at compile time.

6Whether evaluation actually occurs at compile time or at run time is an implementation issue.
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• whether the language definition specifies the rounding mode to be used (this is very
unlikely);

• whether the rounding mode in effect at that point in the program happens to be known
at compile time; and

• the ease with which a human can determine, just by examining the program, what round-
ing mode the compiler will use.

Because of the latter, it would probably be best if the compiler were to consistently pick the same
rounding mode in all such cases, provided this does not conflict with the language definition.

If a compiler can feasibly statically evaluate a floating-point expression which the language
definition forbids the compiler to evaluate at compile time, the compiler could still conceivably
evaluate the expression at compile time, provided the rounding mode is known at compile time,
and the generated code is able to fully preserve the semantics of each floating-point operation
in the expression. In general, the compiler will only be able to do this in very few cases, since a
side effect of most floating-point operations is to raise one or more exceptions, the most common
of which is the inexact exception (see chapter 8). Therefore, unless the compiler happens to
know that no exceptions would occur during the evaluation of the expression, or that no trap
handlers are enabled for whatever exceptions would occur and the status flags corresponding
to these exceptions are guaranteed to already be set at that point in the program, the compiler
will have to determine whether it would be faster to explicitly raise the exceptions that would
occur if the expression were evaluated at run time, or to simply evaluate the expression at run
time. Furthermore, if any exceptions are to be raised at run time, the compiler will have to
determine whether raising these exceptions explicitly would confuse any trap handlers which
may be enabled, for example, whether any enabled trap handlers for these exceptions are able
to determine what operation caused these exceptions to be raised.

If a compiler can feasibly statically evaluate a floating-point expression (or subexpression)
which the language definition does not require, but does not forbid, the compiler to evaluate
at compile time, the compiler will need to pick a rounding mode to use during the evaluation
of this expression if it chooses to statically evaluate the expression. This rounding mode could
either be:

• the rounding mode that would have been used if the language definition had required the
compiler to statically evaluate the expression;

• the rounding mode that would be used if the expression were evaluated at run time; or

• a rounding mode that happens to be convenient.

It is also possible to evaluate part of the expression as if at compile time, and the remainder
of the expression at run time, so that different rounding modes could potentially be used
for different parts of the expression, confusing as this may be. (It is not so uncommon to
encounter situations in which it might be desirable to use potentially different rounding modes
for different parts of an expression. For example, consider the expression 3.1415926×2.7182818.
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The compiler could arrange for the numeric literals to be evaluated as if at compile time using
a different rounding mode than that for the multiplication, which might not take place until
run time.) Perhaps the overriding concern here in the choice of a rounding mode should be the
ease with which a human reader can determine, just by examining the program, which rounding
mode will be used.

4.5 Issues related to mixed-language programming

As far as rounding modes are concerned, the main difficulty in mixed-language programming
is making sure there is no conflict in the way rounding modes are handled in the various
languages and compilers involved. For example, one language or compiler may assume that
when a function or procedure is called, the rounding mode in effect will remain the same upon
returning from the function or procedure as it was before the function or procedure was called,
that is, that the callee cannot affect the rounding mode in effect in the caller. A different
language or compiler may make the opposite assumption: it may assume that the caller knows
that the rounding mode in effect may change upon returning from a function or procedure,
and that there is therefore no need to be sure to restore the rounding mode in effect before the
function or procedure was called.

There are many kinds of possible conflicts related to how different languages and compilers
handle rounding modes. If there is some way for the compiler to determine that a foreign
function or procedure (that is, one written in some other language or processed by some other
compiler) is about to be called, then the compiler can take some measures to guard against
these conflicts. For example, if a compiler purports to know what rounding mode is in effect
at every point in a program, upon returning from a foreign function or procedure, the compiler
will quite likely need to restore the rounding mode that was in effect before calling that foreign
function or procedure. On the other hand, if a compiler does not care to know what rounding
mode is in effect at any point in a program, and procedures and functions are allowed to modify
the rounding mode in effect in their callers, then, as far as rounding modes are concerned, the
compiler need not take any special care in processing calls to foreign procedures and functions.

Another potential problem has to do with the startup code that is executed just before
execution of the program itself begins. Different languages and compilers may have different
conventions on what rounding mode should be in effect when the program itself begins ex-
ecution. Other languages or compilers may not even initialize the floating-point unit at all
in cases where such initialization is required! (A compiler might, for example, initialize the
floating-point unit only if the program performs floating-point operations. But the only code
in a program that involves floating-point operations might be processed by a different compiler,
so the other compiler may mistakenly reach the conclusion that the program does not perform
floating-point operations at all.) A conflict in the convention on what rounding mode should be
in effect when the program itself begins execution could cause a program to behave incorrectly.
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4.6 What support exists in high-level languages

4.6.1 Existing language designs

Among the very few language defining documents that mention anything at all about rounding
modes is the Ada 95 Reference Manual [11], and then only indirectly. Ada implementations
may optionally conform to the accuracy requirements in Appendix G of [11]. Basically, these
accuracy requirements say that for predefined operations, which certainly include addition,
subtraction, and multiplication, the error of the result must be less than one ulp (unit in
the last place). (Division is allowed to be less accurate, since on some computers, division
is performed by computing the reciprocal of the divisor, followed by multiplication by that
reciprocal.) This implies that any rounding method which can guarantee this much accuracy
is acceptable. In particular, any of the four rounding methods defined in the IEEE Standard
are acceptable.

In addition to these accuracy requirements, [11] requires all implementations to provide
several functions that round floating-point numbers to integers. The most common of these is
described in section 4.6 (“Type Conversions”): “If the target type is an integer type and the
operand type is real, the result is rounded to the nearest integer (away from zero if exactly
halfway between two integers).” This rounding method is similar, but unfortunately not identi-
cal, to the IEEE Standard’s “round to nearest or even” rounding mode. In fact, it would most
likely not be possible to implement this function very efficiently on a machine conforming to
the IEEE Standard: one would most likely have to add one half to or subtract one half from
the floating-point number to be converted (depending on the sign of that number), and then
truncate the sum or difference to an integer. Other functions available for this purpose, such
as Unbiased Rounding and Truncation described in section A.5.3 of [11], do coincide with the
IEEE Standard’s rounding modes.

4.6.2 Compilers for existing languages

Among the many compilers for existing languages, the IBM C/C++ compiler for OS/2 is
very typical in its support for rounding modes. The compiler itself never generates code to
change the rounding mode in effect. Furthermore, the compiler assumes the rounding mode in
effect does not change across function calls, and that if the programmer changes the rounding
mode, the original rounding mode is restored before calling any functions. A function in a
library shipped with the compiler retrieves the current rounding mode and optionally changes
it. Another function resets the floating-point unit (and presumably the rounding mode) to the
compiler’s default state. There is no documentation on what this default state is, or on which
floating-point (sub)expressions, if any, are evaluated at compile time.

4.6.3 Extensions to existing languages

In the Standard Apple Numeric Environment (SANE), access to the rounding mode in effect
is provided via two high-level language procedures: one to determine what rounding mode
is currently in effect, and one to set it. There is no provision for saving or restoring only
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the rounding mode, though of course the programmer can write a routine to do this. When
a program begins execution, the rounding mode in effect is “round to nearest.” When the
rounding mode is set, the new rounding mode remains in effect until explicitly changed via
another call to the procedure provided for this purpose7. Thus, the facilities SANE provides
may be characterized in terms of the granularity of run time over which the user can control
the rounding mode in effect.

In general, if the compiler does not perform any interprocedural analysis, the rounding mode
in effect cannot be known at compile time, except from the beginning of the program until the
first function or procedure is called. All numeric literals are evaluated at compile time using
the round-to-nearest rounding mode, as are floating-point expressions denoting the values of
named constants in the case of Pascal, or the initial values of static and external variables in
the case of C. All other floating-point expressions are evaluated at run time using whatever
rounding mode is in effect at that time.

In terms of support for rounding modes, the NCEG’s extensions [75] are similar to those
of SANE. The main difference from SANE is that the compiler is explicitly given permission
to assume the rounding mode in effect is round to nearest at any point in a program, unless
a point in the program is under the effect of a pragma called fenv access. This pragma does
not modify the rounding mode in effect. The scope of this pragma is determined statically,
beginning at the point in which this pragma is turned on, and ending when this pragma is
encountered in the source code again or at the end of the file, whichever is encountered first. In
the programming model [75] assumes, functions do not modify the rounding mode in effect of
their callers, unless a function’s documentation says otherwise. This model is not enforceable
by the compiler.

The other area in which the NCEG’s extensions differ from SANE is that floating-point
expressions denoting initial values of objects of some aggregate or union type are evaluated as
if at compile time, rather than at run time.

4.6.4 New language designs

µln [30] takes a completely different approach to supporting rounding modes. The language
does not provide any functions which the programmer can call to change the rounding mode
in effect. Instead, what rounding mode is in effect at a given point in a program is related to
the block structure of the program. Conceptually, whenever a new block is entered, such as
when a function or compound statement begins execution, a new floating-point environment
is established. The rounding mode in that new environment is inherited from that of the
enclosing environment, if any, unless the programmer explicitly specifies a rounding mode for
that block. In addition, the caller of a function can override the rounding mode in the outermost
environment of that function, which, in the absence of any explicit indication, would be the
default rounding mode (“round to nearest”).

7It is also possible to write an assembly language procedure, which, when called, possibly by a program
written in a high-level language, will change the rounding mode. It is unlikely that such a procedure would be
hardware-independent, though, but the effect of calling such a procedure would be similar to that of calling the
high-level language procedure already provided.
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µln also provides special unary operators which specify the rounding mode to be used during
the evaluation of their operands, which may be arbitrary subexpressions. This facility may be
used for subexpressions embedded within constant expressions.

Whenever the language requires the value of a floating-point expression to be known at
compile time, the rounding mode used during the evaluation of that expression is round to
nearest. All other floating-point expressions are evaluated using whatever the current rounding
mode happens to be. If the compiler is able to determine at compile time what this mode will
be, it may be able to evaluate at least part of the expression at compile time.

Thus, given these two facilities, the programmer has control over what rounding mode will
be used, either at the level of a subexpression or a block at a time. In addition, functions can
specify what rounding mode should be in effect in the functions they call, but not that of any
function further down its call chain, or that of its caller.

4.7 Why having more than one rounding mode available is
useful

Before actually discussing what kind of support compilers and high-level languages ought to
provide for rounding modes, it is important to note why one might want to have more than one
rounding mode available. The four main uses of rounding modes are:

1. Interval arithmetic, that is, arithmetic on infinite sets of real numbers whose upper and
lower bounds are floating-point numbers. Although the result of an arithmetic operation
is seldom a single point, interval arithmetic is attractive because it provides a way to find
an interval in which the result of a computation is guaranteed to lie.

2. Common mathematical functions. Different rounding modes may be useful for implement-
ing certain common mathematical functions, such as bxc (floor) and dxe (ceiling).

3. Disproving the stability of an algorithm. Sometimes it is difficult or time consuming to
prove that an algorithm is numerically stable, that is, that small perturbations in the
input will not change the final result very much, or that the final result actually obtained
is the correct result for a slightly different input. In such cases, it may be attractive to
run through the algorithm using different rounding modes to see if the final result changes
very much. If the final result changes markedly when different rounding modes are used,
it is quite likely that the algorithm is not numerically stable, and that its usefulness is
dubious.

4. Emulating other floating-point arithmetic engines. In some cases, one may want to obtain
results similar to those obtained on some other computer, whose floating-point arithmetic
engine may round results differently than, say, the IEEE Standard’s round to nearest.
Although the IEEE Standard might not define a rounding mode identical to the desired
rounding method, it may still be possible to implement this rounding method by a series of
operations involving the use of one or more rounding modes defined in the IEEE Standard.
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4.8 What support should exist in high-level languages

In three of the four cases described in the preceding section, ideal support for rounding modes
would include the ability to specify the rounding mode to be used for one specific floating-point
operation when the operand or operands are scalars, and the ability to specify the rounding
mode to be used during the execution of one or more statements when the operand or operands
are vectors. In addition, some means of propagating the specified rounding mode to functions
and procedures called would be required.

Of the four cases described in the preceding section, the third case, that of disproving the
stability of an algorithm, requires a different kind of language facility. In this case, one should
ideally be able to control the rounding mode in effect over the portion of the file or files that
contains the code for the algorithm being tested. In most such cases, it would probably be
acceptable to have a means to specify the rounding mode to be used on a file-by-file basis. In
any case, it would be advantageous to be able to determine what rounding mode a program is
using by examining the source code that was compiled.

Another important consideration is whether the compiler can determine what rounding
mode is in effect at a given point in a program. Since the IEEE Standard requires the rounding
mode to be settable dynamically, those who drafted the standard surely intended that this
capability be available to high-level language programmers. However, if a language has this
feature, the compiler will in general not know what rounding mode is in effect at an arbitrary
point in a program. Consequently, the compiler will most likely only be able make few, if any,
improvements in the code generated for floating-point expression evaluation.

One way to increase the likelihood that the compiler will know what rounding mode is in
effect at an arbitrary point in a program is for the compiler to enforce, or at least assume,
that, unless the programmer specifies otherwise, the rounding mode in effect when a function
or procedure begins execution is the default rounding mode, and that upon returning from
a function or procedure, the rounding mode in effect is the mode that was in effect before
that function or procedure was called. Additionally, the compiler should know if there is any
possibility that the rounding mode in effect at a given point in a program is not the default
rounding mode. For example, if there is some way for the caller of a function or procedure
to specify what rounding mode should be in effect during the execution of that function or
procedure, the compiler should know if that function or procedure will ever be called with a
rounding mode other than the default rounding mode.

If the compiler is to enforce such a convention, it is important to consider the overhead
involved, which mainly occurs when calling or returning from functions and procedures. In a
näıve compiler, the code generated at the beginning of every function or procedure would save
the current rounding mode and set it to the default rounding mode, while the code generated
when the function or procedure returns to its caller would restore the rounding mode previously
saved.

A more efficient way of enforcing this convention is for the caller of a function or procedure
to save its rounding mode whenever the compiler has any doubts as to whether the current
rounding mode is the default rounding mode. (If the compiler happens to know what the
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current rounding mode is, the compiler does not need to generate code to save the current
rounding mode.) The caller can then set the rounding mode to the default rounding mode
just before calling the function or procedure, and restore the previous rounding mode upon
returning from the callee. Since in most programs, the rounding mode changes only rarely if at
all, there would usually be little overhead in using this scheme.

Unfortunately, this scheme is not very effective in the context of mixed-language program-
ming, since the compiler will no longer be able to guarantee what rounding mode will be in
effect upon returning from a function or procedure written in different language, or when a
function or procedure written in a different language calls a function or procedure the compiler
is processing. In such cases, the compiler may have to resort to the näıve scheme described
above.

Finally, if it is necessary to save the result of some operation in some memory location, it
may be important to make sure that the value in memory is the same as the value in the register.
This is particularly relevant when a processor’s registers have greater precision and/or range
than the format used to store values in memory. In such processors, when a value is transferred
from a register to some memory location, the value in the register may have to be rounded in
order to fit its destination. However, the rounding mode in effect may be different than when
the operation which produced the result was performed. The value stored in memory could
therefore be very different from the intended result.



Chapter 5

Supporting Precision Modes in
High-Level Languages

5.1 IEEE Standard requirements in regards to precision
modes

In practice, precision modes are only relevant to floating-point arithmetic engines which do not
deliver results of floating-point operations (presumably such as addition and multiplication)
to destinations whose format is the single format. Such arithmetic engines must implement
two or more user-selectable precision modes, which determine the actual precision with which
floating-point operations are carried out.

In systems in which the arithmetic engine does not deliver results of floating-point operations
to destinations whose format is the single format, a precision mode must be provided to cause
results to be rounded to single precision. Similarly, in systems in which the arithmetic engine
does not deliver results of floating-point operations to destinations in the double format, but
instead delivers them to destinations wider than double precision, a precision mode must be
provided to cause results to be rounded to double precision. One of the reasons for requiring
these arithmetic engines to provide these precision modes is to allow them to “mimic, in the
absence of over/underflow, the precisions of systems with single and double destinations.” [47]

It is not clear which operations the precision mode in effect is supposed to affect, since the
IEEE Standard discusses precision modes in terms of the results that should be delivered, and
only mentions the word operations in a footnote. But according to section 2 (“Definitions”) of
the IEEE Standard, a mode is a variable which affects “the execution of . . . arithmetic opera-
tions,” so the precision mode in effect definitely affects the results of additions, subtractions,
multiplications, and divisions. However, the first sentence of the second paragraph of section
4 (“Rounding”) contains the phrase “all arithmetic operations except comparison and remain-
der.” So perhaps the term arithmetic operation refers to all the operations defined in the IEEE
Standard, although it appears to make little sense, for example, for the precision mode in effect
to affect conversions between different floating-point formats.

35
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The IEEE Standard does not specify what the default precision mode should be.
As with rounding modes, apparently the precision mode in effect must be settable dynami-

cally, because of how the IEEE Standard defines the word mode. However, unlike the case for
rounding modes, whether precision modes must actually be settable dynamically is debatable,
as will be seen in section 5.2.2 below.

5.2 Hardware facilities for accessing precision modes

5.2.1 Processors with dynamic precision modes

Only a few floating-point architectures, most notably the Intel x86 and the Motorola 68000
series, have dynamic precision modes. In both of these architectures, the same special register
that is used to control the rounding mode in effect is the one to which the user has access in
order to, among other things, find out what precision mode is currently in effect, and to change
it if so desired.

The sequence of instructions to find out what the current precision mode is, to save (only)
the precision mode in some memory location, to set the precision mode to one that may or
may not be statically known, and to restore a previously-saved precision mode is the same as
the corresponding sequence for rounding modes (see chapter 4), except that different constants
would be involved in manipulating the relevant bits. The clock timings will not be repeated here.
As with rounding modes, the overhead of accessing or modifying the precision mode becomes
more significant as the (maximum) floating-point performance of a processor increases.

In the Intel x86 series, the precision mode affects only the four basic arithmetic operations
and the square root operation. There is no documentation on what happens if one or more
operands are not representable in the format corresponding to the precision mode in effect (as
might happen if a double extended precision operand were loaded in from memory). However,
at least on the 486DX processor, all the bits in the operands affect the result, and the precision
mode in effect merely determines how many significant (binary) digits the result of the operation
will have. If the precision mode is single or double precision, neither the underflow nor the
overflow exception is signaled if the result of an operation is outside the range of representable
numbers for the format corresponding to the precision mode in effect, as long as the result is
within the range of representable numbers for extended precision.

On the Intel 486DX processor, the precision mode in effect does not affect the performance
of the floating-point unit. On other processors (not necessarily those manufactured by Intel),
setting the precision mode to single or double precision may decrease the performance of the
floating-point unit.

5.2.2 Processors with static precision modes

The idea of having static precision modes may seem strange at first, but they are potentially
useful in an architecture lacking single-precision floating-point registers. The PowerPC is an
example of such an architecture. In this architecture, the format of all floating-point registers
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is the double format. The operands of all floating-point arithmetic operations are taken from
floating-point registers, and the results of these operations are delivered to these registers.

The precision mode is encoded in the opcode for the following floating-point instructions:
add, subtract, multiply, divide, extract the square root, and multiply-add1 and its variations
(mutiply-subtract, etc.). On some processors, such as the PowerPC 601, the single-precision
versions of these instructions execute more quickly than their double-precision counterparts.

If one or more operands of these single-precision instructions are not representable as single-
precision floating-point numbers, the result is undefined. If the (infinitely precise) result of one
of these single-precision instructions is outside the range of the single format, the appropriate
exceptions, if any, are signaled.

Dynamic precision modes can be implemented in software. Basically, the compiler would
have to generate code which tests a variable (which could be held in a register) to determine
what precision mode is in effect, and then executes the correct code sequence based on the
result of this test. The only floating-point operations affected would be those for which the
compiler is not able to determine statically what precision mode should be used.

There are several ways to implement dynamic precision modes in software on the PowerPC.
One way is to avoid using the multiply-add instruction and its variations, and only generate
double-precision instructions. If the precision mode in effect happens to be single precision,
the result of each double-precision instruction would need to be converted to single precision2.
The disadvantage of this scheme is that double-precision instructions may execute more slowly
than single-precision instructions, and in this scheme, single-precision instructions are never
generated. If the precision mode in effect is double precision, the overhead would be 2 instruc-
tions, that is, as many as 2 clock cycles. If the precision mode in effect is single precision, the
overhead would be 3 instructions. Assuming the “round to single precision” instruction has
the same timing characteristics as other single-precision instructions, due to the superscalar
nature of this architecture, the overhead in terms of clock cycles would basically be the number
of clock cycles required for the double-precision instruction to make its result available to the
“round to single precision” instruction. In the case of multiplication, this would amount to 6
clock cycles on the PowerPC 601.

Another way to implement dynamic precision modes in software, one that does not favor
the double precision mode so heavily, is to find out what precision mode is in effect first, and
then perform the operation in the required precision. The overhead would be 2 instructions,
or as many as 2 clock cycles, for one of the precision modes, and 3 instructions, or as many as
3 clock cycles, for the other mode. This overhead is significant, considering that the PowerPC
601 is capable of issuing one multiply-add instruction every clock cycle. However, it is possible
to reduce this overhead by finding out what precision mode is in effect no more than once per
basic block.

Actually, it is not clear whether the IEEE Standard requires dynamic precision modes, or if
1The multiply-add instruction produces a double-length (infinitely precise) product from two of its operands,

and adds it to a third operand. The sum is then rounded to either single or double precision, and delivered to
its destination.

2Chapter 6 explains why this happens to work. This technique does not work for the multiply-add instruction
and its variations.
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the latter can be static, as on the PowerPC. The reason is that one can claim that one’s floating-
point arithmetic engine, which is implemented as a combination of hardware and software, does
not normally produce results to double or extended precision. Rather, one can claim that
results are always delivered to various memory locations in the appropriate format. In order
to perform, say, a single precision operation, the floating-point engine loads the operands from
memory, performs the operation in single precision, producing a result which is temporarily
stored in a register in either the double or an extended format (depending on the floating-point
architecture), and finally stores this result to memory in the single format. From the point of
view of performance, this would not be an attractive way to implement the IEEE Standard,
but it does point out that at least theoretically, even though it seems that the IEEE Standard
requires that precision modes be settable dynamically, in practice this is not a requirement.

5.2.3 Processors without precision modes

Floating-point architectures which are capable of delivering results of floating-point arithmetic
operations to destinations whose formats may be any of the implemented floating-point formats
do not need to have precision modes available in order to conform to the IEEE Standard. Most
floating-point architectures fit this description.

One way to simulate dynamic precision modes on a processor lacking precision modes
altogether3 is for the compiler to generate code to always deliver the results of floating-point
arithmetic operations to destinations whose format is the widest format implemented. When-
ever the precision mode in effect is narrower than the widest format implemented, the result
of each floating-point operation would need to be rounded to the format corresponding to the
precision mode in effect, and then converted back to the widest format implemented4. On many
processors, the overhead would range from 2 instructions, or as many as 2 or more clock cycles,
to significantly more if the precision mode in effect is not the precision corresponding to the
widest format implemented.

Another way to simulate dynamic precision modes on a processor lacking precision modes
altogether is for the compiler to generate code to check what precision mode is in effect first,
then convert the operands to the format corresponding to the precision mode in effect if nec-
essary, perform the floating-point arithmetic operation(s) in the precision corresponding to the
precision mode in effect, and finally convert the result(s) to the widest format implemented if
necessary. Again, the overhead would range from 2 instructions, or as many as 2 or more clock
cycles, to significantly more if the precision mode in effect is not the precision corresponding to
the widest format implemented. The advantage of this scheme, however, is that the precision
mode would need to be checked no more than once per basic block. As a consequence, some

3It makes no sense to simulate static precision modes on such processors.
4This assumes the significand of the widest format implemented is more than twice the width of the significand

of the next-to-widest format implemented. Otherwise, if the precision mode in effect happens to be some precision
in which the significand of the corresponding format is at least half as wide as the significand of the widest format
implemented, floating-point arithmetic operations will need to deliver results to a destination whose format
corresponds to the precision mode in effect. The result would then need to be converted to the widest format
implemented.
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unnecessary conversions could be eliminated.

5.3 Different ways of making precision modes available in a
high-level language

As in the case of facilities for setting rounding modes, facilities available to the high-level
language programmer for setting precision modes can be classified according to the granularity
over which the user can control the mode in effect, as measured by the amount of source code
or the amount of run time. A description of the different possibilities will not be repeated here.

However, unlike the case of facilities for setting rounding modes, it is reasonable for facilities
for setting precision modes to not be explicitly available to the high-level language programmer.
Instead, the precision mode in effect could be related to the compiler’s floating-point expression
evaluation strategy (see chapter 9), so that whatever facilities are available to influence floating-
point expression evaluation could implicitly affect the precision mode in effect.

5.4 Handling static evaluation and numeric literals

Again, a discussion of evaluation of static floating-point expressions in relation to precision
modes would be very similar to that of such expressions in relation rounding modes. Such a
discussion will not be repeated here, especially since it would be pertinent in the context of
floating-point expression evaluation (see chapter 9).

5.5 Issues related to mixed-language programming

The same kinds of issues that arise in mixed-language programming (or when using different
compilers for the same language) with respect to rounding modes are also relevant to precision
modes. Depending on the language, it may be reasonable for the compiler to simply assume
that the precision mode in effect will never change during the execution of the program it
is compiling, and that it is therefore safe to ignore the fact that precision modes have been
implemented in the target machine.

5.6 What support exists in high-level languages

5.6.1 Compilers for existing languages

The same comments on the IBM C/C++ compiler for OS/2 and rounding modes apply to
precision modes as well.

5.6.2 Extensions to existing languages

In the Standard Apple Numeric Environment (SANE), access to the precision mode in effect
is provided via two high-level language procedures: one to determine what precision mode is
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currently in effect, and one to set it. There is no provision for saving or restoring only the
precision mode, though of course the programmer can write a routine to do this. When a
program begins execution, the precision mode in effect is “results not shortened.” When the
precision mode is set, the new precision mode remains in effect until explicitly changed via
another call to the procedure provided for this purpose5. Thus, the facilities SANE provides
may be characterized in terms of the granularity of run time over which the user can control
the precision mode in effect.

In general, if the compiler does not perform any interprocedural analysis, the precision mode
in effect cannot be known at compile time, except from the beginning of the program until the
first function or procedure is called. All floating-point expressions (including numeric literals)
which are evaluated at compile time use the “results not shortened” precision mode. Floating-
point expressions which are evaluated at run time use whatever precision mode is in effect at
that time.

In terms of support for precision modes, the extensions in [75] are similar to those of SANE.
The main differences from SANE are that no functions are provided to determine or set what
precision mode is currently in effect, since such functions would not be applicable to all proces-
sors. (However, for implementations for processors for which such functions would be applicable,
[75] does suggest that they provide such functions.) Also, the compiler is explicitly given per-
mission to assume the precision mode in effect is “results not shortened” at any point in a
program, unless a point in the program is under the effect of a pragma called fenv access. This
pragma does not modify the precision mode in effect. The scope of this pragma is determined
statically, beginning at the point in which this pragma is turned on, and ending when this
pragma is encountered in the source code again or at the end of the file, whichever is encoun-
tered first. In the programming model [75] assumes, functions do not modify the precision
mode in effect of their callers, unless a function’s documentation says otherwise. This model is
not enforceable by the compiler.

5.6.3 Experimental language designs

µln’s [30] approach to supporting precision modes is similar to the way it supports rounding
modes. The default precision mode, which, in the absence of any explicit indication, is the
precision mode in effect in the outermost environment of a function, is “extended precision”
(that is, results not shortened).

As is the case with rounding modes, µln also provides special unary operators which specify
the precision mode to be used during the evaluation of their operands, which may be arbi-
trary subexpressions. This facility may be used for subexpressions embedded within constant
expressions.

Whenever the language requires the value of a floating-point expression to be known at
compile time, the precision mode used during the evaluation of that expression is “results

5It is also possible to write an assembly language procedure, which, when called, possibly by a program
written in a high-level language, will change the precision mode. It is unlikely that such a procedure would be
hardware-independent, though, but the effect of calling such a procedure would be similar to that of calling the
high-level language procedure already provided.
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not shortened.” All other floating-point expressions are evaluated using whatever the current
precision mode happens to be. If the compiler is able to determine at compile time what this
mode will be, it may be able to evaluate at least part of the expression at compile time.

Thus, given these two facilities, the programmer has control over what precision mode will
be used, either at the level of a subexpression or a block at a time. In addition, functions can
specify what precision mode should be in effect in the functions they call, but not that of any
function further down its call chain, or that of its caller.

5.7 Why it is useful to be able to change the precision mode

It is important to note why one might want to be able to change the precision mode in effect.
There are several reasons why this would be convenient:

1. To avoid double rounding. Double rounding may be illustrated with the following program
fragment:

a := b * c

Suppose the precision of variables a, b, and c is double precision, and that the multiplica-
tion is computed to extended precision. Presumably, rounding will then occur twice: once
as part of the multiplication, and a second time as part of the assignment to variable a.
Double rounding may produce different results than if rounding were to occur just once.
In some situations, double rounding is not desirable. The next section mentions briefly
why compiler support is required in order to avoid double rounding; chapter 6 contains a
more general discussion of this topic.

2. To facilitate porting software designed for some other computer or compiler. Whether
done consciously or not, some software is written in such a way so as to depend on
the features of a particular floating-point arithmetic engine or compiler. The ability to
modify the precision mode in effect may make it easier to port such software to a different
computer or compiler.

3. To emulate other floating-point arithmetic engines. Even if a program does not present
anomalous behavior when run on a particular computer, one may in some cases want to
obtain results similar to those obtained on some other computer, whose floating-point
arithmetic engine may not have precision modes implemented, or to those obtained on a
similar computer, but with a different compiler. In fact, one may want to obtain identical
results on any member of a class of computers, all of which emulate some real or imagined
floating-point arithmetic engine. (This topic is discussed in more detail in chapter 9.)

4. To estimate the accuracy of a computation. Sometimes it is difficult or time consuming
to formulate the error bounds of a computation. Modifying the precision mode in effect
(which may be significantly easier that rewriting the program), recomputing the result,
and comparing it with previous results may in some cases be an effective way to obtain
some idea of the accuracy of the computation.
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5. To determine whether one should use wider or narrower precision. One may want to
find out if one should use wider precision. In order to determine this, one might try
modifying the precision mode in effect, which may be easier than rewriting the program.
If one finds that using a wider precision would be beneficial, one may undertake the task
of rewriting the program. On the other hand, one may want to find out if one can get
away with using a narrower precision in one’s program, which could have an impact on its
performance. The ability to change the precision mode in effect could be very convenient
in this situation.

5.8 Why compiler support is required in order to avoid double
rounding

On a floating-point arithmetic engine which must have more than one precision mode available
in order to conform to the IEEE Standard, there are two ways to avoid double rounding: 1)
one could set the precision mode to correspond to the desired precision while the operation or
operations in question are being performed; or 2) one could store the result of the operation(s) in
some memory location in the format corresponding to the desired precision (provided numbers
are correctly rounded when made to fit in memory), and then load the result of an operation
back into the arithmetic engine if this result is needed in subsequent calculations. Chapter 6
discusses both of these techniques in detail, including constraints on their successful use.

Regardless of which technique (or combination of techniques) is used to avoid double round-
ing, it is clear that some cooperation from the compiler would be desirable, except perhaps if
only one operation in the entire program needs a different precision mode to be in effect than
all the other operations. Otherwise, if one is using the second technique described above, one
might not be sure if one has obtained the desired results, particularly if one has used an overly-
aggressive “optimizing” compiler. For example, how can one be sure that the number that was
stored in memory is actually the number that will be used in subsequent calculations? If one
is using the first technique described above, writing the program could become tedious. The
reason for this is that it may not be enough to set the precision mode to correspond to the de-
sired precision once in the program (possibly at the beginning), since one may want to perform
different operations using different precisions. For example, if one is doing interpolation, say, in
order to compute the value of a trigonometric function, one might start with a value obtained
from a lookup table, and then evaluate a polynomial, which would provide a correction factor.
The polynomial might be evaluated at high precision to reduce round-off error as well as can-
cellation error. The value of the polynomial would then be added to the value from the lookup
table using a lower precision, which might be the precision used in most of the program6.

6In this example, it might be nice if one could avoid double rounding when adding the value from the lookup
table and the value of the polynomial. This can be achieved when using some floating-point units, such as the
one in the Intel 80486DX, which can add two extended precision numbers together and yield a lower precision
result, with rounding occurring just once.
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5.9 What support should exist in high-level languages

A language designer or implementer must face a number of decisions with respect to how to
handle precision modes: whether to provide any facilities at all, since precision modes are not
implemented in all processors; whether the user should be able to explicitly specify what preci-
sion mode should be in effect, or whether this should somehow be done implicitly, for example,
by specifying that double rounding should be avoided while performing certain operation(s);
the section of source code over which one request to use a particular precision mode should
apply, that is, whether a request to change the precision mode in effect should apply to a single
operation, a subexpression, a series of statements, etc.; whether a function or procedure should
be able to modify the precision mode of its caller or of the functions or procedures it calls; and
whether the precision mode in effect should be known statically.

Some provision should be made for modifying (either implicitly or explicitly) the precision
mode in effect, if only to allow the user to avoid double rounding. On some processors, such as
those containing floating-point arithmetic engines conforming to Intel’s x86 architecture, double
rounding is not convenient to avoid otherwise. The question of how facilities for modifying pre-
cision mode in effect should be handled when the target machine does not implement precision
modes is considered at the end of this section.

