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Abstract

In this thesis, we study the question of achieving cryptographic security on
devices that leak information about their internal secret state to an external at-
tacker. This study is motivated by the prevalence of side-channel attacks, where
the physical characteristics of a computation (e.g. timing, power-consumption,
temperature, radiation, acoustics, etc.) can be measured, and may reveal use-
ful information about the internal state of a device. Since some such leakage is
inevitably present in almost any physical implementation, we believe that this
problem cannot just be addressed by physical countermeasures alone. Instead, it
should already be taken into account when designing the mathematical specifica-
tion of cryptographic primitives and included in the formal study of their security.

In this thesis, we propose a new formal framework for modeling the leakage
available to an attacker. This framework, called the continual leakage model, as-
sumes that an attacker can continually learn arbitrary information about the inter-
nal secret state of a cryptographic scheme at any point in time, subject only to the
constraint that the rate of leakage is bounded. More precisely, our model assumes
some abstract notion of time periods. In each such period, the attacker can choose
to learn arbitrary functions of the current secret state of the scheme, as long as
the number of output bits leaked is not too large. In our solutions, cryptographic
schemes will continually update their internal secret state at the end of each time
period. This will ensure that leakage observed in different time periods cannot be
meaningfully combined to break the security of the cryptosystem. Although these
updates modify the secret state of the cryptosystem, the desired functionality of
the scheme is preserved, and the users can remain oblivious to these updates. We
construct signatures, encryption, and secret sharing/storage schemes in this model.
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Chapter 1

Introduction

Information Leakage. One of the central tenets of computer science is that
computation can be analyzed abstractly and independently of the physical pro-
cesses that ultimately implement it. This is the paradigm usually followed in
cryptography, where we analyze cryptosystems as abstract algorithms that get in-
puts and generate outputs using some internal secret state.1 In particular, this
paradigm assumes that the secret state of the cryptosystem stays perfectly hidden
from the attacker, beyond what the algorithmic specification of the cryptosystem
is designed to reveal via its outputs. Unfortunately, this abstraction may fail to
properly model the real world, where various physical attributes of a computation
executing on a physical device (e.g. its timing, power-consumption, temperature,
radiation, acoustics, etc.) can be measured and may leak useful information about
the internal state of the computation. Attacks that use such information to break
security are called side-channel attacks, and they have been analyzed and exploited
in many recent works, breaking real-world implementations of “provably secure”
cryptosystems. For example, Kocher et al. [KJJ99] show how to retrieve the secret
key of a smart-card running the DES cryptosystem, just by observing its power
consumption. See e.g. [Koc96, KJJ99, QS01, AARR02, QK02, BE03, Rel, ECR]
and the references therein for many other examples.

Moreover, there are many other scenarios, beyond side-channel attacks, where
some information about the internal secret state of a device can leak to an attacker.
For example, the device could be infected by a virus sending information about its
internals to a remote adversary. Alternatively, some partial remnants of the secret
state may remain on a device even after an attempt has been made to erase them
or after the device is powered down and is made accessible to an attacker (e.g. see
the “cold-boot attack” of Halderman et al. [HSH+08]).

In all such scenarios, some unanticipated and unspecified information about

1Often, this is just a static secret key, but stateful cryptographic schemes (e.g. stream ciphers)
have also been considered. The idea of an evolving state will be crucial to this thesis.
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the secret state of a cryptosystem is leaked to an attacker and hence the standard
theoretical security guarantees and proofs of security, which do not take leakage
into account, become meaningless. Therefore, the prevalence of such attacks poses
a major challenge to the applicability of cryptographic theory to practice.

Physical vs. Algorithmic Defenses. The obvious defense against leakage
attacks is to design better physical implementations, which minimize the amount
of leakage available to an attacker. Indeed, we must always require some security
guarantees from the physical implementation, since it is clear that cryptographic
security cannot be achieved if the implementation readily reveals its entire secret
state to the outside world. Nevertheless, we believe that it is insufficient to rely on
this approach alone since it seems futile to expect that any physical implementation
of a computational task will be completely free of all information leakage. Moreover,
being overprotective on the physical level may be unnecessarily expensive and
cumbersome. An alternative and complementary approach is to design resilient
algorithmic specifications of cryptosystems, which maintain security despite the
availability of some leakage on the physical device on which they are ultimately
implemented. This thesis will focus on the latter approach.

Ad-Hoc Countermeasures. There has been much prior research from the cryp-
tographic hardware community, combining physical and algorithmic countermea-
sures against various specific attacks on various specific hardware architectures.
See [ECR] for an overview of this general line of research. Unfortunately, most
of the proposed countermeasures are ad-hoc and are only backed up by heuristic
and informal security arguments. In particular, such countermeasures might po-
tentially be broken by new side-channel attacks or even just small variants of the
attack that they were designed to protect against. This cyclic “attack-fix” phi-
losophy is fundamentally different from the provable security approach taken by
modern cryptography, where a schemes should be proven secure against general
adversaries and not only particular attacks.

Theory of Leakage Resilience. In this thesis, we take a methodical approach,
by studying resilience to leakage within the framework of modern cryptography,
with formal definitions and proofs of security. Our first contribution is to define
a (new) general model of leakage, which is independent of any particular hard-
ware architecture, and is likely to capture realistic examples of current and future
side-channel attacks. This model, called the continual leakage model, essentially
assumes that the attacker can continually leak arbitrary information about the in-
ternal secret state of a cryptosystem, subject only to the constraint that there is
a known upper bound on the rate of leakage, measured as the number of leaked
bits per unit time or per computation. We then present constructions of various

2



cryptographic primitives and formally prove that they remain secure in this model,
under well-studied computational hardness assumptions.

This thesis is based on our corresponding publications [DHLW10a, DLWW11].
Although the continual leakage model and the solutions that we propose are new,
the idea of modeling leakage formally and constructing provably secure counter-
measures has a rich history and has received much attention in recent years. We
first give a survey of prior work in Chapter 2. Then, in Chapter 3, we present our
continual leakage model in more detail and give an informal overview of our results
for this model. Finally, we will begin the technical exposition in Chapter 4.

3



Chapter 2

Prior Models and Results

In this section, we give a survey of the prior work on leakage resilience and
various prior models of leakage. Although this is useful for understanding the his-
tory and the choices that we made when defining the continual-leakage model, the
contents of this survey are not needed in order to understand the technical content
of future chapters. Therefore the impatient reader who immediately wants to see
our model and results can safely (but without encouragement) skip to Chapter 3.

2.1 Models of Full Leakage

Many prior works consider the setting where a device can become completely
compromised and its entire secret state is leaked to an attacker. This is an ex-
tremely pessimistic model of leakage, and it is clear that we cannot maintain
security if the secret state of the device provides the full functionality which we
are trying to protect (e.g. the ability to sign arbitrary messages or to decrypt
arbitrary ciphertexts). Therefore, these works consider interesting settings where
the compromised device may not need to be fully functional on its own.

2.1.1 Threshold Cryptography

One setting in which full leakage has been studied is the distributed setting,
where multiple parties/devices are needed to jointly accomplish a sensitive task.
For example, Shamir’s secret sharing [Sha79] shows how to securely store a se-
cret value across multiple devices so that it remains secret even if small subsets
of the devices are fully compromised (but larger subsets can recover the value).
Work on secure multiparty computation [Yao82, GMW87, BGW88] shows how to
securely perform arbitrary computations in such distributed fashion, while work
on threshold cryptosystems [DF89, SDFY94, Gem97] shows how to efficiently dis-
tribute specific cryptographic tasks like encryption or signatures. Some works also
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consider proactive security [HJKY95, FGMY97], where the “shares” of the devices
are periodically updated so as to protect against a mobile adversary who corrupts
different subsets of devices in different time periods.

2.1.2 Forward Security

Another setting in which the study of complete leakage is interesting is com-
monly referred to as forward security [DvOW92, And97, BM99, AR00, MMM02,
CHK03]. In this setting, a cryptographic scheme is implemented on a single de-
vice, but this device has an evolving state which provides evolving functionality in
different time periods. For example, in a forward-secure signature scheme, there
is a static verification key but the signing key of the device evolves in each time
period and the signatures that the device produces at some time T only verify
with respect to the given period T . Forward security requires that, if the secret
state of the scheme is fully leaked in some time period T , the functionality that
was available in the past stays protected (e.g. the attacker will be unable to forge
signatures for time-periods 1, . . . , T − 1). In addition to signatures, we know how
to do encryption, identification and key agreement in this setting.

2.1.3 Key-Insulated Cryptography

The work of Dodis et al. [DKXY02, DKXY03] on key-insulated cryptography
merges threshold cryptography and forward security, inheriting some of the benefits
and restrictions of each. In particular, this setting considers two distinct devices:
a secure “base” who never gets compromised and an insecure client who may get
compromised at different time periods. As in the setting of forward security, the
state of the client and the functionality of the cryptosystem evolves over time
(e.g. signatures are produced and verified with respect to some fixed time period
T ). Moreover, the client has the ability to perform the various cryptographic
operations (e.g. signing) on its own in each time period, without the help of the
base. However, unlike the setting of forward security, the client must now contact
the base to evolve its secret state into the next time period. The attacker can fully
compromises the client in some time periods, but security should be maintained
for all other time periods, past as well as future. For example, in a key insulated
signature scheme, the attacker should be unable to produce signatures that verify
with respect to any time period in which the client was not compromised. An
extended security notion called intrusion-resilient cryptography [IR02, DFK+03,
DFK+04] allows the base to get compromised in some time periods as well, and if
the base/client are ever compromised simultaneously then at least forward-security
is maintained and past time-periods remain secure.
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2.2 Models of Partial Leakage

If we want to consider leakage resilience for devices which already contain the
very functionality that we are trying to protect (e.g. devices storing a fully func-
tional secret key of an encryption or signature scheme), than we must consider
models where the leakage is incomplete. Many such models appeared in the liter-
ature, differing on which components of a device can leak, the type/complexity of
the allowed leakage, and the amount of allowed leakage.

2.2.1 Oblivious RAMs

Perhaps the first model to consider incomplete leakage is that of oblivious RAMs
[Gol87, GO96, Ajt10, DMN11]. This model assumes an architecture where a (large)
random-access memory is controlled by an adversary, and hence its contents and
the access pattern to it can leak completely. On the other hand, The proces-
sor along with some (small) cache is assumed to be perfectly secure and leakage
free. Assuming such hardware architecture, it is shown to implement any (pos-
sibly large) computation securely. Unfortunately, solutions in this model already
assume that the leak-free processor can store small secret keys and perform small
cryptographic computations securely, without any leakage. In particular, the RAM
is encrypted and the processor securely decrypts each block of memory when it
is accessed – the difficult aspect of the solutions is to ensure that the pattern of
“which memory blocks are accessed and when” does not reveal useful information.
The work of [Ajt11] shows how to construct oblivious RAMS that remain secure
even if the decrypted contents of some small fraction of accessed locations can
leak to the attacker. Still, all models of oblivious RAM assume fairly non-trivial
secure hardware, which can at minimum perform encryption/decryption without
producing any leakage on the secret key.

2.2.2 Exposure resilient cryptography

The study of exposure resilient cryptography [Dod00, CDH+00, DSS01] consid-
ers partial leakage, where an attacker can leak an arbitrary but sufficiently small
subset of the bits of the secret state of a device. These works propose a solution
where the secret state is encoded using a tool called an all or nothing transform
(AONT), initially studied by [Riv97, Boy99]. An AONT can efficiently encode
any secret value into a codeword so that leaking any (small enough) subset of the
bits of the codeword does not reveal any information about the secret, but, given
the entire codeword, the secret can be efficiently reconstructed. Alternatively, one
can think of an AONT as a (gap) secret-sharing scheme where the shares are bits.
Known constructions of statistically secure AONTs can maintain security even if
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a (1− ε) fraction of the bits of the encoding can leak, for any constant ε > 0.
There are three main criticisms of exposure resilient cryptography, which later

works attempt to address. Firstly, in using exposure-resilient cryptography to
protect a cryptographic scheme against leakage, we can encode the secret state
of the device to protect it – but what do we do if we want to perform some
computation using the encoded state? The natural solution is to first decode
the original state and then run the original computation on it. However, this is
completely insecure if the attacker can get even some simple leakage during the
computation, when the secret state is decoded and manipulated in the clear. In
other words, exposure-resilient cryptography allows us to protect storage, but not
computation. Secondly, if an attacker has prolonged access to a physical device
and the ability to make many side-channel observations, it is not clear how to
justify that the total number of bits leaked is bounded overall. This question is
partially addressed by [CDH+00], which considers a method for (deterministically)
updating the encoding so that a different subset of the bits can leak from each
updated version. However, the update is assumed to be leak free. Thirdly,
exposure-resilient cryptography may be overly restrictive in the type of leakage, by
only allowing an attacker to probe individual bits of the state, but not allowing
her to learn any global properties. For example, AONTs do not provide any
guarantees if the attacker can learn the hamming weight of the codeword or the
XOR of all the bits of the codeword, even though the amount of leakage in such
cases is small. Indeed, since the hamming weight of the state usually corresponds
to the amount of power flowing through the device, learning the hamming weight
is the basis of various practical differential power analysis (DPA) side-channel
attacks (e.g. [KJJ99]). The work of [DDV10] can be seen as addressing exactly
this criticism and extending AONTs to other (less) restricted types of leakage on
a codeword, such as assuming that two halves of the codeword leak arbitrarily but
independently and that the amount of leakage on each half is bounded.

2.2.3 Private circuits

The work of Ishai et al. on private circuits [ISW03] shows how to encode the
secret state of a device and perform arbitrary computations on it privately, even if
some sufficiently small subset of the wires of the circuit performing the computation
can leak to an attacker in each invocation. That is, there is a general compiler
which takes any computation and its secret state and outputs a compiled stateful
circuit that operates on an encoded state and achieves the same functionality. The
attacker can continually invoke the compiled circuit on arbitrary inputs, and learn
the values of some subset of the wires during the computation of the compiled
circuit, but will not learn anything useful beyond just the outputs of the original
computation (formalized via the simulation paradigm). Since the subset of the
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wires that can leak may correspond to the encoded secret state, the encoding
is also necessarily an AONT (albeit with sub-optimal parameters). Therefore, we
can view work on private circuits as addressing the first two criticisms of exposure-
resilient cryptography by: (1) showing how to securely run arbitrary computations
on an AONT-encoded state without decoding it and (2) only bounding the number
of wires that can leak per invocation (but not overall) by updating the encoded
secret state in each invocation. Constructions of private circuits can be instantiated
so as to meet any bound ` on the number of wires that can leak, by making the
compiled circuit sufficiently large depending on `. Unfortunately, the fraction of
wires that can leak tends to 0 in this solution. The work of [Ajt11] gives a solution
where the fraction of wires that leaks is a small constant, but the subset of wires
that leaks is random and not adverasrial.

Private circuits already provide a way to protect general computations against
a well-defined class of leakage attacks. The main criticism of private circuits is
inherited from exposure-resilient cryptography – by restricting the type/complexity
of allowed leakage to getting individual wire values, we may fail to capture many
real-world side-channel attacks, such as DPA attacks that may leak the hamming
weight of the wires. Another criticism is that, by focusing on leakage of wires
in a circuit, we get tied down to a specific hardware architecture, which may be
undesirable in practice.

2.2.4 Private Circuits for AC0 and Noisy Leakage

Faust et al. [FRR+10] extend the idea of private circuits to other restrictions
on the type of allowed leakage, beyond just leaking some subset of the wire values.
In particular, two possible distinct models are considered:

• In each invocation of the circuit, the attacker can leak an arbitrary AC0
function1 of all the wire values in the circuit, as long as the output length of
this leakage function is bounded by some known upper bound. The size of
the compiled circuit grows with the bound, but the fraction of information
that can leak in this solution approaches 0.

• In each invocation of the circuit, the attacker learns a noisy reading of every
wire in the computation. That is, for some fixed probability bound p ∈ (1, 1

2
],

the attacker independently gets the value of each wire with probability p and
a flipped value with probability (1 − p). The size of the compiled circuit
grows with (1− p)−1, but the fraction of the total information in the circuit
that leaks approaches 1 as p does.

1A function is in the class AC0 if it can be represented by a polynomial-size, constant depth
circuity composed only of NOT gates and unbounded fan-in AND and OR gates.
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These models are interesting and useful since (1) AC0 functions can reveal some
global properties of the circuit, such as the approximate hamming weight, which
may better capture realistic leakage, and (2) the amount of information that can
leak in the second solution corresponds to almost the entire state of the circuit.
Unfortunately, the solutions have a drawback as compared to [ISW03] in that they
require some simple leak-free gadgets, which can sample a random value from a
public distribution in a leak-free way. It is currently unknown how to get rid of
such secure gadgets in these solutions. Moreover, the type of allowed leakage in
these solutions is still significantly restricted.

2.2.5 Only Computation Leaks Information (OCLI)

Micali and Reyzin [MR04] introduce the axiom that “computation, and only
computation, leaks information” (OCLI). That is, computation is somehow divided
into steps and, during each computational step, only the portion of the secret state
that is accessed in this step can (partially) leak. Any other part of the state which
is not accessed will not leak during that step. The work of [MR04] does not
specify the type/amount of leakage available during each step, but instead shows
general reductions for building advanced leakage-resilient primitives from simpler
leakage-resilient ones, for abstract classes of such leakage.

The work of Dziembowski and Pietrzak [DP08] proposes a concrete model of
leakage under the OCLI axiom, where only the amount of information that leaks
during each computational step is bounded by some (small) leakage bound `. More
concretely, in each computational step i, the attacker can choose any (polynomial
time) function f with `-bit output, and learn the value f(statei) where statei is
the portion of the state that is accessed during step i. Under these conditions, the
works of [DP08, Pie09] construct leakage-resilient stream ciphers, which output a
random stream of bits. Even if an attacker can get leakage during various invo-
cations of the stream cipher, the randomness produced by any invocation during
which there isn’t any leakage will look uniformly random. The tolerated leakage
bound ` is logarithmic in the security parameter under standard assumptions, or
possibly even a large fraction of the size of the accessed state under sufficiently
strong exponential hardness assumptions. The work of [FKPR10] shows how to
build signature schemes in this model, and [KP10] proposes a construction of a
public-key encryption schemes (but only having heuristical security arguments).
Several works [PSP+08, SMY09, YSPY10] also consider different variants of the
OCLI model, focusing on more practical approaches to modeling the limited side-
channel attacks that are often used in real life (at the expense of theoretical gen-
erality) and on the symmetric-key primitives which are most commonly attacked.

The work of Goldwasser et al. [GKR08] on one-time programs can be seen as
showing how to securely compile any computational task so that it can later be
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securely evaluated on a single arbitrary input (or some a-priori bounded number
of inputs) under the OCLI axiom, even if the entire portion of the state that is
accessed by the computation is leaked to the attacker. The works of Juma and
Vahlis [JV10] and Goldwasser and Rothblum [GR10] show how to compile any
computation into one which can be securely executed on an arbitrary number of
inputs under the OCLI axiom, as long as the amount of information leaked during
each computational step is bounded (and this is also shown to be necessary).2

Unfortunately, both of these latter works also require some additional leak-free
gadgets, with the ability to sample from a publicly known random distribution in
a leak-free way. It remains an open problem whether it is possible to get rid of all
leak-free gadgets in such constructions.

Limitations. Constructions of leakage-resilient primitives under the OCLI ax-
iom already provide protection against a large and meaningful class of side-channel
attacks. Still, it is debatable whether all natural leakage satisfies the OCLI ax-
iom. For example, the cold-boot attack of Halderman et al. [HSH+08] shows an
example of a leakage attack where some remnants of the secret keys can remains
in memory even after a device is powered down and the memory can be retrieved
by an attacker. This occurs even if these areas of memory are not being accessed
by any computation. Another disadvantage of relying on the OCLI axiom is that
the definition of which portion of a state is “accessed by a computation” depends
on the model of computation and on the specific hardware architecture. It may be
hard to analyze this property on real systems where e.g. an entire page of memory
is accessed even if a computation only needs to read a single bit on the page.

We note that the main technique for constructing schemes under the OCLI
axiom, introduced by [DP08], is to split the secret state into a small number of
components (often just 2), and have each computational step operate on only a
single component at a time. The OCLI axiom is only used to argue that each
component leaks individually, and the attacker cannot leak global functions of all
components. As noted in e.g. [DP08, JV10], this can also be considered its own
meaningful axiom, which may be reasonable even if the OCLI axiom does not hold.
We will return to this idea when we discuss our results on secret-sharing in the
continual-leakage model.

2.2.6 The Bounded-Leakage Model

The bounded-leakage model (also called the memory-attack model in some prior
works) was introduced by Akavia et al. [AGV09] with the goal of removing the

2In all three works, security is defined via the simulation paradigm where leakage on the
internals of the compiled computation can be simulated given only the “ideal” inputs and outputs
of the original computation.
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OCLI axiom. This model places absolutely no restrictions on which components
leak or the type/complexity of the leakage, but only bounds the overall amount
of observable leakage. That is, the attacker can learn arbitrary information about
the entire internal secret state of a device, as long as the total amount of leaked
information (measured in bits) is bounded by some leakage bound `. This is for-
malized by allowing the attacker to specify an arbitrary poly-time leakage function
f : {0, 1}∗ → {0, 1}` and learn the value f(state), where state is the entire se-
cret state of the device, including the secret key sk and all of the internal secret
randomness that the scheme uses throughout its lifetime.3

It is relatively easy to see that one cannot perform general computations se-
curely on such device. Indeed, it is impossible to even store a message with com-
plete privacy on a leaky device, while ensuring that it remains efficiently retrievable
from the device – a single bit of leakage of the internal state can always just re-
veal (say) the first bit of the message. However, it turns out to be possible to
implement many specific cryptographic schemes on such leaky devices without
sacrificing the security of the cryptosystem. In fact, any signature or public-key
encryption scheme is secure in this model, as long as the amount of leaked informa-
tion is logarithmic in the security parameter – otherwise it would be easy to break
the scheme without any leakage just by guessing what the leakage should have
been.4 Prior work shows how to construct public-key (identity-based) encryption
[AGV09, NS09, ADN+10, CDRW10, BG10, HL11], signatures and key agreement
schemes [ADW09a, KV09, DHLW10b, BSW11] and various related primitives in
the bounded-leakage model, where the amount of leakage ` can be an arbitrarily
large polynomial in the security parameter, and/or a (1− ε) fraction of the secret-
key size, for any ε > 0. That is, almost the entire secret key can leak without
compromising security!

Benefits of General Leakage. The main benefit of the bounded-leakage model
is its generality and simplicity, which make it highly applicable as well as easy to
use. For example, if we analyze leakage on (just) the secret key of a deterministic
cryptosystem, then it already implies security against leakage on the entire compu-
tation of the cryptosystem, including any intermediate values derived during the
computation. This is because a poly-time leakage-function can just compute all of
the intermediate values on its own given only the secret key.5 Moreover, in contrast

3Simplified versions of this model, where state only includes the secret key but not all of the
randomness, have also been considered.

4When defining security for encryption schemes, we must assume that the leakage only occurs
before the attacker sees the challenge ciphertext, as otherwise a single bit of leakage could just
output the first bit of the message by decrypting the ciphertext insdie the leakage function.

5For randomized cryptosystems, these intermediate values may also depend on the random
coins of the cryptosystem and so we must analyze leakage on the secret key and the random
coins.
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to all of the other models we discussed so far, the bounded-leakage model is inde-
pendent of the hardware architecture and the implementation. Leakage-resilience
in this model is a property of only the algorithmic description of a cryptosystem
and not its implementation. If a cryptosystem is shown to be resilient to bounded
leakage, then any implementation of it on any hardware architecture is resilient.

Limitation of Bounded Leakage. The main criticism of the bounded-leakage
model is that it may be unrealistic to assume that the overall amount of observed
leakage is bounded. This may be a reasonable assumption about the leakage pro-
duced by a single side-channel measurement on a single operation of the device.
But if an attacker can get prolonged access to a device, she may take many side-
channel measurements over time, and therefore the overall amount of observed
leakage will exceed any a-priori bound. Indeed, the vast majority of practical
side-channel attacks work by fully recovering the entire secret key after sufficiently
many measurements, and therefore will remain applicable even against “leakage-
resilient” schemes in the bounded-leakage model.

In other words, the bounded-leakage model gives us the amazing guarantee
that, as long as the leakage is “incomplete” (sufficiently bounded so as not to
contain the entire key), then the cryptosystem remains secure – but it does not
provide any mechanism for ensuring that continual side-channel leakage remains
incomplete and does not recover the entire key. This is in contrast with many
of the models we mentioned earlier (e.g. [ISW03, MR04, DP08]), which explicitly
consider continual leakage (usually per invocation of the cryptosystem) and provide
such a mechanism. In particular, these other models crucially rely on the idea of
evolving the secret state of a cryptosystem over time, to ensure that the attacker
cannot leak too much information about any single value. The bounded-leakage
model provides no such mechanism.

Related Models and Applications

The generality of the bounded-leakage model has another benefit, in that this
model appears to have many applications beyond side-channel attacks. In fact,
there is much work (some preceding [AGV09]) which considers variants of the
bounded-leakage model for various different applications.

Weak Randomness. The study of cryptography with weakly random secrets,
considers a setting where the secret key can come from some arbitrary and un-
known distribution, only guaranteed to have a sufficient level of (min-)entropy.
Although, in the bounded-leakage model, the secret key is initially chosen hon-
estly (usually uniformly random), it becomes weakly random if we condition on
the leakage seen by the adversary. Therefore, the two settings are very related
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and results usually translate from one setting to another. Most of the prior
work concerning weak secrets is specific to the symmetric key setting and much of
this work is information-theoretic in nature. For example, the study of privacy-
amplification [BBR88, Mau92, BBCM95, MW97, RW03, DKRS06, KR09, DW09]
shows how two users who share a weakly random secret can use it to agree on a
uniformly random key.

Virus Attacks. The bounded-leakage model was also considered earlier from the
point of view of virus attacks, where a system is compromised by a virus leaking
information to an external attacker. The main point of these work, which used the
name bounded retrieval model [CLW06, Dzi06, CDD+07, ADW09a, ADN+10], is to
construct efficient schemes with a huge secret key (say, many Gigabytes long) that
maintain security even if a large amount of the secret key leaks. In other words,
these works essentially consider the bounded-leakage model with an additional
efficiency requirement – the operations of the cryptosystem must remain efficient,
independently of how large of a secret key we may want to use. In particular, the
cryptosystem cannot even read the entire key to perform its various operations
such as signing or encrypting/decrypting.

Many of the ideas for the bounded-retrieval model evolved from the earlier
bounded-storage model [Mau92, AR99, ADR02, Lu02, Vad04], where a huge ran-
dom string is made publically available to all parties (honest and adversarial) but
the parties have limited storage capacity and hence cannot store all of it. Indeed,
the data stored by the attacker can be considered “leakage” on the huge random
string.

Entropy Leakage and Auxiliary Inputs. Lastly, following [AGV09], several
variants of the bounded-leakage model introduce different measures for the amount
of leakage seen by the attacker. In all these variants the attacker can learn arbitrary
poly-time computable functions of the secret state. The basic version of the model
measures the amount of leakage by the output lengths of these functions. The
work of [NS09] considers an entropy based approach, where the amount of leakage
is defined as the amount of entropy loss that the leakage causes on the secret key.
The main benefit is that some leakage attacks (e.g. power-analysis) produce a
large output (e.g. the entire power-trace), but most of it is not useful and hence
the entropy loss should still be small. Several variants of the entropy-based defini-
tion are also considered in [DHLW10a, BSW11]. The works of [DKL09, DGK+10]
consider a further generalization called the auxiliary-input model. In this version,
the leakage amount is measured by the loss in the computational hardness of re-
covering the secret key given the leakage. This captures resilience against leakage
that completely determines the secret key information theoretically, as long as it
is hard to recover the secret key from the leakage computationally. Moreover,
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the auxiliary-input model may be useful if a secret-key is re-used for many differ-
ent applications (signatures, encryption, etc.), each of whose security is analyzed
individually and is known to not reveal the entire key.

Unfortunately, it is tricky to come up with formal definitions that match the
intuition of the entropy and auxiliary-input based models. Current definitions are
often confined to very specific schemes/scenarios and are hard to extend to others,
lack robustness (for example, leaking ` bits twice in these models may not be the
same as leaking 2` bits), and are generally harder to work with. Therefore, in this
thesis, we will always measure the amount of leakage just by its size, as in the
basic version of the bounded-leakage model. Doing so may not be as restrictive as
it first seems. The model already manages to capture attacks where large amounts
of information about the secret key are leaked, as long as this leakage is efficiently
compressible. Moreover, even if we do not know how to efficiently compress some
form of leakage, resilience in this model will rule out any attacks that eventually
only rely on some compressed version (e.g. attacks that use a long incompressible
power trace but only extract some simple features from it). Lastly, it turns out
that many of the results in the basic version of the bounded-leakage model can
often also be translated to some of the more general variants.

2.3 Tampering and Active Physical Attacks

Leakage is one form of a physical attack, in which the attacker can passively
learn more information than what is specified by the algorithmic description of a
cryptosystem. Another form of physical attack is tampering, where the attacker
can actively influence/modify the functioning of the cryptosystem, beyond what
the algorithmic description allows. For example, by hitting a device with radiation,
an attacker can introduce some random faults into the state and computation of
a cryptosystem. This may already be enough to completely break an otherwise
secure cryptosystem [BDL97, BS97], just by observing the outputs produced by
the faulty computation.

Although we will not consider tampering in this thesis, we mention several
prior works that consider formal models of resilience to tampering attacks. Firstly,
the works of [GLM+03, DPW10, CKM10] consider resilience against tampering on
(just) the secret state of a device (but not on computation). These works propose
a solution concept which is analogous to the use of AONTs in exposure-resilient
cryptography – namely, the state of the device is encoded in some special form
so that tampering with the encoding cannot meaningfully modify the encoded
value. In particular, the work of [DPW10] introduces an abstract notion of “non-
malleable codes” to capture this property. The work of Ishai et al. [IPSW06], on
the other hand, considers a model where an attacker can tamper with memory and
computation in a limited way. In particular, it is assumed that the attacker can
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modify the values of a small subset of the individual wires of a circuit performing
an arbitrary computation. A similar setting with various interesting tradeoffs is
considered in [FPV11]. Unfortunately, it seems much more difficult to come up
with general models of tampering than it is for leakage.
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Chapter 3

The Continual-Leakage Model
and Overview of Results

In this thesis, we propose a new model of leakage resilience, called the continual-
leakage model (CLM).1 The main goal of the CLM is to get the “best of both
worlds” – the generality of the bounded-leakage model together with a mechanism
for evolving the secret state so as to defend against the reality of continual leakage.
That is, we will allow the attacker to continually learn arbitrary information about
the internal secret state of a cryptosystem, as long as the rate of leakage is bounded.

3.1 Overview of the CLM

Key updates. In addition to the usual functionality of a cryptographic primitive
(e.g. signature, encryption,...), cryptosystems in the CLM come with an additional
randomized update procedure for updating the secret key sk′ ← Update(sk). This
update process can be called an arbitrary number of times and should not have
any visible effect on the functionality of the cryptosystem to the outside world. For
example, signatures produced under each updated version of the secret key should
always verify under the static verification key, using a fixed verification procedure.
We leave it up to the implementation to decide when or how frequently to call the
update procedure, and this may correspond to physical time (e.g. every second) or
to the operations of the cryptosystem (e.g. after every signing operation). We will
assume that when a device concludes running an update, it manages to perfectly
erase/overwrite the old key and all of the random coins and intermediate values
used during prior operations.2 We define a time period to be the span of time that
begins at the conclusion of one update and ends at the conclusion of the next one.

1This model was introduced concurrently by our publication [DHLW10a] and by the work of
Brakerski et al. [BKKV10], which we discuss in further detail later.

2If these erasures are imperfect, we can just think of the unerased data as leakage.
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Security in the CLM. The main security guarantee of the CLM is that the
cryptosystem remains secure even if the attacker can leak up to ` bits of information
about the (current) secret state of the cryptosystem in each time period, where `
is called the leakage bound. More precisely, in each time period, the attacker can
adaptively specify an arbitrary (poly-time) leakage function f : {0, 1}∗ → {0, 1}`,
and learn the output f(state), where state contains all information about the secret
state of the cryptosystem in that time period. More precisely, in each period the
value state includes the current secret key sk, all of the random coins (if any) used
by the cryptographic operations during the time period, and the random coins
used to update the secret key into the next time period. Therefore, this model
captures continual leakage on the entire state and computation in each time period,
including all the intermediate values created during a computation, since these are
all poly-time computable functions of state. 3

Remarks on the Model. The CLM captures the idea that we are only bounding
the rate of leakage: if the device performs updates at fixed time intervals, then we
are bounding the number or leaked bits per unit time, and if the device performs
updates after each operation, then we are bounding the number of leaked bits
per operation. We impose no a-priori bound on the overall number of leaked bits
during the lifetime of the system.

The CLM is strictly more powerful than the bounded leakage model, which we
can now think of as a restriction of the CLM to a single time period. Also, it is
strictly more powerful than the OCLI model of [MR04, DP08], since, in each time
period, the leakage is a global function of the entire state, and not only the portion
of the state that is accessed by computation. In fact, essentially all of the prior
models of partial leakage can be thought of as some restrictions of the CLM.

The main difficulty of constructing secure schemes in the CLM lies in showing
how to perform updates so that leakage in different time periods cannot be mean-
ingfully combined to reconstruct a full secret key that breaks the cryptosystem.
In contrast to the bounded-leakage model, allowing even ` = 1 bits of leakage is
non-trivial here. Notice that the updates must necessarily be randomized ; other-
wise the leakage functions could always pre-compute the value of the secret key in
some future time period i and leak it in full by learning one bit of it at a time in
periods 1, 2, . . . , i− 1.

We now give an overview of our results, showing how to construct secure prim-

3For simplicity, we will not consider leakage on the randomness of the key generation algorithm
for our cryptosystems. We can justify this by assuming that this algorithm is run securely before
the cryptosystem is “used in the field”. Nevertheless, most of our results can be extended to
allowing some small amount of leakage on the key generation algorithm as well (usually just
logarithmic in the security parameter) and it remains an interesting open problem to design
systems tolerating more such leakage.
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itives that remain secure in the CLM. We call such primitives continual-leakage
resilient (CLR), or more precisely `-CLR, if they allow ` bits of leakage in each
time period.

3.2 CLR One-Way Relations and Signatures

We begin by considering a continual-leakage resilient version of one-wayness,
which is the most basic security property in cryptography.

Defining Security. A one-way relation (OWR) consists of an efficient NP re-
lation R(pk, sk) = 1 over public keys pk (the statement) and secret keys sk (the
witness), along with an efficiently samplable distribution (pk, sk) ← KeyGen(1λ)
over the relation R. The basic one-wayness security property only requires that, if
we sample a random (pk, ·)← KeyGen(1λ), then no efficient attacker can find any
matching sk∗ such that R(pk, sk∗) = 1.4

To define a CLR OWR, we also introduce a randomized update sk′ ← Update(sk)
that updates the secret key while preserving the relation R(pk, sk′) = 1. We
consider a security game where we choose (pk, sk1) ← KeyGen(1λ), and keep
updating the secret key in each period i using randomness ωi to get sk2 ←
Update(sk1;ω1), sk3 ← Update(sk2;ω2), . . .

We first consider a restricted security notion assuming leak-free updates, where
the attacker only leaks on the keys but not on the update randomness. The
attacker initially gets the public key pk. It then runs for arbitrary many time peri-
ods, where in each period i, it can adaptively choose a poly-time leakage function
f : {0, 1}∗ → {0, 1}` and learn the answer f(ski). We say that the scheme is
secure if the attacker can never produce sk∗ such that R(pk, sk∗) = 1. We also
define the regular notion of CLR OWR, where the attacker gets to see f(statei)
for the full statei = (ski, ωi) including the randomness of updates.

Results. We first show how to construct `-CLR OWRs with leak-free updates,
where the leakage bound ` can be made an arbitrarily large polynomial in the
security parameter, and a (1

2
− ε) fraction of the key size, for arbitrary ε > 0.

We do so by first specifying a general framework for reasoning about continual
leakage, and then show hot to instantiate this framework using a new primitive
called a homomorphic NIZK, which we finally instantiate concretely under the
linear assumption in prime-order bilinear groups (see Section 4.3).

4Syntactically, a one-way relation is weaker than a one-way function since we do not require
that pk = f(sk) for some efficient function f but only that we can sample the tuple (pk, sk)
jointly. However, if we disregard leakage, then one-way relations exist iff one-way functions do.
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We then show that any `-CLR-OWR with leak-free updates also satisfies full
`′-CLR OWR security for any `′ ≤ `, but the reduction suffers a security loss
exponential in `′. Therefore, we can get full `′ CLR security where the leakage `′

is logarithmic in the security parameter under standard assumptions, and would
need exponential hardness assumptions to tolerate larger `′. This essentially follows
by “guessing” the value of the leakage on the updates. Lastly, we show how to
generically convert CLR OWRs into CLR Signatures, relying on prior work for
constructing leakage-resilient signatures in the bounded-leakage model [ADW09a,
KV09, BSW11, JGS11]. We mention that, using CLR Signatures, it’s possible to
directly construct many other useful cryptographic primitives with CLR security,
such as CLR identification schemes and key-agreement protocols.

3.3 CLR Public-Key Encryption

Definition. In addition to the usual functionality of public-key encryption (PKE),
we again require the existence of an update procedure for updating the secret key.
The security definition is similar to that of a one-way relation, and the attacker can
adaptively leak up to ` bits of information on each secret key (and the randomness
of the update) in each time period, for arbitrarily many time periods. After con-
tinually leaking such information, semantic security should be preserved and the
attacker should be unable to distinguish encryptions of any two messages. Note
that there is an important caveat here: the attacker cannot leak any more infor-
mation on the secret key after seing the challenge ciphertext. This is a necessary
restriction in this model: if the attacker could leak even one bits of information
about the secret key that depends on the challenge ciphertext, she could leak (say)
the first bit of the encrypted message, breaking semantic security.5 Note that the
relation between the public and secret keys of CLR PKE is necessarily also a CLR
OWR. Therefore, constructions of CLR PKE will give us alternate constructions
of fully secure CLR OWR (with leaky updates) where the leakage can be sub-
stantially larger than in the construction of the previous chapter. However, the
construction is much less generic than the previous one.

Results. Concurrent to our work [DHLW10a] on CLR one-way relations and
signatures, the work of Brakesrski et al. [BKKV10] gave a similar result for CLR

5As you may recall, this issue already comes up in the bounded leakage model. The work of
[HL11] explores other security guarantees, weaker than semantic security, that PKE can satisfy in
these models. Another approach toward getting rid of this restriction, suggested in [ADW09a],
is the use interactive authenticated key-agreement protocols (e.g. based on leakage-resilient
signatures) to securely communicate. This way, the message remains hidden as long as there
is no leakage during the protocol execution in which it is sent, but continual leakage can occur
before and after.
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public-key encryption with leak-free updates, based on the linear assumption in
bilinear groups. Following that, the work of Lewko et al. [LLW11] showed how to
construct a CLR PKE with full security (including leakage on the updates) where
the leakage bound ` can be an arbitrarily large polynomial in the security parameter
(and a constant fraction of the key size). However, the resulting scheme and proof
are fairly complicated and require strong assumptions on composite-order bilinear
groups. In this thesis, we present a new scheme (from our corresponding work
[DLWW11]), which is based on the ideas of [LLW11], but is vastly simpler and
can be proven secure under the more standard linear assumption in prime-order
bilinear groups. We also present the scheme in several stages, starting with simpler
schemes that achieve weaker notions of security and progressively building up to the
full scheme with full security. This presentation connects the main ideas behind
several prior works on leakage-resilient encryption including [NS09], [BKKV10]
and [LLW11]. Lastly, our final encryption scheme will be the starting point of our
construction of CLR Secret Sharing, which we discuss next.

3.4 CLR Secret Sharing (Storage)

Storing Secrets on Leaky Devices. Finally, we ask a basic question of how to
simply store a secret value (message) on continually leaky devices while preserving
its secrecy. Unfortunately, in the bounded and continual leakage models, it is
impossible to store a message secretly on a single leaky device from which it is
efficiently retrievable, because a single leaked bit of the internal state of such device
can reveal (say) the first bit of the message. There are two natural alternatives to
overcoming this difficulty:

1. We can weaken the leakage model and restrict the attacker to only learning
some limited class of leakage function of the internal state of the device. This
class should capture realistic attacks but cannot be powerful enough to recover
the stored secret, even though there is an efficient method for doing so.

2. We can consider a model where the secret is shared between two or more devices,
each of which leaks individually in the continual leakage model. The attacker
can continually learn arbitrary bounded-length functions of the internal state
of each individual device, but not of the combined joint state of all the devices.

