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Abstract

The development of a prototyping language should follow the usual software-

engineering methodology: starting with an evolvable, easily modi�able, working

prototype of the proposed language. Rather than committing to the development of

a mammoth compiler at the outset, we can design a translator from the prototyping

language to another high-level language as a viable alternative. From a software-

engineering point of view, the advantages of the translator approach are its shorter

development cycle and lessened maintenance burden.

In prototyping language design, there are often innovative cutting-edge features

which may not be well-understood. It is inevitable that numerous experimentations

and revisions will be made to the current design, and hence supporting evolvability

and modi�ability is critical in the translator design.

In this dissertation we present an action-semantics-based framework for high-

level source-to-source language translation. Action semantics is a form of deno-

tational semantics that is based on abstract semantic algebra rather than Scott

domain and �-notation. More speci�cally, this model not only provides a formal

semantics de�nition for the source language and sets guidelines for implementations

as well as migration, but also facilitates mathematical reasoning and a correctness

proof of the entire translation process. The translation is geared primarily towards

readability, maintainability, and type-preserving target programs, only secondarily

towards reasonable eÆciency.

We have acquired a collection of techniques for the translation of certain non-

trivial high-level features of prototyping languages and declarative languages into

eÆcient procedural constructs in imperative languages like Ada95, while using the
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abstraction mechanism of the target languages to maximize the readability of the

target programs. In particular, we translate GriÆn existential types into Ada95

using its object-oriented features, based on coercion calculus. This translation is

actually more general, in that one can add existential types to a language (with

modicum of extra syntax) supporting object-oriented paradigm without augment-

ing its type system, through intra-language transformation. We also present a

type-preserving translation of closures which allows us to drop the whole-program-

transformation requirement.
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Chapter 1

Introduction

The growing size and complexity of software systems make it increasingly diÆcult

| if not impossible | to obtain an exact, complete requirements speci�cation from

software clients or end-users. Careful requirement analysis along with systematic

reviews of the requirements help to reduce the uncertainty about what the system

should do. However, there is no real substitute for trying out a requirement be-

fore committing to it. This is possible if a software prototype of the system to be

developed is available. System prototypes allow users to experiment with require-

ments and to examine how the system supports their work. Prototyping is therefore

a means of requirement validation, which permits clients to discover requirement

errors or omissions early in the software process.

The main advantages of developing a prototype early in the software process

are:

� Prototypes serve as a basis for writing the speci�cation for a production qual-

ity system.
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� Prototypes are used for experimental purposes and for gaining practical ex-

perience.

� Prototypes are used to clarify any relevant speci�cation or development prob-

lems.

� Prototypes serve as a basis for discussion and as aids to decision making.

� Prototypes help in identifying errors and omissions in requirements.

� A working, albeit limited, system is available quickly to demonstrate the fea-

sibility and usefulness of the application.

Experiments [81] have shown that prototyping reduces the number of problems

with the requirement speci�cation and the overall development cost.

Prototyping languages (also referred to asmodelling languages, executable speci�-

cation languages, or problem-oriented implementation languages) are programming

languages appropriate for constructing executable prototypes of development-inten-

sive software. The most important property of a prototyping language is its ability

to explore the problem and solution space at low cost during early software develop-

ment stages. This is usually intepreted as the ability to express the essential content

of an algorithm while leaving out unnecessary details. This in turn requires that

prototyping languages possess powerful data processing capabilities, which simplify

program development by alleviating many of the problems related to storage allo-

cation and management. Such language systems often include many facilities which

would normally be built from more primitive constructs in other languages.

In order for prototyping to be reasonable, the cost of experimentation has to be

low. This cost depends on two factors: the cost of implementing an initial version
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of a software system and the cost of evolving it. Thus the time to write the code

for an experiment must be short enough that the code can be discarded if the idea

fails to produce the desired result.

The costs of experimentation depend on the suitability of the applied program-

ming language and programming environment for fast implementation, modi�ca-

tion, and reuse of code. The programming languages for prototyping should be

expressive enough to o�er a vast amount of functionality in little code, and support

modi�ability and extensibility.

1.1 Prototyping a high-level programming language

In the 1950s, it was widely believed that eÆcient programs could be crafted only by

hand, using low-level languages. By a low-level language we mean either a machine

language, or an assembly language, which is just is a mnemonic variant of a machine

language in which names take the place of the actual codes for machine operations,

values, and storage locations. Unfortunately, programs in machine language or

assembly language are unintelligible. In early 1960s, John Backus of IBM advocated

his \Speedcoding" idea after he observed that it is more expensive to design and

debug a program than to run it. Henceforth we reserve the term \programming

languages" for high-level languages, where high-level connotes greater distance from

machines. High-level languages allow programs to be speci�ed more in terms of

algorithmic concepts without exposing excessive implementation details. The high

cost of manually creating machine or assembly code was a prime motivation for the

development of high-level programming languages.

Any notation other than machine language cannot be run directly on a machine;
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it must be translated into a form the machine can understand. A translator from a

programming language into machine or assembly code is called a compiler [4, 35, 78].

Hereafter we use the term translator to refer to the programs that translate code

written in a high-level language into another high-level language.

The executable version of a program written in language LS can be obtained

either (1) by writing a LS compiler from scratch, or (2) by writing a language trans-

lator from source language LS to target language LT , where a production quality

compiler is already available for LT . Executing the target program on a computer

captures the semantics of the source program. It is more cost-e�ective to develop

a translator than a compiler: for the same reasons that it is easier for one to write

programs in a higher-level language than in assembly, it is easier to write a program

which outputs programs in a higher-level language than in assembly. The major

advantages of the translator approach are its shorter development cycle and less-

ened maintenance burden. If the translator itself also serves as a formal semantic

description of the source language, this approach conforms to a desirable method-

ology of language design: express the design as a formal speci�cation, and use this

to test and re�ne the design, before freezing the design or becoming committed to

constructing a compiler.

For many applications, researchers and practitioners in recent years have devel-

oped di�erent domain speci�c languages, or DSLs, which are tailored to particular

application domains. With an appropriate DSL, you can develop complete applica-

tion programs for a domain more quickly and more e�ectively than with a general

purpose language. Ideally, a well-designed DSL captures precisely the semantics of

an application domain, no more and no less.
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A partial list of domains for which DSLs have been created includes lexing,

parsing distributed computing, scheduling, parallel computing, logic, modeling,

simulation, graphical user interfaces (GUI builder), symbolic computing, cad, cam,

robotics, hardware description, silicon layout, pattern matching, graphics, anima-

tion, computer music, databases, and security. By the nature of DSLs there will

be many of these and development ease is important. Our approach, which really

attacks a more diÆcult problem (GriÆn being a broad-spectrum language) than

most DDLs will present, can be useful in those cases also.

1.2 Motivation

The development of a prototyping language should also follow the usual software-

engineering methodology: starting with an evolvable prototype which is an easily

modi�able and extensible working model of the proposed language. This miniature

prototype should provide a formal description of the semantics of the language's

syntactic constructs. The process of precisely de�ning the meaning of the syntactic

constructs of a programming language can reveal all kinds of subtleties of which it

is important to be aware.

Rather than committing to the development of a compiler at the outset, a trans-

lator from the prototyping language being designed to another high-level language

is a viable alternative. From a software-engineering point of view, the advantages of

the translator approach are its shorter development cycle and lessened maintenance

burden. A translator is a fast and inexpensive testbed of the language design, and

can take advantages of existing tools for the target language. Since the target code

of the translator will be eventually processed by an existing compiler, we automat-
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ically bene�t from various compiler optimizations implemented in the compiler for

the target language.

Like the construction of a compiler, the structure of a translator requires care-

ful design as well. Program translation is related to exploring the semantic struc-

ture of the source program to produce a target program with matching semantics.

There are many commercial or free program translators (or \converters" as they

are sometimes called) available; among them, Fortran to C [51, 31] and Pascal to

C translators have been widely used. For source-to-source program translation, it

is often the case that source programs are written in a higher-level language which

is more expressive than the target language, where translation is done mainly for

eÆciency purposes. However, the translations [56, 31] are usually carried out in a

brute-force way by writing an ad hoc program to achieve the translation task, as

a consequence of which we have to face the usual software-engineering problems

such as readability and maintenance of the unwieldy translation program. Alterna-

tively we can base the translation process on a formal semantics framework. The

semantic metalanguage used in the description can be viewed as the operational

understanding of the source language, whereas the formal semantics notation can

serve as an intermediate language for an translator, interpreter, or compiler. As

compiler optimization techniques improve, so does the eÆciency of the programs

written in the target language. Therefore, we consider the translator approach

pragmatically promising.
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1.3 Contribution

In prototyping language design, there are often innovative cutting-edge features

which may not be well-understood. As a consequence, it is inevitable that numerous

experimentations and revisions will be made to the current design. For speedy

development, it is crucial to have a translator for the prototyping language which is

easily modi�able. Unfortunately, it is diÆcult to structure the translation process

plausibly; in most cases language translators appear amorphous and hard to follow,

forcing us to face the usual software-engineering concerns such as readability and

maintenance of the unwieldy translation program.

In this dissertation we present a formal-semantics-based model for high-level

source-to-source language translation, which illustrates the applicability of formal

semantics as a tool in computer science. More speci�cally, this model not only

provides a formal semantics de�nition for the source language and sets guidelines for

implementations as well as migration, but also facilitates mathematical reasoning

and a correctness proof of the entire translation process.

We claim our approach to developing language translators is superior to conven-

tional methods. Our primary considerations in the design of the language translator

are, in decreasing order of importance: rapid development of a language transla-

tor for fast prototyping (exploratory programming), making provision of formal

semantic description for the source language, a more abstract and more readable

translator that readily accommodates changes to allow the translator to evolve

with the language. The formal semantics based two-level model for structuring

language translators is suitable for reasoning about the semantics of the source

language from the high-level semantic speci�cation, and at the same time produces
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reasonably eÆcient target code according to the low-level speci�cation.

This model employs the framework of action semantics to decouple the analysis

of the source program and the generation of the target program. Action semantics

is a practical framework for modular semantics of programming languages. It is

a member of the functional semantics family characterized by the use of composi-

tional valuation functions. Such decoupling eases the retargeting of the translation

to other languages. The type inference/checking scheme for the source language is

completely parameterizable with respect to the source language. Our implementa-

tion demonstrates that the model is essentially a collection of reusable components

which allows other language translators to be built upon it, thereby increasing the

productivity of translation program writers.

Most programmers understand programming languages in terms of basic con-

cepts such as control ow, binding, store update and parameter passing. Unfor-

tunately, formal speci�cations often obscure these notions to the point that the

reader must invest considerable e�ort to determine, for example, how parameters

are actually passed, or whether a language follows static or dynamic scoping. It

is frustrating that some of the most fundamental concepts of the programming

language are the hardest to understand in a formal de�nition. The original moti-

vation for the development of action semantics was dissatisfaction with pragmatic

aspects of denotational semantics [64]. The primary aim of action semantics is to

allow formal, yet more accessible semantic descriptions of realistic programming

languages by using concepts familiar to most programmers. This is exactly what

some semanticists have been advocating over the years: making computer science

concepts explicit in the formal description.
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Unlike some �-calculus based translation programs that are diÆcult to under-

stand, both our action-semantics-based semantic description and the translation

program are highly intelligible. Our approach also lessens the burden for future

maintenance as compared to an approach yielding an unwieldy translator. The

semantic description of the source language is directly executable so it can be used

to automatically obtain a static semantics analyzer (in analogy to the language's

syntax, context-free grammars have similar features).

We also detail the translation of certain non-trivial high-level features of pro-

totyping languages and declarative languages into eÆcient procedural constructs

in imperative languages like Ada95, while using the abstraction mechanism of the

target languages to maximize the readability of the target programs. In particular,

we translate GriÆn existential types into Ada95 using its object-oriented features,

based on coercion calculus [60, 41, 40]. This translation is actually more general,

in that one can add existential types to a language (with a modicum of extra

syntax) supporting the object-oriented paradigm without augmenting its type sys-

tem, through intra-language transformation. We also present a type-preserving

translation of closures which allows us to drop the whole-program-transformation

requirement.

In the interest of readability, we would like to keep the generated code for

operator expressions as parenthesis-free as possible. A straightforward algorithm

is presented to minimize the the number of generated parentheses as long as the

semantics is preserved.

Lastly, a monadic-style multi-level pretty-printer is implemented to generate

nicely formatted textual representations of Ada programs from Ada abstract syntax
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trees.