It ought to be possible to modify the precision mode in effect in a variety of ways. For
example, it ought to be possible to tell the compiler that double rounding is to be avoided
when evaluating a given (sub)expression. Otherwise, it might be tedious to write code that
avoids double rounding in all cases, especially since the technique used to avoid double rounding
might depend on the rounding mode in effect. Furthermore, the code to avoid double rounding
can make understanding the program significantly more difficult. It may also be desirable to
specify which technique the compiler should use in avoiding double rounding. If, for example,
double rounding needs to be avoided in all cases except when the result of some operation is a
denormalized number, a simpler technique can be used (merely setting the precision mode to
correspond to the precision of the operation is sufficient), and the program’s performance may
be improved.

There may be some other situations in which one may want to implicitly specify what
precision mode ought to be in effect at a given point in a program. Among the potential uses
for different precision modes, section 5.7 above mentions porting software designed for some
other computer or compiler, and emulating other floating-point arithmetic engines. Although
it may be unreasonable for a language design or compiler to allow for compatibility with all
possible computers, compilers, or floating-point arithmetic engines, compatibility with any one
of a few, carefully chosen computers, compilers, or floating-point arithmetic engines might be
feasible. In particular, the ability to emulate some “standard,” possibly hypothetical, floating-
point arithmetic engine may be desirable.

Besides ways of implicitly specifying what precision mode should be in effect at a given point
in a program, some way of directly specifying this would also be convenient. For example, in
order to estimate the accuracy of a computation, one might want to set the precision mode to
correspond to single precision before recomputing the result. It would be more convenient to



44 CHAPTER 5. SUPPORTING PRECISION MODES

be able to specify this directly, rather than specifying something like “emulate computer xyz,”
which happens to have only single precision arithmetic.

In order to accommodate all the uses for precision modes contemplated in section 5.7 above,
the user ought to be offered a choice as far as the section of source code over which one request
to use a particular precision mode should apply. The options should include the ability to
specify (implicitly or explicitly) what precision mode ought to be in effect throughout a portion
of a file, while a series of one or more statements is being executed, and during the evaluation of
a given subexpression. The latter option is needed because it is important, for example, to be
able to specify what precision mode should be in effect while the expression of an if statement
is being evaluated. The other two options reduce the tedium of specifying what precision mode
should be in effect when the desire is to have the same precision mode be in effect over a larger
section of code. Other options are, of course, possible, but not as essential as these three.

It can be argued that an ordinary function or procedure should not have the ability to modify
the precision mode in effect of its callers or the functions or procedures called. At least none
of the uses for precision modes contemplated in section 5.7 above require this capability, if one
views functions and procedures as being “black boxes.” That is, given the expression x + f(y),
where the type of the variable x and the type of the value f returns are both numeric types,
in terms of the uses for precision modes contemplated in section 5.7 above, it is not important
what precision mode was in effect when the value of f(y) was computed, any more than it
matters how the value of x came to be. (x could be a parameter, for example.) What matters
is what precision mode is in effect when the addition in the given expression is performed. If
functions or procedures were able to modify the precision mode in effect of its callers, the value
of f(y) in the expression above might be very different, and the program might not work at all.
If the precision mode in effect when f(y) is computed should be different, then this should be
so indicated when the code for f(y) is compiled.

The question of whether the compiler ought to be able to determine what precision mode
is in effect at a given point in a program is similar to that of whether the compiler ought to be
able to determine what rounding mode is in effect at a given point in a program. Discussion of
the latter appears in chapter 4; this discussion will not be repeated here.

Finally, there is the question of what to do if the target machine does not have precision
modes implemented. Two kinds of facilities have been mentioned in this section: implicit
and explicit means of specifying what precision mode should be in effect. Implicit means of
specifying this will probably be meaningful even in target machines lacking precision modes.
For example, it should be possible, in most cases, to comply with requests to avoid double
rounding or to emulate computer xyz when target machines lack precision modes.

It is not completely obvious what to do with explicit means of specifying what precision
mode should be in effect, particularly if the precision mode that should be in effect at a given
point in a program is not known statically. There are basically two approaches in such a case:
ignore the request because it is not applicable to the target machine, hopefully after providing
a warning that this will happen; or honor the request and simulate (dynamic) precision modes
in software. The former is much more attractive because the performance penalty of the latter
would almost surely be too severe.
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However, if the precision mode that should be in effect at a given point in a program is
known statically, then, in practice, one must consider three cases: when the precision mode
specified is “round to single precision,” “round to double precision,” and “round to (double)
extended precision.” (Widely-available processors that implement precision modes make avail-
able a possibly improper subset of these three precision modes.) One way to handle all three
of these cases is to simply ignore them, again hopefully after providing a warning that this will
happen. This may be a reasonable approach, since when the target machine does not implement
precision modes, it may not make very much sense to attempt to comply with requests to use
a specific precision mode. On the other hand, it is possible to attempt to comply with such
requests.

If the precision mode specified is “round to double precision,” then the compiler could
produce code which converts all operands to double precision and performs all operations in
double precision. Provided the widest precision implemented in the target machine is double
precision, this recommendation should not prove to be objectionable. (Indeed, the following
paragraphs assume the widest precision implemented in the target machine is double precision.)

If the precision mode specified is “round to (double) extended precision,” then the compiler
could either treat such a request as being equivalent to one for “round to double precision”
(hopefully after providing a warning that this will happen), or perform extended precision
operations in software. The latter would, however, not be very appealing because of the impact
on performance.

If the precision mode specified is “round to single precision,” then the compiler could pro-
duce code which converts all operands to single precision and performs all operations in single
precision. Alternatively, all operations could be performed with the usual precision, with the
result of each operation rounded to single precision. Either way presents certain problems: If
all operands are first converted to single precision, results could be quite different. On the
other hand, if the second alternative is used, the results of many operations could suffer double
rounding: once when an operation is performed, and again when the result of that operation is
converted to single precision. The second alternative is probably preferable to the first, since
results would in most cases be closer to their corresponding infinitely precise results.

In the discussion in the preceding paragraph, one must keep in mind why the IEEE Standard
seems to require some floating-point engines to have precision modes in the first place: to provide
a way to obtain results similar to those obtained on machines that lack extended (and possibly
double) precision. While this would seem to argue in favor of not even attempting to comply
with requests to use a specific precision mode, making such attempts could facilitate achieving
the goals mentioned in the last two uses for precision modes described in section 5.7 above, that
is, estimating the accuracy of a computation, and determining whether one should use wider
or narrower precision.

The discussion above brings up the point that language designs and implementations thereof
should make it clear whether compilers (should) attempt to comply with requests to use a
specific precision mode when the target machine does not implement precision modes. Perhaps
a good design ought to provide a way for the user to specify whether or not such requests should
be ignored when the target machine does not implement precision modes.
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Chapter 6

Double Rounding

Double rounding is the phenomenon that occurs when the result of an operation is rounded to
fit some intermediate destination, and then again when delivered to its final destination. For
example, consider the following program fragment:

a := b * c

Suppose the precision of variables a, b, and c is double precision, and that products are com-
puted to extended precision. The product of b and c will typically be rounded twice: once
when the product is computed to extended precision, and again when the (extended precision)
product is assigned to variable a. The value stored in variable a may be different than if the
product of b and c were to be computed to double precision in the first place, that is, if rounding
were to occur just once.

Goldberg gives the example of computing 1.9 × 0.66 using decimal arithmetic [65]. The
exact product is 1.254, but if this product were rounded first to three significant digits and
then to two, the final result would be 1.2 instead of 1.3 (the latter being closer to the exact
product), if one were to round to the nearest number as specified in the IEEE Standard for
Radix-Independent Floating-Point Arithmetic [48]1.

Double rounding can be a common occurrence when using some floating-point arithmetic
engines which lack single precision registers: results of operations are typically rounded to fit in
a register, whose width may be double precision or wider, before being stored in some memory
location possibly in a format narrower than that of the registers. Examples of such floating-
point arithmetic engines include those in processors conforming to Intel’s x86 architecture, or
to IBM’s POWER architecture2. (Processors conforming to the POWER architecture appear
in some older IBM workstations.)

1The IEEE Standard for Binary Floating-Point Arithmetic [47], which is better known than the aforemen-
tioned one for radix-independent arithmetic, is a subset of the latter.

2Even if an architecture lacks single precision registers, results of operations will not necessarily suffer double
rounding. For example, in Motorola’s PowerPC and DEC’s Alpha architectures, results of single precision
instructions are rounded to single precision (rather than double precision), even though they are stored in double
precision registers. (Actually, as will be shown in this chapter, in cases such as these, it would make no difference
if double rounding were to occur in the process of computing the results of single precision instructions.)

47
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In some situations, double rounding is highly undesirable. The next section describes one
such case, while the section after that discusses cases in which double rounding is absolutely
harmless. The last two sections discuss how double rounding can be avoided in general.

6.1 Why double rounding can be undesirable

Consider the problem of converting a rational number, in which the numerator and the denom-
inator are both arbitrary integers, to the nearest floating-point number that can be represented
in a given floating-point format. In general, it is not obvious how this problem can be solved
efficiently, but there may be many instances of this problem in which the numerator and the
denominator can both be represented exactly as floating-point numbers in the same format
as the final result. Therefore, it is important to be able to do this conversion very quickly in
such cases. However, if double rounding cannot be avoided unequivocally even when doing an
operation as simple as a division, it will be very difficult to design a solution to this problem
with satisfactory performance in these cases.

How much would performance suffer if one cannot guarantee that double rounding will be
avoided? In order to answer this question, consider a processor such as Intel’s Pentium, and
suppose that the result of the conversion routine must be in the double precision format. In
this type of processor, arithmetic operations are normally computed to (double) extended pre-
cision. This means there are three ways to produce a double precision quotient: 1) produce
an extended precision quotient, and then round this quotient to double precision (this alterna-
tive would be unacceptable, since it involves double rounding); 2) set the (rounding) precision
mode to correspond to double precision3 (this alternative may also be unacceptable if there is
no convenient or portable way to do this); or 3) augment the first alternative with code that
corrects the doubly rounded result in order to guarantee that the result will ultimately be the
same as if it had been rounded just once.

One way to correct the doubly rounded result involves modifying the rounding mode in
effect. This technique is discussed in more detail in section 6.3, and may be unacceptable on
the same grounds as the second alternative above, and because there is a better way to correct
the result: in this particular situation, double rounding is a problem only if the rounding mode
in effect is “round to nearest,” and the bits in the significand of the extended precision quotient
which cannot be preserved in the final result consist of a leading one followed by only zeros.
Therefore, all one need do is take corrective action whenever this bit pattern is detected.

In order to fully assess the impact double rounding has on this problem, one must consider
what sort of corrective action is required. First, one must identify the two consecutive double
precision floating-point numbers a and b that surround the extended precision quotient, and
determine which of these two is closer to the infinitely precise quotient. This can be done by
choosing one of the two numbers, multiplying it by the divisor using exact arithmetic, and

3Setting the (rounding) precision mode to correspond to double precision avoids double rounding whenever
the numerator is greater than 3 or the denominator is less than or equal to 2Emax−1 (see section 3.1), since in
these cases the result will always be zero, infinity, NaN, or a value that can be expressed as a normalized double
precision floating-point number, that is, the result will not be a denormal.
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comparing this product with the dividend. Assuming |a| < |b|, if the difference between the
exact product and the dividend is less than half an ulp (unit in the last place) of a times
the divisor, the number chosen is closer to the infinitely precise quotient. If this difference
is greater than half an ulp of a times the divisor, the other number is closer to the infinitely
precise quotient. Finally, if this difference is exactly equal to half an ulp of a times the divisor,
both numbers are equally close to the infinitely precise quotient. If a is closer to the infinitely
precise quotient, a one must be subtracted from the least significant bit of the significand of the
extended precision quotient. On the other hand, if b is closer to the infinitely precise quotient,
a one must be added to the least significant bit of the significand of the extended precision
quotient. If both a and b are equally close to the infinitely precise quotient, no correction needs
to be made to the extended precision quotient. Now, when the (possibly modified) extended
precision quotient is rounded to double precision, the final result will be the same as if the
quotient had been rounded just once4.

As can be seen, without the assurance that double rounding cannot occur, a simple problem,
whose solution should have required no more than a division, now requires significant intellectual
effort to solve. Fortunately, in this instance, the impact on performance in relative terms is not
as severe as might otherwise have been the case, since corrective action is rarely needed, and
division tends to take significantly more time to perform than other arithmetic operations.

It is interesting to note that it would most likely take less time to detect whether corrective
action is necessary than to modify the precision mode in effect to correspond to double precision
before performing the division, and then restore the precision mode back to its previous setting.
Thus, even though the second alternative mentioned above (that is, the one that involves
changing the precision mode in effect) is a conceptually simple solution, it might not be the
solution with the best performance.

Double rounding can have an unfavorable impact on other problems as well. For example,
when converting a decimal floating-point number to a binary floating-point number, in many
cases, both the significand of the decimal number and the power of ten (or its reciprocal) can
be expressed exactly as binary floating-point numbers in the format in which the result should
be. A single multiplication or division is all that is required to produce the correctly rounded
result, provided the result does not suffer double rounding.

4This discussion assumes it is not known what rounding mode is currently in effect, perhaps because it is
not convenient or portable to determine this. If it were possible to determine that in fact the current rounding
mode is not “round to nearest,” no corrective action would be needed—double rounding would be harmless.
Otherwise, the corrective action to be taken can be simplified somewhat: As before, let a and b be the two
consecutive double precision floating-point numbers closest to the infinitely precise quotient, with |a| < |b|. Of
these two numbers, multiply the one whose significand has a zero as its least significant bit by the divisor using
exact arithmetic, and compare this product with the dividend. If the difference between the exact product and
the dividend is not greater than half an ulp of a times the divisor, the number whose significand has a zero as its
least significant bit is the correctly rounded (double precision) quotient. Otherwise, the other adjacent number
is the correctly rounded quotient.
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6.2 When is double rounding innocuous?

If double rounding can be disastrous, one might ask oneself, “Is double rounding ever harmless?”
This section answers this question, at least from the context of how one can emulate single
precision (binary) floating-point arithmetic when only double precision floating-point arithmetic
is available.

In fact, this is the same context as that in [65], which unfortunately contains the following
claim:

If x and y have p-bit significands, and x+y is computed exactly and then rounded to
q places, a second rounding to p places will not change the answer if p ≤ (q − 1)/2.
This is true not only for addition, but also for multiplication, division, and square
root.

(The same claim also appears in the draft of the second edition of [65].) In addition to showing
that this statement is not quite true for square root, this section contains proofs that this
statement is true for the other arithmetic operations.

Information similar to that in this section apparently appears in some lecture notes from a
course Prof. W. Kahan gave in 1988 [35, 42] (and to which this author does not have access).
However, this information is repeated here, since it is not easily accessible.

This section considers two different algorithms for rounding to the nearest number: biased
and unbiased rounding. In unbiased rounding, that is, rounding to nearest or even as specified
in [47], if there are two consecutive floating-point numbers equally near to the infinitely precise
result, the floating-point number whose significand has a zero as its least significant bit is chosen
as the correctly rounded result. Biased rounding is similar, except that in the situation above,
the floating-point number with the larger magnitude is chosen as the correctly rounded result.

If the rounding mode used is not “round to nearest” (that is, if the rounding mode is
“round toward zero,” “round toward positive infinity,” or “round toward negative infinity”—
see chapter 4), it is easy to see that double rounding cannot cause the final result to be different
from what would have been obtained with single rounding, as long as single precision floating-
point numbers are a subset of double precision floating-point numbers.

Even when rounding to the nearest number, double rounding is of concern only if the
significant digits of the infinitely precise result form one of either one or two specific bit patterns.
These patterns depend on whether biased or unbiased rounding is used. In the former case, the
bit pattern of concern is

1d1d2 . . . dp−1011 . . . 11dq+1dq+2 . . . ,

where p and q are the number of digits in the significands of single and double precision numbers,
respectively, and each dn, n > 0, is a one or a zero. The reason why this pattern is of concern
is that such a number, rounded to q digits, would yield 1d1d2 . . . dp−11. Subsequent rounding
of this number to p digits would yield the next largest p-digit number. However, the single
precision number closest to the infinitely precise result would simply be 1d1d2 . . . dp−1.

If unbiased rounding is used, the bit patterns of concern are

1d1d2 . . . dp−21011 . . . 11dq+1dq+2 . . . ,
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which is similar to the pattern of concern for biased rounding, and

1d1d2 . . . dp−20100 . . . 00dqdq+1 . . . ,

where either dq is one and dq+n, n > 0, are all zeros, or dq is zero and dq+n, n > 0, are not
all zeros. The reason why the latter pattern is of concern is that such a number, rounded to
q digits, would yield 1d1d2 . . . dp−201. Subsequent rounding of this number to p digits would
yield 1d1d2 . . . dp−20. However, the single precision number closest to the infinitely precise result
would be the next largest p-digit number: 1d1d2 . . . dp−21.

The rest of this section proves, for the various arithmetic operations (addition, subtraction,
multiplication, division, and square root), how many digits the significands of double precision
numbers must have in order for double rounding to always yield the same result as would be
obtained if rounding to yield a single precision number were to occur just once. These proofs
take into account both unbiased rounding as well as biased rounding. (In some cases, the proofs
are slightly different, depending on which of these two rounding methods is used.)

6.2.1 Addition

Theorem 1 Let x and y be positive binary floating-point numbers whose significands consist
of at most p digits, where p ≥ 2, and let z be the binary floating-point number that most closely
approximates x+y, and whose significand consists of at most q digits, where q > p. The binary
floating-point number that most closely approximates x+ y and whose significand consists of at
most p digits is the one that most closely approximates z if and only if q ≥ 2p + 1.

Proof. Without loss of generality, assume x ≥ y; otherwise, interchange x and y in the rest of this
proof. We will restrict our attention to floating-point numbers x and y such that 1 ≤ x+y < 2,
since all pairs of positive binary floating-point numbers can be scaled by powers of two to meet
these constraints.

There are potentially two cases in which our hypothesis is not trivially true: if x + y (in
infinite precision) were to look something like

1.d1d2 . . . dp−20100 . . . 00dqdq+1 . . . ,

where either dq is one and dq+n, n > 0, are all zeros, or dq is zero and dq+n, n > 0, are not all
zeros; or if x + y (in infinite precision) were to look something like

1.d1d2 . . . dp−1011 . . . 11dq+1dq+2 . . . .

In both cases, y < 2p−q, since dq+n, n ≥ 0 are not all zeros. If q ≥ 2p + 1, then y < 2−p−1.
Now, in the sum x + y there are either p + 1 or p + 2 significant digits to the left of the p + 2nd
digit to the right of the radix point, the first and last of which are nonzero. Therefore, x cannot
be a number with at most p significant digits if q ≥ 2p+1 and x+y (in infinite precision) looks
something like 1.d1d2 . . . dp−20100 . . . 00dqdq+1 . . . or like 1.d1d2 . . . dp−1011 . . . 11dq+1dq+2 . . . .
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If p < q < 2p + 1, the theorem is false: Consider the case where x = 1 + 21−p and
y = 2−p(1− 2−p). x + y looks something like

1.00 . . . 001011 . . . 11,

where there are p− 2 consecutive zeros immediately to the right of the radix point followed by
a one, a zero, and p consecutive ones. If p < q < 2p + 1, then z = 1 + 3 · 2−p, and the p-digit
number that most closely approximates z is 1 + 22−p, whereas the p-digit number that most
closely approximates x + y is x.

6.2.2 Subtraction

Theorem 2 Let x and y be positive binary floating-point numbers whose significands consist of
at most p digits, where p ≥ 2, such that x > y, and let z be the binary floating-point number that
most closely approximates x−y, and whose significand consists of at most q digits, where q > p.
The binary floating-point number that most closely approximates x − y and whose significand
consists of at most p digits is the one that most closely approximates z if and only if q ≥ 2p + 1
(using unbiased rounding) or q ≥ 2p (using biased rounding).

Proof. We will restrict our attention to floating-point numbers x and y such that 1 ≤ x−y < 2,
since all pairs of positive binary floating-point numbers x and y such that x > y can be scaled
by powers of two to meet these constraints.

There are potentially two cases in which our hypothesis is not trivially true: if x − y (in
infinite precision) were to look something like

1.d1d2 . . . dp−20100 . . . 00dqdq+1 . . . ,

where either dq is one and dq+n, n > 0, are all zeros, or dq is zero and dq+n, n > 0, are not all
zeros; or if x− y (in infinite precision) were to look something like

1.d1d2 . . . dp−1011 . . . 11dq+1dq+2 . . . .

If x− y were to look as in the first case, then x− y = 22−pa + 2−p + c, or

x = 22−pa + 2−p + c + y,

where a is an integer such that 2p−2 ≤ a < 2p−1, and 0 < c ≤ 2−q. Now, y < 2p−q, since dq+n,
n ≥ 0 are not all zeros. If q ≥ 2p + 1, then y < 2−p−1 and 0 < c ≤ 2−2p−1, so c + y ≤ 2−p−1.
The sum 22−pa + 2−p consists of one digit to the left of the radix point and p digits to the
right of the radix point, for a total of p + 1 significant digits. Adding c + y to this quantity
can only increase the number of significant digits. Therefore, x cannot be a number with at
most p significant digits if q ≥ 2p + 1 and x − y (in infinite precision) looks something like
1.d1d2 . . . dp−20100 . . . 00dqdq+1 . . . .

If x− y were to look as in the second case, then x− y = 21−pa + 2−p − c, or

x = 21−pa + 2−p − c + y,
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where a is an integer such that 2p−1 ≤ a < 2p, and 0 < c ≤ 2−q. Now, y < 2p−q, since dq+n,
n ≥ 0 are not all zeros. If q ≥ 2p, then y < 2−p and 0 < c ≤ 2−2p, so −2−2p < y− c < 2−p. The
sum 21−pa+2−p consists of one digit to the left of the radix point and p digits to the right of the
radix point, for a total of p+1 significant digits. Adding y−c to this quantity cannot decrease the
number of significant digits. Therefore, x cannot be a number with at most p significant digits if
q ≥ 2p and x−y (in infinite precision) looks something like 1.d1d2 . . . dp−1011 . . . 11dq+1dq+2 . . . .

If p < q < 2p + 1, the theorem is false if using unbiased rounding: Consider the case where
x = 1 + 21−p and y = 2−p(1− 2−p). x− y looks something like

1.00 . . . 00100 . . . 001,

where there are p− 1 consecutive zeros immediately to the right of the radix point followed by
a one, p− 1 consecutive zeros, and a one. If p < q < 2p + 1, then z = 1 + 2−p, and the p-digit
number that most closely approximates z is 1, whereas the p-digit number that most closely
approximates x− y is x.

If p < q < 2p, the theorem is also false, regardless of whether biased or unbiased rounding
is used: Consider the case where x = 1 + 22−p and y = 2−p(1 + 21−p). x− y looks something
like

1.00 . . . 001011 . . . 11,

where there are p− 2 consecutive zeros immediately to the right of the radix point followed by
a one, a zero, and p− 1 consecutive ones. If p < q < 2p, then z = 1 + 3 · 2−p5, and the p-digit
number that most closely approximates z is x, whereas the p-digit number that most closely
approximates x− y is 1 + 21−p.

6.2.3 Multiplication

Theorem 3 Let x and y be positive binary floating-point numbers whose significands consist
of at most p digits, where p ≥ 4, and let z be the binary floating-point number that most closely
approximates xy, and whose significand consists of at most q digits, where q > p. If q ≥ 2p, the
binary floating-point number that most closely approximates xy and whose significand consists
of at most p digits is the one that most closely approximates z. (This is not always the case if
p < q < 2p6.)

Proof. We will restrict our attention to floating-point numbers y where 1 ≤ y < 2, and floating-
point numbers x such that 1 ≤ xy < 2, since all pairs of positive binary floating-point numbers
can be scaled by powers of two to meet these constraints.

There are potentially two cases in which our hypothesis is not trivially true: if xy (in infinite
precision) were to look something like

1.d1d2 . . . dp−20100 . . . 00dqdq+1 . . . ,

5If p = 2, this is true only if using biased rounding.
6The reason for restricting p to values no smaller than 4 is that q can be less than 2p otherwise.
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where either dq is one and dq+n, n > 0, are all zeros, or dq is zero and dq+n, n > 0, are not all
zeros; or if xy (in infinite precision) were to look something like

1.d1d2 . . . dp−1011 . . . 11dq+1dq+2 . . . .

Now, x = 2ea for some integer e and some integer a such that 2p−1 ≤ a < 2p. Similarly,
y = 21−pb for some integer b such that 2p−1 ≤ b < 2p. Thus, xy = 2e−p+1ab, with 22p−2 ≤
ab < 22p. Therefore, since xy consists of at most 2p significant digits, xy cannot look like
1.d1d2 . . . dp−20100 . . . 00dqdq+1 . . . or like 1.d1d2 . . . dp−1011 . . . 11dq+1dq+2 . . . .

If p < q < 2p, the theorem can be false if using unbiased rounding: Consider the case where
p = 4 and x = y = 13. xy = 132 = 169 = 101010012 . If p < q < 2p, then z = 168, and the
p-digit number that most closely approximates z is 160, whereas the p-digit number that most
closely approximates xy is 1767.

6.2.4 Division

Theorem 4 Let x and y be positive binary floating-point numbers whose significands consist
of at most p digits, where p ≥ 2, and let z be the binary floating-point number that most closely
approximates x/y, and whose significand consists of at most q digits, where q > p. If q ≥ 2p, the
binary floating-point number that most closely approximates x/y and whose significand consists
of at most p digits is the one that most closely approximates z. This is not necessarily the case
when using unbiased rounding and p < q < 2p.

Proof. We will restrict our attention to floating-point numbers y where 2p−1 ≤ y < 2p, and
floating-point numbers x such that 1 ≤ x/y < 2, since all pairs of positive binary floating-point
numbers can be scaled by powers of two to meet these constraints.

There are potentially two cases in which our hypothesis is not trivially true: if x/y (in
infinite precision) were to look something like

1.d1d2 . . . dp−20100 . . . 00dqdq+1 . . . ,

where either dq is one and dq+n, n > 0, are all zeros, or dq is zero and dq+n, n > 0, are not all
zeros; or if x/y (in infinite precision) were to look something like

1.d1d2 . . . dp−1011 . . . 11dq+1dq+2 . . . .

If x/y were to look as in the first case, then x/y = 22−pa + 2−p + c, or

x = 22−pay + 2−py + cy,

where a is an integer such that 2p−2 ≤ a < 2p−1, and 0 < c ≤ 2−q. Now, 22−pay + 2−py
consists of at least p digits to the left of the radix point, and no more than p digits to the right
of the radix point. If q ≥ 2p, then 0 < cy < 2−p, and adding cy to 22−pay + 2−py can only

7Another example is p = 5 and x = y = 23, and yet another is p = 6, x = 45, and y = 59. The latter example
shows that this theorem can be false if p ≥ 6 and p < q < 2p, even when using biased rounding.
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increase the number of significant digits in the latter quantity. Therefore, x cannot be a number
with at most p significant digits if q ≥ 2p and x/y (in infinite precision) looks something like
1.d1d2 . . . dp−20100 . . . 00dqdq+1 . . . .

If x/y were to look as in the second case, then x/y = 21−pa + 2−p − c, or

x = 21−pay + 2−py − cy,

where a is an integer such that 2p−1 ≤ a < 2p, and 0 < c ≤ 2−q. Now, 21−pay + 2−py consists
of at least p digits to the left of the radix point, and no more than p digits to the right of the
radix point. If q ≥ 2p, then 0 < cy < 2−p, and subtracting cy from 21−pay + 2−py can only
increase the number of significant digits in the latter quantity. Therefore, x cannot be a number
with at most p significant digits if q ≥ 2p and x/y (in infinite precision) looks something like
1.d1d2 . . . dp−1011 . . . 11dq+1dq+2 . . . .

If p < q < 2p, the theorem is false if using unbiased rounding: Consider the case where
x = 1 and y = 1− 2−p. Computing the first few terms of the Taylor series expansion yields

x/y = 1/(1 − 2−p) ≈ 1 + 2−p + 2−2p + 2−3p,

which looks something like
1.00 . . . 00100 . . . 00100 . . . ,

where there are p− 1 consecutive zeros immediately to the right of the radix point followed by
a one, p−1 consecutive zeros, and another one. If p < q < 2p, then z = 1+2−p, and the p-digit
number that most closely approximates z is 1, whereas the p-digit number that most closely
approximates x/y is 1 + 21−p8.

6.2.5 Square root

Theorem 5 Let x be a positive binary floating-point number whose significand consists of at
most p digits, where p ≥ 2, and let y be the binary floating-point number that most closely
approximates

√
x, and whose significand consists of at most q digits, where q > p. The binary

floating-point number that most closely approximates
√

x and whose significand consists of at
most p digits is the one that most closely approximates y if and only if q ≥ 2p + 2.

Proof. We will restrict our attention to floating-point numbers x where 1 ≤ x < 4, since all
positive binary floating-point numbers can be written as 2ex, where e is an even integer and
1 ≤ x < 4.

There are potentially two cases in which our hypothesis is not trivially true: if
√

x (in
infinite precision) were to look something like

1.d1d2 . . . dp−20100 . . . 00dqdq+1 . . . ,

8Another example is p = 4, x = 13, and y = 11: x/y = 1.0010111010001 . . . , so this theorem is most likely
false if p ≥ 4 and p < q < 2p, even when using biased rounding.
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where either dq is one and dq+n, n > 0, are all zeros, or dq is zero and dq+n, n > 0, are not all
zeros; or if

√
x (in infinite precision) were to look something like

1.d1d2 . . . dp−1011 . . . 11dq+1dq+2 . . . .

If
√

x were to look as in the first case, then

22−pa + 2−p <
√

x ≤ 22−pa + 2−p + 2−q,

where a is an integer such that 2p−2 ≤ a < 2p−1. Let z = 22−pa. This means that

x > z2 + 21−pz + 2−2p

x ≤ z2 + 21−pz + 2−2p + 21−qz + 21−p−q + 2−2q.

Now, the lower bound for x is a number with exactly 2p digits to the right of the radix point
and one or two digits to the left of the radix point. Thus, x cannot be a number with at most p
significant digits unless the upper bound for x were no smaller than the smallest p-digit number
larger than the lower bound.

However, if q ≥ 2p (a stricter constraint than was mentioned in the theorem), then the upper
bound cannot be greater than or equal to this p-digit number. The reason is that z2 +21−pz has
at most 2p−3 digits to the right of the radix point, while 2−2p +21−qz +21−p−q +2−2q < 23−2p.
In other words, the lower bound looks something like d−1d0.d1d2 . . . d2p−3001, and no matter
how big 21−qz + 21−p−q + 2−2q is, adding the latter quantity to the lower bound cannot affect
the lower bound’s (2p − 3)rd digit. Therefore, if q ≥ 2p,

√
x (in infinite precision) cannot look

something like 1.d1d2 . . . dp−20100 . . . 00dqdq+1 . . . .
If
√

x were to look as in the second case, then

21−pa + 2−p − 2−q ≤ √
x < 21−pa + 2−p,

where a is an integer such that 2p−1 ≤ a < 2p. Let z = 21−pa. This means that

x ≤ z2 + 21−pz + 2−2p

x > z2 + 21−pz + 2−2p − 21−qz − 21−p−q + 2−2q.

Now, the upper bound for x is a number with exactly 2p digits to the right of the radix point
and one or two digits to the left of the radix point. Thus, x cannot be a number with at most
p significant digits unless the lower bound for x were no larger than the largest p-digit number
smaller than the upper bound.

However, if q ≥ 2p + 2, then the lower bound cannot be less than or equal to this p-digit
number. The reason is that 21−qz +21−p−q− 2−2q < 2−2p. Therefore, subtracting this quantity
from the upper bound cannot result in a number consisting of fewer than 2p digits to the right
of the radix point. Therefore, if q ≥ 2p + 2,

√
x (in infinite precision) cannot look something

like 1.d1d2 . . . dp−1011 . . . 11dq+1dq+2 . . . .
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Operation Minimum number of
digits required

Addition 2p + 1
Subtraction 2p + 1 (unbiased rounding)

2p (biased rounding)
Multiplication 2p
Division 2p
Square root 2p + 2

Table 6.1: Number of digits required to emulate single precision arithmetic using double preci-
sion arithmetic

If p < q < 2p + 2, the theorem is false: Consider x = 1 − 2−p. Computing the first few
terms of the Taylor series expansion yields

√
1− 2−p ≈ 1− 2−p−1 − 2−2p−3 − 2−3p−5,

which looks something like
0.11 . . . 11011 . . . 11011 . . . ,

where there are p consecutive ones immediately to the right of the radix point followed by a
zero, p + 1 consecutive ones, and another zero. If p < q < 2p + 2, then y = 1− 2−p−1, and the
p-digit number that most closely approximates y is 1, whereas the p-digit number that most
closely approximates

√
x is x.

6.2.6 Additional comments

In order to emulate single precision floating-point arithmetic faithfully using double precision
arithmetic, if results are rounded to the nearest representable floating-point number, double
precision floating-point numbers must consist of more than twice as many significant digits as
single precision floating-point numbers. More specifically, Table 6.1 lists the minimum number
of significant digits required for each of the five arithmetic operations. (In this table, p is the
number of digits in the significands of single precision numbers, Addition refers to the addition
of two numbers with the same sign, and Subtraction refers to the addition of two numbers with
opposite signs.)