We will frame our discussion in terms of the second approach. However, this
can also be naturally viewed as a concrete instantiation of the first approach, where
we think of the state of a single device as divided into multiple components, and
leakage is restricted to the limited class of functions that each depend on only a
single component. This may be a natural and realistic class of leakage attacks if the
components of the state are e.g. stored in different areas of memory and accessed
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separately by the device. In particular, this can be seen as a strengthening of the
“only computation leaks information” (OCLI) model. In the OCLI model, the
various components leak individually but only when accessed by a computation,
while here they leak individually but all the time. We note that this strengthening
was explicitly considered by prior works in the OCLI model, starting with Dziem-
bowski and Pietrzak [DP08] in the case of stream ciphers. Although prior results
in various models of continual leakage construct many basic and advanced crypto-
graphic primitives, they do not address the simple question of storing a consistent
value secretly on leaky devices. Indeed, they rely on the fact that one does not
need to store a consistent secret key over time to e.g. decrypt, sign, or generate a
random stream.

Defining CLR Sharing. More concretely, we will consider schemes for sharing
a value between two devices, each of which is leaking information individually in
the continual leakage model. We assume that each device has its own individual
notion of time periods, but these notions can differ across devices and they need
not be synchronized. At the end of each time period, a device updates its share
using some local fresh randomness. This update is conducted individually, and the
devices do not communicate during the update process. At any point in time, no
matter how many updates occurred on each device, the shares of the devices can
be efficiently combined to reconstruct the shared secret message.

For security, we allow the attacker to continually learn arbitrary (efficiently
computable) functions of the internal state of each device .The attacker can choose
the functions adaptively and can alternate leakage between the devices. The in-
ternal state of each device in each time period consists of the current version of
its share and the randomness of the update process used to derive the next share.
We only restrict the attacker to leaking at most ` bits of information from each
device during each time period. For security, we require that the shared mes-
sage remains semantically secure throughout the lifetime of the system. We call a
scheme satisfying these criteria an `-continual-leakage-resilient sharing (`-CLRS).

Results. Our main result is to construct an `-CLRS scheme between two devices,
for any polynomial leakage-bound ` and where the share size scales linearly in `, so
that a constant fraction of each share can leak in each time period. The security
of our scheme is based on the linear assumption in prime-order bilinear groups.
In fact, the main tool of our construction is exactly our encryption scheme from
the previous section; to share a message we simply encrypt it and make one share
the secret key and the other share a ciphertext.Taking any of the recent results
on CLR-PKE, we get a method for updating (just) the key share. We also get
the guarantee that the message remains hidden even if the attacker continually
leaks on the key share and later gets the ciphertext share in full. We then show an
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alternate way of creating ciphertexts, which allows us to define a natural procedure
for updating them analogously to how secret keys are updated. Lastly, we prove
a new and delicate security property, showing that even if an attacker interleaves
leakage on the secret key and the ciphertext shares, the message remains hidden.

We also show that in contrast to standard secret sharing, `-CLRS cannot be
realized information theoretically, even for ` = 1 bit of leakage.

Relation to Other Primitives. It is useful to compare CLRS schemes to other
primitives from the literature. Most obviously, standard secret sharing schemes
[Sha79] provide security when some subset of the shares are fully compromised
while others are fully secure. In CLRS schemes, all shares leak and hence none are
fully secure. The idea of updating shares to protect them against continual com-
promise was also considered in the context of proactive secret sharing [HJKY95].
However, the motivation there was to protect against a mobile adversary that cor-
rupts different subsets of the shares in different time periods, while in our case all
shares leak in all time periods. Another important connection is to the leakage-
resilient storage scheme of [DDV10]. This gives an information-theoretic solution
for sharing a secret securely on two leaky devices/components in the bounded leak-
age model, where the overall amount of leakage on each share is bounded. The
work of [DF11] extends this information theoretic solution to the continual leakage
model, but requires that devices have access to some correlated randomness gen-
erated in a leak-free way (e.g. using leak-free hardware) and update their shares
interactively. In contrast, we do not assume any leak-free hardware. Also, our
updates are performed individually, and we show that this comes at the necessary
expense of having computational assumptions.

Related to the above model, prior (unpublished) work by [AGH10] was the first
to propose the two processor distributed setting for public key decryption, where
the systems secret state is shared by both processors, and is subject to continual
memory leakage attacks, where the attacker is restricted to leak from each of the
processors share of the secret state separately. Their ultimate goal was the security
of the public key encryption scheme rather than the maintenance of a particular
secret, which is addressed by an interactive secret state refresh protocol in their
work.

Lastly, we mention the prior works [JV10, GR10], which consider general com-
pilers for executing arbitrary computations privately on leaky devices. Both works
provide solutions in variants of the “only computation leaks information model”,
but require some additional leak-free hardware. Implicitly, these works also ad-
dress the question of storing a value secretly on leaky devices, since the state of the
computation must be somehow stored consistently. However, the use of leak-free
hardware in these solutions greatly simplifies the problem of storage and avoids
virtually all of the challenges that we address in the current work. We believe that
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our work provides an important first step in the direction of building general com-
pilers without any leak-free hardware, since the question of (just) securing storage
must be addressed as a part of any solution to the larger question of securing com-
putation. One elegant solution to the latter problem would be to design secure
computation protocols where two (or more) continually leaky devices can securely
compute functions of a secret value that is shared between them under our CLRS
scheme, in such a way that leakage on the computation does not reveal anything
more then the output value and some additional independent leakage on the input
shares.
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Chapter 4

Preliminaries

Notation and Conventions. If X is a probability distribution or a random
variable then x← X denotes the process of sampling a value x at random according

to X. If S is a set then s
$← S denotes sampling s according to the uniformly

random distribution over the set S. For a randomized algorithm or function f , we
use the semicolon to make the randomness explicit i.e. f(w; r) is the output of f
with input w using randomness r. Otherwise, we let f(x) denote a random variable
for the output of f(x;R) where R is uniformly random. As usual in computer

science, all logarithms are base 2 by convention so that log(x)
def
= log2(x). We

use Kleene star notation letting {0, 1}∗ def
=
⋃
n∈N{0, 1}n denote all finite-length bit

strings. For a bit string s ∈ {0, 1}∗, we let |s| denote the bit length of s.
Throughout the paper, we let λ denote the security parameter which determines

the level of security that we are hoping to achieve. A function ν(λ) is called
negligible, denoted ν(λ) = negl(λ), if for every integer c there exists some integer
Nc such that for all integers λ ≥ Nc we have ν(λ) ≤ 1/λc (equivalently, ν(λ) =
1/λω(1)). A function ρ(λ) (usually associated with some probability) is called
overwhelming if ρ(λ) = 1− negl(λ). We will implicitly assume a uniform model of
computation throughout the paper and identify efficient algorithms with Turing
Machines that run in polynomial time in the security parameter λ. 1

Computational Indistinguishability. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be
two ensembles of random variables. We say that X, Y are (t, ε)-indistinguishable
if for every distinguisher D that runs in time t(λ) we have

|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| ≤ 1

2
+ ε(λ).

1This is just for concreteness. All results will also hold in the non-uniform setting under cor-
responding non-uniform hardness assumptions. In particular, all our reductions will be uniform.
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We say that X, Y are computationally indistinguishable, denoted X
comp
≈ Y , if

for every polynomial t(·) there exists a negligible ε(·) such that X, Y are (t, ε)-
indistinguishable.

4.1 Statistical Distance, Entropy, Extractors

Statistical Indistinguishability. The statistical distance between two random
variables X, Y is defined by

SD(X, Y ) =
1

2

∑
x

|Pr[X = x]− Pr[Y = x]| .

We write X
stat
≈ ε Y to denote SD(X, Y ) ≤ ε and just plain X

stat
≈ Y if the statistical

distance is negligible in the security parameter. In the latter case, we say that X, Y
are statistically indistinguishable.

Entropy and Extractors. The min-entropy of a random variable X is

H∞(X)
def
= − log(max

x
Pr[X = x]).

This is a standard notion of entropy used in cryptography, since it measures
the worst-case predictability of X. We often find it useful to work with a gen-
eralized version of min-entropy, called average conditional min-entropy, defined
by[DORS08] as

H̃∞(X|Z)
def
= − log

(
E

z←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(

E
z←Z

[
2−H∞(X|Z=z)

])
.

This measures the best guess for X by an adversary that may observe an average-
case correlated variable Z. That is, for all (inefficient) functions A, we have

Pr[A(Z) = X] ≤ 2−H̃∞(X|Z) and there exists some A which achieves equality. The
following lemma says that conditioning on ` bits of information, the min-entropy
drops by at most ` bits.

Lemma 4.1.1 ([DORS08]). Let X, Y, Z be random variables where Y takes on

values in a set of size at most 2`. Then H̃∞(X|(Y, Z)) ≥ H̃∞((X, Y )|Z) − ` ≥
H̃∞(X|Z)− ` and, in particular, H̃∞(X|Y ) ≥ H∞(X)− `.

We now define the notion of an (average case) randomness extractor.

Definition 4.1.2 (Extractor [NZ96, DORS08]). A randomized function Ext : X →
Y is an (k, ε)-extractor if for all r.v. X,Z such that X is distributed over X
and H̃∞(X|Z) ≥ k, we get (Z,R,Ext(X;R))

stat
≈ ε (Z,R, Y ) where R is a random

variable for the coins of Ext and Y is the uniform over Y.

25



Lemma 4.1.3 (Leftover-Hash Lemma [NZ96, DORS08]). Assume that the family
H of functions h : X → Y, is a universal hash family so that for any x 6= x′ ∈ X
we have Pr

h
$←H

[h(x) = h(x′)] ≤ 1/|Y|. Then the randomized extractor Ext(x;h) =

h(x) is a (k, ε)-extractor for any k, ε satisfying k ≥ log(|Y|) + 2 log (1/ε).

Two-Source Extractors. We will also rely on the notion of a two-source ex-
tractor [CG88]. Since we will only use the inner product extractor, we do not define
the notion abstractly but simply present the concrete lemma that inner product is
a good two-source extractor. For ~x = (x1, . . . , xn) ∈ Fnq and ~y = (y1, . . . , yn) ∈ Fnq ,

the inner product is defined as 〈~x, ~y〉 def
=
∑n

i=1 xiyi. We will state the average case
version of the lemma (analogous to the average case version of seeded extractors
defined by [DORS08]).

Lemma 4.1.4 (Inner Product Two-Source Extractor). Let ~X, ~Y , Z be correlated

random variables, where ~X, ~Y have their support in Fmq and are independent con-
ditioned on Z. Let U be uniform and independent over Fq. Then

SD( (Z, 〈 ~X, ~Y 〉) , (Z,U) ) ≤ 2−s

where s ≥ 1+ 1
2
(kX+kY −(m+1) log(q)) for kX := H̃∞( ~X | Z), kY := H̃∞(~Y | Z).

The worst-case version of the lemma, where Z = z is fixed, is proved in [CG88]
(see [LLTT05] for a very simple proof giving the above parameters). We now prove
the average-case version, where Z is arbitrary. The proof follows that of [DORS08]
showing that leftover-hash is a good average-case extractor.

Proof. Let (Xz, Yz) = (X, Y |Z = z). Then

SD( (Z, 〈X, Y 〉) , (Z,U) )

= E
z

[SD( 〈Xz, Yz〉 , U )]

≤ 1

2
E
z

[√
2−(H∞(Xz)+H∞(Yz))qm+1

]
≤ 1

2

√
E
z

[2−(H∞(Xz)+H∞(Yz))qm+1]

≤ 1

2

√
2−(H̃∞(X|Z)+H̃∞(Y |Z))qm+1

where the first inequality follows from the worst-case version of the lemma and the
second inequality is Jensen’s inequality. This gives us the average case version of
the lemma.
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4.2 Linear Algebra Notation

Linear Algebra. Let F be a field. We denote row vectors with ~v ∈ Fn. If
~v1, . . . , ~vm ∈ Fn are m vectors we let span(~v1, . . . , ~vm) ⊆ Fn denote the liner space

spanned by these vectors. We let 〈~v, ~w〉 def
= ~v · ~w> be the dot product of ~v, ~w ∈ Fnq .

If A ∈ Fn×m is a n × m matrix of scalars, we let colspan(A), rowspan(A) denote
the subspaces spanned by the columns and rows of A respectively. If V ⊆ Fn
is a subspace, we let V⊥ denote the orthogonal space of V , defined by V⊥ def

=
{ ~w ∈ Fnq | 〈~w,~v〉 = 0 ∀~v ∈ V }. We write (~v1, . . . , ~vm)⊥ as shorthand for
span(~v1, . . . , ~vm)⊥. We write V ⊥ W if V ⊆ W⊥ and therefore also W ⊆ V⊥. We

define the kernel of a matrix A to be ker(A)
def
= rowspan(A)⊥.

Matrix-in-the-Exponent Notation. Let G be a group of prime order q gen-
erated by an element g ∈ G. We write the group operation as multiplication and
assume that it can be performed efficiently. and let A ∈ Fn×mq be a matrix. Then

we use the notation gA ∈ Gn×m to denote the matrix
(
gA
)
i,j

def
= g(A)i,j of group

elements. Note that, given a matrix of group elements gA ∈ Gn×m and a matrix
B ∈ Fm×kq of “exponents”, one can efficiently compute gAB. However, given gA

and gB it is (generally) not feasible to efficiently compute gAB. On the other
hand, assume G1,G2,GT are three groups of prime order q and e : G1×G2 → GT

is an efficient bilinear map satisfying e(ga,hb) = e(g,h)ab. Then, given gA and
hB for generators g ∈ G1,h ∈ G2, one can efficiently compute e(g,h)AB via

(e(g,h)AB)i,j =
∏m

k=1 e
(
gAi,k ,hBk,j

)
. We abuse notation and define gAgB

def
= gA+B

and e(gA,hB)
def
= e(g,h)AB for any appropriately sized matrices A,B.

Random Matrices. For integers d, n,m with 1 ≤ d ≤ min(n,m), we use the
notation Rkd(Fn×mq ) to denote the set of all n ×m matrices over Fq with rank d.
When W ⊆ Fmq is a subspace, we also use the notation Rkd(Fn×mq | row ∈ W) to
denote the set of rank d matrices in Fn×mq whose rows come from the subspace W .
For V ⊆ Fnq , we define Rkd(Fn×mq | col ∈ V) analogously. We prove several simple
properties of random matrices.

Lemma 4.2.1. Assume q is super-polynomial in the security parameter.
(I) For n ≥ m the uniform distributions over Rkm(Fn×mq ) and Fn×mq are statistically
indistinguishable.
(II) For n,m ≥ d and W ⊆ Fmq a subspace of dimension d, the uniform dis-
tributions over Rkd(Fn×mq | row ∈ W) and Wn (seen as n rows) are statistically
indistinguishable.

Proof. Notice that (II) implies (I) with d = m and W = Fmq . The statistical
distance between the uniform distributions over Rkd(Fn×mq | row ∈ W) and Wn is
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just the probability that n samples from W span a sub-space of dimension < d.
Think of choosing the rows fromW one-by-one. Then the probability that the ith
sample falls into the subspace of the previous ones is at most qi−1/qd. By union-
bound, the probability of this happening in the first d samples is upper-bounded
by
∑d

i=1 q
i−1/qd ≤ 2/q.

Lemma 4.2.2. Let d, n,m be integers with min(n,m) ≥ d ≥ 1.

(I) The uniform distribution over Rkd(Fn×mq ) is equivalent to sampling C
$← Rkd(Fn×dq ),

R
$← Rkd(Fd×mq ) and outputting A = CR. Notice

colspan(A) = colspan(C) , rowspan(A) = rowspan(R).

(II) If W ⊆ Fmq is a fixed subspace of dimension ≥ d, the uniform distribu-

tion over Rkd(Fn×mq | row ∈ W) is equivalent to sampling C
$← Rkd(Fn×dq ), R

$←
Rkd(Fd×mq | row ∈ W) and outputting A = CR.
(III) If W ⊆ Fmq a uniformly random subspace of a fixed dimension ≥ d, the
uniform distribution over Rkd(Fn×mq | row ∈ W) is equivalent to the uniform dis-
tribution over Rkd(Fn×mq ).

Proof. Notice that (II) implies (I) with W = Fmq . For (II), it suffices to show that
number of ways of writing A = CR as a product of some C and R is the same for
every A (for appropriate domains of A,C,R). In particular, it is equal the number
of ways of choosing such R so that its rows form a basis of rowspan(A), which is∏d−1

i=0 (qd − qi). For (III), we notice that for every A ∈ Rkd(Fn×mq ) the number of
spaces W (of any fixed dimension) such that A ∈ Rkd(Fn×mq | row ∈ W) is just the
number of spaces W that rowspan(A) ⊆ W which is the same for every A.

4.3 Computational Hardness Assumptions

Our results will require us to rely on hardness assumptions in prime-order
groups. We let such groups be defined via an abstract group generation algorithm
(G,g, q)← G(1λ), where G is a (description of a) cyclic group of prime order q with
generator g. We assume that the group operation, denoted by multiplication, can
be computed efficiently. We define several hardness assumptions on such groups.

Decisional Diffie-Hellman (DDH). The DDH assumption on G states that

(G,g0,g1,g
r
0,g

r
1)

comp
≈ (G,g0,g1,g

r0
0 ,g

r1
1 )

where (G,g, q)← G(1λ), g0,g1
$← G, and r, r0, r1

$← Fq.
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k-Linear. This assumption was proposed by [BBS04, HK07, Sha07] as a gener-
alization/weakening of the DDH assumption. Let k ≥ 1 be constant. The k-Linear
assumption on G states that

(G,g0,g1, . . . ,gk,g
r1
1 ,g

r2
2 , . . . ,g

rk
K ,g

∑k
i=1 ri

0 )
comp
≈

(G,g0,g1, . . . ,gk,g
r1
1 ,g

r2
2 , . . . ,g

rk
K ,g

r0
0 )

where (G,g0, q) ← G(1λ), g1, . . . ,gk ← G, and r0, r1, . . . , rk ← Fq. Notice that,
when k = 1, the k-linear assumptions is exactly the DDH assumption. It turns out
that, as k gets larger, the assumption becomes weaker. Therefore, even in groups
in which the DDH assumption does not hold, the k-linear assumptions may still
hold for k ≥ 2.

k-linear (Matrix Form). It may be worth rewriting the k-linear assumption in
matrix form. This equivalent form of the assumption states that

(G,gX ,g~rX)
comp
≈ (G,gX ,g~u)

where we sample (G,g, q) ← G(1λ), x1, . . . , xk
$← Fq, ~r

$← Fkq , ~u
$← Fk+1

q and set

X ∈ Fk×(k+1)
q be the matrix:

X :=


1 x1 0 . . . 0
1 0 x2 . . . 0
...

...
...

. . .
...

1 0 0 . . . xk

 .

Rank Hiding. This assumption was introduced by [NS09] and shown to be
implied by the k-linear assumption. The k-rank hiding assumption on G states
that for any constants k ≤ i < j ≤ min{m,n} we cannot distinguish rank i and j
matrices in the exponent of g:

(G,g,gX)
comp
≈ (G,g,gY )

where (G,g, q)← G(1λ), X
$← Rki(Fn×mq ), Y

$← Rkj(Fn×mq ).

To summarize, for any k ≥ 1 and any group algorithm G, the k-linear assumption
is equivalent to the matrix-form k-linear assumption, it implies the k-rank-hiding
assumption, and it implies the (k + 1)-linear assumption.
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Bilinear Groups. Most of our results will rely on the above assumptions in
bilinear groups. We let such groups be defined via an abstract pairing generation
algorithm

(G1,G2,GT , q, e,g,h)← Gpair(1λ)

where G1,G2,GT are (descriptions of) cyclic group of prime order q with generators
g ∈ G1,h ∈ G2, and e is a description of a bilinear map e : G1 ×G2 → GT . We
require two properties:

Efficiency: The bilinear map e(·, ·) and the multiplication operation in all three
groups G1,G2,GT can be computed efficiently.

Non-Degenerate: The bilinear map is non-degenerate so that the element e(g,h)
is a generator of GT .

We say that the pairing is symmetric if G1 = G2, g = h and asymmetric otherwise.
We can define analogous versions of the DDH, k-linear and k-rank hiding as-

sumptions in such groups. In all cases the attacker is also given the full description
of the bilinear groups (G1,G2,GT , q, e,g,h) and we will assume that the corre-
sponding hardness property holds in both groups G1,G2.

It turns out that the 1-linear (DDH) and 1-rank-hiding assumptions are false
for symmetric pairings where G1 = G2. However, it is often reasonable to as-
sume DDH holds in some asymmetric pairings, and this is also called the external
Diffie-Hellman assumption SXDH [Sco02, BBS04, GR04, Ver04]. Since the SXDH
assumption is fairly strong, it is sometimes preferable to rely on k-linear (or rank-
hiding) assumptions for k ≥ 2. The (k = 2)-linear assumption, also called deci-
sional linear, is commonly believed to hold in symmetric and asymmetric pairings.

4.4 Public-Key Encryption

Recall that a public-key encryption scheme consists of three algorithms
KeyGen,Encrypt,Decrypt with the following syntax:

• (pk, sk)← KeyGen(1λ) : Outputs a public/secret key pair.
The public key defines some efficiently samplable message space M.

• c← Encryptpk(m) : Given a message m ∈M and a public key pk, outputs a
ciphertext c.

• m′ ← Decryptsk(c) : Given a ciphertext c and a secret key sk, outputs a
message m′ ∈M or a value ⊥.

Often, instead of just defining a single algorithm KeyGen, we break it up into
two separate procedures: ParamGen,KeyGen with the syntax:
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• prms ← ParamGen(1λ) generates public parameters prms which define some
message space M.

• (pk, sk)← KeyGen(prms) generates the public/secret key.

The advantage of this definition, over just thinking of prms as part of the public
key pk, is that the prms can be reused multiple times by different users and even
different schemes. For example, the public parameters could include the description
of a DDH group which can be reused many times. We will often just switch between
these two syntactic definitions. That is, when discussing security, we can always
just use the first definition but, when extra functionality requires it, we may specify
a distinction between the public parameters prms and the public key pk.

The scheme should satisfy correctness and security defined as follows.

Perfect Correctness: For all (pk, sk)← KeyGen(1λ) with pk defining a message
space M, for all m ∈M, for all c← Encryptpk(m), we have Decryptsk(c) = m.

Security: We will define two distinct notions of security. First, we start with
a weak notion which we call one-way security, where we only require that an
encryption of a random message makes the message hard to recover.

Definition 4.4.1 (One-Way Security). An encryption scheme
E = (KeyGen,Encrypt,Decrypt), is one-way secure if, for any PPT adversary A we
have:

Pr

[
m∗ = m

∣∣∣∣ (pk, sk)← KeyGen(1λ)m
$←Mpk

c← Encryptpk(m),m∗ ← A(pk, c)

]
≤ negl(λ)

where the public-key pk defines the message-space Mpk.

The stronger and more standard notion of security for encryption is semantic
security where the attacker cannot distinguish between the encryptions of any two
messages.

Definition 4.4.2 (Semantic Security). An encryption scheme
E = (KeyGen,Encrypt,Decrypt), is semantically secure, if for any PPT adversary
A we have |Pr[b∗ = b]− 1

2
| ≤ negl(λ) in the following game:

• Challenger samples (pk, sk)← KeyGen(1λ) and gives pk to A.
Let M be the message space defined by pk.

• A chooses two values m0,m1 ∈M.

• Challenger samples b
$← {0, 1}, c← Encryptpk(mb) and gives c to A.

• A outputs a bit b∗.
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It is easy to see that the standard notion of semantic-security implies one-way
security if the size of the message-space Mpk is super-polynomial in the security
parameter.

4.5 Non-Interactive Zero Knowledge (NIZK)

Let R ⊆ Y ×X be an NP relation on pairs (y, x) with corresponding language
LR = {y | ∃x s.t. (y, x) ∈ R}. A non-interactive zero-knowledge (NIZK) argu-
ment for a relation R consists of PPT algorithms Setup, Prov, Ver with syntax:

• crs← Setup(1λ): Creates a common reference string (CRS).

• π ← Provcrs(y, x): Creates an argument that “y ∈ LR” using witness x.

• 0/1← Vercrs(y, π): Verifies whether or not the argument π is correct.

For security, we also require the PPT algorithms SetupSim, Sim with the syntax:

• (crs,tk)← SetupSim(1λ): Creates a simulated CRS with a trapdoor tk.

• π ← Simcrs(y,tk): Creates a simulated argument for y ∈ Y .

For the sake of clarity, we write Prov, Ver, Sim without the crs in the subscript
when the crs can be inferred from the context.

Definition 4.5.1. We say that Π = (Setup, Prov, Ver, SetupSim, Sim) is a NIZK
argument system for the relation R if the following three properties hold.

Completeness: For any (y, x) ∈ R, if crs ← Setup(1λ) , π ← Prov(y, x), then
Ver(y, π) = 1.

Soundness: For any PPT adversary A,

Pr

[
Ver(y, π∗) = 1

y 6∈ LR

∣∣∣∣ crs,← Setup(1λ)
(y, π∗)← A(crs)

]
≤ negl(λ).

Composable Zero-Knowledge: We require two properties.

(1) crs
comp
≈ crs′ where crs← Setup(1λ) and (crs′,tk)← SetupSim(1λ).

(2) For any PPT adversary A we have
∣∣Pr[A wins ]− 1

2

∣∣ ≤ negl(λ) in the
following game:

• Challenger samples (crs,tk)← SetupSim(1λ), gives (crs,tk) to A.

• A chooses (y, x) ∈ R and gives these to the challenger.

• Challenger samples π0 ← Prov(y, x), π1 ← Sim(y,tk), b← {0, 1},
gives πb to A.
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• A outputs a bit b̃, and wins if b̃ = b.

We note that we include composability in our default notion of NIZK. By in-
sisting that real and simulated proofs look the same even given tk, it is easy to see
that they look the same even if an attacker can see many other simulated proofs.
The reason that we define two algorithms Setup and SetupSim, instead of just
always using SetupSim, is that soundness may not hold when the crs is gener-
ated via SetupSim. In particular, there may be a strategy for picking statements
depending on the crs and generating valid arguments, such that the statements
are false if the crs is simulated but true otherwise. Therefore the attacker can-
not distinguish which type of crs is being used, but may manage to prove false
statements only when the crs is simulated.

Public Parameters. As with encryption, we can also talk about NIZK with
public parameters by defining three algorithms:

• prms← ParamGen(1λ): generates the public parameters.

• crs← Setup(prms): creates the CRS.

• (crs,tk)← SetupSim(prms) generates a simulated CRS with a trapdoor.

Again, the main advantage over just thinking about prms as part of the crs is that
the above definition makes it clear that prms can be reused by different schemes.
We will alternate between the above two definitions freely. As with encryption,
when discussing security we just think of the prms as part of the crs (this is
without loss of generality) to simplify notation. But we will explicitly talk about
public parameters when the additional functionality requires it.
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Chapter 5

CLR One-Way Relations,
Signatures

5.1 Modeling Leakage.

We model leakage attacks (also called memory attacks in prior work) against
a cryptosystem with some secret state state via the notion of a leakage oracle.
The leakage oracle allows the attacker to learn information about the state of the
cryptosystem by submitting arbitrary “questions” about the state to the oracle.
Without loss of generality, we assume each question provides the attacker with
one bit of information, but the attacker can ask many such questions. We model
the attacker’s questions as predicates h : {0, 1}|state| → {0, 1} and the leakage
oracle answers each question by providing the attacker with the corresponding
output h(state). In our definitions of leakage-resilient primitives, the adversary
can adaptively query the leakage oracle to learn information about the secret state
during an attack, but we will restrict the number of allowed queries (i.e. the
amount of leaked information) during various stages of the attack.

Definition 5.1.1 (Leakage Oracle). A leakage oracle Ostate(·) is parameterized by
the secret state state of publicly known length m := |state|. A query to the oracle
consists of a circuit computing some predicate h : {0, 1}m → {0, 1}. The oracle
responds to the query by outputting the value h(state).

Note that a polynomial time attacker with access to a leakage oracleOstate(·) can
only query the oracle on circuits of polynomial size (since it must write down the
entire circuit explicitly) and hence the queries can all be evaluated in polynomial
time as well.
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5.2 Defining CLR-OWR

5.2.1 One-Way Relations

A one-way relation (OWR) consists of two PPT algorithms: a key-generation
algorithm (pk, sk) ← KeyGen(1λ), and a verification algorithm b = Ver(pk, sk)
which outputs a bit b = 1 to indicate that a secret-key sk is valid for the
public-key pk, and b = 0 otherwise. Implicitly, this gives us the relation R =
{(pk, sk) : Ver(pk, sk) = 1}.

Definition 5.2.1 (One-Way Relation (OWR)). We say that (KeyGen, Ver) is a
one-way relation if it satisfies:

Correctness: If (pk, sk)← KeyGen(1λ), then Ver(pk, sk) = 1.

Security: For any PPT attacker A, we have

Pr

[
Ver(pk, sk∗) = 1

∣∣∣∣ (pk, sk)← KeyGen(1λ)
sk∗ ← A(pk)

]
≤ negl(λ).

A one-way relation generalizes the concept of a one-way function (OWF). Of
course, we can always set sk to include all of the randomness of the KeyGen al-
gorithm, so that pk = KeyGen(sk) is a OWF. However, when defining leakage-
resilient one-wayness (which we do next), this equivalence might no longer hold – by
putting more information into the secret key we would also have to give the adver-
sary more information during key-leakage attacks. Therefore, we consider OWRs,
rather than OWFs, as the basic cryptographic primitive for leakage-resilience.

5.2.2 OWRs in the Bounded-Leakage Model

We first define security of OWRs against bounded leakage, where the overall
amount of leakage is bounded by ` bits. Although this definition will not be
required for any of the results in the paper, it is here as a warm-up exercise used
to to build up intuition towards our definition in the continual leakage model. We
define an `-leakage-resilient OWR (`-LR-OWR) by modifying Definition 5.2.2 so
that the adversary can learn up to ` bits of information about the secret sk after
seing the public value pk and before outputting the forgery sk∗.

Definition 5.2.2 (`-LR-OWR). We say that (KeyGen, Ver) is an `-leakage-resilient
OWR if it satisfies the correctness property of OWR and the following leakage-
resilient security property. For any polynomial p(·) and any PPT attacker A, we
have Pr[A wins ] ≤ negl(λ) in the following game:

• Challenger chooses (pk, sk)← KeyGen(1λ), gives pk to A, sets state = sk.
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• Attacker A can make up to ` queries to the oracle Ostate(·) and wins if it
outputs sk∗ s.t. Ver(pk, sk∗) = 1.

We now show that any second-preimage resistant (SPR) function F is also an
`-LR-OWR, where ` is roughly the number of bits by which F shrinks its input.
This theorem was first shown formally in our works [ADW09b, DHLW10a] but was
also implicit in [ADW09a, KV09].

Definition 5.2.3 (Second Pre-Image Resistant Functions (SPR)). Let{
F : {0, 1}n(λ) → {0, 1}m(λ)

}
λ∈N

be an ensemble of functions where n(·),m(·) are some polynomials. We say that
F is second-preimage resistant (SPR) if F (x) is efficient to compute, and for any
PPT algorithm A,

Pr[x′ 6= x ∧ F (x′) = F (x) | x $← {0, 1}n(λ), x′ ← A(x)] ≤ negl(λ)

Theorem 5.2.4. Assume that F is SPR. Let (KeyGen, Ver) be a relation where

KeyGen(1λ) samples sk
$← {0, 1}n(λ) and sets pk := F (sk), and Ver(sk, pk) outputs

1 iff pk = F (sk). Then this relation is an `-LR-OWR for any `(·) such that
`(λ) = n(λ)−m(λ)− ω(log(λ)).

Proof. Assume otherwise, that there exists an attacker A that break `-LW-OWR
security. That is, given pk = F (sk) and ` bits of leakage on sk, A and outputs sk∗

such that F (sk∗) = pk. Assume A succeeds with some non-negligible probability
ε(λ). Then we construct an attacker B that breaks SPR security with non-negligible

probability. The attacker B simply gets sk
$← {0, 1}n(λ), computes pk = F (sk) and

runs the attackerA with pk. It simulates the leakage oracle and answers the leakage
queries made by A honestly using its knowledge of sk. The attacker B wins as long
as both of the following two events occur: (1) the attacker A wins and outputs a
key sk∗ such that F (sk∗) = pk, and (2) the keys are different sk∗ 6= sk. Let us
denote the two events by E1, E2 respectively. Then

Pr[E1 ∧ E2] ≥ Pr[E1]− Pr[¬E2] ≥ ε(λ)− Pr[¬E2] ≥ ε(λ)− negl(λ). (5.1)

where, for the last inequality, we need to show Pr[¬E2] = negl(λ). But this we can
show information theoretically, relying on the fact that A just doesn’t have enough
information about sk to output it exactly. Let leak denote the leakage observed
by A (as a random variable over its randomness and that of sk). Then

H̃∞(sk | pk, leak) ≥ n(λ)−m(λ)− `(λ) ≥ ω(log(λ))

where the first inequality follows from Lemma 4.1.1. Therefore the probability
that A outputs sk after observing pk, leak is bounded by 2−ω(log λ) = negl(λ) as we
wanted to show.
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Using the result of Rompel [Rom90] which shows how to construct SPR func-
tions with arbitrarily large stretch from any one-way function, we get the following
corollary.

Corollary 5.2.5. Assuming the existence of one-way functions, there exists an `-
LR-OWR for any polynomial `(λ). Moreover, for any constant ε > 0, there exists
an `-LR-OWR where the ratio of leakage ` to the key size |sk| is (1− ε).

5.2.3 OWRs in the Continual Leakage Model

A continuous-leakage-resilient (CLR) one-way relation (OWR) consists of the
algorithms KeyGen and Ver as before, but also includes an update algorithm:

sk′ ← Updatepk(sk) : Update the secret key sk to sk′. We will omit the subscript
pk, when clear from context.

For convenience, we also implicitly define the algorithm that performs i ≥ 0 con-
secutive updates via:

sk′ ← Updatei(sk) : Let sk0 = sk, sk1 ← Update(sk0), . . . ski ← Update(ski−1).
Output sk′ = ski.

On a high level, a OWR is continuous-leakage-resilient if an adversary can
observe ` bits of leakage on each of arbitrarily many secret keys and the randomness
of the update, and still be unable to produce a valid secret key herself.

Definition 5.2.6 (CLR-OWR). We say that a scheme (KeyGen,Update, Ver) is an
`-continuous-leakage-resilient (`-CLR) one-way relation if it satisfies the following
correctness and security properties:

Correctness: For any polynomial i = i(λ) ≥ 0, if we sample (pk, sk)← KeyGen(1λ),
ski ← Updatei(sk), then Ver(pk, ski) = 1.

Security: For any PPT A, we have Pr[A wins ] ≤ negl(λ) in the following game:

• Challenger chooses (pk, sk) ← KeyGen(1λ) and gives pk to A. It samples
randomness ω for the first update and sets state = (sk, ω). It sets L = 0.

• A can adaptively make the following queries to the challenger:

– If L < ` then A can query the leakage-oracle Ostate(·) and get the ap-
propriate response. The challenger sets L := L+ 1.

– A can make an update query. The challenger parses state = (sk, ω),
sets sk′ := Update(sk;ω) and samples fresh randomness ω′. It updates
state := (sk′, ω′) and sets L := 0.

• A wins if at any point it produces a value sk∗ such that Ver(pk, sk∗) = 1.
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We also define a weaker variant of the above definition, called security with leak
free updates, where the value state only includes the current secret key sk and
not the randomness ω of the next update.

Remarks on Definition. By including the randomness ω of the next update in
the state that the attacker can leak on, we are modeling leakage that occurs during
the update process itself. That is, consider a device that initially stores the value
sk generated by KeyGen, and then continually updates it to a new key every time
period (say, every couple of seconds). Then, at any point in time when an update
is not running, the secret state of the device is fully described by the secret key sk.
However, during the time that the update is running, the secret state of the device
is fully described by state = (sk, ω) which includes the randomness ω used to run
the update. Therefore the weaker notion of security with leak-free updates models
the case where the device is only leaking in between updates, but not during the
update process itself. This is already an interesting notion of security which is
(highly) non-trivial to achieve.

Why Prior LR Techniques Fail for CLR. All of the prior works on bounded-
leakage memory-leakage attacks crucially relied on an entropy argument: given
the leakage and the public-key, the secret-key sk still had some entropy left. For
example, this was the main step of our argument for the leakage-resilience of SPR
functions. However, it is unclear how to translate this type of argument to the
setting of continuous leakage-resilience, where the total amount of information seen
by the adversary is unbounded.

Organization. We begin by showing a novel strategy for reasoning about con-
tinuous leakage in the next section (Section 5.3). We then instantiate this strategy
based on generic components in Section 5.4 and finally instantiate these compo-
nents under the linear assumption in Section 5.5. In all these sections, we only
focus on the weaker security notion of CLR-OWR with leak-free updates.
Then, in Section 5.6, we show that this notion already generically implies the
stronger security notion, where the randomness of the updates may leak as well,
albeit with a security-loss exponential in the amount of leakage. Lastly, in Sec-
tion 5.7, we discuss how to use CLR-OWR to construct CLR signatures.

5.3 Construction (Part I):

Continuous Leakage from Bounded Leakage

We now define a new primitive, called a leakage-indistinguishable re-randomizable
relation (LIRR), and show that it can be used to construct a secure CLR-OWR
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with leak-free updates. Although the definition of the new primitive is fairly com-
plex with several security requirements, its main advantage is that it reduces the
problem of continuous-leakage resilience for OWR to a simpler bounded-leakage-
resilience property, which we can reason about more easily.

A LIRR allows one to sample two types of secret-keys: “good” keys and “bad”
keys. Both types of keys look valid and are acceptable by the verification procedure,
but they are produced in very different ways. In fact, given the ability to produce
good keys, it is hard to produce any bad key and vice-versa. On the other hand,
even though the two types of keys are very different, they are hard to distinguish
from each other. More precisely, given the ability to produce both types of keys,
and ` bits of leakage on a “challenge” key of an unknown type (good or bad), it is
hard to come up with a new key of the same type.

More formally, a LIRR consists of PPT algorithms (Setup, SampG, SampB,
Update, Ver, isGood) with the following syntax:

• (pk, samG, samB, dk) ← Setup(1λ) : Outputs a public-key pk, “good” and
“bad” sampling-keys samG, samB, and a distinguishing-key dk.

• skG ← SampGpk(samG), skB ← SampBpk(samB): These algorithms sample
good/bad secret-keys using good/bad sampling keys respectively. We omit
the subscript pk when clear from context.

• b = isGood(pk, sk, dk): Uses dk to distinguish good/bad secret-keys sk.

• sk′ ← Updatepk(sk), b = Ver(pk, sk). These have the same syntax as in the
definition of CLR-OWR.

Definition 5.3.1 (LIRR). We say that the scheme (Setup, SampG, SampB, Update,
Ver, isGood) is an `-leakage-indistinguishable re-randomizable relation ( `-LIRR)
if it satisfies the following properties:

Correctness: If (pk, samG, samB, dk)← Setup(1λ), skG ← SampG(samG),
skB ← SampB(samB) then w.o.p. the following holds:

Ver(pk, skG) = 1, isGood(pk, skG, dk) = 1

Ver(pk, skB) = 1, isGood(pk, skB, dk) = 0

Re-randomization: We require that updates re-randomize the good keys:

(pk, samG, sk0, sk1)
comp
≈ (pk, samG, sk0, sk

′
1),

where
(pk, samG, samB, dk)← Setup(1λ)

sk0 ← SampG(samG), sk1 ← SampG(samG), sk′1 ← Update(sk0)
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Hardness of Bad Keys: Given samG, it’s hard to produce a valid “bad key”.
Formally, for any PPT adversary A:

Pr

[
Ver(pk, sk∗) = 1

isGood(pk, sk∗, dk) = 0

∣∣∣∣ (pk, samG, samB, dk)← Setup(1λ)
sk∗ ← A(pk, samG)

]
≤ negl(λ)

Hardness of Good Keys: Given samB, it’s hard to produce a “good key”. For-
mally, for any PPT adversary A:

Pr

[
isGood(pk, sk∗, dk) = 1

∣∣∣∣ (pk, samG, samB, dk)← Setup(1λ)
sk∗ ← A(pk, samB)

]
≤ negl(λ)

`-Leakage-Indistinguishability: Informally, this property says that given both
sampling keys samG, samB, and ` bits of leakage on a secret-key sk (which
is either good or bad), it is hard to produce a secret-key sk∗ which is in
the same category as sk. Formally, for any PPT adversary A, we have∣∣Pr[A wins ]− 1

2

∣∣ ≤ negl(λ) in the following game:

• The challenger chooses (pk, samG, samB, dk) ← Setup(1λ) and gives

pk, samG, samB to A. The challenger also chooses a random bit b
$←

{0, 1}. If b = 1 then it samples sk ← SampG(samG), else it samples
sk ← SampB(samB). It sets state := sk.