1.4 Overview of the dissertation

In Chapter 2 we review various language translation techniques, and provide a

brief survey of several formal semantics frameworks and the evolution of action

semantics. Chapter 3 depicts a semantics-based language translator and the ad-

vantages of such an approach. The translator G2A that we experiment with in

this model is described in Chapter 4. Chapter 5 gives a brief introduction to the

source language GriÆn, and explains how the static analysis is performed according

to the macrosemantics speci�cation. In Chapter 6 we present a quick overview of

the target language Ada95. Chapter 7 details the generation of the target code

with respect to the macrosemantics speci�cation and translations of certain fea-

tures in GriÆn that do not have a straightforward translation into Ada95. Finally,

in Chapter 8 we discuss some of the overall design choices and conclude with di-

rections for future work. The Appendix contains the GriÆn grammar speci�cation

and macrosemantic equations written in TML for GriÆn generators.
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Chapter 2

Background

Software prototyping reduce the risks of incomplete and erroneous requirements

de�nitions. Prototyping methods base on the idea that many misunderstanding

between developers and clients as well as many errors can be eliminated during

the requirements de�nition process if working software prototypes of the planned

applications are built and examined.

The history of software prototyping can be viewed as the constant quest for

better control of costs, quality, and development time. The prototyping activities

follow up and document trial applications of the proposed technologies, demonstrate

the scope, applicability, bene�ts and costs of the proposed solution, and investigate

possible synergies among them. Software prototyping is a speci�c strategy for

improving requirements de�nitions wherein user needs are extracted, presented and

successively re�ned by building a working model of the ultimate system quickly

and in context. Prototyping languages are programming languages appropriate

for constructing executable prototypes of development-intensive software. In most

cases, prototyping languages are used today to implement prototypes. The simple
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reason for this is that, if the prototype requires modi�cation, a prototyping language

will help to carry out the modi�cation eÆciently. It is quite straightforward to

think of a prototyping language as an implementation language for the anticipated

product. But there is a second possibility: that of using a prototyping language to

describe the design process itself.

A number of approaches to language translation are especially notable and re-

viewed in more detail here. Section 2.4 describes various formal semantic frame-

works.

2.1 Software prototyping and prototyping languages

Software prototypes are designed to clarify certain aspects of the system for both

computer experts and end-users. For this purpose, the two groups construct a

program, analyze it, evaluate it in operation, and modify it. Prototyping languages

are designed to facilitate this trial-and-error process.

A software prototype is an easily modi�able and extensible working model of

a proposed system, not necessarily representative of the complete system, which

provides users of the application with an operational representation of key parts

of the system before implementation. In other words, it is an easily built, readily

modi�able, ultimately extensible, partially speci�ed, working model of the primary

aspects of a proposed system.

Software prototyping is an approach based on an evolutionary view of software

development and having an impact on the development process as a whole. Software

prototyping involves producing early working versions (prototypes) of the future

application system and experimenting with them. It provides a communication
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basis for discussion among all the groups involved in the development process,

especially between the end-users and developers. Software prototyping also enables

developers to adopt an approach to software construction based on experiment and

experience.

Prototyping in the software development process may involve \throw-away" pro-

totyping in which a prototype is developed to understand the system requirements,

or evolutionary prototyping in which a prototype evolves through a number of ver-

sions into the �nal system. Prototyping techniques include the use of executable

speci�cation languages or very-high-level languages, and prototype construction

from reusable components. Rapid development is important for prototype systems.

To deliver a prototype quickly, you may have to leave out some system functionality

or relax non-functional constraints such as response time and reliability.

A class of programming languages which have been proposed as prototyping

languages are so-called multi-paradigm or wide-spectrum programming languages.

A wide-spectrum language is a programming language which incorporates a number

of paradigms. As an alternative to using a wide-spectrum language, one can use a

mixed-language approach to prototype development. Di�erent components of the

system may be programmed in di�erent languages and a communication framework

established among the components. The advantage of a mixed-language approach

is that the most appropriate language can be chosen for each logical part of the

application, thus speeding up prototype development. The disadvantage is that it

may be diÆcult to establish a communication framework which will allow multiple

languages to communicate. The entities used in the di�erent languages may be

very diverse. Consequently, lengthy code sections may be needed to transport an
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entity from one language to another.

It is important that the code written in a programming language have a high

semantic density, which means that little code has to be written to implement an

algorithm. An example of a programming language with high semantic density

is APL. APL makes it possible to formulate complex algorithms in a few lines

{ unfortunately such programs are often not comprehensible to anybody but the

implementor. Because of its semantic density APL is excellently suited for pro-

totyping of short algorithms, but less appropriate for exploratory programming of

large software systems.

Programs written in a prototyping language should be compact. By this, we

mean, for example, that the formulation of a graph theory problem should not

be much longer than the mathematical formulation itself. One example of an ap-

propriate language in this case would be the mathematically oriented prototyping

language SETL [77].

Prototyping languages are of interest for the purposes of both speci�cation and

implementation. Both aspects highlight the bene�ts prototyping languages o�er

for prototype construction.

2.2 Source-to-source language translation

There are many reasons for being interested in a high-level translation, instead of

direct compilation to machine code. The usefulness of program translation stems

from practical considerations such as reducing development time and increasing

software reliability. Additionally, if the translator itself also serves as a formal

description of the source language under design, then the development process as a
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whole supports a methodology of language design that we advocate: use a formal

description to test and re�ne the design, before committing to the construction of

a substantially more complicated compiler.

As compiler technology for the target language improves, programs translated

into this target language bene�t automatically. For example, C is a commonly

chosen target language. Since a great deal of e�ort has been made to optimize C

compilers, execution of the translated source inherits these improvements as well.

Modern prototyping languages permit rapid software development at the ex-

pense of execution-time performance. If LH is a prototyping language, a LH to

LL translator where LL is a production language achieves fast prototyping from

LH to LL. For example, in the GriÆn project developed at NYU, GriÆn is the

prototyping language and Ada95 the production language. G2A is the translator

that transforms the initial prototype expressed in GriÆn into production quality

code in Ada95.

Apart from the major advantages like reducing the development cycle and pro-

viding solid formal semantic basis (if based on a formal semantics model) mentioned

before, there are many other real world applications of program translation. Let

LS and LT denote the source language and target language respectively. As an

example, program translation is often used to promote language interoperability

(especially in a transition or development stage of the source language). One can

portably mix LS and LT programs (source-level integration) and make an existing

base of well-tested LS code available to LT programmers. Translating code from

one language to another is also a way of preserving the investment made in the

ported part of the system. For instance, there is a large body of well tested Fortran
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code for carrying out a wide variety of useful calculations and it is appealing to

exploit some of this Fortran code in a C environment.

Some existing compilers have the ability to call external functions written in

another language (usually C). Unfortunately, due to di�erences in memory models

and type systems make the so-called foreign function interfaces approach awkward

to use, limited in functionality, and even type-unsafe. Worst yet, it is infeasible in

some situations because of the ineÆciency resulting from inter-language on-the-y

data conversion and control transfer. However, a language translator serves the

same purposes well without su�ering the drawbacks mentioned above.

The language translator approach is also superior in the case when it is useful

to run a well-tested LS program in an environment that only has an LT compiler

but not an LS compiler; or when there exist many useful tools for LT but not LS,

source-level integration of LS with LT makes those tools available to LS code.

Program transformations are concerned with semantics{based analysis and ma-

nipulation of programs for improving their eÆciency. Certain programming lan-

guages are more amenable to certain kinds of transformations. For example, partial

evaluation [50] (or program specialization), a widely advocated program optimiza-

tion technique, is more e�ective on functional programming languages. Partial eval-

uation provides a unifying paradigm for a broad spectrum of activities in program

optimization, interpretation, compiling and other forms of program generation, and

even generation of automatic program generators. Although partial evaluation has

been the subject of rapidly increasing activity over the past few years, it is still

not mature enough to be directly applicable to imperative programming languages.

However, if we have a translator from an imperative language to a functional lan-
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guage for which there exists a partial evaluator, then the eÆciency of programs

in the imperative language can be improved by partially evaluating the translated

version of these programs.

Due to the expressiveness di�erence between LS and LT , some languages are

simply more appropriate for certain purposes. For instance, it is impossible or

harder to express in Fortran77 than in C such features as storage management,

character operations, array of functions, heterogeneous data structures and calls

that depend on the operating system.

From time to time, programmers may need some features in LT but still be able

to use existing code in LS; or some programmers simply prefer one language to

another and they write components in the source language that can be integrated

into larger target language based systems.

Another important use of program translation may be to make successively

high-level speci�cation languages computationally transparent. A language is com-

putationally transparent if it is amenable to algorithm analysis [19]. If the source

language LS is not computationally transparent (or worse yet, LS could be a very

high-level speci�cation which is not directly executable), one way to analyze the

time complexity of programs in LS is to write a translator from LS to LT where

LT is a computationally transparent language. Assume there is a hierarchy of lan-

guages L1, L2, : : : , Ln, where Li is higher-level than Li�1 and L1 is computationally

transparent. If there also exist language translators from Li to Li�1 for 2 � i � n,

all languages in this hierarchy become computationally transparent.
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2.3 Approaches to language translation

Translating one programming language to another, rather than compiling to speci�c

machine's instruction set, is a very old idea. There are many real world applica-

tions of language translation we already mentioned in Section 2.2. The translation

approach has yet a few more advantages over writing a compiler. First, by emitting

code written in an intermediate language rather than machine code, a translator is

extremely portable. Second, the intermediate language provides a common meeting

point for all languages and thus facilitates the construction of program written in

multiple languages. Finally, the compiler of the intermediate language can simplify

the individual language compiler by providing language-independent optimization.

Various approaches related to language translation will be discussed in the fol-

lowing sections.

2.3.1 Technical prerequisites

If we de�ne:

LS = source language

LT = target language

LI = implementation language of the translator

PS = source program written in LS

PT = target program written in LT

� = translation program written in LI
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I = input domain

d1; : : : ; dn 2 I

O = output domain

output 2 O

then the translation process in general can be described as follows:

output = [[PS ]]LS [d1; : : : ; dn]

= [[�]]LI [PS] [d1; : : : ; dn]

= [[PT ]]LT [d1; : : : ; dn]

where the emphatic syntax brackets, [[ ]], delimit the syntactic entities and [[P]]L

gives the denotation (or meaning) of program P in language L.

Fritz Henglein mentioned that high-level translation between statically and dy-

namically typed languages is a notoriously tricky business, even for semantically

and syntactically | seemingly | \compatible" language families such as Scheme

and ML [40]. One goal of our translation process is to preserve the appearance of

the source program in the target program in addition to preserving the semantic

features of the original program whenever possible. This facilitates migration of

programs from LS to LT . However, due to the \semantic gap" [13] between the

source and target languages this goal is not always feasible in practice. For example,

� If the source language is imperative and target language is pure applicative,

then every program point in the target code must contain extra information

about the \current con�guration".
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� If the source program uses continuation for control ow but the target lan-

guage does not support it, then every program point in the target code must

contain extra information about the \current continuation".

� If the exception mechanism is present in the source language but not in the

target language, then every program point in the target code must contain

extra information about the \current exception handler".

� There are some forms of static constraint in the source language which have

no natural counterparts in the target language. For example, the class con-

straints imposed on GriÆn functions will be translated into arity-raised Ada95

functions.

All the examples show that the source language is "more expressive" than the

target language (or at least the target language's expressiveness does not cover

that of the source language) as de�ned by Felleisen in [32]. In each case, non-local

translation of the program is required.

It is almost inevitable that we will run into situations like these mentioned above

in the translation process, and we may sometimes have to settle for target code that

is not very similar to the source code but has the same dynamic computational

e�ects.

Just as no one ever attempts to prove the correctness of a real compiler such

as gcc, we only informally claim the partial correctness of G2A. That is, either

[[PS ]]LS [d1; : : : ; dn] and [[PT ]]LT [d1; : : : ; dn] both evaluate to the same value, or

neither evaluation is de�ned:

8 d1; : : : ; dn 2 I
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( [[PS]]LS [d1; : : : ; dn] # ) & ( [[PT ]]LT [d1; : : : ; dn] # ) )

[[PS ]]LS [d1; : : : ; dn] = [[PT ]]LT [d1; : : : ; dn]

Ideally what we would like to have is if the source program terminates, so does the

target program and the outputs from them are identical:

8 d1; : : : ; dn 2 I

[[PS]]LS [d1; : : : ; dn] # )

( [[PT ]]LT [d1; : : : ; dn] # ) & ( [[PS]]LS [d1; : : : ; dn] = [[PT ]]LT [d1; : : : ; dn] )

where P(i) # means that P(i) is de�ned (i.e., the computation terminates).