It may not be apparent from Table 6.1 that with just two or three exceptions, even if the
significands of double precision numbers were to consist of only 2p significant digits, one could
avoid changing the final result of an arithmetic operation when double rounding occurs: If one
were to make just a few slight modifications to Priest’s proof of Theorem 5 [67] (which postdates
this author’s proof by a few days), one could show that if it were not for numbers of the form
2e(1 − 2−p), where e is an even integer, only 2p digits would be needed for square root. Also,
for subtraction (using unbiased rounding) and addition, if double precision numbers consisted
of only 2p significant digits, double rounding could change the final result only if the operand
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whose magnitude is smaller were equal to 2e−p(1−2−p), where e is the exponent of the operand
whose magnitude is larger.

(Incidentally, judging from the proof of Theorem 4, one gets the impression that it may
possibly be easier to prove theorems about floating-point arithmetic engines conforming to [47]
than about those that do not fully conform to this standard.)

Alas, the author was not able to show that for any p ≥ 6, q must be greater than or equal
to 2p in order for Theorem 3 to be true, regardless of whether biased or unbiased rounding is
used. Also, the author was not able to show that for any p ≥ 4, q must be greater than or equal
to 2p in order for Theorem 4 to be true when biased rounding is used.

6.3 On avoiding double rounding

Double rounding can be easily avoided on a floating-point arithmetic engine which does not
need to have precision modes available in order to conform to the IEEE Standard. But on those
that must have more than one precision mode available, there are two ways to avoid the effects
of double rounding: 1) one could set the precision mode to correspond to the desired precision
while the operation or operations in question are being performed; or 2) one could store the
result of the operation(s) in some memory location in the format corresponding to the desired
precision (provided numbers are correctly rounded when made to fit in memory), and then load
the result of an operation back into the arithmetic engine if this result is needed in subsequent
calculations.

Note that both of these techniques can be used in combination. For example, if the precision
of all the variables in a program is not wider than double precision, the precision mode could
be set to “round to double precision” for the duration of the entire program. Any single
precision operations for which one wants single precision results could be handled using the
second technique described above.

The first technique described above is not always effective in eliminating double rounding.
This is because the IEEE Standard does not fully specify what happens when the result of
an operation lies outside the range of representable numbers for the format corresponding to
the precision mode in effect, and the precision mode in effect corresponds to a precision that
is narrower than the widest precision implemented. For example, on the Intel 80486DX, the
widest precision implemented is (double) extended precision. If one were to set the precision
mode to correspond to double precision, and the result of an operation is finite and lies outside
the range of representable numbers for double precision, the significand of the result would
still be rounded just as if the result were representable as a double precision number, but the
exponent would not be in the range for double precision exponents. This means that if it were
necessary to store the result in memory for some reason, the number stored in memory could
differ from the original result: the number stored in memory could either be ±∞ instead of some
large finite number, or a denormalized number or zero instead of a small normalized number.
In the second case, even though the precision mode is set to correspond to double precision,
the “final” result of an operation may still suffer double rounding: once when the operation is
performed, and a second time when the result of this operation is stored in memory. Thus, a
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small change in the program or a change in the level of optimization could cause the results to
be different, depending on whether the result of an operation has to be stored in memory or
not.

If the rounding mode in effect is “round to nearest,” the second technique described above
is also not always effective in eliminating the harm from double rounding. Section 6.4 mentions
what the constraints for the successful use of this option are. As briefly outlined in [41], one
way to do away with these constraints and that is effective regardless of the rounding mode in
effect is to set the rounding mode to “round toward zero” before performing an operation. If
the inexact exception is signaled while performing the operation, the (infinitely precise) result
can be rounded in the same way it would be rounded if there were no trap handler for the
inexact exception (that is, rounded toward zero), and if this rounded result is exactly half way
between two consecutive floating-point numbers representable in the destination format, then
a one could be added to or subtracted from the position occupied by the least significant bit
of the significand of the rounded result, depending on the sign of the rounded result9. Now,
when this possibly modified result is stored to memory using the original rounding mode (which
might not have been “round toward zero”), the stored result will be the same as if rounding
had occurred once.

The only constraint for this technique to work is that, assuming the radix for the represen-
tation of floating-point numbers is two, the representation of the significand of wide precision
floating-point numbers must be at least one bit wider than that of the destination format, and
the range of exponents for the former must be at least as wide as that of the latter. In other
words, the midpoint of every interval whose endpoints are distinct adjacent floating-point num-
bers exactly representable in the destination format must be exactly representable as a wide
precision floating-point number. In addition, the largest finite floating-point number exactly
representable in the destination format plus one half ulp of that must be exactly representable
as a wide precision floating-point number, and similarly for the smallest finite floating-point
number exactly representable in the destination format.

Note that this technique may not be portable, since it potentially involves changing the
rounding mode twice.

9Special consideration is needed if the original rounding mode is “round toward positive infinity” or “round
toward negative infinity.” If the original rounding mode is “round toward positive infinity” and the rounded
result is positive, then a one must be added to the position occupied by the least significant bit of the significand
if the rounded result is exactly representable in the destination format. Similarly, if the original rounding mode
is “round toward negative infinity” and the rounded result is negative, then a one must be subtracted from the
position occupied by the least significant bit of the significand if the rounded result is exactly representable in
the destination format. One might think that if the original rounding mode is “round toward positive infinity”
or “round toward negative infinity” and the rounded result is zero, it may not be possible to know what the final
result should be: zero, the largest negative number, or the smallest positive number. However, if the result is
zero, the inexact exception will not be raised: if the infinitely precise result is nonzero, the result can be best
approximated by a nonzero wide precision floating-point number, rather than by zero.
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6.4 Practical ways of avoiding double rounding

From the discussion in the previous section, it would seem that there are two foolproof ways of
avoiding double rounding. One potentially involves changing the rounding mode twice, and is
therefore likely to drastically slow down floating-point arithmetic performance (see chapter 9),
and the other way (converting wide precision results to a narrower format, that is, innocuous
double rounding) can only be used if certain constraints are met, and is therefore not always
applicable to a given situation. Are there any other ways of avoiding double rounding without
limiting constraints and without severely degrading performance?

Before examining other techniques for avoiding double rounding, however, one ought to
consider exactly how much the two techniques mentioned above affect floating-point perfor-
mance. The steps involved in performing a floating-point operation using the first technique
would typically be as follows:

• save the current rounding mode and the inexact flag;

• clear the inexact flag and disable the inexact exception handler if applicable;

• set the rounding mode to “round toward zero;”

• perform the operation itself;

• find out if the significand of the result ends in the right number of zeros, and if so, find
out what rounding mode was saved in the first step above (in most cases, nothing will
need to be done to the result);

• restore the rounding mode that was saved in the first step above;

• convert the result to the destination format;

• if the inexact flag is not set and the final result is the same as the original result, restore the
inexact flag to its original state and reenable the inexact exception handler if applicable;

• otherwise, set the inexact flag, reenable the inexact exception handler if applicable, and
signal the inexact exception.

As can be seen, there is a very significant amount of overhead involved for every floating-
point operation. Certainly, pipelining of floating-point operations would not be possible.

It may be possible to omit some of the steps outlined above. For example, the current
rounding mode only needs to be saved once per basic block, and perhaps not at all if it is known
statically. Also, in most cases, there will be no exception handler for the inexact exception, and
in fact, it may not even be important to faithfully keep track of whether the inexact exception
ever occurred while performing some computation. Even so, on an Intel Pentium, floating-point
arithmetic performance would slow down by a factor of at least 24.

In contrast, simply generating wide precision results and converting each result to its desti-
nation format slows down floating-point arithmetic performance by a factor of between 4 and
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7 on an Intel Pentium, depending on whether other (independent) instructions can execute
concurrently. Performance could be improved if it were possible to perform this conversion
without actually having to access memory. Unfortunately, the Pentium’s instruction set does
not allow for this.

The simplest and potentially fastest way to avoid double rounding is to set the precision
mode to correspond to the desired precision. This is especially attractive if the precision mode in
effect hardly ever needs to be modified, but it is not completely foolproof, since this technique
does not work if the result of an operation is in the range of denormalized numbers. This
technique can be modified to make it foolproof: Before performing any floating-point operation,
the operand or operands can be stored in some convenient memory location (or in floating-point
registers), along with a code that indicates what operation is about to be performed10. After the
operation is performed, the result can be examined, and if it is within the range of denormalized
numbers, the operation can be performed again using one of the techniques described above11.
This technique would slow down floating-point arithmetic performance by a factor of about 10
on an Intel Pentium, assuming the precision mode in effect does not need to be changed.

Another way to avoid double rounding is to set the precision mode to correspond to the
desired precision, copy the operand or operands along with a code that indicates what operation
is about to be performed, and perform the operation. The result can then be stored in memory
in the destination format, and compared with the original result. If the value stored in memory
is not identical to the original result, the operation can be repeated using one of the techniques
described above. This technique would slow down floating-point arithmetic performance by a
factor of between 14 and 17 on an Intel Pentium, depending on whether other (independent)
instructions can execute concurrently while the two values are being compared. This technique
is slower on the Pentium than the previous technique because of the awkwardness in comparing
two floating-point values on the Pentium.

Still another way to avoid double rounding is to again copy the operand or operands along
with a code that indicates what operation is about to be performed, then generate a wide
precision result (using the rounding mode that should be in effect for the given section of code
of which the operation is a part), and find out if this wide precision result is exactly half way
between two adjacent floating-point numbers representable in the destination format. If so,
the operation can be repeated using one of the techniques described above. Otherwise, the
result can be safely converted to the destination format. This technique would slow down
floating-point arithmetic performance by a factor of about 18 on an Intel Pentium.

The Java Grande Forum reports an ingenious way of avoiding double rounding on processors
conforming to the Intel x86 architecture, which also involves setting the precision mode to
correspond to the desired precision [51]. The observation is made that when the precision

10Floating-point units for the Intel x86 series processors have registers containing information on the last
floating-point instruction executed, including information on the operand(s), but these registers cannot be used
in this case because they do not actually contain the operand(s) themselves as they existed before the operation
was performed.

11It may seem that one could establish an exception handler for the underflow exception to avoid the overhead
of having to check the magnitude of the result, but this would not work, since narrow precision denormalized
numbers are perfectly normal numbers in wide precision.
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mode is set as described, double rounding is of concern only when performing multiplication
or division, in which case one of the operands can be scaled in such a way that if the unscaled
result would be a denormal if represented in the desired data format, the scaled result would
also be a denormal in extended precision. The scaling is then undone. This technique would
slow down floating-point arithmetic performance by a factor of about 4 on an Intel Pentium.

To summarize, then, if the precision of a series of operations is the same, and the result
of each operation is known not to be within the range of denormalized numbers (or if double
rounding is acceptable when results lie within this range), then the best way to avoid double
rounding is to simply set the precision mode to correspond to the desired precision. Otherwise,
for single precision operations, the best way to avoid double rounding is to use the second
technique described in this section (that is, generate a wide [double or wider] precision result,
and convert it to single precision), since double rounding can be proven to be harmless in
this case. Otherwise, if a number of double precision operations need to be performed, the
last technique (reported by the Java Grande Forum) is best. Finally, if extended precision
operations need to be performed along with only a few double precision operations in between,
the penultimate technique described above is best for double precision operations. Of course, all
of this presupposes that the rounding mode in effect is either “round to nearest” or unknown,
since otherwise double rounding could be easily avoided using the same techniques as for single
precision operations.

Interestingly, on an Intel Pentium, double rounding can be avoided in almost all cases
sometimes with practically no performance degradation, but if double rounding must be avoided
in absolutely all cases, floating-point arithmetic performance slows down by roughly an order
of magnitude if less than (double) extended precision is desired. Therefore, double rounding
should be avoided only if absolutely necessary.



Chapter 7

Supporting the Standard
Operations in High-Level
Languages

7.1 IEEE Standard requirements in regards to operations

The IEEE Standard requires implementations to provide the following operations:

• basic arithmetic operations (addition, subtraction, multiplication, and division), with the
result being in a format at least as wide as the wider operand1 (this comment also applies
to the remainder operation below);

• remainder, defined as follows: Let n be the integer closest to x/y. (If two consecutive
integers are equally close, let n be the even one.) The remainder r = x− yn. (The result
of this operation is not affected by the rounding or precision mode in effect.);

• square root;

• conversions among the supported floating-point formats (if more than one format is sup-
ported, that is);

• conversions between floating-point and integer formats;

• rounding a floating-point number to an integer value, with the result being a floating-point
number;

• conversion between decimal numbers represented according to an implementation defined
specification and binary floating-point numbers; and

1Quite likely, one reason for the requirement on the format of the result is to ensure that certain information
(as specified in sections 7.3 and 7.4 of [47]) can be provided to a trap handler when overflow or underflow is
signaled [40].
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• comparison between any two floating-point numbers, whose formats may differ.

Implementations are allowed to consider copying a floating-point value without changing its
format as an operation, which would affect whether exceptions are signaled when floating-point
values are moved from one location to another.

The last two operations in the list above merit further comments. The strict accuracy
requirements applicable to the basic arithmetic operations also apply to conversion between
binary and decimal floating-point numbers, provided the value being converted falls within a
certain specified range. Otherwise, another set of more relaxed accuracy requirements apply.
Presumably, this is because this is the best that could be done using reasonable algorithms com-
monly known at that time—see, for example, the algorithms Coonen developed [19]. (By now,
it has been shown that the same strict accuracy requirements that apply to other operations
can be reasonably applied to conversion between binary and decimal floating-point numbers as
well [58, 71, 33].)

The result of a comparison may be delivered in one of two ways: as a true-false response to
a predicate naming the relation of interest, or conceptually as a string of four bits identifying
which relation is true. These four bits correspond to the relations greater than, less than,
equal, and unordered, with the last one being true whenever one or both operands is NaN (Not
a Number). If an implementation provides predicates for comparison, it must at least provide
the six traditional ones: >, <, ≥, ≤, =, 6=. In addition, the IEEE Standard recommends that
a predicate for the unordered relation be provided, and the appendix of the IEEE Standard
recommends that a predicate for <> (less than or greater than) be provided (see below). (As
many as 26 predicates are possible, since one of the possible relations between two values is
unordered, and since two versions of each type of comparison are possible: one signaling the
invalid operation exception whenever at least one of the operands is a NaN, and the other one
not. There are fewer than 32 because predicates that are always true or always false are not
interesting, and the equal and not equal predicates never signal the invalid operation exception
as long as neither of the values being compared is a signaling NaN.)

It is important to note that these functions are all specified in a generic manner. At least one
“instantiation” of each of these functions is required, but the IEEE Standard does not require
that any one particular “instantiation” be provided. For example, the IEEE Standard does
not specifically require implementations to provide a function which adds two floating-point
numbers in the single format. It does, however, require implementations to provide a function
which adds two floating-point numbers, at least one of which is in the single format. The sum
may be delivered to a destination in any supported format, the only restriction being that the
sum be correctly rounded to the precision of one of the supported formats that is at least as
wide as that of the operands and not wider than the destination (lest the result suffer double
rounding).

In addition to these operations, the appendix of the IEEE Standard (which is technically
not part of the standard itself) recommends that implementations provide functions to do the
following:

• copy the sign from one number to another, possibly without checking what the value of
the latter number is (note that this function can be used to find out what the sign of a
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value is);

• change the sign of a number, whose value may be NaN, without performing subtraction;

• scale a number by an integral power of two, where the power of two is not approximated,
but exact;

• extract the (unbiased) exponent of a number, with the result being a floating-point number
whose value is an integer;

• given two floating-point numbers, find a floating-point number closer to one of them and
adjacent to the other one;

• determine if a number is finite;

• determine if a value is NaN;

• determine if a number is less than or greater than another number (note that this is not
equivalent to “not equal” if one or both operands are NaNs, and that the IEEE Standard
does not actually require the comparison operation to be capable of determining if a
number is either less than or greater than another number);

• given two values, determine if one or both are NaNs (although in many implementations
this may be accomplished by simply comparing the two values, the IEEE Standard does
not actually require the comparison operation to be capable of determining if one or both
operands are NaNs);

• given a value, determine what kind of value it is (zero, finite, NaN, etc.), and what its
sign is;

• convert a string to a floating-point value as though at run time, taking into consideration
the rounding and precision modes currently in effect, as well as the side effects (that is,
exceptions) that would occur; and

• rounding a floating-point number to an integer value, with the result being a floating-point
number, and without signaling the inexact exception2.

(The last two functions appear only in the appendix of the more generalized version of the
IEEE Standard [48].) Of course, exceptional situations may arise when performing some of
these functions; the appendix of the Standard specifies what should be done in these situations
(with [48] being slightly more thorough than [47]). Source code for some of these functions is
publicly available [18].

2Unlike [47], [48] normally requires signaling the inexact exception when rounding a floating-point number to
an integer value if the value of the floating-point number is not already an integer.
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7.2 How different architectures implement these operations

The IEEE Standard may be implemented totally in hardware, totally in software, or (more
typically) as a combination of hardware and software. This section surveys several IEEE-
compatible floating-point architectures, and discusses which of the operations mentioned in the
previous section are implemented in hardware, and which operations must be implemented in
software.

7.2.1 CISC architectures

Intel x86 architecture

Members of Intel’s x87 series of chips (such as the 8087 and 80287), some of which were designed
concurrently with the development of the IEEE Standard, are implementations of the first
floating-point architecture intended to be IEEE-compatible [69]. As one might expect from a
CISC architecture, almost all of the operations described in the IEEE Standard are implemented
in hardware. The following three paragraphs discuss the operations not fully implemented in
hardware:

• A partial remainder instruction is provided to facilitate implementation of the remainder
operation. If the difference between the (binary) exponents of the dividend and divisor is
less than 64, then executing this instruction once is sufficient. Otherwise, this instruction
must be executed repeatedly until the magnitude of the dividend becomes no larger than
half that of the divisor.

• Conversions between any supported floating-point or integer format and the double ex-
tended format are implemented, but other conversions, such as conversions between the
single and double formats, require a series of two instructions: a load into an extended
precision register, and a store to memory.

• The software required to convert between binary and decimal floating-point numbers can
be simplified by using instructions which convert between decimal integers whose digits
are represented as hexadecimal digits, and integers represented as binary floating-point
numbers. In addition, there are instructions which compute f(x) = 2x− 1, where |x| < 1,
and f(x, y) = y log2 x, as well as an instruction to load the constant log2 10 into a register.

In addition, five of the recommended functions mentioned in the appendix of the IEEE
Standard are implemented in hardware: change the sign of a number, scale a number by a
power of two, determine if a number is greater than or less than another number, determine if
a given value is NaN, and determine if one or both of two given values are NaNs. (The latter
three can be accomplished by using comparison.) Some of the other recommended functions
can be easily implemented in software using special instructions:

• extracting the exponent of a number requires two instructions: one to separate the expo-
nent from the significand, and another to get rid of the significand;
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• finding out if a number is finite requires a series of instructions: one to determine what
kind of number it is, and several more to determine if the number was found to be normal,
denormalized, or zero (on some processors, such as the Intel Pentium, this function can
be implemented more quickly in software without using any special instructions);

• there is an instruction which, given a value, determines what kind of value it is (zero,
finite, NaN, etc.), and what its sign is, but the bits in the status register which contains
the result of this instruction need to be isolated and stored in some other register or in
memory.

The remaining two functions must be implemented in software without the benefit of any
special instructions: copy the sign from one number to another, and find a floating-point number
adjacent to another one.

Except for store instructions, all instructions which normally deliver a floating-point result
do so to a floating-point register. Furthermore, since at least one of the operands in a binary
arithmetic operation must be held in a register, the formats of the operands of such an operation
are often dissimilar. In general, it is not possible to obtain a correctly rounded double precision
sum, difference, product, or quotient of two double precision numbers, or square root of a double
precision number, without software assistance3.

Motorola 68000 architecture

Motorola is another early implementer of the IEEE Standard. Some of the floating-point units
in the M68000 family implement the IEEE Standard in hardware to an even greater extent
than members of Intel’s x87 series of chips. In addition to implementing the same operations
and functions in hardware as the latter, the MC68881 and MC68882 chips also fully implement
the following operations and functions in hardware:

• the remainder operation;

• decimal floating-point numbers in which each digit of the mantissa and exponent is repre-
sented by a hexadecimal digit can be converted to an extended precision (binary) floating-
point number and vice-versa with a single instruction; in fact, up to one operand of an
arithmetic operation may be a decimal floating-point number;

• extracting the exponent of a number.

As in the Intel x86 architecture, except for store instructions, all instructions which normally
deliver a floating-point result do so to a floating-point register. In contrast to the Intel x86
architecture, however, it is possible to obtain correctly rounded single and double precision

3As explained in chapter 6, even setting the precision mode to correspond to double precision will not always
yield a correctly rounded double precision result.
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results by setting the precision mode appropriately4. Nevertheless, single and double precision
results are converted to (double) extended precision.

Some members of the M68000 family, such as the MC68040 and MC68060, do not implement
the IEEE Standard in hardware as fully as some other members, such as the MC68881 and
MC68882. In particular, the former two do not implement in hardware the remainder operation,
conversions between binary and decimal floating-point numbers, scaling by an integral power of
two, or exponent extraction. In addition, the MC68040 does not implement rounding a floating-
point number to an integer value in hardware. Interestingly, the floating-point units in many
implementations of RISC architectures also do not implement these operations in hardware.

7.2.2 RISC architectures

The floating-point units of implementations of RISC architectures tend to implement a relatively
small subset of the IEEE Standard in hardware: the basic four arithmetic operations and
perhaps square root; conversions between different floating-point formats and between floating-
point and integer formats; and comparison. In addition, most RISC architectures provide
instructions to change the sign of floating-point values, and to determine if a given value is
NaN (which is usually accomplished by comparing the given value with itself). The following
paragraphs describe how some of the popular RISC architectures differ from what has been
described in this paragraph.

Motorola PowerPC architecture

The instruction set of the PowerPC architecture includes an instruction to extract the square
root of a number. However, this instruction is not implemented in some implementations of
this architecture, such as the PowerPC 601, 603, and 604 chips.

Although all floating-point registers store numbers in the double format, separate instruc-
tions are provided for single and double precision arithmetic. All such instructions take their
operand(s) from one or more registers, and deliver their results to a register. In the case of sin-
gle precision instructions, operands are assumed to be values which are exactly representable
in the single format; otherwise, the result is undefined. Although results of single precision
instructions are exactly representable in the single format, they are converted to the double
format before being stored in a register.

Digital Alpha architecture

The instruction set of the Alpha architecture includes an instruction which copies the sign from
one number to another (a similar instruction can be used to change the sign of a number), but
does not include an instruction to extract the square root of a number. Although there is an

4As mentioned in chapter 5, accessing the precision mode frequently is likely to degrade floating-point perfor-
mance significantly. Also, note that although the Motorola 68000 architecture includes instructions that produce
single or double precision products or quotients regardless of the precision mode in effect, these instructions may
produce results outside the range of single or double precision numbers. Therefore, these instructions are not
always useful in avoiding double rounding.
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instruction to determine if a value is NaN, or alternatively if one or both of two given values are
NaNs, if indeed one or both values are NaNs, this instruction always traps. Therefore, unless
performance is not critical, this instruction is only useful in practice if the given value or values
are not likely to be NaNs.

As in the PowerPC architecture, separate instructions are provided for single and double
precision arithmetic, even though all registers store numbers in the double format.

SPARC architecture

Although the instruction set of the SPARC architecture includes an instruction to extract the
square root of a number, it does not include instructions to convert floating-point numbers
to integers using the rounding mode currently in effect, as specified in the IEEE Standard.
However, it does include instructions to convert floating-point numbers to integers using the
rounding mode “round toward zero.”

Separate instructions are provided for single, double, and quadruple precision arithmetic.
The floating-point registers are capable of storing up to 32 different single precision values.
Pairs of (single precision) floating-point registers may be used to store up to 16 double precision
values, while quadruplets of (single precision) floating-point registers may be used to store up
to 8 quadruple precision values.

7.2.3 How different architectures implement comparison

As mentioned previously, the IEEE Standard allows comparison to be implemented in one of
two ways: as an operation that sets one of four bits depending on the relation between the two
operands, or as a set of predicates. The former is the most common way to implement com-
parison. Indeed, of the architectures mentioned above, only the Alpha architecture implements
comparison as a set of (four) predicates: equal, less than, less than or equal, and unordered.
Other predicates (greater than, greater than or equal) are available by reversing the order of
the operands, so this set of predicates barely fulfills the IEEE Standard’s minimum requirement
in this area. If any operand of any of these predicates (including unordered) is NaN, a trap
occurs (as would similarly occur if a page fault were encountered). These predicates deliver a
zero or nonzero number to a floating-point register, depending on whether the relation specified
is false or true, respectively. Control can then be conditionally transferred to another part of
the program based on whether the result of the predicate is zero or nonzero5.

Another architecture that implements comparison as a set of predicates is Hewlett-Packard’s
PA-RISC. However, in this architecture, a full set of 32 predicates is provided, 16 of which signal
the invalid operation exception only when one or both operands are signaling NaNs. (The
remaining 16 predicates signal the invalid operation exception whenever one or both operands
is any kind of NaN [see chapter 8].) These predicates set a bit in the status register to indicate

5Control can be conditionally transferred to another part of the program based on the relation of the value
in a register and zero, but the instructions provided for this purpose can behave unexpectedly when the value in
a register is not finite.
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whether the result is true or false. This bit can then be tested using another instruction, with
execution of the instruction following that depending on the value of this bit.

Other architectures typically have two comparison instructions: one which signals the invalid
operation exception whenever one or both operands are NaN, and another which only does so if
one or both operands are signaling NaNs. Both instructions set the proper bit or bits in a status
register, depending on the relation between the operands. Control can then be conditionally
transferred to another part of the program based on which bit or bits are set in this register.
In some architectures, the contents of this register must first be transferred to another register,
such as a fixed-point or a different status register, before conditionally transferring control to
another part of the program.

For example, for the Intel x86 architecture, the typical sequence is to compare the two
values, transfer the contents of the status register to the accumulator, and optionally transfer the
contents of the accumulator to the flags register6. Control can then be conditionally transferred
to another part of the program using a sequence of one or more instructions, depending on the
desired predicate7.

On the other hand, the SPARC architecture implements comparison in a manner similar to
the Precision Architecture, except that two different comparison instructions are provided, and
the desired predicate determines which of 16 different variations of the floating-point branch
instruction is used.

7.3 Making the standard operations available in high-level
languages

An obvious way of making all these operations available in a high-level language is through
function calls. This is the easiest way, since most, if not all, programming languages already
provide some way of calling functions. Therefore, it would not be necessary to extend a language
in order to make these operations available in this way.

A disadvantage of solely using function calls is the negative impact on the readability of
programs, assuming the language normally uses some other syntax, such as infix notation, for
expressing numerical computation. A more significant disadvantage is that in some cases, the
overhead of calling a function can greatly overwhelm the actual computation of the function.
This can severely degrade floating-point performance. Of course, it is possible to treat these
functions as special inline functions to reduce the impact on performance. The operations that
would benefit the most from such inlining are addition, subtraction, multiplication, conversions
between the supported floating-point formats, and comparison. These operations tend to be

6Although Intel’s literature does not appear to mention this, it is no slower, and likely faster in many cases,
to test the value in the accumulator directly without first transferring the contents of the accumulator to the
flags register.

7For some predicates, such as greater than, one (conditional jump) instruction can suffice if the number of
bytes between the jump instruction and its target is small enough. For other predicates, such as equal, at least
two instructions are needed: one to determine if the relation between the two operands is ordered or unordered,
and another to determine if the relation is equal. The reason has to do with what combination of bits in the
flags register are checked when the various conditional jump instructions are executed.
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well supported in hardware (that is, they require one or at most a few instructions, each of
which executes quickly), and they occur quite frequently in programs in which floating-point
computation is dominant.

Another way in which these operations can be made available is through special syntax,
such as infix notation. However, in some languages, this would require extending the definition
of the language, which may be difficult or impractical, and suitable syntax for some of these
operations may not be obvious. For example, it is not easy to devise suitable syntax for an
operation which, when given two floating-point numbers, finds a floating-point number closer
to one of them and adjacent to the other one. Even if such syntax were invented, depending on
the actual syntax used, readability of programs can be reduced in proportion to the increase in
size of the lexical vocabulary.

Yet another way to make these operations available is through attributes associated with
data types. Conceptually, this approach is similar to the object oriented programming para-
digm: Each floating-point data type corresponds to an instance of the class of floating-point
numbers. In order to perform an operation, the desired instance and operation (that is, at-
tribute) must be specified, along with the data to be used in the operation. One disadvantage
to this approach is that it does not easily allow for operations involving more than one floating-
point data format. Also, not all programming languages provide a way of denoting attributes
in general.

To illustrate the trade-offs involved, consider comparison. There can be up to 26 comparison
predicates, since the traditional trichotomy does not hold, and some predicates signal the invalid
operation exception when an operand is any kind of NaN. It would be easy to provide access to
all 26 predicates using function calls, but this may degrade performance, and writing something
like lt(a, b) is not as natural as writing a < b.

On the other hand, it is not easy to find suitable syntax to denote, say, an operation that
returns true if either operand is NaN, or if the first operand is less than or equal to the second,
and that does not signal the invalid operation exception unless either operand is a signaling
NaN. One might try something like a ?<= b, but at first glance it is not apparent what this
expression means. In particular, it is not intuitively obvious whether the invalid operation
exception will be signaled if either operand is a quiet NaN.

The comparison predicates could also be made available using attributes. For example,
double’lt(a,b) might denote the less than predicate for operands whose format is the double
format. Disregarding whatever virtues (or lack thereof) this syntax may have, how would one
denote comparison between an operand whose format is the single format, and another whose
format is the double format? Of course, one may decide that comparison should only be allowed
between operands whose format is the same.

Finally, more than one way could be used to provide access to the different predicates.
For example, some predicates might be available via infix notation, while access to others
might require making function calls. This approach may be attractive for languages in which
special syntax is already provided for some of the predicates, and whose definitions cannot be
conveniently modified.

However, this approach is not entirely satisfactory. The next section mentions one reason
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why this is so. A second reason is that the lack of consistency can be troubling. Consider, for
example, a hypothetical language in which the predicate “less than, greater than, or unordered”
(that is, not equal) is available via infix notation, whereas access to the predicate “less than
or greater than” requires a function call, resulting in very dissimilar precedences for the two
predicates. Why should there be a difference in how these predicates are accessed, and why
should their precedences be different? In such a language, one may be tempted to make all
comparison predicates available through function calls for the sake of consistency.

7.4 Handling static evaluation

In many programming languages, certain expressions are allowed to be evaluated at compile
time rather than at run time. These expressions are often allowed to involve certain operations,
such as the basic four arithmetic operations. Some syntactic features, such as arbitrary function
calls, might not be allowed in such expressions8. If this is the case, the syntax used to denote
the operations described in the IEEE Standard could impact which operations such expressions
can involve.

The set of operations that a language definition allows in an expression evaluated at compile
time often seems arbitrary. Going back to the example at the end of the previous section, the
predicate “less than, greater than, or unordered” (that is, not equal) might be allowed in such
expressions because special syntax can be used to denote this predicate, whereas the predicate
“less than or greater than” might not be allowed because it requires a function call. Ideally, all
the operations described in the IEEE Standard and at least some of the ones in the appendix,
such as changing the sign of a number or scaling a number by a power of two, should be allowed
in these expressions, even though not all implementations of the IEEE Standard provide these
operations in hardware.

7.5 What support exists in high-level languages

7.5.1 Existing language designs

Many languages provide a way to denote that basic arithmetic is to be performed on floating-
point numbers; many language definitions even go so far as to specify what the data type of
the result of a given expression is. Unfortunately, there is usually no correlation between the
type and the accuracy of the result, nor is it usually specified what the mapping is between the
symbols of which the language makes use and the operations specified in the IEEE Standard,
or even those available in the target arithmetic engine.

Without this knowledge, it is not possible to determine with complete certainty which
specific operation will be performed at a given point in a program. For example, one might
expect that the expression a+b, where both a and b represent arbitrary double precision floating-
point numbers, ought to yield the sum of these two numbers, correctly rounded to double

8A likely reason for this is that in some languages, operations that are only available through function calls
are not universally implemented in hardware.



7.5. WHAT SUPPORT EXISTS IN HIGH-LEVEL LANGUAGES 73

precision. But if the language definition does not actually require this, a (hypothetical) fully
conforming language processor may actually instruct the target machine to produce the sum
accurate to extended precision (making it cumbersome at best to devise a way to obtain this
sum correctly rounded to double precision), or worse, to only single precision. Alternatively,
a fully conforming language processor may instruct the target machine to produce the sum
accurate to double precision, but the sum might not be correctly rounded (for example, the
sum might suffer double rounding).

For example, the definition of the C language [16] seems to suggest that arithmetic involving
double precision quantities must be performed using double precision arithmetic, unless the
language processor “can ascertain that the result would be the same as if it were executed using
double-precision arithmetic.” However, this document provides little clue as to the distinction
between, say, single and double precision arithmetic, other than to require that the set of single
precision values be a subset of the set of double precision values. One may get the impression
that the floating-point model on which the various constants (such as DBL MANT DIG, the
number of digits in the significands of double precision values, and DBL MAX EXP, roughly
the maximum exponent a double precision value may have) defined in the standard header file
float.h are based would have bearing on what constitutes single and double precision arithmetic,
but this model is not required to coincide with the model on which the implementation is based.