• A can make up to ` queries in total to the leakage-oracle Ostate(·).

• A outputs sk∗ and wins if isGood(pk, sk∗, dk) = b.

An `-LIRR can be used to construct an `-CLR-OWR with leak-free updates,
where the Update, Ver algorithms are kept the same, while KeyGen samples pk and
a “good” secret key skG (see Figure 5.1). Note that the CLR-OWR completely
ignores the bad sampling algorithm SampB, the “bad” sampling key samB, the
distinguishing algorithm isGood, and the distinguishing key dk of the LIRR. These
are only used in the argument of security. Moreover, the “good” sampling key samG

is only used as an intermediate step during key-generation to sample the secret-key
sk, but is never explicitly stored afterwards.

KeyGen(1λ): Sample (pk, samG, ·, ·)← Setup(1λ), sk ← SampG(samG).
Output (pk, sk).

Update, Ver: Same as for LIRR.

Figure 5.1: Constructing CLR-OWR from a LIRR
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Security Intuition. We argue that the above construction is secure. Assume
an adversary attacks the construction and, after several leakage-rounds, produces
a valid secret key sk∗. Since the adversary does not see any information related
to the bad sampling key samB, we can use the hardness of bad keys property to
argue that sk∗ must be a “good” key. However, we then argue that the adversary
cannot notice if we start switching good keys to bad keys in the leakage rounds.
More precisely, we define several hybrid games, where each game differs from the
previous by replacing a good key with a bad key in one additional leakage round.
We argue that, by the `-leakage-indistinguishability property, the probability that
the adversary produces a good key sk∗ as her forgery does not change between
any two hybrids. Notice that this argument allows us to only analyze leakage in a
single round at a time, and thus avoids the main difficulty of analyzing continuous
leakage. In the last of the hybrids, the adversary only sees “bad keys”, yet still
manages to produce a good key sk∗ as her forgery. But this contradicts the hardness
of good keys property, and proves the security of the scheme.

Theorem 5.3.2. Given any `-LIRR scheme, the construction in Figure 5.1 is a
secure `-CLR-OWR.

Proof. The correctness properties of CLR-OWR follow from the correctness/re-
randomization of the LIRR. Let A be any polynomial-time attacker whose proba-
bility of winning the `-CLR-OWR security game (with leak-free updates) is ε(λ).
We use a series-of-games argument to argue that ε is negligible:

Game 0: This is the original `-CLR Game from Definition 5.2.6. the challenger
initially samples (pk, samG, samB, dk)← Setup(1λ), sk1 ← SampG(samG) and
gives pk to A. It sets state = sk1. At the end of each leakage round, it
pareses ski = state, updates ski+1 ← Update(ski), and sets state = ski+1.

By assumption, the probability that A wins in this game is ε(λ).

Game 1: In this game, the challenger initially samples (pk, samG, samB, dk) ←
Setup(1λ) sk1 ← SampG(samG) and gives pk to A. The game them proceeds
as before with many leakage rounds, except that the secret key used in each
leakage-round i is chosen at fresh as ski ← SampG(samG), and independently
of all previous rounds.

Games 0 and 1 are indistinguishable by the re-randomization property (ap-
plied q times, where q is the total number of leakage-rounds). Therefore,
Pr[A wins Game 1] ≥ ε(λ)− negl(λ).

Game 2: Game 2 is the same as Game 1, except that we modify the winning-
condition to say that the adversary only wins if, at the end, it outputs a
“good” sk∗ such that isGood(pk, sk∗, dk) = 1. Notice that the winning
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condition now cannot be checked by the attacker (since it does not know
dk).

Let E be the event that, at the end of Game 1, A ends up outputting a value
sk∗ which satisfies Ver(pk, sk∗) = 1 ∧ isGood(pk, sk∗, dk) = 0. Then

Pr[Awins in Game 2] ≥ Pr[Awins in Game 1]− Pr[E]

We argue that Pr[E] is negligible. This follows directly by the hardness of
bad keys and the observation that the entire view of the attacker in Game
1 can be simulated from pk, samG alone. Therefore Pr[A wins Game 2] ≥
ε(λ)− negl(λ).

Games 2.i - 3: Let q be the total number of leakage rounds for which A runs.
We define the Games 2.i for i = 0, 1 . . . , q as follows. The challenger ini-
tially samples (pk, samG, samB, dk) ← KeyGen(1λ) and gives pk to A. The
game then proceeds as before with many leakage rounds, except that the
secret keys in rounds j ≤ i are chosen randomly and independently via
skj ← SampB(samB), and in the rounds j > i, they are chosen randomly and
independently as skj ← SampG(samG). Note that Game 2.0 is the same as
Game 2, and we define Game 3 to be the same as Game 2.q.

We use the `-Leakage Indistinguishability property to argue that, for i =
1, . . . , q, the winning probability of A is the same in Game 2.(i − 1) as in
Game 2.i, up to negligible factors:

Pr[A wins Game 2.i] ≥ Pr[A wins Game 2.(i− 1)]− negl(λ)

Assuming otherwise, we construct a reduction B which breaks leakage in-
distinguishability. The reduction simulates As view in leakage-rounds j < i
using samB and rounds j > i using samG. For round i, the reduction sim-
ulates leakage by calling its own leakage-oracle, on the challenge secret-key.
At the end, B outputs the value sk∗ output by A. If B’s challenger uses a
good key then that corresponds to the view of A in game 2.(i − 1) and a
bad key corresponds to game 2.i. Therefore, letting b be the bit used by Bs
challenger:∣∣∣∣Pr[B wins ]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[isGood(pk, sk∗, dk) = b]− 1

2

∣∣∣∣
=

1

2

∣∣∣∣ Pr[isGood(pk, sk∗, dk) = 1 | b = 1]
−Pr[isGood(pk, sk∗, dk) = 1 | b = 0]

∣∣∣∣
=

1

2

∣∣∣ Pr[A wins in Game 2.(i− 1)]− Pr[A wins in Game 2.i]
∣∣∣
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Therefore, by applying the hybrid argument, we get Pr[A wins in Game 3] ≥
ε(λ)− negl(λ).

Can’t Win Game 3: We now argue that probability of A winning game 3 is
negligible, by the hardness of good keys. Notice that A’s view in Game 3
can be simulated entirely just given pk, samB. Therefore, there is a PPT
algorithm which, given pk, samB as inputs, can run Game 3 with A and
output sk∗ such that isGood(pk, sk∗, dk) = 1 whenever A wins.

So ε(λ)−negl(λ) is itself negligible, which implies that ε(λ) must be negligible
as well, as we wanted to show.

5.4 Construction (Part II): Generic Components

5.4.1 Syntax of Construction and Hardness Properties

We now instantiate an `-LIRR using two public-key encryption schemes and a
NIZK argument system. See Section 4.5 for a review of NIZKs.

Overview of Construction. We first start by describing the high level idea
and the syntax of the construction. Let E1 = (KeyGen1,Encrypt1,Decrypt1),
E2 = (KeyGen2,Encrypt2,Decrypt2) be two public-key encryption schemes, with per-
fect correctness (we will define the security properties that we need from them later
on). We define the plaintext equality relation for the schemes E1, E2 by:

Req
def
=

{
(y, x)

∣∣∣∣ y = (pk1, pk2, c1, c2),
x = (m, r1, r2)

s.t.
c1 = Encrypt1pk1(m; r1),
c2 = Encrypt2pk2(m; r2)

}
.

The corresponding language Leq := {y : ∃x, (y, x) ∈ Req}, is the language of
honestly generated ciphertext pairs that encrypt the same plaintext. Let Π =
(SetupΠ, ProvΠ, VerΠ, SetupSimΠ, SimΠ) be a NIZK argument system for Req.
We will often omit the public-keys pk1, pk2 from the descriptions of statements
y ∈ Leq, when clear from context.

We will assume that the schemes E1, E2,Π can be “tied together” by sharing
some common system parameters prms ← ParamGen(1λ) (e.g. the description
of some group) which are implicitly used as inputs by all of the algorithms of
each of the schemes. The parameters define a common message-space M for the
schemes E1, E2. The basic syntax of our construction of LIRR, except for the re-
randomization algorithm, is shown in Figure 5.2. The main idea is to encrypt a
random message m using the scheme E1, and put the ciphertext c1 in the public-
key. The secret key consists of a ciphertext/proof pair (c2, π). In a good secret-key,
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c2 is a new random encryption of m under E2, and π is a proof of plaintext-equality.
In a bad secret-key, c2 is just an encryption of some fixed message 0M, and π is a
simulated proof. The secret keys sk1, sk2 of the encryption scheme can be used to
distinguish “good keys” from “bad keys”. Verification just checks that the proof
π verifies as a valid proof of ciphertext equality for (c1, c2).

Setup(1λ): Output pk = (prms,crs, pk1, pk2, c1), samG = (m, r1),
samB = tk, dk = (sk1, sk2) where:

prms← ParamGen(1λ),

(crs,tk)← SetupSimΠ(prms),

(pk1, sk1)← KeyGen1(prms), (pk2, sk2)← KeyGen2(prms)

m←M, c1 ← Encrypt1pk1(m; r1)

SampG(samG): Output skG = (c2, π) where: c2 ← Encrypt2pk2(m; r2),

π ← ProvΠ((c1, c2), (m, r1, r2)).

SampB(samB): Output skB = (c2, π) where: c2 ← Encrypt2pk2(0M),

π ← SimΠ((c1, c2),tk).

Ver(pk, sk): Parse sk = (c2, π) and output VerΠ((c1, c2), π).

isGood(pk, sk, dk): Parse sk = (c2, π), dk = (sk1, sk2).
Output 1 iff Decrypt1sk1(c1) = Decrypt2sk2(c2).

Figure 5.2: Constructing LIRR

It is easy to see that the scheme satisfies the correctness property. The hardness
of bad keys, follows directly from the soundness of the NIZK argument system. The
hardness of good keys, on the other hand, follows is we assume that the encryption
scheme E1 has one-way security (see ), which is weaker than semantic-security and
only requires that an encryption of a random message is hard to invert.

Lemma 5.4.1. Assume that E1 is a one-way secure encryption scheme, E2 is
semantically secure, and Π is a NIZK. Then the construction of LIRR in Figure 5.2
satisfies the correctness, hardness of good keys and hardness of bad keys properties
from Definition 5.3.1.

Proof. We prove correctness, hardness of good keys and hardness of bad keys one
at a time.

Correctness. Assume that we sample pk, samG, samB, dk, skG, skB as specified.
By the correctness of the encryption schemes, we have isGood(pk, skG, dk) = 1.
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On the other hand isGood(pk, skB, dk) = 0, unless the message m encrypted by
the ciphertext c1 is the value m = 1, which only occurs with negligible probabil-
ity.1 Finally, we show that Ver(pk, skG) = Ver(pk, skB) = 1 with overwhelming
probability. Assume otherwise. Letting E be the event that Ver(pk, skG) = 0 or
Ver(pk, skB) = 0, there is therefore a non-negligible probability of E occurring.
Let us switch how we generate the public-key pk and the values skB. Firstly, let us
choose the ciphertext c2 in skB in the same way as skG, via c2 ← Encrypt2pk2(m; r2),
to be an encryption of the same message m as contained in c1 instead of the value
0. Then the event E still has a non-negligible probability of occurring by seman-
tic security of E2. Secondly, let us choose the proof π in the key skB to be an
honestly generated proof of ciphertext equality π ← ProvΠ((c1, c2); (m, r1, r2)).
Thirdly, let us choose the value crs in the public key to be honestly generated via
crs ← SetupΠ(prms). Then the event E still has a non-negligible probability of
occurring by the zero-knowledge property of Π. However, now this contradicts the
completeness of the NIZK since both keys skG, skB now contain honestly generated
proofs of true statements under an honestly generated crs.

Hardness of bad keys. Assume that there is a poly-time attacker sk∗ ←
A(pk, samG) and that Pr [Ver(pk, sk∗) = 1, isGood(pk, sk∗, dk) = 0] is non-negligible.
Firstly, we argue that this probability remains non-negligible even if we change the
value crs (contained in pk) to being chosen honestly via crs ← Setup(prms) in-
stead of using the simulator. This just follows by the ZK property of the NIZK
(and that the entire above experiment is independent of tk). But now A breaks
the soundness of the NIZK argument system Π. That is, the value sk∗ = (c2, π)
defines the statement (c1, c2) such that:

1. (c1, c2) 6∈ Leq whenever isGood(pk, sk∗, dk) = 0 (by the correctness of en-
cryption).

2. VerΠ((c1, c2), π) = 1 whenever Ver(pk, sk∗) = 1.

Therefore A gives a poly-time attack against the soundness of the NIZK.

Hardness of good keys. This property follows by the one-wayness of E1. In
particular, assume we are given a one-wayness challenge pk1, c1. Then we use an
attacker A that breaks hardness of good keys to recover the message m contained
in c1. We simply choose everything else crs,tk, pk2, sk2 ourselves (honestly) and
use these to create the values pk, samB for A, where the challenge ciphertext c1

is embedded in pk. The attacker A outputs sk∗ = (c∗2, π
∗) which has a non-

negligible probability of satisfying isGood(pk, sk∗, dk) = 1 (we cannot check this

1The value m is chosen at random from the message spaceM, which must be super-polynomial
for one-way security to hold.
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since we do not know dk). Nevertheless, we can just use the key sk2 to decrypt
m∗ = Decrypt2sk2(c

∗
2) and output it, thus breaking one-wayness with non-negligible

probability.

We are left to show (1) how to re-randomize secret keys, and (2) that the
leakage-indistinguishability property holds. We do so in the next two sections, by
requiring additional properties from the building-blocks E1, E2,Π.

5.4.2 Re-randomization via Homomorphisms

We now show how to perfectly re-randomize the secret keys of our LIRR con-
struction. Recall that a secret-key consists of a pair (c2, π) where π is a proof of
plaintext-equality for the statement (c1, c2). Therefore, to re-randomize the key, we
need to first re-randomize the ciphertext c2 into a new ciphertext c∗2 with the same
plaintext. We then need to update the proof π to look like a fresh new proof of a
new statement (c1, c

∗
2), for which we do not know the witness! We show that this is

indeed possible if the encryption schemes E1, E2 and the argument-system Π are all
homomorphic over some appropriate group. In particular, we define a new notion
of homomorphic NIZKs, which is influenced by the notions of re-randomizable
and malleable NIZKs from [BCC+09]. Throughout this section we assume that
the schemes E1, E2,Π share system parameters prms← ParamGen(1λ) which define
some group structure over the message/randomness/ciphertext spaces. Through-
out, we denote abstract group operations as “+” (addition) and the identity ele-
ments as 0.

Definition 5.4.2 (Homomorphic Encryption). We say that an encryption scheme
(KeyGen,Encrypt,Decrypt) is homomorphic if the system-parameters of the scheme
define groups M,R, C for the message-space, randomness-space, and ciphertext-
space respectively, such that, for any m,m′ ∈M any r, r′ ∈ R:

c = Encryptpk(m; r), c′ = Encryptpk(m
′; r′) ⇒ c+c′ = Encryptpk(m+m′; r+r′)

It is easy to see that for any homomorphic encryption scheme and any public-key
pk, we have Encryptpk(0M; 0R) = 0C (i.e. encryption of the identity -message under
identity-randomness gives an identity-ciphertext).

Definition 5.4.3 (Linear Relation). We say that a relation R ⊆ Y × X is linear
if Y ,X are groups and, for any (y, x), (y′, x′) ∈ R, we have (y + y′, x+ x′) ∈ R.

Definition 5.4.4 (Homomorphic NIZK). We say that a NIZK argument-system
(Setup, Prov, Ver, Sim) for a linear-relation R ⊆ Y × X is homomorphic if there
are groups R,P for the randomness of the prover and the proof respectively, such
that for any (y, x), (y′, x′) ∈ R, any r, r′ ∈ R:

π = Prov(y, x; r), π′ = Prov(y′, x′; r′) ⇒ π + π′ = Prov(y + y′, x+ x′; r + r′)

46



where π, π′ ∈ P.

We now connect the above definitions of homomorphic primitives to our construc-
tion in Figure 5.2, showing how to re-randomize the secret-keys if E1, E2, and Π
are homomorphic. First, we show that the plaintext-equality linear if we fix the
public-keys pk1, pk2. That is, for each pk1, pk2, define the relation R

(pk1,pk2)
eq ⊆ Req

where pk1, pk2 are fixed and the statements only consist of (c1, c2). It is easy to
verify the following lemma.

Lemma 5.4.5. If E1, E2 are homomorphic with a common message-group M, and
respective randomness-groups R1,R2, and ciphertext-groups C1, C2, then for any
pk1, pk2, the relation R

(pk1,pk2)
eq is a linear relation over Y = C1 × C2 and X =

M×R1 ×R2.

Proof. Let (c1, c2), (c′1, c
′
2) ∈ L(pk1,pk2)

eq be two statements with respective witnesses
(m, r1, r2) and (m′, r′1, r

′
2) so that c1 = Encrypt1pk1(m; r1), c2 = Encrypt2pk2(m; r2) and

c′1 = Encrypt1pk1(m
′; r′1), c′2 = Encrypt2pk2(m

′; r′2).

Then the statement (c1 + c′1, c2 + c′2) ∈ L(pk1,pk2)
eq is a true statement having the

corresponding witness (m + m′, r1 + r′1, r2 + r′2) since c1 + c′1 = Encrypt1pk1(m +

m′; r1 + r′1) and c2 + c′2 = Encrypt2pk2(m+m′; r2 + r′2).

To simplify the discussion, we will say that a proof-system Π for Req is homo-
morphic if, for every fixed choice of the public-keys pk1, pk2, it is homomorphic
for the linear relations R

(pk1,pk2)
eq . Now assume that E1, E2 are two homomorphic

encryption schemes satisfying the requirements of Lemma 5.4.5, and that Π is a
homomorphic NIZK for Req, with randomness-group R3 and proof-group P . In
Figure 5.3, we show how to re-randomize the secret keys of our LIRR construction
from Figure 5.2.

Update(sk): Parse sk = (c2, π). Choose (r′2, r
′
3)

$← R2 ×R3.
Set c′2 := Encrypt2pk2(0M; r′2), π′ := ProvΠ((0C1 , c

′), (0M, 0R1 , r
′
2); r′3).

Output sk∗ = (c+ c′, π + π′).

Figure 5.3: Re-randomization

The main idea is to re-randomize the ciphertext c2 in the secret key (without
modifying the encrypted message), by adding in a random encryption c′2 of the
message 0. We then need to update the proof π in the secret key to look like a
fresh new proof of the new true statement (c1, c2 + c′2) ∈ Leq. We do so by adding
to π a randomly generated proof π′ of the true statement (0C2 , c

′
2) ∈ Leq (recall

that the 0 ciphertext encrypts the 0 message using the 0 randomness).

Lemma 5.4.6. The re-randomization method in Figure 5.3 satisfies the re-randomization
of LIRR (Definition 5.3.1).
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Proof. Fix any pk = (pk1, pk2,crs, c1), samG = (m, r1) output by KeyGen and
skG = (c2, π) output by SampG(samG). Then there exist some r2, r3 for which

c1 = Encrypt1pk1(m; r1) , c2 = Encrypt2pk2(m; r2) , π = Prov((c1, c2), (m, r1, r2); r3).

If we sample sk∗ ← Update(skG), we have sk∗ = (c∗2, π
∗) with c∗2 = c2 + c′2, π

∗ =
π + π′ where:

c∗2 = c2 + c′2 = c2 + Encryptpk2(0M; r′2) = Encryptpk2(m; r2 + r′2)

π∗ = π + π′ = π + Prov((0C1 , c
′
2), (0M, 0R1 , r

′
2); r′3)

= Prov((c1, c
∗
2), (m, r1, r2 + r′2); r3 + r′3)

for some fresh random values r′2, r
′
3. Letting r∗2 = r2 + r′2 and r∗3 = r3 + r′3, we see

that c∗2 is a fresh new encryption of m under randomness r∗2 and π∗ is a fresh proof of
ciphertext equality under randomness r∗3. Therefore, sampling sk∗ ← Update(skG)
is exactly the same as sampling sk∗ ← SampG(samG), even after fixing any choice of
pk, samG, skG. This shows that the re-randomization property holds with perfect
distributional equality.

5.4.3 Leakage-Indistinguishability

We are left to show the leakage-indistinguishability of our construction. To
do so, we need to define a new security property, called leakage-of-ciphertext non-
malleability, for the encryption scheme E2. Intuitively, this property says that,
given ` bits of leakage on a ciphertext c, the adversary cannot produce a related
ciphertext c∗.

Definition 5.4.7 (Leakage-of-Ciphertext Non-Malleable Encryption). A public-
key encryption scheme E = (KeyGen, Encrypt, Decrypt) is `-leakage-of-ciphertext
non-malleable (`-LoC NM) if, for any PPT adversary A, we have∣∣Pr[A wins ]− 1

2

∣∣ ≤ negl(λ) in the following game:

• Challenger samples (pk, sk)← KeyGen(1λ) and gives pk to A.

• A chooses two messages m0,m1 ∈Mpk and gives these to the challenger.

• Challenger samples b
$← {0, 1}, c← Encryptpk(mb), and sets state := c

A can make up to ` queries to the leakage oracle Ostate(·).

• A chooses a single arbitrary value c∗ and the challenger responds with m∗ =
Decryptsk(c

∗) to A.

• A outputs a bit b̃ and wins if b̃ = b.
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Remarks on the Definition. Note that, in the definition, the leakage is only
on the ciphertext c and not on the secret-key sk. It is easy to see that even
1-LoC-NM security (i.e. adv. gets only 1 bit of leakage) already implies semantic-
security, since a 1-bit leakage function can run the distinguisher. On the other
hand, the standard notion of non-malleable encryption from [DDN91] implies `-
LoC-NM security where ` approaches the message-size of the scheme. This is
because an adversary that leaks less than ` bits about a ciphertext c is unlikely to
be able to re-produce c exactly, and the decryption of any other ciphertext c∗ 6= c
safely keeps the challenge message hidden. However, non-malleable encryption
is inherently not homomorphic while, as we will soon see, Leakage-of-Cipherext
Non-malleable encryption can indeed be homomorphic as well.

Application to Leakage-Indistinguishability. We now show that, if the scheme
E2 in our construction is `-LoC-NM, then the construction satisfies `-leakage-
indistinguishability (Definition 5.3.1). This is because the ability to create a “re-
lated secret-key” which is in the same category as a challenge key on which we can
leak, requires the ability to create a “related ciphertext” which encrypts the same
message as another ciphertext on which we can leak.

Lemma 5.4.8. Assume that, in the construction of LIRR in Figure 5.2, the
scheme E2 is `-LoC-NM and Π is a secure NIZK. Then the construction satis-
fies the leakage-indistinguishability property of LIRR (Definition 5.3.1).

Proof. Assume A is a PPT adversary which has a non-negligible advantage in the
leakage-indistinguishability (LI) game of Definition 5.3.1.

Consider the following modification to the LI game. In the original LI game, if
the challenger’s bit is b = 1, then the challenger samples the challenge secret-key
s̃k = (c̃, π̃)← SampG(samG). Therefore, c̃ is a random encryption of m, and π is an

honestly generated proof for the statement (c1, c2) ∈ L(pk1,pk2)
eq under the witness

(m, r1, r2). In the modified-LI game, if the challenger’s bit is b = 1, then the
challenger samples c̃ as before, but uses a simulated proof π̃ ← SimΠ((c1, c2),tk).

The adversary’s probability of winning in the modified LI game is the same
as that of the original game, up to negligible factors, by the (composable) NIZK
property of the proof system Π (note that we need composable NIZK, since the
adversary sees samB which includes the trapdoor tk for the proof system Π).

We now show how to use any adversary A that attacks the modified LI game
to construct a reduction B that attacks the LoC-NM game.

1. The reduction B initially gets a challenge public-key, which it sets as pk2.
In addition B samples and the values (pk1, sk1), (crs,tk), samG = (m, r),
samB = tk and c1 = Encryptpk1(m; r) just as the honest key-generation algo-
rithm of the LIRR construction. It gives pk = (crs, pk1, pk2, c1), samG, samB

to A.
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2. The reduction B chooses challenge messages m0 = 0M, m1 = m and gives
these to its challenger.

3. The adv. A expects to make up to ` calls to a leakage-oracle (simulated
by B) on a secret key s̃k = (c̃, π̃). The reduction B initially chooses some
randomness r for a NIZK simulator. Then, for each function h chosen by A
(recall h expects a value s̃k = (c̃, π̃) as input), the adv. B creates a function
h′ (which expects only c̃ as input, and contains tk, r hard-coded) such that
h′(c̃) computes π̃ = Sim((c1, c̃), tk; r) and then outputs h(c̃, π̃). The reduction
B then passes h′ to its own leakage-oracle on the challenge ciphertext c̃. 2

4. When A outputs sk∗ = (c∗, π∗), the reduction B gives c∗ to its challenger
and, if it gets back the message m, it outputs b̃ = 1. Else it outputs b̃ = 0.

We now argue that the reduction B wins the `-LoC game with the exact same
probability that A wins in the modified-LI game, which concludes the proof. This
is because, no matter what bit b is chosen by the challenger in the `-LoC-NM
game, the simulated view of A above is exactly that of the modified LI game with
challenge-bit b. Moreover, B wins (outputs b̃ = b) whenever A wins (outputs sk∗

such that isGood(pk, sk∗, dk) = b).

5.4.4 Summary of Component Requirements

The following theorem follows directly from Lemmata 5.4.1, 5.4.6 and 5.4.8 and
Theorem 5.3.2.

Theorem 5.4.9. For any function `(·) such that `(λ) ≥ 1, the construction in
Figure 5.2, with the re-randomization procedure in Figure 5.3, is a secure `-LIRR
as long as the components E1, E2,Π satisfy:

• E1, E2 are homomorphic encryption schemes with perfect correctness and a
common message-space M.

• E1 is one-way secure and E2 is `-LoC-NM secure.

• Π is a homomorphic NIZK for the plaintext-equality relation Req.

Therefore, the existence of such E1, E2,Π implies the existence of a `-CLR-OWR.

For clarity, we also provide a stripped-down construction of (just) the CLR-OWR
from the schemes E1, E2,Π, without the additional layer of abstraction provided by
LIRR. This construction is shown in Figure 5.4.

2Essentially, we are saying that B can correctly simulate ` bits of leakage on s̃k = (c̃, π̃) given
` bits of leakage on c̃ alone, by having the leakage-functions simulate π̃.
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KeyGen(1λ): Output pk = (prms,crs, pk1, pk2, c1), sk = (c2, π) where:

prms← ParamGen(1λ), (crs, ·)← SetupΠ(prms)

(pk1, ·)← KeyGen1(prms), (pk2, ·)← KeyGen2(prms)

m←M, c1 ← Encrypt1pk1(m; r1)

c2 ← Encrypt2pk2(m; r2), π ← ProvΠ((c1, c2), (m, r1, r2))

Ver(pk, sk): Parse sk = (c2, π) and output VerΠ((c1, c2), π).

Update(sk): Parse sk = (c2, π). Choose (r′2, r
′
3)

$← R2 ×R3.
Set c′2 := Encrypt2pk2(0M; r′2), π′ := Prov((0C1 , c

′
2), (0M, 0R1 , r

′
2); r′3).

Output sk∗ = (c2 + c′2, π + π′).

Figure 5.4: CLR-OWR from Components E1, E2,Π

5.5 Construction (Part III):

Instantiating the Components

In this section, we now show how to instantiate the homomorphic encryption
and NIZK schemes E1, E2,Π so as to satisfy the requirements of Theorem 5.4.9.
We will do so under the k-linear assumption in Bilinear Groups. The main tool
here will be the Groth-Sahai (GS) NIZK argument system, which we notice to be
homomorphic. Below, we present the concrete constructions of all three schemes.
It is useful to review the linear-algebra and matrix-in-the-exponent notation from
the Preliminaries cahapter.

5.5.1 The encryption scheme E1

Let k ∈ Z+. Let prms = (q,G,g) where (p,G,g)← G(1λ).

KeyGen(prms): Choose (x1, x2, . . . , xk)← Fkq . Set f1 := gx1 , . . . , fk := gxk0 .
Output sk = (x1, . . . , xk), pk = (f1, . . . , fk).

Encryptpk(m): Choose (r1, . . . , rk)← Fkq . Output c := (m · g
∑k

i=1 ri , f r11 , . . . , f rkK ).

Decryptsk(c): Parse c = (c0, c1, . . . , ck). Output c0/
(∏k

i=1 ci
1/xi
)

.

Figure 5.5: Generalized k-linear ElGamal

For the encryption scheme E1, we can use any homomorphic one-way secure
encryption. We simply choose to use a generalization of the ElGamal encryption
scheme to the k-linear assumption, as shown in Figure 5.5.
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Theorem 5.5.1. For any K ≥ 1, the generalized ElGamal scheme (Figure 5.5)
is semantically-secure and one-way secure under the k-linear assumption. Fur-
thermore, it is homomorphic over the message-group M = G, randomness-group
R = FKq and ciphertext-group C = GK+1.

Proof. Follows directly from the k-linear assumption, which shows that given pk =
(f1, . . . , fK) and f r11 , . . . , f

rK
K , the value g

∑K
i=1 ri is indistinguishable from uniformly

random.

5.5.2 The encryption scheme E2

Let k, n ∈ Z+. Let prms = (q,G,g) where (q,G,g)← G(1λ).

KeyGen(prms): Choose u1, . . . , uk
$← Fq and define

A :=


1 u1 0 . . . 0
1 0 u2 . . . 0
...

...
...

. . .
...

1 0 0 . . . uk


Choose ~x0

$← Fk+1
q , X

$← F(k+1)×n
q .

Output pk = (gA,gA~x
>
0 ,gAX), sk = (~x0, X).

Encryptpk(m): Parse pk = (gA,g
~b,gB). To encrypt a message m ∈ G:

Choose ~r
$← Fkq . Output c := (g~rA,g~r·

~bTm,g~rB).

Decryptsk(c): Parse c = (g~y,h,g~v) (without knowing the exponents ~y,~v).

Use component X of sk to verify g~yX
?
= g~v and output ⊥ if this fails.

Else use ~x0 to compute m = hg−~y·~x
>
0 .

Figure 5.6: Generalized CS-Lite Scheme

For the scheme E2, we need a homomorphic encryption satisfying `-LoC-NM
security. Our scheme is shown in Figure 5.6. For those familiar with Cramer-
Shoup -encryption [CS98] and and hash-proof systems [CS02], we observe that
our scheme is a generalization of the “Cramer-Shoup Lite” (CS-Lite) encryption
scheme. There are two main differences in our scheme. Firstly, the scheme is
generalized to be secure under the k-linear assumption for any k ≥ 1 (we note that
similar generalizations of Cramer-Shoup to the k-linear assumption were already
shown in [Sha07, CCS09]). Secondly, we can make the “verification element”
arbitrarily long, consisting of n group elements for any n ≥ 1 (we recover CS-Lite
by setting k = 1, n = 1). Implicitly, we will show that `-LoC-NM security can
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be constructed from any “1-universal hash proof system” (of which CS-Lite is an
example), with sufficiently long proofs, where the leakage ` is proportional to the
size of the proof. But, since we will need a scheme based on k-linear to make
it work with Groth-Sahai NIZKs, we restrict ourselves to the concrete scheme in
Figure 5.6 and do not discuss the greater generalization to hash proof systems
any further. The discussion here is self-contained and does not require any prior
knowledge of CS-Lite or of hash-proof systems.

Proof intuition. The high level idea of the proof goes as follows. By the k-linear
assumption (matrix form), the adversary cannot distinguish a correctly generated
challenge ciphertext from one computed as (g~y,g~y·~x

>
0 m,g~yX) where g~y is uniformly

random and the other components are efficiently computable from it and the secret
key. This is true even if the attacker gets the ciphertext in full, let alone if it
can only leak on it. With the above modification, the second component of the
challenge ciphertext is uniformly random over the randomness of the secret vector
~x0 (even conditioned on the public-key), and hence m is statistically hidden by the
ciphertext and the public-key. We only have to argue that the decryption query
does not reveal any further information on ~x0 and therefore keeps m hidden. Let
the ciphertext c∗ in the decryption query be denoted by c∗ = (g~y

∗
,h∗,g~v

∗
). If

~y∗ = ~r∗A for some ~r∗ (i.e. is in the row-span of A), then the decrypted message
m∗ is completely determined by the public-key exponent A~xT0 alone, and does not
reveal any additional information about ~x0. On the other hand, if ~y∗ is not in the
row-span of A, we argue that c∗ decrypts to ⊥ with overwhelming probability and
hence the response to the query does not reveal any information either. Consider
the value g~y

∗X , used during decryption to check “well-formedness” of c∗. This value
is uniformly random over the randomness of the secret matrix X, even conditioned
on the public value gAX . Unfortunately, it is not independent of the challenge-
ciphertext component g~yX . For example, if the attacker chooses g~y

∗
= gb~y for some

known constant b, then g~y
∗X = gb~yX is completely determined from g~yX . However,

since the adversary only sees ` bits of leakage on the challenge ciphertext, the value
g~y
∗X has sufficient entropy even conditioned on everything that the attacker sees,

that the attacker cannot guess it with anything better than negligible probability.
Therefore, the attacker will be unable to produce a valid ciphertext of this latter
form.

Theorem 5.5.2. For any k ≥ 1, n ≥ 1, the generalized CS-Lite scheme (Fig-
ure 5.6) is an `-LoC-NM secure encryption under the k-linear assumption with
` = n log(q) − λ, where q is the group size. Furthermore it is a homomorphic
over the message-group M = G, randomness-group R = Fkq , and ciphertext-group
C = Gn+k+2.

Proof. The scheme satisfies perfect correctness since, for an honestly generated
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encryption c := (g~y,h,g~v) = (g~rA,g~rA~x
>
0 m,g~rAX) of the message m we have:

• The verification check passes since g~yX = g~rAX = g~v.

• The decrypted message is hg−~y·~x
>
0 = mg~rA~x

>
0 g−~y·~x

>
0 = m.

For security, we first prove the following simple claim.

Claim 5.5.3. Fix any matrix A matching the form of Figure 5.6 and assume
that ui 6= 0 for all i. Fix any ~y ∈ Fk+1

q \ rowspan(A). Then, over a random

~x
$← Fk+1

q , the distribution of (A~x>, ~y · ~x>) uniformly random over Fk+1
q .

Proof. This follows from the fact that the rows of A, together with the vector
~y, span all of Fk+1

q and so the linear map fA,~y(~x)
def
= (A~x>, ~y ·~x>) is bijective.

Returning to the proof of Theorem 5.5.2, we now do a series-of-games argument
to show that the scheme satisfies `-LoC-NM security.

Game 0: Let Game 0 be the original `-LoC-NM game from Definition 5.3.1.

Game 1: In this game, the challenge ciphertext is distributed incorrectly. Instead

of honestly encrypting mb, the challenger chooses ~y
$← Fk+1

q and sets

c := (g~y,g~y·~x
>
0 m,g~yX)

Notice that c is computed efficiently using knowledge of the secret key ~x0, X.
The only difference is that, instead of ~y being random over rowspan(A), it is
now uniformly random over all of Fk+1

q .

We argue that the probability of A winning in Games 0 and 1 differs by
at most negligible factors or else A breaks the k-linear assumption (matrix
form). Assume we are given a k-linear challenge (g,gA,g~y), where either (1)
~y = ~rA is uniform over rowspan(A) or (2) ~y is uniform over Fk+1

q . Then we
can choose sk = (~x0, X) honestly and use these to define the public-key pk
which we give to A. We define the ciphertext c := (g~y,g~y·~x

>
0 mb,g

~yX) for a

random b
$← {0, 1} that we choose. This allows us to simulate the rest of the

game to the attacker, including the responses to the leakage and decryption
queries, so that if the challenge is of type (I) the distribution is as in Game 0,
and otherwise it is as in Game 1. Since we can also test whether the attacker
wins b̃

?
= b, an attacker that has a non-negligibly different probability of

winning in Games 0 and 1 can be used to break the k-linear assumption.
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Game’ 1: In this game, when choosing A, we choose ui
$← Fq \ {0} instead of Fq.

This is statistically indistinguishable from the previous game.

Game 2: In this game, the challenger will run in exponential-time. When the ad-
versary submits the “decryption query” c∗ = (g~y

∗
,h∗,g~v

∗
), the challenger

first checks if there is a ~r∗ such that ~y∗ = ~r∗A (by computing discrete
logarithms in exponential time) and outputs ⊥ if not. Otherwise, it runs

the original decryption check g~y
∗X ?

= g~v
∗

and, if this passes, it outputs
m = h∗g−~r

∗(A~x>0 ). Note that the decryption procedure does not depend
on ~x0 beyond A~x0.

We show that games 1 and 2 are statistically indistinguishable, even if the
adversary A is computationally unbounded.

Case 1: If the decryption query has ~y∗ ∈ rowspan(A) then the challenger’s
response is identical in Games 1 and 2.

Case 2: If the decryption query has ~y∗ 6∈ rowspan(A), then we argue that
the response in Game 1 is ⊥ with overwhelming probability (over the
choice of the matrix X). To see this, we just apply Claim 5.5.3 to each
column ~xi of the matrix X to see that the values AX, ~y∗X are mutually
uniform. Therefore

H̃∞(~y∗X | A,AX) = n log(q)

On the other hand, the challenge-ciphertext c (as computed in Game 1)
can reveal additional information aboutX and therefore also ~y∗X. How-
ever, the adversary only gets ` bits of information about the challenge
ciphertext c. Let leak be a random variable for the leakage observed by
the attacker. Then (by Lemma 4.1.1)

H̃∞(~y∗X | A,AX, leak) ≥ n log(q)− `

So, in Game 1, the probability of the attacker making a decryption
query of this type and not getting a response ⊥ is the probability of the
attacker guessing ~v∗ = ~y∗X given the public key and the leakage on the
challenge ciphertext, which is at most 2`−n log(q) = negl(λ).

So the probability of A winning Game 2 differs at most negligibly from that
of A winning Game 0.

We now argue that, in Game 2, the challenger’s bit b is perfectly hidden (even for
a computationally unbounded adversary A). This follows by applying Claim 5.5.3
to the vector ~x0 to see that the (A~x>0 , ~y · ~x>0 ) is mutually uniform. Therefore, even
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given A~x>0 as part of pk, the challenge ciphertext hides the message the message
mb since it is “one-time-padded” with a fresh uniform value ~y · ~x>0 . Moreover, the
answer to the decryption query in Game 2 can now be (inefficiently) simulated
given A~x>0 and hence they do not reveal any more information about ~x0.

So the adversary’s probability of winning in Game 2 is exactly 1
2

and, by the
hybrid argument, the probability of winning in Game 0 must therefore be at most
negligibly close to 1

2
, as we wanted to show.

We notice that, in the proof of Theorem 5.5.2, we never made use of the fact
that the adversary only submits one decryption query at the end of the game.
Indeed, we achieve a stronger notion then just `-LoC-NM security (closer to `-LoC
CCA-2 security). Even if the adversary can adaptively access a decryption oracle
arbitrarily many times during the game, before and after leaking up to ` bits on
the challenge ciphertext, the challenger’s bit stays hidden.

5.5.3 Homomorphic NIZKs

Linear Equations in Exponent. We consider the language of satisfiable sys-
tems of linear equations, over some group G of primer order q with a generator
g. A system of m equations over n variables consists of a matrix of coefficient
gB ∈ Gm×n and a vector of target values g~c ∈ Gm. We say that the system
(gB,g~c) is satisfiable if there exists a vector ~x ∈ Fnq such that gB~x

>
= g~c. We

call the vector ~x, the satisfying assignment. We define the language Llinear of sat-
isfiable systems (gB,g~c). We define the relation Rlinear as consisting of all pairs
((gB,g~c), ~x), where the system (gB,g~c) is satisfiable and ~x is satisfying assignment.
The system acts as a statement and the assignment acts as a witness in the sense
that we can efficiently check that the statement is true given the witness. If we fix
the coefficients gB, and define the relation

RB
linear = {(g~c, ~x) : ((gB,g~c), ~x) ∈ Rlinear}

then RB
linear is a linear relation with the group operation

(g~c, ~x) + (g~c
′
, ~x′) = (g~c+~c

′
, ~x+ ~x′).

For simplicity, we will say that a NIZK argument system for Rlinear is homomorphic
if, for every fixed choice of B, it is homomorphic for the (linear) relations RB

linear.

Groth-Sahai NIZKs. The Groth-Sahai (GS) [GS08] NIZK argument system is
(among other things) an argument system for the relation Rlinear. For complete-
ness, we give simple and short but self-contained description of GS NIZKs for this
relation. The construction is shown below and relies on the matrix-in-the-exponent
notation introduced in the Preliminaries. Let k ∈ Z be a parameter of the system.
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prms← ParamGen(1λ): Choose prms = (G1,G2,g,h, e, q)← Gpair(1λ).