The notation [[ ]] is overloaded here. [[PS ]]LS denotes the semantics of the pro-

gram PS written in language LS. Henceforth, we will also use [[S]]
cat

to denote

the meaning of the syntactic construct S which belongs to the syntactic category

cat. For instance, [[E ]]
exp

and [[D ]]
decl

are denotations of the syntactic expression E

and declaration D , respectively. The meaning that we have in mind can always be

determined from the context.

2.3.2 Ad hoc hand-written language translators

There are several general approaches that a language translator writer can adopt

to implement a translator. The oldest is by writing an ad hoc translation program

to carry out the translation task in a brute force way; consequences of this are the

usual software-engineering problems such as readability and maintenance of the

unwieldy translation program.

A common practice in writing translators is to rely on boot-strapping and step-

wise re�nement. One form of bootstrapping builds up a translator for larger and
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larger subsets of the source language. Recall LS and LT denote the source and

target language respectively. As a �rst step we might write a small translator that

translate a subset LS1 of LS into the target code; that is, a translator �S1
T . We then

use the subset LS1 to further derive an executable translator �S

T
for LS.

In a real sense, a translator is just a program. The environment in which this

program is developed can a�ect how quickly and reliably the translator is imple-

mented. The language in which the translator is implemented is equally important.

Using the bootstrapping technique, running the translator helps debug the trans-

lator at each stage.

Unfortunately bootstrapping is not good enough since it does not explicitly give

the formal semantics of all language constructs. Worse yet, it also introduces the

meta-circularity problem in the source language de�nition.

Ease of maintenance and readability depend on the provided structure and doc-

umentation of the translator. Language translators should be engineered like other

software products rather than be developed in an ad hoc manner in which a sys-

tematic software development process is lacking.

2.3.3 �-calculus based hand-written language translators

Some researchers base the language translation tasks on �-calculus [12, 23, 72, 76,

83, 86, 88]. Usually they express control ow with continuations, or continuation-

passing style [5], or variations of them. Their translations usually take a few steps,

with each step serving a di�erent purpose. However, it clearly is unreasonable

to expect the readers of the semantic description of any programming language

to be expert in the idiosyncrasies of standard denotational semantics description
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techniques. Even if the readers are familiar with continuations in denotational

semantics, it is inevitable that over-speci�cation occurs in parallel syntatic con-

structs due to the fact that �-calculus is inherently sequential [8]. Furthermore,

formal speci�cations in �-calculus are diÆcult to create accurately, to modify, and

to extend.

2.3.4 Program Transformation and Partial Evaluation

Programmers and algorithm designers have been using the idea of prototyping all

the time. The discovery of an eÆcient algorithm often starts with a concise math-

ematical speci�cation or conceptual understanding of the problem|a high-level

prototype|which, through rounds of re�nements, �nally evolves into an eÆcient

program. Such re�nements are based on observations of the prototype: by exploit-

ing such observations, applying certain schemas, programs are tuned to be more

eÆcient. Over the years, repeated observations and common schemas are abstracted

to become semantic-preserving transformation rules which apply to large class of

situations. Program transformation techniques, concerned with semantics{based

analysis and manipulation of programs for improving their eÆciency, are developed

to automate the program derivation process by mechanically applying such rules.

Burstall and Darlington established the area of transformational programming

[24]. They studied the basic transformation in a functional setting: for example,

the unfolding transformation replaces a call-site by the instantiated body expres-

sion of the callee, and its inverse folding transformation generalizes expressions to

get function de�nitions. Robert Paige [71] proposed the �nite di�erence transfor-

mation based on the observation that the programmers manually reduce the cost
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of computing an expression in a loop by maintaining its value using a variable, and

update it incrementally. The �nite di�erence technique has been used to justify and

discover several very eÆcient algorithms. The fusion technique (or \deforestation")

by Wadler eliminates intermediate data structures by combining the generation

process and the consuming process of the data structure. Recently Zhenjiang Hu

[42] developed an inverse transformation called di�usion operation that, by intro-

ducing more intermediate data structures, breaking programs into small functions

that can be easily turned into parallel programs.

Partial evaluation [50] (or program specialization, mixed computation) is a gen-

eral and probably the most automated program transformation technique. Partial

evaluation provides a unifying paradigm for a broad spectrum of activities in pro-

gram optimization, interpretation, compiling and other forms of program genera-

tion, and even generation of automatic program generators. The idea of partial

evaluation is based on the observation that, often, some parameters (called static

inputs) to a program change less frequently than the others (called dynamic in-

puts); when the static inputs are known, one can �rst carry out computations that

only depend on them and generate a specialized (and hopefully simpli�ed) residual

program, which, taking the dynamic inputs, generates the �nal result. The residual

program often runs much faster than the general program, and the cost of per-

forming the partial evaluation is quickly amortized over several runs of the residual

program. In fact, this pattern of specializing general-purpose program is not unfa-

miliar to many programmers. Most programmers are constantly deciding whether

to write a general but less eÆcient program, or several special-case programs that

runs eÆciently; experienced programmers often end up writing template programs
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that they will instantiate to special cases manually. Partial evaluation accelerates

this process and makes it less error-prone.

Partial evaluation are often used to automatically and correctly generate lan-

guage translators from de�nitional interpreters. A de�nitional interpreter directly

gives an operational semantics for the interpreted language. It is often much eas-

ier to write an interpreter than to write the corresponding compiler (or language

translator in general). One reason is that an interpreter implementor thinks only

of the execution time, whereas a compiler implementor must distinguish compile-

time from run-time in order to generate code to achieve a desired e�ect at run-time:

compile-time computation should be performed, while run-time computation should

be captured by the generated code. A partial evaluator can �gure out the binding-

time of each computation based on which inputs are available, thereby automati-

cally splitting the single execution time of an interpreter into the compile-time and

the run-time of a compiler. The idea was initially summarized by Futamura in his

three projections [36]:

1. Specializing the interpreter with a particular program gives a compiled pro-

gram.

2. Specializing the partial evaluator with an interpreter gives a corresponding

compiler.

3. Specializing the partial evaluator with the partial evaluator gives a compiler

generator, i.e., a transformer that turns interpreter to compiler.

These so-called Futamura projections are discovered in early 70s, but there had

been little progress of the second Futamura projection until 1985, when Neil Jones
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et al. [49] used a separate binding-time analysis to achieve self-application. Since

then, the area of partial evaluation ourished with new advances in the fundamental

theory, in the techniques, and in applications.

A feasible alternative to produce a language translator is to perform partial eval-

uation on an interpreter from the source language to the target language. However,

apart from the promising developments in recent years, partial evaluation is still

inadequate to be used to structure large language translation task:

� It is hard for a user to control the specialization process, especially when one

does not have enough knowledge about how the partial evaluator works.

� Lots of limits in the source program will be inherited in the residual code,

preventing the interpretative overhead of the original program from being

completely removed.

There has been a sizeable amount of work devoted to address these problems.

Progress has been made, and it seems that partial evaluation is coming close to be

a pratical component of a language translator.

2.4 Formal semantics

Although most programmers rely on informal speci�cations of programming lan-

guages, these de�nitions are often vague, incomplete, and even erroneous. English

just does not lend itself to precise and unambiguous de�nitions; it is ill-suited for

use by an implementor, or by someone who wants to formulate laws for equivalence

of programs, or by a programmer who wants to design programs with mathematical

rigour.
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The importance of applying formal semantics to programming language devel-

opment is widely recognized. It serves as a basis for understanding and reasoning

about how programs behave. Not only is a mathematical model useful for various

kinds of analysis and veri�cation, but also, at a more fundamental level, because

simply the activity of trying to de�ne the meaning of program constructions pre-

cisely can reveal all kinds of subtleties of which it is important to be aware. By

using appropriate formal semantics techniques, the de�nition of a programming

language or meaning of a program fragment is more accessible and succinct.

Formal semantics is important to programming languages in many ways:

� The experience of writing a formal description should assist the language de-

signer to uncover inconsistencies and ambiguities in the design process. Only

after this design-speci�cation-testing sequence iteration has converged should

the major e�ort of constructing a compiler be initiated.

� In practice, language design and implementation are often interleaved and

iterated. A comprehensive description of the language is needed to convey

the intentions of the language designers to the implementors.

� It is also needed for setting a de�nitive standard for implementations, so that

programs can be transported between di�erent implementations that conform

to the standard, without modi�cation. In short, it aids in the portability

issue.

� Programmers need a description of any new language in order to relate it

to previously known ones, and to understand it in terms of already familiar

concepts.
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� The programmer also needs a description as a basis for reasoning about the

correctness of particular programs in relation to their speci�cation, and for

justifying program translations.

� Theoreticians can obtain new insight into the general nature of programming

languages by developing descriptions of them.

2.4.1 Classical approaches

Historically the semantics of programming languages is often viewed as consisting

of three approaches:

Denotational semantics is a technique for de�ning the meaning of programming

languages pioneered by Christopher Strachey and furnished with a mathemati-

cal foundation by Dana Scott. It was called \mathematical semantics" at one

time because it used the more abstract mathematical concepts of complete

partial orders, continuous functions and least �xed points.

Denotational semantics is an attractive formalism for describing the seman-

tics of programming languages. It is less abstract than axiomatic semantics,

but on the other hand it is free of the excessive implementation details of

operational semantics, allowing the reader to concentrate on understanding

the abstract meaning of the constructs of the described language rather than

their implementation.

Operational semantics describes the meaning of a programming language by

specifying how it executes on an abstract machine. The method advocated

by Gordon Plotkin in his lectures [74] at Aarhus University on \structural
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operational semantics" (also called natural semantics), in which evaluation

and execution relations are speci�ed by rules in a way directed by the syntax

is probably the most prevalent one nowadays.

Axiomatic semantics , the foundations of which depend on predicate logic (Hoare

Logic in particular) tries to �x the meaning of a programming construct by

giving proof rules for it within a program logic. In an axiomatic semantics

model, axioms and deduction rules from mathematical logic are speci�ed for

each construct in a language. These allow assertions to be made about what

is true after the execution of a language construct relative to what was true

before (provided that the execution terminates). The nature of the assertions

depends on the kinds of properties described by the axioms and rules.

Its main advantage is that the assertions it involves can be expressed in the

programming language itself (sometimes with a modicum of extra apparatus,

such as quanti�ers), and there is a minimum of new notation. This is signi�-

cant, as it is to be hoped that the proof of a program's correctness will become

the responsibility of the programmers, and it is unreasonable to expect them

to do the programming and the proving in two di�erent languages.

However, each approach has its drawbacks and some of them prevent the use of

it in automatic compiler construction or language translation in particular.

Denotational semantic descriptions expressed in �-notation leave a lot to be

desired from a software engineering point of view. The fundamental concepts in

terms of which we understand, use and design programming languages are not

expressed directly in the semantic equations; instead the concepts are encoded
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in terms of function abstraction and application. For example, the fundamental

concepts of binding, look-up, storing, retrieving, sequencing and argument passing

are all encoded (ultimately) in terms of function application! Not surprisingly, such

semantic descriptions are tedious to write, error-prone and diÆcult to read [52].

Denotational descriptions can be diÆcult to modify to accommodate certain new

language features. For example, if we add a unconditional jump (goto) command

to a language whose semantic description is in \direct" style, it would not simply

be a matter of adding one semantic equation: the entire set of semantic equations

would have to be converted from the direct style to the \continuation" style, since

the former cannot easily accommodate jumps.

Another problem with �-notation is that parallel activities cannot be satisfac-

torily described with this approach [8], i.e., the �-calculus can not directly express

parallelism (of course, because �-calculus has been shown to be equivalent to Turing

machines, one can indirectly express parallelism with a function which simulates

the execution of a program in a lock-step way to achieve dove-tailing in a universal

Turing machine).

Nevertheless, it is possible to derive an implementation automatically from a

denotational semantic description. At least two prototype compiler writing sys-

tems based on denotational semantic description have been constructed [72, 52].

Automatic construction of code generator from a denotational semantic descrip-

tion is also the subject of much current research. Eventually it might be possible

to construct production-quality code generators from a suitably restricted class of

denotational semantics descriptions.
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In an operational semantics, a language is de�ned by an interpreter. Often,

the interpreter takes the form of an abstract machine, in which case the language

semantics is speci�ed as an algorithm for translating source program into abstract

machine code. The execution of this code on the abstract machine traces out a

sequence of states, and this sequence is taken to be the meaning of the program.

We still have the problem of rigorously de�ning the abstract machine; that is, of

giving a formal semantics for the abstract machine code. In a sense we have merely

pushed the problem of semantic speci�cation one level back.