Of course, even if a language definition does not mandate a particular mapping between the
symbols of the language and the operations specified in the IEEE Standard, an implementation
may still provide access to the latter, perhaps through a combination of special syntax (such
as infix notation) provided by the language, and function calls. Therefore, it is relevant to
consider how many operations can be made available in a hypothetical implementation without
resorting to function calls, as well as which operations can be made available using calls to
functions defined in standard libraries (if any).

Again, taking the definition of the C language as an example, the following operations
cannot be made available in any way other than through function calls: remainder, square
root, and rounding a floating-point number to an integral value. There are standard library
functions which compute remainders and square roots, but the definitions of these functions are
slightly different. As a result, in the case of the former, different results may be returned, and
in the latter, additional action beyond that specified in the IEEE Standard is required when
the operand is negative.

Of the functions mentioned in the appendix of the IEEE Standard, the unary minus operator
can be taken to correspond to changing the sign of a number, and there is a standard library
function which scales a number by an integral power of two. There is another standard library
function which can be used to extract the exponent of a number, but the result would in most
cases be one more than what the function described in the appendix would return, and the
result is delivered as an integer, rather than as a floating-point number. In order to determine
if a number is finite, one could take the absolute value of the number using a standard library
function, and compare that to the macro HUGE VAL, assuming this macro is actually an
expression whose value is infinity. It may appear that the semantics of a few of the other
functions in this appendix could be expressed using comparison, but the possibility of side
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effects in the computation of the value(s) of interest would make this strategy cumbersome.
Ada [11] is different from most languages in the sense that if an implementation claims

to support the Numerics Annex of the language standard, the (relative) error in results from
predefined operators on floating-point numbers must be within certain bounds. Even this
requirement, though, does not go far enough to force implementations to provide access to the
operations described in the IEEE Standard.

Despite this, an implementation can provide access to most of the operations described in
the IEEE Standard using the facilities described in the language standard. Remainders and
rounding to an integral value can be computed via floating-point attributes, and square roots
may be extracted by calling a standard library function. However, the language definition
makes no provision for directly converting floating-point values to integer formats in a way that
is compatible with the IEEE Standard, though this can be accomplished by first rounding the
floating-point value to an integral value, and then converting the latter to an integer format.

Many of the functions described in the appendix of the IEEE Standard are available via
attributes: copying the sign from one number to another, scaling a number by a power of two,
finding a number adjacent to another one, and extracting the exponent of a number. (As in C,
the result from the latter would in most cases be one more than what the function described
in the appendix would return.) The unary minus operator can be used to change the sign of a
number.

None of the languages discussed in this section provide more than the traditional six rela-
tional operators. Any other kind of relational operation would require a call to a non-standard
function.

7.5.2 Compilers for existing languages

Sun’s C compiler provides access to all the operations described in the IEEE Standard and
to most of the functions described in the appendix [74]. Access to some operations, such as
remainder, square root, and rounding to an integral value, requires calling functions in their
C library. The only functions that are not provided are “less than or greater than,” and
determining if one or both of two given values are NaNs. Access to only the traditional six
relational operations are provided.

7.5.3 Extensions to existing languages

The Standard Apple Numerics Environment (SANE) provides access to all the operations de-
scribed in the IEEE Standard, as well as to most of the functions described in the appendix
[12]. Except for conversions from the double extended format, operations produce results in
the double extended format if they deliver a floating-point result, regardless of the format of
their operands9. Computing remainders, extraction of square roots, floating-point to integer
conversion, and rounding to integral value can only be accomplished by calling functions, such
as ones provided in the standard library. Explicit conversions may be indicated by calling other

9If an operand is not already in the double extended format, it is converted to this format before the operation
is performed.
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standard library functions. In addition to the traditional six relational operators, a function in
the standard library can be called to find out what the relationship between two values is, if
any. However, there is no way to avoid signaling the invalid operation exception if an operand
is NaN, unless the equality operators (that is, equal or not equal) are used.

No functions are provided to determine if a value is finite or NaN, if a number is less than
or greater than another number, or if one or both of two given values are NaNs.

In terms of support for the operations and functions described in the IEEE Standard, the
extensions in [75] are similar to those of SANE, except that no standard library function is
provided to convert a value from a wider to a narrower floating-point format (explicit casts can
be used instead), or to find out what the relationship between two values is. Operations which
produce a floating-point value do not necessarily deliver results in the double extended format.

The sign of a value can be changed by using the unary minus operator. Standard library
functions provide access to all the other functions described in the appendix of the IEEE
Standard.

7.5.4 New language designs

µln [30] provides operators for all the operations described in the IEEE Standard, including
fourteen relational operators. Although µln does not explicitly provide functions as described
in the appendix of the IEEE Standard, some of µln’s operators mimic their functionality.

Both the Java [38] and Limbo [59] languages are different from the languages mentioned
above in that conforming language translators must generate code which, when executed, ex-
hibits behavior identical to that of a specified virtual machine executing code generated by a
translator for that virtual machine. (The most straightforward way of achieving this, of course,
is to use a reference translator, whose target is the specified virtual machine, and to execute the
resultant generated code on a simulator of that virtual machine.) These languages are therefore
not directly portable to a wide variety of targets in the traditional sense, and they can thus
make many assumptions about the target machine that other more widely portable languages
cannot make.

Despite the fact that the Java Virtual Machine (JVM) [61] is compatible with the IEEE
Standard, the language definition does not mention a way to directly convert a value from a
floating-point format to an integer format in the manner described by the IEEE Standard.
Computing remainders, extraction of square roots, and rounding to integral value can only be
accomplished by invoking methods (which are analogous to functions), such as ones provided in
the standard library. Access to only the traditional six relational operations are provided. Of
the functions described in the appendix of the IEEE Standard, the only ones to which access
is directly provided are changing the sign of a number and determining if a value is NaN. One
can determine if a value is finite by negating the (Boolean) value returned by a method which
determines if a value is infinite, provided, of course, the value in question is not a NaN.

In order to map more directly to the actual hardware being used, Limbo does not adhere to
the IEEE Standard as closely as does Java. (For example, Dis, Limbo’s corresponding virtual
machine, is not guaranteed to provide gradual underflow.) However, it does seem to provide
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access to all the operations described in the IEEE Standard10 and to the first seven functions
described in the appendix of the IEEE Standard. As in Java, access to only the traditional six
relational operations are provided.

7.6 What support should exist in high-level languages

There are a number of issues to consider when discussing how a high-level language definition or
processor ought to support the operations and functions described in the IEEE Standard and its
appendix. Perhaps the first issue to come to mind is which operations and functions should be
supported. Certainly all the operations described in the IEEE Standard should be supported.
Of the functions described in the appendix, changing the sign of a number and determining if a
value is NaN are particularly important. In addition, providing some way to determine the sign
of a number, although not mentioned in the IEEE Standard or its appendix, could prove useful.
(A function that copies the sign from one number to another, as recommended in the appendix
of the IEEE Standard, would be even more useful, since it could be used for a wider variety
of purposes11.) However, there is little excuse for not providing support for all the operations
and functions described in the IEEE Standard and its appendix, given that most, if not all,
languages provide some way to call functions.

A more interesting question is whether these operations and functions should be supported
via special syntax, function calls, or attributes. To answer this question, one must consider
whether the mechanism used affects the performance of programs. If so, one should rank these
operations and functions according to how frequently they are encountered in programs. If the
amount of time it takes to perform a particular operation or function rarely impacts the overall
performance of programs, then the mechanism used is not so critical. On the other hand, if an
operation or function occurs frequently in programs, then the mechanism that provides the best
performance should be used. The operations and functions that tend to occur frequently in
programs in which numerical computations predominate include all the operations described in
the IEEE Standard except for remainder, rounding to an integral value, and conversions between
binary and decimal numbers, as well as changing the sign of a number and determining if a
value is NaN, both of which are described in the appendix.

Another consideration is how well a particular mechanism fits in with the way other features
of the language are designed. For example, if a language does not already have a mechanism
similar to attributes, then it would probably not make sense for the only use of such a mechanism
to be making these operations and functions available.

Of course, an existing language may already provide a way to denote operations such as
the basic arithmetic operations. Whenever possible, whatever syntax the language already
provides should be used to denote the operations and functions described in the IEEE Standard.

10However, the only floating-point format supported is the double format. Therefore, it is not possible, for
example, to multiply two numbers represented in the single format, as the IEEE Standard requires.

11Having a function that merely determines the sign of a number would be quite useful, even if a more general
function as recommended in the IEEE Standard is provided. Apparently, the IEEE Standard did not recommend
the former in order to reduce the number of recommended functions [43, 20].
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Sometimes, however, this is not possible. For example, a language may have a special operator
to denote the remainder operation. When applied to floating-point operands, the semantics
of this operator may differ from that described in the IEEE Standard. (The IEEE Standard’s
remainder operation sometimes produces a negative result.) In this case, it would probably
not be a good idea to change the semantics of this operator from what the language definition
has already established. Instead, this operation should be made available some other way.
The operations that can typically be made available without modifying the language definition
include all the operations described in the IEEE Standard except for remainder and rounding
to an integral value, as well as changing the sign of a number. (Ideal support for comparison
may require modifying the language definition—see below.)

Regardless of what mechanism is used to provide access to these operations and functions, a
language definition or processor should not add overhead every time an operation is performed.
For example, in C [16], whenever the standard square root function is called with a negative
argument, a certain value has to be stored in a certain variable to indicate this. This means that
whenever a C language processor cannot be certain that an argument to the square root function
cannot be negative, it must either cause the argument (or result or status flags—see chapter
8) to be tested12. This kind of overhead can be significant, particularly if a single precision
result is desired (since on many machines, it can be obtained relatively quickly compared to
the speed with which double precision results can be obtained), especially since it may cause
the language processor to emit a function call, even if the target machine has an instruction to
perform the operation.

Another pitfall to avoid is to design a language or implementation in such a way that
operations that are not always available in hardware end up occurring frequently in programs.
For example, the main consideration in designing the Java and Limbo languages was not high
performance floating-point computation. This is reflected in the fact that both these languages
provide an operation that multiplies two double precision numbers, yielding a correctly rounded
double precision product13. Unfortunately, in general, this, and other similar operations, require
a series of instructions on architectures such as the Intel x86 (see chapter 6), thus precluding
any hope for stellar floating-point performance on such architectures. Since this particular
operation would likely occur quite frequently in programs that perform intensive floating-point
computations, Java and Limbo may not be good languages to use to write such programs.

Notwithstanding the above, there are times when such operations become indispensable,
in some cases because otherwise, slower algorithms must be employed. Therefore, a language
design or implementation ought to make such operations available somehow, with the under-
standing that use of such operations may curtail the floating-point performance of a program

12In some cases, it may be possible to arrange to have the floating-point engine generate a signal whenever an
argument to the square root function is negative. Whenever this signal is generated, the computer can store the
required value in the required variable. The advantage of this scheme is that very little overhead is incurred when
an argument to the square root function is nonnegative. However, this can be a very tricky scheme to implement,
since the signal has to be generated at the right point in time, and the handling of this signal must not interfere
with any signal handlers the user may have specified. Lack of precise interrupts in the target machine may
further complicate matters.

13In Java 2 [4], double precision products are not required to be correctly rounded, unless strict mode is used.
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if not used only when absolutely necessary. Incidentally, a weakness in Ada’s floating-point
model is that one is not guaranteed, for example, that the product of two double precision
numbers is actually a double precision number. (The product might be correctly rounded to
double extended precision instead.) Having an attribute that maps its operand to the nearest
representable double precision number does not help, since the result may still not be correctly
rounded to double precision, that is, the result may suffer double rounding. In short, it is not
possible to write an Ada program that is guaranteed to be capable of multiplying two arbitrary
double precision numbers, producing a correctly rounded double precision product, without
essentially resorting to a floating-point engine implemented in software, even if the program
will only be run on machines whose (hardware) floating-point engines conform to the IEEE
Standard.

Most languages provide a set of six relational operators: =, 6=, <, ≤, >, ≥. Unfortunately,
this set of six does not take into account the lack of an ordering relationship between NaNs
and other numbers. As was mentioned earlier, a total of 26 distinct relational operators are
possible. This set of 26 can be reduced to a more compact set of 14; the remaining 12 can
be made accessible using Boolean negation. In most cases, it should be possible to provide
access to all 14 relational combinations via functions calls; finding a set of symbols to represent
each one of these different combinations in an intuitive manner can be challenging. Of the 8
relational combinations not represented by the six traditional relational operators, the two most
important ones are unordered and less than or greater than. These two relational combinations
should be accessible in the same way the traditional six are. The remaining six combinations
can be made accessible via a call to a (possibly built in or intrinsic) function whose arguments
are the values to be compared and the set of relations of interest, that is, greater than, less
than, equal to, or unordered. Another possible argument to such a function might be whether
the invalid operation exception should be signaled if one or both of the values being compared
are any kind of NaN.

Finally, the operations and functions described in the IEEE Standard and its appendix can
be made available redundantly in more than one way. For example, some of the relational
combinations (mentioned in the paragraph above) might only be available via function calls,
whereas as other combinations could be denoted by either special syntax involving symbols such
as <, >, and =, as well as via function calls. (Of course, there are tradeoffs to this scheme—see
section 7.3.) A slightly different example is decimal to binary conversion. In many languages,
the appearance of a real numeric literal in a source program implicitly denotes that decimal to
binary conversion is to take place. However, such a conversion might also be indicated by a
function call or some other special syntax (such as type casting), or both, which could be useful
in cases in which one wants the value converted to a specific floating-point format.



Chapter 8

Supporting Exceptional Situations
in High-Level Languages

8.1 IEEE Standard requirements in regards to special com-
putational situations

In addition to ordinary (normalized) floating-point numbers, the following special values must
be representable in all supported formats:

• ±0, which may be thought of as (signed) numbers whose magnitude is infinitely small,
even though both are equal to zero (that is, they both compare equal to each other);

• ±∞, whose magnitude is larger than that of any finite number;

• quiet and signaling NaNs, which do not represent any number (NaN stands for Not a
Number); the former, unlike the latter, generally propagate through computations without
causing any exceptions to be signaled; and

• denormalized numbers, which are numbers with reduced precision that allow for grad-
ual underflow; unlike normalized numbers, their most significant digit is zero, and their
magnitude is very small1.

Except for how quiet and signaling NaNs are to be distinguished2, the actual encoding for
these special values is specified for the basic formats (that is, the single and double formats—see
Chapter 3). For the extended formats, the encoding of these special values is implementation
dependent.

1Without denormalized numbers, important axioms, such as x 6= y ⇒ x− y 6= 0 would not hold [23, 69].
2According to the appendix of the IEEE Standard, “it is a mistake to use the sign bit [in a floating-point

format] to distinguish signaling NaNs from quiet NaNs.” This is because otherwise, changing the sign of a value
could change a quiet NaN (which may have crept into a computation due to the occurrence of a prior exceptional
situation) to a signaling NaN or vice versa, causing unwarranted exceptions to be signaled, and preventing
warranted exceptions from being signaled.
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Assuming trap handlers are absent, these special values usually arise as a result of excep-
tional situations. For example, when underflow occurs, the result is usually (but not always)
a denormalized number or ±0, whereas ±∞ is usually produced when overflow or division by
zero occurs. When an invalid operation is attempted, or when an operand is a signaling or quiet
NaN, the result is usually a quiet NaN. (A signaling NaN is never produced in the course of
normal computation. Its appearance in a computation is always due to an explicit user request,
such as from a language processor.)

The IEEE Standard lists special rules that apply when these special values appear as
operands. For example, (-0)-(+0) yields -0. On the other hand, (+0)-(+0) yields +0, ex-
cept when the rounding mode is “round toward negative infinity,” in which case the result is
(-0). 0/0 produces a (quiet) NaN, as does 0*infinity. The sum or product of infinity and a finite
number is an appropriately signed infinity.

An exceptional situation is one in which there is no universal agreement as to what action
should be taken [52, 54]. Five different kinds of exceptional situations are defined:

• invalid operation, such as extracting the square root of a negative number, multiplying
zero and infinity, or doing basic arithmetic involving NaNs;

• division by zero, with the dividend being a nonzero finite number;

• overflow, which occurs whenever the magnitude of the (mathematically) infinitely precise
result is so large that if there were no restrictions on the destination format’s exponent
range, the rounded result would not fit within the (actual) constraints of the destination
format;

• underflow, which occurs whenever the (mathematically) infinitely precise result is nonzero,
and its magnitude is strictly between the largest normalized negative number and the
smallest normalized positive number of the destination format3; and

• inexact, which occurs whenever the (mathematically) infinitely precise result differs from
the delivered result4.

Whether trap handlers can be associated with these exceptional situations is implementation
dependent. If no trap handlers are associated with these exceptional situations (which is the
default), and the destination has a floating-point format, the result to be delivered is specified
in the IEEE Standard. In most cases, the delivered result is the most noncontroversial one for
a given situation. For example, when the inexact exception is signaled, the default result is

3If no trap handler is associated with the underflow exception, underflow is not signaled unless abnormal loss
of accuracy also occurs, that is, if the actual rounded result differs from either the infinitely precise result or
the rounded result that would be produced if there were no constraints on the exponent range, depending on
the implementation. Another implementation dependent detail is whether the magnitude of the result is tested
before or after rounding. None of this affects the actual delivered result, but it does cause the exact situations
in which the underflow exception is signaled to be implementation dependent.

4If the overflow exception is signaled and no corresponding trap handler is associated with it, the inexact
exception is also signaled.
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the correctly rounded result. When an invalid operation is attempted, the default result is a
NaN, provided the destination has a floating-point format. The default response for division
by zero, a correctly signed infinity, is a more controversial choice, since some would argue it is
not always possible to determine what the correct sign should be, and that the result should
be an unsigned infinity, that is, the projective model of infinity should be used (as was possible
to do using implementations of an earlier draft of the Standard, such as the 8087 [50]). Still,
a correctly signed infinity is a better choice than any other value, including NaN, which is
intended to be used in cases in which any other value would be misleading [54].

If an implementation allows trap handlers to be associated with these exceptional situations,
certain information must sometimes be made available to the trap handler, depending on which
exception was signaled: in the case of the invalid operation and division by zero exceptions, no
information is required to be delivered; in the case of the inexact exception, the default (that is,
correctly rounded) result is to be delivered; in the case of overflow and underflow, the result to
be delivered is scaled by a specified power of two in order to enhance the odds of being able to
sensibly continue the computation5. The IEEE Standard recommends that other information,
such as what operation was being performed at the time the exception was signaled, be made
available to the trap handler.

A “sticky” status flag accessible to the user is associated with each of these exceptional
situations, and records whether the corresponding exceptional situation ever occurred during
the course of a computation. A conforming floating-point arithmetic engine never clears these
flags unless the user or a language processor requests it. This allows for a (very) poor man’s
scheme for trap handling: all the status flags can be cleared before performing an operation.
After the operation has completed, the status flag(s) can be examined to determine if an
exceptional situation of interest occurred so that appropriate action can be taken. Needless
to say, this scheme is most effective when its use is required only sparingly, because of the
overhead in accessing the status flags twice for every operation6, and because this scheme
effectively inhibits any possibility of pipelining in most floating-point units.

8.2 Different architectures’ support for exceptional situations

8.2.1 CISC architectures

Intel x86 architecture

The Intel x86 architecture has encodings for all the special values in all its floating-point formats
(single, double, double extended). Some encodings in the double extended format are illegal7;

5Though not a common feature among programming languages, the IEEE Standard does recommend that it
be possible to continue a computation at the point in which an exception was signaled. Examples showing the
usefulness of this capability appear later in this chapter.

6As will be seen below, in some implementations of the IEEE Standard, the status flags only need to be ac-
cessed once for every operation due to additional facilities being provided beyond those required by the Standard.

7These illegal encodings have to do with the fact that in the double extended format, the bit to the left
of the radix point in the significand is explicit and is actually stored. If this bit is zero when it should be
one, it is an illegal encoding. On the other hand, if this bit is one when it should be zero (that is, the value
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when these encodings are encountered as operands, the invalid operation exception is signaled.
(Thus, when the invalid operation exception is signaled, one cannot be sure without further
investigation whether this occurred due to an exceptional situation described by the IEEE
Standard, or due to some architecture-specific situation8.)

Starting with the 80287XL [49], the behavior of Intel implementations of the x86 architecture
fully conforms with the IEEE Standard in the area of special computational situations9. The
way status flags are accessed is similar to the way the control register is accessed (see Chapter 4):
the contents of the status register is first transferred to some memory location or to some other
register, the relevant bits are manipulated, and, if desired, a new value is placed back into
the status register. Storing a value into the status register may cause an exception to be
signaled immediately, depending on which exceptions are unmasked. Significant overhead is
incurred in storing an arbitrary value into the status register, since the only two instructions
that can be used for this purpose also modify the control word and several other registers.
However, there is a special instruction to clear all the status flags at once; another instruction
initializes the floating-point unit, clearing all the status flags (and floating-point registers) in the
process. It is possible to transfer the contents of the status register to the accumulator with one
instruction, so finding out which exceptions have occurred during the course of a computation
is a relatively fast operation. Still, adding the overhead of a function call to these operations,
as would typically be the case when programming in a high level language, discourages making
their use commonplace.

Trap handlers may be associated with the exceptional situations defined in the IEEE Stan-
dard with some software assistance and cooperation from the operating system. Each kind of
exceptional situation can be masked or unmasked individually. If an unmasked exceptional sit-
uation occurs, the floating-point unit signals the system in order to interrupt the processor and
cause it to execute a preestablished section of code (that is, an interrupt handler)10, which, de-
pending on the operating system, might only be specifiable by calling special functions. Enough
information is kept to enable this section of code to determine what kind of exceptional situ-
ation was encountered, and which instruction was being executed at the time the exceptional
situation occurred11. In addition, the operands are available if the invalid operation or division

is a pseudo-denormal, which, like true denormals, has the smallest exponent possible), the invalid operation
exception is not signaled when encountered as an operand. Instead, it is treated as if it were a denormal (that
is, the nonstandard denormal operand exception—a vestige from an early draft of the IEEE Standard, as are
some of the illegal encodings—is signaled), but its value is the same as if its exponent were the second smallest
possible. (In other words, it is implicitly normalized.) Perhaps a reason these illegal encodings have not been
somehow “legalized” is that otherwise there could have been too much confusion over how early floating-point
units (which were designed before the IEEE Standard was finalized) differed in their behavior compared to later
floating-point units when executing the same program with identical inputs.

8Other situations not covered by the IEEE Standard which cause the invalid operation exception to be signaled
happen when a value is pushed on a full floating-point register file (which is organized as a stack), or when a
value is popped from an empty floating-point register file.

9Earlier implementations conform to an early draft of the IEEE Standard.
10Only one interrupt handler can be specified at a time to handle exceptional situations involving the floating-

point unit. This interrupt handler can, of course, call other functions or procedures, depending on what kind of
exceptional situation occurred.

11This assumes exceptions are not being signaled due to explicit manipulation of the status and/or control
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by zero exception was signaled, or if the overflow or underflow exception was signaled and the
destination was some memory location (rather than a register), provided in all cases that the
corresponding exception is unmasked, and that subsequent non-floating-point instructions have
not overwritten any operands. The kind of operation that was being performed and the desti-
nation’s format can be deduced from the instruction being executed at the time the exceptional
situation occurred.

Without additional software, Intel’s x86 architecture does not conform to the IEEE Standard
in at least one aspect: When converting from a floating-point format (which implies that the
destination is some memory location), if the magnitude of the result is so large or so small
as to be unrepresentable in the destination’s format, even after scaling the result as described
in the IEEE Standard, if the corresponding trap handler is enabled, no result whatsoever is
delivered to the trap handler, in violation of the IEEE Standard. As mentioned above, the
original operand is preserved, though, so it is at least possible for the trap handler to compute
a suitable result for the operation. In any other situation, the result the IEEE Standard requires,
if any, is delivered to the trap handler.

It is possible to write a trap handler that behaves as if the result of an operation is a given
arbitrary value whenever a specified exception is signaled. One has to take care not to overwrite
the operand(s) until one is certain it or they are not needed, and that the result is not used
before one is certain it is available, since the floating-point unit may complete its instructions
after subsequent (non-floating-point) instructions. In addition, one has to determine where the
result was to be stored and what instruction should be executed next12.

Motorola 68000 architecture

The Motorola 68000 architecture is similar in many ways to the Intel x86 architecture in the area
of special computational situations. The following paragraphs mention some of the differences
between these two architectures.

There are no illegal encodings in any of the floating-point formats, that is, interpretations are
established for all possible encodings. However, some implementations of the 68000 architecture,
such as the 68040 and 68060, cannot handle in hardware finite unnormalized values (that is,
denormals or unnormals, the latter occurring only in the extended format) as operands.

In addition to the (sticky) status flags, the status register contains information on which ex-
ception(s), if any, occurred while executing the last floating-point instruction13. This improves

word registers.
12This instruction might not be the one following the floating-point instruction that caused the exception to

be signaled because subsequent (non-floating-point) instructions may have already been executed, possibly due
to the fact that the floating-point unit sometimes waits until the next floating-point instruction before signaling
an exception.

13Events that cause the inexact and invalid operation exceptions are further subdivided, allowing exception
handlers to be invoked only when specific situations occur, rather than always being invoked when the inexact
or invalid operation exceptions are signaled. However, this leads to certain complications, since more than one
bit needs to be set in the floating-point control register in order to always have the floating-point unit invoke
a given exception handler whenever one of these (IEEE-defined) exceptions are signaled. Also, in the case of
the invalid operation exception, several entries in the table of exception handler pointers need to be updated
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the performance of the “poor man’s” scheme for trap handling, since the status flags do not
need to be cleared before every operation. Although no instruction is provided to specifically
clear all the status flags at once14, the overhead of storing an arbitrary value into the status
register is not as significant as on the Intel x86 architecture, since there is an instruction in the
68000 architecture to do specifically this. Doing so never causes an exception to be signaled.

In some implementations of the M68000 family, such as the 68040 and 68060, an excep-
tion handler is always invoked whenever certain kinds of exceptional situations occur, such as
overflow and underflow. This is because the hardware is incapable of producing a reasonable
result in these cases. The exception handler can analyze the situation, and either generate the
correct result if the user did not specify a (nondefault) exception handler (that is, the exception
is masked), or invoke the exception handler the user specified.

8.2.2 RISC architectures

Hardware facilities in implementations of RISC architectures typically support only the single
and double formats. Interpretations for all encodings in these formats are as specified in the
IEEE Standard. In some architectures or implementations thereof, a trap is generated whenever
certain special values are encountered as operands or supposed to be delivered as a result, which
can be detrimental to the performance of some programs. Status flags are usually implemented
in hardware. Given some cooperation from the operating system, it is usually possible to
associate exception handlers with the various kinds of exceptional situations.

The following sections outline and comment on how some of the RISC architectures differ
from one another in these areas.

Motorola PowerPC architecture

In some implementations of the PowerPC architecture, such as the PowerPC 604, if a certain
bit is set in the Floating-Point Status and Control Register (FPSCR), denormalized numbers
are treated as zeros when encountered as operands; if the IEEE Standard specifies that a
denormalized number is to be delivered as a result, a zero is delivered instead. If this bit is not
set, the behavior with respect to denormalized numbers is as specified by the IEEE Standard.

Although five bits in the Floating-Point Status and Control Register (FPSCR) correspond to
the five status flags the IEEE Standard requires, the one corresponding to the invalid operation
exception cannot be set or cleared explicitly. Instead, this bit is always set automatically
anytime any of 9 (sticky) status “subflags” is set, and is clear otherwise15. A minimum of 5

whenever one wishes to notify the system which exception handler should be invoked whenever this exception is
signaled. Finally, if a given exception handler is invoked for more than one kind of exception, more than one bit
needs to be tested in order to determine whether the inexact or invalid operation exception occurred.

14Resetting the floating-point unit clears all the status flags at once, but doing so overwrites the floating-point
registers as well. Furthermore, this can only be done in supervisor mode, which precludes doing so in normal
programs without resorting to special system calls.

15In some implementations of the PowerPC architecture, such as the PowerPC 601, not all 9 “subflags” are
implemented. However, because of the location of the “subflags” that are implemented within the FPSCR, the
amount of time it takes to clear all 9 flags is not reduced because of the unimplemented “subflags.”
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instructions (for example, 5 instances of the mcrfs16 instruction) are required to clear all the
status flags. This is a relatively expensive operation, especially considering that the pipeline in
the floating-point unit drains before an instruction accessing the FPSCR is executed.

Exceptions can either be ignored or signaled precisely or imprecisely, depending on the
value of two bits in the machine state register (MSR). In the precise mode, the processor is
able to identify the instruction that caused the exception to be signaled. In the imprecise
mode, of which there are in fact two variations, this is not necessarily the case. When in the
imprecise recoverable mode, it is possible to backtrack and determine which instruction caused
the exception to be signaled, whereas in the imprecise nonrecoverable mode, this may not be
the case. Furthermore, in the imprecise nonrecoverable mode, the operands of the instruction
that caused the exception to be signaled may have been overwritten, and any results that
instruction may have produced, even if erroneous, may have been used (or overwritten) in
subsequent instructions. Therefore, the imprecise nonrecoverable mode is not compatible with
the IEEE Standard. When an exception is signaled in the imprecise recoverable mode, it is
not clear whether it is possible to determine which exception occurred, since more than one
instruction may have signaled an exception. Note, however, that the IEEE Standard does not
actually require this capability, though it does recommend that this be possible. Both the
precise mode and the imprecise recoverable mode are compatible with the IEEE Standard.

Different implementations of the PowerPC architecture may not implement all four of these
modes, but they will all least be capable of ignoring exceptions (as the IEEE Standard requires)
and (one supposes) of signaling exceptions precisely. Performance may be degraded if exceptions
are to be signaled precisely.

SPARC architecture

Although the SPARC architecture defines a quadruple precision floating-point format, many
implementations of this architecture do not implement this format in hardware. There are
encodings for all the special values in this format.

In some implementations of the SPARC architecture, if a certain bit is set in the Floating-
Point State Register (FSR), arithmetic performed by the floating-point unit may not conform
to the IEEE Standard. For example, denormalized numbers may be treated as zeros when
encountered as operands; if the IEEE Standard specifies that a denormalized number is to be
delivered as a result, a zero may be delivered instead. If this bit is not set, the behavior (for
example, with respect to denormalized numbers) is as specified by the IEEE Standard.

In addition to the five status flags required by the IEEE Standard, there are five additional
flags that indicate which exception(s), if any, occurred while executing the last floating-point
instruction. As mentioned previously, this improves the performance of the “poor man’s”
scheme for trap handling, since the status flags do not need to be cleared before every operation.
Modifying the status flags is a relatively expensive operation, since the only way to do so is
to store the value of the FSR in some memory location, then load this value into an integer

16Mcrfs stands for “move to condition register from FPSCR.” This instruction clears the bits in the FPSCR
that were copied.
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register, modify it, store it back to memory, and finally load the modified value into the FSR.
Accessing the FSR causes the pipeline in the floating-point unit to drain.

In most implementations, floating-point exceptions are not signaled until the floating-point
unit attempts to execute a subsequent instruction. However, the floating-point unit is required
to maintain information about which instruction caused the exception to be signaled, provided
the program establishes a trap handler for floating-point exceptions before any floating-point
exceptions occur17. In this case, the floating-point unit also maintains information on any other
floating-point instructions it has not yet finished executing, with the expectation that the trap
handler will reexecute these instructions.

If a program establishes a trap handler for floating-point exceptions before any floating-point
exceptions occur, it is possible to find out, should a floating-point exception occur, information
such as which exception was signaled, what kind of operation was being performed, and what the
operand(s) were. However, no results are ever delivered to the exception handler. Therefore, one
cannot claim that the SPARC architecture conforms to the IEEE Standard unless one considers
the established trap handler for floating-point exceptions to be part of the implementation of
the Standard, and, in the case of the overflow, underflow, and inexact exceptions, that trap
handler simulates the instruction that caused the exception to be signaled.

HP’s PA-RISC architecture

HP’s PA-RISC architecture is similar to the SPARC architecture with respect to special compu-
tational situations. One difference between these two architectures is that the former does not
have flags that explicitly indicate which exception(s), if any, occurred while executing the last
floating-point instruction. The remaining paragraphs in this section describe other differences
between these two architectures.

In HP’s PA-RISC architecture, floating-point exceptions are not signaled until the floating-
point unit attempts to execute a subsequent instruction. However, the floating-point unit is
required to maintain a list of instructions that it had already started, but could not finish,
executing at the time it signaled the floating-point exception. This list of instructions includes
the instruction that caused the exception to be signaled, any other instructions that would
cause an exception to be signaled, and any instructions that cannot be executed to completion
until some other instruction in the list finishes executing, possibly due to data dependencies.

Without additional software, HP’s PA-RISC architecture does not conform to the IEEE
Standard in at least one aspect: When converting from a floating-point format, if the magnitude
of the result is so large or so small as to be unrepresentable in the destination’s format, even
after scaling the result as described in the IEEE Standard, if the corresponding trap handler
is enabled, no result whatsoever is delivered to the trap handler, in violation of the IEEE
Standard. The original operand is preserved, though, so it is at least possible for the trap

17If a floating-point exception is signaled before a program establishes a handler for floating-point exceptions,
an implementation of the SPARC architecture is not required to maintain reliable information that would enable
an exception handler to simulate the instruction that caused the exception to be signaled. If the program then
subsequently establishes a handler for floating-point exceptions, the processor must not change its model for
dealing with floating-point exceptions while that program is being executed.
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handler to compute a suitable result for the operation. However, unlike Intel’s x86 architecture,
an exception different from any kind described in the IEEE Standard is signaled in these kinds
of situations18. In any other situation, the result the IEEE Standard requires, if any, is delivered
to the trap handler.