Setup(prms): Choose u1, . . . , uk
$← Fq and define

U :=


1 u1 0 . . . 0
1 0 u2 . . . 0
...

...
...

. . .
...

1 0 0 . . . uk


Choose ~v

$← Fk+1
q and output crs = (hU ,h~v).

SetupSim(1λ): Chooses U as in honest Setup.

Choose ~r
$← Fkq and output crs = (hU ,h~rU),tk = ~r.

Provcrs((g
B,g~c), ~x): Assume gB ∈ Gm×n,g~c ∈ Gm, ~x ∈ Fnq and that gB~x

>
= g~c

>
.

Select R
$← Fn×kq and output

π :=
(

h~x
>·~vhRU , gBR

)
Note that π can be efficiently computed using the inputs and R (without
knowing any of the exponents B,~c, U,~v).

Simcrs((g
B,g~c), tk): Assume gB ∈ Gm×n,g~c ∈ Gm. Parse tk = ~t ∈ Fkq .

Select R
$← Fn×kq and output:

π :=
(

hRU , gBRg−( ~c>·~t )
)

Vercrs((g
B,g~c), π): Parse π = (hD,gP ) and output 1 iff

e(gB,hD)
?
= e(g~c

>
,h~v)e(gP ,hU)

Theorem 5.5.4. Fix a constant k ≥ 1, and assume that the k-linear assumption
holds for Gpair. Then the above construction is a homomorphic NIZK for the
relation Rlinear.

Proof. We analyze the properties of homomorphic NIZKs one by one.

Correctness. Assume that crs ← Setup(1λ) and π ← Provcrs((g
B,g~c), ~x)

where gB~x
>

= g~c
>

. Then π = (hD,gP ) for D = ~x> · ~v +RU , P = BR, where R is
some matrix. Therefore

e(gB,hD) = e(g,h)B(~x>·~v+RU)

= e(g,h)~c
>·~v+PU = e(g~c

>
,h~v)e(gP ,hU)
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(Statistical) Soundness. Let crs = (hU ,h~v) ← Setup(1λ). Let (gB,g~c) be
some statement and let π = (hD,gB) some proof such that Vercrs((g

B,g~c), π) = 1.
Then, since the proof verifies, we have

BD = ~c> · ~v + PU =
[
~c> | P

] [ ~v

U

]
It is easy to see that the matrix

[
~v
U

]
is invertible with overwhelming prob-

ability over the choice of the crs. Let M =
[

~v
U

]−1
be its inverse. Then

BDM = [~c> | P ] and therefore, letting ~x be the first column of DM , we have
B~x = ~c>, which shows that (gB,g~c) is a true statement.

Zero Knowledge. Firstly, the fact that the distributions of the crs produced
by Setup and SetupSim are indistinguishable follows directly from the k-linear as-
sumption (matrix form). Secondly, we show that for any fixed choice of (crs,tk)←
SetupSim(prms), honest and simulated proofs are distributed identically (over the
coins of the prover/simulator). Let crs = (hU ,h~v) and tk = ~t such that ~v = ~rU .
Let (gB,g~c) be some true statement and ~x a witness so that B~x> = ~c>. Let
π = (hD,gP ) be an honestly generated proof. Then the distribution of π is defined
by:

D = ~x> · ~v +RU = ~x>(~rU) +RU = (~xT~r +R)U

P = BR

where R is uniformly random. Let us define R′ := (~xT~r + R). Then the distri-
bution of R′ is just uniformly random (over the choice of R). Therefore the joint
distribution of D,P above can be re-written as

D = R′U

P = B(R′ − ~xT~r) = BR′ − ~c>~r

for a uniformly random R′. But this is exactly how simulated proofs are chosen!

Homomorphism. Fix any crs = (gU ,g~v) and any gB ∈ Gm×n. Let the pairs

(g~c, ~x) and (g~c
′
, ~x′) be such that gB~x

>
= g~c

>
and gB

~x′
>

= g~c
′>

. Let

π = Provcrs((g
B,g~c), ~x;R) =

(
h~x
>·~vhRU , gBR

)
π′ = Provcrs((g

B,g~c
′
), ~x′;R′) =

(
h~x
′>·~vhR

′U , gBR
′
)
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Then we can define the group operation:

π + π′ =
(

h~x
>·~vhRUh~x

′>·~vhR
′U , gBRgBR

′
)

=
(

h(~x>+~x′>)·~vh(R+R′)U , gB(R+R′)
)

= Provcrs((g
B,g~c+~c

′
), ~x+ ~x′;R +R′)

Therefore the NIZK is homomorphic for the relation Rlinear.

Proving Plaintext Equality. We now show how to use GS NIZKs for prov-
ing satisfiability of linear equations to prove plaintext equality for the encryption
schemes E1, E2 presented earlier in this section (see Figure 5.5, and Figure 5.6 re-
spectively). That is, we now show that the corresponding language for plaintext-
equality Leq can be expressed in terms of a satisfiable set of linear equations.

Let (p,G1,G2,GT , e,g,h)← Gpair(1λ) be the common system parameters. Let
pk1, c1 be a public-key and ciphertext of E1 and pk2, c2 be a public-key and cipher-
text of E2, which we can write as:

pk1 = (ga1 , . . . ,gak) c1 =
(
gc,g~y

)
pk2 = (gA,g

~b,gB) c2 =
(
g~y
′
,gc

′
,g~v
)
.

(where the exponents are unknown to us). Moreover, (c1, c2) ∈ Leq if and only if
there exist vector ~r = (r1, . . . , rk), ~r

′ = (r′1, . . . , r
′
k) such that:

(ga1r1 , . . . ,gakrk) = g~y

g~r
′A = g~y

′

g~r
′B = g~v

g(
∑k

i=1 ri)−~r′·~b> = gc−c
′

(⇔ ∃m : gc = g
∑k

i=1 rim,gc
′
= g~r

′·~b>m)

But the above is just a system of linear equations in the exponent, and therefore
can be expressed as a statement in the language Llinear. Moreover, the coefficient on

the left-hand side (ga1 , . . . ,gak),gA,gB,g
~b only depend on (and can be efficiently

computed from) pk1, pk2, while the target values on the right only depend on (and
can be efficiently computed from) the ciphertexts c1, c2. Lastly, the witness (~r, ~r′)
only depends on (and can be efficiently computed from) the randomness used to
generate the two ciphertexts.

Theorem 5.5.5. Let E1, E2 be the encryption schemes from Figure 5.5, and Fig-
ure 5.6 respectively. Then, GS NIZKs provide a homomorphic NIZK Π for the
plaintext equality relation Req.
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Proof. From the above discussion, for every statement st = (pk1, pk2, c1, c2) there
is an efficiently computable statement s̃t = f(st) = (gB,g~c) such that st ∈ Leq
satisfies plaintext equality iff s̃t ∈ Llinear is a satisfiable set of linear equations.
Moreover if w = (m, r1, r2) is the witness for st then there is an efficiently com-
putable witness w̃ = g(w) = ~x for s̃t. Therefore, we can use GS NIZKs for
linear-equations in the exponent Rlinear as NIZK for plainest equality Req.

Lastly, the coefficients gB in st′ only depend on pk1, pk2 and the target g~c only
depends on c1, c2. Furthermore, if we fix pk1, pk2 and the corresponding gB, the
maps f and g become homomorphic so that, if st = (c1, c2), st′ = (c′1, c

′
2) then

f(st + st′) = f(st) + f(st′) and f(w + w′) = f(w) = f(w′). Therefore, for any
fixed choice of pk1, pk2, the resulting NIZK is also homomorphic for the relation
Rpk1,pk2
eq since GS NIZKs are homomorphic for RB

linear.

5.5.4 The Final CLR-OWR Scheme

Putting everything together we get the following theorem.

Theorem 5.5.6. Fix any constant k ≥ 1 and assume that the k-linear assumption
holds for some pairing Gpair. Then, for any polynomial ` = `(λ), there exists an
`-CLR-OWR with secure updates. Moreover, for any constant ε > 0, there is such
a scheme with fractional leakage `

|sk| ≥
1

k+1
− ε. In particular, under the SXDH

assumption (k = 1), the fractional leakage approaches 1
2
.

Proof. Under Theorem 5.4.9 we get the existence of `-CLR-OWR assuming the
existence of encryption schemes E1, E2 and a NIZK Π with the specified additional
properties. Then Theorem 5.5.1, Theorem 5.5.2, and Theorem 5.5.4 show how to
construct these schemes for any polynomial `(·). As for the fractional leakage, we
notice that the secret key sk = (c2, π) consists of a ciphertext and a proof. Let
n ≥ 1 be a parameter of E2. Then the ciphertext c2 is of size n+ k+ 2 = n+O(1)
group elements. The proof π is a proof for a system of m = n + 2k + 2 equations
in n′ = 2k unknowns, which results in a proof of size n′(k + 1) +mk = kn+O(1)
group elements. Therefore the size of sk is (k + 1)n + O(1) group elements and
the leakage bound is ` ≥ n log(q) − ω(log(λ)) ≥ (n − 1) log(q) bits. Assuming
each group element can be represented optimally using log(q) + O(1) bits, we get
a fractional leakage of

`

|sk|
=

(n− 1) log(q)

[(k + 1)n+O(1)][log(q) +O(1)]

Therefore, for any constant ε > 0 there is some sufficiently large n and q such that
`
|sk| ≥

1
k+1
− ε.
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5.6 Security with Leaky Updates

We now show that, generically, the weaker notion of security with leak-free
updates also implies some level of security when the updates may leak as well.
Unfortunately, the reduction runs in time exponential with the amount of leakage
on the update process, and therefore under standard assumptions, we can only
get logarithmic leakage of the updates. A result along these lines was proved by
Brakerski et al. [BKKV10], but only for their specific scheme. The idea that
this should hold generically was pointed out to us by Brent Waters (personal
communication [Wat]). However, getting all the details right turns out to be
trickier than anticipated. Here, we provide a formal result and proof.

Theorem 5.6.1. Assume that for some ` = `(λ) there is an `-CLR-OWR with
leak-free updates. Let µ = µ(λ) = O(log(λ)). Then the same construction is also a
min(µ, `)-CLR-OWR with full security. More generally, if the original construction
is secure against attackers running in (super-polynomial) time t(λ)poly(λ) then the
above holds for any µ = µ(λ) = O(log(t(λ))).

Proof Intuition. The main idea behind allowing logarithmic leakage-of-updates
is that we can simulate the µ(λ)-bits of leakage on the internal state (ski, ri) of the
refresh operation ski+1 = Update(ski; ri), by leaking µ(λ)-bits on the secret-key
ski+1 alone, without knowing ri. In particular, our leakage function will get ski+1

and try all possible choices of the µ(λ)-bit leakage that the adversary A could have
seen on the full state. For each of the 2µ(λ) possible choices, our leakage-function it
will gage A’s success probability given this choice, by running A on many random
continuations of the leakage game using the key ski+1 to simulate the challenger
going forward. At the end, the leakage-function will output the optimal µ(λ)-bit
value that maximizes A’s probability. So leakage on (ski, ri) is simulated using
ski+1 alone. Note that the actual behavior of the challenger in future rounds
depends only on ski+1, so the estimate that the leakage-function gets on success
probability of A is (likely) accurate. Therefore, given this “simulated” leakage,
A’s success probability should not be much smaller then when given the “correct”
leakage calculated using (ski, ri). The only bottleneck of the approach is that the
simulated-leakage-function runs in 2µ(λ) time. Therefore, using this approach, we
are stuck with µ(λ) = O(log(λ)) or with making stronger hardness assumptions.

Proof of Theorem 5.6.1. Let (KeyGen, Ver,Update) satisfy the syntax of a CLR-
OWR. Assume that there is a poly-time adversary A that breaks the full µ(λ)-CLR
security of the scheme, for some µ(λ) ≤ `(λ). Then there are some polynomials
q(·), p(·) such that A always runs in time at most q(λ) and that its success proba-
bility is at least 1

p(λ)
for infinitely many λ ∈ N. We define an adversary B that runs

in time 2µ(λ)poly(λ) and wins the restricted `(λ)-CLR security game with leak-free
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updates against the scheme with probability 1
2p(λ)
− negl(λ) for infinitely many λ.

Description of Reduction B. It is easiest to think of A as submitting a single
deterministic leakage-query hi on the state ski, ri in each round with output-length
µ. Recall that this is w.l.o.g. as any adversary that submits multiple adaptive
randomized queries can always be converted into an adversary making a single
deterministic query in each round. In particular, the adversary can choose the
randomness for the query itself beforehand, and can combine several adaptive
queries into one. The adversary B works as follows. It runs an internal copy of A
and forwards the public-key pk from its challenger toA. WhenA submits a leakage
query hi : {0, 1}∗ → {0, 1}µ on the full state (ski, ri), the reduction B moves on
to the next leakage round and leaks µ bits on the secret key ski+1. In particular,
B constructs a query h′i : {0, 1}∗ → {0, 1}µ on the key ski+1, as described below,
and feeds the output h′i(ski+1) to A. At the end, B outputs whatever secret-key
sk∗ is output by A.

Description of the function h′i : {0, 1}∗ → {0, 1}µ.

The function h′i contains a hard-coded copy of A, in its current state after issuing
the query hi. Let ε(λ) = 1

2p(λ) .

Main Computation: Try all 2µ possible values of ψ ∈ {0, 1}µ. For each ψ, find
an estimate ρ̃ψ ∈ [0, 1] for the success probability of A with the leakage ψ,
as described below. Output the choice of ψ that corresponds to the maximal
estiamte ρ̃ψ.

Estimating ρ̃ψ using ski+1: Perform the following random experiment indepen-
dently for k = 8q2(λ)(λ+ µ)/ε2(λ) times:

Choose fresh random coins ri+1, . . . , rq(λ)−1 and compute the keys

ski+2 = Update(ski+1; ri+1), . . . , skq(λ) = Update(skq(λ)−1, rq(λ)−1).

Then run the rest of the leakage game with A by feeding it ψ in response
to hi, and use the values ski+1, ri+1, ski+2, . . . , rq(λ)−1, skq(λ) to correctly
respond to all of A’s future queries hj for j > i.
(Recall A makes at most q(λ) queries.)

Set ρ̃ψ to be the fraction of the k experiments in which A “wins” at the end.

Analysis of Reduction B. It is easy to see that B runs a legal strategy since
the number of bits leaked in each round i is µ ≤ `. Furthermore, the run-time
of B is at most 2µpoly(λ); recall that B needs to run as long as all of its leakage
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functions. So we are left to analyze the success probability of B. To do so, it is
useful to consider the following hybrid experiments.

Define Experiment 0 to be the µ-CLR OWR game between the challenger and
the adversary A. Define experiments 1, . . . , q(λ) analogously, but in Experiment
i, the first i leakage queries h0, . . . , hi−1 asked by A are answered via h′j(skj+1)
instead of hj(skj, rj). Let Wi be the event that A wins in Experiment i. Then
B’s success probability is exactly Pr[Wq(λ)]. Let Prei,j denote the random variable
for the “preamble” of experiment i up to the “point” j, consisting of:

• The view of A right after making the leakage query hj, but before seing the
response. This includes the random coins of A, the public-key pk seen by A,
and all of the responses to all of the prior leakage queries.

• The value of the secret key skj used in round j and the randomness rj used
to compute skj+1 = Update(skj; rj).

Conditioned on the preambles Prei,i and Prei+1,i of experiments i and i+ 1 taking
on some concrete value σ, the only difference between experiments i and i+1 is how
the leakage query hi is answered. In the former case, it is answered via hi(ski, ri),
and in the latter case it is answered via h′i(ski+1), where ski, ri, ski+1 are fixed by
σ. The following claim intuitively says that, since h′i chooses its response by trying
all options and testing, its answer should not be much worse than that of hi.

Claim 5.6.2. For any σ in the support of Prei+1,i and any i ∈ {0, . . . , q(λ)−1},
we have

Pr[Wi+1 | Prei+1,i = σ] ≥ Pr[Wi | Prei,i = σ]− ε(λ)/q(λ)− negl(λ).

Proof of Claim 5.6.2. In the proof we fix σ and always condition all probabil-
ities on the preamble of the experiment being σ; we will use the variables Wi,σ

and Wi+1,σ to make this conditioning explicit. Recall that σ fixes ski, ri, ski+1.
Let ψ∗ = hi(ski, ri) and let ρ∗ = Pr[Wi,σ]. Define the random variable A
to be the value of h′i(ski+1) in experiment i + 1, over the internal random-
ness of h′i. Define ρψ = Pr[Wi+1,σ | A = ψ]. Then, it is easy to see that
ρψ∗ = ρ∗ since, conditioned on the response to hi being ψ, the continuation of
the two experiments i + 1 and i are exactly the same. Let us define the set
Good = {ψ : ρψ ≥ ρ∗ − ε(λ)/q(λ)}. Then:

Pr[Wi+1,σ] ≥
∑

ψ∈Good

Pr[Wi+1,σ | A = ψ] Pr[A = ψ]

≥ (ρ∗ − ε(λ)/q(λ)) Pr[A ∈ Good] (5.2)
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We now show that Pr[A ∈ Good] is high. To do so, recall that the function
h′i(ski+1) chooses the response ψ based on the estimated success probabilities
ρ̃ψ. Since ρ̃ψ is computed by averaging k experiments each of which succeeds
with probability ρψ, we can use the Chernoff bound to get:

Pr[|ρ̃ψ − ρψ| ≥ ε(λ)/2q(λ)] ≤ 2e−kε
2(λ)/8q2(λ) ≤ 2e−λ2−µ (5.3)

Using the Union Bound over all ψ ∈ {0, 1}µ, we see that every estimate ρ̃ψ
computed internally by h′i satisfies |ρ̃ψ − ρψ| < ε(λ)/2q(λ) with probability at
least (1− 2e−λ) over the internal coins of h′i . If that occurs then:

• For the “correct” ψ∗ = hi(ski, ri), we have ρ̃ψ∗ > ρψ∗ − ε(λ)/2q(λ) =
ρ∗ − ε(λ)/2q(λ).

• For the “actual” ψ′ output by h′i, we have ρ̃ψ′ ≥ ρ̃ψ∗
and ρ̃ψ′ < ρψ′ < ε(λ)/2q(λ).

• Putting these together, we get: ρ̃ψ′ > ρ∗− ε(λ)/q(λ) and hence the output
is ψ′ ∈ Good.

So Pr[A ∈ Good] ≥ (1 − 2e−λ) = (1 − negl(λ)) and hence, plugging this into
(5.2) and expanding out, we get

Pr[Wi+1,σ] ≥ Pr[Wi,σ]− ε(λ)/q(λ)− negl(λ)

Using the above claim, we get that for each i ∈ {0, . . . , q(λ)}:

Pr[Wi+1] =
∑

σ∈{0,1}∗
Pr[Wi+1 | Prei+1,i = σ] Pr[Prei+1,i = σ]

≥
∑

σ∈{0,1}∗
(Pr[Wi | Prei,i = σ]− ε(λ)/q(λ)− negl(λ)) Pr[Prei,i = σ]

≥ Pr[Wi]− ε(λ)/q(λ)− negl(λ)

where the second line follows from the claim and the fact that Prei+1,i and Prei,i
have the exact same distribution (the preambles are the same in both experiments).
Therefore

Pr[B wins ] = Pr[Wq(λ)] ≥ Pr[W0]− ε(λ)− negl(λ) = Pr[A wins ]− ε(λ)− negl(λ)

which proves the theorem.
It is easy to extend the above proof to other CLR primitives, such as encryption,

signatures etc. as long as there is an efficient way to test whether the attacker wins.

Corollary 5.6.3. Fix any constant k ≥ 1, and assume the k-linear assumption
holds for some pairing Gpair. Then, for any µ(λ) = O(log(λ)) there exists µ(λ)-
CLR OWR with full security. Further, if we assume that the k-linear assumption
is secure against adversaries running in time t(λ)poly(λ), then the above also holds
for µ(λ) = O(log(t(λ))).
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5.7 Signatures

Given a CLR-OWR, its relatively easy to build signatures using a variety of
techniques from several previous works. Let us begin with a definition.

Definition 5.7.1. We say that a signature scheme (KeyGen, Sign, SigVer,Update)
is `-continuous-leakage-resilient (`-CLR) if for any PPT adversary A, we have
Pr[A wins ] ≤ negl(λ) in the following game:

• The challenger chooses (vk, sk)← KeyGen(1λ) and gives vk to A. It chooses
randomness ω for the update and sets state = (sk, ω) and L := 0.

• The adversary A can adaptively interleave the following queries:

– If L < `, then A can make a query to the leakage-oracle Ostate(·) and
get the appropriate response. The challenger sets L := L+ 1.

– The adversary can makes signing queries. Given a message m the
challenger parses state = (sk, . . .), chooses randomness rsign, computes
σ = Signsk(m; rsign) and sets state := (state, rsign).

– The adversary can makes update queries. The challenger parses state =
(sk, ω, . . .) and computes sk′ = Update(sk;ω). It chooses new update
randomness ω′ and sets state := (sk′, ω′) and L := 0.

• The adversary wins if it produces a message/signature pair (m∗, σ∗) such
that SigVervk(m

∗, σ∗) = 1 and m∗ was never contained in any signing query.

We can also define security with leak-free updates where ω is not made part
of the state. We can also define security with leak-free signing where rsign is
not concatenated to the state.

KeyGen(1λ): Run (pk, sk) ← KeyGenC(1λ), (crs, ·) ← SetupΨ(1λ). Output: vk :=
(pk,crs), sk.

Signsk(m): Output σ ← ProvΨ((pk,m), sk).

SigVervk(m,σ): Output VerΨ((pk,m), σ).

Update(sk): Run the re-randomization procedure of the CLR-OWR C.

Figure 5.7: A CLR-Signature Scheme from a CLR-OWR and a tSE NIZK

Our construction is based on the leakage-resilient signature scheme of [DHLW10a],
which slightly generalizes the original scheme of [KV09]. We start with a CLR-
OWR C = (KeyGenC,Update, VerC), and a NIZK Ψ = (SetupΨ, ProvΨ, VerΨ) for
the relation

RC = {(y, x) | y = (pk,m), x = sk s.t. VerC(pk, sk) = 1}.
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The signature scheme construction is shown in Figure 5.7. The main idea is to
re-use the key pair (sk, pk) from a CLR-OWR for the Signature scheme. To sign a
message m, the signer produces an “extractable NIZK” certifying that she knows
a valid secret key sk for the public key pk, where the message m is made a part of
the statement.

For security, we need the NIZK system Ψ to satisfy a new notion of security
called true-simulation extractable (tSE) (defined in our work [DHLW10b]); even if
an adversary sees simulated proofs of arbitrary true statements y ∈ LR, if she pro-
duces a valid proof ψ∗ for a new statement y∗, then there is a way to extract a valid
witness x∗ from ψ∗, so that (y∗, x∗) ∈ R. Notice that this explains the (seemingly
useless) role of m in the relation RC. Even if the adversary sees simulated proofs
for statements that contain many different values m, any proof she produces for a
new m∗ is extractable. W

Definition 5.7.2 (True-Simulation Extractability [DHLW10b]). Let

Ψ = (Setup, Prov, Ver, Sim)

be an NIZK argument for an NP relation R, satisfying the completeness, soundness
and zero-knowledge properties. We say that Ψ is true-simulation extractable (tSE)
if:

• Apart from outputting a CRS and a trapdoor key, SetupSim also outputs an
extraction key: (crs,tk, ek)← SetupSim(1λ).

• There exists a PPT algorithm Extek such that for all A we have Pr[A wins] ≤
negl(λ) in the following game:

1. Challenger runs (crs, tk, ek) ← SetupSim(1λ) and gives crs to A.

2. ASIMtk(·) is given access to a simulation oracle SIMtk(·), which it can
adaptively access. A query to the simulation oracle consists of a pair
(y, x). The oracle checks if (y, x) ∈ R. If true, it ignores x and outputs
a simulated argument Simtk(y). Otherwise, the oracle outputs ⊥.

3. A outputs a pair (y∗, ψ∗), and the challenger runs x∗ ← Extek(y
∗, ψ∗).

A wins if (y, x∗) /∈ R, Ver(y∗, ψ∗) = 1, and y∗ was not part of a query to the
simulation oracle.

We note that, as observed in [DHLW10a], tSE NIZKs can be constructed by
either (1) composing a simulation-sound NIZK with a CPA-secure encryption,
yielding the scheme of [KV09], or (2) composing a standard NIZK with a CCA-
secure encryption, yielding a (possibly) more efficient scheme. See [DHLW10b] for
more details of the construction. For now it suffices to note that such NIZKs are
shown to exist based on the k-linear assumption.
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We are now ready to prove that the CLR signature construction in Figure 5.7
achieves security with leak-free signing.

Theorem 5.7.3. If C = (KeyGenC,Update, VerC) is an `-CLR-OWR, and Ψ =
(SetupΨ, Prov, VerΨ, SetupSim, Sim, Ext) is a tSE-NIZK argument for relation

RC = {(y, x) | y = (pk,m), x = sk s.t. VerC(pk, sk) = 1}

then the signature scheme in Figure 5.7 is `-CLR secure with leak-free signing.
Furthermore if C is only `-CLR OWR with leak-free updates then the signature
scheme is `-CLR secure with leak-free signing and updates.

Proof. We use a series-of-games argument to prove the above theorem.

Game 0: This is the original `-CLR attack game described in Definition 5.7.1.

Game 1: In this game, the crs is chosen as a simulated one (crs,tk, ek) ←
SetupSim(1λ). The queries to the signing oracle are answered with simu-
lated arguments: σ ← Simtk(pk,m). Games 0 and 1 are indistinguishable
by the zero-knowledge property of the argument Ψ. Notice that the simu-
lated arguments given to A as answers to signing queries are always of true
statements.

Game 2: In this game, we modify the winning condition so that the adversary
only wins if it produces a valid forgery (m∗, σ∗) and the challenger is able
to extract a valid secret key sk∗ for pk from (m∗, σ∗). That is, A wins if
SigVer(m∗, σ∗) = 1 and VerC(pk, sk∗) = 1, where sk∗ ← Extek((pk,m

∗), σ∗).
The winning probability of A in Game 2 is at least that of Game 1 minus
the probability that VerΨ((pk,m∗), σ∗) = 1∧VerC(pk, sk∗) = 0. By the true-
simulation extractability of the argument Ψ we know that this probability is
negligible. Therefore, the winning probability of A in Game 2 differs from
that in Game 1 by a negligible amount.

We have shown that the probability that A wins in Game 0 is the same as
that in Game 2, up to negligible factors. We now argue that the probability that
A wins in Game 2 is negligible, which proves that the probability that A wins in
Game 0 is negligible as well. To prove that the probability that A wins in Game
2 is negligible, we assume otherwise and show that there exists a PPT algorithm
B that breaks the `-continuous-leakage resilience of C. On input pk, B generates
(crs,tk, ek) ← SetupΨ(1λ) and emulates A on input vk = (crs, pk). In each
leakage round, B answers A’s leakage queries using the leakage oracle Ostate(·) and
answers signing queries mi by creating simulated arguments Simtk(pk,mi). When
A outputs her forgery (m∗, σ∗), B runs sk∗ ← Extek((pk,m

∗), σ∗) and outputs sk∗.
Notice that Pr[B wins] = Pr[A wins], so that if Pr[A wins] is non-negligible then

67



B breaks the `-continuous-leakage resilience of C. We therefore conclude that the
probability that A wins in Game 2 is negligible. This concludes the proof of the
theorem.

The following corollary follows from Theorem 5.7.3 together with the work of
[DHLW10b] showing the existence of tSE NIZKs for NP under the k-linear as-
sumption.

Corollary 5.7.4. Under the k-linear assumption on a pairing Gpair, for any poly-
nomial ` = `(λ) and any constant ε there exist `-CLR signature schemes with
leak-free signing and updates where the relative leakage is `

|sk| ≥
1

k+1
− ε. More-

over, for any `(λ) = O(log(λ)) there exist `-CLR signatures with leak-free signing
(but not updates).

Signatures with Leaky Signing. Allowing leakage on the randomness of the
signing operations is addressed in several recent works. We briefly describe some of
the techniques without providing formal theorems and proofs. The main difficulty
is that, although a tSE NIZK allows us to simulate signing queries and extract
from a forgery, this only holds if the attacker does not see any information about
the randomness of the NIZK. Otherwise, the attacker may distinguish simulated
and real proofs. There are several strategies for getting around this.

Firstly, in [DHLW10a], we show how to get a scheme in the random-oracle model
that provides full security. This essentially uses a Σ-protocol for proving knowledge
of a secret key for a CLR-OWR and then compiles it into a signature scheme using
the Fiat-Shamir heuristic [FS86] (this approach was originally suggested for get-
ting such signatures in the bounded-leakage model by [ADW09a, KV09]). Since
Σ-protocols are statistically witness indistinguishable, leaking on the secret-key
(witness) and the random-coins of the protocol does not provide any more infor-
mation than leaking on the secret key itself (in an information theoretic sense).
The above approach was generalized in [BSW11] to relying on NIZKs which are
simultaneously extractable and statistically witness indistinguishable (WI). Unfor-
tunately, this can only occur in the Random-Oracle model. However, [BSW11]
showed that a variant of this approach can be instantiated in the standard model
by relying on NIZKs whose parameters partition the message-space into messages
for which the corresponding NIZK is extractable and those for which it is statis-
tically WI. By using a careful partitioning strategy this approach can be made
to work. The concurrent work of [MTVY11] can also be seen as providing an in-
stantiation of the above strategy for a particular number-theoretic scheme. Lastly,
the work of [JGS11] shows that a variant of tSE NIZKs with a strong version of
adaptive security can also be used to get leakage on the signing randomness.
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5.8 Advanced Primitives

Now that we constructed CLR OWR and Signatures, we can use these to build
more advanced CLR primitives. Perhaps the two most useful ones are identifi-
cation schemes (ID) and authenticated key agreement (AKA). We describe these
primitives, their security properties and construction only at a high level since all
the details are relatively straight-forward (and tediously boring). However, the
interested reader can see [DHLW10a] for details.

5.8.1 Identification Schemes (ID)

In an (interactive) identification scheme a prover P (pk, sk) owning a pub-
lic/secret key pair (pk, sk) attempts to prove his identity to a verifier V (pk)
knowing only the public key pk. Security requires that even if an attacker gets
to interact with the honest prover (in an arbitrarily malicious manner, arbitrarily
many times), she will later be unable to impersonate the prover by running an
accepting interaction with V (pk). In a CLR variant of the definition, the honest
prover also periodically updates the secret key sk (without modifying pk). Security
is strengthened by allowing the adversary to leak up to ` bits on the state of the
honest prover (including the randomness of the updates and the proof operations)
in each time period between updates. The formal definition is analogous to that
of signatures (Definition 5.7.1) and we can define variants with leak-free updates
and proof operations.

We can immediately get CLR ID schemes from CLR Signatures. In the proto-
col, the verifier just chooses a random message m from a sufficiently large (super-
polynomial) message space and the prover signs the message using its secret key
sk. However, in order to get full security with leakage of the proof operations, we
need the signature scheme to be secure for leakage of the signing randomness, and
we saw that this was relatively difficult to achieve. An alternative construction of
CLR ID schemes directly from CLR OWR is also possible. The prover simply runs
a Σ-protocol to prove that it knows the corresponding secret key sk for a public
key pk of a CLR OWR.

5.8.2 Authenticated Key Agreement(AKA)

In an AKA protocol, all parties have individual (long-term) public/secret keys.
Any two parties (Alice and Bob) can use these to run a protocol in which they agree
on a shared ephemeral session key. The basic security of the protocol considers
a man-in-the-middle attacker who can arbitrarily modify/insert/delete protocol
messages. Security dictates that if Alice is attempting to run such a protocol with
an honest party Bob then the resulting session key that Alice generates will look
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uniformly random to the attacker. Furthermore, Bob will generate the same exact
session key or none at all . Lastly, such protocols are forward secure if the session
key looks uniformly random even if the attacker learns the full secret key of Alice
and Bob after the protocol execution. The definition of Canetti and Krawczyk
[CK01] makes the above formal. In the CLR setting, parties can also periodically
update their secret keys and the attacker can learn up to ` bits of information on
the internal state of each party in each time period. However, the standard security
properties will hold for all such sessions during which no leakage occurs (even if
leakage occurs in many prior executions and the secret keys are fully revealed to
the attacker later).

To construct CLR AKA, the parties use a CLR signature scheme to set up
a public-key infrastructure (PKI). Then, any pair of parties can agree on a fresh
ephemeral session keys, by running a passively-secure key agreement protocol (such
as the Diffie-Hellman key agreement), and authenticating the flows of the protocol
by signing them.
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Chapter 6

CLR Encryption

We now show how to construct Continuous Leakage Resilient (CLR) Public-Key
Encryption (PKE) schemes tolerating arbitrary polynomial amounts of leakage on
the secret key and the update randomness (full security). As mentioned earlier, this
also yields an alternate construction of a CLR-OWR which achieves full security.
The main drawback is that the construction is less generic than the previous one,
relying on number theoretic assumptions from the beginning rather than providing
simpler intermediate abstractions.

As mentioned in Chapter 3, the first CLR-PKE scheme was constructed by
Brakesrski et al. [BKKV10] achieving security with leak-free updates and arbi-
trarily large leakage or full security with logarithmic leakage (e.g. similarly to our
results for CLR-OWR). The work of Lewko et al. [LLW11] provides new tech-
niques to deal with arbitrarily large leakage on the updates, but at the cost of a
(conceptually) more complicated scheme in composite-order bilinear groups and
relying on less standard assumptions in such groups. In this thesis, we present a
new scheme which gets the best of both worlds: the simplicity of the [BKKV10]
scheme (indeed, our scheme looks quite similar) together with the stronger security
guarantees [LLW11] under (only) the k-linear assumption.

For simplicity, we begin by describing and analyzing a scheme under the SXDH
assumption (1-linear). We then briefly discuss how to extend it to the k-linear
assumption for arbitrary k ≥ 1.

6.1 Definition

A CLR public key encryption (PKE) scheme consists of the efficient algorithms
(KeyGen,Encrypt,Decrypt,Update) with the syntax:

(pk, sk)← KeyGen(1λ) : Outputs the key pair (pk, sk). The public key pk defines
a message space Mpk.
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c← Encryptpk(m) : Produces a ciphertext c for the plaintext message m ∈ Mpk

using the public key pk.

m← Decryptsk(c) : Decrypts the ciphertext c and outputs the corresponding plain-
text m using the secret key sk.

sk′ ← Update(sk) : Updates the secret key sk into a new key sk′.

For convenience, we also implicitly define the algorithm that performs i ≥ 0 con-
secutive updates via:

sk′ ← Updatei(sk) : Let sk0 = sk, sk1 ← Update(sk0), . . . ski ← Update(ski−1).
Output sk′ = ski.

Definition 6.1.1 (CLR PKE). A scheme with the given syntax is an `-CLR PKE
if it satisfies the following correctness and security properties:

Perfect Correctness: For all polynomial i = i(λ) ≥ 0, all (pk, sk)← KeyGen(1λ),
sk′ ← Updatei(sk), m ∈Mpk, c← Encryptpk(m), we get Decryptsk′(c) = m.

Security: For any poly-time attacker A we have Pr[A wins ] ≤ negl(λ) in the
following game:

• Challenger samples (pk, sk)← KeyGen(1λ), gives pk to A. It samples update
randomness ω and sets state := (sk, ω), L := 0.

• A can adaptively interleave any number of the following queries:

Leakage Queries: If L < ` then A can make a query to the oracle Ostate(·)
and gets a response. The challenger sets L := L+ 1.

Update Queries: On an update query, the challenger parses state = (sk, ω).
It computes sk′ := Update(sk;ω) and samples new randomness ω′.
Finally it sets state = (sk′, ω′) and L := 0.

• A chooses two messages m0,m1 ∈Mpk.

• Challenger chooses b
$← {0, 1}, c← Encryptpk(mb) and gives c to A.

• A outputs a bit b̃ and wins if b̃
?
= b.

We can also define a weaker variant of the above definition, called `-CLR PKE
with Leak-Free Updates, where the variable state only contains the secret key
sk and not the randomness ω.

Remarks. Note that in the above definition, the attacker can only get leakage
prior to seeing the challenge ciphertext. This is a necessary restriction in the CLR
setting since, after seing the challenge ciphertext, the attacker can always simply
leak the first bit of the decrypted message to break security. Also note that the
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above definition provides full security where the attacker can leak on the entire
secret state of a decryption device, including its secret key and update randomness.
Since decryption operations are deterministic, the above components are sufficient
to describe the entire secret state of the decryption device at any point in time.

6.2 Hiding Ranks and Subspaces

In this section we prove various abstract indistinguishability lemmas about
(statistically) hiding subspaces given leakage on some of their vectors and (com-
putationally) hiding the rank of matrices “in the exponent”. The reader may wish
to skip this section on first reading and look at these lemmas on an “as needed”
basis.

Hiding Subspaces. The following lemma says that, given some sufficiently small
leakage on a random matrix A, it is hard to distinguish random vectors from
colspan(A) from uniformly random and independent vectors. A similar lemma was
shown in [BKKV10, LLW11]. Here we give a significantly simpler proof using
leftover-hash (Lemma 4.1.3).

Lemma 6.2.1 (Subspace Hiding with Leakage). Let n ≥ d ≥ u, s be integers,
S ∈ Fd×sq be an arbitrary (fixed and public) matrix and Leak : {0, 1}∗ → {0, 1}`

be an arbitrary function with `-bit output. For randomly sampled A
$← Fn×dq ,

V
$← Fd×uq , U

$← Fn×uq , we have:

(Leak(A), AS, V,AV )
stat
≈ ( Leak(A), AS, V, U)

as long as (d− s− u) log(q)− ` = ω(log(λ)) and n = poly(λ).

Proof. The lemma follows by applying leftover-hash (see Lemma 4.1.3) to each row
of A independently. In particular, take any row ~ai of A and think of it as a random
source (while all the other rows of A are arbitrarily fixed) whose conditional min-
entropy is

H̃∞(~ai | AS, Leak(A)) ≥ d log(q)− (s log(q) + `).

Think of V as the seed of the universal hash function hV (~ai) = ~ai ·V whose output
size is u log(q) bits. The leftover-hash lemma tells us that the ith row of AV looks
uniform. By using the hybrid argument over all n rows, the first part of the lemma
follows.

We also show a dual version of Lemma 6.2.1, where a random matrix A is chosen
and the attacker either leaks on random vectors in colspan(A) or uniformly random
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vectors. Even if the attacker is later given A in full, it cannot distinguish which case
occurred. This version of “subspace hiding” was first formulated by [BKKV10],
but here we present a significantly simplified proof and improved parameters.

Corollary 6.2.2 (Dual Subspace Hiding). Let n ≥ d ≥ u be integers, and let
Leak : {0, 1}∗ → {0, 1}` be some arbitrary function. For randomly sampled

A
$← Fn×dq , V

$← Fd×uq , U
$← Fn×uq , we have:

(Leak(AV ), A)
stat
≈ ( Leak(U), A)

as long as (d− u) log(q)− ` = ω(log(λ)), n = poly(λ), and q = λω(1).

Proof. We will actually prove the above assuming that A, V, U are random full-
rank matrices, which is statistically close to the given statement since q is super-
polynomial (see Lemma 4.2.1). We then “reduce” to Lemma 6.2.1.

Given A and C such that C = AV or C = U , we can probabilistically choose
a n× d′ matrix A′ depending only on C and a n× u′ matrix C ′ depending only on
A such that the following holds:

• If C = AV for a random (full rank) d × u matrix V , then C ′ = A′V ′ for a
random (full rank) d′ × u′ matrix V ′.

• If C = U is random (full rank) and independent of A, then C ′ = U ′ is random
(full rank) and independent of A′.

and where d′ = n − u, u′ = n − d. To do so, simply choose A′ to be a random
n × d′ matrix whose columns form a basis of colspan(C)⊥ and choose C ′ to be
a random n × u′ matrix whose columns form a basis of colspan(A)⊥. If C = U
is independent of A, then C ′ = U ′ is a random full-rank matrix independent of
A′. On the other hand, if C = AV , then colspan(A)⊥ ⊆ colspan(C)⊥ is a random
subspace. Therefore C ′ = A′V ′ for some uniformly random V ′.

Now assume that our lemma does not hold and that there is some function
Leak and an (unbounded) distinguisher D that has a non-negligible distinguishing
advantage for our problem. Then we can define a function Leak′ and a distin-
guished D′ which breaks the problem of Lemma 6.2.1 (without even looking at
AS, V ). The function Leak′(A) samples C ′ as above and outputs Leak = Leak(C ′).
The distinguisher D′, given (Leak, C) samples A′ using C as above and outputs
D(Leak,A′). The distinguisher D′ has the same advantage as D. Therefore, by
Lemma 6.2.1, indistinguishability holds as long as

(d′ − u′) log(q)− ` = ω(log(λ))⇔ (d− u) log(q)− ` = ω(log(λ))
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It is also easy to extend the above corollary to the case where (the column
space of) A is a subspace of some larger public space W .