Presumably the machine is so simple that there is no chance of misunderstanding

its semantics. However, no standard formal basis exists for these methods { every

new description might de�ne a new machine or language on which to base the

semantics. This makes it extremely diÆcult to compare programs since we cannot

possibly run the abstract machines on all possible inputs exhaustively. Even worse,

the meaning of a program is given only indirectly, by executing complete programs

on an abstract machine or interpreter. The meaning of a fragment of a program,

or of a particular syntactic construct in the language, is thus diÆcult to obtain.

Axiomatic frameworks are prone to incompleteness and inconsistency. The use-

fulness of axiomatic semantics is unfortunately severely limited by its inability to

cope easily with common language features such as side e�ects and scoping. A more

fundamental problem with this approach, at least as far as compiler or translatior

generation is concerned, is that an axiomatic speci�cation restricts one to reasoning

about particular properties of programs { there is no stipulation that these proper-

ties correspond to program meaning [52]. It addresses only partial correctness with

the assertions but is by no means a complete language speci�cation. Hence, the
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prospects for generating compilers or translators from axiomatic descriptions seem

quite remote.

2.4.2 Algebraic semantics

In addition to the three formalisms, algebraic semantics [6, 27, 79, 55, 63] whose

foundations are based on abstract algebra has received a good deal of attention.

Algebraic semantics is a precursor of action semantics described in the next section.

It involves the algebraic speci�cation of data and language constructs. The basic

idea is to name the di�erent sorts of objects and the operations on the objects and to

use algebraic axioms to describe their characteristic properties. Conceptually it is

based on notions and ideas of classical and universal algebra in pure mathematics,

and on concepts of abstract data types and software speci�cation in computer

science. The types in a programming language serve to classify the data processed

by programs are called sorts in algebraic semantics. An algebraic speci�cation

de�ning one or more sorts contains two parts: the signature and the equations (or

axioms). A signature � of an algebraic speci�cation is a pair [Sorts, Operations]

where Sorts is a set containing names of sorts and Operations is a family of function

symbols indexed by the functionalities of the operations represented by the function

symbols. The development of algebraic semantics is to consider classes of algebras

satisfying some properties, such as the associativity of the statement sequencing

operation.

Peter D. Mosses observed that denotational descriptions are, in some sense,

\too concrete", due to the intertwining of model details with the actual semantics

of the language [64]. He proposes a new algebraic approach to semantics in which
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program meanings are given in terms of abstract semantic algebra (ASA's) [63]. The

operators in an ASA belong to an algebraic sort of actions, which may produce and

consume values, have side e�ects and so on. More importantly, the operators are

chosen so as to directly reect the fundamental concepts embodied by programming

languages.

2.4.3 Action semantics

With a broad spectrum of de�nitional techniques available, action semantics is a

formal method whose presentation is \gentle", providing just enough in the way

of mathematical underpinnings to produce an understanding of programming lan-

guages. Action semantics is a form of denotational semantics that uses abstract

semantic algebra (instead of Scott domains and �-notation) to describe the values

and denotations of programming languages. Mosses and Watt extended the idea

of ASA's by developing a highly descriptive notation for expressing semantics of

programming languages [65]. Their new method, action semantics, has been used

to describe the semantics of Pascal [66] and ML [92, 58]. Their work is motivated

by the observation that, despite the numerous advantages for relying on formal

speci�cations of programming languages, readers generally avoid them when learn-

ing or implementing a programming language mainly because the formal notations

are dense and cryptic. Most programmers understand programming languages in

terms of basic concepts such as control ow, binding, storage update and parameter

passing, but formal speci�cations often obscure these notions to the point that the

reader must invest considerable time to determine, for example, how parameters

are really passed or whether a language follows static or dynamic scoping. It is dis-
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couraging that some of the most fundamental concepts of a programming language

are the hardest to understand in a formal de�nition. The primary aim of action se-

mantics is to allow useful semantic descriptions of realistic programming languages

by using the familiar concepts in them; this is exactly what some semanticists have

been advocating over the years: making computer science concepts explicit in the

formal description.

Mosses [64, 79, 65, 66] suggested an attractive approach that seems to overcome

most of the problems. The goal of his e�orts has been to produce formal semantic

speci�cations that are easy to read and understand, and directly reect the ordinary

computational concepts of programming languages. His idea is to identify a set

of primitive and composite actions that correspond to fundamental concepts of

computation in common programming languages. Examples of primitive actions

are binding and �nding values in the environment, storing and retrieving values.

Examples of composite actions are composition, selection, iteration and abstraction

of simpler actions. A given set of primitive actions, together with the operators that

combine them into composite actions, is called by Mosses a semantic algebra. The

actions have been chosen carefully both for their close correspondence to familiar

semantic concepts and for their nice algebraic properties. The denotation of each

syntactic phrase is an action, whose outcome describes what happens when the

phrase is \evaluated".

The modularity of an action semantics description stems from de�ning the values

and denotations of the programming language, and operations on these, to be

elements of abstract semantic algebras. The action themselves form an abstract

semantic algebra. This imposes a modular structure on the semantic description
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that allows the semantic equations to be decoupled from the way the values and

actions are de�ned. Consequently the semantic description is relatively easy to

modify; if the described language is changed, and relatively easy to reuse for a

related language.

Action semantics is a member of the functional semantics family characterized

by the use of valuation functions that map the syntactic constructs of a language

to their meanings which could be functions, numbers, algebraic terms, etc. The

meaning of the entire program is determined by the valuation functions.

The primitive actions and combining operators of a semantic algebra can be

de�ned axiomatically, in which case they constitute an abstract semantic algebra.

The major advantage of this is that non-determinism (such as a+b! b; b+a! b

in an oriented equational reduction system) and concurrency (ajjb = bjja) can be

accommodated. The disadvantages are the usual problems of ensuring consistency

and completeness of the axioms, and also the fact that the semantic description is

not directly executable.

Alternatively, the primitive actions and combining operators can themselves be

de�ned in �-notation (or some dialect of it). Since there exist �-reduction machines

for �-terms, the semantic description is then executable, and much better structured

than a conventional one. This is similar to our approach, described later.

Clearly, the choice of semantic algebra is crucial. We shall use a semantic algebra

motivated by the algebra presented by Mosses. In general the semantic algebra will

have to be tailored to the language being described, but it seems feasible to de�ne

a single semantic algebra that is adequate to describe a wide class of languages [52].

The action notation Mosses adopted has evolved from a more symbolic notation
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to a more English-like presentation. The English-like notation of action semantics

is somewhat easier on the reader, in our opinion, than the inference-rule notation

of structural operational semantics, or the �-calculs based notation of denotational

semantics. Readability is a subjective issue, of course, being necessarily inuenced

by the reader's familiarity with the particular notation. However, we are con-

vinced that a reader unfamiliar with action semantics can quickly reach the stage

of understanding an action-semantics description, at least at a super�cial level;

and understanding of the semantic description will increase smoothly as familiarity

with the notation is gained [64]. Although an action speci�cation can be read at an

informal level, it is indeed a formal de�nition. The main di�erence between action

semantics and denotational semantics concerns the universe of semantic entities:

action semantics uses entities called actions, rather than the higher-order functions

in denotational semantics. Actions are inherently more operational than functions.

Action semantics framework is basically an algebraically oriented equational

system. Extension, specialization, and abbreviations are all speci�ed algebraically.

There are three kinds of semantic entity used in action semantics: actions, data and

yielders. Actions are essentially computational entities. The performance of an ac-

tion represents dynamic information processing behaviors. Items of data are, in

contrast, essentially static, mathematical entities, such as integers, boolean values,

and abstract cells representing memory locations, that embody particles of infor-

mation. Data are classi�ed into sorts so that the kinds of information processed by

actions are well speci�ed in a language de�nition. Sorts of data are de�ned in the

algebraic manner. A yielder represents an unevaluated item of data whose value

depends on the current information, i.e., the previously-computed and input values
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execute _ : Statement ! Action [completing | diverging | storing]
[using current bindings | current storage]

execute [[ if E then C1 else C2 ]] =
evaluate E

then
check (the given TruthValue is true) and then execute C1

or
check (the given TruthValue is false) and then execute C2

elaborate _ : Declaration ! Action [completing | binding | storing]
[using current bindings | current storage]

elaborate [[ const I = E ]] =
evaluate E

then
bind I to the given value

evaluate _ : Expression ! Action [giving a Value]
[using current bindings | current storage]

evaluate [[ I ]] =
give the integer stored in the Cell bound to I

or
give the integer bound to I

evaluate [[ E1 + E2 ]] =
evaluate E1

and then
evaluate E2

then
give sum (the given integer#1, the given integer#2)

Figure 2.1: Action semantics descriptions

that are available to the performance of the action in which the yielder occurs.

A few examples of action semantics description are shown in Figure 2.1. Action

semantics notation uses indenting to describe the evaluation order of action opera-

tions. Parentheses are also allowed for this purpose, but indenting is generally pre-

ferred, being easier to follow. In Figure 2.1, execute, elaborate, and evaluate are
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semantic functions whose arguments are statements, declarations, and expressions

respectively. These examples illustrate a syntactic convention wherein parameters

to operations are indicated by underscore. Operations in actions semantics can be

pre�x, in�x, or out�x. Observe that one of the actions in the last semantic equation

must fail, thereby producing either the constant binding or the variable binding to

the identi�er. The yielder

the given _#_ : Datum, PositiveInteger ! Yielder

yields the nth item in the tuple of transient data given to an action, provided

it agrees with the sort speci�ed as Datum, where n is the second argument. In

Figure 2.1 the semantic equation evaluate only deals with integer type (or sort).

To make it applicable to other types as well, the convention is to use the \value"

sort. The sort datum in action notation is supposed to include all individual items

of data used in a particular semantic description [64]. A common practice is to

introduce the sort value ad hoc, corresponding to the informal concept of a value

in a langauge. It is speci�ed as

value = integer | real | character | string | 2.

where 2 indicates the sort value is left open for extension.

Action combinators, like then and and then in the above examples, are binary

operations that combine existing actions, using in�x notation, to control the order

in which sub-actions are performed as well as the data ow to and from the subac-

tions. Action combinators are used to de�ned sequential, selective, iterative, and

block structuring control ow as well as to manage the ow of information between

actions.
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Another issue concerns the ubiquitous appearances of environments and stores

in many semantic descriptions. In the formalism used in Milner's description of ML

[58], the environments and stores occur explicitly in each evaluation rule. In some

cases, the abbreviation that allows the store component to be elided from most of

the rules does not entirely solve this problem; besides, the abbreviation is clearly

ad hoc, and not generally applicable. In action semantics, by contrast, environ-

ments and stores never have to be speci�ed explicitly; the action combinators take

care of the various ways in which bindings and storage changes are sequenced or

merged. These combinators are suitable for describing a wide variety of program-

ming languages, not just ML with its left-to-right evaluation order for expression

sequence.

Action notations can be manipulated algebraically using properties such as as-

sociativity, commutativity, and identity laws to prove the equivalence of certain

action expressions. The action combinators, a notable feature of action notation,

obey desirable algebraic laws that can be used for reasoning about semantic equiv-

alence. And it is one of their strengths that they can provide a basis for sound

reasoning about program correctness and equivalence.

Action notation uses the emphatic brackets \[[" and \]]" slightly di�erently than

denotational semantics in the sense that semantic functions are applied to abstract

syntax trees. In action semantics the notation \[[E1 + E2]]" denotes the abstract

syntax tree composed of a root and three subtrees, E1, + and E2. Since E1 is

already an abstract syntax tree, we have no need to wrap it inside another set of

brackets when it is referred to in the right-hand side of the semantic equations.

Action notation is used to build a formal description of programming languages.
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The semantic equations of the description de�ne a translator from the source pro-

gram into action notation, which can act as an intermediate language in an transla-

tor, compiler or interpreter. By providing an interpreter of action notation, we can

obtain a prototype implementation of any programming language with a speci�ca-

tion in action semantics. A translator of action notation into a machine language

produces a compiler of the language.

Following denotational semantics, action semantics insists on compositionality

with the semantic function mapping not only entire programs but also all their

component phrases to semantic entities. It also conforms to a strict type discipline

in specifying the meaning of language constructs. This careful delineation of the

types of objects manipulated by actions adds to the information conveyed by the

semantic descriptions.

The inherent modularity in an action semantics description smoothly scales up

for describing practical languages. An action semantics description of one language

can make widespread reuse of that of another, related language. Language de�nition

modules will be highly interchangeable, and it will be possible to store the modules

in a database for later use in other language designs. All these pragmatic features

are highly appealing.