DEC’s Alpha architecture

Of all the architectures discussed here, DEC’s Alpha architecture provides the least support for
special computational situations. Although it supports all the special values, whenever a special
value other than negative zero is encountered, the invalid operation exception is signaled, and
software must simulate the instruction if appropriate19. Similarly, if the result of an operation
is supposed to be a non-finite value, the appropriate floating-point exception is signaled, and
software is expected to determine what the appropriate result should be, if any. While it is not
possible to mask the invalid operation, division by zero, and overflow exceptions, masking the
underflow exception causes a positive zero to be generated whenever underflow occurs20, even if
the rounded result is supposed to be a denormalized number, negative zero, or a number whose
magnitude is that of the smallest positive normalized number. When underflow occurs, the only
way to obtain the result mandated by the IEEE Standard is to unmask the underflow exception,
and have appropriate software generate the desired result. There is no provision in hardware
to allow the decision as to whether the underflow and inexact exceptions should be masked
or unmasked to be made at run time. It appears that the status flags in the Floating-Point
Control Register (FPCR) are updated as the IEEE Standard requires. As might be expected,
only unpredictable results are delivered to trap handlers.

8.2.3 How different architectures distinguish between signaling and quiet
NaNs

In all architectures, except for HP’s PA-RISC and DEC’s Alpha, and all formats, signaling
and quiet NaNs are distinguished by whether the most significant bit of the fractional part
of the significand is a zero or one, respectively. In HP’s PA-RISC architecture, signaling and
quiet NaNs are distinguished by whether the most significant bit of the fractional part of the
significand is a one or zero, respectively—the opposite of the other architectures. DEC’s Alpha
architecture does not make a distinction between signaling and quiet NaNs. Instead, Alpha
processors invoke a trap handler whenever a NaN is encountered as an operand, or whenever

18Documentation from SunSoft [73], in apparent contradiction to that from Hewlett-Packard [5], claims that if
a floating-point to integer conversion overflows the destination’s integer format, the overflow exception is signaled.
(Apparently, this is the result of system software [68].) While the IEEE Standard neither explicitly allows this
behavior nor explicitly prohibits it, this is probably not the way the originators of the IEEE Standard intended
the occurrence of this phenomenon to be signaled.

19Because exceptions are not signaled precisely, it can be a challenge to determine which instruction caused
an exception to be signaled, especially if the sequence of instructions executed was chosen so as to maximize the
performance of the program. In some cases, unless one chooses a sequence of instructions that is suboptimal in
terms of performance, it may be impossible to determine which instruction caused an exception to be signaled.

20To be more precise, a positive zero is presumably produced when tininess is detected.
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the IEEE Standard requires the invalid operation exception to be signaled. (There is no way to
prevent the processor from doing so.) The system or user trap handler is expected to distinguish
between signaling and quiet NaNs, and to generate a suitable result or take appropriate action
in computational situations involving NaNs.

8.2.4 How different architectures detect underflow

In the PowerPC and SPARC architectures, tininess is detected before rounding, that is, by
examining the magnitude of the infinitely precise result. In Intel’s x86 architecture, HP’s PA-
RISC, and DEC’s Alpha architectures, tininess is detected after rounding, that is, by examining
the magnitude of the infinitely precisely result rounded to the precision of the destination
in such a way as if there were no constraints on the range of the exponent. In all these
architectures, loss of accuracy is detected as an inexact result, that is, in the same manner
that they determine whether the inexact exception should be signaled. (The alternative way
to detect loss of accuracy is to round the infinitely precise result as if there were no constraints
on how small the exponent can be, and then compare this rounded result to what would have
to be delivered to the destination, taking into account the actual constraints on the exponent.
A denormalization loss occurs if the two rounded results are different.)

Incidentally, although Intel’s literature does not divulge exactly how underflow is detected
in its x86 architecture, it is possible to find this out by using the following technique: Let b
and c be floating-point numbers whose precision is p bits, and let ⊕ denote a basic arithmetic
operation on real numbers, such that

(1− 21−p)2emin < a = b⊕ c ≤ (1− 2−p)2emin

where a is a real number and 2emin is the smallest positive normalized number whose precision
is p bits. If the rounding mode in effect is “round toward positive infinity” (see Chapter 4)
and all traps are disabled, the rounded result of this operation will be 2emin. Now, if tininess
is detected after rounding, the underflow flag will not be set as a result of this operation, since
the rounded result is a normalized number. However, if tininess is detected before rounding,
the underflow flag will be set as a result of this operation, regardless of how loss of accuracy
is detected, since the rounded result differs from both the infinitely precise result a, as well as
what would be the result if there were no constraints on how small the exponent can be.

(It is also possible to find out how tininess is detected using the default rounding mode,
“round to nearest or even,” provided either that loss of accuracy is detected as an inexact result,
or that it is possible to associate a trap handler with the underflow exception.)

To find out how loss of accuracy is detected, one can use the following technique: Let b
and c be floating-point numbers whose precision is p bits, and let ⊕ denote a basic arithmetic
operation on real numbers, such that

(1− 2−p−1)2emin−p+1 ≤ a = b⊕ c ≤ (1− 2−p − 2−p−1)2emin

where a is a real number and 2emin is the smallest positive normalized number whose precision
is p bits. (This assures that if the rounding mode in effect is “round to nearest or even,” the
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rounded result will be a denormalized number.) Furthermore, suppose a′ is rounded (to nearest
or even) to p bits (without regard to what the constraints are on the exponent), and that
there are enough trailing zeros in the significand of a′ to allow it to be exactly representable
as a denormalized number. (The pair b = 5 × 2emin−3, which is a denormalized number, and
c = 1 + 22−p would fit these constraints if ⊕ denotes multiplication.) If the rounding mode
in effect is “round to nearest or even” and all traps are disabled, the underflow flag will not
be set as a result of this operation if loss of accuracy is detected as a denormalization loss,
since the rounded result is exactly representable as a denormalized number. However, if loss
of accuracy is detected as an inexact result, the underflow flag will be set as a result of this
operation, regardless of how tininess is detected, since the rounded result a′ differs from the
infinitely precise result a, and the magnitudes of both a and a′ are smaller than that of the
smallest positive normalized number.

8.3 Handling special computational situations in high-level
languages

There are a number of issues related to special computational situations that impact the design
or implementation of a high-level language. This section discusses some of them, such as how
to represent special values, how to support arithmetic involving special values and the signaling
of exceptions, how to make status flags available, and when (or whether) they should be saved,
restored, or cleared. In addition, this section will briefly mention some issues related to giving
the user the ability to specify what the behavior should be when exceptional situations arise.

8.3.1 Ways of representing special values

There are cases in which one needs to explicitly represent a special value in a program. There
are several ways a language design (or an implementation thereof) can make provision for this
feature. There could be one or more special functions that return special values, though it
may not be possible to use this or these functions in expressions that are to be evaluated at
compile time. Another way to make this feature available is to have special named constants
(for example, keywords or special strings or identifiers) that represent the special values, but
which do not involve any computation. This is an attractive method because named constants
are usually allowed in expressions that are to be evaluated at compile time, though, as will be
seen in the next section, one may want to specify that one or more exceptions are to be signaled
at the point in which a special value is used.

A third way in which special values may be represented is as an expression which, when
evaluated, will yield the desired special value, and which can be evaluated at compile time. For
example, infinity could be denoted by 1.0/0.0. The disadvantages are that expressions such
as these are generally not as readable as using named constants, for example (using a macro
preprocessor can help in this regard), and it is not clear whether any exceptions should or will
be signaled when such an expression is evaluated21.

21If such an expression is evaluated at compile time, exceptions might not be signaled, but they could if
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Yet another way in which special values may be represented is as an attribute. (See the
appendix for an example using attributes.) Conceptually, this has some similarity to calling a
special function or to using a named constant, but no computation is involved, and a specific
data type is associated with the specified value. Attributes are not convenient if one does not
want a data type associated with a value, or if one wants one or more exceptions to be signaled
at the point in which a special value is used.

In input/output routines, special values can take the form of special alphanumeric strings.

8.3.2 Handling static evaluation and numeric literals

Chapter 4 mentions some of the issues relevant to static evaluation and numeric literals in the
context of special computational situations. As regards to special computational situations, one
challenge is how to preserve the full semantics of the operations described in the IEEE Standard,
including aspects related to the signaling of exceptions. For example, suppose a program con-
tains floating-point expressions (or numeric literals) that, according to the language definition,
must be evaluated at compile time. Furthermore, suppose that one or more exceptions (such
as the inexact exception) are signaled during the evaluation of those floating-point expressions.
When that program has executed a section of code that includes such an expression, should
the status flags corresponding to those exceptions be set? Should exception handlers, if any,
corresponding to those exceptions be invoked? Very few language definitions specify whether
this should be the case, and, in fact, it is not trivial to do so, especially in a cross compiler,
since such a compiler would, for example, have to faithfully replicate the manner in which tini-
ness and loss of accuracy is detected in the target floating-point arithmetic engine. A further
complicating factor is that the rounding and precision modes in effect can affect whether ex-
ceptions are signaled during the evaluation of a floating-point expression. Since setting status
flags tends to be an expensive operation in many processors, and since in so many cases at
least the inexact exception would be signaled when evaluating a floating-point expression, it
may be more efficient to simply evaluate all floating-point expressions at run time, which would
set the appropriate status flags as a byproduct, rather than attempt to evaluate some of them
at compile time, and set the appropriate status flags explicitly. The same kinds of issues are
relevant in the context of code simplifications, such as constant folding.

A different problem in which similar issues are important is that of designing a library of
transcendental functions, such as sine and cosine, that is as compatible as possible with the
IEEE Standard. The implementation of these functions should ideally produce final results
that are as close as possible to the (infinitely precise) mathematical values. Furthermore, in all
cases, these functions should ideally signal only the appropriate exceptions according to whether
overflow, underflow, etc. would occur if the mathematical value were rounded (according to the
rounding mode in effect) to the final result actually delivered to the caller, regardless of what
exceptions were signaled while performing the calculations required to arrive at the final result.
This problem is similar to that of static evaluation of floating-point expressions and numeric

evaluated at run time. One may not know ahead of time if a given expression will be evaluated at compile time
or at run time.
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literals in that there is usually a disparity between the description of what the “ideal” behavior
should be (that is, that the appropriate exceptions should be signaled), and the behavior of
actual implementations (that is, they typically do not signal any exceptions, or else they signal
the wrong ones). In addition, devising an implementation that exhibits the “ideal” behavior is
nontrivial, especially if good performance is desired.

As for numeric literals, this problem is exacerbated by the lack of a good way to represent
special values, such as infinity and NaNs, in many programming languages. Programmers often
resort to expressions such as 1.0/0.0 for infinity and 0.0/0.0 for NaNs. Even a value such as
negative zero may be difficult to represent without resorting to a nontrivial expression, which
may prevent such a value from being evaluated at compile time22. If expressions such as these
were truly meant to represent special values, then no exceptions should be signaled when they
are evaluated, but how is a language processor supposed to know this? In fact, expressions such
as these are often used to explicitly cause an exception to be signaled, perhaps in addition to
producing a special value. For example, an implementation of the exponential function may
compare its argument with some suitably large number, and if its argument is larger than
that number, it may want to return infinity to its caller and signal overflow at the same time.
Writing 1e99999 or HUGE*HUGE, where HUGE is close to the overflow threshold, may be a
convenient way to do this.

In some programming languages, special values may be virtually impossible to represent in
static (floating-point) expressions, especially if implementations of a given language are required
to stop processing when reaching a floating-point expression involving, say, overflow or division
by zero.

8.3.3 Supporting arithmetic involving special computational situations

Some languages have a different notion of what should happen when special computational
situations arise. One well known example is APL, whose definition proclaims that 0/0 is 1
(see, for example, section 7.2.4 “Divide” of [25]). Other language definitions (such as Limbo
[59]) or implementations thereof demand that execution of a program stop if certain exceptional
situations occur23. For example, before the advent of the IEEE Standard, it was quite common
for execution of a program to stop whenever overflow or division by zero occurred. When a
language is inherently incompatible with the IEEE Standard in this way, perhaps the best
an implementation can do is to offer the programmer a choice as to whether the behavior
specified in the language definition or the IEEE Standard ought to be followed. If a language
definition does not forbid (nor require) the behavior specified in the IEEE Standard, then an
implementation ought to provide this behavior.

22One way to represent negative zero is as f(x), where f denotes a function that multiplies its argument with
(positive) zero, and x is a negative number. Simply writing -1.0 * 0.0 may not be satisfactory in all languages if
one wants to be sure one gets a negative zero, regardless of which language processor is used.

23The IEEE Standard does not actually forbid this behavior, but neither does it require conforming imple-
mentations to be capable of stopping execution of a program whenever an exceptional situation occurs. In fact,
the default behavior in a conforming implementation is to continue execution of the program after notifying the
user (by setting the corresponding status flag) that an exceptional event occurred.
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Some languages or implementations thereof include a standard library of functions. Some
of the functionality in these libraries may overlap with that described in the IEEE Standard.
For example, there may be a function that extracts square roots, or one that converts between
decimal and binary floating-point numbers. In cases in which the IEEE Standard requires
additional functionality not required by a language definition (such as support for NaNs),
it may be possible (and convenient) to simply add this functionality in implementations of
the language, as may be the case with conversion between decimal and binary floating-point
numbers. Unfortunately, language definitions sometimes require additional functionality not
required by the IEEE Standard (an example may be the square root function), or even worse,
their requirements may conflict with those of the IEEE Standard. In such cases, it may be useful
to have additional functions in the library that conform to the IEEE Standard. Such functions
may even allow for more efficient implementations, particularly if additional functionality not
required by the IEEE Standard is eliminated.

A number of code improvements that many language processors perform can lead to un-
expected results when the target is an arithmetic engine compatible with the IEEE Standard
[26]. For example, code such as:

if (x<>x) then f(x) end

where the type of x is some floating-point type, may seem nonsensical at first glance, but it
would not be wise for the language processor to simply eliminate all traces of this code, unless
it can ascertain that x cannot be a NaN.

In fact, eliminating any code at all can lead to unexpected results, since the programmer
might be depending on the fact that the code in question will have certain side effects under
certain conditions. For example, the subtraction in the expression y:=x-0.0 cannot be elim-
inated without some thought, because the programmer might be using such an expression to
ensure that the value of y will not be a signaling NaN (but instead a quiet NaN if x is a signaling
NaN), or that y will be a negative zero in the case that x is a positive zero. Also, the user may
be depending on the invalid operation exception being signaled whenever x is a NaN.

Another temptation to which many language processors succumb is to use registers con-
taining values that have more (but hopefully not less) precision than what was specified in
the program. This can cause different side effects than if arithmetic were performed with the
precision specified. Using the example in the previous paragraph, if the format of y were the
single format, and the value of x resided in a double precision register, simply using the value
in the double precision register in subsequent arithmetic operations involving y could produce
different results and cause different exceptions to be signaled than if the value of x converted to
the single format were used, particularly if the value of x were too large to be representable in
the single format. Of course, using more precision than is specified can produce more accurate
results, but the programmer may not want extra accuracy at that point in the program.

8.3.4 Ways of allowing access to status flags

One way of allowing access to status flags is through special syntax, such as keywords and/or
special identifiers. For example, suppose the special identifier overflow represented the status
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flag corresponding to the overflow exception. The statement overflow := false; might mean
that the status flag corresponding to the overflow exception is to be cleared. A potential problem
with this approach is that it may be difficult to devise a way to manipulate (for example, test)
an arbitrary combination of flags at once.

Another way of allowing access to status flags is through special functions. This has the
advantage of typically not requiring the addition of a new feature to the language definition.
However, unless a language processor has some knowledge of what these special functions do,
it is unlikely that the use of these functions will be attractive in sections of code in which
performance is critical. In addition, these functions may not get called as intended. For
example, suppose one has code of the following form:

clear status flags ();
a := b + c;
status flags := get status flags ();

where the function calls in the first and third lines of this fragment are intended to produce
obvious effects, and a, b, and c denote floating-point quantities. If neither b nor c are accessible
to called functions, such as the ones that appear in this fragment, a language processor may
decide to arrange the addition to be performed either before or after calling either function, not
realizing that functions can introduce subtle side effects in the execution environment24 [39].

From an abstract point of view, it is ultimately desirable to have a way to represent a
“volatile” set (that is, one in which members can be added as a byproduct of certain operations,
possibly including function calls), along with various operations on that set, including union,
intersection, and set difference. (In general, the members of this set would be those status
flags corresponding to the exceptions, if any, that have been signaled since the last time the
status flags were cleared, or, if the status flags have never been cleared explicitly, the beginning
of the program.) However, choosing an overly abstract way of representing the status flags
and operations on them runs the risk of causing programs that use these facilities to be too
inefficient, since it may be difficult to devise an implementation that is sufficiently clever in
processing such uses.

Similarly, it is not desirable if one ultimately has to resort to manipulating the status
flags one at a time, since the performance of many programs will most likely suffer, given
that accessing the status flags is a relatively slow operation in most floating-point arithmetic
engines. Regardless of the method a language designer or implementer chooses to use to allow
access to the status flags, the frequency with which the status flags in floating-point arithmetic
engines must be accessed ought to be minimized. Section 8.6 gives examples of how this can
be accomplished.

8.3.5 Ways of managing the status flags

Different languages and implementations thereof can offer differing amounts of automation as
far as when and how the status flags are set and cleared explicitly, that is, not as a byproduct of

24Indeed, a language processor could decide to omit the addition if the given processor were to determine that
the resulting sum is not needed later on in the program.
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an operation. On the one extreme, status flags could be manipulated only when the programmer
requests this explicitly. More generally, facilities for managing the status flags can be classified
according to the granularity of the interval allowed between successive manipulations of the
status flags, as measured by the amount of source code or run time. Chapter 4 discusses this in
more detail in the context of facilities for setting rounding modes. In particular, such facilities
can be characterized by whether the status of the status flags of the caller of a function affects
which status flags are set and which are cleared when the called function begins execution, and
similarly for the status of the status flags upon returning from a called function. In fact, such
characterizations can be generalized to the point of being based on whether the status of the
status flags before entering or leaving smaller blocks of code have any effect on the status of
the status flags in the block of code about to be entered or resumed.

Given the point to which one can generalize this concept, one may wonder whether it is
worthwhile implementing more than the simplest scheme possible for managing the status flags.
Perhaps the most important reason for doing so is to allow one to conveniently view a group of
(arithmetic) operations as if they were one large atomic operation. For example, computation in
a trigonometric function can be decomposed into a series of basic arithmetic operations. When
calling such a function, one is not normally interested in knowing whether an exception was
signaled while computing an intermediate result. Rather, one would more likely be interested
in knowing whether an exception would be signaled if one were to round the (infinitely precise)
mathematical value to fit the destination format. In fact, in some cases, the actual computation
of some function may not cause any exceptions to be signaled, and yet the signaling of one or
more exceptions really ought to accompany the final result returned to the caller. Consider, for
example, division of a sufficiently large (but finite) dividend by a sufficiently small interval that
straddles zero. Regardless of what the model of infinity is (projective or affine), the final result
can be arrived at by simply noticing how large the dividend is, how small the magnitude of the
divisor is, and the fact that the divisor straddles zero, that is, the final result can be arrived
at with only a few comparisons, none of which would signal any exceptions. And yet, in such
a case, it would be appropriate to signal both the division by zero and overflow exceptions.

Another possible use for facilities related to managing the status flags is as a crude debugging
technique. One may want to find out, for example, if a certain exception is ever signaled in a
certain section of code, or, more generally, one may want to find out at what point (or points)
an exception is signaled. On a system in which it is not convenient to stop execution of a
program when a given exception is signaled (a capability which the IEEE Standard does not
require), one could clear the status flags (possibly after saving them) before entering a section
of code of interest, and examine them upon leaving that section.

In language implementations in which it is possible to associate (and disassociate) exception
handlers with floating-point exceptions, yet another use for these facilities is to control which
blocks of code can cause an exception handler to be invoked. Consider a hypothetical language
implementation in which exception handlers are invoked whenever the appropriate status flag(s)
are set, and in which called functions do not inherit their callers’ exception handlers. Let us
further assume that a called function can affect which status flags are set upon returning to its
caller. One may want to prevent an exception handler from being invoked upon returning to
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the caller, because the exceptions, if any, that are signaled while executing the called function
may not be relevant. This means that the appropriate status flag(s) need to be cleared before
returning to the caller. (One way to accomplish this is to restore the caller’s status flags.)

8.3.6 Facilities for exception handling

It is outside the scope of this work to exhaustively discuss facilities for exception handling.
Hauser discusses this subject at greater length [39]. However, a few comments are in order.

In some languages, when an exception is raised and there is a corresponding exception
handler, that handler is invoked, and control never returns to the point at which the exception
was raised. There certainly are cases in which this kind of behavior is desirable. For example,
in Gaussian elimination, if division by zero ever occurs, there may be no sense in completing
the computation, since this is an indication that, for practical purposes, the matrix is singular.
An exception handler that causes the procedure to return to its caller could be appropriate in
this case.

However, there are other cases in which this kind of behavior is not desirable. For exam-
ple, suppose one is computing the Euclidean norm of a vector whose components have large
magnitudes. If overflow occurs while squaring the components or adding the squares of the com-
ponents, it would be desirable to be able to adjust the sum obtained so far by a suitable scaling
factor, recompute the operation that overflowed using the new scaling factor, and continue the
computation at the point of interruption, again using the new scaling factor. The final result
could then be adjusted by this scaling factor. Even if overflow occurs during the intermediate
calculations, the final (adjusted) result could still be within the range of representable finite
numbers. Note that in this example, the exception handler should ideally have access to local
variables, so an exception handling facility in which exception handlers are merely nonnested
functions would not be ideal.

An even simpler kind of exception handling capability can be useful in some cases. Con-
sider computing (sin x)/x. As x approaches zero, the (mathematical) value of this expression
approaches one. However, if this expression were computed using an arithmetic engine com-
patible with the IEEE Standard, and no traps are taken (for example, they are disabled), the
result would be a NaN if x is equal to zero. In such cases, it would be convenient if one could
specify that if a given exception is signaled when a particular operation is performed, a non-
standard result different from that specified by the IEEE Standard (one in this example) should
be produced; the exception handler need not do anything else.

Another capability that is important is to be able to enable an exception handler for a given
type of exception in some parts of a program, and be able to disable all exception handlers
for that type of exception in other parts of the program. For example, suppose one normally
wants execution of a particular program to stop whenever the invalid operation exception is
signaled. There may be sections of code in the program, however, in which one knows that if the
invalid operation exception were to be signaled, producing a NaN as a result would be perfectly
acceptable, and it would therefore not be worthwhile to stop execution of the program. In fact,
if one had to ensure that the invalid operation exception did not occur in these sections of code,
performance could suffer significantly. Thus, the ability to disable all exception handlers for



96 CHAPTER 8. SUPPORTING EXCEPTIONAL SITUATIONS

the invalid operation exception in these sections of code would be convenient.

Kahan proposes an exception handling scheme that provides only a limited set of choices
as to what actions can be taken when an exception is signaled [54]. These include aborting
execution of the program, invoking the debugger, replacing the result with a given value, incre-
menting a counter (so that in the case of overflow or underflow one can find out how many times
a result has been scaled), and producing the default value specified by the IEEE Standard.

Hull et al proposes another exception handling facility appropriate for systems in which
exceptions are raised imprecisely, that is, possibly at a later point than that at which the
exception actually occurred [44]. This scheme has the advantage of being relatively easy to
implement on a system that fully conforms to the IEEE Standard, since it could basically involve
clearing the status flags at the beginning of a block of code, and checking them at the end of
the block of code to determine if an exception handler should be invoked. The disadvantage
of this scheme is that some efficiency can be lost due to either unnecessarily proceeding with
a computation past the point in which an exception occurs, or having to recompute portions
of a computation prior to the point in which an exception occurred because of the fact that
one cannot be sure exactly how much of the computation was completed before the exception
occurred.

As with ways of managing the status flags (see the previous section), facilities for exception
handling can be classified according to the granularity of the interval over which an exception
handler can be enabled (and disabled), as measured by the amount of source code or run time.

8.4 Issues related to mixed-language programming

Many potential minefields in the area of special computational situations await those who dare
to engage in mixed-language programming, or even use more than one language implementation
to process different parts of the same program. Only a few of these potential pitfalls are
mentioned below.

Some language processors may not be prepared to deal with special values, such as infinities
or NaNs. Therefore, if a procedure is processed with an IEEE Standard-aware language imple-
mentation, and that procedure calls another that is processed by a language implementation
that is not prepared to deal with special values, that other procedure may produce wrong results
if any special values are included among the parameters. For example, that other procedure
may produce a certain value if a parameter is less than some value. The language processor may
reverse the condition, and cause the procedure to produce the given value if the parameter is not
greater than or equal to the specified value. If the parameter happens to be a NaN, the wrong
value will likely be produced. Even worse, execution of the program may end unnecessarily
when the other procedure encounters a special value.
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8.5 What support exists in high-level languages

8.5.1 Existing language designs

As with the operations described in the IEEE Standard (see Chapter 7), one can likewise
consider what support exists for special computational situations in the definition of a high-
level language, as compared to what support can be provided by an implementation that fully
conforms to that definition.

Except for prohibiting negative signed zeros in formatted output records, Fortran 90 [32]
makes no reference to any special values. According to this standard, “any numeric opera-
tion whose result is not mathematically defined is prohibited in the execution of an executable
program.” This basically implies that execution of a program translated by a translator con-
forming to the Fortran standard must not continue past a point in which the invalid operation
or division by zero exception would be signaled. Finding a way to portably represent a NaN
would thus be problematic.

The ISO C Standard [16] also provides little support for special computational situations.
This standard allows, but does not require, positive infinity to be represented (as an expression
of type double) by the macro HUGE VAL. There is no provision for representing any other
special values. An implementation’s behavior in the presence of an expression that is mathe-
matically undefined is up to the implementer. Thus, there is no way to portably represent any
of the special values (since HUGE VAL is not guaranteed to represent infinity, and since this
standard does not dictate any correspondence between its types and the formats defined in the
IEEE Standard), or to access such features as the status flags. Despite this, there is nothing in
this standard that would prevent an implementer from fully supporting the IEEE Standard in
the area of special computational situations.

Besides exception handling being part of the language, C++ does not provide any additional
support for special computational situations [15]. Note, however, that, compared to the C
language, special values, such as infinity and NaNs, cannot be as conveniently represented as
constant expressions, since implementations are required to issue at least one diagnostic message
for programs containing numeric literals such as 1e9999 (which one may be tempted to use to
represent infinity), or constant expressions that are mathematically undefined, such as 0.0/0.0
(which one may be tempted to use to represent a NaN).

Even Ada does not provide significantly better support for special computational situations.
In fact, unlike C++, once an exception handler is invoked, control cannot be transferred back
to the statement in which the exception was raised. However, also unlike C++, there are
attributes that can be used to find out at run time if denormals and signed zeros (with the
semantics described in the IEEE Standard) are supported. There is no provision in Ada’s model
of floating-point arithmetic for nonfinite values, such as infinity and NaNs, though any of these
values may be produced under appropriate circumstances as the result of an expression if the
value of the attribute Machine Overflows is false. The invalid operation, division by zero, and
overflow exceptions all roughly correspond to Ada’s predefined Constraint Error exception, but
the latter does not have to be raised when any of the former types of exceptions occurs if the
value of the attribute Machine Overflows is false.



98 CHAPTER 8. SUPPORTING EXCEPTIONAL SITUATIONS

8.5.2 Compilers for existing languages

Sun’s C and Fortran compilers provide library functions that return specified special values,
which can then be assigned to variables at run time [73]. Another library function provides
access to the processor’s floating-point status register, so that the status flags can be manipu-
lated. Yet another library function allows one to enable and disable exception handlers25. The
performance penalty of using these two library functions is relatively high, since some of their
arguments are character strings whose meaning must be decoded, rather than numerical values
that can be used with little or no manipulation. Also, it is not possible to find out and also
modify the status of the status flags with one (library) function call, so if one wishes to perform
both of these actions with the facilities provided, one has to call the same function twice, even
though this function must first find out what the status of the processor’s status flags is in
order to modify them. So, while it is possible to access the IEEE Standard’s features related
to special computational situations, the facilities provided in this area are fairly primitive, at a
low level, and not terribly efficient.

8.5.3 Extensions to existing languages

The Standard Apple Numerics Environment (SANE) provides a function which returns a quiet
NaN [12]. The C implementation of SANE provides another function which returns infinity;
in the Pascal implementation of SANE, INF is a predefined constant whose value is infinite.
The I/O routines support infinities and quiet NaNs. Other functions or procedures get or set
individual status flags, or enable or disable individual traps. In some implementations, it may
be possible to associate an exception type with an arbitrary exception handler. Procedures are
provided to save or restore the entire floating-point environment, including all five status flags,
perhaps subsequently clearing all the status flags or setting the status flags that were set before
the procedure was called.

In terms of support for the special computational situations described in the IEEE Standard,
the extensions in [75] are similar to those of SANE, except that macros are used to represent
nonfinite special values (these macros may expand to function calls, however, so they cannot
be portably used in constant expressions), more than one status flag can be manipulated at a
time, and no facilities are provided to deal with trap handlers. Interestingly, there is a function
which explicitly signals specified exceptions, and another one that is intended to merely restore
the state of the status flags to one that was previously saved. Thus, so as to avoid invoking any
trap handlers before returning to its caller, on many processors, the latter function may have
the side effect of disabling any traps the user may have explicitly enabled, perhaps by calling a
special function to do so.

25Exception handlers are simply arbitrary functions that accept a certain number and type of arguments.
One of those arguments can be examined to determine which instruction caused the exception to be signaled.
Returning from an exception handler resumes the computation at the point of interruption, perhaps with an
unexpected result used in place of that which should have been produced by the operation that caused the
exception handler to be invoked. Of course, it is possible to write an exception handler that determines what
that operation was, and ensures a reasonable result is used when the computation resumes.
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8.5.4 New language designs

The Java language [38] does not provide any support for signaling NaNs, but it does provide
ways of representing all other nonfinite special values as constant expressions. There are no
facilities for accessing the status flags or for dealing with trap handlers related to floating-point
arithmetic. In situations in which the IEEE Standard requires an exception to be signaled,
the result produced is that specified by the IEEE Standard when no traps are enabled. A
floating-point numeric literal that overflows, or whose magnitude is too small to be represented
as a denormalized number, causes an error at translation time. I/O facilities support all special
values except for NaNs on input and signaling NaNs on output.

At least a couple of efforts are under way to improve Java’s support for special computational
situations, among other things. RealJava [21] adds facilities for accessing the status flags. At
present, it is difficult to obtain information on Borneo [22], the other effort to improve Java’s
support for numerical programming.

Limbo [59] provides constants for positive infinity and a quiet NaN. Support for denor-
malized numbers may be absent in some implementations. Arithmetic involving special values
otherwise conforms to the IEEE Standard. Functions are provided to access the status flags;
other functions can be used to enable or disable traps, or to find out if traps corresponding to
specified exception types are enabled or disabled. By default, any kind of exception other than
the inexact exception causes execution of a program to stop.

µln [30] provides constants for positive infinity and a signaling NaN. Special keywords pro-
vide access to individual status flags. The status flags are automatically saved and then cleared
when a function is called, and status flags corresponding to exception handlers that are enabled
in a compound statement are saved and cleared when execution of that compound statement
begins. If any status flag was saved when execution of a compound statement began, the status
flags that were saved are automatically updated upon exiting that compound statement. That
is, if a status flag is set when execution of the compound statement ends, or if a status flag
was set when the status flags were saved, it remains set after restoring the status flags that
were saved. Similarly, the status flags of the caller are automatically updated when a function
returns to its caller.

In µln, by default, execution of a program terminates when the invalid operation, divide
by zero, or overflow exception is signaled, a warning message is printed when the underflow
exception is signaled, and the inexact exception is ignored. A trap can be explicitly disabled
by using the keyword ignore in an exception handler. The scope of a given exception handler
is the innermost compound statement of which it is a part. Special functions are available
within an exception handler to get detailed information on what caused the exception, such as
what kind of exception was signaled, what the operands were, and what kind of operation was
attempted. In addition, one can request in an exception handler that a given value, which need
not be constant, replace the result of an arithmetic operation, or that execution of the entire
compound statement be restarted (presumably after taking corrective action). Alternatively,
an exception handler can arrange to have control return to the function’s caller, and to resignal
the exception in the context of the caller. Of course, a language with these kinds of facilities
would be quite challenging to implement for certain target processors.
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8.6 What support should exist in high-level languages

There is no excuse for not providing in a high-level language a way to represent all the special
values mentioned in the IEEE Standard, since this can be accomplished, for example, by pro-
viding one or more functions, each of which returns a given special value. Ideally, though, it
should be possible to represent all the special values in a way that allows them to be used in
any context in which a floating-point constant expression is allowed, and that does not involve
signaling any exceptions or issuing diagnostic messages. In the case of an existing language,
this may require an extension to the language. In addition, input and output routines ought
to be provided to allow one to convert any of these special values between their internal and
external representations. Again, this may require extending the language in some cases.