Corollary 6.2.3. Let n ≥ m ≥ d ≥ u. Let W ⊆ Fnq be a fixed subspace of
dimension m and let Leak : {0, 1}∗ → {0, 1}` be some arbitrary function. For

randomly sampled A
$←Wd (interpreted as an n× d matrix), V

$← Fd×uq , U
$←Wu

(interpreted as an n× u matrix), we have:

(Leak(AV ), A)
stat
≈ ( Leak(U), A)

as long as (d− u) log(q)− ` = ω(log(λ)), n = poly(λ), and q = λω(1).

Proof. Let W be some n×m matrix whose columns spanW . Then we can uniquely
write A = WA′, where A′ ∈ Fm×dq is uniformly random. Now we just apply
Corollary 6.2.2 to A′.

Lastly, we show that a variant of Lemma 6.2.1 where, if one is given leakage on
a matrix A, one cannot distinguish random vectors from colspan(A) from uniformly
random vectors, even if A is a random matrix of some (non-full) rank d and the
row-space of A is fixed and known.

Corollary 6.2.4. Let the integers n, d, s, u be polynomial in the security parameter
λ, with n ≥ d ≥ 1. Let S ∈ Fn×sq be a fixed matrix, W ⊆ Fnq be some fixed subspace
of dimension at least d, and Leak : {0, 1}∗ → {0, 1}` be an arbitrary function.

Then, for a random V
$← Fn×uq , U

$← Fn×uq and A
$← Rkd(Fn×nq | row ∈ W) we

have
(Leak(A), AS, V,AV )

stat
≈ ( Leak(A), AS, V, U)

as long as (d− s− u) log(q)− ` = ω(log(λ)) and q = ω(log(λ)).

Proof. Sampling A
$← Rkd(Fn×nq | row ∈ W) is equivalent to sampling C

$←
Rkd(Fn×dq ), R

$← Rkd(Fd×nq | row ∈ W) and setting A = CR . The corollary
then follows by applying Lemma 6.2.1 to the matrix C while thinking of R as
public. In particular, `-bit leakage Leak(A) on the matrix A = CR is equivalent
to `-bit leakage Leak′(C) on the matrix C. Furthermore AS = CRS = CS ′ for
some S ′ ∈ Fn×sq and AV = CRV = CV ′ where V ′ is uniformly random over the
choice of V since R is full rank. We only use the fact that q is super-polynomial

to switch from C
$← Rkd(Fn×dq ) to C

$← Fn×dq . So, by Lemma 6.2.1, we have

(Leak′(C), AS ′, V ′, AV ′)
stat
≈ (Leak′(C), AS ′, V ′, U) which gives us our corollary.
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Extended Rank Hiding in the Exponent. We define an extended rank hiding
assumption which says that one cannot distinguish between matrices of different
ranks in the exponent, even given some additional vectors in the kernel of the
matrix.

Definition 6.2.5 (Extended Rank Hiding Assumption). The k extended rank
hiding assumption for a group (G, q,g) ← G(1λ) states that for any integer con-
stants i, j, n,m satisfying k ≤ i < j ≤ min{n,m} and for t := m − j, we get the
indistinguishability property:(

prms,gX , ~v1, . . . , ~vt

∣∣∣ (G, q,g)← G(1λ), X
$← Rki(Fn×mq ), {~vρ}tρ=1

$← ker(X)
)

comp
≈(

prms,gX , ~v1, . . . , ~vt

∣∣∣ (G, q,g)← G(1λ), X
$← Rkj(Fn×mq ), {~vρ}tρ=1

$← ker(X)
)
.

We say that the assumption holds for a pairing (G1,G2,GT , e, q,g,h)← Gpair(1λ)
if it holds in both the left group (G1, q,g) and the right group (G2, q,h).

Lemma 6.2.6. The k extended rank hiding assumption is implied by the (regular)
k rank hiding assumption which is in-turn implied by the k-linear assumption.

Proof. The second part of the lemma (k-linear ⇒ k rank hiding) is shown in
[NS09] and hence we skip it. For the first part of the lemma we show a reduction
that converts a rank hiding challenge into an extended rank hiding challenge.
In particular, the reduction is given the challenge (prms,gX

′
) where either (I)

X ′
$← Rki(Fn×jq ) or (II) X ′

$← Rkj(Fn×jq ) for some i, j, n satisfying i < j ≤ n. The

reduction chooses a random matrix R
$← Rkj(Fj×mq ) and sets gX = gX

′R (which can

be computed efficiently without knowing X ′). It also chooses ~v1, . . . , ~vt
$← ker(R)

and outputs the challenge (prms,gX , ~v1, . . . , ~vt).
Assume that the received challenge if of type (II). Then, by Lemma 4.2.2,

we see that the distribution of X = X ′R is the same as a random sample from
Rkj(Fn×mq ). Furthermore since rowspan(X) = rowspan(R), the vectors ~v1, . . . , ~vt
are random over ker(R) = rowspan(R)⊥ = rowspan(X)⊥. Therefore the outputs
of the reduction is distributed the same as an extended rank-hiding assumption
challenge with rank j.

Assume that the received challenge is of type (I). Then, by Lemma 4.2.2, we can

sample X ′ via X ′ = X1X2 where X1
$← Rki(Fn×iq ) and X2

$← Rki(Fi×jq ). Applying
Lemma 4.2.2 once more, we get X2R is uniformly random over Rki(Fi×mq ) and
applying it once again we see that X = X ′R = X1(X2R) is uniformly random
over Rki(Fn×mq ). Furthermore rowspan(X) = rowspan(X2R) ⊆ rowspan(R) and
so ker(R) ⊆ ker(X). Moreover, ker(R) is a random t = (m − j) dimensional
subspace of the (m−i) dimensional space ker(X). Since sampling t random vectors
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from ker(X) is statistically close to first choosing a random t-dimensional subspace
ker(R) ⊆ ker(X) and then sampling t random vectors from that, we see the joint
distribution on gX , ~v1, . . . , ~vt produced by the reduction is (statistically close to)
the extended rank hiding assumption challenge with rank i.

6.3 Warm Up: Weakly Secure Constructions

In this section, we build up toward our main construction of CLR PKE by
first presenting several simpler constructions that only achieve weakened notions
of security with leakage. Our presentation is mainly used to build up intuition and
hence we do not give formal definitions of these notion or complete proofs here. For
simplicity, all of the schemes we show will be based the DDH/SXDH (equivalently
k = 1 linear) assumption, but we note that they can all be easily generalized to
the k linear assumption for arbitrary k.

6.3.1 The Bounded Leakage Model

We first present a simple encryption scheme that achieves leakage resilience
in the bounded leakage model. That is, this scheme has the standard syntax of a
PKE and there is no extra key-update algorithm. Nevertheless, semantic security
is preserved even if an attacker can get up to ` bits of leakage in total on the
scheme’s (single) secret key prior to seing the challenge ciphertext. This security
property was initially studied by [AGV09, NS09] and the following scheme is a sim-
ple modification of a scheme analyzed in [NS09] and first proposed by [BHHO08].
It is based on the DDH assumption and does not require pairings. We use “linear
algebra in the exponent” notation to describe the scheme (see preliminaries).

Construction. Let m be an integer parameter. The scheme is defined as follows.

KeyGen(1λ) → (pk, sk) : Sample (G,g, q)← G(1λ).

Choose ~p
$← Fmq and set prms = (G,g, q,g~p) to be the public parameters of

the system. These parameters can then be reused to create the public/secret
keys of all future users. For convenience, we implicitly think of prms as a
part of each public key pk and as an input to all of the other algorithms.

Choose ~t
$← Fmq and set pk := g〈~p,~t〉, sk := ~t.

Encryptpk(m)→ ct : To encrypt m ∈ G under pk = f ,

choose u
$← Fq and output: ct := (gu~p, fu ·m).

Decryptsk(ct)→m: To decrypt, parse the secret key sk = ~t and the ciphertext

ct = (g~c,g′). Output: m := g′/g〈~c,~t〉.
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Proof Sketch. Now we can show that the above scheme is secure in the bounded
leakage model as long as the overall amount of leakage is ` = (m − 2) log(q) −
ω(log(λ)). Note that this is approximately a (m − 2)/m fraction of the total key
size and hence one can asymptotically interpret the above as saying that the scheme
remains secure even if almost the entire key can leak.

Let us sketch the proof, following the main ideas of [NS09]. We use several
hybrids where we modify how the challenge ciphertext is chosen.

Game 0 : This is the original semantic security game in the bounded leakage
model, where the challenge ciphertext ct := (g~c,g′) encrypting a message m

is computed by choosing u
$← Fq and setting

g~c := gu~p , g′ := fu ·m.

Game 1 : In this game, the challenge ciphertext ct := (g~c,g′) is computed using

the secret key ~t by choosing u
$← Fq, setting

g~c := gu~p , g′ := g〈~c,
~t〉m.

This retains the exact same distributions as in Game 0, since

fu = gu(〈~p,~t〉) = g〈u~p,
~t〉 = g〈~c,

~t〉.

Therefore, this change is purely syntactical.

Game 2 : In this game, the challenge ciphertext ct := (g~c,g′) is computed by

choosing ~c
$← Fmq at random and computing g′ := g〈~c,~t〉m as in Game 1.

This is computationally indistinguishable by the DDH assumption (or the
k = 1 rank hiding assumption, by thinking g~p,g~c as two rows of a matrix
which is either uniformly random or a random rank 1 matrix). Note that the
indistinguishability between Games 1 and 2 holds even if the attacker sees
the secret key ~t in full.

Game 3 : In this game, we ignore the message m and set the challenge ciphertext

to ct := (g~c,g′) where ~c
$← Fmq and g′

$← G are both uniformly random.

We show that this is statistically indistinguishable from the previous case.
This is because, given the public key pk all the leakage that the attacker sees
prior to the challenge ciphertext, the value ~t has at least (m−1) log(q)− ` =
log(q) +ω(log(λ)) bits of min entropy. By thinking of 〈~c,~t〉 as a randomness
extractor with ~t being the source and ~c being the seed and the output consist-
ing of log(q) bits, we note that the value g〈~c,~t〉 is statistically close to uniform,
even conditioned on everything else that the attacker sees in Game 2. Here
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we crucially rely on the fact that the leakage occurs only prior to when the
attacker sees the challenge ciphertext and therefore the seed ~c. Therefore,
Games 2 and 3 are statistically close.

Since Game 3 is independent of the encrypted message, the attacker now
has no advantage and therefore we showed semantic security holds.

6.3.2 Secret Leak-Free Updates (“Floppy Model”)

Now that we have a scheme in the bounded leakage model, we would like to get
a method for updating the secret key. Indeed, taking the scheme from the previous
section and fixing g~p, sk = ~t, pk = g〈~p,~t〉 = gα, we see that there is an entire m− 1
dimensional affine space

S := {t′ ∈ Fmq : 〈~t′, ~p〉 = α} = {~t+ ~w : ~w ∈ (~p)⊥}

of secret keys which can be used to perform decryption correctly. Unfortunately,
given a single secret key ~t, it is computationally hard to find another secret key ~t′ ∈
S. Therefore, we cannot just update the secret keys without any extra knowledge.

As a warm-up, let’s first consider a method for updating the secret keys using
additional secret information which never leaks. That is, we consider a PKE
scheme where the key generation, in addition to outputting pk, sk, outputs a secret
update key uk. In addition to the encryption and decryption procedures, there is

also a secretly keyed update process sk′
$← Updateuk(sk). The security property

is the same as that of CLR PKE with Leak-Free Updates: we assume that the
secret key sk can leak up to ` bits in each time period, but the randomness of the
updates and the update key uk do not leak. We note that this security property
may be motivated in practice, by thinking of a device storing the secret key sk as
being used “in the field” for some amount of time, during which the secret key can
leak up to ` bits, but then always being brought back to a “secure base” where

the secret key sk is updated to sk′
$← Updateuk(sk) using an update key uk which

is stored securely and externally (say, on a floppy disk). We will refer to this as
the “floppy model”. Eventually, we will want to get rid of the requirement that
updates require an additional piece of leak-free secret information uk, and even
that they must be performed securely without leaking their randomness.

Construction. The main idea of extending our construction from the previous
section to the floppy model is for the key generation algorithm to also output some
vectors (~w1, . . . , ~wm−2) from the space (~p)⊥ as part of the update key uk. With
overwhelming probability, these vectors will span an m − 2 dimensional subspace
of the m − 1 dimensional space (~p)⊥. These vectors are then used to update the
secret key ~t to ~t′ := ~t + ~w where ~w is chosen at random from span(~w1, . . . , ~wm−1).
Let us write this formally.
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KeyGen(1λ) → (pk, sk, uk) : Sample prms = (G,g, q)← G(1λ).

Choose ~p,~t
$← Fmq and let ~w1, . . . , ~wm−2

$← (~p)⊥. Let ~w
$← span(~w1, . . . , ~wm−2)

and set ~s := ~t+ ~w.

Set pk := (g~p, f = g〈~p,~t〉), sk := ~s, uk := (~w1, . . . , ~wm−2).

Updateuk(sk)→ sk′: Parse sk = ~s, uk = (~w1, . . . , ~wm−2).

Choose ~w
$← span(~w1, . . . , ~wm−2) at random. Output sk′ := ~s+ ~w.

Encryptpk(m), Decryptsk(ct) : These are defined the same way as in the previ-
ous scheme.

Proof Sketch. We now show that the above scheme remains semantically secure
in the floppy model, even if the attacker can leak up to ` = (m−3) log(q)−ω(log(λ))
bits of information on each of arbitrarily many secret keys in between updates.
Note that this is approximately a (m − 3)/m fraction of the total key size and
hence one can asymptotically interpret the above as saying that the scheme remains
secure even if almost the entire key can leak in between updates.

Game 0 : This is the original semantic security game in the “floppy model”, where
the challenge ciphertext ct := (g~c,g′) encrypting a message m is computed

by choosing u
$← Fq and setting

g~c := gu~p , g′ := fu ·m.

Game 1 : In this game, the challenge ciphertext ct := (g~c,g′) is computed using

the secret key ~t by choosing u
$← Fq, setting

g~c := gu~p , g′ := g〈~c,
~t〉m.

This retains the exact same distributions as in Game 0, since

fu = gu(〈~p,~t〉) = g〈u~p,
~t〉 = g〈~c,

~t〉.

Therefore, this change is purely syntactical.

Game 2 : In this game, during key generation, we choose ~p,~t as before, but now

we also choose ~c
$← Fmq and set uk := (~w1, . . . , ~wm−2)

$← (~p,~c)⊥. We set
pk, sk as before as well. Lastly, we set the challenge ciphertext to:

ct = (g~c , g′ := g〈~c,
~t〉m).

Note that the challenge ciphertext as produced in Game 2 has the wrong
distribution since it is unlikely that ~c ∈ span(~p). However, it is still correctly
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decrypted to m by every version of the updated secret key, since the update
vectors ~w ∈ span(~w1, . . . , ~wm−2) are always orthogonal to ~c and hence do not
affect decryption.

Games 1 and 2 are computationally indistinguishable by the k = 1 extended
rank-hiding assumption (which is implied by DDH). To see this, think of
g~p,g~c as the two rows of an 2×m matrix gX and the values ~w1, . . . , ~wm−2 as

being chosen randomly in ker(X). Now, if X
$← Rk1(F2×m

q ) then ~c = u~p for
some random u ∈ Fq and hence we get the distribution of Game 1. On the

other hand, if X
$← Rk2(F2×m

q ) then ~p and ~c are (statistically close to) random
and independent and hence we get (statistically close to) the distribution of
Game 2.

Game 3 : In this game, we modify how the secret keys are chosen. In particular,
we can always write each secret key as ~s = ~t + ~w. We can think of Game

2 as choosing each such key independently with ~w
$← span(~w1, . . . , ~wm−2)

instead of updating the previous key. We define Game 3 by choosing each key

independently with ~w
$← (~p)⊥ coming from a larger subspace than previously.

We show that Games 2, 3 are statistically indistinguishable using subspace
hiding (Corollary 6.2.3). We do so by defining more hybrid games Game 2.0
- Game 2.l where l is the total number of keys leaked upon by the attacker.
In Game 2.i the first i secret keys are chosen as in Game 3 and the rest as
in Game 2. Therefore Game 2.0 is equivalent to Game 2 and Game 2.l is
equivalent to Game 3.

Assume there is an attacker that distinguishes between Games 2.i and 2.(i+
1) for some i. Let W = (~p)⊥ ⊆ Fmq be a known space, and let A =

[~w>1 || . . . ||~wm−2]
$←Wm−2. Let us write the (i+ 1) st secret key as ~s = ~t+ ~w.

Then we can write ~w = A~v for a random ~v
$← Fm−2

q in Game 2.i and ~w
$←W

is uniform in Game 2.(i + 1). Furthermore, the matrix A is random over
Wm−2 and the attacker does not get any information about it in the first i
rounds of leakage. Therefore, the attacker can distinguish the two distribu-
tions of ~w by leaking ` bits of it first, and only later seing (information related
to) the matrix A. (Note: we can think of the vector ~c in the challenge cipher-

text as being chosen later via ~c
$← (~w1, . . . , ~wm−2)⊥, a randomized process

depending on A.) This directly contradicts Corollary 6.2.3.

Notice that, in Game 2.i, the first i secret keys will no longer correctly decrypt
the challenge ciphertext to the encrypted message m because the component
~w in the secret key is no longer orthogonal to the ciphertext vector ~c as
required for correctness of decryption!
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Game 4 : We now change the challenge ciphertext to be independent of the mes-
sage m. That is, we set it to a completely random value (g~c,g′). The only
difference from the previous game is that now g′ is random rather than being
g′ := g〈~c,~t〉m.

However, its easy to see that Games 3 and 4 are statistically indistinguishable
since Game 3 does not reveal anything about ~t beyond the value of 〈~t, ~p〉,
and therefore the value 〈~c,~t〉 is random and independent.

6.3.3 Public Leak-Free Updates

Finally, we are ready to give a construction of CLR PKE with leak-free updates.
The main improvement over the previous construction is that now, the update
algorithm does not require any secret update key uk. However, we still assume that
updates are performed securely and that the randomness of the updates cannot
leak. This construction is a slight variant of [BKKV10] and will build intuition for
our main construction which does not require leak-free updates.

In the previous construction, we had a secret update key consisting of the
vectors uk = (~w1, . . . , ~wm−2). One way to get rid of a secret uk would be to just
post these vectors publicly. Unfortunately, this will be insecure since, once such
vectors are made public, each updated secret key can be uniquely and efficiently
written as ~t+c1 ~w1 + . . .+cm−2 ~wm−2 and therefore the attacker can always compute
~t from each secret key and leak it one bit at a time. Once ~t is leaked in full, the
attacker can decrypt arbitrary ciphertexts.

Instead, we will change the scheme so that the secret key contains ~t in the
exponent rather than in the clear. Also, instead of posting the vectors ~wi publicly
in the clear, we will now post only a single such vector ~w in the exponent. We
will show that, although the updates now come from a significantly smaller space,
they are indistinguishable from performing secretly keyed updates from the larger
space as before (but in the exponent). Unfortunately, by placing ~t and ~w in the
exponent, we loose the ability to decrypt efficiently. To regain it, we will need to
modify the previous scheme to rely on pairings.

Construction. We now give a construction of CLR PKE with leak-free updates,
to build intuition toward our full construction.

KeyGen(1λ) → (pk, sk) : Sample (G1,G2,GT , e,g,h, q)← Gpair(1λ).
Choose ~p, ~w ∈ Fmq at random subject to 〈~p, ~w〉 = 0 and set

prms = ((G1,G2,GT , e,g,h, q),g
~p,h~w)

to be the public parameters of the system. These parameters can then be
reused to create the public/secret keys of all future users. For convenience,
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we implicitly think of prms as a part of each public key pk and as an input
to all of the other algorithms.

Choose ~t
$← Fmq and set pk := e(g,h)〈~p,~t〉, sk = h~t+r ~w where r

$← Fq.

Update(sk)→ sk′: Parse sk = h~s (without knowing ~s). Output sk′ := h~s+r ~w

where r
$← Fq.

Encryptpk(m)→ ct : To encrypt m ∈ GT under pk = f ,
choose u ∈ Fq and output: ct := (gu~p, fu ·m).

Decryptsk(ct)→m: To decrypt, parse the secret key matrix sk = h~s. Parse the
ciphertext ct = (g~c, z). Output: m := z/e( g~c , h~s

>
).

Proof Sketch. We now show that the above scheme is a secure `-CLR-PKE
with leak-free updates, where ` = (m− 4) log(q)− ω(log(λ)). That is, the attacker
can leak up to ` bits on each secret key in between updates (which is almost the
entire key!), but cannot leak on the randomness of the update process. Security
holds under the SXDH assumption in bilinear groups, and we sketch the series of
hybrids below.

Game 0 : This is the original security game.

Game 0.5 : In this game, during key generation, we choose ~p,~t as before, but

now we also choose ~w1, . . . , ~wm−2
$← (~p)⊥ and set ~w := ~w1. As before, we use

~p,~t, ~w to construct the public key and parameters. However, we now choose
each secret key (including the initial one) uniformly and independently at

random via sk := h~t+
∑m−2

i=1 ri ~wi where ri
$← Fq.

We rely on the extended rank hiding assumption (Definition 6.2.5), implied
by SXDH, to show indistinguishability. In particular, assume we are given

a challenge hW ∈ G(m−2)×m
2 and ~p

$← ker(W ), where W is either a random
rank 1 matrix, or a random rank m − 2 matrix. Let us label the rows of
W ∈ Fm−2×m

q by ~w1, . . . , ~wm−2. Then we can use these values to simulate

the CLR-PKE security game by choosing ~t
$← Fmq , using g~p,h~w1 , e(g,h)〈~p,~t〉

to define the public parameters/key. We choose each secret key via sk :=

h~t+
∑m−2

i=1 ri ~wi where ri
$← Fq (note: we can do this knowing only hW and

without knowing the exponent vectors ~wi). If W is of rank 1, then this is

equivalent to Game 0 since we can write each secret key as sk := h~t+r ~w1 for

a random r
$← Fq. On the other hand if W is of rank m − 2, then this is

equivalent to Game 0.5. Therefore a distinguisher between these games will
break extended rank hiding.
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Now, the scheme in Game 0.5 is beginning to look a lot like our previous
scheme in the “floppy model”. Indeed the rest of the games and the security
proof are almost identical as before, with the main difference being that now
there is an extra vector h~w1 posted publicly. As we will see this only has a
small affect on the leakage parameter.

Game 1 : In this game, the challenge ciphertext ct := (g~c, z) is computed using

the secret key ~t by choosing u
$← Fq, setting

g~c := gu~p , z := e(g,h)〈~c,
~t〉m.

This retains the exact same distributions as in Game 0, since

fu = e(g,h)u(〈~p,~t〉) = e(g,h)〈u~p,
~t〉 = e(g,h)〈~c,

~t〉.

Therefore, this change is purely syntactical.

Game 2 : In this game, during key generation, we choose ~p,~t as before, but now

we also choose ~c
$← Fmq and (~w1, . . . , ~wm−2)

$← (~p,~c)⊥. We set pk as before as
well, and use the vectors ~w1, . . . , ~wm−2 to select the secret keys as in Game
1. Lastly, we set the challenge ciphertext to:

ct = (g~c , z := e(g,h)〈~c,
~t〉m).

Games 1 and 2 are computationally indistinguishable by the k = 1 extended
rank-hiding assumption (which is implied by DDH). To see this, think of
g~p,g~c as the two rows of an 2×m matrix gX and the values ~w1, . . . , ~wm−2 as

being chosen randomly in ker(X). Now, if X
$← Rk1(F2×m

q ) then ~c = u~p for
some random u ∈ Fq and hence we get the distribution of Game 1. On the

other hand, if X
$← Rk2(F2×m

q ) then ~p and ~c are (statistically close to) random
and independent and hence we get (statistically close to) the distribution of
Game 2.

Game 3 : In this game, we modify how the secret keys are chosen. In particular,
we can always write each secret key sk = h~s = h~t+~w′ . Instead of choosing

~w′
$← span(~w1, . . . , ~wm−2), in Game 3 we now choose ~w′

$← (~p)⊥ coming from
a larger subspace than previously.

As before, we define hybrid games Game 2.0 - Game 2.l where l is the total
number of keys leaked upon by the attacker. In Game 2.i the first i secret
keys are chosen as in Game 3 and the rest as in Game 2.

Assume there is an attacker that distinguishes between Games 2.i and 2.(i+1)
for some i. Let W = (~p)⊥ ⊆ Fmq be a known space, ~w = ~w1 be a known vec-

tor, and let A = [~w>2 || . . . ||~wm−2]
$←Wm−3 be a random matrix. Let us write
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the (i + 1) st secret key as h~s = h~t+r ~w1+~w′′ . Then we can write ~w′′ = A~v for

a random ~v
$← Fm−2

q in Game 2.i and ~w′′
$←W is uniform in Game 2.(i+ 1).

Furthermore, the matrix A is random over Wm−3 and the attacker does not
get any information about it from the public parameters/key or in the first
i rounds of leakage. Therefore, the attacker can distinguish the two distri-
butions of ~w′′ by leaking ` bits of it first, and only later seing (information
related to) the matrix A. (Note: we can think of the vector ~c in the chal-

lenge ciphertext as being chosen later via ~c
$← (~w1, . . . , ~wm−2)⊥, a randomized

process depending on A.) This directly contradicts Corollary 6.2.3.

Notice that, in Game 2.i, the first i secret keys will no longer correctly decrypt
the challenge ciphertext to the encrypted message m because the component
~w in the secret key is no longer orthogonal to the ciphertext vector ~c as
required for correctness of decryption!

Game 4 : We now change the challenge ciphertext to be independent of the mes-
sage m. That is, we set it to a completely random value (g~c, z). The only
difference from the previous game is that now z is random rather than being
z := e(g,h)〈~c,~t〉m.

However, its easy to see that Games 3 and 4 are statistically indistinguishable
since Game 3 does not reveal anything about ~t beyond the value of 〈~t, ~p〉,
and therefore the value 〈~c,~t〉 is random and independent.

We note that the relation between public and secret keys of the above scheme
defined by

R = {(pk, sk) : pk = (g~p,h~w, f)sk = h~s s.t.e(g~p,h~s) = f}

right away gives us a CLR-OWR with leak-free updates. Therefore, this can be
seen as an alternative to our construction from Chapter 5. Moreover, as shown
generically in Section 5.6, we can also get full security (with leakage of updates)
where the leakage bound ` becomes logarithmic in the security parameter. In fact,
the same result can easily be extended to the above CLR PKE scheme, showing
that it also achieves full security with a logarithmic leakage bound `. Our main
goal now will be to construct a scheme with full security tolerating a significantly
higher leakage threshold.

6.3.4 The Difficulty with Leaking on Updates

It is easy to see that the previous scheme is not secure if the attacker can leak
even just dlog(q)e bits during each update and 1 extra bit on each secret key. In
particular, since the update randomness consists of a single field element r ∈ Fq,
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if the attacker were to leak it in full during each update, then it could efficiently
compute the original secret key sk from every future updated version by reversing
the updates. In that case, the attacker could simply leak the original key in full
one bit at a time by leaking an additional bit of information on each future key.

Indeed, the proof of security (going from Game 0 to Game 0.5 ) relies on
switching the distribution of secret keys in such a way that they are no longer
consistent with any value of the update randomness. Our main construction will
be designed to avoid this step. Instead of modifying the distribution of various
secret keys individually, we will only modify the distribution of the original secret
key and the randomness of the updates. However, at each point, there will be some
choice of update randomness that produces each successive key from the previous
one.

6.4 Construction with Full Security

The main difference between the previous scheme (with leak-free updates) and
our full scheme will be the structure of the secret keys and the update process
itself. In our new scheme, a secret key can be thought of as consisting of n inde-
pendent secret keys from the previous scheme. An update will just take n linear
combinations of the keys to create n fresh keys. Although this does not appear too
different from the previous scheme, we will see that the security argument requires
several new ideas.

Let m,n, d be integer parameters with n ≥ d. The scheme is defined as follows.

KeyGen(1λ) → (pk, sk) : Sample (G1,G2,GT , e,g,h, q)← Gpair(1λ).
Choose ~p, ~w ∈ Fmq at random subject to 〈~p, ~w〉 = 0 and set

prms = ((G1,G2,GT , e,g,h, q),g
~p,h~w)

to be the public parameters of the system. These parameters can then be
reused to create the public/secret keys of all future users. For convenience,
we implicitly think of prms as a part of each public key pk and as an input
to all of the other algorithms.

Choose ~t
$← Fmq and set pk := e( g~p , h~t

>
) = e(g,h)α where α = 〈~p,~t〉.

Choose ~r = (r1, . . . , rn)
$← Fnq and set sk := hS, where S is the n×m matrix:

S :=

 r1 ~w + ~t
· · ·

rn ~w + ~t

 =

 ~r>

 [ ~w
]

+

 ~1>

 [ ~t
]
.
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In other words, each row of S is chosen at random from the 1-dimensional
affine subspace ~t+ span(~w).
(Note that hS can be computed from h~w, without knowing ~w.)

Encryptpk(m)→ ct : To encrypt m ∈ GT under pk = f ,
choose u ∈ Fq and output: ct := (gu~p, fu ·m).

Decryptsk(ct)→m: To decrypt, parse the secret key matrix sk = hS, whose first
wrote we denote h~s. Parse the ciphertext ct = (ct(1), ct(2)) where ct(1) = g~c,
ct(2) = e(g,h)z. Output: m := e(g,h)z/e( g~c , h~s

>
).

Update(sk)→ sk′ : Choose a random n × n matrix of rank d: A′
$← Rkd(Fn×nq ).

Derive A by “rescaling” each row of A′ so that its components sum up to 1.
That is, set (A)i,j := (A′)i,j/(

∑n
k=1(A′)i,k). This ensures A~1> = ~1>.

If the current secret key is sk = hS, output the updated key sk′ := hAS.

Theorem 6.4.1. For any integers n ≥ 10,m ≥ 5, d := n − m + 3, the above
scheme is an `-CLR PKE scheme under the SXDH assumption with leakage ` =
min(n− 3m+ 6, (m− 4)/3) log(q)− ω(log(λ)).

Notice that the amount of tolerated leakage ` can be made an arbitrarily large
polynomial in the security parameter by increasing n,m sufficiently. However, the
ratio of leakage to key size is maximized at m = 5, n = 10 to the constant fraction
1/150.

Correctness. Let (prms, pk, sk) ← KeyGen(1λ) and let ct = (ct(1), ct(2)) ←
Encryptpk(m). Then we can write sk = gS, ct(1) = g~c, ct(2) = e(g,h)z and there

will be some values W,~t satisfying:

S = W +~1>~t , z = ~c · ~t> + µ : rowspan(W ) ⊥ span(~c) (6.1)

where µ is given by m = e(g,h)µ.
First, we show that for any sk and ct satisfying equation (6.1), we get correct-

ness with: Decryptsk(ct) = m. This is because, if we label the first row of sk = hS

by h~s, then we have ~s = ~w + ~t, z = 〈~c,~t〉 + µ for some vectors ~w with 〈~c, ~w〉 = 0.
Therefore decryption correctly recovers:

e(g,h)z/e( g~c , hs
>

) = e(g,h)〈~c,
~t〉+µ/e(g,h)〈~c, ~w+~t〉 = e(g,h)µ = m

Next we show, that updates preserve the key/ciphertext structure of equation (6.1).
Assume that we update the initial secret key with the matrices A1, A2, . . . , Ai.
Define Ā = AiAi−1 · · ·A1. Since the update matrices are “rescaled” we know that
Ā~1> = ~1>. Therefore we can write the updated values as ski = gĀS where

(ĀS) = (ĀW ) +~1>~t : rowspan(ĀW ) ⊥ span(~c).

So key updates preserve equation (6.1) and therefore correctness.
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6.5 Proof Part I: Alternate Distributions

Our proof of security will follow by a hybrid argument. In the real security
game, every secret key in every time period will correctly decrypt the challenge
ciphertext. Our goal is to move to a game where the secret keys no longer decrypt
the challenge ciphertext correctly, and so even if the attacker could leak them in
full, it would not help break security. We do so by slowly modifying how the
challenger chooses the initial key, ciphertext and the update matrices. We first
introduce several alternate distributions for selecting keys and ciphertexts, some
of which decrypt correctly and some don’t. We also show how to select update
matrices to modify the key type.

Alternate Key Generation. Assume that the vectors ~p, ~w,~t are chosen hon-
estly, defining the public parameters/key values g~p,h~w, pk = e(g,h)〈~p,~t〉 with 〈~p, ~w〉 =
0. Fix ~w1 := ~w, and randomly complete a full basis (~w1, . . . , ~wm−1) of the space
(~p)⊥. The secret key is always set to hS for some n×m matrix S of the form

S =

 | |
~r>1 · · · ~r>i
| |

 − ~w1 −
· · ·

− ~wi −

+

 ~1>

 [ ~t
]

(6.2)

where ~r1, . . . , ~ri ∈ Fnq are chosen randomly. Equivalently, each of the n rows of S

is chosen randomly from the affine space: span(~w1, . . . , ~wi) + ~t. The honest key
generation algorithm uses i = 1 and we call these honest keys. In addition, we
define mid keys which are chosen with i = 2 and high keys which are chosen
with i = m − 1. Notice that honest/mid/high keys all correctly decrypt honestly
generated ciphertexts since span(~w1, . . . , ~wm−1) ⊥ span(~p).

Ciphertext Distributions. The encryption of the message m is always set to
ct = (ct(1), ct(2)) where ct(1) = g~c and ct(2) = e(g,h)〈~c,~t〉m. Notice that the second
component ct(2) can always be efficiently and deterministically computed from
ct(1), ~t and m without knowing the exponent vector ~c. The different ciphertext
distributions only differ in how ct(1) = g~c is chosen.

For the honest ciphertexts , we set ~c = u~p for a uniformly random u
$← Fq.

(In this case, ct(2) = e(g,h)u〈~p,~t〉m = (pk)um can be computed efficiently knowing
pk, ct(1) and u and without knowing ~t.) We define dishonest ciphertext by
choosing ~c uniformly at random from the space (~w1)⊥. Lastly, we define correlated
dishonest ciphertexts , by choosing ~c uniformly at random from (~w1, ~w2)⊥. That
is, the exponent vector ~c in the ciphertext is correlated with the basis vector ~w2 so as
to be orthogonal. Notice that there is no difference between dishonest ciphertexts
and correlated dishonest ciphertexts, unless the attacker gets to see a mid key;
this is because only mid keys depend on the basis vector ~w2.
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keys →
↓ ciphertexts

honest mid high

honest Yes Yes Yes
correlated dishonest Yes Yes No

dishonest Yes No No

Figure 6.1: Interactions between keys and challenge ciphertext.

Note that honest ciphertexts are correctly decrypted by honest/mid/high keys,
correlated dishonest ciphertext are (only) correctly decrypted by honest/mid keys
and dishonest ciphertexts are (only) correctly decrypted by honest keys. This is
summarized in Figure 6.1.

Programmed Updates. Honest key updates in period i are performed by choos-

ing A′i
$← Rkd(Fn×nq ) and rescaling its rows to get Ai. Let Āi = AiAi−1 · · ·A1 be the

product of all key-update matrices up to and including period i (as a corner case,
define Ā0 to be the identity matrix). We say that the update Ai is programmed to
annihilate the vectors ~v1, . . . , ~vj ∈ Fnq if we instead choose

A′i
$← Rkd(Fn×nq | row ∈ V) where V = (Āi−1~v

>
1 , . . . , Āi−1~v

>
j )⊥.

In other words, a programmed update Ai has the vectors {Āi−1~vρ}jρ=1 in its kernel.
By programming the update matrices, we can have updates which reduce the

rank of the key (e.g. reduce high keys to mid keys and mid keys to low keys etc.).
Let us go through an example. Assume the initial key is high with sk1 = gS for
S given by equation (6.2), and the updates A1, . . . , Ai−1 are chosen honestly, Ai
is programmed to annihilate the vectors ~r3, . . . , ~rm−1 and Ai+1 is programmed to
annihilate ~r2. Then the corresponding secret keys sk1, . . . , ski in periods 1 to i will
be high keys, ski+1 will be a mid key and ski+2 will be an honest key. To see this,
notice that the exponent of (e.g.) the key ski+1 will follow equation (6.2) with ~r>j
replaced by AiAi−1 · · ·A1~r

>
j . Since Ai is programmed to annihilate the vectors ~rj

for j ≥ 3, these values will be replaced by ~0 in period i+ 1.

6.6 Proof Part II: (Re)Programming Updates.

Here we show two useful results about the scenario where we continually update
a key and the attacker is continually leaking on the process. The first lemma
(Lemma 6.6.1) shows that after continually updating a key of some rank (e.g. low,
mid, high) honestly, we get a random key of the same rank at end. If we program
updates to reduce the rank, we get a random key of the appropriate reduced rank
at the end. This even holds if some of the updates are programmed to annihilate
random vectors unrelated to the key. The second lemma (Lemma 6.6.2) says that
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an attacker who is leaking sufficiently few bits of information on the update process
cannot tell whether some updates are programmed to annihilate random vectors
unrelated to the key.

We consider a randomized process called the Programming Experiment, defined

as follows. First, we choose a random matrix R
$← Fn×lq and label its columns

R = [~r>1 | · · · | ~r>l ]. Then we choose a series of (some polynomial number) t update
matrices A1, . . . , At ∈ Rkd(Fn×nq ) and iteratively set Ri+1 = AiRi where R1 = R.
The experiment is defined by an update regime R which specifies if/how the various
updates are programmed. Each update can be programmed to annihilate some of
the columns of R and some additional random vectors. That is, for each update i,
the regime R specifies a (possibly empty) subset Ji ⊆ {1, . . . , l} of column-indices
to be annihilated and a number ui ≥ 0 of random vectors to be annihilated, subject
to |Ji|+ui ≤ n−d. The programming experiment then chooses update i so that Ai
is programmed to annihilate the vectors {~rj|j ∈ Ji} ∪ {~vi,1, . . . , ~vi,ui} for fresh and

random ~vi,j
$← Fnq . The update regime is fully specified by R = (J1, u1, . . . , Jt, ut).

Lemma 6.6.1 (Program Correctness). Let R = (J1, u1, . . . , Jt, ut) be an update
regime that annihilates the columns with indices

⋃t
i=1 Ji = {ρ+1, . . . , l} along with

u =
∑t

i=1 ui additional random vectors. Assume (d− l−u−1) log(q) = ω(log(λ)).
Then the distribution of the final matrix Rt is statistically close to

Rt =

 | | . . .

~v>1 · · · ~v>ρ 0

| | . . .


for uniformly random and independent columns ~v1, . . . , ~vρ ∈ Fnq . 1

Let GameProgram(R) be a game between a challenger and an attacker, where
the challenger runs the programming experiment with the regimeR. In each round
i = 1, 2, . . . , t, the challenger gives the attacker the matrix Ri in full and answers
` leakage queries on the update matrix Ai (the attacker can choose leakage queries
adaptively depending on its view thus far). The output of the game is the view of
the attacker at the end of the game.

Lemma 6.6.2 (Reprogramming). Let

R = (J1, u1, . . . , Jt, ut) and R′ = (J1, u
′
1, . . . , Jt, u

′
t)

be two update regimes that agree on which columns of R are annihilated and when
(i.e. the sets Ji) but not on how many additional random vectors are annihilated

1Note: in this lemma, we do not condition on seing any information about the initial matrix
R or the update matrices Ai.
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and when (i.e. the values ui, u
′
i). Let u∗ = max

(∑t
i=1 ui,

∑t
i=1 u

′
i

)
be the maximum

number of additional random vectors annihilated by either of the regimes. If (d−
l − u∗ − 1) log(q)− ` = ω(log(λ)) then GameProgram(R)

stat
≈ GameProgram(R′).

Both of the above lemmas (Lemma 6.6.1, Lemma 6.6.2) follow as special cases
from the following lemma.

Lemma 6.6.3. Let R = (J1, u1, . . . , Jt, ut) be an update regime and let u =
∑t

i=1 ui
be the total number of random vectors it annihilates. Let R∗ = (J1, 0, . . . , Jt, 0) be
an update regime that agrees with R on which columns of R are annihilated and
when (i.e. the sets Ji) but does not annihilate any additional random vectors (i.e.
u∗i = 0). Let D = At · · ·A1 be the product of all the update matrices at the end of

the game and let ~µ1, . . . , ~µρ
$← Fnq be fresh random vectors. Then(

GameProgram(R), D~µ>1 , . . . , D~µ
>
ρ

) stat
≈
(
GameProgram(R∗), ~µ>1 , . . . , ~µ>ρ

)
as long as (d− l − u− ρ− 1) log(q)− ` = ω(log(λ)).