Equational reasoning is widely used in many applications including program

transformation, partial evaluation, optimization, program reasoning, or program-

ming development tools [34]. However, syntax and semantics of real programming

languages do not lend themselves to \natural" equations. Mapping syntactic con-

structs of a language to its action semantics notation permits modular equational

reasoning about programs.
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2.4.4 High-level semantics

The style of semantic description used in our work is not exactly the same as that

of action semantics. It is a variant of action semantics called high-level semantics

originated by Peter Lee [52], in which macrosemantics refers to the semantic equa-

tions of the source language, and microsemantics the semantic algebra of the target

language. Before showing some examples, we introduce some of the vocabulary of

algebraic speci�cation. The types in a programming language serving to classify

the data processed by programs are referred to as sorts. An algebraic speci�cation

de�ning one or more sorts contains two parts: the signature and the equations. A

signature � of an algebraic speci�cation is a pair [Sorts, Operations] where Sorts is

a set containing names of sorts and Operations is a mapping from function symbols

to their pro�les. The equations in a speci�cation constrain the operations in such

a way as to indicate the appropriate behavior for the operations. They serve as

axioms specifying an algebra, similar to the properties of associativity and com-

mutativity of operations that we associate with abstract algebra in mathematics.

Equations may involve variables representing arbitrary values from various sorts in

the speci�cation. The variables in an equation are universally quanti�ed implicitly.

When applied to describe the semantics of a practical programming language, the

model is similar to the conventional many-sorted (or heterogeneous) algebra.

There are three principle di�erences between high-level semantics and action

semantics:

1. Operators in action semantics are directly de�ned by means of basic opera-

tors but in high-level semantics they are inductively de�ned in terms of basic

operators. The advantages of having higher level operators in a semantic
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description are similar to having subprograms in programming languages: a

more modular and more succinct description. However, we should be careful

when de�ning new operators so the users do not need to follow a long chain

of de�nitions to �nd their de�nitions.

2. As in denotational semantics, compile-time and run-time aspects are not dis-

tinguished in action semantics. This makes the semantic speci�cations less

descriptive and complicates the task of determining which portions of a se-

mantics can be statically evaluated. In high-level semantics, the compile-time

domains are clearly delineated from the run-time domains [52].

3. Instead of following the English-like description of action semantics, out�x

notation is used in high-level semantics to make the presentation more terse

and less confusing. The English-like description is too wordy; in high-level

semantics appropriate operators are chosen to stand for commonly used action

notation idioms. Because the action combinators in action semantics can be

in�x or pre�x, readers may misunderstand the meaning of the description if

they do not remember the precedence and parentheses are not present. Out�x

notation gets rid of the problem completely.

High-level semantics is composed of two parts: macrosemantics and microse-

mantics. The major part of macrosemantics is a set of semantic equations mapping

syntactic constructs to their meanings similar to the description of denotational

semantics. An interpretation for the operators appearing in the right-hand side of

the semantic equations is provided by the microsemantics part. Only the signature

of the algebra de�ned by the microsemantics (i.e., the names and function pro�les
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action domains
V_Action = _ (* value producing action *)

operators
Integer : INT -> V_Action is
Integer = _

Add : V_Action * V_Action -> V_Action is
Add = _

semantic functions
E : expr -> ENV -> V_Action

semantic equations
E [[ int ]] env = Integer (int)

E [[ expr1 ``+'' expr2 ]] env =
Add (E [[ expr1 ]] env, E [[ expr2 ]] env)

Figure 2.2: Macrosemantic description of a toy language

of the operators) is shared between macrosemantics and microsemantics. Seman-

tic model details are used only in providing an interpretation for the algebra thus

appear only in the microsemantics. This provides a clean separation of the actual

language semantics from the underlying model details.

Consider the macrosemantics of expressions in a hypothetical toy language [52]

shown in Figure 2.2: in the macrosemantics, the semantic equations map the lan-

guage syntactic constructs to algebraic terms similar to those used in action nota-

tion, where an interpretation (or model) of the algebra will be given in the microse-

mantics. Only the microsemantics is dependent on the particular target language

involved, so our translator G2A is easily retargeted to other languages. In the

above example, the domain value-producing action, V_Action, along with opera-

tors Add and Integer, de�ne a semantic algebra of value producing actions. Only
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the signature of this algebra appears in the macrosemantics, but it provides enough

information to allow us to write equations describing the semantics of integer ex-

pressions. A complete de�nition of the semantic algebra will be given separately in

a microsemantic speci�cation, thereby enforcing separability of the semantics from

model-dependent details.

In traditional denotational semantics, the addition of a new language feature

often requires a complete reformulation of the semantics. For example, in a tra-

ditional, direct-style semantics, the addition of escapes from loops causes the en-

tire speci�cation to be written. In a high-level semantics such extensions require

only the addition of new equations to the macrosemantics [52]. All other changes

are isolated in the microsemantics. Even though adding escapes from loops to a

continuation-style denotation semantics requires revision of only a subset of the

semantic equations, unfortunately it is often diÆcult to identify those equations

needing modi�cations.

An interpretation for the operators is provided by a microsemantics. One pos-

sible (and very simple) microsemantic speci�cation is shown in Figure 2.3, and a

more general one [52] is given in Figure 2.4 wherein intValue and rval are value

constructors for constructing and deconstructing values.

Shown in Figure 2.5 are two examples of semantic functions in a macrosemantics

speci�cation of a toy language [52], wherein function D is for the declaration of a

variable of type integer, and function E is for the addition of two integer expressions.

The salient characteristics of our approach (some of which are mentioned by Lee

and Mosses [52, 64]) can be summarized as follows:

Model independent language de�nition One problem with traditional deno-
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action domains
V_Action = STATE -> INT.

operators
Integer : INT -> V_Action is
Integer i = fn state . i

Add : V_Action * V_Action -> V_Action is
Add (v, v') = fn state . (v state) + (v' state)

Figure 2.3: A simple microsemantic description

action domains
V_Action = STATE -> EV (* EV stands for expressible values *)

operators
Integer : INT -> V_Action is
Integer i = fn state . rval (intValue i)

Add : V_Action * V_Action -> V_Action is
Add (va, va') =

fn state .
let

rval (intValue v) = va state
rval (intValue v') = va' state

in
rval (intValue(v + v'))

end

Figure 2.4: Another microsemantic description

tational semantics has to do with the lack of separation between the actual

semantics of a language and the model-dependent details underlying it. Action

semantics abstracts from the model-dependent details in order to concentrate

on the real language features.

Accessibility A language description should be easy to understand, and to relate

to familiar programming concepts, without a major e�ort in learning about
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D [[ "var" id ":" "int" ]] env =
if notDeclared(id,env) then
let

(* obtain a semantic name for the identifier *)
varName = name(id).

(* Construct the mode for the new variable *)
mode = varM(varName, intType).

(* Add the new declaration to the environment *)
newEnv = addAssoc(id,mode,env).

in
(newEnv, DeclSimpleVar(varName,intType))

end
else
declError [[id]] "Identifier already declared".

E [[ exp1 "+" exp2 ]] env =
let

(t1,v1) = E [[ exp1 ]] env
(t2,v2) = E [[ exp2 ]] env

in
if (t1 = basicType(intType)) andalso (t1 = t2) then

(basicType(intType), Add(v1,v2))
else

exprError [[...]] "can only add integers."
end

Figure 2.5: Semantic functions in macrosemantic description

the description technique itself. It should not be necessary to be an expert in

the idiosyncrasies of standard denotational semantics description techniques,

for instance, continuations. Instead, one should be able to rely on knowledge

of standard programming languages concepts in order to write and understand

the semantics. Action semantics is suggestive of an operational understanding

of the described language, and thereby making it easy to comprehend and

possibly serving as a guideline for implementation.

Compared to other formalisms, such as the �-notation, action notation may
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appear to lack conciseness: each symbol generally consists of several letters,

rather than a single sign. But the comparison should also consider that

each action combinator usually corresponds to a complex pattern of appli-

cations and abstractions in �-notation. For instance [64], the action term

\A1 then A2" might correspond to something like the following CPS style

�-notation:

��1:��:��:A1�1�(��2:A2�2��)

Action combinators are binary operators that combine existing actions, using

in�x notation, to control the order in which subactions are performed as well

as the data ow to and from the subactions. The action combinator then

is an action combinator that performs the �rst action; when it completes,

the second action is performed, taking the data given by the �rst action. In

any case, the increased length of each symbol seems to be far outweighed

by its increased readability and expressiveness. The readability of an action

semantics description stems primarily from the close links between the action

notation and familiar semantic concepts, and secondarily from the use of an

English-like notation for the actions.

Ease of language update If part of the source language de�nition is changed at

a future time, instead of working on the ad hoc translation program, we can

simply change the macrosemantics to reect the change (this is analogous to

the current situation with regard to syntax; given a context-free grammar for

a language, we can apply tools to automatically generate a parser for that

language). The description is easily modi�able, in the sense that language
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changes (such as removal or addition of imperative features, or changes in

evaluation order) would require only commensurate changes to the description

| rather than forcing it to be completely rewritten.

Exposition of implementation structures The operators of our semantic alge-

bra are chosen to directly reect both fundamental language concepts as well

as fundamental implementation concepts. This improves the comprehensibil-

ity of the semantic descriptions. Furthermore, an eÆcient implementation can

be obtained by interpreting the operators as templates of intermediate code

for a code generator.

Separability The semantic equations and the semantic algebra are de�ned in sep-

arate speci�cations called the macrosemantics and microsemantics, respec-

tively. Semantic model details are used only in providing an interpretation

for the algebra, and thus appear only in the microsemantics. This provides a

clean separation of the actual language semantics from the underlying model

details.

Interchangeability of microsemantics de�nitions A nice feature of high-level

semantics is its interchangeability. We can plug in di�erent microsemantic

speci�cation for the same macrosemantics. The only information shared be-

tween the macrosemantics and microsemantics is the signature of the semantic

algebra de�ned by the microsemantics. This provides a modularity that guar-

antees the invariance of the macrosemantics under di�erent interpretations of

the microsemantics operators.

It is straightforward to re-target a translator to other languages when high-
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level semantics is used as translational semantics: a separate microsemantic

description suÆces.

Distinction between static and dynamic language components The

separation between macrosemantics and microsemantics is also used to distin-

guish between the static and dynamic aspects of a language. Static semantics

treats context-sensitive syntax (eg., declaration of identi�ers before use or

well-typedness of expressions) as a kind of semantics. It is called static se-

mantics because it depends only on the program structure and but not the

program input. Dynamic semantics refers to the input-dependent behavior of

a program and it may be de�ned independently of the static semantics of the

program. G2A allows user-parameterized speci�cation of primitive types and

operators in the microsemantic speci�cation. In this respect, high-level se-

mantics is similar to the two-level semantics proposed by Nielson and Nielson

[67].

Extensibility It is usually straightforward to add new operators to a semantic

algebra. Doing so may require rewriting of parts of the microsemantics, but

always leaves the macrosemantics intact. The portions of the microsemantics

requiring modi�cation are easy to identify.

Executability Similar to what David Watt achieved in [91], the semantic descrip-

tion in the macrosemantics is actually executable, i.e., yields an executable

translator. This makes it very di�erent from other frameworks like Formalism

Z [82] which is based on non-constructive typed set theory.

Facilitation of mathematical reasoning Formal descriptions can be used as
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the basis for systematic development and automatic generation of implemen-

tations. It is one of their strengths that they can provide a basis for sound

reasoning about program correctness and equivalence.

Expressiveness Action notation is designed with suÆcient primitives and combi-

nators for straightforwardly expressing most common patterns of information

processing in programming languages, i.e., it is not necessary to simulate one

kind of information processing by another.

Reusability For economy of e�ort, language designers want to be able to reuse

parts of descriptions of existing languages in the description of a new language.

In our approach, language de�nition modules are highly interchangeable, and

it is possible to store the modules in a database for later use for other language

designs.

Avoidance of over-speci�cation A problem arises in de�ning the collateral ac-

tion A1 & A2. By de�nition of the term \collateral", no particular order

should be de�ned for performing A1 and A2. In denotational or operational

semantics, however, there is no simple way to avoid over-de�ning the sequence

of actions. The reason is that both denotational or operational semantics are

inherently sequential [8]. The semantic algebra approach has the advantage

that this particular problem is localized and isolated, and does not intrude

upon the top-level semantic description of the programming language. Certain

details can be deliberately left unspeci�ed in high-level semantics description

such as the evaluation order of subexpressions or function parameters to make

the speci�cation more exible.
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Straightforward re-targeting To re-target to other languages, a separate mi-

crosemantic description suÆces.
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Chapter 3

Semantics-based language

translation

Program translation requires mapping the semantics of the source language to that

of the target language. Semantics-based language translators provide formal seman-

tic descriptions for validating prototype implementations of the source languages

under design. This is of paramount importance for a language which is still being

designed and implemented. The semantics based approach helps to ensure that

the �nal implementation does, in fact, adhere to the speci�cation in a controlled

fashion.