Facilities for accessing the status flags ought to also be ubiquitous, since, again, this can be
accomplished by providing special functions for this purpose. Now, accessing a floating-point
arithmetic engine’s status flags causes pipeline stalls in many cases, so some care should be
taken to design facilities that allow one to minimize the number of times the engine’s status
flags are actually accessed. For example, in many cases, one may want to save the status flags
and subsequently clear them. On many processors, in order to clear the status flags, one has
to obtain the value of the register containing the status flags, clear certain bits in that value,
and then store the modified value back into this register. Thus, having a function that provides
the values of (selected) status flags and then clears them is preferable to always having to call
two distinct functions: one to obtain the values of the status flags, and one to clear them. As
another example, one may want to set certain status flags and clear all others. Being able to do
this by calling just one function can decrease the number of times the engine’s status flags are
actually accessed. Yet another way to decrease the number of times the engine’s status flags
are accessed is to provide a way to access more than one status flag at a time, so the engine’s
status flags do not have to be accessed once for each status flag.

As mentioned in section 8.3.5, another important capability involving the status flags is the
ability to make an arbitrary group of statements appear as if it were an atomic operation, at
least from the point of view of which status flags are set, and what exceptions are signaled.
Some automation beyond simply providing functions to obtain the status of the status flags
and set and clear them would be helpful, since otherwise a typical sequence of operations would
be something like this:

1. obtain and save the status of the status flags;

2. clear the status flags;

3. disable all traps temporarily;

4. perform the given sequence of statements;

5. restore the status flags that were previously saved;

6. enable the traps that were disabled temporarily, if any;
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7. set the flags corresponding to the exceptions, if any, that would be signaled if the sequence
of statements were truly an atomic operation, the expectation being that if a trap is
enabled for at least one of these exceptions, the appropriate exception handler, if any, will
be invoked immediately.

If the sequence of statements were the entire body of the function, it may not be convenient to
always exit the function from the same point in the code. If this is the case, code for steps 5–7
above would need to be duplicated more than once.

The question of what sort of automation in the management of the status flags would be
appropriate (and practical) is difficult to answer, particularly if one wants to make an entire
function appear as an atomic operation. One of the factors that contributes to this difficulty is
that in essence, all the operations described in the IEEE Standard return a composite value: a
numerical result and a set of exceptions that were signaled either while converting the infinitely
precise result to a representable value, or because the result is (potentially) ill defined.

If one can be assured that no traps are ever enabled, then this problem becomes a bit easier
to deal with, because then the point in which one signals the exceptions that are appropriate to
the sequence of statements that one wants to consider as an atomic operation is not as critical26.
Also, if it is not important to be able to specify a given value as being the result of a sequence
of statements, and also virtually simultaneously signal one or more exceptions (as happens with
the basic arithmetic operations), the problem can be simplified.

Even if this problem is simplified as mentioned, automation in the management of the
status flags is likely to require an extension in the case of an existing language. For example,
one could envision extending an existing language with a pragma having semantics such as:
Save the status of the status flags, and optionally clear the status flags and disable all traps
temporarily; perform the sequence of statements with which this pragma is associated; when
control leaves this sequence of statements for any reason, update the saved status flags with
the flags that are now set, restore the updated status flags, and enable any traps that were
disabled temporarily. Of course, all this could also be accomplished less conveniently by using
a wrapper function to implement the functionality of the (hypothetical) pragma, provided the
sequence of statements in question can be encapsulated in a separate function.

Sometimes, in addition to making a sequence of statements appear as an atomic operation,
one wishes to find out what exceptions were signaled by that “atomic operation,” possibly
without actually invoking any exception handlers. (In fact, this may be desired in cases in
which “that ‘atomic operation’ ” is a basic arithmetic operation.) In other words, taking the
view of operations returning composite values, as mentioned above, one sometimes wants to
obtain the full composite value, and not just the numerical part of the result.

Perhaps a more generalized paradigm that incorporates these ideas is to view arbitrary
sequences of statements or operations as instances of functions of the form:

operation (operands, exception type ⇒ action or value . . . )
26If the status flags are actually implemented as, say, pointers to the point in which the associated exception

type was signaled, with a null pointer representing a flag that is clear, then it could potentially be more critical
exactly when an exception is signaled. However, in actual practice, if an exception handler is not invoked,
knowing only approximately where an exception was signaled is usually good enough.
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where operation denotes a given sequence of statements or operations, operands denotes the
operand or operands used in the sequence of statements or operations, exception type denotes
one (or more) of the exception types described in the IEEE Standard, and action or value
indicates whether an exception handler associated with the given exception type should be
invoked or not, or, in the case of the given exception being signaled, if some other value (ideally
computed only if the given exception type is signaled) should replace the result that would
normally be computed by the sequence of statements or operations. action or value could
alternatively be any of the choices available in Kahan’s proposed exception handling scheme
(see section 8.3.6. More than one exception type, action or value pair could be associated with
a given operation. The return type of such a function would be a composite value consisting
of a numerical result and the set of exceptions signaled by the function (regardless of whether
the signaling of these exceptions is ignored or not). Note that the ability to return a composite
value does not abolish a need for the “sticky” status flags described in the IEEE Standard;
these flags could continue to be updated, for example, as described in the above discussion of
the hypothetical pragma.

One of the possible applications of this paradigm is to provide a way to control exactly at
what points exceptions are to be raised in a program written in a language like C++ or Ada
that has exception handling facilities. In these languages, predefined operators are restricted
in terms of what exceptions can be raised while performing the operations they denote, and
the corresponding language standards do not mention (at least some of) the exception types
described in the IEEE Standard as being among those that can be raised. Many times one is
only interested in what exceptions might occur in but a few places in a program. By writing
these operators using functional notation, one can visually mark the points in which one wants
exceptions to be raised if warranted, and specify exactly which exception types are of interest
for each individual operation.

Of course, this paradigm is also applicable to sequences of statements or operations that
one wishes to view as an atomic operation, whether or not they can be encapsulated in a
function, though it may be less convenient to apply this paradigm to a sequence of statements
or operators that is not encapsulated in a function, since the technique of using a wrapper
function to specifically provide support for handling exceptional situations would no longer be
applicable. Note also that this paradigm provides slightly more control than that proposed
by Hull et al [44] (see section 8.3.6) because it at least provides information on what types of
exception occurred, if any, but at the same time, this paradigm retains its suitability to systems
which lack precise traps or the ability to enable and disable traps.

As mentioned in section 8.3.3, many techniques that language processors use to improve
code are problematic from the point of view of support for special computational situations.
For example, given the expression f(x*0.0), it would be tempting to evaluate the parameter at
translation time, rather than at run time. But if x is not finite, or if x is negative zero, the
value of the parameter would not be (positive) zero. Even if x were a numeric literal such as
1e999 (which represents a value that is too large to be represented in the double format, but
is not too large to be represented in the double extended format), it would still not be clear,
particularly in absence of clear guidance from the language definition, how to best translate this
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product. Should overflow be signaled (assuming the parameter is intended to be representable
in the double format), and then should the invalid operation exception be signaled, or should
both of these exceptions be signaled simultaneously (because the parameter was evaluated at
translation time), or should one or none of these exceptions be signaled, or should the parameter
be evaluated partially or entirely at run time so that exceptions are signaled more properly?
If the parameter is at least partially evaluated at run time on a system in which floating-point
parameters are passed in double extended registers, should the multiplicand first be converted
to a value representable in the double format (that is, positive infinity), or should parameters
not be converted at all, or should only the final value of the parameter be converted? (A
different example would show that the evaluation technique used could make a difference.)

Other code improvement techniques are also problematic. For example, code motion, in-
cluding moving loop invariants outside a loop, can cause exceptions to be signaled spuriously
or at the wrong time. Even a simple fragment such as the following illustrates the hazards of
code motion (and common subexpression elimination):

y := x * 0.0; f(); y := x * 0.0;

Even assuming that floating-point variables x and y cannot be accessed by the procedure f(), it
is questionable whether it is safe to postpone the first multiplication until after procedure f() is
called, or even eliminate the first multiplication altogether, since proper behavior of procedure
f() may depend on the status of the status flags. (For example, procedure f() may perform
some corrective action depending on what exceptions, if any, have occurred.) It is similarly
questionable whether the second multiplication can be safely eliminated or performed before
calling procedure f(), since procedure f() may clear the status flags, and proper behavior of code
after the above fragment may depend on the status of the status flags.

Not only does the format used in evaluating an expression affect which exceptions are
signaled, but the instruction used is significant as well. For example, some processors, such as
implementations of the PowerPC architecture, have instructions which multiply two values and
add the resulting product to a third value, with rounding occurring only once after the sum
has been produced. When these instructions are used, not only can results differ, but which
exceptions are signaled, if any, can differ from what would be the case if products and sums
were computed by distinct instructions.

All the above tends to support the conclusion that nearly all floating-point expressions are
volatile, in the sense that they cannot be removed as superfluous code, eliminated as common
subexpressions, moved around, or even evaluated at translation time, due to possible side
effects that are not obvious. (Probably the only law of which one can take advantage without
concern for possible side effects is the commutative law for addition and multiplication27.) It is
therefore critical to be able to indicate (implicitly or explicitly) which sections of code depend
on exceptions being signaled accurately, and in which sections of code there is no need to
be concerned with which evaluation formats or instructions are used to compute floating-point

27Multiplication by one can also be eliminated without concern for possible side effects, provided one can show
that neither of the operands can be a signaling NaN. This is not hard to show in most cases, since signaling
NaNs cannot easily propagate through a computation.
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expressions, or whether any exceptions at all will be signaled while computing these expressions,
or whether any operands are special values, or even what the rounding or precision modes in
effect are (see chapters 4 and 5).

In general, the more information the language processor has about what exceptions can
and cannot be signaled while executing a given section of code, and whether these are at all
relevant, the greater the chance that it might be possible to detect a way to safely improve the
efficiency of the code. In particular, if one were to use the paradigm mentioned in this section,
the language processor may be able to determine that whether certain exceptions are signaled or
not is not important, perhaps because the given sequence of statements or operations mentions
what exceptions should be “exported” when execution of the given sequence is finished, and
no exceptions that are signaled while executing the given sequence matter. For example, an
implementation of the cosine function may not care what exceptions are signaled while the
return value is being computed. It may simply produce a result and possibly signal the inexact
or invalid operation exception. In such a case, it may be safe to apply some code improvements
that alter what exceptions are signaled, and when they are signaled.



Chapter 9

Floating-Point Expression
Evaluation Schemes

A study of the impact the IEEE Standard has on programming languages would not be complete
without a discussion of floating-point expression evaluation schemes, that is, how floating-point
operations and operands map to instruction sets of target processors. There are several ways
to characterize such schemes [77, 26, 55], but basically, floating-point expression evaluation
schemes can be categorized as to whether they are predictable, that is, whether a reasonably
competent programmer can determine how the floating-point operations and operands in a given
piece of source code (with sufficient context) are mapped to specific operations on (possibly
arbitrary) target processors.

Both predictable and unpredictable schemes can be further categorized. For example, un-
predictable schemes can be characterized as to whether they tend to make efficient use of a
processor’s capabilities. Predictable schemes, on the other hand, can be characterized as to
whether they are portable (that is, applicable to a wide range of processors), or processor
specific. A special class of portable schemes are those whose aim is to provide for bit-for-bit
identical results on a variety of target processors. (Section 9.3 discusses this in greater detail.)

Before giving specific examples of some predictable expression evaluation schemes, one dis-
tinction that merits mentioning is the relationship (or absence thereof) between the data types
of arbitrary floating-point expressions and how these expressions can actually be evaluated.
Many language definitions associate floating-point expressions with data types for the purpose
of semantic type checking. The particular data type with which a floating-point expression is
associated typically depends on what the operator or function call is, the data type(s) (and
number) of its operand(s) or argument(s), and possibly the context in which the operator or
function call appears (such as its expected type). For example, in the case of a binary operator,
the data type of its result is often the wider of its operands.

Many programmers (and perhaps language designers as well) assume that an expression’s as-
sociated data type somehow influences the precision with which the operation (or function call)
is computed. However, most language definitions stop short of specifying whether a programmer
can actually rely on an expression’s associated data type to determine to what precision that
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expression will be computed. As a result, conforming implementations can (and sometimes do)
evaluate floating-point expressions in unexpected (and sometimes seemingly arbitrary) ways.
Indeed, a fully-conforming (but brain-damaged) Fortran [31] compiler could assert that 2 + 2
is 5! Less worrisome, but still potentially troublesome on occasion, is the case of an expression
being evaluated more precisely than expected [66].

9.1 Predictable expression evaluation schemes

There are potentially many different predictable expression evaluation schemes. However, some
of the most popular are strict evaluation, widest available, and widest needed [26]. These can
be more easily understood by considering an expression such as d + (s * s), where the type
of d corresponds to the double format, and the type of s corresponds to the single format.

In strict evaluation, the result of a binary operation is computed to the precision of that
of the wider of its operands, and, if necessary, the narrower of its operands is converted to
the format corresponding to this precision. The result of a unary operation is computed to the
precision of that of its operand; no conversions are necessary. In the expression mentioned above,
the multiplication would be performed in single precision, and the product would subsequently
be converted to double precision. Finally, the addition would be performed in double precision.

In the “widest available” scheme, all operands in an expression are converted to the widest
floating-point format available on the target machine, and all operations are computed to the
precision corresponding to this format. In the expression given above, for example, both s and
d would be converted to the double extended format if the target machine were one conforming
to the Intel x86 architecture, and both the multiplication as well as the addition would be
performed in double extended precision.

In the “widest needed” scheme, all operands in an expression are converted to the format
corresponding to the widest floating-point data type used in the expression, and all operations
are computed to the precision corresponding to this format. In the expression given above, for
example, s would be converted to the double format, and both the multiplication as well as the
addition would be performed in double precision.

Variations on these schemes are possible, of course [75]. For example, subexpressions not
involving operands wider than that corresponding to the double format could be evaluated in
double precision, while operations having at least one operand in double extended precision
could be evaluated in this wider precision.

9.2 Advantages and disadvantages of various evaluation
schemes

Some of these schemes favor certain classes of target machines. For example, in terms of
performance, strict evaluation favors machines in which operations involving only the single
format are faster than operations involving wider floating-point formats, or in which conversions
to wider floating-point formats decrease performance, such as SPARC-based machines.
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On machines conforming to the Intel x86 architecture, strict evaluation and the widest
needed scheme lead to relatively poor performance, especially if the types of variables within
expressions or in different expressions within a basic block correspond to different floating-
point formats, with the double extended format being used in some (but not necessarily all)
of the expressions1. The widest available scheme suits these machines much better, since these
machines tend to perform better when the precision to which operations must be computed
does not change very often.

The widest needed scheme does not particularly tend to favor any particular class of target
machines more than other schemes. Rather, its attractiveness stems from other considerations,
such as its applicability to a more generalized floating-point system consisting of a wide variety
of floating-point formats (such as multiple precision floating-point systems), and its balance
between protecting naive programmers from specifying a precision that is too narrow for a given
application, and to what degree it tends to produce unexpected results due to its inducing the
use of wider precision than is readily apparent from the source code. Unfortunately, use of
the widest needed scheme tends to reduce performance on more than one class of machines, for
example SPARC-based machines and machines that conform to the Intel x86 architecture. (The
paragraphs above explains why this is the case.) Performance is acceptable on machines such as
those conforming to the Alpha or PowerPC architecture, whose floating-point registers support
the widest floating-point format available, and which have instructions to perform arithmetic
in less precision than that of its floating-point registers.

As has been hinted at above, strict evaluation proffers the user very little protection against
recondite mistakes related to the precision of operands or choice of formulas on which compu-
tations are based, while the widest available scheme provides the most protection against such
mistakes. (The standard quadratic formula is a classic example of a case in which use of extra
precision enables one to obtain better results: strict evaluation can cause all digits of accuracy
to be lost in the expression b2−4ac when the minuend and subtrahend are nearly equal, whereas
the widest available scheme might at least allow one to determine the sign of this expression,
providing the precision of the variables a, b, and c is less than the widest precision available.)

On the other hand, the semantics of strict evaluation tends to be more intuitive to pro-
grammers who are not experts at numerical programming, while the widest available scheme
can cause surprising results to be produced in certain situations in which the extra precision
it affords is unexpected, especially for naive programmers. In addition, certain algorithms,
such as some that simulate higher precision, require that a very specific precision be used
in computations—extra precision will cause these algorithms to produce nonsensical results.
(Sun’s fdlibm, a freely available math library, is an example of such code [72].) For this reason,
if the widest available scheme is used, some means ought to be provided to allow an alternative
scheme to be used where needed.

As can be seen, none of these schemes fits everyone’s needs, and none of them enhances
1As noted in chapter 6, this is because on such machines, basic arithmetic operations cannot be computed

in any precision other than double extended, unless one resorts to modifying a special register, which is time
consuming and tends to disrupt the floating-point pipeline. One could alternatively save the result of every
floating-point operation to memory using the appropriate format, and then reload results that are subsequently
needed in further computations, but this too is time consuming and tends to disrupt the floating-point pipeline.
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performance on all machines. So if a language definition were able to accommodate at most one
of these schemes, the language designer would face a difficult choice indeed! Furthermore, if
speed is the overriding concern, with quality of the arithmetic being a very secondary concern
(as would be the case in some graphics applications), none of these schemes is likely to be
very appealing, except perhaps for a specialized class of machines: witness Sun’s dilemma in
coming up with a way to allow better floating-point performance in implementations of Java
for machines conforming to the Intel x86 architecture [60].

9.3 Bit-for-bit identical results and the IEEE Standard

Being able to obtain bit-for-bit identical results, regardless of the machine used to perform
computations, is attractive to many. One of the reasons is that it is costly to validate the
results obtained on every machine on which a program might be run. (In some safety critical
applications, different results from those obtained on some “standard” machine are equated with
wrong results, even if those results are actually more accurate!) Another reason is the need
for reproducibility when different parts of a calculation are performed by different machines
in a network of heterogeneous machines possibly widely separated geographically. (In fact, in
such an environment, the same part of a calculation could be performed by different machines
at different points in time.) A third reason is that sometimes full bit-for-bit reproducibility is
simply very highly desired so that users can count on a particular behavior regardless of the
machine used to run a given application.

In general, the need for bit-for-bit identical results dictates that the expression evaluation
scheme be the same, regardless of what machine is being used. Any of the evaluation schemes
discussed above can be used as a basis for obtaining bit-for-bit identical results, provided the
floating-point formats involved are effectively identical, that is, the floating-point arithmetic
engines of interest can simulate one that can operate on and produce results in the floating-point
formats the expression evaluation scheme requires. Obviously, this is not a sufficient condition
for obtaining bit-for-bit identical results. Using the Java language [38] as the background for
discussion, the remainder of this section looks at what other conditions are required.

9.3.1 Optional and implementation defined features of the IEEE Standard

The creators of the Java language often invoke the slogan “write once, run anywhere”: imple-
mentations are required to produce bit-for-bit identical results in all but a few cases2. In order
to achieve this goal for floating-point arithmetic operations, Java requires implementations to
conform to the IEEE Standard. Whether this is enough is certainly not clear. In fact, because
floating-point arithmetic is notorious for varying in subtle ways from one floating-point unit to
another (even among those made by the same manufacturer), some are skeptical as to whether
achieving bit-for-bit identical results across a variety of floating-point systems is practical, even
if one were to restrict one’s attention to arithmetic engines conforming to the IEEE Standard,

2Section 10.2.2 mentions a case in which bit-for-bit identical results are not guaranteed.
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especially since making it possible to obtain bit-for-bit identical results does not appear to be
(wisely, in some people’s opinions) among the IEEE Standard’s goals.

Before dismissing this goal altogether as a hopelessly impractical one, it would be wise to
consider which features of the IEEE Standard are either optional or explicitly implementation
defined, since these are the ones that could lead to differing results among IEEE-Standard-
conforming arithmetic engines. The following features come to mind:

1. Data formats. Although the IEEE Standard defines the characteristics of the basic formats
(that is, the single and double formats), thus providing an unambiguous interpretation
for every possible encoding, it only establishes a few constraints on the extended formats.
Furthermore, it does not even require that implementations support any format other
than the single format. Certainly, the availability and use of different (optional) data
formats can lead to possibly dramatically different results.

2. NaNs. The IEEE Standard does not specify the encodings of values in the extended
formats, much less how NaNs are to be encoded in these formats. In fact, the IEEE
Standard does not even specify how signaling and quiet NaNs are to be distinguished in
the basic formats, or what bit pattern is to be produced when, say, an invalid operation
is attempted with operands that are not NaNs, and all traps are disabled. Consequently,
a particular encoding may represent a signaling NaN in one implementation, and a quiet
NaN in another implementation, and different implementations can produce different bit
patterns when an invalid operation is attempted. While this does not ultimately change
the actual result of a computation, particularly when all traps are disabled, different
implementations can fail to produce bit-for-bit identical results when NaNs are involved.

3. Whether rounding precision modes are implemented. The IEEE Standard allows imple-
mentations to either deliver results to destinations of varying widths, depending on the
widths of the operands, or (except in the case of conversions) to always deliver results to
a fixed format, provided the width of this format is at least as wide as the double format.
In the latter case, it must be possible to cause results to be rounded to (supported) preci-
sion(s) shorter than that of the fixed format. The exponent range, on the other hand, is
not required to be narrower than that of the fixed format—see chapter 5. Obviously, this
can cause different implementations of the IEEE Standard to produce different results.

4. What operations are available. The IEEE Standard requires implementations to provide
certain operations involving floating-point operands or results. However, except for con-
version to supported floating-point formats, the IEEE Standard does not go so far as to
specify in what format floating-point results are to be delivered. In other words, subject
to a few constraints, implementors can choose in what format operand(s) are required
to be for any particular operation, and in what format the result will be delivered. It is
therefore conceivable that one could come up with two fully-conforming implementations
of the IEEE Standard such that none of the operations provided by one of them is exactly
identical to the operations provided by the other implementation of the IEEE Standard.
(One example would be an implementation that supports only the single format, and
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another in which all floating-point results, except for conversion to the single format, are
delivered in the single extended format.)

5. How underflow is detected. If the underflow trap is disabled, the underflow exception
is signaled when both tininess and loss of precision is detected. An implementor can
choose between two different ways of detecting tininess and two different ways of detecting
loss of precision. While results will be the same regardless of how tininess and loss of
precision is detected, these different detection methods can cause underflow to be signaled
under slightly different circumstances, depending on the implementation. This can lead
to different results if they can change in some way depending on whether the underflow
exception has been signaled.

6. Whether it is possible to enable traps. Implementations are not required to allow traps
to be enabled, but if traps can be enabled, then results can change if a trap handler is
invoked.

7. What information is made available to trap handlers, should they be enabled. If it is
possible to enable traps, certain information must be made available to trap handlers,
depending on what kind of exceptional situation arises, but implementations of the IEEE
Standard are encouraged to provide information beyond that required.

Some implementations of the IEEE Standard provide additional features not covered by
the IEEE Standard. An example of such a feature would be the fused multiply-add operation,
which takes the product of two operands and adds it to a third, with rounding occurring just
once (see chapter 7). Obviously, if features such as these are used, bit-for-bit identical results
might not be achieved.

9.3.2 Are bit-for-bit identical results achievable in Java?

Now that all the potential reasons why different implementations of the IEEE Standard can
produce different results have been identified, one can consider whether Java’s claim that bit-
for-bit identical results are achievable is credible:

1. Data formats. Java requires implementations to support two floating-point formats: the
single and double formats. Implementations are not allowed to support any other prede-
fined floating-point formats.

2. NaNs. Java does not distinguish between signaling and quiet NaNs, as the IEEE Standard
requires, nor does the definition of the Java language specify what bit pattern is produced
in situations in which the result of an operation is a NaN3. Consequently, it is conceivable
that if results involve NaNs, or if results depend on the particular bit pattern of a NaN
that emerges as an intermediate result, they might not be bit-for-bit identical across

3However, Java does specify what bit pattern is returned when the floatToIntBits or doubleToLongBits method
in java.lang.Float or java.lang.Double, respectively, is called with a NaN argument.
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different implementations of Java. (However, it is admittedly not obvious how one could
go about determining what bit pattern is being used for a particular NaN.)

3. Whether (rounding) precision modes are implemented. Java does not make provision for
precision modes, nor is there a need for such a provision, since implementations can deliver
floating-point results to destinations in either of the two supported formats. (Note that
rounding modes are not supported in Java—the results of all floating-point operations
must be rounded to the nearest representable value.)

4. What operations are available. All implementations must provide the operations the Java
Virtual Machine (JVM) [61] is capable of executing; all floating-point arithmetic in Java
programs must be mapped to the operations the JVM provides.

5. How underflow is detected. Java does not provide access to the (sticky) status flags that
the IEEE Standard requires implementations to make available. Therefore, how tininess
and loss of precision is detected is irrelevant.

6. Whether it is possible to enable traps. Java does not provide a means for floating-point
traps to be enabled.

7. What information is available to trap handlers. As far as Java is concerned, it does not
matter what information is available to trap handlers, since traps cannot be enabled, and,
consequently, trap handlers cannot be invoked.

It would thus appear that insofar as floating-point arithmetic is concerned, Java’s claim that
bit-for-bit identical results are achievable is credible, provided all NaNs are treated identically
regardless of what their bit patterns are, and that different language processors do not map
floating-point arithmetic in source programs to operations provided by the JVM in a way that
alters the results obtained (which indeed the Java language specification does not allow).

However, one must also consider the practicality of the constraints the Java language imposes
upon its implementations. For example, some of the operations provided by the JVM do not
map efficiently to operations provided by the processor on which the JVM is actually running. In
particular, on processors conforming to the Intel x86 processor, basic floating-point arithmetic
in Java can be about an order of magnitude slower than the most straightforward way of
performing floating-point arithmetic on these processors. This is because on these processors,
in order to faithfully simulate an arithmetic engine that fully supports the double format as the
widest supported floating-point format, a time consuming check is required in most cases after
each individual floating-point operation if one is to avert the possibility of double rounding
(see chapter 6). In fact, Sun extended the Java language in order to allow implementations to
optionally provide better performance for floating-point arithmetic [4]. Of course, this could
cause implementations to no longer produce bit-for-bit identical results, unless the new keyword
strictfp were used at appropriate places.

In summary, while it is possible for Java programs to produce bit-for-bit identical results
across a variety of processors, this has been achieved only by designing a particular virtual
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machine, and then requiring all implementations of Java to faithfully simulate the operations
of which this virtual machine is capable. As expected, the price to be paid for this level of
portability is relatively poor performance in the case of the actual processor being used not
matching this virtual machine closely. So for most practical purposes, the development of
Java does not disprove the commonly-held belief that the IEEE Standard does not allow for
bit-for-bit identical results.



Chapter 10

Supporting the IEEE Standard in
Ada and Java

Figuring out how to support the IEEE Standard in a high-level language is not a trivial task.
This is due partly to the number and nature of the features specified in the IEEE Standard,
and partly to the fact that the floating-point aspects of most languages did not receive careful
consideration when they were designed, or, at best, were not designed with the IEEE Standard
in mind. As a result, a certain amount of creativity is required in order to shoehorn at least
the most important features of the IEEE Standard into a given language.

This chapter sketches how the IEEE Standard could be supported in two significantly differ-
ent high-level languages: Ada and Java. Although many ideas on how to achieve this support is
similar, this case study illustrates how, as in the case of adding an extra bathroom to a house,
one design definitely does not fit all. Instead, careful consideration is needed to find the best
way to support each feature in a given language.

The main considerations in deciding how to support these features were:

1. how each feature of the IEEE Standard is likely to be used—it ought to be possible to
make use of each feature in the way programmers are likely to want to use them;

2. completeness—as many features of the IEEE Standard as possible should be accessible;

3. flexibility and generalness—these features should not be accessible under only very limited
circumstances;

4. level of control—facilities for accessing these features should satisfy the needs of both
naive and expert numerical programmers;

5. simplicity—the rules governing the behavior of a system in which these features are ac-
cessible should not be overly complex or difficult to remember; and

6. performance should not be unduly impacted simply because these features are used or
even available.

113



114 CHAPTER 10. SUPPORTING THE IEEE STANDARD IN ADA AND JAVA

Note that this chapter assumes material discussed in previous chapters is familiar to the
reader.

10.1 Ada

Unlike some other languages, the definition of the Ada language [11] does not preclude satis-
factory support for the IEEE Standard. Because of Ada’s richer set of facilities, such support
can be more convenient than in other languages—one does not need to resort to changing the
definition of the language in order to avoid making use of the features of the IEEE Standard
excessively cumbersome.

This section sketches how the IEEE Standard could be supported in the Ada language. The
appendix fills in some of the details not presented here. The phrase “this specification” refers
to the specification in the appendix.

10.1.1 Data formats

The package Standard FP Arithmetic, whose declaration is implementation defined, names the
data formats that the implementation supports. The IEEE Standard requires support for the
single format, and this specification additionally requires support for the single extended format,
which, in practice, can be equivalent to the double, or even double extended, format.

In addition to providing names for the formats described in the IEEE Standard, this spec-
ification provides aliases for the format whose use tends to result in improved floating-point
performance, for the widest format supported, and for the widest format supported in hardware
(in case a wider format is supported in software).

10.1.2 Rounding and rounding precision modes

Subprograms are provided to get and set the rounding mode. In addition, declaring objects of
a certain limited controlled type declared in Standard FP Arithmetic allows one to specify the
rounding mode that should be in effect in a given block of code. Once control reaches outside
this block, the rounding mode in effect automatically reverts back to how it was set before
entering this block.

A pragma allows the programmer to identify subprograms that modify the rounding mode.
The language processor may assume that subprograms not so identified do not modify the
rounding mode.

There is no need to provide facilities that explicitly control the rounding precision mode,
due to the facilities for expression evaluation, and the availability of subprograms that perform
arithmetic operations in any supported precision.

10.1.3 Operations

In addition to requiring all the language’s operators to conform to the IEEE Standard where
appropriate, this specification provides a package called Generic FP Operations, which declares
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functions that are guaranteed to conform to the IEEE Standard. These can be used, for
example, to ensure that double rounding does not occur, or to control the precision with which
a particular operation is carried out. In addition, this allows the rounding mode to be specified
on an operation-by-operation basis, as well as to determine whether an exceptional situation
arose while performing a particular operation.

A nested generic package that can be instantiated using any integer subtype as its parameter
provides operations that convert between floating-point and integer values.

The functions that convert between binary and decimal representations of a value behave
similarly to the attributes image, wide image, value, and wide value, except that the functions
fully conform to the IEEE Standard.

Comparison is supported by the predefined operators as well as predicates, some of which
do not correspond to any predefined operators. Although only 8 predicates are provided, the
remaining 18 that the IEEE Standard describes can be generated using logical negation, or
by enabling (or disabling) signaling of the invalid operation exception if one or more of the
operands is a NaN. The alternative of having functions that return a bit string indicating
which relationship holds between two values was not chosen because not all processors are
capable of generating such bit strings quickly.

Besides the required and optional operations described in the IEEE Standard, this specifi-
cation makes available the fused multiply-add instruction that some processors provide. (This
instruction multiplies an operand with the sum of two other operands, and rounds only once
after the product has been computed.) A Boolean constant indicates whether the target sup-
ports this operation directly in hardware, so an alternative algorithm can be used instead if
such support is not available.

Another additional function is provided to determine what the sign bit of a value is, regard-
less of what that value represents.

10.1.4 Exceptional situations

Special values

Special values, such as infinities and NaNs, are available as attributes. For example, writing
S’Infinity, where S is a floating-point type, yields an infinite value of type S. This allows these
values to be used as compile time constants; no arithmetic with its attendant side effects is
required in order to generate these values1, nor do functions need to be called. For convenience,
the package Generic FP Operations also declares these values.

Negative zero, that is, zero with a negative sign bit, is specified by using the unary minus
operator in front of a floating-point zero (as in “-0.0”). This works because in implementations
of Ada that are compatible with the IEEE Standard, the attribute Signed Zeros is true, that
is, the implementation follows the rules specified in the IEEE Standard regarding the sign of
zeros.

1Note that Constraint Error would be raised if one were to write 0.0/0.0, so this is not a suitable synonym
for NaN. For the same reason, 1.0/0.0 is not a suitable synonym for infinity.



116 CHAPTER 10. SUPPORTING THE IEEE STANDARD IN ADA AND JAVA

Status flags

Besides subprograms that return or modify the state of the status flags, a limited controlled
type is provided so that modification of the status flags can be limited to a desired lexical
scope. This feature can be used, for example, to determine what floating-point exceptions were
signaled in a given block of code: the status flags can be cleared at the beginning of the block
and checked at the end of the block, at which time the status flags revert back to how they
were set before entering the block of code.

Alternatively, it is possible to ensure that a specific status flag remains set, even after leaving
a block of code. This allows one to make subprograms behave like atomic operations from the
standpoint of how the status flags are set: the state of the status flags before a computation
began can be restored at the end, and in addition, one can specify that some other flag or flags
also remain set, but not the ones corresponding to any spurious exceptions that may have been
signaled during the course of the computation. For example, one could envision implementing
the function exp(x) where x < 0 as exp(x) = 1/(e−x). If the magnitude of x were large, overflow
could be signaled while computing e|x|. In such a case, one would ideally want exp(x) to return
zero2, while signaling the underflow and inexact exceptions. It would not be correct to also
signal the overflow exception.

Retrospective diagnostics (that is, a summary of what exceptions were signaled during the
course of a computation, reported after the computation has finished) is also provided via a
limited controlled type.