Proof. For i ≥ j ≥ 0, we define D[i, j] := AiAi−1 · · ·Aj and Di := D[i, 1] to be
products of update matrices Ai (as a a corner case, D0, A0 are defined to be the
identity matrix as is D[i, j] for i < j).

To prove the lemma, we slowly move from the distribution on the left to the
one on the right. That is, we define a series of hybrid games GameHybrid j where
GameHybrid 0 is the left-hand distribution and GameHybrid t+1 is the right-hand
one. In GameHybrid j, the update matrices Ai for i ≤ j are chosen as specified by
the regime R∗. Moreover, the update matrices Ai for i > j are chosen by placing
ui random vectors from the span of D[i−1, j] into their kernel (instead of the span
of Di−1). More formally, for i > j the update Ai in GameHybrid j is chosen by

rescaling a randomly sampled A′i
$← Rkd(Fn×nq | W) where

W = ( { Di−1~rk | k ∈ Ji } , { D[i− 1, j]~vi,k | 1 ≤ k ≤ ui} )⊥

and ~vi,k ∈ Fnq are uniformly random. Lastly, at the end of GameHybrid j, we ap-
pend the additional vectors chosen as D[t, j]~µ1, . . . , D[t, j]~µρ for uniformly random

{~µk
$← Fnq }

ρ
k=1.

We show that for each j ∈ {0, . . . , t} we have GameHybrid j
stat
≈ GameHybrid

j + 1. We do this by relying on the subspace hiding lemma (Corollary 6.2.4)
and showing a “reduction” which uses a distinguishing strategy for the above two
hybrids to get a distinguishing strategy for the two distributions in the subspace

hiding lemma. The reduction chooses the initial matrix R1
$← Fn×lq .

For updates i < j, the reduction chooses the update matrices Ai according to
the regime R∗ and gives the attacker the corresponding leakage. It also gives the
attacker the values Ri+1 = AiRi in full.
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For the update Aj, the reduction chooses its row space Wj honestly as specified
by the regime R∗ so that Aj should be sampled by rescaling a random sample

A′j
$← Rkd(Fn×nq | row ∈ Wj). However, the reduction does not choose Aj itself,

but instead uses a subspace hiding challenge (Corollary 6.2.4). That is, let Leakj
be the leakage function chosen by the attacker in round j (on matrix Aj) and let
Leak′j be a modified function which, given matrix A′j first rescales its rows to get

Aj and then outputs Leakj(Aj). Define the matrix S = [Rj|~1>]. The reduction
specifies S,Wj, Leak

′
j and gets a subspace hiding challenge of the form:

(Leak′j(A
′
j), A

′
jS, V

′)

where A′j ∈ Rkd(Fn×nq | row ∈ Wj) and V ′ is either of the form A′iU or just U for a
random n× (u+ρ) matrix U . We call the former distribution type I and the latter
type II. The reduction gives the first component of the challenge to the attacker as
its leakage on Aj. It uses the value ~η> = A′j~1

> (from the second component of the
challenge) to compute an n×n rescaling-matrix N whose diagonals are the entries
of ~η so that Aj = NA′j is the rescaled version of A′j. It sets Rj+1 := N(A′jRj)
(where A′jRj is in the second component of the challenge) and gives Rj+1 to the

attacker. It also sets V := NV ′ ∈ Fn×(u+ρ)
q and interprets the columns of V as the

u+ ρ vectors
{~vi,k | 1 ≤ i ≤ t, 1 ≤ k ≤ ui} , {~µk}ρk=1

For each update i > j, the reduction chooses the updates Ai iteratively by

rescaling a random A′i
$← Rkd(Fn×nq | row ∈ Wi) where

Wi = ( { Di−1~rk | k ∈ Ji } , { D[i− 1, j + 1]~vi,k | 1 ≤ k ≤ ui} )⊥

and the values Di−1~rk are derived from Rj+1 and Aj+1, Aj+2 . . . (without knowing
Aj). Similarly, The reduction also samples the final ρ vectors as { D[t, j+1]~µk}ρk=1.
It gives the attacker leakage on the updates Ai, the full values Ri, and finally the
ρ vectors ~µk.

If the challenge is of type I and V ′ = A′iU for a uniform U then the reduction
produces the distribution GameHybrid j. This is because, for any columns ~v of
V we can write D[i − 1, j + 1]~v = D[i − 1, j + 1]Aj~u = D[i − 1, j]~u where ~u is
uniformly random. So all of the spaces Wi and the final vectors ~µk are distributed
as in GameHybrid j. On the other hand, if the challenge is type II, then the
reduction produces the distribution GameHybrid j + 1. This is because V ′ = U
is uniformly random and hence V = NU is also uniformly random (since N is
full-rank and U is independent of N).

Therefore the hybrids are indistinguishable from each other and hence the left
and right hand distributions of the lemma are indistinguishable.

92



Proof of Lemma 6.6.2. We just apply Lemma 6.6.3 twice with ρ = 0 to get

GameProgram(R)
stat
≈ GameProgram(R∗)

stat
≈ GameProgram(R′).

Proof of Lemma 6.6.1. Let us write the initial matrix as R = [Rleft|Rright] where
Rleft consists of the first ρ columns. Then, the choice of the updates A1, . . . , At in
the programming experiment is completely independent of Rleft. Therefore, we can
think of playing the programming experiment with only Rright and choosing the ρ
columns of Rleft randomly afterwards. Therefore, applying Lemma 6.6.3 to only the
l′ = l−ρ sub-matrix Rright (and setting ` = 0) we get statistical indistinguishability

between the distributions on the ρ columns given by Rleft
t = DtR

left stat
≈ V where

V is uniformly random over Fn×ρq . It’s also clear that Rright
t = DtR

right = 0, and

so Rt = [Rleft
t |R

right
t ]

stat
≈ [V |0], as we wanted to show.

6.7 Proof Part III. Series of Hybrids

6.7.1 Informal Overview

We first give an informal overview of the main proof strategy, which should
prove helpful in understanding the formal proof. However, all of the notions we
introduce here will be defined formally later and hence this section is not strictly
necessary if one wishes to follow the full formal proof.

We use a series of hybrid arguments, where each step either takes advantage
of the fact that the adversary is computationally bounded and cannot distinguish
the rank of various matrices in the exponent, or of the fact that the adversary
is leakage bounded and is only seing partial leakage on any key and ciphertext.
When we use computational steps, we will even assume that the attacker gets
full leakage and so we cannot modify any property of the game that could be
efficiently tested given the keys and ciphertexts in full – in particular, we cannot
modify whether any secret key correctly decrypts the challenge ciphertext in any
time period. When we use leakage steps, we can even assume that the attacker is
computationally unbounded and hence we cannot modify the distribution of any
individual key/ciphertext/update – but we can modify various correlations be-
tween them, which may not be testable given just partial leakage on the individual
values.2

The main strategy is to move from a game where all keys/updates and the
challenge ciphertext are honest to a game where the keys no longer decrypt the

2This is a good way of viewing essentially all prior results in leakage resilient cryptography.
Since we do not have computational assumptions that allow us to reason about leakage directly,
we alternate between using computational steps that work even in the presence of unrestricted
leakage and information theoretic steps that take advantage of the leakage being partial.
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challenge ciphertext correctly. We can use computational steps to change the dis-
tribution of the initial key (honest/mid/high) or ciphertext (honest/dishonest) but
only if they still decrypt correctly. For example, we can make the initial key a mid
key and ciphertext a correlated dishonest ciphertext while maintaining computa-
tional indistinguishability. We then want to use a leakage step to argue that the
attacker cannot notice if the correlation disappears and decryption stops working.
For this, we would like to rely on orthogonality hiding Corollary 6.2.4. Unfortu-
nately, since leakage on keys is continual, we cannot use this lemma directly. To get
around this, we carefully program our updates to reduce the rank of future keys,
so that the leakage on the vector ~w2 only occurs in a single mid key. We carefully
arrange the hybrids so as to make this type of argument on each key/ciphertext
pair, one at a time.

Hybrid Games. We start with the Real Security Game, which follows the def-
inition of CLR PKE (Definition 6.1.1). That is, the challenger chooses the initial
secret key sk1 honestly, chooses the update matrices Ai honestly, and chooses the
challenge ciphertext ct honestly as an encryption of the challenge message mb

where b
$← {0, 1} is chosen randomly.

Next we introduce a series of hybrid games, called Game i = 0, 1, 2, . . ., which
are all of the following type. For i ≥ 2, the challenger chooses the initial key sk1

as a high key, the first i− 2 updates are honest (and hence the keys sk1, . . . , ski−1

are high keys), the update Ai−1 is programmed to reduce the key to a mid key ski,
and the update Ai is programmed to reduce the key to a honest key ski+1. The
rest of the updates are honest and hence the keys ski+1, ski+2, . . . are honest. For
the special case i = 1, the initial key sk1 already starts out as a mid key and the
first update A1 reduces it to an honest key. For the special case i = 0, the initial
key sk1 is already an honest key. In all these games, the challenge ciphertext is
chosen as an (uncorrelated) dishonest ciphertext encrypting the message mb.

We also define analogous games GameCor i where the initial secret key and the
update matrices are chosen as in Game i, but the challenge ciphertext is chosen
as acorrelated dishonest ciphertext encrypting the message mb.

Sequence of Steps. Our first step is to move from Real Game to Game 0.
The only difference in this step is that we change the challenge ciphertext from
an honest ciphertext to a dishonest ciphertext. All secret keys in the game still
correctly decrypt the challenge ciphertext, since they are all honest keys. This is
a computational step and is indistinguishable even given full leakage.

Next, our goal is to keep moving from Game i to Game i+1. Unfortunately, we
cannot just increment i in a single step since each such move changes ski+1 from
an honest key to a mid key and hence changes it from correctly decrypting the
dishonest challenge ciphertext to not. Instead, we move from Game i to GameCor
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i + 1 in a single computational step. Even though the key ski+1 changes from an
honest key in Game i to a mid key in GameCor i + 1, by making the challenge
ciphertext correlated, it is still decrypted by the mid keys ski+1 and all future
honest keys, but none of the prior high keys. Therefore, these games cannot be
distinguished even given full leakage.

Next, we move from GameCor i + 1 to Game i + 1. The only difference is
the correlation between the basis vector ~w2 in the mid secret key ski+1 and the
challenge-ciphertext vector ~c. In GameCor i+ 1 they are orthogonal, but in Game
i + 1 they are random. However, we now use a leakage step, relying on subspace
hiding Corollary 6.2.3, to show that these two games are indistinguishable. In par-
ticular, the vector ~w2 is either uniformly random or a random vector orthogonal to
~c, but the attacker can only get partial leakage on it prior to seing any information
about ~c.

Assume the attacker makes at most qsk update queries. Then eventually, we
move to Game qsk where all of the keys in the game are high keys (i.e. the initial
key is a high key and all the updates are honest). Therefore, none of the keys that
the attacker leaks on in this game can correctly decrypt the challenge ciphertext.
We can now use a computational step to argue that, even if the attacker got the
keys in full, the challenge ciphertext hides the plaintext mb and hence the challenge
bit b.

Under the Rug. The above discussion is slightly oversimplified. The main is-
sue is that the computational transitions, e.g. from Game i to GameCor i + 1,
are not computationally indistinguishable the way we defined the games. This is
because in Game i the update matrix Ai+1 is unlikely to annihilate any vectors
(i.e. its kernel is unlikely to contain non-zero vectors from the span of the previous
updates) while in GameCor i + 1 it is programmed to annihilate vectors so as to
reduce the dimension of the key. This can be efficiently tested given full leakage
of the update matrices. Therefore, in the full proof, we define the games Game
and GameCor slightly differently with some updates programmed to annihilate
additional uniformly random vectors. With this modification, we can prove com-
putational indistinguishability. We also need extra information theoretic steps to
argue that the attacker cannot tell if updates are programmed to annihilate some
random vectors, given limited leakage.

In Section 6.7.2, we define the main hybrid games that are used in the proof.
Then, in Section 6.7.3, we proceed to prove the indistinguishability of the various
hybrid games.
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Figure 6.2: The main hybrid games. Arrows correspond to programmed updates.

6.7.2 Hybrid Game Definitions

We first define several hybrid games. The main part of the proof is to show
computational/statistical indistinguishability between these games. The output of
each game consists of the view of the attacker A as well as a bit b chosen by the
challenger representing its choice of which message m0,m1 to encrypt. We assume
that the attacker A makes a maximum of qsk update queries on the secret-key
during the course of the game.

Real Game : This is the original “`-CLR-PKE” security game between the
adversary and the challenger (see Definition 6.1.1). The initial secret key sk1 as
well as all of the updates and the challenge ciphertext are honest. We define the
output of the game to consist of the view of the attacker A and the bit b chosen
by the challenger. Therefore, given the output of the game, we can efficiently tell
if “A wins”.
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Game’ 0 : In this game, the challenger chooses the initial ciphertext incorrectly
as a dishonest ciphertext of the message mb instead of encrypting it honestly. The
initial secret key sk1 is chosen honestly and all key updates are chosen honestly as
before.

Game i : We define Game i for i = 0, . . . , qsk + 1. In all future game definitions,
we will include two additional “dummy keys” sk−1, sk0 and key-update matrices
A−1, A0 chosen by the challenger (but not observed or leaked on by the attacker).
That is, the challenger (in its head) always initially chooses sk−1, then updates
it to sk0 using an update matrix A−1, then updates sk0 to sk1 using an update
matrix A0 and so on. However, the values sk−1, A−1, sk0, A0 are then ignored, and
the first key and update matrix that the attacker can ask leakage queries on are
sk1 and A1 respectively. In every Game i, the initial key sk−1 is chosen as a high
key with the exponent matrix:

S =

 | · · · |
~r>1 · · · ~r>m−1

| · · · |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]

The first key update matrices A−1, . . . , Ai−2 are chosen honestly. The update Ai−1

is programmed to annihilate the m − 3 vectors (~r3, . . . , ~rm−1) reducing the key to
a mid. The update Ai is programmed to annihilate ~r2 along with m − 4 random
vectors, reducing the key to an honest key. The update Ai+1 is programmed to
annihilate a single random vector. All other key updates are chosen honestly.
Note that, in Game i, the keys sk−1, . . . , ski−1 are high keys, ski is a mid key,
and ski+1, . . . are honest keys.3 The challenge ciphertext is a dishonest ciphertext.
Notice that the secret keys sk−1, . . . , ski do not decrypt the challenge ciphertexts
correctly, but all future keys ski+1, . . . , skqsk+1 do.

GameCor i + 1 : We define GameCor i + 1 for i = 0, . . . , qsk + 1. This game
is similar to Game i + 1 with the main difference being tat now the challenge
ciphertext is chosen as an correlated dishonest ciphertext. However, the sequence
of updates also differs in which updates annihilate additional random vectors. In
particular, the initial key sk−1 is chosen as a high key, just like in Game i+1. The
first key update matrices A−1, . . . , Ai−2 are chosen honestly. The update Ai−1 is
programmed to annihilate the m − 3 uniformly random and independent vectors.
The update Ai is programmed to annihilate the secret key vectors ~rm−1, . . . , ~r3,

3In particular, in Games 0 the initial observed (non-dummy) key sk1 is an honest key, in
Game 1 it is a mid key, and in all future games it is a high key. For the proof, it becomes easier
to just pretend that there are some “dummy” mid and high keys sk−1, sk0 even in Games 0,1 so
as not to have to define special corner cases for these games.
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reducing the key to an mid key. The update Ai+1 is programmed to annihilate ~r2,
reducing the key to an honest key. All other key updates are chosen honestly.

GameFinal : This game is defined the same way as Game qsk + 1, except that
instead of using the message mb in the dishonest ciphertext, we just use message
1GT

. More specifically, in GameFinal, the secret key is a random high key and all
of the relevant key updates that the attacker leaks on are honest. The ciphertext
is a dishonest ciphertext encryting the message 1GT

and therefore the view of the
attacker in GameFinal is independent of the challenger’s bit b.

6.7.3 Hybrid Indistinguishability Arguments

Lemma 6.7.1. Real
comp
≈ Game’ 0.

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption
(Definition 6.2.5, Lemma 6.2.6). The reduction is given a challenge gP , ~w where

P
$← Rkx(F2×m

q ) is either of rank x = 1 or x = 2 and ~w
$← ker(P ). Let us denote

the two rows of P by ~p,~c respectively. The reduction puts the values g~p,h~w in prms
and chooses its own random ~t to set up the initial (honest) public/secret key pk, sk.

To create the encryption of mb, the reduction sets ct = (g~c, e(g,h)〈~c,~t〉mb). The
reduction chooses all of the key/ciphertext update matrices honestly and answers
all update/leakage queries honestly.

If the challenge has x = 1 then ~c1 = u′~p for some scalar u′ and hence the cipher-
text is a correctly distributed honest encryption of mb, so the reduction produces
the distribution of the Real Game. If x = 2 then ~c1 is a random and independent
vector in the space (~w)⊥ and hence the ciphertext is a correctly distributed dis-
honest encryption of mb, so the reduction produces the distribution of Game’ 0.
Therefore the two are computationally indistinguishable.

Lemma 6.7.2. If ` ≤ (n− 3m+ 6) log(q)− ω(log(λ)) then Game’ 0
stat
≈ Game 0.

Proof. The only difference between Game’ 0 and Game 0 is the joint distribution
on the initial secret key sk1 and the update matrix A1. Conditioned on sk1, A1,
all other values are sampled the same way in the two games. In Game’ 0, the key
sk1 is a randomly chosen honest key, and A1 is an honest update. In Game 0 the
distribution on sk1, A1 is slightly more complicated. First we choose a random
high key sk−1 = hS−1 with exponent

S−1 =

 | · · · |
~r>1 · · · ~r>m−1

| · · · |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]
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Then we choose the updates: A−1 programmed to annihilate ~r3, . . . , ~rm−1 yielding
a mid-key sk0, A0 is programmed to annihilate ~r2 along with m−4 random vectors
yielding an honest key sk1, and A1 is programmed to annihilate a single random
vector.

We claim this joint distribution on A1 and sk1 in Game 0 is statistically indis-
tinguishable from that of Game’ 0. To see this, we first apply the reprogramming
lemma (Lemma 6.6.2 with u∗ = m− 3, d = n−m + 3, l = m− 1) to switch from
A1 being programmed to annihilate a single vector to just being honest. Next
we just use program correctness lemma (Lemma 6.6.1; with l = m − 1, ρ = 1,
u = m− 4, d = n−m+ 3) to argue that the distribution of the key sk1 in Game 0
is statistically close to choosing a fresh honest key. In particular, the lemma tells

us that A0A−1[~r>1 | · · · |~r>m−1]
stat
≈ [~r>|0 · · · ] for a uniformly random ~r ∈ Fnq . So the

exponent of the key sk1 in Game 0 is

A0A−1S−1 = A0A−1~r
>
1 ~w1 +~1>~t

stat
≈ ~r> ~w +~1>~t

and hence statistically indistinguishable from that of a random honest key as in
Game’ 0.
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Figure 6.3: Additional hybrids for Lemma 6.7.3

Lemma 6.7.3. For i ∈ {0, . . . , qsk}: Game i
comp
≈ GameCor i+ 1.
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Proof. For the proof of the lemma, we introduce two additional intermediate games
(see Figure 6.3). Firstly, we define GameAlt i. In this game, the initial secret key
sk−1 is a random mid key with exponent matrix

S
def
=

 | |
~r>1 ~r>2
| |

[ − ~w1 −
− ~w2 −

]
+

 ~1>

 [ ~t
]

The key update matrices A1, . . . , Ai−2 are chosen honestly, the update Ai−1 is
programmed to annihilate m − 3 random vectors, the update Ai is programmed
to annihilate ~r2 along with m − 4 random vectors, and the update matrix Ai+1

is programmed to annihilate a single random vector. The challenge ciphertext is
chosen as in Game i.

Claim 6.7.4. Game i
comp
≈ GameAlt i

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption
(Definition 6.2.5, Lemma 6.2.6). The challenger gets a challenge hW

′
and ~p,

where W ′ $← Rkx(F(m−2)×m
q ) is either of rank x = 1 or of rank x = m − 2 and

~p ∈ ker(W ′). Let us label the rows of W ′ by ~w2, . . . , ~wm−1. Choose ~w1
$← (~p)⊥

and ~t
$← Fmq . Set prms = (g~p,h~w1), pk = e(g,h)~t·~p and sk−1 = hS where

S =

 | |
~r>1 · · · ~r>m−1

| |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]

for uniformly random ~r1, . . . , ~rm−1 (note: the challenger can do this efficiently
given hW

′
without knowing W ′). Create a dishonest ciphertext by choosing a

random vector ~c
$← (~w1)⊥. Run the rest of Game i correctly as a challenger,

where the key-update Ai−1 is programmed to annihilate ~r3, . . . , ~rm−1, the key-
update Ai is programmed to annihilate ~r2 and m − 4 random vectors and the
key update Ai+1 update is programmed to annihilate a single random vector.

If W ′ is of rank x = m− 2, then it is easy to see that the above distribution is
that of Game i.

If W ′ is of rank x = 1 then we claim that the above is distribution is that
of GameAlt i. Firstly, we can write ~w3 = µ3 ~w2, . . . , ~wm−1 = µm−1 ~w2 for some
scalars µ3, . . . , µm−1 in Fq. Letting ~µ = (1, µ3, . . . , µm−1) ∈ Fm−2

q , we can write

S =

 | |
~r>1 ~r2

′>

| |

[ − ~w1 −
− ~w2 −

]
+

 ~1>

 [ ~t
]
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for  ~r2
′>

 =

 | |
~r>2 · · · ~r>m−1

| |

 ~µ>


So sk−1 is a random mid key as in GameAlt i. Moreover, the vectors ~r3, . . . , ~rm−1

are random and independent of S, ~w1, ~w2, ~r1, ~r2
′. Therefore, the update ma-

trix Ai−1 is programmed to annihilate m− 3 random and independent vectors
~r3, . . . , ~rm−1 as in GameAlt i. Finally, the update Ai is programmed to an-
nihilates ~r2 (along with m − 4 random vectors), which is equivalent to being
programmed to annihilate ~r′2 since span(Di−1~r2

′) = span(Di−1~r2) where Di−1

is the product of all update matrices prior to Ai. So we see that the, when W ′

is of rank 1 then the choice of ski−1 and all the update matrices is distributed
correctly as in GameAlt i. Hence an attacker that distinguishes Game i and
GameAlt i breaks rank-hiding.

We now introduce a second intermediate game called Game2Alt i where the initial
secret key sk−1 has an exponent of the form

S−1
def
=

 | · · · |
~r>1 · · · ~r>m−2

| · · · |

 − ~w1 −
· · ·

− ~wm−2 −

+

 ~1>

 [ ~t
]

so that the rows are chosen randomly from the m − 2 dimensional affine space
~t+ span(~w1, . . . , ~wm−2). The key update matrices A1, . . . , Ai−2 are chosen honestly,
the update Ai−1 is programmed to annihilate m−3 random vectors, the update Ai
is programmed to annihilate the vectors ~r2, . . . , ~rm−2, and the update matrix Ai+1

is programmed to annihilate a single random vector. The challenge ciphertext is
chosen as in Game i.

We now show (in 2 steps) that Game2Alt i is computationally indistinguishable
from GameAlt i and from GameCor i+1, which completes the proof of Lemma 6.7.3

Claim 6.7.5. GameAlt i
comp
≈ Game2Alt i.

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption
(Definition 6.2.5, Lemma 6.2.6). The challenger gets a challenge hW

′
and ~p,

where W ′ $← Rkx(F(m−3)×m
q ) is either rank x = 1 or rank x = (m − 3) and

~p ∈ ker(W ′). Let us label the rows of W ′ by ~w2, . . . , ~wm−2. Choose ~w1
$← (~p)⊥

and ~t
$← Fmq . Set prms = (g~p,h~w1), pk = e(g,h)~t·~p and sk−1 = hS where

S =

 | |
~r>1 · · · ~r>m−2

| |

 − ~w1 −
· · ·

− ~wm−2 −

+

 ~1>

 [ ~t
]
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for uniformly random ~r1, . . . , ~rm−2 (note: the challenger can do this efficiently
given hW

′
without knowing W ′). Create a dishonest ciphertext by choosing

a random vector ~c
$← (~w1)⊥. The key-update Ai−1 is programmed to anni-

hilate m − 3 random vectors, the key-update Ai is programmed to annihilate
~r2, . . . , ~rm−2 and the key update Ai+1 update is programmed to annihilate a
single random vector.

If W ′ is of rank x = m− 3, then it is easy to see that the above distribution is
that of Game2Alt i.

If W ′ is of rank x = 1 then we claim that the above distribution is that of
GameAlt i. This follows since we can write

S =

 | |
~r>1 ~r2

′>

| |

[ − ~w1 −
− ~w2 −

]
+

 ~1>

 [ ~t
]

for  ~r2
′>

 =

 | |
~r>2 · · · ~r>m−2

| |

 ~µ>


and some vector ~µ> ∈ Fm−3

q . So sk−1 is a random mid key as in GameAlt
i. Moreover, an update Ai which is programmed to annihilate ~r2, . . . , ~rm−2 is
equivalent to being programmed to annihilate ~r2

′ along with m − 4 random
vectors since span(~r2, . . . , ~rm−2) = span(~r2

′, ~r3, . . . , ~rm−2) where ~r3, . . . , ~rm−2 are
random an independent of sk−1 or any of the previous updates. Therefore sk−1

and all of the update matrices are distributed as in GameAlt i.

Claim 6.7.6. Game2Alt i
comp
≈ GameCor i+ 1.

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption
(Definition 6.2.5, Lemma 6.2.6). The reduction gets a challenge hW

′
and ~p,~c,

where W ′ $← Rkx(F2×m
q ) is either rank x = 1 or rank x = 2 and ~p,~c ∈ ker(W ′).

Let us label the rows of W ′ by ~w1, ~w2. The reduction chooses ~w3, . . . , ~wm−1
$←

(~p)⊥, ~t
$← Fmq and sets prms = (g~p,h~w1), pk = e(g,h)~t·~p and sk−1 = hS where

S =

 | |
~r>1 · · · ~r>m−1

| |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]

for uniformly random ~r1, . . . , ~rm−1. (Note: the reduction can do this efficiently
given hW

′
without knowing W ′). Lastly, the reduction creates a dishonest ci-

phertext using the vector ~c that comes from the challenge. The reduction does
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everything else as in GameCor’ i+1 where the key-update Ai−1 is programmed
to annihilate m− 3 random vectors, the key-update Ai is programmed to anni-
hilate ~r3, . . . , ~rm−1 and the key update Ai+1 update is programmed to annihilate
~r2.

If W ′ is of rank x = 2, then it is easy to see that the above distribution is
that of GameCor’ i + 1. Notice that the key and ciphertext basis are random
correlated basis with ~c ∈ (~w1, ~w2)⊥.

If W ′ is of rank x = 1 then we claim that the above distribution is that of
Gam2Alt i. This follows since the exponent of sk−1 can be written as

S =

 | | |
~r1
′> ~r>3 · · · ~r>m−1

| | |



− ~w1 −
− ~w3 −

· · ·
− ~wm−1 −

+

 ~1>

 [ ~t
]

where ~r1
′> = µ1~r

>
1 + µ2~r

>
2 for some scalars µ1, µ2. Note that ~r1

′ is therefore
uniformly random and independent of ~r2. By relabeling, this has the same
distribution as the initial key in Game2Alt i. Moreover, the update Ai is pro-
grammed to annihilate the m− 3 vectors ~r3, . . . , ~rm−1 in the initial secret key,
while the update Ai+1 annihilates the vector ~r2 which is random and indepen-
dent of the initial secret key. Therefore the initial secret key and all of the
secret key updates are distributed as in Game2Alt i.

Putting Claim 6.7.4, Claim 6.7.5 and Claim 6.7.6 together, we complete the proof
of the lemma.

Lemma 6.7.7. If ` ≤ min((m− 3)/3, n− 3m+ 6) log(q)− ω(log(λ)) then

GameCor i+ 1
stat
≈ Game i+ 1

Proof. There are two differences between GameCor i + 1 and Game i + 1. The
first difference lies in wether the ciphertext is dishonest or correlated dishonest.
The second difference lies in the update regime and which updates annihilate
additional random vectors (although in both games, the update regimes agree on
which updates reduce the rank of the key from high to mid to honest). We show
statistical indistinguishability of each of these changes. We define GameInter i+1
which is just like GameCor i+ 1, with the same distribution of the secret key and
the update matrices, but where the ciphertext is dishonest (not correlated).

Claim 6.7.8. If ` ≤ (m− 4) log(q)/3− ω(log(λ)), then

GameCor i+ 1
stat
≈ GameInter i+ 1
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Proof. This follows by subspace hiding (Corollary 6.2.3). Let us fix the vec-
tors ~p, ~w = ~w1,~t, and let us fix the space W = (~p)⊥. Let us also fix vectors
~w3, . . . , ~wm−1 in the space W but not the vector ~w2. These values are sufficient
to define the public key pk of the scheme and the initial high secret key in Game
i+ 1 and GameCor i+ 1. That is, each row of the initial secret key is chosen as

h~t+~w′ where ~w′
$←W is chosen randomly. Moreover, the first i− 1 updates are

performed honestly or they annihilate some random vectors (in both games)
and hence we can simulate all these values without fixing ~w2.

Let M
$← Wm−3 be random matrix and let ~w2 be some vector which is either

chosen as (I) ~w2 := M~v> for ~v
$← Fm−3

q or (II) ~w2
$← W . We will use ~w2 to

simulate leakage on the updates Ai, Ai+1 and the secret keys ski+1. In particu-
lar, once we fix ~w2, we also fix the vectors ~r1, . . . , ~rm−1 so that the initial high
key can be written as hS with

S =

 | · · · |
~r>1 · · · ~r>m−1

| · · · |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]

Then we choose update Ai to annihilate ~r3, . . . , ~rm−1, and Ai+1 to annihilate ~r2.
Note that the secret key ski+2 and the rest of the updates are then completely
independent of ~w2 (we can choose it ahead of time). Therefore, in total, the
attacker gets leakage on ~w2 in only 3 rounds of leakage and therefore gets at
most 3` bits of information about ~w2. We can now simulate the rest of the game
by choosing updates honestly. To give the dishonest challenge ciphertext, we
choose a vector ~c at random orthogonal to the columns of M and ~w1. Note
that (information about) the matrix M is only used after leakage occurs on the
vector ~w2.

If the challenge if of type (I) then this gives us the distribution of GameCor

i + 1 with ~w2
$← (~c, ~p)⊥ and otherwise we get the distribution of Game i + 1

with ~w2
$← (~p)⊥. Therefore, these two games are statistically indistinguishable

by Corollary 6.2.3.

We now turn to changing the regime of ciphertext updates from GameInter i+1
to Game i+ 1. But for this we just use the reprogramming lemma (Lemma 6.6.2)
on the ciphertext updates. In particular, we rely on the fact that the regime of
ciphertext updates between GameInter and Game only differs in which updates
annihilate additional random vectors (but not in how they annihilate the ciphertext
exponent vectors ~ui). Therefore, using the reprogramming lemma, we see that the
two games are indistinguishable as long as ` ≤ (n− 3m+ 6) log(q)− ω(log(λ)).
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Lemma 6.7.9. Game qsk + 1
stat
≈ GameFinal.

Proof. Notice that in Game qsk + 1, the initial secret key sk−1 is a high key and
all of the update matrices that the attacker leaks on are honest. Therefore, the
attacker does not learn any information about the vector ~t created during key
generation, beyond just the value 〈~p,~t〉 in the public key (this is true even if the
attacker got full leakage on all secret keys). Now, the dishonest challenge ciphertext

if of the form g~c, e(g,h)〈~c,~t〉mb, where ~c is uniformly random and independent of
~t. Therefore, given everything the attacker sees in the game prior to the challenge
ciphertext, the value 〈~c,~t〉 is uniformly random, and hence the message mb and
the bit b are perfectly hidden by the ciphertext.

6.7.4 Putting It All Together

Using Lemmata 6.7.1 - 6.7.9, we get the indistinguishability: Real
comp
≈ Game-

Final. Recall that the output of each game includes the view of the attacker A
at the end of the experiment along with the challenger’s selection bit b. Since the
attacker’s guess b̃ at the end of the game can be efficiently computed from the
view of the attacker, the predicate (A wins)⇔ (b̃

?
= b) can be efficiently computed

from the output of each game. In GameFinal the view of the attacker is indepen-
dent of the random bit b and hence we have Pr[A wins ] = 1

2
. Therefore, in the

Real game, we must have |Pr[A wins ] − 1
2
| ≤ negl(λ) since the two games are

indistinguishable. This concludes the proof of Theorem 6.4.1.

6.8 Generalization to k-Linear

In this section, we provide a generalized scheme which we can prove secure
under the k-linear assumption for arbitrary choices of k. When k = 1, the scheme
description and proof coincide exactly with the original.

6.8.1 Scheme Description

Let k, n,m, d be integer parameters of the system with n ≥ d.

KeyGen(1λ) → (pk, sk) : Sample (G1,G2,GT , e,g,h, q) ← G(1λ) to be the de-
scription of a bilinear group of primer order q, with an efficient pairing
e : G1 ×G2 → GT , and generators g ∈ G1,h ∈ G2.

Choose matrices P,W ∈ Fk×mq at random subject to rowspan(P )⊥ rowspan(W )
and set

prms = ((G1,G2,GT , e,g,h, q),g
P ,hW )

105



to be the public parameters of the system.4

Choose ~t
$← Fmq and set pk := e( gP , h~t

>
) = e(g,h)~α where ~α> = P~t>.

Choose R
$← Fn×kq and set sk := hS, where S is the n×m matrix given by

S :=

 R

 [ W
]

+

 ~1>

 [ ~t
]
.

In other words, each row of S is chosen at random from the affine subspace
~t+ rowspan(W ). (Note that hS can be computed from the components hW ,
~t, R without knowing W .)

Encryptpk(m)→ ct : To encrypt m ∈ GT under pk = e(g,h)~α,

choose ~u ∈ Fkq and output: ct = (g~uP , e(g,h)~u·~α
>

m ).

Decryptsk(ct)→m: To decrypt, we only need to look at the first row of the secret
key. Given the first row h~s of the secret key sk = hS, and the ciphertext
component ct(1) = g~c, ct(2) = e(g,h)z, the decryption algorithm outputs:
m = e(g,h)z/e( g~c , h~s

>
).

Update(sk)→ sk′ : Choose a random matrix A′
$← Rkd(Fn×nq ). Derive A by

“rescaling” each row of A′ so that its components sum up to 1. That is, set
(A)i,j := (A′)i,j/(

∑n
l=1(A′)i,l).

If the current secret key is sk = hS, output the updated key sk′ := hAS.

Theorem 6.8.1. For any integers m ≥ 4k, n ≥ 3m− 7k+ 1 and d := n−m+ 3k
the scheme (KeyGen, Encrypt, Decrypt,Update) is an `-CLR-PKE scheme under
the k-linear assumption for any

` = min ((m− 3k − 1)/3, n− 3m+ 7k − 1) log(q)− ω(log(λ)).

The proof of the theorem closely follows that of the SXDH scheme and we only
sketch the needed modifications.

6.8.2 The Generalized Proof (Sketch)

We now give an overview of the modifications to the previous proof necessary
to generalize it to the k-linear assumption. The overall structure of the proof and
the hybrid games is exactly the same, except that we modify how low/mid/high
keys and honest/dishonest ciphertexts are defined.

4We can interpret the above as choosing W at random and choosing each row of P at random
from ker(W ).
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Alternate Key and Ciphertext Distributions. Assume the matrices P,W
and the vector ~t are fixed defining gP ,hW and pk = e(g,h)P~t

>
. Let us label

the rows of W by ~w1, . . . , ~wk and let (~w1, . . . , ~w(m−k)) be a basis of ker(P ) =
rowspan(P )⊥.

We define the various key distributions on sk = hS the same way as before
with

S =

 | |
~r>1 · · · ~r>i
| |

 − ~w1 −
· · ·

− ~wi −

+

 ~1>

 [ ~t
]

(6.3)

but now we have i = k for honest , i = 2k for mid and i = (m − k) for high
keys.

Similarly, ciphertexts are always of the form ct = (g~c, e(g,h)〈~c,~t〉m). For honest

ciphertexts we have ~c = ~uP and for dishonest ciphertexts we have ~c
$←

(~w1, . . . , ~wk)
⊥ = ker(W ). Lastly, for correlated dishonest ciphertexts we have

~c
$← (~w1, . . . , ~w2k)

⊥. The interactions between keys and ciphertexts still follows
the outline given in Figure 6.1.

The Hybrids. We also define the various games Game i, GameCor i analogously
as before with appropriate modifications. For example, in Game i, the key updates
. . . , Ai−2 are honest, the update Ai (high to mid) is now programmed to annihilate
the m − 3k vectors ~r2k+1, . . . , ~rm−k, the update Ai+1 (mid to low) is programmed
to annihilate the k vectors ~rk+1, . . . , ~r2k along with m − 4k random vectors, and
the update Ai+1 is now programmed to annihilate k random vectors. The other
game definitions are all analogous.

All of the computational steps are performed analogously, but now under the
k-extended rank hiding assumption which follows from k-linear. The information
theoretic step in Lemma 6.7.2, is also analogous and the new bound becomes:
` ≤ n− 3m+ 7k − 1. 5

The only part that requires a little more work is the analogue of Claim 6.7.8,
where we go from a correlated dishonest ciphertext to just plain dishonest. Again,
let us think of the matrices P and W as fixed, defining the columns of W to be
~w1, . . . , ~wk. Let us also fix the vectors ~w2k+1, . . . , ~wm−k as fixed (but not the mid
vectors ~wk+1, . . . , ~w2k.

We can think of switching from GameCor i + 1 to Game i + 1 as switching
whether the key vectors ~wk+1, . . . , ~w2k come fromW := ker(P ) in the latter case or

5To demystify this slightly, we need to set d = n−m+3k since we need to be able to go from a
high key of dimension m−k to a mid key of dimension 2k in one step, therefor annihilating m−3k
vectors with a single update matrix. To use the “program correctness” and “reprogramming”
lemmas, we need d − l − u − 1 = ω(log(λ)) where d = n − m + 3k is the rank of the update
matrices, l = m−k is the rank of the high keys, and u = m−3k is the number of random vectors
that are annihilated in our update regimes.
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a smaller subspace W ′ :=W ∩ (~c)⊥ in the former case. Again, we can think of the

subspace W ′ as being chosen by first selecting an m× (m− 2k − 1) matrix M
$←

Wm−2k−1, defining W ′ = colspan(M) and then selecting ~c
$← colspan([M ||W ])⊥.

We can then think of the vectors ~wk+1, . . . , ~w2k as being chosen at random form
either colspan(M) or from all of W . By applying the subspace hiding lemma
(Corollary 6.2.3), we get that this is indistinguishable as long as the leakage on
~wk+1, . . . , ~w2k is bounded by (m− 3k− 1) log(q)− ω(log(λ)). Since the leakage on
these vectors only occurs in at most 3 time periods, it is bounded by 3`, giving us
the requitement ` = ((m− 3k − 1)/3) log(q)− ω(log(λ)).
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Chapter 7

CLR Secret Sharing and Storage

In this chapter, we deviate somewhat from previous chapters in that we now
consider two independently leaky devices instead of a single leaky device. Each
of these devices stores a share of some shared message, and the shares are peri-
odically updated by the devices in an individualized and asynchronous manner.
The attacker can continually observe partial leakage on the individual state of
each device (including its share and update randomness) while ensuring that the
secret remains securely hidden. As mentioned earlier, we can also think of this
as providing a method for storing a value secretly on a single leaky device in a
restricted model of leakage, where two sub-components of the device are leaking
individually (i.e. the attacker can leak arbitrary information from each component
individually, but not a global function of the entire state of the system).

7.1 Definitions

7.1.1 Continual-Leakage-Resilient Sharing (CLRS)

We now formally define the notion of a continual-leakage-resilient sharing (CLRS)
scheme between two devices. The scheme has the following syntax:

ShareGen(1λ,m)→ (sh1, sh2) : The share generation algorithm takes as input
the security parameter λ and a secret message m. It outputs two shares, sh1

and sh2 respectively.

Updateb(shb)→ sh′b : The randomized update algorithm takes in the index b and
the current version of the share shb and outputs an updated version sh′b. We
use the notation Updateib(shb) to denote the operation of updating the share
shb successively i times in a row.

Reconstruct(sh1, sh2)→m : The reconstruction algorithm takes in some version
of secret shares sh1, sh2 and it outputs the secret message m.
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Correctness. We say that the scheme is correct if for any shares (sh1, sh2) ←
ShareGen(1λ,m) and any sequence of i ≥ 0, j ≥ 0 updates resulting in sh′1 ←
Updatei1(sh1), sh′2 ← Updatej2(sh2), we get Reconstruct(sh′1, sh

′
2) = m. Note that i

and j are arbitrary, and are not required to be equal.