A problem that is seldom addressed in the development of prototyping languages

is teamwork. One of our goals in the development of language translators is for

easing teamwork on the dynamically evolving source language.

Many language translators lack structure and are hacked unmercifully, thereby

making them diÆcult to understand, let alone to maintain. It is desirable for the
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structure of the translator to support both modi�ability and extensibility, which in

turn permits a quick development of language translators.

3.1 Motivation and issues

Every software developer knows that it is almost impossible to keep an evolving

software system consistent with the corresponding documentation. For this reason

documentation is frequently written at the end of the implementation activity. Most

of the time it is not worth writing extensive documentation in the course of the

development of a prototyping language venture.

As most programming languages become more expressive and the list of fea-

tures they provide continues expanding, it is more and more diÆcult for language

implementors to stay abreast of the exact meaning of language constructs, and

increasingly more important that the semantics of the language be communicated

unambiguously.

In giving formal semantics to a programming language we provide a basis for

understanding and reasoning how programs behave. Not only is a mathematical

model useful for various kinds of analysis and veri�cation, but also, at a more fun-

damental level, because merely the activity of trying to precisely de�ne the meaning

of program construction highlights the inconsistency of the language design in early

stages. Carefully chosen, the semantic description often has the advantage of ab-

stracting away from unimportant details, as well as providing higher-level concepts

with which to understand the dynamic computational behaviour of a program.
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3.2 Formal semantics based language translators

By semantics based language translators we mean those translators driven by se-

mantics [40, 12, 46, 53, 88]. Usually they are structured as a series of relatively

simple transformations, each of which is semantics-preserving within some formal

semantics framework.

3.3 Action semantics in action: structuring a language trans-

lator in action semantics framework

Denotational semantics has poor pragmatic features, due to its use of the lambda-

notation [52]. In action semantics, the meaning of a programming language is

de�ned by mapping program phrases to actions, which directly reect the ordinary

computational e�ects of programming languages that are easy to read and un-

derstand. The performance of these actions models the execution of the program

phrase.

The steps involved in our translation can be roughly delineated as:

� Analyze the source program according to the static semantics description de-

�ned in the macrosemantics of the source language.

� Obtain the intermediate representation in a dialect of action notation after

the static analysis.

� Generate the target code according to the intermediate representation.

Shown in Figure 3.1 and Figure 3.2 is an example briey outlines the translation

of a function application. The function sum is of type int * int -> int. The
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semantic equation E (of type expAST -> (semType * vA)) maps an expression

AST to a tuple, whose �rst element is the static semantic type of the expression and

second element the action denoting the entire expression. Sequence of expressions

are handled by Es, which is of type expAST list -> (semType * vA) list.

In the rest of this section we illustrate the derivation of the action representing

the function call sum(1,2) according to the semantic equations shown in Figure 3.1.

The format of macrosemantic equations is similar to that of the traditional denota-

tional semantics. We use the emphatic brackets ([[]], or textually "[[ ]]") around

an argument of a semantic function to show that the argument is a syntactic phrase.

The valuation of the function application sum(1,2) begins with the semantic

equation for function application, in which type inference (checking) is �rst per-

formed. Functions in GriÆn always takes one argument so the type of the argument

of function sum is of tuple type int*int.

The intermediate representation, TPOT (described in more detail in Section 4.1),

is obtained according to the semantic valuation functions. Figure 3.2 gives the

syntax de�nition for actual parameters and the type of the action combinator

and. Eventually we arrive at the action corresponding to the GriÆn function call

sum(1,2).

Since GriÆn does not specify the evaluation order of subexpressions or function

parameters, the action combinator and is used rather than the order-establishing

combinator and then. The action combinator then (syntax: A1 then A2) performs

the �rst action using the transients given to the combined action and then performs

the second action using the transients given by the �rst action. The transients

given by the combined action are those given by the second action. For action
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GriÆn code

fun sum (x:int, y:int) => x+y;
sum(1,2);

related macrosemantic equations

(integer)
E [[ int ]] env = (intTy, Integer int)

(function application)
E [[ expr expr' ]] env =

let
(FunType(domainType,rangeType), vA) = E [[ expr ]] env
(t', vA') = E [[ expr' ]] env

in
if unify(domainType,t') then (rangeType, FuncAppl(vA,vA'))
else error("function application type mismatch)

end

(parenthesized expression sequence)
E [[ "(" expr "," exprs ")" ]] env =

let
(t, vA) = E [[ expr ]] env
(ts,vAs) = Es [[ exprs ]] env

in
(TupleType(t::ts), ExprSeq(vA,vAs))

end

(expression sequence)
Es [[ expr "," exprs ]] env =

let
(t, vA) = E [[ expr ]] env
(ts,vAs) = Es [[ exprs ]] env

in
(t::ts, ExprSeq(vA,vAs))

end

Es [[ ]] env = (nil,NullExpr)

untyped TPOT for the function call

FuncAppl(Id sum, ExprSeq(Integer 1, ExprSeq(Integer 2, NullExpr)))

Figure 3.1: From GriÆn to TPOT
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action semantics description

Association = [[ [identifier "=>"] Expression ]].

_ and _ :: action, action ! action
(total, associative, unit is complete)

application of _ to _ :: yielder, yielder ! action

enact :: yielder ! action

evaluate _ :: Actuals ! action
[giving arguments | diverging | storing]
[using current bindings | current storage].

evaluate <E: Expressions "," A:Associations> =
evaluate E and evaluate A.

action representing the function call

give 1
and

give 2
then

enact application of (the Function bound to sum) to the given value

Figure 3.2: Action semantics in action

combinators and then and then, if one of the actions gives the value nothing

(unde�ned, bottom), the result of the composite action is nothing, that is, these

combinators are strict in the value nothing. The execution semantics of GriÆn is

strict, thus the combinator then is chosen to reect that.

The action A1 and A2 represents implementation-dependent order of perfor-

mance of the indivisible subactions of A1 and A2. When these subactions cannot

"interfere" with each other, it indicates that their order of performance is simply
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irrelevant.

In action semantics an abstraction is a datum that merely incorporates a particu-

lar action. It corresponds to the \code" for the action, which could be implemented

as a sequence of machine instructions, or as a pointer to such a sequence [64]. Ab-

stractions represent the semantics of programming constructs such as functions or

procedures.

The yielder application of Y1 to Y2 aÆxes the argument value yielded by Y2

as the transient that will be given to the action encapsulated in the abstraction

yielded by Y1.

The action enact Y performs the action encapsulated in the abstraction yielded

by Y, using the transients and bindings that are included in the abstraction.

The most important advantage of this approach results from the action notation

intermediate representation. All the syntactic constructs are de�ned in the action

semantics framework, the denotations of them are absolutely formal and unambigu-

ous. This is crucial for a language which is still being designed and implemented;

as a clear documentation of language semantics prevents the misunderstanding be-

tween language designers and implementors. Inconsistent speci�cation may give rise

to false conclusions in reasoning, thus destroying the point of having a speci�cation.

As a consequence of the way our translator is organized, the action semantics

description of the source language provides a formal but more importantly, a high-

level and intuitive description of the language semantics which contributes to the

readability and maintainability of the language. The formal semantics notation

can also be used as an intermediate representation when writing a translator, in-

terpreter, or compiler. Furthermore, the description itself is directly executable so
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it can be used to automatically obtain a static semantics analyzer.

The provision of a structural operational semantics for action notation empha-

sizes the operational essence of action notation, and allows the veri�cation of alge-

braic laws.

3.4 Type-preserving translation

It is desirable that the target language of a translation is typed, and the translation

satis�es the constraint that any well-typed source program will be mapped into a

well-typed target program. Similar to translations based on typed intermediate lan-

guages, translations into a typed target language have certain software-engineering

advantages: types help reduce static errors in the target code, and thus shorten the

development cycles of a translator (especially in the debugging and maintenance

stages). This is one prominent reason that typed intermediate languages is gaining

increasing popularity.

A type-preserving translation maps expressions of the same source type to ex-

pressions of the same target type. The target code of a type-preserving translation

is typable [88].

A type-preserving translation makes it easier to write the translation in a com-

positional fashion which is typed. A translation is compositional if the translation

of a compound construct can always be speci�ed in terms of the translations of its

immediate components, i.e., the translations form a congruence (Section 4.5):

[[f(t1; : : : ; tn)]] = [[f ]]([[t1]]; : : : ; [[tn]])

for all syntactic constructions f and compound constructs f(t1; : : : ; tn) built from
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component constructs t1 to tn. If the translation is type-preserving, then the type

of [[f ]] is solely determined by the types of source terms ti, independent of the values

of these terms.

Like other compositional speci�cations, a compositional translation is more

amenable to design, understanding and reasoning. Compositionality helps break

down the dependencies of compound terms and their subterms, so that each con-

struction can be speci�ed and understood without intensional reference to speci�c

component terms. On the other hand, compositional translations simpli�es the

reasoning about the properties of the translation through structural induction over

the syntax. This induction principle reduces the proof of a property that holds for

all components in an inductively de�ned set (the syntactic category in our case) to

the proof of this property for all compound constructs assuming the property holds

for their components.

One further advantage of the type-preserving translation is its support for sep-

arate compilation. In general, the signature (or interface, contract) of a program

module A gives only the type information, not the program body. In a setting that

does not preserve types, the type of the target code for module A is not �xed; con-

sequently, any other module B that uses module A cannot assign a unique type for

references to entities in the interface part of A. It is possible to pass the translated

types around at run-time, but it incurs high run-time overhead. In contrast, in

a type-preserving setting, the target code of module A has �xed types; any other

module B uses A can have uniquely typed references to entities declared in the

interface, and types do not need to be passed at run-time, making separate com-

pilation more practical. By the same reasoning, the translation need not insist on
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whole-program transformation.

The following example illustrates a type-preserving translation. Consider the

translation of the GriÆn program shown in Figure 3.3(a), wherein round is the

rounding operation mapping reals to integers. Both x and y have the same existen-

tial type (Section 5.1.3 and Section 7.2) in the source program. Existential types

are typeset in the form 9�:� , as they appear in standard literature, rather than

actual GriÆn syntax.

fun truthValue true => 1
| truthvalue false => 0;

var x : 9 � : � � (� ! int)
= pack �=bool in � � (� ! int) (true,truthValus) end pack;

var y : 9 � : � � (� ! int)
= pack �=real in � � (� ! int) (3.45,round) end pack;

fun foo p => unpack p as (v,f) in f v end unpack;

foo x; --- evaluates to 1
foo y; --- evaluates to 3

(a) GriÆn program

fun truthValue true = 1
| truthValue false = 0

val x = (true,truthValue)
val y = (3.45,round)

fun foo (v,f) = f v; (* universal type *)

foo x; (* evaluates to 1 *)
foo y; (* evaluates to 3 *)

(b) ML-like target program

Figure 3.3: An non-type-preserving translation
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For the sample GriÆn program shown, a non-type-preserving translation based

on naive universal type encoding [40] is suÆcient. However, it will not work in the

following GriÆn program,

var x : 9�:� := e1;

var y : 9�:� := e2;

: : :

x := y;

a compile-time type error may occur in a non-type-preserving translation because x

and y may be of di�erent types in the target program. Nevertheless, the target code

can still be typable if run-time tags are attached. But again, this incurs run-time

overhead, thus impractical.
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Chapter 4

The G2A translator

G2A translates GriÆn programs into Ada programs. Similar to other compilers

and translators, it can be characterized as a process of analysis followed by synthe-

sis. These two steps are further divided into several phases, described in the next

section, which can be viewed as the structural components of G2A.

When it comes to the maintenance problem of the translator, the way we struc-

ture the language translator is more modular because it is based on the action

semantics which is characterized by its modularity. Action semantic description

are divided into modules, which, in larger speci�cations, may themselves be di-

vided into submodules, just as we normally divide technical reports and textbooks

into sections and subsections. It is often helpful to divide the modules of semantic

description into submodules. For instance, suppose that we are describing the se-

mantics of Pascal. We might divide the abstract syntax module into submodules

concerned with expressions, statements, and declarations. Similarly for the corre-

sponding semantic function modules. We could also divide the semantic entities

module into submodules dealing separately with numbers, arrays, procedures, etc.
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Such submodules might be reusable, with minor modi�cation, in other semantic de-

scriptions. Consequently, it is easier to modify the translator the way we organize

it.