Floating-point trap handling

Normally, predefined operators are not allowed to raise arbitrary exceptions, except for the
specific cases mentioned in the language definition. This specification offers three alternatives
specifically for getting around this restriction:

1. As mentioned above, functions declared in Generic FP Operations can be called to per-
form basic arithmetic, comparison, or conversion operations in order to determine whether
any exceptional situations of interest arises while performing these operations. If so, an
exception can be raised explicitly.

2. An arbitrary exception can be raised as part of finalization of a controlled object that
triggers retrospective diagnostics if any status flag among those specified would remain
set after finalization of that object is complete.

3. The notion of trap handlers is introduced as an extension to the language. Unlike interrupt
handlers, which are invoked asynchronously typically in response to some external event,
trap handlers are invoked as a result of executing user-written code, and they behave very
much like implicit subprogram calls—after the trap handler finishes execution, control
normally returns to the point in the program that caused the trap handler to be invoked.

2If the magnitude of x were within a certain range, the exp(x) should return a denormalized number instead
of zero, but in order to do this, a different algorithm from that outlined here would have to be used.
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In addition, trap handlers are allowed to raise arbitrary exceptions in the context of the
point in the program in which they are invoked. (An example of a situation in which being
able to write a trap handler could be useful is managing page faults in a nonstandard
way.)

The last of these alternatives merits further discussion.
Since the ability to enable trap handling is an optional feature of the IEEE Standard, this

specification does not require trap handlers to actually be available, though it must be possible
to compile programs that make use of trap handlers. A Boolean constant may be tested at run
time to determine if trap handlers are actually available.

Although this specification provides subprograms that can prove useful when writing trap
handlers, several prewritten trap handlers Kahan advocates in [54] are also provided to reduce
the need to write one’s own trap handlers. (This is an important feature because trap handlers
are likely to be processor and platform specific.) These prewritten trap handlers allow one to
count how many times a given type of exceptional situation arose, to specify that a certain
value be substituted for the result of operations in which a given type of exceptional situation
arises, to raise an arbitrary exception, or to stop execution of the program.

A certain subprogram can be called to associate a trap handler with or disable trap handling
for a given type of exceptional situation.

This specification provides a controlled type that allows one to limit the scope over which
a trap handler is in effect to a given block of code.

10.1.5 Expression evaluation

All floating-point expressions are evaluated to at least a certain minimum precision that is
implementation dependent. However, if the precision of any operand is wider than this, the
corresponding operation is carried out in this wider precision. This accommodates floating-point
arithmetic engines that perform better when operations are carried out at less than maximum
precision (for example, when lower precisions are supported in hardware), and avoids requiring
a single, specific scheme for expression evaluation that might penalize performance on certain
types of processors.

Although this specification does not guarantee bit-for-bit identical results regardless of the
processor used, this can be nearly achieved by using a pragma to require the minimum precision
used for expression evaluation to be that corresponding to the single format. (This same
pragma allows one to alternatively require the minimum precision to be any other precision
the implementation supports.) Of course, specifying a minimum precision different from the
default minimum precision could adversely impact performance.

10.1.6 Pragmas related to floating-point arithmetic

Other pragmas, besides the one mentioned above, can be used to control how floating-point
arithmetic is performed. Using these pragmas allow one, for example, to require that no results
be rounded more than once, or to discard precision beyond what is normally available, given
the format associated with the floating-point data types used.
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Still other pragmas that are available may increase performance possibly at the expense of
producing dubious results given the right conditions. For example, one can specify whether the
fused mulitiply-add instruction that some processors provide can be used, or whether floating-
point side effects (such as whether floating-point exceptions might be signaled) can be disre-
garded when making decisions as to specific code improvements or optimizations. It is even
possible to allow arithmetic to be performed in a way that might not always conform to the
IEEE Standard, or to provide hints to the language processor as to what rounding mode is in
effect.

10.2 Java

Unfortunately, it is not possible to fully support the IEEE Standard in Java [38] in a way that
is convenient to use without changing the definition of the language, since support for some
of the IEEE Standard’s features, such as dynamic rounding modes, is specifically forbidden.
However, this has not stopped people from proposing how to improve the language’s facilities
for numerical computing.

The three major “dialects” of Java that are specifically intended to improve Java’s suitabil-
ity for numerical computing are, in order of the magnitude of their changes to Java’s language
definition, Ivory [37], RealJava [21], and Borneo [22]. Ivory’s main goal is to allow Java pro-
grams to run faster on implementations for processors conforming to the Intel x86 architecture;
RealJava is an adaptation of C9X’s ideas on how to support the IEEE Standard [75], but in the
context of Java; and the author of Borneo overcomes the fear of changing the Java language
too drastically in his journey beyond simply making the IEEE Standard’s features available in
Java. These three “dialects” will be mentioned from time to time in the remainder of this sec-
tion, which briefly sketches how Java could be changed to better support the IEEE Standard,
without making too many intrusive changes to the language.

10.2.1 Data formats

Java supports the single and double formats. While this certainly fulfills the IEEE Standard’s
requirements, some processors support other formats, such as the double extended format.
On such processors, it is important to be able to access the additional format(s); otherwise,
any additional accuracy the processor is capable of providing would be difficult to obtain and
control, and performance could be negatively impacted, due to, for example, the need to use
algorithms that are less than optimal.

On the other hand, adding an additional floating-point data type to the language triggers
cascading modifications to other parts of the language, as Darcy points out [22]. These include
adding a new class to the java.lang hierarchy analogous to java.lang.Float and java.lang.Double,
adding new syntax for numeric literals of that type, changing the rules for type promotion and
expression evaluation, and adding support for this type in other classes, such as java.lang.Math,
which contains methods representing the trigonometric functions, among other things. Changes
to the language would also need to be reflected in the specification for the Java virtual machine:
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at least one, and more likely more than one, opcode would need to be added for each new
floating-point data type.

Another reason for hesitation is Java’s insistence on the motto “write once, run anywhere”—
all Java language processors and virtual machines would need to support any floating-point data
types added to the language. It is not an option to allow some language processors or virtual
machines to reject or refuse to run a Java program simply because a primitive data type is not
supported, especially if some other implementation were to support the data type in question.
So if the underlying hardware were not to have support for a given additional floating-point
type or types, support would have to be provided in software, and performance could suffer
so drastically, depending on the rules for expression evaluation, as to make the language of no
more than theoretical interest for those interested in numerical computing.

One potential way that several have proposed to reduce the potential performance impact
of adding a new floating-point data type is to make its corresponding format implementation
dependent [21, 22, 29], in much the same manner as is done with the C language’s long double
type [16]. Of course, if such a type were added to Java, programs making use of such a type
would not qualify for the label “write once, run anywhere.” However, given the drawbacks of
other potential ways of providing support for additional IEEE-Standard-compliant data types,
this is possibly the best solution in the context of the Java language. Providing additional data
types beyond this, as RealJava and Borneo do [21, 22], is more difficult to justify.

10.2.2 Rounding and (rounding) precision modes

The Java language does not make any provision for using different rounding modes. In fact,
arithmetic operators, when applied to floating-point operands, are explicitly required to round
to nearest. Such restrictions should be relaxed—given the current definition of the language,
calling a function or procedure to change the rounding mode should theoretically have no effect,
since the behavior of arithmetic operators does not depend on what functions or procedures
have been called.

It is not obvious what more can be done to make control over rounding modes more con-
venient other than to provide methods to retrieve or change the rounding mode. For example,
using the facilities the language provides, the rounding mode cannot be saved and restored
automatically by simply declaring something, or calling some function or procedure. Although
classes can be initialized and finalized, the exact point in which an instance of a class is fi-
nalized is not definite—this depends on when the garbage collector reclaims the storage of the
object (and thus is an area where the objective of obtaining bit-for-bit identical results was
compromised). A somewhat inconvenient programming technique that can be used, however,
is to save the rounding mode in a try block, and restore the saved mode in the corresponding
finally block. The alternative is to extend the language with a special declaration that causes
the language processor to save the rounding mode at the beginning of a block, and restore the
saved mode at the end of the block, as is done in Borneo [22]. The problem with this approach
is that it is too reminiscent of the notion of “programming by pragmas”—such declarations by
themselves directly cause significant amounts of code to be executed.

Not all implementations of the IEEE Standard need to implement (rounding) precision
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modes. Therefore, it is not as appropriate to provide explicit support for this feature, especially
since it is possible to offer control over this feature through other means, such as providing
functions that perform basic arithmetic with well-defined semantics—see below. Also note that
even Java 2’s relaxed floating-point semantics [4] offer very few opportunities to change the
rounding precision mode in a floating-point arithmetic engine that has this feature.

10.2.3 Operations

Java 2’s relaxed floating-point semantics [4] and implementation of the expression evaluation
schemes suggested below make it important to provide subprograms that perform basic arith-
metic with well-defined semantics, similar to what would be obtained in strictfp mode, with
rounding guaranteed to occur just once. An additional parameter could be provided to allow
the programmer to specify the rounding mode for individual operations. These subprograms
could appear, for example, as methods in java.lang.Float and java.lang.Double.

Support for the operations the IEEE Standard requires or recommends, but missing from
the language definition, could be provided in the same way. These operations include converting
floating-point values to integers (rounding according to the rounding mode in effect, or at least
to nearest), determining if a value is finite, scaling a number by an integral power of two, and
all 26 predicates related to comparison of two values, among others.

Although the IEEE Standard does not require or recommend this, support should be pro-
vided in the same manner for the fused multiply-add instruction that some processors have.
(This instruction adds an operand to the product of two other operands, and rounds only once
after the sum has been computed.) A Boolean constant should also be provided to indicate
whether a given implementation supports this operation directly in hardware.

An alternative to providing additional methods in the java.lang hierarchy would be to pro-
vide these methods in some other class. This approach would have the advantage of not needing
to change the language definition in order to make these operations available.

10.2.4 Exceptional situations

Special values

Though perhaps not so critical in practice, support should be provided for signaling NaNs.
This would, for example, entail adding an additional constant in the classes java.lang.Float
and java.lang.Double, establishing a string to be produced by methods such as toString, and
establishing a bit pattern to represent signaling NaNs for use in the methods floatToIntBits,
intBitsToFloat, doubleToLongBits, and longBitsToLong.

Special syntax also needs to be established so that strings representing (signaling or quiet)
NaNs can be passed to methods such as Float, Double, and valueOf.

Of course, it would be even better if the syntax for numeric literals were extended so that
values such as infinities and NaNs could be written explicitly as numeric literals, rather than
needing to call special methods, or writing a numeric literal representing a number so large, that
it would overflow the double format, as is currently required to represent infinities in methods
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such as valueOf. Another advantage of extending the syntax of numeric literals is that the
output of methods such as toString could then be directly used as input to methods such as
valueOf.

Status flags

Access to status flags could be provided in a way analogous to that of rounding modes, with
methods to get, set, or clear the status flags. Methods could also be provided to save and
restore the status flags, but again, this could not be done automatically at the beginning and
end of a block of code without extending the language. The technique of saving the status flags
in a try block, and restoring (or updating) them in the corresponding finally block could be
used instead; this would allow one to crudely simulate the basic arithmetic operations as far as
returning a value and simultaneously signaling one or more floating-point exceptions.

It might be appropriate to provide retrospective diagnostics by instanstiating a class that
reports the diagnostics as part of its finalization, assuming retrospective diagnostics is only
desired at the end of programs.

As Darcy mentions in his thesis [22], if access to the status flags were allowed, certain
code improvements that are currently allowed would need to be forbidden. This includes, for
example, constant folding and code hoisting, since these optimizations can change which status
flags are set.

Floating-point trap handling

Java does not allow exceptions to be thrown or floating-point trap handlers to be invoked as a
byproduct of performing basic arithmetic operations. Since the IEEE Standard does not require
implementations to make it possible to enable floating-point traps, one could be tempted to
simply not provide support for this feature. Certainly, it would be easier to accept the excuse
that support for this feature does not fit well with the rest of the language. But if this excuse
were to not prove sufficient, one might let the programmer choose between a few different
well-defined trap handlers, such as the ones Kahan suggests [54]. A full-blown trap handling
mechanism is probably overkill in the context of the Java language.

Expression evaluation

As others have remarked [56], Java’s rules for floating-point expression evaluation are unfortu-
nately too closely tied to the rules for determining the semantic type of floating-point expres-
sions. These rules do not sufficiently protect naive users who may be unaware of their need to
use greater precision in their computations (particularly for intermediate expressions), and does
not allow one to exploit the extra accuracy that some floating-point arithmetic engines provide.
Though still not optimal, rules for floating-point expression evaluation similar to those of the
C language [16] would have been better [56]. Some had hoped Java 2’s relaxed floating-point
semantics would bring an improvement in this area, but alas, this did not happen—the only
issue the new rules addressed was poor performance on processors conforming to Intel’s x86
architecture [76].
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In any case, at this point it would be difficult to significantly change Java’s default rules
for floating-point expression evaluation. What might make sense is to add an alternative set
of rules requiring intermediate expressions to be evaluated using the full precision the under-
lying arithmetic engine is capable of providing without significantly reducing performance. In
practice, it might be necessary to limit the precision used to that of the widest floating-point
data type available, as this would make translating Java source code to Java byte codes more
straightforward. So if a data type were added to correspond with the double extended format,
as previously suggested, these alternative rules would require intermediate expressions to be
evaluated using the precision corresponding to this new data type; otherwise, intermediate ex-
pressions would be evaluated using double precision. Some syntax would need to be invented
to enable these alternative rules.

This same new syntax could also be used to enable the use of the fused multiply-add
instruction that some processors provide. If one wants to ensure this instruction is used in
a particular place, one could call a method made available for this purpose, as previously
suggested. Conversely, if one does not wish this instruction to be used in a particular situation,
one could similarly call a different method to perform the desired operation.
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Conclusion

As can be seen, contrary to what some language designers seem to believe (at least judging from
the languages they design) fully supporting the IEEE Standard in a high-level language is much
more than simply making available one or two floating-point data formats, and providing a set
of operations on data stored in these formats. Fully supporting the IEEE Standard involves
making available a number of features described in the IEEE Standard, and satisfying several
specific, concrete criteria, as summarized in chapter 2.

The foregoing chapters show that, although very few languages, if any, fully support the
IEEE Standard, not only is it possible with an appropriate amount of ingenuity and dedication
to supplement a language in such a way that it fully supports the IEEE Standard (as is the case
with Ada [11]), but it is also possible to satisfy the aforementioned criteria in the process—see
chapter 10 and the appendix. This work also shows that in some cases, certain fundamental
changes need to be made to language definitions (such as Java’s [38]) in order for them to fully
support the IEEE Standard, even if superficially they appear to be IEEE-Standard friendly.
(Again, see chapter 10.)

11.1 How well current languages support the IEEE Standard

At this point, it would be instructive to compare how well different languages, such as C,
Fortran, Ada, and Java, support the IEEE Standard. For each of these languages, Tables 11.1
and 11.2 summarize the following information:

A. which of the data formats described by the IEEE Standard can be supported in the same
way as primitive data types;

B. how access to rounding and precision modes can be (or is) provided at run time;

C. whether all the operations and recommended functions are supported;

D. how special values, such as NaNs, infinities, and signed zeros are or can be supported;

E. how access to status flags can be provided;
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Language
Feature

C Fortran Java Ada Proposed
IEEE binding
for Ada

A any 3 implementa-
tion
dependent

single and
double

implementa-
tion
dependent

all

B implementa-
tion
dependent
function calls
or pragmas

implementa-
tion
dependent
function calls

not available implementa-
tion
dependent
function calls,
pragmas, or
controlled
types

function calls,
pragmas, and
controlled
types

C implementa-
tion
dependent

implementa-
tion
dependent

implementa-
tion
dependent

implementa-
tion
dependent

yes

D implementa-
tion
dependent
literal strings
or function
calls

implementa-
tion
dependent
literal strings
or function
calls

method calls
(signaling
NaNs not
available)

implementa-
tion
dependent
literal strings
(for signed
zeros),
function calls,
or attributes

literal strings
(for signed ze-
ros), at-
tributes, and
named
constants

E function calls function calls function calls function calls function calls

Table 11.1: How well current languages support the IEEE Standard

F. whether support for enabling and disabling traps can be provided;

G. whether values of floating-point expressions can be deterministic;

H. whether additional (or different) facilities to those provided by the language definition are
required in order to fully support the IEEE Standard; and

I. whether there is an inherent performance penalty in the manner in which the IEEE
Standard is (or could be) supported.

As a point of comparison, Tables 11.1 and 11.2 also provide information on the IEEE-
Standard binding for Ada described in the appendix.
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Language
Feature

C Fortran Java Ada Proposed
IEEE binding
for Ada

F requires
writing
processor-
dependent
functions

requires
writing
processor-
dependent
functions

not allowed requires
writing
processor-
dependent
functions

yes if notion
of “trap han-
dlers” imple-
mented

G implementa-
tion
dependent

implementa-
tion
dependent

only in strict
mode

implementa-
tion
dependent

by de-
fault; may be
disabled with
a pragma

H yes, to
support
special values

yes, to
support
special values

yes, to
support
signaling
NaNs,
rounding
modes, and
status flags

no no

I implementa-
tion
dependent

implementa-
tion
dependent

significant
performance
penalty for
processors
such as those
conforming to
Intel’s x86
architecture

implementa-
tion
dependent

no

Table 11.2: How well current languages support the IEEE Standard, continued
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11.2 Related unfinished work and open issues

The recommendations contained herein have yet to be implemented in a language translator.
Obviously, this is an opportunity for further work, and would serve to validate the ideas espoused
here, particularly as it regards to the Ada language.

In addition, writing significant bodies of code would further validate the soundness of these
ideas, and potentially expose weaknesses and opportunities for improvement. It would be
especially valuable to try exploiting nontraditional facilities, such as multiple floating-point
data formats, various rounding modes, and handling special computational situations, including
trap handlers, the latter being an area in which more experience is sorely needed. (A unique
feature that the IEEE binding for Ada in the appendix provides, and that would be interesting
to try exploiting, is that of being able to write functions that simultaneously return results and
signal one or more exceptions.)

Hopefully the specification for Ada given in the appendix can be incorporated in some form
into the next Ada standard. Although this author’s recommendations for changes to the Java
language [29] in the end were not incorporated into the Java 2 platform [4], perhaps they did
and will serve to influence changes to the Java language definition for the better—there should
be opportunities in the future for making even more improvements to the Java language to
support numerical programming better [60].

In the end, one of the most important reasons for a work such as this one is to increase
language designers’ and other interested parties’ generally incomplete understanding of what it
takes to fully support the IEEE Standard in a high-level programming language. (The fact that
languages, such as Java and Haskell 98 [13], among others, continue to be designed without full
support for the IEEE Standard is evidence that works such as this one are badly needed.) This
increased understanding should foster more discussion on how current languages might better
support the IEEE Standard, and as more and more languages support the IEEE Standard
better, experience in taking greater advantage of the features the IEEE Standard has to offer
will increase. This, in turn, should lead to higher quality, and even faster, software libraries
and bodies of code, even when written by inexperienced numerical programmers. Now that
processors’ floating-point units ubiquitously support the IEEE Standard, the “holy grail,” as
it were, is to make the features of the IEEE Standard ubiquitously accessible to high-level
language programmers. This work is a step toward achieving this important goal.
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Supporting the IEEE Standard in
Ada

The goal of this specification is to provide full support in the Ada language [11] for the IEEE
Standard [47] in as natural a way as possible, and with as few extensions to the Ada language
as possible. Indeed, existing language processors need not change very much in order to make
it possible to implement this specification: support for a few new pragmas and attributes would
need to be added, and, in general, arithmetic would need to be performed in a manner consistent
with the IEEE Standard. A full implementation of this specification does require extending
the Ada language with the notion of trap handlers (see section A.3.2), but given that this is an
optional feature of this specification, very little is actually required beyond defining a couple
types in a package called Ada.Traps.

Paragraphs that appear entirely in italics are explanatory in nature, and are not actually
part of this specification.

A.1 The Package Standard FP Arithmetic

The package Standard FP Arithmetic has the following declaration:

with Ada.Finalization;
with Ada.Exceptions; use Ada.Exceptions;
with Ada.Traps; use Ada.Traps;
-- Ada.Traps defines the types Trap_Handler and Trap_Occurrence
package Standard_FP_Arithmetic is

type single_float is
implementation-defined-floating-point-type;

type single_extended_float is
implementation-defined-floating-point-type;

-- the types double_float and double_extended_float,
-- if supported, would be declared here
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type fast_float is new
implementation-defined-floating-point-type;

type widest_float is new
implementation-defined-floating-point-type;

type widest_fast_float is new
implementation-defined-floating-point-type;

type default_float is new
implementation-defined-floating-point-type;

type Rounding_Mode is (To_Nearest, To_Zero, Up, Down,
Current_Rounding_Mode);

procedure Rounding (Round : Rounding_Mode);
function Rounding (Round : Rounding_Mode :=

Current_Rounding_Mode) return Rounding_Mode;
pragma Modifies_Rounding_Mode (Rounding);
type FP_Rounding_Mode_Management is new

Ada.Finalization.Limited_Controlled with private;
type FP_Value_Types is (Negative_Infinity,

Negative_Normal, Negative_Denormal, Negative_Zero,
Positive_Zero, Positive_Denormal, Positive_Normal,
Positive_Infinity, Quiet_NaN, Signaling_NaN);

type FP_Exception is (Invalid_Operation,
Division_By_Zero, Overflow, Underflow, Inexact);

-- FP_Exception may include additional implementation-defined
-- floating-point-related exceptions
type FP_Exception_Array is array(FP_Exception) of Boolean;
pragma Pack (FP_Exception_Array);
procedure FP_Status_Flags
(Mask : FP_Exception_Array := (others => True);
Status_Flags : FP_Exception_Array := (others => False));

function FP_Status_Flags
(Mask : FP_Exception_Array := (others => False);
Status_Flags : FP_Exception_Array := (others => False))

return FP_Exception_Array;
type FP_Status_Flags_Management is new

Ada.Finalization.Limited_Controlled with private;
procedure Update_FP_Status_Flags
(Saved_Status_Flags : FP_Status_Flags_Management;
New_Status_Flags : FP_Exception_Array);

type FP_Retrospective_Diagnostics is new
FP_Status_Flags_Management with private;

procedure Raise_Exception
(Status_Flags : FP_Retrospective_Diagnostics;
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FP_Exceptions : FP_Exception_Array :=
(Invalid_Operation => True, Division_By_Zero => True,
Overflow => True, others => False);

Exception_To_Raise : Exception_Id :=
Constraint_Error’Identity);

FP_Trap_Handling_Supported : constant Boolean := true_or_false;
type FP_Trap_Management is new

FP_Status_Flags_Management with private;
procedure Install_FP_Trap_Handler
(FP_Exceptions : FP_Exception;
Handler : access Trap_Handler := null;
Counter : access Integer := null;
Substitute_Value : access widest_float := null;
Copy_Sign_Of_Result : Boolean := False;
Exception_To_Raise : Exception_Id :=
Constraint_Error’Identity);

procedure Install_FP_Trap_Handler
(FP_Exceptions : FP_Exception_Array;
Handler : access Trap_Handler := null;
Counter : access Integer := null;
Substitute_Value : access widest_float := null;
Copy_Sign_Of_Result : Boolean := False;
Exception_To_Raise : Exception_Id :=
Constraint_Error’Identity);

function Install_FP_Trap_Handler
(FP_Exceptions : FP_Exception_Array := (others => False);
Handler : access Trap_Handler := null;
Counter : access Integer := null;
Substitute_Value : access widest_float := null;
Copy_Sign_Of_Result : Boolean := False;
Exception_To_Raise : Exception_Id :=
Constraint_Error’Identity)

return FP_Exception_Array;
procedure Tally_Exception (Trap : Trap_Occurrence);
pragma Trap_Handler(Tally_Exception);
procedure Presubstitute (Trap : Trap_Occurrence);
pragma Trap_Handler(Presubstitute);
procedure Raise_Exception (Trap : Trap_Occurrence);
pragma Trap_Handler(Raise_Exception);
procedure Abort_Task (Trap : Trap_Occurrence);
pragma Trap_Handler(Abort_Task);
type FP_Operations is (Unknown, Addition,
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Name of IEEE Name of Corresponding
Data Format Floating-Point Data Type
Single single float
Single extended single extended float
Double double float
Double extended double extended float

Table A.1: Floating-point data formats and their corresponding data types

Subtraction, Multiplication, Division, Remainder,
Square_Root, FP_Conversion, Integer_Conversion,
Decimal_Conversion, Comparison, Multiply_Add);

-- FP_Operations may include additional implementation-defined
-- operations
function Get_Operation (Trap : Trap_Occurrence)

return FP_Operations;
procedure Get_Operands
(Trap : Trap_Occurrence;
Left, Middle, Right : out widest_float;
Left_Valid, Middle_Valid, Right_Valid : out Boolean);

procedure Get_Result
(Trap : Trap_Occurrence; Result : out widest_float;
Result_Valid : out Boolean);

procedure Set_Result
(Trap : Trap_Occurrence;
Result : widest_float;
Result_Set : out Boolean);

private
... -- not specified by this specification

end Standard_FP_Arithmetic;

The meaning of these types and functions are explained in the following subsections.

A.1.1 Data Formats

Table A.1 contains the names of the formats described in the IEEE Standard, along with the
names of corresponding floating-point data types, some of which may be declared in the package
Standard FP Arithmetic.

Although the IEEE Standard only requires support for the single format, this specification
requires all conforming implementations to support the single extended format as well. (That
is, the data types single float and single extended float must both be declared in Standard FP
Arithmetic.) The latter format does not need to be distinct from either the double or double
extended format, if supported. However, values which are representable in the single extended
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format must also be (exactly) representable in the double format, if supported. In addition,
such values must be (exactly) representable in the double extended format, if supported. Note
that the single extended format is not required to be supported by the underlying hardware.

If the double or double extended format is supported, the data type double float or dou-
ble extended float, respectively, is declared; if the data type double float or double extended
float is declared, it denotes the double or double extended format, respectively.

In addition to the data types above, the package Standard FP Arithmetic declares the data
types fast float, widest float, widest fast float, and default float. The first of these corresponds
to the widest IEEE-Standard-conforming floating-point data format among those whose use
generally leads to the fastest performing programs. The widest float data type corresponds to
the widest supported IEEE-Standard-conforming floating-point data type. If any of the floating-
point data formats described in the IEEE Standard is supported by the underlying hardware,
the widest fast float data type corresponds to the widest such data format. Otherwise, the
widest fast float data type is identical to the widest float data type. The default float data
type corresponds to the default precision mode (see section A.3.1); this data type should not
correspond to a format narrower than the single extended format.

If one or more of the floating-point data types declared in the package Standard have the
same characteristics as data types in Standard FP Arithmetic, the latter should be subtypes
of the corresponding ones in Standard.

A.1.2 Operations of Floating-Point Types

The following attributes are defined for every floating-point type S declared in Standard FP
Arithmetic, or derived from a floating-point type declared therein:

S’Infinity yields an infinite value of type S.

S’Quiet NaN yields a value of type S that does not represent any number, or cause any excep-
tions to be signaled if used as an operand of a basic arithmetic operation.

S’Signaling NaN yields a value of type S that does not represent any number, and causes the
invalid operation exception to be signaled if used as an operand of a basic arithmetic
operation.

S’Fast Multiply Add yields the value True if the fused multiply-add operation can be per-
formed with operands of type S in about the same amount of time as a multiplication or
an addition, and False otherwise.

Note that Constraint Error is raised when evaluating a constant initialization expression
such as 0.0/0.0. This makes it difficult to devise some way of declaring constants such as
infinity or NaN. An alternative to using attributes would have been to use functions to generate
these constants, but then these constants would not be usable in static expressions.
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A.1.3 Rounding Modes

The first four of the enumeration literals in the declaration of the enumeration type Round-
ing Mode correspond to the rounding modes defined in the IEEE Standard. The enumeration
literal Current Rounding Mode represents the rounding mode currently in effect. The actual
order in which these enumeration literals appear is implementation dependent.

The procedure Rounding sets the rounding mode to that specified by its parameter. (Note
that if the specified rounding mode is Current Rounding Mode, the rounding mode is not
actually set.) The function Rounding behaves similarly, except it additionally returns the
rounding mode in effect at the time it was invoked.

Whenever an object of type FP Rounding Mode Management is initialized (via the prim-
itive procedure Initialize), the rounding mode in effect at the time of initialization is saved,
and this saved rounding mode is restored at the time of finalization when the object’s Finalize
procedure is called.

A.1.4 Status Flags

The first five of the enumeration literals in the declaration of the enumeration type FP Excep-
tion correspond to the exception types defined in the IEEE Standard. FP Exception may
include additional implementation-defined enumeration literals representing floating-point ex-
ceptions outside the scope of the IEEE Standard. For example, in some implementations, an
additional enumeration literal might represent integer overflow in conversions of floating-point
values to integer formats. The actual order in which these enumeration literals appear is im-
plementation dependent.

The procedure FP Status Flags sets or clears the status flags corresponding to the entries
in the argument Mask whose values are true, depending on whether the corresponding entries
in the argument Status Flags are true or false, respectively. The function FP Status Flags
behaves similarly, except it additionally returns an array in which each entry indicates whether
the corresponding status flag was set or not at the time the function was invoked.

The declarations related to the management of status flags are discussed in section A.3.2.

A.1.5 Trap Handlers

The declarations related to trap handling are discussed in section A.3.2.

A.2 Floating-Point Operations

The functions declared in the generic package Generic FP Operations mostly represent the
operations described in the IEEE Standard.

A.2.1 The Package Generic FP Operations

with Standard_FP_Arithmetic; use Standard_FP_Arithmetic;
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generic type Real is digits <>;
package Generic_FP_Operations is

Infinity : constant Real := Real’Infinity;
Quiet_NaN, QNaN, NaN : constant Real := Real’Quiet_NaN;
Signaling_NaN, SNaN : constant Real := Real’Signaling_NaN;
function Add
(Left, Right : Real’Base;
Round : Rounding_Mode := Current_Rounding_Mode;
Produce_Model_Number, Round_Once : Boolean := False;
Exceptions_Signaled : access FP_Exception_Array := null)

return Real’Base;
function Subtract
(Left, Right : Real’Base;
Round : Rounding_Mode := Current_Rounding_Mode;
Produce_Model_Number, Round_Once : Boolean := False;
Exceptions_Signaled : access FP_Exception_Array := null)

return Real’Base;
function Multiply
(Left, Right : Real’Base;
Round : Rounding_Mode := Current_Rounding_Mode;
Produce_Model_Number, Round_Once : Boolean := False;
Exceptions_Signaled : access FP_Exception_Array := null)

return Real’Base;
function Multiply_Add
(Left, Middle, Right :
Real’Base; Round : Rounding_Mode :=
Current_Rounding_Mode; Produce_Model_Number :
Boolean := True; Round_Once : Boolean := False;
Exceptions_Signaled : access FP_Exception_Array := null)
return Real’Base;

function Divide (Left, Right : Real’Base; Round :
Rounding_Mode := Current_Rounding_Mode;
Produce_Model_Number, Round_Once : Boolean :=
False; Exceptions_Signaled : access
FP_Exception_Array := null) return Real’Base;

function Remainder (Left, Right : Real’Base;
Exceptions_Signaled : access FP_Exception_Array := null)
return Real’Base;

function Sqrt (Right : Real’Base; Round :
Rounding_Mode := Current_Rounding_Mode;
Produce_Model_Number, Round_Once : Boolean :=
False; Exceptions_Signaled : access
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FP_Exception_Array := null) return Real’Base;
generic type Another_Real is digits <>;
package Generic_Float_To_Float_Conversion is

function Convert_To_Float (Right :
Another_Real’Base; Round : Rounding_Mode :=
Current_Rounding_Mode; Exceptions_Signaled :
access FP_Exception_Array := null) return Real’Base;

function Convert_To_Float (Right : Integer; Round :
Rounding_Mode := Current_Rounding_Mode;
Produce_Model_Number, Round_Once : Boolean :=
False; Exceptions_Signaled : access
FP_Exception_Array := null) return Real’Base;

function Round_To_Integer (Right : Real’Base; Round :
Rounding_Mode := Current_Rounding_Mode;
Produce_Model_Number : Boolean := False;
Exceptions_Signaled : access FP_Exception_Array := null)
return Real’Base;

function Round_To_Integer (Right : Real’Base; Round :
Rounding_Mode := Current_Rounding_Mode;
Exceptions_Signaled : access FP_Exception_Array := null)
return Integer;

generic type Int is range <>;
package Generic_Float_Integer_Conversion is
function Convert_To_Float

(Right : Int;
Round : Rounding_Mode := Current_Rounding_Mode;
Produce_Model_Number, Round_Once : Boolean := False;
Exceptions_Signaled : access FP_Exception_Array := null)
return Real’Base;

function Round_To_Integer
(Right : Real’Base;
Round : Rounding_Mode := Current_Rounding_Mode;
Exceptions_Signaled : access FP_Exception_Array := null)
return Int;

end Generic_Float_Integer_Conversion;
function Wide_Image (Right : Real’Base; Round :

Rounding_Mode := Current_Rounding_Mode;
Exceptions_Signaled : access FP_Exception_Array := null)
return Wide_String;

function Image (Right : Real’Base; Round :
Rounding_Mode := Current_Rounding_Mode;
Exceptions_Signaled : access FP_Exception_Array := null)
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return String;
function Wide_Value (Right : Wide_String; Round :

Rounding_Mode := Current_Rounding_Mode;
Produce_Model_Number, Round_Once : Boolean :=
False; Exceptions_Signaled : access
FP_Exception_Array := null) return Real’Base;

function Value (Right : String; Round : Rounding_Mode
:= Current_Rounding_Mode; Produce_Model_Number,
Round_Once : Boolean := False; Exceptions_Signaled
: access FP_Exception_Array := null) return Real’Base;

function Equal (Left, Right : Real’Base;
Signal_Invalid_If_Unordered : Boolean := False;
Exceptions_Signaled : access FP_Exception_Array := null)
return Boolean;

function Not_Equal (Left, Right : Real’Base;
Signal_Invalid_If_Unordered : Boolean := False;
Exceptions_Signaled : access FP_Exception_Array := null)
return Boolean;

function Greater_Than (Left, Right : Real’Base;
Signal_Invalid_If_Unordered : Boolean := True;
Exceptions_Signaled : access FP_Exception_Array := null)
return Boolean;

function Greater_Than_Or_Equal (Left, Right :
Real’Base; Signal_Invalid_If_Unordered : Boolean
:= True; Exceptions_Signaled : access
FP_Exception_Array := null) return Boolean;

function Less_Than (Left, Right : Real’Base;
Signal_Invalid_If_Unordered : Boolean := True;
Exceptions_Signaled : access FP_Exception_Array := null)
return Boolean;

function Less_Than_Or_Equal (Left, Right : Real’Base;
Signal_Invalid_If_Unordered : Boolean := True;
Exceptions_Signaled : access FP_Exception_Array := null)
return Boolean;

function Less_Or_Greater_Than (Left, Right :
Real’Base; Signal_Invalid_If_Unordered : Boolean
:= True; Exceptions_Signaled : access
FP_Exception_Array := null) return Boolean;

function Unordered
(Left, Right : Real’Base;
Signal_Invalid_If_Unordered : Boolean := False;
Exceptions_Signaled : access FP_Exception_Array := null)
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return Boolean;
function Is_Finite (Right : Real’Base) return Boolean;
function Is_NaN (Right : Real’Base) return Boolean;
function Classify (Right : Real’Base) return FP_Value_Types;
function Positive (Right : Real’Base) return Boolean;

end Generic_FP_Operations;

The package FP Operations defines the same subprograms as Generic FP Operations, ex-
cept that the type fast float (which is declared in Standard FP Arithmetic) is systematically
substituted for Real’Base throughout. In addition, for every distinct floating-point data type
declared in Standard FP Arithmetic and wider than fast float, the package FP Operations
defines a version of each function declared in Generic FP Operations that returns a floating-
point value and has at least one floating-point argument, with the return type being this wider
type, and with the type fast float being otherwise systematically substituted for Real’Base
throughout.