Security. We define `-CLR security as an interactive game between an attacker
A and a challenger. The attacker chooses two messages: m0,m1 ∈ {0, 1}∗ with
|m0| = |m1|. The challenger chooses a bit b← {0, 1} at random, runs (sh1, sh2)←
ShareGen(1λ,mb). The challenger also chooses randomness rand1, rand2 for the
next update of the shares 1,2 respectively and sets state1 := (sh1, rand1), state2 :=
(sh2, rand2). It also initializes the counters L1 := 0, L2 := 0. The attacker A can
adaptively make any number of the following types of queries to the challenger in
any order of its choosing:

Leakage Queries: The attacker specifies an index i ∈ {1, 2} and a query to the
leakage oracle Ostatei . If Li < ` it gets the corresponding response and the
challenger sets Li := Li + 1.

Update Queries: The attacker specifies an index i ∈ {1, 2}. The challenger
parses statei = (shi, randi) and computes updates sh′i := Updatei(shi; randi)
using randomness randi. It samples fresh randomness rand′i and sets statei :=
(sh′i, rand

′
i), Li := 0.

At any point in the game, the attacker A can output a guess b̃ ∈ {0, 1}. We say
that A wins if its guess matches the choice of the challenger b̃ = b. We say that an
`-CLRS scheme is secure if for any PPT attacker A running in the above game,
we have |Pr[A wins ]− 1

2
| ≤ negl(λ).

Remarks on the Definition. The inclusion of the update randomness randi
in the state of the device models leakage during the update process itself when
this randomness is used. In fact, the definition just assumes (without loss of
generality) that the attacker always leaks only during the update processes when
the most information is available on the device. Note that we do not need to
explicitly include the next share sh′i = Updatei(shi; randi) in the state since it is
already efficiently computable from shi and randi.

The given definition also already implies semantic security even if one of the
shares is revealed fully at the end of the game (but no leakage on the other share
is allowed afterwards). To see this, assume that at some point in the game, there
is a distinguishing strategy D that uses a fully revealed share shi to break security.
Then we could also just leak the single predicate D(shi) to break security.
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7.1.2 CLRS-Friendly Encryption

We consider an approach of instantiating CLRS via a public key encryption
scheme (KeyGen,Encrypt,Decrypt) having the usual syntax. Given any such en-
cryption scheme, we can define a sharing scheme where the two shares are the
secret key sh1 = sk and the ciphertext sh2 = ct respectively. Formally, we define:

ShareGen(1λ; m) : Sample (pk, sk)← KeyGen(1λ), ct← Encryptpk(m).
Output sh1 := sk, sh2 := ct.

Reconstruct(sh1, sh2) : Parse sh1 = sk, sh2 = ct. Output m = Decryptsk(ct).

We say that an encryption scheme is updatable if it comes with two addi-
tional (non-standard) procedures sk′ ← SKUpdate(sk), ct′ ← CTUpdate(ct) for
updating the secret keys and ciphertexts respectively. These procedures can natu-
rally be used to define updates for the corresponding sharing via Update1(sh1) :=
SKUpdate(sk), Update2(sh2) := CTUpdate(ct), where sh1 = sk, sh2 = ct. The
above gives us a natural syntactical transformation from an updatable encryption
scheme to a corresponding CLRS scheme. We say that an updatable encryption
scheme is an `-CLRS-Friendly Encryption if:

• The corresponding CLRS scheme satisfies correctness.

• The corresponding CLRS scheme satisfies a strengthening of `-CLRS security
where the attacker is first given the public key pk and then adaptively chooses
the messages m1,m2.
(i.e. The challenger first chooses (pk, sh1 = sk) ← KeyGen(1λ) and gives pk
to the attacker, who chooses m1,m2. The challenger then generates sh2 ←
Encryptpk(mb) and the game continues as before.)

Remarks. We note that the additional functionality provided by CLRS-friendly
encryption on top of a plain CLRS may be useful even in the context of sharing
a secret between leaky devices. For example, we can imagine a system where
one (continually leaky) master device stores a secret key share and we publish
the corresponding public key. Then other devices can enter the system in an
ad-hoc manner by just encrypting their data individually under the public key to
establish a shared value with the master device (i.e. no communication is necessary
to establish the sharing). The same secret-key share on the master device can be
reused to share many different messages with many different devices.

7.2 Construction

We now describe our construction of CLRS going through CLRS-Friendly En-
cryption. In fact, the encryption scheme is going to be remarkably similar to our
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construction of CLR PKE from the previous chapter, with an identical key gen-
eration procedure and key update procedure. The main difference is that we now
need our ciphertexts to also be updatable. To accomplish this, a ciphertext in
our new scheme will consist of n independently generated ciphertexts of the same
message under the original scheme. For ciphertext updates, we notice that our
original scheme is already homomorphic – to update the n component ciphertexts
we will create n fresh component ciphertexts, each of which is a random linear
combination of the previous ones using coefficients that sum up to 1. Therefore,
each new component ciphertext encrypts the same message as the previous ones.
We describe the scheme formally below. As before, we first describe the simplest
scheme secure under the SXDH assumption (k = 1 linear) and give a formal proof
of security. Later we generalize this to the k-linear assumption in bilinear groups,
for an arbitrary integer k, and sketch the proof.

Let m,n, d be integer parameters with n ≥ d. The scheme is defined as follows.

KeyGen(1λ) → (pk, sk) : Sample (G1,G2,GT , e,g,h, q) ← G(1λ) to be the de-
scription of a bilinear group of primer order q, with an efficient pairing
e : G1 ×G2 → GT , and generators g ∈ G1,h ∈ G2.

Choose ~p, ~w ∈ Fmq at random subject to 〈~p, ~w〉 = 0 and set

prms = ((G1,G2,GT , e,g,h, q),g
~p,h~w)

to be the public parameters of the system. These parameters can then be
re-used to create the public/secret keys of all future users. For convenience,
we implicitly think of prms as a part of each public key pk and as an input
to all of the other algorithms.

Choose ~t
$← Fmq and set pk := e( g~p , h~t

>
) = e(g,h)α where α = 〈~p,~t〉.

Choose ~r = (r1, . . . , rn)
$← Fnq and set sk := hS, where S is the n×m matrix

given by

S :=

 r1 ~w + ~t
· · ·

rn ~w + ~t

 =

 ~r>

 [ ~w
]

+

 ~1>

 [ ~t
]
.

In other words, each row of S is chosen at random from the 1-dimensional
affine subspace ~t + span(~w). (Note that hS can be computed from the com-
ponents h~w, ~t, ~r without knowing ~w.)

Encryptpk(m)→ ct : To encrypt m ∈ GT under pk = f = e(g,h)α,

choose ~u = (u1, . . . , un)
$← Fnq and output ct = (ct(1), ct(2)) where:
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ct(1) =

 gu1~p

. . .
gun~p

 , ct(2) =

 fu1 ·m
. . .

fun ·m


Each row is an independent encryption of the (same) message m using the
basic encryption scheme from the previous chapter. Equivalently, we can
write the ciphertext as ct(1) = gC , ct(2) = e(g,h)~z

>
for:

C =

 ~u>

 [ ~p
]

~z> =

 ~u>

α +

 ~1>

µ =

 C

 t>

+

 ~1>

µ
where µ is given by m = e(g,h)µ and α = 〈~p,~t〉.

Decryptsk(ct)→m: To decrypt, we only need to look at the first rows of the
secret key and the ciphertext matrices. Given the first row h~s of the secret
key sk = hS, the first row g~c of the ciphertext component ct(1) = gC , and the
first scalar component e(g,h)z of ct(2) = e(g,h)~z

>
, the decryption algorithm

outputs: m = e(g,h)z/e( g~c , h~s
>

).

SKUpdate(sk)→ sk′ : Choose a random matrix A′
$← Rkd(Fn×nq ). Derive A by

“rescaling” each row of A′ so that its components sum up to 1. That is, set
(A)i,j := (A′)i,j/(

∑n
k=1(A′)i,k), so that A~1> = ~1>.

If the current secret key is sk = hS, output the updated key sk′ := hAS.

CTUpdate(ct)→ ct′ : Choose a random matrix B′
$← Rkd(Fn×nq ). Derive B by

“rescaling” each row of B′ so that its components sum up to 1. That is, set
(B)i,j := (B′)i,j/(

∑n
k=1(B′)i,k), so B~1> = ~1>.

If the current ciphertext is ct = (gC , e(g,h)~z
>

), output the updated cipher-
text ct′ := (gBC , e(g,h)B~z

>
).

Theorem 7.2.1. For any integers m ≥ 6, n ≥ 3m − 6, d := n −m + 3 the above
scheme is an `-CLRS-friendly encryption scheme under the SXDH assumption for
` = min(m/6− 1, n− 3m+ 6) log(q)− ω(log(λ)).

In the above theorem, the absolute leakage (`) scales linearly as min(m,n−3m) or
log(q) grow. The ratio of leakage to share size is `/(nm log(q)), and is maximized
at m = 7, n = 16 to roughly 1/672.
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Corollary 7.2.2. For any polynomial ` = `(λ), there exist `-CLRS schemes under
the SXDH assumption. Furthermore, ` is a constant fraction of the share size.

Correctness. Let (prms, pk, sk) ← KeyGen(1λ) and let ct = (ct(1), ct(2)) ←
Encryptpk(m). Then we can write sk = gS, ct(1) = hC , ct(2) = e(g,h)~z for some

values S,C, ~z and W,~t satisfying:

S = W +~1>~t , ~z> = C~t> +~1>µ : rowspan(W ) ⊥ rowspan(C) (7.1)

with µ given by m = e(g,h)µ.
First, we show that for any sk and ct satisfying equation (7.1), we get

Decryptsk(ct) = m. This is because decryption looks at the first row of sk, ct(1), ct(2)

respectively, which are of the form h~s,g~c, e(g,h)z where ~s = ~w + ~t, z = 〈~c,~t〉 + µ
for some vectors ~w,~c,~t with 〈~c, ~w〉 = 0. Therefore decryption correctly recovers:

e(g,h)z/e( g~c , hs
>

) = e(g,h)〈~c,
~t〉+µ/e(g,h)〈~c, ~w+~t〉 = e(g,h)µ = m

Next we show, that updates preserve the key/ciphertext structure of equation
(7.1). Assume that we update the secret key with the matrices A1, A2, . . . , Ai
and the ciphertext with the matrices B1, B2, . . . , Bj. Define Ā = AiAi−1 · · ·A1,
B̄ = BjBj−1 · · ·B1. Since the update matrices are “rescaled” we know that Ā~1> =

B̄~1> = ~1>. Therefore we can write the updated values as ski = gĀS, ct
(1)
j =

hB̄C , ct
(2)
j = e(g,h)B̄~z

>
satisfying:

(ĀS) = (ĀW )+~1>~t , (B̄~z>) = (B̄C)~t>+~1>µ : rowspan(ĀW ) ⊥ rowspan(B̄C).

So equation (7.1) is satisfied by the updated keys and ciphertexts and we get
Decryptski(ctj) = m.

7.3 Proof of Security

Our proof of security will follow by a hybrid argument and use many of the
components of the proof from the previous chapter. First, we prove a basic infor-
mation theoretic lemma which will be one of the key ingredients of our analysis.

7.3.1 Hiding Orthogonality

The following lemma can be interpreted as saying that if two random vectors
X, Y leak individually, and the total amount of leakage Z is sufficiently small,
an attacker cannot distinguish whether X, Y are random orthogonal vectors or
uniformly random vectors. A slightly different but related lemma with a related
proof strategy appears in [DDV10].
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Lemma 7.3.1 (Orthogonality Hiding). Let X, Y, Z = Leak(X, Y ) be correlated r.v.
where X, Y have their support in Fmq and are independent conditioned on Z. Let
E be the event that 〈X, Y 〉 = 0 and let (X ′, Y ′, Z ′ = Leak(X ′, Y ′)) := (X, Y, Z | E)

be their joint distribution conditioned on the event E. Then Z
stat
≈ Z ′ as long as

H̃∞(X | Z) + H̃∞(Y | Z)− (m+ 3) log(q) = ω(log(λ)).

Proof. We rely on the fact that the inner product is a good two source extractor
(Lemma 4.1.4). In particular, let ε′ be the bound from Lemma 4.1.4 such that

(Z, 〈X, Y 〉)
stat
≈ ε′ (Z,U) where U is uniform over Fq. Assume there is a statistical

test D such that Pr[D(Z ′) = 1] − Pr[D(Z) = 1] = ε. Then we claim that there
is a statistical test D′ that distinguishes (Z, 〈X, Y 〉) from (Z,U) with advantage
ε/q− ε′. This implies that ε/q− ε′ ≤ ε′ ⇒ ε ≤ 2qε′ and, using the bound on ε′ from
Lemma 4.1.4, our lemma follows. Therefore we are left to describe and analyze
the statistical test D′.

The test D′(·, ·) just outputs 0 if the second component is non-zero and other-
wise outputs the evaluation of D on the first component. This gives

Pr[D′(Z, 〈X, Y 〉) = 1] = Pr[D′(Z, 〈X, Y 〉) = 1 | 〈X, Y 〉 = 0] Pr[〈X, Y 〉 = 0]

≥ Pr[D(Z ′) = 1](1/q − ε′)
Pr[D′(Z,U) = 1] = Pr[D′(Z,U) = 1 | U = 0] Pr[U = 0]

= Pr[D(Z) = 1]/q

and so D′ has the claimed advantage ε/q − ε′.

7.3.2 Alternate Distributions for Keys, Ciphertexts and
Updates

Assume that the vectors ~p, ~w,~t are fixed, defining the public values g~p,h~w, pk =
e(g,h)〈~p,~t〉. Fix ~w1 := ~w, and let (~w1, . . . , ~wm−1) be some basis of (~p)⊥ and
(~c1, . . . ,~cm−1) be some basis of (~w)⊥. We define various distributions of keys and
ciphertexts relative to these bases.

Key Distributions. Firstly, we define the same additional key distributions as
those used in the previous chapter to analyze CLR PKE. That is, the secret key
is always set to hS for some n×m matrix S of the form

S =

 | |
~r>1 · · · ~r>i
| |

 − ~w1 −
· · ·

− ~wi −

+

 ~1>

 [ ~t
]

(7.2)

where ~r1, . . . , ~ri ∈ Fnq are chosen randomly. Equivalently, each of the n rows of S

is chosen randomly from the affine space: span(~w1, . . . , ~wi) + ~t. The honest key
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keys →
↓ ciphertexts

honest mid high

honest Yes Yes Yes
low Yes If Correlated or Super-Correlated No
mid Yes If Super-Correlated No
high Yes No No

Figure 7.1: Do alternate keys correctly decrypt alternate ciphertexts?

generation algorithm uses i = 1 and we call these honest keys. In addition, we
define mid keys which are chosen with i = 2 and high keys which are chosen
with i = m − 1. Notice that honest/mid/high keys all correctly decrypt honestly
generated ciphertexts since span(~w1, . . . , ~wm−1) ⊥ span(~p).

Ciphertext Distributions. The encryption of the message m = e(g,h)µ ∈ GT

is always set to ct = (ct(1), ct(2)) where ct(1) = gC and ct(2) = e(g,h)~z
>

with
~z> = C~t> + ~1>µ. The second component ct(2) can always be efficiently and de-
terministically computed from gC , given ~t and m, without knowing the exponents
C, µ. The different ciphertext distributions only differ in how ct(1) = gC is chosen.

For the honest ciphertexts, we set C = ~u>~p for a uniformly random ~u ∈ Fnq .
That is, every row of C is chosen at random from the space span(~p). In addition to
the honest way of choosing C, we define three additional distributions on C given
by:

C =

 | |
~u>1 · · · ~u>j
| |

 − ~c1 −
· · ·

− ~cj −

 (7.3)

where ~u1, . . . , ~uj ∈ Fnq are chosen randomly. Equivalently the rows of the C are
chosen randomly from the subspace: span(~c1, . . . ,~cj). When j = 1, we call these
low ciphertexts, when j = 2 we call these mid ciphertexts and when j = (m−
1), we call these high ciphertexts . Notice that honest/low/mid/high ciphertexts
are all correctly decrypted by honest secret keys since span(~w)⊥ span(~c1, . . . ,~cm−1).

Bases Correlations. By default, we choose the bassis (~w1, . . . , ~wm−1) of the
space (~p)⊥ and the basis (~c1, . . . ,~cm−1) of the space (~w)⊥ uniformly at random
and independently subject to fixing ~w1 := ~w. This is statistically close to choosing

~w2, . . . , ~wm−1
$← (~p)⊥ and ~c1, . . . ,~cm−1

$← (~w)⊥ (Lemma 4.2.1, part II). We call this
choice of bases uncorrelated . We will also consider two alternate distributions.
We say that the bases are correlated if we instead choose ~c1

$← (~w1, ~w2)⊥ and all
other vectors as before. We say that the bases are super-correlated if we instead

choose ~c1,~c2
$← (~w1, ~w2)⊥ and all other vectors as before. If the key and ciphertext

bases are correlated then mid keys correctly decrypt low ciphertexts and if they
are super-correlated then mid keys correctly decrypt low and mid ciphertexts. The
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table in Figure 7.1 summarizes which types of secret keys can correctly decrypt
which types of ciphertexts.

Programmed Updates. We will rely on the same terminology and definitions of
programming updates as we did in the case of CLR PKE. Please review these def-
initions from the previous chapter (in particular, see Section 6.5 and Section 6.6).

7.3.3 Overview of Hybrid Games

We now present a series of hybrid game definitions and transitions between
them. The goal, as in the proof of CLR PKE security, is to move from the original
security game, in which every key/ciphertext pair ever created decrypts to the
correct shared message, to a game where none of the pairs decrypt correctly.

Hybrid Games. A helpful pictorial representation of the main hybrid games
appears in Figure 7.2. Our hybrid games, called Game (i, j) are all of the following
type. For i ≥ 2, the challenger chooses the initial key sk1 as a high key, the first
i − 2 updates are honest (and hence the keys sk1, . . . , ski−1 are high keys), the
update Ai−1 is programmed to reduce the key to a mid key ski, and the update Ai
is programmed to reduce the key to a honest key ski+1. The rest of the updates
are honest and hence the keys ski+1, ski+2, . . . are honest. For the special case
i = 1, the initial key sk1 already starts out as a mid key and the first update
A1 reduces it to an honest key. For the special case i = 0, the initial key sk1

is already an honest key. This description is mirrored by the ciphertexts. When
j ≥ 2, the initial ciphertext ct1 is a high ciphertext, the first j − 2 ciphertext
updates are honest (and hence the ciphertexts ct1, . . . , ctj−1 are high), the update
Bj−1 is programmed to reduce the ciphertext to a mid ctj, and the update Bj is
programmed to reduce the ciphertext to a low ciphertext ctj+1. The rest of the
updates are honest and hence the other ciphertexts stay low. For the special case
j = 1, the initial ciphertext ct1 is already mid and the first update B1 reduces it
to low. For the special case j = 0, the initial ciphertext ct1 is already low.

We write Game i as short for Game (i, j = 0). In Game (i, j) the ciphertext
and key bases are uncorrelated. We also define analogous games: GameCor (i, j)
where the bases are correlated and GameSuperCor (i, j) where the bases are super-
correlated.

Sequence of Steps. A helpful table describing the sequence of hybrid arguments
appears in Figure 7.3. Our first step is to move from Real Game to Game 0
(i.e. i = 0, j = 0). The only difference in this step is that we change the
initial ciphertext ct1 from an honest ciphertext to a low ciphertext. This is a
computational step and all secret keys still correctly decrypt all ciphertexts in the
game.
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Next, our goal is to keep moving from Game i to Game i + 1. We call this
the outer loop where we increment i. Unfortunately, we cannot just increment i
in a single step since each such move changes ski+1 from an honest key to a mid
key and hence changes it from decrypting all of the low ciphertexts in the game to
decrypting none of them. A single computational or leakage step cannot suffice.

Instead, we can move from Game i to GameCor i+1 in a single computational
step. Even though the key ski+1 changes from an honest key in Game i to a
mid key in GameCor i+ 1, by making the bases correlated we ensure that it still
correctly decrypts all of the low ciphertexts in the game. Therefore, these games
cannot be distinguished even given full leakage.

(Now, we might be tempted to make an information theoretic step that moves
us from GameCor i+ 1 to Game i+ 1, by arguing that a leakage-bounded attacker
cannot tell if the key/ciphertext bases are correlated. Indeed, this would correspond
to the proof of security for CLR PKE rom the previous chapter. As before, we can
still argue that the leakage on the secret-key basis vector ~w2 is bounded overall, as
this vector only occurs in the single mid key ski+1. Unfortunately, the leakage on
the ciphertext basis vector ~c1 is not bounded overall as it occurs in every single
ciphertext, and so a computationally unbounded attacker can learn span(~c1) in full
and test if ~w2 ⊥ ~c1. Therefore, we will require more intermediate steps to make
this tanssition.)

To move from GameCor i+ 1 to Game i+ 1, we first introduce an inner loop
in which we slowly increment j. Starting with j = 0, we move from GameCor
(i + 1, j) to GameSuperCor (i + 1, j + 1). This is a single computational step.
Even though we change ctj+1 from a low ciphertext to a mid ciphertext, it is still
correctly decrypted (only) by the mid and low keys in periods i+1 and later, since
the bases are super-correlated. Therefore, these games cannot be distinguished
even given full leakage. Finally, we use an information theoretic step to move from
GameSuperCor (i + 1, j + 1) to GameCor (i + 1, j + 1). Here we are actually
changing whether a single key ski+1 correctly decrypts a single ciphertext ctj+1 (it
does in GameSuperCor but not in GameCor). We use the fact that the adversary
is leakage-bounded to argue that it cannot notice whether the bases are correlated
or super-correlated. In particular, because the bases vectors ~w2 and ~c2 only occur
in the single mid key ski+1 and the single mid ciphertext ctj+1 respectively, the
leakage on these vectors is bounded overall. We argue that such partial leakage
hides whether ~w2 ⊥ ~c2, which determines if the bases are correlated or super-
correlated.

Assume that the attacker makes at most qct update queries on the ciphertext
and at most qsk update queries on the secret key. By repeatedly increasing j in
the inner loop, we move from GameCor (i + 1, 0) to GameCor (i + 1, qct + 1)
where all of the ciphertexts that the attacker can leak on are high ciphertexts.
Therefore the mid key ski+1 does not decrypt any of them correctly (but all future
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honest keys still do). We now apply another computational step to move from
GameCor (i + 1, qct + 1) to Game i + 1 and therefore (finally) incrementing i in
the outer loop. This step preserves all interactions between keys and ciphertexts
and therefore these games cannot be distinguished even given full leakage. Lastly,
by repeatedly increasing i in the outer loop, we can move from Game 0 to Game
qsk + 1 where all of the secret keys that the attacker can leak on are high keys and
all of the ciphertexts are low ciphertexts. Therefore, in Game qsk + 1 none of the
keys correctly decrypts any of the ciphertexts. Hence we can argue that even an
attacker that has full leakage in Game qsk + 1 cannot learn any information about
the shared/encrypted message m.

Under the Rug. The above discussion is slightly oversimplified. The main
issue is that the computational transitions, e.g. from Game i to GameCor i + 1,
are not computationally indistinguishable the way we defined the games. This is
because in Game i the update matrix Ai+1 is unlikely to annihilate any vectors
(i.e. its kernel is unlikely to contain non-zero vectors from the span of the previous
updates) while in GameCor i + 1 it is programmed to annihilate vectors so as to
reduce the dimension of the key. This can be efficiently tested given full leakage
of the update matrices. Therefore, in the full proof, we define the games Game,
GameCor and GameSuperCor slightly differently with some updates programmed
to annihilate additional uniformly random vectors. With this modification, we can
prove computational indistinguishability. We also need extra information theoretic
steps to argue that the attacker cannot tell if updates are programmed to annihilate
some random vectors, given limited leakage.
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Figure 7.2: An Overview of the Main Hybrid Games

Real
comp
≈ Game 0.

For i ∈ {0, . . . , qsk} :

Game i
comp
≈ GameCor (i+ 1, 0).

For j ∈ {0, . . . , qct} : GameCor (i+ 1, j)
comp
≈ GameSuperCor (i+ 1, j + 1)

stat
≈ GameCor (i+ 1, j + 1).

GameCor (i+ 1, qct + 1)
comp
≈ Game i+ 1.

Game qsk + 1
comp
≈ GameFinal.

Figure 7.3: Sequence of Hybrid Arguments Showing Real
comp
≈ GameFinal.
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7.3.4 Formal Hybrid Game Definitions

We first define several hybrid games. The main part of the proof is to show
computational/statistical indistinguishability between these games. The output of
each game consists of the view of the attacker A as well as a bit b chosen by the
challenger representing its choice of which message m0,m1 to encrypt. We assume
that the attacker A makes a maximum of qsk update queries on the secret-key
share, and at most qct update queries on the ciphertext share during the course of
the game. We describe the games in detail below, and also give a helpful pictorial
representation in Figure 7.2.

Real Game : This is the original “`-CLRS-Friendly Encryption” security game
between the adversary and the challenger (see Section 7.1.2). The output of the
game consists of the view of the attacker A and the bit b chosen by the challenger.

Game’ 0 : In this game, the challenger chooses the initial ciphertext incor-
rectly as a low ciphertext of the message mb instead of encrypting it honestly
(the key/ciphertext bases are chosen as random uncorrelated bases). The initial
secret key is chosen honestly and all ciphertext/key updates are chosen honestly
as before.

Game i : We define Game i for i = 0, . . . , qsk + 1. In all future game definitions,
we will include two additional “dummy keys” sk−1, sk0 and key-update matrices
A−1, A0 chosen by the challenger (but not observed or leaked on by the attacker).
That is, the challenger (in its head) always initially chooses sk−1, then updates
it to sk0 using an update matrix A−1, then updates sk0 to sk1 using an update
matrix A0 and so on. However, the values sk−1, A−1, sk0, A0 are then ignored, and
the first key and update matrix that the attacker can ask leakage queries on are
sk1 and A1 respectively. In every Game i, the initial key sk−1 is chosen as a high
key with the exponent matrix:

S =

 | · · · |
~r>1 · · · ~r>m−1

| · · · |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]

The first key update matrices A−1, . . . , Ai−2 are chosen honestly. The update Ai−1

is programmed to annihilate the m − 3 vectors (~r3, . . . , ~rm−1) reducing the key to
a mid. The update Ai is programmed to annihilate ~r2 along with m − 4 random
vectors, reducing the key to an honest key. The update Ai+1 is programmed to
annihilate a single random vector. All other key updates are chosen honestly.
Note that, in Game i, the keys sk−1, . . . , ski−1 are high keys, ski is a mid key, and
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ski+1, . . . are honest keys.1 The initial ciphertext ct1 is chosen as in Game’ 0 (a low
ciphertext) and all ciphertext updates are performed honestly. The ciphertext and
key bases are random and uncorrelated. Notice that the secret keys sk−1, . . . , ski
do not decrypt the low ciphertexts correctly, but all future keys ski+1, . . . , skqsk+1

do.

GameCor’ (i + 1, 0) : We define GameCor’ (i + 1, 0) for i = 0, . . . , qsk + 1. In
this game, the initial secret key sk−1 is a high key and the initial ciphertext ct1
is a low ciphertext as in Game i. However, the ciphertext and key bases are now
correlated. Also, the regime of key updates is modified from Game i. The first
updates A−1, . . . , Ai−2 are chosen honestly. The update Ai−1 is programmed to
annihilate m− 3 random vectors, the update Ai is programmed to annihilate the
vectors (~r3, . . . , ~rm−1) reducing the key to a mid, the update Ai+1 is programmed
to annihilate ~r2 along with m− 4 random vectors reducing the key to honest. All
future key updates are then chosen honestly. All ciphertext updates are also chosen
honestly (as in Game i). Note that, in GameCor’ (i+ 1, 0), the keys sk−1, . . . , ski
are high keys and do not decrypt the low ciphertexts correctly, ski+1 is a mid key
but does decrypt the low ciphertexts since the bases are correlated, and ski+2, . . .
are honest keys which always decrypt correctly.

GameCor (i + 1, j) : We define GameCor’ (i + 1, j) for i = 0, . . . , qsk + 1 and
j = 0, . . . , qct + 1. As in GameCor’ (i + 1, 0), the key and ciphertext bases are
correlated. Also, the initial secret key sk−1 and the regime of key updates is
chosen the same way as in GameCor’ (i+ 1, 0). In all future game definitions, we
will include two additional “dummy ciphertexts” ct−1, ct0 and ciphertext-update
matrices B−1, B0 chosen by the challenger (but not observed or leaked on by the
attacker). That is, the challenger initially chooses ct−1, then updates it to ct0
using an update matrix B−1, then updates that to ct1 using an update matrix B0

and so on. However, the values ct−1, B−1, ct0, B0 are then ignored, and the first
ciphertext and ciphertext-update matrix that the attacker can leak on are ct1 and
B1 respectively. The initial ciphertext ct−1 is chosen as a high ciphertext using the
exponent matrix

C =

 | |
~u>1 · · · ~u>m−1

| |

 − ~c1 −
· · ·

− ~cm−1 −


1In particular, in Games 0 the initial observed (non-dummy) key sk1 is an honest key, in

Game 1 it is a mid key, and in all future games it is a high key. For the proof, it becomes easier
to just pretend that there are some “dummy” mid and high keys sk−1, sk0 even in Games 0,1 so
as not to have to define special corner cases for these games.
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The first ciphertext updates B−1, . . . , Bj−2 are chosen honestly, the update Bj−1

is programmed to annihilate the m− 3 vectors (~u3, . . . , ~um−1) reducing the cipher-
text to amid, the update Bj is programmed to annihilate ~u2 along with m − 4
other random vectors reducing the ciphertext to a low, the update matrix Bj+1

is programmed to annihilate a single random vector. All future ciphertext up-
dates are chosen honestly. Note that, in GameCor (i+ 1, j), the initial ciphertexts
ct−1, . . . , ctj−1 are high, ctj is mid, and ctj+1, . . . are low.2

GameSuperCor (i + 1, j + 1) : We define GameSuperCor (i + 1, j + 1) for
i = 0, . . . , qsk + 1 and j = 0, . . . , qct + 1. In this game, the initial secret-key sk−1

is a high key and the initial ciphertext ct−1 is a high ciphertext as in GameCor
(i + 1, j). However, the key and ciphertext bases are now super-correlated. Also,
the regime of ciphertext updates is modified from GameCor (i + 1, j). The first
updates B−1, . . . , Bj−2 are chosen honestly, the update Bj−1 is programmed to
annihilate m−3 uniformly random vectors, the update matrix Bj is programmed to
annihilate the vectors (~u3, . . . , ~um−1) reducing the ciphertext to a mid, the update
Bj+1 is programmed to annihilate ~u2 reducing the ciphertext to a low. All future
ciphertext updates are then chosen honestly. The regime of key updates is the
same way as in GameCor (i + 1, j). Note that the ciphertexts ct−1, . . . , ctj are
high, ctj+1 is mid, and ctj+2, . . . are low.

GameFinal : This game is defined the same way as Game qsk + 1, except that
instead of using the message mb in the (low) ciphertext, we just use message 1GT

.
More specifically, in GameFinal, the secret key is a random high key and all of the
key updates are honest. The ciphertext is a random low ciphertext of the message
1GT

and all of the ciphertext updates are honest as well. In particular, the view of
the attacker in GameFinal is independent of the challenger’s bit b.

7.3.5 Hybrid Indistinguishability Arguments

In Figure 7.3, we show the sequence of hybrid arguments that is used to derive
the indistinguishability:

Real
comp
≈ GameFinal. In this section, we prove each of the necessary sub-steps in

separate lemmas.

Lemma 7.3.2. Real
comp
≈ Game’ 0.

2In particular, in GamesCor i+1, 0 the initial observed (non-dummy) ciphertext ct1 is low, in
GameCor i+ 1, 1 it is mid, and in all future games it is high. For the proof, it becomes easier to
just pretend that there are some “dummy” mid and high ciphertexts ct−1, ct0 even when j = 0, 1
so as not to have to define special corner cases for these games.
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Proof. We show a reduction from the (k = 1)-extended rank hiding assumption
(Definition 6.2.5, Lemma 6.2.6). The reduction is given a challenge gP , ~w where

P
$← Rkx(F2×m

q ) is either of rank x = 1 or x = 2 and ~w
$← ker(P ). Let us denote

the two rows of P by ~p,~c1 respectively. The reduction puts the values g~p,h~w in
prms and chooses its own random ~t to set up the initial public/secret key pk, sk.
To create the encryption of mb, the reduction sets ct = (gC , e(g,h)~z) where it

uses the challenge g~c1 to compute gC for C = ~u>~c1 where ~u
$← Fnq is random.

The matching second component e(g,h)~z can then be computed efficiently as a
deterministic function of gC ,~t and the message mb. The reduction chooses all
of the key/ciphertext update matrices honestly and answers all update/leakage
queries honestly.

If the challenge has x = 1 then ~c1 = u′~p for some scalar u′ and hence the cipher-
text is a correctly distributed honest encryption of mb, so the reduction produces
the distribution of the Real Game. If x = 2 then ~c1 is a random and independent
vector in the space (~w)⊥ and hence the ciphertext is a correctly distributed low
encryption of mb, so the reduction produces the distribution of Game’ 0. Therefore
the two are computationally indistinguishable.

Lemma 7.3.3. If ` ≤ (n− 3m+ 6) log(q)− ω(log(λ)) then Game’ 0
stat
≈ Game 0.

Proof. The only difference between Game’ 0 and Game 0 is the joint distribution
on the initial secret key sk1 and the update matrix A1. Conditioned on sk1, A1,
all other values are sampled the same way in the two games. In Game’ 0, the key
sk1 is a randomly chosen honest key, and A1 is an honest update. In Game 0 the
distribution on sk1, A1 is slightly more complicated. First we choose a random
high key sk−1 = hS−1 with exponent

S−1 =

 | · · · |
~r>1 · · · ~r>m−1

| · · · |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]

Then we choose the updates: A−1 programmed to annihilate ~r3, . . . , ~rm−1 yielding
a mid-key sk0, A0 is programmed to annihilate ~r2 along with m−4 random vectors
yielding an honest key sk1, and A1 is programmed to annihilate a single random
vector.

We claim this joint distribution on A1 and sk1 in Game 0 is statistically indis-
tinguishable from that of Game’ 0. To see this, we first apply the reprogramming
lemma (Lemma 6.6.2 with u∗ = m− 3, d = n−m + 3, l = m− 1) to switch from
A1 being programmed to annihilate a single vector to just being honest. Next
we just use program correctness lemma (Lemma 6.6.1; with l = m − 1, ρ = 1,
u = m− 4, d = n−m+ 3) to argue that the distribution of the key sk1 in Game 0
is statistically close to choosing a fresh honest key. In particular, the lemma tells
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us that A0A−1[~r>1 | · · · |~r>m−1]
stat
≈ [~r>|0 · · · ] for a uniformly random ~r ∈ Fnq . So the

exponent of the key sk1 in Game 0 is

A0A−1S−1 = A0A−1~r
>
1 ~w1 +~1>~t

stat
≈ ~r> ~w +~1>~t

and hence statistically indistinguishable from that of a random honest key as in
Game’ 0.
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Figure 7.4: Intermediate Hybrids for Lemma 7.3.4.

Lemma 7.3.4. For i ∈ {0, . . . , qsk}: Game i
comp
≈ GameCor’ i+ 1.

Proof. For the proof of the lemma, we introduce two additional intermediate games
(see Figure 7.4). Firstly, we define GameAlt i. In this game, the initial secret key
sk−1 is a random mid key with exponent matrix

S
def
=

 | |
~r>1 ~r>2
| |

[ − ~w1 −
− ~w2 −

]
+

 ~1>

 [ ~t
]

The key update matrices A1, . . . , Ai−2 are chosen honestly, the update Ai−1 is
programmed to annihilate m − 3 random vectors, the update Ai is programmed
to annihilate ~r2 along with m − 4 random vectors, and the update matrix Ai+1

is programmed to annihilate a single random vector. The initial ciphertext and
ciphertext update matrices are chosen as in Game i.
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Claim 7.3.5. Game i
comp
≈ GameAlt i

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption
(Definition 6.2.5, Lemma 6.2.6). The challenger gets a challenge hW

′
and ~p,

where W ′ $← Rkx(F(m−2)×m
q ) is either of rank x = 1 or of rank x = m − 2 and

~p ∈ ker(W ′). Let us label the rows of W ′ by ~w2, . . . , ~wm−1. Choose ~w1
$← (~p)⊥

and ~t
$← Fmq . Set prms = (g~p,h~w1), pk = e(g,h)~t·~p and sk−1 = hS where

S =

 | |
~r>1 · · · ~r>m−1

| |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]

for uniformly random ~r1, . . . , ~rm−1 (note: the challenger can do this efficiently
given hW

′
without knowing W ′). Create a “low” ciphertext by choosing a

random vector ~c
$← (~w1)⊥. Run the rest of Game i correctly as a challenger,

where the key-update Ai−1 is programmed to annihilate ~r3, . . . , ~rm−1, the key-
update Ai is programmed to annihilate ~r2 and m − 4 random vectors and the
key update Ai+1 update is programmed to annihilate a single random vector.

If W ′ is of rank x = m− 2, then it is easy to see that the above distribution is
that of Game i.

If W ′ is of rank x = 1 then we claim that the above is distribution is that
of GameAlt i. Firstly, we can write ~w3 = µ3 ~w2, . . . , ~wm−1 = µm−1 ~w2 for some
scalars µ3, . . . , µm−1 in Fq. Letting ~µ = (1, µ3, . . . , µm−1) ∈ Fm−2

q , we can write

S =

 | |
~r>1 ~r2

′>

| |

[ − ~w1 −
− ~w2 −

]
+

 ~1>

 [ ~t
]

for  ~r2
′>

 =

 | |
~r>2 · · · ~r>m−1

| |

 ~µ>


So sk−1 is a random mid key as in GameAlt i. Moreover, the vectors ~r3, . . . , ~rm−1

are random and independent of S, ~w1, ~w2, ~r1, ~r2
′. Therefore, the update ma-

trix Ai−1 is programmed to annihilate m− 3 random and independent vectors
~r3, . . . , ~rm−1 as in GameAlt i. Finally, the update Ai is programmed to an-
nihilates ~r2 (along with m − 4 random vectors), which is equivalent to being
programmed to annihilate ~r′2 since span(Di−1~r2

′) = span(Di−1~r2) where Di−1

is the product of all update matrices prior to Ai. So we see that the, when W ′

is of rank 1 then the choice of ski−1 and all the update matrices is distributed
correctly as in GameAlt i. Hence an attacker that distinguishes Game i and
GameAlt i breaks rank-hiding.
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We now introduce a second intermediate game called Game2Alt i where the initial
secret key sk−1 has an exponent of the form

S−1
def
=

 | · · · |
~r>1 · · · ~r>m−2

| · · · |

 − ~w1 −
· · ·

− ~wm−2 −

+

 ~1>

 [ ~t
]

so that the rows are chosen randomly from the m − 2 dimensional affine space
~t+ span(~w1, . . . , ~wm−2). The key update matrices A1, . . . , Ai−2 are chosen honestly,
the update Ai−1 is programmed to annihilate m − 3 random vectors, the update
Ai is programmed to annihilate the vectors ~r2, . . . , ~rm−2, and the update matrix
Ai+1 is programmed to annihilate a single random vector. The initial ciphertext
and ciphertext update matrices are chosen as in Game i.

We now show (in 2 steps) that Game2Alt i is computationally indistinguish-
able from GameAlt i and from GameCor (i + 1, 0), which completes the proof of
Lemma 7.3.4

Claim 7.3.6. GameAlt i
comp
≈ Game2Alt i.

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption
(Definition 6.2.5, Lemma 6.2.6). The challenger gets a challenge hW

′
and ~p,

where W ′ $← Rkx(F(m−3)×m
q ) is either rank x = 1 or rank x = (m − 3) and

~p ∈ ker(W ′). Let us label the rows of W ′ by ~w2, . . . , ~wm−2. Choose ~w1
$← (~p)⊥

and ~t
$← Fmq . Set prms = (g~p,h~w1), pk = e(g,h)~t·~p and sk−1 = hS where

S =

 | |
~r>1 · · · ~r>m−2

| |

 − ~w1 −
· · ·

− ~wm−2 −

+

 ~1>

 [ ~t
]

for uniformly random ~r1, . . . , ~rm−2 (note: the challenger can do this efficiently
given hW

′
without knowing W ′). Create a “low” ciphertext by choosing a ran-

dom vector ~c
$← (~w1)⊥. The key-update Ai−1 is programmed to annihilate m−3

random vectors, the key-update Ai is programmed to annihilate ~r2, . . . , ~rm−2

and the key update Ai+1 update is programmed to annihilate a single random
vector.