4.1 Overview of G2A

The �rst phase of G2A is the syntax analysis in which the front end, Parser, has

the following functionality

Parser : PGriÆn !AST GriÆn

where PGriÆn is the domain of textual representation of GriÆn programs, and

AST GriÆn is the domain of GriÆn abstract syntax tree representations. Syntax

analysis is further split into three phases: lexical analysis, parsing, and tree build-

ing. Parser examines the syntactic structure of a GriÆn program, rejects it if

incorrect, otherwise builds an abstract syntax tree representation of it. The source

program is �rst parsed by the parser generated by the front-end generator (FEG)

SML-LEX and SML-YACC according to the lexical and syntactic speci�cation of

the source language GriÆn.

We have to de�ne the macrosemantics of GriÆn so that GriÆn programs can

be analyzed in the action semantics based framework. The semantic description

of GriÆn covers only the bare language directly; the remainder of the language

is described by syntactic transformation down to the bare language. The descrip-

tion style of macrosemantics is similar to that of denotational semantics, which is

mapping syntactic constructs to their \denotations". The denotation in the GriÆn

macrosemantics speci�cation corresponds to an intermediate representation (IR)
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between the front end (GriÆn programs) and the back end (Ada programs). This

intermediate representation is in the form of typed pre�x operator terms (TPOTs).

There has been much recent interest in using typed intermediate representations

in compilers, but in most cases types are abandoned well before code generation.

G2A does keep type information in TPOT in the translation process; one reason is

that it is necessary for the generation of temporary variables since Ada is explicitly

typed and not an expression language. A TPOT represents the model-independent

meaning of a program component. For example, the TPOT that represents an

assignment expression x := 1 would look like

Assign(Var(x,IntType), Integer 1) : void

The type void at the end of the TPOT refers to the type of the assignment expres-

sion. These type annotations suÆce to reconstruct the types of arbitrary terms.

The second phase is the static semantic analysis and intermediate code gen-

eration performed by the translator kernel, TK, which converts GriÆn ASTs to

TPOTs.

TK : AST GriÆn ! IRTPOT

Semantic model details still need to be supplied in order to de�ne the meanings

of the operators in a microsemantics, but this can be done without disturbing the

macrosemantics developed.

We call the semantic metalanguage used in the GriÆn macrosemantics spec-

i�cation TML, a tiny subset of ML [58, 73] with some minor syntactic changes.

ML originated as the metalanguage of Edinburgh LCF, but has evolved into a

programming language in its own right. ML is basically a functional language,
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with functions as �rst-class objects, thus allowing higher-order functions and par-

tial application (currying). It has a static type system, declared objects need not

be explicitly typed, but their types are deduced by the compiler if necessary. ML

provides powerful and high-level control mechanism and algebraic (symbolic) data

types. It is unreasonable to expect readers of the GriÆn macrosemantics speci�-

cation to learn the complete ML language in order to comprehend the semantic

equations, thus we have kept TML as small and applicative as possible to keep its

complexity substantially lower than that of ML.

TK analyzes abstract syntax trees according to the syntax-directed equational

speci�cations in the macrosemantics in order to collect the statically determined

information about a program, then generates the TPOT, which is similar to an ac-

tion notation term except that it is decorated with type information. The TPOTs

contain operators that are de�ned in the back-end microsemantics and are suitable

for target code generation. The code for GriÆn's type checker used in the macrose-

mantic speci�cation was written by Edward Osinski [70]. The semantics given in

the macrosemantic speci�cation de�nes the behaviour of well-typed programs only

(types play no part in the dynamic semantics of such programs).

Finally, the Ada code generator is as follows:

CG : IRTPOT ! (I ! O)PAda

where (I ! O)PAda is the universe of representations of Ada programs from the

input domain I to the output domain O. To be more speci�c, the intermediate

representation, TPOT, is transformed into an AdaAST+, which is an abstract

syntax tree representation of an extended Ada program. By extended Ada programs

we mean programs similar to Ada programs but do not conform completely to the
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Ada syntax de�nition. A term rewriting system [25] converts the AdaAST+ into an

Ada abstract syntax tree, AdaAST , that conforms to the syntactic rules of Ada.

More details about the term rewriting system and code generation can be found in

Section 7.14. In the �nal stage, a multi-level pretty printer [45] turns AdaAST into

a textual representation of a formatted Ada program.

The functional composition of these three phases yields G2A, a translator from

GriÆn to Ada:

G2A = Parser ÆTK ÆCG : PGriÆn ! (I ! O)PAda

G2A does not directly support multiple GriÆn components in a program, al-

though functions generated from one GriÆn component can be treated like any

other Ada functions and imported into another Ada component. A signi�cant re-

striction of G2A is that it requires access to the entire GriÆn program, for reasons

summarized in Section 8.1. However, we believe that this problem can be at least

partly addressed by providing separately compiled components a digest of the rel-

evant type and function information from other components.

As in most formal semantics frameworks, abstract syntax is used in the spec-

i�cation since it represents the compositional structure of phrases of programs,

ignoring how that structure might have been determined. In general, it is easier to

de�ne the semantics of programs on the basis of their abstract syntax, rather than

on their concrete syntax.

A macrosemantic speci�cation, along with a microsemantics interface �le, is

processed by the semantic analyzer to generate the TK. The abstract syntax tree

(AST) speci�cation is also fed to the semantics analyzer so TK can understand the

AST output from the front-end.

67



input data

semantics
analyzer

G2A
Parser

CG

TK

Griffin program

AST

TPOT

AST spec.

Macro spec.

Micro spec.

macrosemantics 

microsemantics
analyzer

Ada program

program output

FEG

Micro interface

Grammar

analyzer

Figure 4.1: The schematic representation of the system shows the various phases of the

translation process.

Both the macrosemantics and microsemantics analyzer are written in ML, using

the NJ/SML implementation, so is the automatically generated translator kernel.

TK translates abstract syntax trees into typed pre�x operator terms (TPOTs).

The code generator (CG) implements the semantic algebra; it plays the role of
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emitting Ada code from the TPOT in G2A.

A schematic representation of G2A (adapted from Peter Lee's MESS system

diagram [52]) is shown in Figure 4.1.

It is worth pointing out that although using our approach may seem natural,

it is not the only possibility. Suppose there are n languages and we would like

to translate one to another. Another possible approach is to write a translator

from each language to the other n� 1 languages. With n languages in the picture,

n � (n� 1) di�erent translators must be written, instead of just 2n for going to and

from TPOTs as in the case of G2A.

4.2 Front-end reuse

An important factor attributable to the success of the popular compiler gcc is its

well-engineered idea of the decoupling of its front-end from its back-end. Reusing

general infrastructure components is probably the easiest way and low-risk way to

develop front-ends.

In the design phase of the abstract syntax tree, pragmatically reusable compo-

nents should be identi�ed and incorporated into the current design. If the abstract

syntax tree de�nition has rich syntactic constructs, it may well be used for other

source languages. This gives translator writers for other source languages greater

exibility to actually reuse and adapt parts of existing components. Thus it in-

creases the productivity of translation program writers.

If the collection of abstract syntax trees are designed to be general enough, it can

be used for other languages as well. For example, the following fragments declare

a variable \x" of integer in various languages:
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var x : int; -- in Griffin

x : integer; -- in Ada

int x; /* in C, C++ */

x : integer; /* in Java */

In some languages, an initializing value can be speci�ed in variable declarations. In

our implementation, the abstract syntax tree for variable declaration is

declAST :: VarDecAST of id:string, type: typexpr, initExpr: expr

which covers all the cases above. Similarly, there are unimportant syntactic dif-

ferences in looping constructs (while loops, for loops, or unconditional loops) and

other syntactic constructs. As long as the abstract syntax trees are designed to ac-

commodate the most involved one, they can be used for various source languages.

Naturally the very same abstract syntax trees de�nition of a language can be used

for the back-end code generation process (UN-parsing) as well.

However, a requirement to reuse the components in our systems is that ML has

to be the choice of the implementation language because all the building blocks of

our system are written in ML.

4.3 Generic backend

The implementation of the translator should also permit eÆcient execution of pro-

grams written in the source language. This can be achieved in G2A by choosing the

appropriate microsemantic speci�cation, which furnishes the semantic algebra for

\operators" used in the TPOTs. We can also perform conventional optimization

phases to the interpretation of TPOT in order to improve run-time eÆciency.
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A side product of the generic backend is the possibility of semantic recov-

ery: other formal descriptions (e.g., �-calculus terms, operational semantics) of

the source language can be derived from action notation [52].

4.4 Semantic modules reuse

Action semantic descriptions are divided into modules. Larger speci�cations may

be divided into submodules. A common practice is each module has to be self-

contained.

In action semantics the semantic modules are expressed in algebraic speci�cation

involving operations and sorts. The basic principle involves describing the logical

properties of data objects in terms of properties of operations that manipulate the

data. The actual representation of the data objects and the implementations of the

operations on the data are not part of the speci�cation.

Shown in Figure 4.2 are three algebraic speci�cations de�ning truth values,

natural numbers and expressions. The dependency among them is as follows:

Booleans

Naturals

ggNNNNNNNNNNN

Expressions

OO

88ppppppppppp
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module Booleans
exports

sorts Boolean

operations
true : Boolean
false : Boolean
not _ : Boolean -> Boolean
and _,_ : Boolean,Boolean -> Boolean
or _,_ : Boolean,Boolean -> Boolean
implies _,_ : Boolean,Boolean -> Boolean
xor _,_ : Boolean,Boolean -> Boolean
eq _,_ : Boolean,Boolean -> Boolean

end exports

variables
b,b1,b2 : Boolean

equations
and(true,b) = b
and(false,true) = false
and(false,false) = false
not(true) = false
not(false) = true
or(b1,b2) = not(and(not(b1),not(b2)))
implies(b1,b2) = or(not(b1),b2)
xor(b1,b2) = and(or(b1,b2),not(and(b1,b2)))
eq(b1,b2) = not(xor(b1,b2))

end Booleans

module Naturals
imports Booleans

exports
sorts Natural

operations
0 : Natural
succ _ : Natural -> Natural
lessthan _,_ : Natural,Natural -> Boolean
eq _,_ : Natural,Natural -> Boolean
...

end Naturals

module Expressions
imports Booleans Naturals
exports

sorts Expressions
...

end Expressions

Figure 4.2: Algebraic speci�cation modules
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The speci�cation of Naturals (natural numbers) relies on that of Booleans

(truth values). Expressions needs to access both Naturals and Booleans. Con-

ceivably, the hierarchy continues as Expressions speci�cation can be imported

into Statements and eventually the Programs speci�cation module for the entire

program. Conventionally, the dependency among algebraic speci�cations forms a

directed acyclic graph (DAG). If the dependency relation contains a loop, we have

an undesirable meta-circularity.

For economy of e�ort, language designers want to be able to reuse parts of

descriptions of existing languages in the description of a new language. The inher-

ent modularity in an action semantics description smoothly scales up in describing

practical languages. An action semantics description of one language can make

widespread reuse of that of another, related language. It is possible to store the

modules in a database for later use in other designs. We could discuss several further

points of contrast between action semantics descriptions, for instance the extent to

which descriptions can be recycled, so as to reduce the amount of new material

needed when describing new languages. Obvious candidates are algebraic speci�-

cations for standard sorts of data (eg., boolean, integer, real, character, string).

4.5 Program equivalence and correctness concerns

First we briey review the notion of congruence (�=) for the discussion in this section.

The constants of the universe in an algebra create a set of ground terms, and the

equations of an algebraic speci�cation generate a congruence�= on the ground terms.

A congruence is a stronger equivalence relation with an additional \substitution"

property. Let S = < �; E > be an algebraic speci�cation with signature � and
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equations E . The congruence �=E determined by E on the term algebra T� is the

set-theoretically smallest relation (with regard to set-containment partial ordering)

satisfying the following properties:

Variable assignment The equations of E are of the form lhs
C
= rhs. For the

equation to be true, the condition C must be satis�ed (C is often tautology).

Given an equation lhs
C
= rhs in E that contains variables v1; : : : ; vn and

given any ground terms t1; : : : ; tn from T� of the same sorts as the respective

variables,

lhs [v1 7! t1; : : : ; vn 7! tn] �=E rhs [v1 7! t1; : : : ; vn 7! tn]

where vi 7! ti indicates substituting the ground term ti for the variable vi.

If the equation is conditional, the condition must be valid after the variable

assignment is carried out on the condition.

Reexivity For every ground term t 2 T�, t �=E t.

Symmetry For any ground terms t1, t2 2 T�, t1 �=E t2 implies t2 �=E t1.

Transitivity For any terms t1, t2, t3 2 T�, t1 �=E t2 and t2 �=E t3 implies t1 �=E t3.