Nongeneric equivalents of Generic FP Operations for each of the floating-point types de-
clared in Standard FP Arithmetic other than fast float are defined similarly to FP Operations,
with the names Single FP Operations, Double FP Operations, etc.

Some of the functions in instantiations of Generic FP Operations, as well as some of the
functions in nongeneric equivalents of Generic FP Operations, have a corresponding predefined
operator. An expression of the form X op Y, where the base type of X and Y is a floating-
point type declared in Standard FP Arithmetic and op is a binary operator, is equivalent
to a function call of the form operator(X, Y), where operator is the name of the function
corresponding to op. Similarly, an expression of the form op Y, where the base type of Y
is a floating-point type declared in Standard FP Arithmetic and op is a unary operator, is
equivalent to a function call of the form operator(Y), where operator is the name of the function
corresponding to op.

If functional notation is used, the actual accuracy of the result of an operation depends on
the precision of the result type, and may (but is not required to) also depend on the precision
mode in effect (as indicated by the use or absence of the pragma Minimum FP Precision),
provided the pragma Produce Model Number is not enabled, and the value of the parameter
Produce Model Number is false.

A.2.2 Required Functions and Predicates

Generic FP Operations declares functions similar to the following one:

function Some_Operation
(Left, Right : Real’Base;
Round : Rounding_Mode;
Produce_Model_Number, Round_Once : Boolean;
Exceptions_Signaled : access FP_Exception_Array)

return Real’Base;
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In declarations similar to this one, Left and Right are the “operands” of the function (some
functions may have just one “operand”); Round indicates the desired rounding mode for the
operation; Produce Model Number indicates whether the result of the function must be re-
stricted to a model number of the (base) type, that is, whether extra precision and range in
the result is undesirable; Round Once indicates whether the value returned by the function
must not differ from that which would be obtained if rounding were performed only once in
the process of arriving at the result; Exceptions Signaled, if nonnull, indicates, on input, which
exceptions are of interest, and, on output, among those of interest, which exceptions, if any,
were signaled as the operation was performed.

For many operations, there is a version with the parameter Exceptions Signaled and a
version without this parameter.

If a trap is enabled for any of the exceptions of interest (as indicated on input by the
parameter Exceptions Signaled) at the point in which such a function is called, that trap is
not invoked as a byproduct of the indicated operation having been performed. The status flag
corresponding to any exception that is not of interest is updated normally, as specified in the
IEEE Standard.

The function Multiply Add, which does not correspond to any function described in the
IEEE Standard, returns the sum of Right and the product of Left and Middle. If Round Once
is True, then Multiply Add adds the exact product of Left and Middle to Right, and does not
perform any rounding until the sum has been computed. Otherwise, the result returned may
be any value that could be returned by Add if one were to first call Multiply identically to
Multiply Add (except for the omission of Right), and then call Add with the value returned by
Multiply as the parameter Left, and with the values of all the other parameters the same as
the corresponding ones to Multiply Add. Whether one or more exceptions can be signaled due
solely to the computation of the product of Left and Middle when the mathematical value of
this product is finite is implementation dependent.

The functions Image, Wide Image, Value, and Wide Value behave similarly to the cor-
responding identically named attributes, except that rounding is performed according to the
specified rounding mode, regardless of the magnitude of the value being represented. (Note
that in some cases, this implies greater accuracy than that required by the IEEE Standard.)
These functions must otherwise conform to the specifications in the IEEE Standard related to
conversions between decimal and floating-point formats, regardless of what kind of floating-
point format is involved (that is, basic or extended). In addition, the number of digits before
the uppercase E in the string returned by Image or Wide Image is

dReal’Base’Model Mantissa log10 Real’Base’Machine Radixe
+ sign(Real’Base’Machine Radix mod 10),

where sign(. . .) is either 0 or 1, depending on whether Real’Base’Machine Radix is 10 or not. If
the value of Right is infinite, then Image and Wide Image produce the sequence of characters
INFINITY with a single leading character that is either a minus sign or a space, as appropriate;
if the value of Right is a quiet or signaling NaN, then Image and Wide Image produce the
sequence of characters QNAN or SNAN, respectively, with a single leading character that is
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either a minus sign or a space, as appropriate. Similarly, if the sequence of characters of
Right (ignoring leading or trailing spaces) is INFINITY, NAN, QNAN, or SNAN (ignoring
upper/lower case distinctions), optionally preceded by a minus sign, then Value and Wide Value
return an appropriately signed value that is infinite, a quiet NaN, a quiet NaN, or a signaling
NaN, respectively.

In functions that compare two values, such as Equal and Greater Than, the parameter
Signal Invalid If Unordered indicates whether the invalid operation exception should be signaled
if the value of at least one of the parameters Left or Right is a NaN. Note that the function
Not Equal actually stands for “less than, greater than, or unordered,” and is thus not equivalent
to the function Less Or Greater Than.

A.2.3 Recommended Functions and Predicate

Access to most of the recommended functions and predicates in the appendix of the IEEE
Standard are already provided by either the package Generic FP Operations and its nongeneric
equivalents, or by other features of the language. In particular, the attributes Copy Sign, Scal-
ing, Exponent, and Adjacent have similar functionality to that of the functions copysign, scalb,
logb, and nextafter, respectively, which are described in the appendix of the IEEE Standard.
The functions Is Finite, Is NaN, Unordered, and Classify conform to the specifications in the
appendix of the IEEE Standard for the functions finite, isnan, unordered, and class. In imple-
mentations of this specification, the unary adding operator - conforms to the specification for
negation in the appendix of the IEEE Standard.

Note that if one wants behavior identical to that of Is NaN or Is Finite, except that one
wants a guarantee that the invalid operation exception will be signaled whenever the argument
is a signaling NaN, one can use the function Unordered, or the operator abs in combination
with the function Less Than, respectively.

The function Positive returns the value True or False, depending on whether the sign of
its argument is positive or negative, even if its argument is a NaN or zero. Whether the
invalid operation exception is signaled when the argument is a signaling NaN is implementation
dependent.

A.3 Model of Floating-Point Arithmetic

This specification extends the model of floating-point arithmetic described in section 2.1 of
Annex G of the Ada 95 Reference Manual [11], especially in regards to exceptional situations
and operations involving exceptional values. In other situations, that is, unexceptional situa-
tions and those that do not involve exceptional values, the model of floating-point arithmetic
described in the Ada 95 Reference Manual still applies. However, even in these kinds of situa-
tions, implementations of this specification must conform to a stricter model, as detailed in the
following sections, whenever the “strict mode” is in effect.
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A.3.1 Floating-Point Evaluation Format

The accuracy of the result of an operation depends on what evaluation format is used. This, in
turn, depends on the precision mode in effect at the point in which the operation appears, as
well as the data type(s) associated with the operand(s). In any given implementation, there are
as many precision modes as there are distinct IEEE-Standard-conforming floating-point data
types. In any given region of code, unless the programmer specifies otherwise, the default preci-
sion mode, corresponding to the default float data type declared in Standard FP Arithmetic,
is in effect.

The precision mode that is in effect in a given region of code determines the minimum
accuracy with which floating-point arithmetic operations in that region will be computed. If
the precision(s) of the operand(s) of a given arithmetic operation in that region is (are) not
wider than that corresponding to the precision mode in effect, then the operation is performed
as if the operand(s) were first converted to the format corresponding to the precision mode
in effect, and according to the specifications of the IEEE Standard given a destination whose
precision is that corresponding to the precision mode in effect. (The allowable range of the
result, however, may be wider than that of the format corresponding to the precision mode in
effect.) For example, if the precision mode in effect corresponds to the double format, then
any operands of a given arithmetic operation narrower than double are implicitly converted to
double, and the format of the result is a format not narrower than the double format. The
result is computed as specified by the IEEE Standard, with the precision being that of the
double format. In many implementations, the result will always be a value that is representable
in the double format, but in some implementations, the result, if finite, may be outside the
range of finite values that are representable in the double format.

If the precision of at least one operand of a given arithmetic operation is wider than that
corresponding to the precision mode in effect, then the operation is performed according to the
specifications of the IEEE Standard given a destination whose precision is that of the widest
operand of the given operation. (Again, the allowable range of the result may be wider than
that of the widest operand of the given operation.)

A.3.2 Exception Handling

The goals of this specification as far as exception handling is concerned are as follows:

1. Provide full access to the required status flags in such a way that one or more of them can
be simultaneously set, sensed, cleared, copied, updated, and restored to a previous value.

2. Make it convenient to determine what exception(s) were signaled, if any, during the course
of a computation. (If the previous goal is achieved, then this goal is likely to be achieved
as well.)

3. Allow for (that is, not necessarily require but at least encourage) retrospective diagnostics
upon completing execution of programs, along with the means to disable this.
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4. Provide a way for functions to return a specified value and simultaneously signal that one
or more exceptional situations have occurred. This would allow a function to behave as if
it were a single arithmetic operation like those described in the IEEE Standard.

5. Make it particularly easy to get the default behavior specified in the IEEE Standard (all
traps disabled), as well as a “debugging” mode in which occurrences of the invalid operation
exception, divide by zero, and overflow are not easy to ignore (for example by raising
some exception that is unlikely to be ignored by default). (The predefined operators are
not allowed to raise exceptions when the underflow or the inexact exception is signaled,
and in any case, both of these exceptional situations are less likely to be of interest when
debugging a program.) The latter mode must not be restricted to processors that have
the ability to trap precisely when exceptional situations occur—it must be possible to fully
implement this mode in software by checking the status flags at appropriate points in a
program. (It should ideally be possible to conveniently specify that either of these modes
is to be in effect when executing any code in a given program unit, without needing to
specify this individually for every subprogram in the given unit, but this specification does
not address this.) Provision should be made for optionally making the “debugging” mode
be in effect even in called subprograms (in which case an implementation realized purely
in software would be insufficient if precise trapping is required, since recompilation may
not be an option).

6. Provide an optional means to count how many times a given exception has been signaled,
an optional means to “presubstitute” the result of specified operations with a given value
when exceptional situations arise (see [54]), an optional means to raise an arbitrary excep-
tion when a given exception is signaled, as well as a way to detect whether these facilities
are available in a given implementation of this specification. (If achieving the following
goal is also important, providing these kinds of facilities is likely to be challenging when
targeting processors that lack precise traps.)

7. Avoid inherently requiring excessive overhead when making use of facilities related to
exception handling, since exceptions are likely to be signaled rarely in practice. Another
reason this goal is important is that making use of at least some of these facilities will either
require access to the processor’s status flags, or involve enabling and disabling traps, and
on many processors, accessing the register that contains the status flags or controls whether
traps are enabled takes several clock cycles and disrupts the floating-point pipeline. If this
goal is not met, features related to exception handling will often be avoided in practice,
even in cases in which it would have been desirable to use these features. As with rounding
modes, one technique that could be used to reduce this overhead is to keep a copy of which
traps are enabled in some thread-specific memory location. This copy could be checked, for
example, to determine if it is actually necessary to modify the register controlling which
traps are enabled. So a goal of this specification is to allow “caching” this information
in this manner (but not require this “caching”), and make it clear in what situations the
cached value can become stale. Another goal of this specification is to avoid forbidding
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all code improvements which may alter what exceptions are signaled, and when they are
signaled.

This is an impressive set of goals!
When a program begins execution, all user-visible floating-point traps are disabled, and all

floating-point status flags are cleared.

Trap Handlers

Facilities in this specification related to the handling of floating-point exceptions (as described
in the IEEE Standard) require the Ada language to be extended with a feature referred to as
trap handlers. For the purposes of this specification, a trap handler is a protected procedure
very similar to an (Ada) interrupt handler, except that it is invoked synchronously, that is, as
a consequence of attempting to execute certain machine instructions, and its profile has one
parameter of type Trap Occurrence. In addition, a trap handler has access to library level
subprograms and objects, and can raise arbitrary exceptions like any normal subprogram. This
specification assumes there is a package analogous to Ada.Interrupts called Ada.Traps, which
declares the same kinds of entities as the former. This specification also makes use of a pragma
called Trap Handler, which is assumed to be similar to the pragma Interrupt Handler.

If the value of FP Trap Handling Supported is False, then the behavior of subprograms and
pragmas related to floating-point trap handling, or when objects of type FP Trap Management
are declared, is implementation defined. However, even if this is the case, exceptions must not
be raised, and execution of the program must not terminate when floating-point trap handling
facilities are used, except possibly when a procedure associated with the pragma Trap Handler
is invoked directly (because then there would no trap occurrence that could be referred to).

If, on the other hand, the value of FP Trap Handling Supported is True, then the behavior
of subprograms and pragmas related to floating-point trap handling, or when objects of type
FP Trap Management are declared, is as specified here.

Note that the value of FP Trap Handling Supported does not affect a program’s behav-
ior when objects of type FP Status Flags Management or FP Retrospective Diagnostics are
declared, since these types are not considered to be among this specification’s trap handling
features.

Management of Status Flags and Traps

Whenever an object of type FP Status Flags Management is initialized (via the primitive pro-
cedure Initialize), the state of the floating-point status flags is saved in this object, and all
floating-point status flags are cleared. Whenever an object of this type is finalized (via the
primitive procedure Finalize), the state of the status flags is restored to that saved during ini-
tialization, with the following exceptions: If the primitive procedure Update FP Status Flags
is called before finalization, the flags corresponding to the array elements that are set in the
argument New Status Flags of the last call to Update FP Status Flags remain set after final-
ization ends. Otherwise, the status flags that are set at the time finalization begins remain set
after finalization ends.
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Note that declaring an object of this type allows one to write functions that (almost simul-
taneously) return a value and signal (floating-point) exceptions, in much the same way as the
basic arithmetic operations.

The same behavior occurs whenever an object of type FP Retrospective Diagnostics is ini-
tialized or finalized, except that in addition, if any status flags would remain set after finalization
ends, even in the case of all status flags being clear at the time Initialize is called, a message
is appended to the current default error file detailing which status flags would have remained
set in such a case. If the primitive procedure Raise Exception is called before finalization,
then the exception Exception To Raise indicates is raised if any of the status flags indicated by
FP Exceptions would remain set after finalization ends.

The same behavior as when objects of type FP Status Flags Management are declared
occurs whenever an object of type FP Trap Management is initialized or finalized, except that
in addition, when such objects are initialized, the set of which floating-point exception types
have trap handlers associated with them, and what those trap handlers are, are saved. Also,
whenever an object of this type is finalized, the set of which floating-point exception types have
trap handlers associated with them, and what those trap handlers are, are restored to that
saved during initialization.

Although the behavior when an object of type FP Trap Management is declared is imple-
mentation defined when the value of FP Trap Handling Supported is False, at least the behavior
when objects of type FP Status Flags Management are declared must occur.

Enabling and Disabling Trap Handlers

The subprogram Install FP Trap Handler can be used to associate a trap handler with one
or more floating-point exceptions. The parameter Exception indicates with which exception
or exceptions the trap handler Handler should be associated. If the value of Handler is null,
the default response for the specified exception or exceptions is restored, that is, traps for the
specified exception or exceptions are disabled. The remaining parameters are objects available
for the given trap handler to use if needed. Depending on which trap handler is being installed,
the parameters Counter and Substitute Value may be checked to insure they are not null.

In addition to this, the function Install FP Trap Handler returns a value that indicates
which floating-point exception types, if any, have trap handlers associated with them at the
time control returns to this function’s caller.

Whenever a (nonnull) trap handler installed with Install FP Trap Handler is invoked, the
status flag corresponding to the exception being handled is cleared.

Trap Handlers Provided by Standard FP Arithmetic

The package Standard FP Arithmetic provides several useful trap handlers: Tally Exception,
Presubstitute, Raise Exception, and Abort Task. (The latter is not the same as the procedure
with the same name in Ada.Task Identification. Similarly, Raise Exception is not the same as
the procedure with the same name in Ada.Exceptions.)
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Tally Exception is intended to be associated with the overflow or underflow exception. It
simply increments the counter specified at the time this trap handler is installed with In-
stall FP Trap Handler, and causes computation to continue with the wrapped value the IEEE
Standard requires floating-point arithmetic engines to make available to trap handlers in such
cases.

This trap handler is useful, for example, in computing the product of a series of numbers,
since intermediate products can overflow or underflow, even if the final result is perfectly within
the range of the data type used.

Presubstitute causes the Substitute Value specified at the time this trap handler is installed
with Install FP Trap Handler to be substituted (possibly with the sign reversed) in place of
the result that would have been produced had there been no trap handler associated with the
exception that caused this trap handler to be invoked. If the value of Copy Sign Of Result
is True when this trap handler is installed with Install FP Trap Handler, then the sign of the
substituted value is that of the result that would have been produced had all trap handlers
been disabled; otherwise, the sign of Substitute Value is not changed.

Raise Exception has the same effect as a raise statement naming the exception specified at
the time this trap handler is installed with Install FP Trap Handler.

Abort Task has the same effect as the abort statement for the current task.

User-Defined Trap Handlers

Although details as to how trap handlers should be written are implementation defined, Stan-
dard FP Arithmetic provides several subprograms that could be useful when writing trap
handlers:

The value Get Operation returns indicates what operation caused the current trap handler
to be invoked. The enumeration literal FP Conversion refers to a conversion operation whose
result is of some floating-point type; Integer Conversion refers to a conversion from a binary
floating-point format to an integer format; Decimal Conversion refers to conversion from a
binary floating-point format to a decimal format. The type FP Operations may have other
implementation-defined enumeration literals in addition to those listed in this specification.

Get Operands provides the operand or operands of the operation that caused the cur-
rent trap handler to be invoked. Upon return, the parameters Left Valid, Middle Valid, and
Right Valid indicate which operand or operands were actually available.

In cases in which the IEEE Standard requires floating-point arithmetic engines to make a
result available to trap handlers, Get Result provides that result. Upon return, the parameter
Result Valid indicates if the result was actually available.

Assuming normal computation is to be resumed upon return from the current trap handler,
Set Result specifies what value should be used in place of the result that would have been
produced had there been no trap handler associated with the exception that caused the current
trap handler to be invoked. Upon return, the parameter Result Set indicates if it was actually
possible to set the result to that specified.
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A.4 Pragmas Related to Floating-Point Arithmetic

A.4.1 Pragmas Related to the Accuracy of Results

The following pragmas are related to the precision of results of floating-point arithmetic oper-
ations: Minimum FP Precision, Produce Model Number, Round Once, and Allow Fused Mul-
tiply Add. These pragmas may appear in any declarative region or as configuration pragmas.
If any of these pragmas are used as configuration pragmas, the scope of their effect is all the
compilation units, if any, appearing in the compilation. Otherwise, the scope of their effect is
from the point in which they appear to the end of the innermost enclosing declarative region.
If the scopes of more than one instance of the same pragma overlap, the one that has effect
at a given point in a program is the one whose scope is the innermost one among the scopes
including the given point in the program.

The meaning of these pragmas are explained in the following subsections.

Pragma Minimum FP Precision

The following pragma is related to floating-point evaluation formats:

Minimum_FP_Precision
(floating_point_definition|floating_point_data_type)

The precision of the results of floating-point arithmetic operations that are performed at
run time in the regions in which this pragma is in effect is that corresponding to the specified
floating-point data type, provided the underlying arithmetic engine supports producing results
in this precision in a manner that fully conforms to the IEEE Standard. (However, results
may suffer rounding more than once, unless the pragma Round Once is in effect - see below.)
Otherwise, results are implementation dependent.

Using this pragma enables one to get bit-for-bit identical results on different computers more
often, at the expense of possibly adversely affecting performance. When targeting processors
such as those conforming to Intel’s x86 architecture, an implementation of this specification
could make use of that architecture’s precision control bits in order to reduce the precision of
floating-point arithmetic operations to that specified by an instance of this pragma, if necessary.
Results of these operations might subsequently be spilled to memory and reloaded into registers
at a later time. Alternatively, results of floating-point arithmetic operations could purposely be
stored to memory and subsequently reloaded into registers in order to reduce their precision. In
either case, results may suffer rounding more than once; this is because values stored in memory
could differ from the ones that were originally held in registers, particularly if the format used
to represent the value in memory is different from that of the original register.

Pragma Produce Model Number

The following pragma affects floating-point results produced by arithmetic operations:

Produce_Model_Number (true|false)
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In any region in which this pragma is enabled, the result of any arithmetic operation that
is performed at run time and whose result type is derived from a floating-point type declared
in Standard FP Arithmetic is a model number of the base type of the result type. (However,
results may suffer rounding more than once, unless the pragma Round Once is in effect—see
below.) In the absence of this pragma, arithmetic is performed as if this pragma were disabled.

Of course, even when this pragma is disabled, results of floating-point operations can still be
model numbers; that is, results are not forbidden to be model numbers. However, if results are
allowed to not be model numbers, performance can be improved in some implementations.

Pragma Round Once

The following pragma affects floating-point results produced by arithmetic operations:

Round_Once (true|false)

In any region in which this pragma is enabled, the result of any arithmetic operation that is
performed at run time and whose result type is derived from a floating-point type declared in
Standard FP Arithmetic must not differ from that which would be obtained if rounding were
performed only once in the process of arriving at the result. In the absence of this pragma,
arithmetic is performed as if this pragma were disabled.

Of course, even when this pragma is disabled, results of floating-point operations can still
be arrived at as if rounding had been performed just once; that is, results are not required to
suffer more than one rounding. However, if results are allowed to be rounded more than once,
performance can be improved significantly in some implementations.

Pragma Allow Fused Multiply Add

The following pragma affects floating-point results produced by arithmetic operations:

Allow_Fused_Multiply_Add (true|false)

If the underlying arithmetic engine is able to multiply two operands without fully rounding
the product, and add a third operand to (or subtract a third operand from) this not-fully-
rounded product, the language processor must not make use of this feature in any region in
which this pragma is disabled. In the absence of this pragma, arithmetic is performed as if this
pragma were enabled.

Some algorithms do not produce the intended results if fused multiply-add instructions are
used. On the other hand, other algorithms do not produce the intended results if fused multiply-
add instructions are not used. In the latter case, this pragma is not useful; the multiply add
function should be used instead.
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A.4.2 Pragmas Related to Rounding Modes

The goals of this specification as far as rounding modes are concerned are as follows:

1. Comply with the IEEE Standard’s requirements concerning rounding modes, including the
requirement that the user be able to “set, sense, save, and restore” modes such as the
rounding mode. This appears to imply that it must be possible to change the rounding
mode dynamically during the execution of a program. (Certainly the authors of the IEEE
Standard intended that this be a requirement - see [56], for example.) An important use
of this ability is to attempt disproving the stability of an algorithm by running it with a
different rounding mode.

2. Make it possible to indicate that a certain rounding mode is to be used for all arithmetic
operations (except comparison and remainder) within a given subprogram or entire pack-
age, provided they are to be performed as if at run time. (That is, this goal does not apply
to operations which must be performed as if at translation time.) This can simplify the
task of determining whether a code fragment will produce its intended result, regardless
of what the status of the processor is before execution of the code fragment in question.
Also, this can allow language translators to select opcodes that specify that a fixed rounding
mode be used on an instruction-by-instruction basis when targeting processors that allow
this, such as implementations of the DEC Alpha architecture.

3. Make it possible to specify what rounding mode to use on an operation-by-operation basis.
A facility that enables this would not be expected to receive widespread use, but could be
useful, for example, when doing interval arithmetic. Of course, language translators could
take advantage of a processor’s static rounding modes, if available.

4. Make it possible to specify what rounding mode to use in operations appearing within a
given block of code smaller than its enclosing subprogram. Note that if goal 1) above is
achieved, this goal is also achieved, though a side effect would likely be that the specified
rounding mode would also be in effect in any subprograms called within the given block of
code.

5. Make it possible to indicate whether the specified rounding mode is to be used in operations
that are to be performed as if at translation time, run time, or both.

6. Avoid inherently requiring excessive overhead when manipulating the rounding mode, since
on many processors, accessing the register that contains the rounding mode in effect takes
several clock cycles and disrupts the floating-point pipeline. Otherwise features having to
do with the rounding mode will often be avoided in practice, even in cases in which it would
have been desirable to use these features. In particular, one technique that could be used
to reduce this overhead on such processors is to keep a copy of the rounding mode in some
thread-specific memory location. This copy could be checked, for example, to determine if
it is actually necessary to modify the register containing the rounding mode. So a goal of
this specification is to allow “caching” the rounding mode in this manner (but not require
this “caching”), and make it clear in what situations the cached value can become stale.



A.4. PRAGMAS RELATED TO FLOATING-POINT ARITHMETIC 147

When execution of a program begins, the rounding mode in effect is To Nearest.
The following pragmas are related to rounding modes:

Use_Rounding_Mode (Rounding_Mode)
Modifies_Rounding_Mode (Subprogram_Name [, Rounding_Mode])

The meaning of these pragmas is explained in the following subsections.

Pragma Use Rounding Mode

The pragma Use Rounding Mode may appear in any declarative region or as a configuration
pragma. If used as a configuration pragma, the scope of its effect is all the compilation units,
if any, appearing in the compilation. Otherwise, if this pragma is not used as a configura-
tion pragma, the scope of its effect is from the point in which it appears to the end of the
innermost enclosing declarative region. If the scopes of more than one instance of the pragma
Use Rounding Mode overlap, the one that has effect at a given point in a program is the one
whose scope is the innermost one among the scopes including the given point in the program.

The specified rounding mode must be in effect in the regions in which this pragma is in
effect when any floating-point operation is performed at translation time, whether or not the
Ada 95 Reference Manual [11] requires the operation to be performed at translation time. In
addition, the language translator may assume that the specified rounding mode is in effect in
the regions in which this pragma is in effect, even if calls to the subprogram Rounding (or any
other subprogram) appear in these regions.

If the specified rounding mode is Current Rounding Mode, or if this pragma is not in effect
in a given region of code, then the rounding mode in effect for all floating-point operations in
the region of code in question that are required to be performed at translation time must be
To Nearest, and the language processor must assume that the rounding mode in effect at run
time in the region of code in question is unknown.

One way to make it possible to indicate that a certain rounding mode is to be used for all
arithmetic operations within a given subprogram could have been to name the subprogram of
interest in an instance of the pragma Use Rounding Mode. The language translator could then
arrange for the rounding mode in effect to be that specified whenever the named subprogram
began execution. Upon returning from such a subprogram, the rounding mode in effect at the
time just before the subprogram was called could be restored. However, the caller’s rounding
mode probably should not be restored if, before control is transferred to the subprogram’s caller,
the subprogram Rounding were called with an argument other than Current Rounding Mode, or
if any other subprogram associated with the pragma Modifies Rounding Mode were called.

If there were such a pragma, more efficient code might be generated if the instance of this
pragma associating a given subprogram with a rounding mode were to appear in the package
specification in which the given subprogram is declared, rather than in the corresponding package
body. The reason is that in the former case, the language processor might be able to determine
that the rounding mode in effect at the time the given subprogram is called is already that
specified in this pragma, and that there is therefore no need to modify the rounding mode.
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Note that associating a subprogram with the pragma Use Rounding Mode would seem to be at
odds with (directly or indirectly) making a call from that subprogram to another subprogram that
modifies the rounding mode. However, a programmer who codes such a call would most likely
expect that the newly established rounding mode will be in effect unless explicitly overridden.
Thus, some mechanism would be needed to determine if a subprogram associated with the pragma
Use Rounding Mode should restore its caller’s rounding mode.

One way to keep track of this would be to maintain a special thread-specific stack in which
every stack element contains a “dirty” bit. Whenever a subprogram sets the rounding mode
(even if the rounding mode is not actually changed), the “dirty” bit at the top of the stack
would be set. If the top of the stack is marked dirty, a new stack element (with the “dirty”
bit cleared) would be pushed onto this stack whenever a subprogram associated with the pragma
Use Rounding Mode is called. In addition, a pointer to the top of this stack could be stored
in the called subprogram’s stack frame. A stack element would be popped off this special stack
whenever a subprogram’s stack pointer does not point to the top of the stack. Whenever a
subprogram associated with the pragma Use Rounding Mode returns to its caller, its caller’s
rounding mode would be restored only if the “dirty” bit at the top of the stack is clear. Note
that there is no overhead with this scheme when calling a subprogram that is not associated with
the pragma Use Rounding Mode.

All this seems fairly complicated, which is why this approach was abandoned in favor of hav-
ing a limited controlled type capable of saving and restoring the rounding mode at the beginning
and end, respectively, of a given declarative region.

Pragma Modifies Rounding Mode

The pragma Modifies Rounding Mode may appear in any declarative region. Language proces-
sors may assume that unless a subprogram is associated with the pragma Modifies Rounding
Mode, the rounding mode will not be changed upon returning from a call to the subprogram. If
a rounding mode is present in an instance of this pragma, the language processor may assume
that upon returning from a call to the specified subprogram, the rounding mode will be set to
that specified in the pragma.

A.4.3 Other Pragmas

Pragmas Disregard FP Side Effects

The following pragma has to do with side effects produced by floating-point operations:

Disregard_FP_Side_Effects (true|false)

This pragma may appear in any declarative region or as a configuration pragma. If this
pragma is used as a configuration pragma, the scope of its effect is all the compilation units, if
any, appearing in the compilation. Otherwise, the scope of its effect is from the point in which
it appears to the end of the innermost enclosing declarative region. If the scopes of more than
one instance of this pragma overlaps, the one that has effect at a given point in a program is
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the one whose scope is the innermost one among the scopes including the given point in the
program.

In any region in which this pragma is enabled, operations with an operand or result type
derived from a floating-point type declared in Standard FP Arithmetic are allowed (but not
required) to be performed as if there were no side effects beyond delivering a result. In partic-
ular, status flags might not be set and floating-point traps (if supported and enabled) might
not be invoked at the time or as required by the IEEE Standard. However, such operations
must otherwise be performed as specified by the IEEE Standard and this specification, and in
a manner consistent with the definition of the Ada language. In the absence of this pragma,
arithmetic is performed as if this pragma were disabled.

Pragma Allow Nonstandard FP Arithmetic

The following pragma affects floating-point results produced by arithmetic operations:

Allow_Nonstandard_FP_Arithmetic (true|false)

This pragma may appear in any declarative region or as a configuration pragma. If this
pragma is used as a configuration pragma, the scope of its effect is all the compilation units, if
any, appearing in the compilation. Otherwise, the scope of its effect is from the point in which
it appears to the end of the innermost enclosing declarative region. If the scopes of more than
one instance of this pragma overlaps, the one that has effect at a given point in a program is
the one whose scope is the innermost one among the scopes including the given point in the
program.

In any region in which this pragma is enabled, any arithmetic operation with an operand or
result type derived from a floating-point type declared in Standard FP Arithmetic is allowed
(but not required) to be performed in a manner inconsistent with the IEEE Standard or this
specification. However, such operations must still be performed in a manner consistent with
the definition of the Ada language. In the absence of this pragma, arithmetic is performed as
if this pragma were disabled.
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