If W ′ is of rank x = m− 3, then it is easy to see that the above distribution is
that of Game2Alt i.

If W ′ is of rank x = 1 then we claim that the above distribution is that of
GameAlt i. This follows since we can write

S =

 | |
~r>1 ~r2

′>

| |

[ − ~w1 −
− ~w2 −

]
+

 ~1>

 [ ~t
]
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for  ~r2
′>

 =

 | |
~r>2 · · · ~r>m−2

| |

 ~µ>


and some vector ~µ> ∈ Fm−3

q . So sk−1 is a random mid key as in GameAlt
i. Moreover, an update Ai which is programmed to annihilate ~r2, . . . , ~rm−2 is
equivalent to being programmed to annihilate ~r2

′ along with m − 4 random
vectors since span(~r2, . . . , ~rm−2) = span(~r2

′, ~r3, . . . , ~rm−2) where ~r3, . . . , ~rm−2 are
random an independent of sk−1 or any of the previous updates. Therefore sk−1

and all of the update matrices are distributed as in GameAlt i.

Claim 7.3.7. Game2Alt i
comp
≈ GameCor’ i+ 1.

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption
(Definition 6.2.5, Lemma 6.2.6). The reduction gets a challenge hW

′
and ~p,~c,

where W ′ $← Rkx(F2×m
q ) is either rank x = 1 or rank x = 2 and ~p,~c ∈ ker(W ′).

Let us label the rows of W ′ by ~w1, ~w2. The reduction chooses ~w3, . . . , ~wm−1
$←

(~p)⊥, ~t
$← Fmq and sets prms = (g~p,h~w1), pk = e(g,h)~t·~p and sk−1 = hS where

S =

 | |
~r>1 · · · ~r>m−1

| |

 − ~w1 −
· · ·

− ~wm−1 −

+

 ~1>

 [ ~t
]

for uniformly random ~r1, . . . , ~rm−1. (Note: the reduction can do this efficiently
given hW

′
without knowing W ′). Lastly, the reduction creates a “low” ci-

phertext using the vector ~c that comes from the challenge. The reduction does
everything else as in GameCor’ i+1 where the key-update Ai−1 is programmed
to annihilate m− 3 random vectors, the key-update Ai is programmed to anni-
hilate ~r3, . . . , ~rm−1 and the key update Ai+1 update is programmed to annihilate
~r2.

If W ′ is of rank x = 2, then it is easy to see that the above distribution is
that of GameCor’ i + 1. Notice that the key and ciphertext basis are random
correlated basis with ~c ∈ (~w1, ~w2)⊥.

If W ′ is of rank x = 1 then we claim that the above distribution is that of
Gam2Alt i. This follows since the exponent of sk−1 can be written as

S =

 | | |
~r1
′> ~r>3 · · · ~r>m−1

| | |



− ~w1 −
− ~w3 −

· · ·
− ~wm−1 −

+

 ~1>

 [ ~t
]
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where ~r1
′> = µ1~r

>
1 + µ2~r

>
2 for some scalars µ1, µ2. Note that ~r1

′ is therefore
uniformly random and independent of ~r2. By relabeling, this has the same
distribution as the initial key in Game2Alt i. Moreover, the update Ai is pro-
grammed to annihilate the m− 3 vectors ~r3, . . . , ~rm−1 in the initial secret key,
while the update Ai+1 annihilates the vector ~r2 which is random and indepen-
dent of the initial secret key. Therefore the initial secret key and all of the
secret key updates are distributed as in Game2Alt i.

Putting Claim 7.3.5, Claim 7.3.6 and Claim 7.3.7 together, we complete the proof
of the lemma.

Lemma 7.3.8. If ` ≤ (n − 3m + 6) log(q) − ω(log(λ)) then GameCor’ i + 1
stat
≈

GameCor (i+ 1, 0).

Proof. The only difference between the two games is the joint distribution on the
initial ciphertext ct1 and ciphertext-update matrix B1. In GameCor’ i + 1 the
ciphertext ct1 is chosen as a low ciphertext and the update B1 is honest. In
GameCor (i+ 1, 0), we first choose a high ciphertext ct−1 with the exponent

C−1
def
=

 | · · · |
~u>1 · · · ~u>m−1

| · · · |

 − ~c1 −
· · ·

− ~cm−1 −


We then choose updates: B−1 programmed to annihilate (~u3, . . . , ~um−1) yielding
a mid ciphertext ct0, B0 programmed to annihilate ~u2 and m− 4 random vectors
yielding a low ciphertext ct1, and the update B1 programmed to annihilate a
single random vector. We claim that ct1, B1 are distributed the same way in the
two games. The proof exactly follows that of Lemma 7.3.3.

Lemma 7.3.9. GameCor (i+ 1, j)
comp
≈ GameSuperCor (i+ 1, j + 1).

Proof. The proof of this lemma is analogous to the proof of Lemma 7.3.4. We
introduce two additional intermediate games (see Figure 7.5) called GameCo-
rAlt (i + 1, j) and GameCor2Alt (i + 1, j). In all these games the key basis
(~w1, . . . , ~wm−1) ∈ (~p)⊥ and the ciphertext basis (~c1, . . . ,~cm−1) ∈ (~w1)⊥ are cor-
related with ~w2 ∈ (~c1)⊥.

Firstly, we define GameCorAlt (i + 1, j) where the initial ciphertext ct−1 is a
random mid ciphertext using exponent matrix

C
def
=

 | |
~u>1 ~u>2
| |

[ − ~c1 −
− ~c2 −

]
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Figure 7.5: Intermediate Hybrids for Lemma 7.3.9.

for uniformly random ~u1, ~u2. The initial ciphertext-update matrices . . . , Bj−2 are
chosen honestly, the update Bj−1 is programmed to annihilate m − 3 random
vectors, the update Bj is programmed to annihilate ~u2 along with m− 4 random
vectors, and the update matrix Bj+1 is programmed to annihilate a single random
vector. The initial secret key and all key update matrices are chosen as in GameCor
(i+ 1, j).

Claim 7.3.10. GameCor (i+ 1, j)
comp
≈ GameCorAlt (i+ 1, j).

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption
(Definition 6.2.5, Lemma 6.2.6). The challenge gets a challenge gC

′
and ~w1,

where C ′
$← Rkx(F(m−2)×m

q ) is either of rank x = 1 or x = m − 2 and ~w1 ∈
ker(C ′). Let us label the rows of C ′ by ~c2, . . . ,~cm−1. Choose ~c1, ~p

$← (~w1)⊥ and
~t

$← Fmq . Set prms = (g~p,h~w1), pk = e(g,h)~t·~p. The initial ciphertext ct−1is
chosen so that the exponent matrix in the first component gC is

C =

 | |
~u>1 · · · ~u>m−1

| |

 − ~c1 −
· · ·

− ~cm−1 −


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for uniformly random ~u1, . . . , ~um−1 (note: the challenger can do this efficiently
given gC

′
without knowing C ′). The ciphertext-update matrices are chosen as

in GameCor (i + 1, j) where Bj−1 is programmed to annihilate ~u3, . . . , ~um−1

, Bj is programmed to annihilate ~u2 and m − 4 random vectors and Bj+1 is
programmed to annihilate a single random vector.

The initial secret key is chosen by first sampling ~w2, . . . , ~wm−1 so that, along
with ~w1, they form a random correlated basis of (~p)⊥, having ~w2 ∈ (~c1)⊥. This
basis is then used to sample the initial high secret key sk−1. The secret key
updates are chosen as in GameCor (i+ 1, j).

If C ′ is of rank x = m− 2, then the above distribution is just that of GameCor
(i + 1, j). On the other hand, if C ′ is of rank x = 1, we argue that the above
distribution is that of GameCorAlt (i + 1, j). The argument mirrors that of
Claim 7.3.5.

We now introduce a second intermediate game called GameCor2Alt (i+1, j) where
the initial ciphertext ct−1 is chosen so that the exponent in the first component
gC is

C =

 | · · · |
~u>1 · · · ~u>m−2

| · · · |

 − ~c1 −
· · ·

− ~cm−2 −


for uniformly random ~u1, . . . , ~um−2. The initial ciphertext-update matrices . . . , Bj−2

are chosen honestly, the update Bj−1 is programmed to annihilate m− 3 random
vectors, the update Bj is programmed to annihilate the m−3 vectors ~u2, . . . , ~um−2,
and the update matrix Bj+1 is programmed to annihilate a single random vector.
The initial secret key and all key update matrices are chosen as in GameCor
(i+ 1, j).

We now show (in 2 steps) that GameCor2Alt (i + 1, j) is computationally
indistinguishable from GameAlt (i + 1, j) and from GameSuperCor (i + 1, j + 1),
which completes the proof of Lemma 7.3.9.

Claim 7.3.11. GameCorAlt (i+ 1, j)
comp
≈ GameCor2Alt (i+ 1, j).

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption
(Definition 6.2.5, Lemma 6.2.6). The challenger gets a challenge gC

′
and ~w1,

where C ′
$← Rkx(F(m−3×m

q ) is either rank x = 1 or rank x = m − 3 and

~w1 ∈ ker(C ′). Let us label the rows of C ′ by ~c2, . . . ,~cm−2. Choose ~c1, ~p
$← (~w1)⊥
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and ~t
$← Fmq . Set prms = (g~p,h~w1), pk = e(g,h)~t·~p. The initial ciphertext ct−1

is chosen so that the exponent in the first component gC is

C =

 | |
~u>1 · · · ~u>m−2

| |

 − ~c1 −
· · ·

− ~cm−2 −


for random ~u1, . . . , ~um−2 ∈ Fmq (note: the challenger can do this efficiently

given gC
′

without knowing C ′). The ciphertext-update Bj−1 is programmed to
annihilate m− 3 random vectors, Bj is programmed to annihilate ~u2, . . . , ~um−2

, and Bj+1 is programmed to annihilate a single random vector.

The initial secret key is chosen by first sampling ~w2, . . . , ~wm−1 so that, along
with ~w1, they form a random correlated basis of (~p)⊥, having ~w2 ∈ (~c1)⊥. This
basis is then used to sample the initial high secret key sk−1. The secret key
updates are chosen as in GameCor (i+ 1, j).

If C ′ is of rank x = m−3, then the above distribution is just that of GameCor2Alt
(i + 1, j). On the other hand, if C ′ is of rank x = 1, we argue that the above
distribution is that of GameCorAlt (i + 1, j). The argument mirrors that of
Claim 7.3.6.

Claim 7.3.12. GameCor2Alt (i+ 1, j)
comp
≈ GameSuperCor (i+ 1, j + 1).

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption
(Definition 6.2.5, Lemma 6.2.6). The challenger gets a challenge gC

′
and ~w1, ~w2,

where C ′
$← Rkx(F2×m

q ) is either rank x = 1 or rank x = 2 and ~w1, ~w2 ∈ ker(C ′).

Let us label the rows of C ′ by ~c1,~c2. Choose ~p,~c3, . . . ,~cm−1
$← (~w1)⊥ and

~t
$← Fmq . Set prms = (g~p,h~w1), pk = e(g,h)~t·~p. The initial ciphertext ct−1 is

chosen so that the exponent in the first component gC is

C =

 | |
~u>1 · · · ~u>m−1

| |

 − ~c1 −
· · ·

− ~wc−1 −


for random ~u1, . . . , ~um−2 ∈ Fmq (note: the challenger can do this efficiently

given gC
′

without knowing C ′). The ciphertext-update Bj−1 is programmed to
annihilate m− 3 random vectors, Bj is programmed to annihilate ~u3, . . . , ~um−1

, and Bj+1 is programmed to annihilate ~u2.

The initial secret key is chosen by sampling ~w3, . . . , ~wm−1 so that, along with
~w1, ~w2, they form a basis of (~p)⊥. This basis is then used to sample the initial
high secret key sk−1. The secret key updates are chosen as in GameCor (i+1, j).
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If C ′ is of rank x = 2, then the above distribution is just that of GameSuperCor
(i+ 1, j + 1). Notice that, in this case, the key and ciphertext bases are super-
correlated with ~c1,~c2 ∈ (~w1, ~w2)⊥. On the other hand, if C ′ is of rank x = 1,
we argue that the above distribution is that of GameCor2Alt (i + 1, j). The
argument mirrors that of Claim 7.3.7.

Putting Claim 7.3.10, Claim 7.3.11 and Claim 7.3.12 together, we complete the
proof of the lemma.

Lemma 7.3.13. If ` ≤ min(m/6− 1, n− 3m+ 6) log(q)− ω(log(λ)) then

GameSuperCor(i+ 1, j + 1)
stat
≈ GameCor(i+ 1, j + 1).

Proof. There are two differences between GameSuperCor and GameCor. The first
difference lies in wether the ciphertext and key bases are correlated or super-
correlated. The second difference lies in the regime of ciphertext updates. We
define an intermediate game, GameCorInter (i+ 1, j + 1), in which the ciphertext
bases are (only) correlated, but the regime of ciphertext updates follows that of
GameSuperCor (i+ 1, j + 1).

Claim 7.3.14. If ` ≤ (m/6− 1) log(q)− ω(log(λ)), then

GameSuperCor(i+ 1, j + 1)
stat
≈ GameCorInter(i+ 1, j + 1).

Proof. This follows by the orthogonality hiding lemma (Lemma 7.3.1). Notice

that, once we fix ~p, ~w1 and ~c1 in GamrCor’, we can think of ~w2
$← (~c1, ~p)

⊥

and ~c2
$← (~w1)⊥ as two independent sources. Moreover, we claim that the only

leaked-upon values in the two games above that are related to ~w2 are the key
updates Ai, Ai+1 and the secret key ski+1. Therefore only three time periods
contain relevant information about ~w2 This is because the initial high key sk−1

has rows from the full space (~p)⊥ (and hence does not depend on ~w2) and the
updates A−1, . . . , Ai−1 do not depend on the key at all. (On the other hand the
secret key ski+1 has the span of ~w1, ~w2 in the exponent, and the updates Ai, Ai+1

annihilate vectors that are correlated to ski+1 and hence also to ~w2). Lastly
the keys ski+2, . . . are random low keys and the update Ai+2, . . . are chosen
honestly and hence have no information about ~w2. Therefore, the leakage
on ~w2 is bounded by 3`. Similarly, the only leaked-upon values in the two
games above that are related to ~c2 are the ciphertext updates Bj, Bj+1 and the
ciphertext ctj+1. Hence the leakage on ~c2 is bounded by 3` as well. Lastly, since
the secret key and ciphertext leak independently, if we condition on the leakage
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Z observed by the attacker, the distributions of ~c2 and ~w2 are independent. We
get H̃∞(~w2 | Z) ≥ (m− 2) log(q)− 3`, H̃∞(~c2 | Z) ≥ (m− 1) log(q)− 3`. Since
GameSuperCor is equivalent to GameCorInter is we condition on the event
〈~w2,~c2〉 = 0, we can apply the orthogonality hiding lemma (Lemma 7.3.1) to
bound the statistical distance between these games. In particular, the games
GameSuperCor and GameCorInter are statistically indistinguishable as long
as ` ≤ (m/6− 1) log(q)− ω(log(λ)).

We now turn to changing the regime of ciphertext updates from GameCorInter
to GameCor. But for this we just use the reprogramming lemma (Lemma 6.6.2)
on the ciphertext updates. In particular, we rely on the fact that the regime of
ciphertext updates between GameCorInter and GameCor only differs in which
updates annihilate additional random vectors (but not in how they annihilate the
ciphertext exponent vectors ~ui). Therefore, using the reprogramming lemma, we
see that the two games are indistinguishable as long as ` ≤ (n− 3m+ 6) log(q)−
ω(log(λ)).

Lemma 7.3.15. If ` ≤ (n− 3m+ 6) log(q)− ω(log(λ)) then

GameCor (i+ 1, qct + 1)
comp
≈ Game i+ 1.

Proof. There are three differences between the above games: (I) in GameCor (i+
1, qct + 1) the ciphertext and key bases are correlated (〈~c2, ~w1〉 = 0) whereas in
Game i + 1 they are uncorrelated, (II) the regime of programmed key updates
differs between the two games in when and how many random vectors the updates
are programmed to annihilate, (III) in GameCor (i+1, qct+1) the initial ciphertext
is high while in Game i + 1 it is low (all ciphertext updates are honest in both
games).

Firstly, we can ignore (I) since both games are completely independent of the
choice of the basis vector ~c2 as there are no mid ciphertexts in either game. In
particular, the distribution of the initial low/high ciphertext in the two games does
not depend at all on whether the bases are correlated or not.

Secondly, we use the reprogramming lemma (Lemma 6.6.2) to change the
regime of key updates from that of GameCor (i + 1, qct + 1) to that of Game
i+ 1. The total number of random vectors that are programmed to be annihilated
in either game is u = m−3. Therefore, the change is statistically indistinguishable
as long as ` ≤ (n− 3m+ 6) log(q)− ω(log(λ)).

Lastly, we provide a simple reduction from the (k = 1)-extended rank hid-
ing assumption (Definition 6.2.5, Lemma 6.2.6) to distinguishing whether the ini-
tial ciphertext is low or high. The reduction gets a challenge gC and ~w where

C
$← Rkx(Fn×mq ) is a random matrix of either rank x = m − 1 or rank x = 1,

and ~w ∈ ker(C). The reduction samples a random ~t
$← Fnq , ~p

$← (~w)⊥ and
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~w2, . . . , ~wm−1
$← (~p)⊥. It uses these to create the public parameters g~p,h~w, public

key pk = e(g,h)〈~p,~t〉 and the initial high secret key hS. For the initial ciphertext,
it just uses ct(1) = gC and creates the matching second component ct(2) efficiently
using ct(1),mb,~t. It runs the rest of the game by choosing the key updates as
specified in Game i + 1 and all the ciphertext updates honestly. It’s easy to see
that if the challenge gC is of rank x = m − 1 then this the same as GameCor
(i+ 1, qct + 1) with the modified key updates as above, while if the challenge is of
rank x = 1 then this is just Game i+ 1.

Lemma 7.3.16. Game qsk + 1
comp
≈ GameFinal.

Proof. We define several hybrid distributions for choosing the initial ciphertext
ct. Recall that we can think of ct as consisting of n rows where each row is a
ciphertext under the “simple” (un-updatable) encryption scheme. We will consider
the following distributions on the ciphertext-rows:

1. Low Encryptions of m : The ciphertext-row is of the form (g~c, e(g,h)〈~c,~t〉m)

where ~c = u~c1 for a random u
$← Fq and the ciphertext-basis vector ~c1.

2. Mid Encryptions of m: The ciphertext-row is of the form (g~c, e(g,h)〈~c,~t〉m)

where ~c = u1~c1+u2~c2 for random u1, u2
$← Fq and the ciphertext-basis vectors

~c1,~c2.

In Game qsk + 1, the initial ciphertext ct has all of its n rows chosen as random
low encryptions of mb. In GameFinal, the initial ciphertext ct has all of its n rows
chosen as random low encryptions of 1GT

.
We define hybrid games GameHyb i = 0, . . . , n, where the first i rows of the

initial ciphertext ct are chosen as random low encryptions of 1GT
and the rest are

random low encryptions of mb. Note that GameHyb 0 is really just Game qsk + 1
and GameHyb n is really just GameFinal.

We also define the hybrid game GameHybMid i = 0, . . . , n− 1 where the first
i rows of the initial ciphertext ct are random low encryptions of 1GT

, the row
i+ 1 is a random mid encryption of mb, and the rest of the rows are random low
encryptions of mb.

In all these games, the ciphertext updates are all honest, the secret key is a
high key and the key updates are all honest (as in Game qsk + 1).

Claim 7.3.17. For i = 0, . . . , n− 1: GameHyb i
comp
≈ GameHybMid i.

Proof. We show a reduction from the (k = 1)-extended rank hiding assumption
(Definition 6.2.5, Lemma 6.2.6) to distinguishing whether the (i + 1) row is a
low or mid encryption of mb. The reduction gets a challenge gC

′
and ~w where

135



C ′
$← Rkx(F2×m

q ) is a random matrix of either rank x = 2 or rank x = 1, and
~w ∈ ker(C). Let us label the rows of C ′ by ~c1,~c2 The reduction samples a

random ~t
$← Fnq , ~p

$← (~w)⊥ and ~w2, . . . , ~wm−1
$← (~p)⊥. It uses these to create

the public parameters g~p,h~w, public key e(g,h)〈~p,~t〉 and the initial high secret
key hS.

For the initial ciphertext, it sets ct(1) = gC where C = ~uT~c1 +~e>~c2 for uniformly
random ~u ∈ Fnq and the vector ~e ∈ Fnq being it i+1 standard basis vector whose
i+1 coordinate is 1 and all others are 0. In other words each row j of the matrix
C can be written as uj~c1 + ej~c2 where uj are random, ei+1 = 1 and ej = 0 for
j 6= i+1. The reduction creates the matching second component ct(2) efficiently
using ct(1),mb,~t as either an encryption of 1GT

(for rows j ≤ i) or the message
mb (for rows j > i). It runs the rest of the game by choosing the key updates
the ciphertext updates honestly. It’s easy to see that if the challenge is of rank
x = 1 then this the same distribution as GameHyb i while if the challenge is of
rank x = 2 then this is the same distribution as GameHybMid i.

Claim 7.3.18. For i = 0, . . . , n− 1: GameHybMid i
stat
≈ GameHyb i+ 1.

Proof. In GameHybMid i, the (i + 1) row of the initial ciphertext ct is of the
form

(gu1~c1+u2~c2 , e(g,h)u1β+u2γmb)

where β = 〈~c1,~t〉, γ = 〈~c2,~t〉. We claim that γ information theoretically
“blinds” the message m. That is, we claim that given everything else in the
game other than e(g,h)u1β+u2γmb, the value γ looks uniformly random. This
is because the only information that’s available in the entire game about ~t is
the value α = 〈~t, ~p〉 given in the public key and the value β which is revealed
by the other rows of the ciphertext ct. Since the secret key is a high key, the
rows of the secret key are chosen uniformly at random from the space

span(~w1, . . . , ~wm−1) + ~t = (~p)⊥ + ~t = {~s ∈ Fmq | 〈~s, ~p〉 = α}

which does not depend on ~t beyond its dependence on α. If m ≥ 3 then the
value ~c2 is linearly independent of ~p,~c1 (w.o.p.) and hence the value γ is a
random and independent of α, β and everything else observed in the game.
Therefore, the message mb contained in the (i + 1)st row of the ciphertext is
statistically hidden in GameHybMid i. So we may as well replace the (i + 1)
row from containing mb to just containing 1GT

.

We now repeat the same argument as in the proof of Claim 7.3.17 to change
the (i + 1) row from being a mid encryption of 1GT

to being a low encryption
of 1GT

, which gets us to GameHyb i+ 1.

Combining these hybrids, we get the statement of the lemma.
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7.3.6 Putting It All Together

Using Lemmata 7.3.2 - 7.3.16 in the sequence of hybrids given by Figure 7.3,
we get the indistinguishability:

Real
comp
≈ GameFinal. Recall that the output of each game includes the view of the

attacker A at the end of the experiment along with the challenger’s selection bit
b. Since the attacker’s guess b̃ at the end of the game can be efficiently computed
from the view of the attacker, the predicate (A wins) ⇔ (b̃

?
= b) can be efficiently

computed from the output of each game. In GameFinal the view of the attacker
is independent of the random bit b and hence we have Pr[A wins ] = 1

2
. Therefore,

in the Real game, we must have |Pr[A wins ]− 1
2
| ≤ negl(λ) since the two games

are indistinguishable. This concludes the proof of Theorem 7.2.1.

7.4 Generalization to k-Linear

In this section, we provide a generalized scheme which we can prove secure
under the k-linear assumption for arbitrary choices of k. When k = 1, the scheme
description and proof coincide exactly with the original.

7.4.1 Scheme Description

Let k, n,m, d be integer parameters of the system with n ≥ d.

KeyGen(1λ) → (pk, sk) : Sample (G1,G2,GT , e,g,h, q) ← G(1λ) to be the de-
scription of a bilinear group of prime order q, with an efficient pairing
e : G1 ×G2 → GT , and generators g ∈ G1,h ∈ G2.

Choose matrices P,W ∈ Fk×mq at random subject to rowspan(P )⊥ rowspan(W )
and set

prms = ((G1,G2,GT , e,g,h, q),g
P ,hW )

to be the public parameters of the system.3

Choose ~t
$← Fmq and set pk := e( gP , h~t

>
) = e(g,h)~α where ~α> = P~t>.

Choose R
$← Fn×kq and set sk := hS, where S is the n×m matrix given by

S :=

 R

 [ W
]

+

 ~1>

 [ ~t
]
.

In other words, each row of S is chosen at random from the affine subspace
~t+ rowspan(W ).

3We can interpret the above as choosing W at random and choosing each row of P at random
from ker(W ).
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(Note that hS can be computed from the components hW , ~t, R without
knowing W .)

Encryptpk(m)→ ct : To encrypt m ∈ GT under pk = e(g,h)~α,

choose U
$← Fn×kq and label its rows ~u1, . . . , ~un. Output ct = (ct(1), ct(2))

where:

ct(1) =

 g~u1P

. . .
g~unP

 , ct(2) =

 e(g,h)~u1·~α
> ·m

. . .

e(g,h)~un·~α
> ·m


Each row is an independent encryption of the (same) message m using the
simple encryption process. Equivalently, we can write the ciphertext as
ct(1) = gC , ct(2) = e(g,h)~z

>
for:

C =

 U

 [ P
]

~z> =

 U

 ~α> +

 ~1>

µ =

 C

 t>

+

 ~1>

µ.
where µ is given by m = e(g,h)µ and ~α> = P~t>.

Decryptsk(ct)→m: To decrypt, we only need to look at the first rows of the
secret key and the ciphertext matrices. Given the first row h~s of the secret
key sk = hS, the first row g~c of the ciphertext component ct(1) = gC , and the
first scalar component e(g,h)z of ct(2) = e(g,h)~z

>
, the decryption algorithm

outputs: m = e(g,h)z/e( g~c , h~s
>

).

SKUpdate(sk)→ sk′ : Choose a random matrix A′
$← Rkd(Fn×nq ). Derive A by

“rescaling” each row of A′ so that its components sum up to 1. That is, set
(A)i,j := (A′)i,j/(

∑n
l=1(A′)i,l).

If the current secret key is sk = hS, output the updated key sk′ := hAS.

CTUpdate(ct)→ ct′ : Choose a random matrix B′
$← Rkd(Fn×nq ). Derive B by

“rescaling” each row of B′ so that its components sum up to 1. That is, set
(B)i,j := (B′)i,j/(

∑n
l=1(B′)i,l).

If the current ciphertext is ct = (gC , e(g,h)~z), output the updated ciphertext
ct′ := (gBC , e(g,h)B~z).
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Theorem 7.4.1. For any integers m ≥ 7k, n ≥ 3m − 7k + 1 and d := n −
m + 3k the scheme (KeyGen, Encrypt, Decrypt, SKUpdate, CTUpdate) is an `-
CLRS-Friendly Encryption scheme under the k-linear assumption for any ` ≤
min ((m− 5k − 1)/6, n− 3m+ 7k − 1) log(q)− ω(log(λ)).

The argument for correctness is the same as for the original scheme in Section 7.2
and we sketch the modifications needed to make the proof of security go through
below.

7.4.2 The Generalized Proof (Sketch)

We now give an overview of the modifications to the previous proof necessary
to generalize it to the k-linear assumption. The overall structure of the proof and
the hybrid games is exactly the same, except that we modify how low/mid/high
keys and ciphertexts are defined.

Alternate Key and Ciphertext Distributions. Assume the matrices P,W
and the vector ~t are fixed defining gP ,hW and pk = e(g,h)P~t

>
. Let us label

the rows of W by ~w1, . . . , ~wk and let (~w1, . . . , ~w(m−k)) be a basis of ker(P ) =
rowspan(P )⊥ and let (~c1, . . . ,~c(m−k)) be a basis of ker(W ) = rowspan(W )⊥. We
define the various key distributions on sk = hS the same way as before with

S =

 | |
~r>1 · · · ~r>i
| |

 − ~w1 −
· · ·

− ~wi −

+

 ~1>

 [ ~t
]

(7.4)

but now we have i = k for honest , i = 2k for mid and i = (m − k) for high
keys. Similarly, we define the low/mid/high ciphertext distributions the same as
before with ct(1) = gC where

C =

 | |
~u>1 · · · ~u>j
| |

 − ~c1 −
· · ·

− ~cj −

 (7.5)

but now we have j = k for low , j = 2k for mid and j = (m − k) for high
ciphertexts.

By default, we choose the ciphertext and keys basses uncorrelated with

~wk+1, . . . , ~wm−k
$← ker(P ) and ~c1, . . . ,~cm−k

$← ker(W ). We say that the bases

are correlated if we instead choose ~c1, . . . ,~ck
$← (~w1, . . . ~w2k)

⊥ and all other vec-
tors as before. We say that the bases are super-correlated if we instead choose

~c1, . . . ,~c2k
$← (~w1, . . . ~w2k)

⊥ and all other vectors as before. The table in Sec-
tion 7.3.2, Figure 7.1 still accurately summarizes interactions between keys and
ciphertexts.
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The Hybrids. We also define the various games Game i, GameCor (i, j), Game-
SuperCor (i, j) analogously as before with appropriate modifications. For example,
in Game i, the key updates . . . , Ai−2 are honest, the update Ai (high to mid) is
now programmed to annihilate the m−3k vectors ~r2k+1, . . . , ~rm−k, the update Ai+1

(mid to low) is programmed to annihilate the k vectors ~rk+1, . . . , ~r2k along with
m− 4k random vectors, and the update Ai+1 is now programmed to annihilate k
random vectors. The other game definitions are all analogous.

All of the computational steps are performed analogously, but now under the
k-extended rank hiding assumption which follows from k-linear. The information
theoretic steps in Lemma 7.3.3, Lemma 7.3.8, are also analogous and the new
bound becomes: ` ≤ n− 3m+ 7k − 1.

The only aspect that’s non-trivial becomes the information theoretic argument
where we change from super-correlated bases to just correlated bases (the analogue
of Claim 7.3.14). We want to switch the condition

(~wk+1, . . . , ~w2k) ⊥ (~ck+1, . . . ,~c2k)

from being true to being false. We do this by using an information theoretic
argument on each pair ~wi,~cj separately (in any order). Whenever we do so, we
think of all other basis components as fixed. That is ~wi always comes from the
space orthogonal to rowspan(P ||~c1|| . . . ,~cj−1||~cj+1|| . . . ||~c2k) and ~cj always comes
from the space orthogonal to rowspan(W ||~wk+1|| . . . ||~wi−1||~wi+1|| . . . ||~w2k). We are
only changing the condition ~wi ⊥~cj by applying arguing that leakage on these
vectors is bounded by 3` since they only “occur” in three time periods, and then
applying Lemma 7.3.1. We then get indistinguishability assuming the parameters
` ≤ ((m− 5k − 1)/6) log(q)− ω(log(λ)).

7.5 Information-Theoretic Impossibility

We notice that, unlike public-key encryption and digital signatures, traditional
secret sharing schemes (including 2-out-2 secret sharing) can achieve information-
theoretic security. Namely, the secret message remains perfectly hidden even
against a computationally unbounded attacker. Unfortunately, we show that the
same cannot be true for CLRS schemes, which must withstand continuous leakage
of shares. Namely, by specifying arbitrary (as opposed to efficient) leakage pred-
icates, the attacker can reconstruct the hidden secret with probability arbitrarily
close to 1. In fact, the result holds even when the following additional restrictions
are placed on the attacker:

• The leakage bound ` = 1. Namely, at most one bit can leak in between
successive share updates.
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• Each leakage predicate can only depend on the current share value, but not
on the randomness for the next update. Namely, we can assume leak-free
updates.

• If s1 is the bit size of the first share and s2 is the bit size of the second share,
the attacker will use only s1 Leakage queries on the first share and only s2

Leakage queries on the second share.4

• The sequence of Leakage and Update queries is specified non-adaptively.5

• The attacker can even break one-wayness of the CLRS scheme, and not just
semantic security. Namely, the shared message m can be chosen at random
(as opposed to being either m0 or m1 chosen by the attacker) and will be
recovered in full with probability 1− ε (for any ε > 0).

As it turns out, all these properties will easily follow from the following more
general attack, which we call Continuous Leakage of Consistent Value (CLCV) at-
tack. The attack, parameterized by an arbitrary key refreshing procedure Update,
shows how to leak a value “Update-consistent” with an s-bit initial secret, using at
most s non-adaptive (but computationally unbounded) Leakage queries. After
specifying this attack below, the attack on the CLRS scheme will simply perform
a separate CLCV attack on each share, and then run the honest reconstruction
algorithm to recover the secret.

CLCV Attack. Assume Update : {0, 1}s → {0, 1}s is an arbitrary randomized
procedure. Given such a procedure, we say that a value x′ is consistent with x
if either x = x′ or there exists some i ≥ 1 and a sequence of randomness strings
r1, . . . , ri such that x′ = Update(. . .Update(x; r1) . . . ; ri). We let C(x) denote the
set of all strings x′ consistent with x.

We define the following CLRV game between a (computationally unbounded)
attacker A and a challenger C. The challenger C gets an input x ∈ {0, 1}s and sets
x0 = x, i = 0. The attacker A can adaptively make any number of the following
two queries:

Update Queries: C picks a random string ri+1, sets xi+1 = Update(xi; ri+1), and
increments i.

Leakage Queries: A specifies a predicate Leak : {0, 1}s → {0, 1} and gets back
the value Leak(xi) from C. (Notice, the leakage predicate does not take the

4This is essentially optimal, since otherwise both shares still have some entropy left after
leakage, and the results of [DDV10] give an information-theoretic CLRS scheme in this setting.

5Alternatively, one can use s1 non-adaptive queries on the first share, and a single adaptive
query on the second share.
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update randomness as its input.) C then automatically makes an Update
query described above, updating xi to xi+1 and incrementing i.6

At the end of the game the attacker outputs a value x′ and wins if x′ is consistent
with x: x′ ∈ C(x).

Lemma 7.5.1. For any randomized procedure Update : {0, 1}s → {0, 1}s and any
ε > 0 there exist an (inefficient) attacker A∗ such that, for all x ∈ {0, 1}s, A∗ wins
the CLCV game against C(x) with probability 1− ε. Moreover, A∗ is non-adaptive
and makes only s Leakage queries.

We prove the lemma below, but, as an immediate corollary, we get the attack on
the CLRS mentioned at the beginning of the section. Namely, we set the failure
parameter to ε/2 and run the CLCV attacker from the Lemma above on both
shares sh1 and sh2. Then, with probability 1 − ε we get correct share values sh′1
and sh′2 consistent with sh1 and sh2. By perfect correctness of CLRS, running the
reconstruction procedure on sh′1 and sh′2 will return the correct message m.

In fact, we notice that the CLCV attack essentially rules out information-
theoretic security for any cryptographic primitive in the continuous leakage model
enjoying perfect correctness. As we mentioned, however, this is primarily inter-
esting for cryptographic primitives which permit information-theoretic solutions
(without leakage) in the first place, such as secret sharing, one-time pad, one-time
MACs, etc.

Proof of Lemma 7.5.1. We start with some notation before we describe our
CLCV attacker A∗. Given a permutation π : {0, 1}s → {0, 1}s and a non-empty
set X ⊆ {0, 1}s, we let smallestπ(X) denote the (unique) string x ∈ X having the
lexicographically smallest value π(x) among {π(x′) | x′ ∈ X}. Notice, if π is a
random permutation, then smallestπ(X) is simply a random element of X. More
generally, for any sequence Xi ⊇ Xi+1 ⊇ . . . ⊇ Xi+s−1 of s non-empty “shrinking”
sets, if π is a random permutation, the probability that all s values smallestπ(Xi+j)
are the same only depends on the ratio between the sizes of the smallest and the
largest sets:

Pr
π

[smallestπ(Xi) = smallestπ(Xi+1) = . . . = smallestπ(Xi+s−1)] =
|Xi+s−1|
|Xi|

(7.6)

Indeed, since the sets are contained in each other, all the values smallestπ(Xi+j)
are equal if and only if smallestπ(Xi) ∈ Xi+s−1. However, since π is a random
permutation, the latter happens with probability precisely |Xi+s−1|/|Xi|.

For i ≥ 0, let Xi = C(xi) be the (non-empty) set of values consistent with the
i-th secret xi. The non-adaptive strategy of A∗ is the following (recall, ε is the
maximum allowed failure probability):

6This corresponds to the leakage bound ` = 1, meaning that at most 1 bit can leak in between
the updates.
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• Pick a random permutation π : {0, 1}s → {0, 1}s, and a random integer

t ∈ {1, . . . , N def
= 4s

ε2 log e
}.

• Perform the sequence of i
def
= (t − 1)s Update queries, so that the current

secret is xi.

• Perform s Leakage queries, where query j ∈ [s] will leak the j-th bit of
smallestπ(Xi+j−1). (Formally, the j-th leakage predicate Leakj(y) returns the
j-th bit of smallestπ(C(y)).)

• Let x′ = b1, . . . , bs be the concatenation of s answers to the Leakage queries
above. Output x′ as a candidate secret consistent with x = x0.

It remains to argue that the probability that x′ is consistent with x is at least
1 − ε. For that, let yj

def
= smallestπ(Xi+j−1) be the value whose j-th bit we leak in

the j-th Leakage query. Let us call these s values y1, . . . , ys critical. Notice, each
critical value is consistent with x, by definition. Thus, it suffices to argue that the
probability all the critical values are the same is at least 1− ε. Indeed, in this case
the leaked value x′ is actually equal to all the critical values, and, hence, consistent
with x. This also gives the intuition behind our construction of A∗. Essentially, A∗
choose a “random” index i hoping that the set of consistent values Xi = C(xi) will
not shrink too much during the next s updates. If this is so (which we prove below
happens with high probability), A∗ wants to choose a “consistent representative”
from the slowly shrinking sets Xi, Xi+1, . . . , Xi+s−1. Since this “shrinkage” might
be adversarial, A∗ randomly permutes the elements of the “slowly shrinking” sets,
and hopes that the smallest element of these permuted sets does not “disappear”
as the sets slowly shrink. Luckily, Equation (7.6) tells us precisely this, as long as
the smallest set Xi+s−1 is almost as big as the original set Xi. The formal details
are given below.

Let us call a sequence of s consecutive updates an epoch, and let us examine
the consistent sets X0, Xs, X2s, . . . at the end of each epoch. We say that epoch
t ≥ 1 is “bad” if |Xts| < (1 − ε

2
) · |X(t−1)s|; namely, the set of consistent values

shrunk by more than a factor (1− ε
2
). Notice, since the set of consistent values has

size at most 2s and at least 1, we know that the maximal number n of bad epochs
must satisfy the relation 2s(1− ε

2
)n ≥ 1. Solving for n, we get the number of bad

epochs n ≤ 2s/(ε log e).

Recall now that A∗ choose a random epoch t in the range {1, . . . , N def
= 4s

ε2 log e
}.

Since there are at most n ≤ 2s/(ε log e) bad epochs, we get that the probability A∗
chose a bad epoch is at most n/N ≤ ε/2. Otherwise, if A∗ chose a “good” epoch,
we know that |Xts| ≥ (1− ε

2
) · |X(t−1)s|. Since π was random and epoch t is good,

Equation (7.6) then tells us that s critical values yj = smallestπ(Xi+j−1) are all the
same with probability 1− ε/2, meaning they are not the same with probability at
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most ε/2. Hence, we see that A∗ fails either it chose a bad epoch t (probability at
most ε/2), or the epoch was good but the critical values were inconsistent (again,
probability at most ε/2). Summing these, we get that A∗ fails with probability at
most ε, completing the proof.
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Chapter 8

Conclusions

In this thesis, we proposed a new model to capture the leakage available to
an attacker through side-channel attacks against an implementation of a crypto-
graphic primitive. We then showed how to construct many of the most useful
cryptographic primitives (i.e. one-way relations, signatures, public-key encryption
and secret sharing or secure storage) which remain provably secure even in the
presence of such formally modeled leakage.

Many interesting and important questions remain unanswered. Perhaps most
importantly, the proposed model of leakage may still not be the “right one”. There
is certainly a need for better empirical analysis of whether the model is sufficient to
capture all realistic examples of side-channel attacks. Nevertheless, we believe that
having a good understanding of our current model, with its simplicity and elegance,
will prove useful in any future work on more fine-tuned models. It also remains
an important open problem to come up with more constructions in our model,
realizing more advanced primitives (identity based encryption, fully-homomorphic
encryption ...), getting better efficiency and leakage rates, and under more assump-
tions. Lastly, given our result showing how to securely store a secret on a device
consisting of multiple components that leak individually, it remains an interesting
open problem to also construct schemes for securely performing (arbitrary?) com-
putations on such secrets, so that nothing but the outputs of the computation are
revealed even to an attacker that gets side-channel leakage on the state of each
component during the computations.
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