Substitution property Suppose t1 �=E t1
0; : : : ; tn �=E tn

0, S; S1; : : : ; Sn are sorts,

for i 2 1 : : : n, ti; ti
0 2 Si, and f : S1; : : : ; Sn ! S is any function symbol in

�. Then f(t1; : : : ; tn) �=E f(t1
0; : : : ; tn

0).

The correctness of our translation process would have to be established by a

tedious congruence proof involving the microsemantics which de�nes the operators.

To do this, the code generator speci�cation needs to be broken up into several
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passes, each of which implements a small set of transformations on the TPOT. On

the whole, however, the indicated separation of the code generator speci�cation

into several modules would vastly simplify a proof for the entire translator. The

number of transformation steps, i.e., the proof length, is very large (that may be

one reason why no one has succeeded in providing a correctness proof for gcc) [52].

An important feature of action semantics is that it facilitates the mathemati-

cal reasoning of program semantics in the algebraic framework. The operational

semantics of action notation determines the processing of each action. But this

does not, by itself, provide a useful notion of equivalence between actions. From a

user's point of view, however, two actions may be considered equivalent whenever

there is no test (or observation of interest [93]) that reveals the di�erences in their

processing.

We expect that testing equivalence of actions to include various algebraic laws,

such as associativity of the action combinators. Moreover, we expect it to be a

congruence, i.e., preserved by the combinators. The given algebraic laws facilitate

the algebraic reasoning to show that various compound actions are equivalent, per-

haps justifying a program transformation rule for some language on the basis of its

action semantics.
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Chapter 5

Overview of GriÆn

In this chapter a brief introduction to the source language, GriÆn, that we experi-

ment with, is presented. In Section 5.2, we outline the building of our intermediate

representation, TPOT, according to the macrosemantic speci�cation of GriÆn.

5.1 The source language: GriÆn

Prototyping languages are programming languages appropriate for constructing ex-

ecutable prototypes for development-intensive software. The most important prop-

erty of a prototyping language is its ability to permit the exploration of the problem

and solution space at low cost in early software development stage, which means

it should allow the expression of the essential content of an algorithm while leav-

ing out the unnecessary details. GriÆn is a broad-spectrum and statically typed

prototyping language with strict execution semantics, intended for prototyping soft-

ware that will eventually be written in Ada (most likely Ada95), featuring strongly

typedness, parametric overloading, concurrency, exception handling, data encapsu-
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lation, object-oriented paradigm [75], modules for programming in the large, pattern

matching and expressiveness. We view GriÆn as a descendent of SETL [77], Ada

[9], C++ [28, 85], ML [58], Haskell [43] and an informal introduction to it is given

in the following sections.

5.1.1 Basic language syntax

GriÆn is a block structured language and its control ow constructs can be found in

most imperative languages. Figure 5.1 gives a simpli�ed version of GriÆn's abstract

syntax. In this and other syntax descriptions, we use the notation hxisep to mean

a sequence of zero or more x's separated by sep, x j y for alternatives x or y, and

[x] to mean an optional x.

Case expression is multiple-branch conditional which provides pattern matching

on the argument expression (discussed in more detail in Section 5.1.9). Introduction

to the iterators and generators used in the loop expressions also appears later

(Section 5.1.7 and 7.12).

The expressions appearing in a function body or a let expression are evaluated

sequentially, and the result of the last expression in the body is returned as the

result of the expression sequence.

5.1.2 First-class functions

GriÆn supports �rst-class functions which enables programming at a higher level

of abstraction. In GriÆn, procedures are simply functions whose return type is

void. Pattern matching with user-de�ned deconstructors can be used in function

de�nitions. The formal parameter types and the return type of a function de�nition
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(types) � ::= K (primitive types)

j t (type variables)

j h�i� (cart. prod. types)

j � ! � (function types)

j � [h�i;] (type applications)

j 9 ~�: � (existential type)

(type schemes) � ::= [8hti;]�

(expressions) e ::= k [: K] (primitive constants)

::= v [: � ] (variables)

::= e(hei;) (function appl.)

::= hei; (expression sequence)

::= hei; (expression list)

::= (c : �)(hei;) (constructor appls.)

::= (fnjprc) rule (anonymous abstrs.)

::= let hdi; in e end (local declarations)

::= (returnjraisejexit) [e] (ret., raise exn., exit)

::= if e then e else e end if (if-then-else)

::= while e do e end while (while loop)

::= begin e end (expr. sequence)

::= pack hid = �i; in e end pack (packing)

::= unpack e as e in e end unpack (unpacking)

::= case e of hruleijj end case (destructuring)

(rules) rule ::= e [\j00e] => e

(declarations) d ::= (varjcon) x : � [\ :=00 e] (object decls.)

::= type t[\["h�i;\]"] = � (type decls.)

::= class c\ =00 classExpr (class decls.)

::= local hdi; in hdi; end (local decls.)

::= overload id : � (overload decls.)

(alg. type decls.) atdec ::= alt fhc[of h�i�]i;g

Figure 5.1: Simpli�ed abstract syntax of GriÆn
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can often be left out, and type inference will be employed to determine the function

type statically.

Functions are �rst-class objects in GriÆn and closure mechanism is also sup-

ported. The keyword fn (so is prc) is used to construct anonymous function (pro-

cedure) literals; the syntax for these is similar to function de�nitions except the

function name is optional. Functions may be overloaded. To overload a built-in

operator function of GriÆn, simply pre�x the function name with the keyword op.

5.1.3 Types

The type formers of GriÆn consists of enum, alt, thread, channel, and rec.

Union types (existential types)

A union type speci�es a range of types, all belonging to the same class. GriÆn's

union types are essentially bounded existential types, existential types with possible

constraints imposed on them. By analogy with universal quanti�cation, the mean-

ing of existential types (or existentially quanti�ed types) is for any type expression

Q(�),

x : 9�:Q(�)

means for some type �, x has the type Q(�). The most general form of existential

types is 9�:� . Not all existential types turn out to be useful. For example, if we have

an object of type 9�:�, we have absolutely no way of manipulating it (except passing

it around) because we know nothing about it. The real usefulness of existential

types becomes apparent only when we realize that modules (or packages) containing

simple values become �rst-class citizens if they are modelled by existential types.
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(Examples of such modules can be found in the language SOL developed by Mitchell

and Plotkin [62]. However, severe restrictions exist when using existential types to

model modules containing types. To overcome these obstacles, a more general

notion such as dependent types [8] must be employed. MacQueen [54] introduced

�-closed structures that successfully address the issues involved.) For instance,

9�:� � (� ! int) is a simple example of an abstract data type packaged with

its set of operations. The variable � is the abstract type itself, which hides an

implementation. Existential types provide a type-theoretic account of abstract

data types. For example, the data abstraction mechanism in Ada, Ada packages,

can be described by records with function components.

Universal quanti�cation yields generic types while existential quanti�cation yields

abstract data types. When these two notions are combined we obtain parametric

data abstraction.

The existential types may be bounded in GriÆn by restricting the types to a

certain class. Type casing of objects of union types is not supported in GriÆn so

there is no need for an GriÆn implementation to carry type tags at run-time.

The type of the well-formed GriÆn expression

pack � = � in M : � 0 end pack

is 9�:� 0 according to the following type rule for packing (or wrapping, closing)

expression:

� � M : [�=�]� 0

� � (pack � = � in M : � 0 end pack) : 9�:� 0
(9-Introduction)
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The operation pack is the only mechanism in GriÆn for creating values of an

existential type. M is referred to as the content of the existentially-typed value,

whereas the type � 0 is the interface. The interface determines the structural speci-

�cation of the content and corresponds to the contract of a data abstraction. The

binding � = � is the type representation: it binds the type variable � to a particular

representation � , thus corresponds to the hidden implementation associated with a

data abstraction.

The following unpacking (or unwrapping, opening) rule makes available the type

implementation:

� � M : 9�:� �; p : � � N : � 0

� � (unpack M as p : � in N end unpack) : � 0
(9-Elimination)

wherein � is not free in � 0. Unpacking an object M (or package) of some existential

type introduces a name p for the content of the object which can be used in the

scope following in. As we do not know the actual de�nition of � (we only know

that there is one), we cannot make assumptions about it, and users of objects of

type � will be unable to take advantage of any particular implementation of it. The

type of N cannot involve � to prevent the escape of the existentially-quanti�ed type

variable.

There is no subtyping relation among existential types; i.e., no two existential

types, such as

9�; � : �! � and

9� : �! �

are related by the subtyping relation.
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Record type

Record type in GriÆn, also called abstract data type (ADT), is an extension of the

record type notation in most main-stream languages. The concept of ADT is better

postponed until after the introduction of GriÆn class; more detailed description of

it can be found in Section 5.1.4.

Enum type

An example of GriÆn's enum type:

type day = fMon,Tue,Wed,Thu,Fri,Sat,Sung;

Thread type

In many applications it is natural to write a program as several parallel activities

which synchronize as necessary. In GriÆn, parallel activities are described by means

of threads and channels (Section 5.1.6). Below is a de�nition of a GriÆn thread

type, which indicates the type that the thread returns when it completes. GriÆn

thread types are similar to Ada task types except that a return type is associated

with threads; threads are essentially task expressions.

type intThread = thread[int];

Threads are created by using thread expressions and we are able to de�ne thread

objects just like any other objects. For example,

con t : intThread = thread(1+f(x))

creates a new thread to evaluate 1+f(x) concurrently with the current thread.
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Channel type

Channels are �rst-class objects in GriÆn. A channel's type indicates whether the

channel is synchronous or asynchronous and also determines the types of the values

being transmitted. For example,

var ach : channel[int];

var sch : channel[int,real];

declares two channels, the �rst being an asynchronous channel and the latter syn-

chronous.

Alt types

Algebraic types can be de�ned in GriÆn with the keyword alt as follows:

type inttree = alt fempty, leaf(int), node(inttree; inttree)g;

Other aggregate types

Tuples, sets, maps, lists need not be primitive; many of them can be de�ned in

terms of others. In particular, the mechanism provided for de�ning ADT in GriÆn

is powerful enough to de�ne most of the above types.

SETL, with its use of sets and maps, is regarded as a vehicle for rapid experi-

mentation with algorithms and program design. Unlike SETL, aggregates in GriÆn

are homogeneous. GriÆn provides a concise syntax for constructing and iterating

over speci�c forms of aggregates, for details see Section 5.1.7 and 7.12.
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5.1.4 Type system

A type system [21, 20, 80] is a collection of rules for assigning type expressions to

various parts (mostly expressions) of a program. A type checker implements a type

system. GriÆn's type system is an extension of the Hindley-Milner [57, 26, 69]

polymorphic type system; such systems allow functions accept not only parameters

of ground types, but also parameter of any type.

GriÆn has been designed trying to combine the safety of compile-time type

checking with the exibility of declaration-less programming by inferring type in-

formation from the program rather than insisting on extensive declarations.

A type de�nition in GriÆn introduces either a generative or a non-generative

type. A generative type de�nition de�nes a new type which is distinct from all

other existing types. A non-generative type de�nition associates a name with a

type expression. An alt type de�nition in GriÆn introduces a generative type.

The rules for both generative and non-generative types are given in Figure 5.2

Polymorphism

Polymorphism is attractive because it facilitates the implementation of algorithms

that manipulate data regardless of the types of them. GriÆn supports polymorphic

types | types that are universally quanti�ed in some way over all types. Parametric

polymorphism is a special kind of polymorphism in which type expressions can be

parameterized.

A polymorphic function can be applied to arguments of di�erent types. As an

example of an user-de�ned polymorphic function that operates on lists, consider

the problem of counting the number of elements in a list:
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� ::= c type constant

j � [�; : : : ; � ] type application

te ::= id

j te[te; : : : ; te]

j �x:te

c =2 �

�� type foo = alt : : : ) �[foo 7! c]
(generative types)

�� te : �

�� type x = te ) �[x 7! � ]
(non-generative types)

Figure 5.2: Type rules for generative and non-generative types

fun length([]) => 0;

| length(x^xs) => 1+length(xs);

where ^ is the GriÆn prede�ned list constructor. The de�nition is almost self-

explanatory: the length of the empty list is 0, and the length of a list whose �rst

element is x and remainder is xs is 1 plus the length of xs.

Bounded polymorphism and classes

Unconstrained polymorphism is too liberal in some sense; a polymorphic function

knows nothing about the structure of its parameters, nor what operations can be

85



applied to them. In bounded polymorphism, type variables are constrained to range

over a certain domain, as opposed to in unconstrained universal polymorphism

where type variables can be instantiated to any type. A simple example of bounded

polymorphism is the equality problem. There are many types for which we would

like equality de�ned, but some for which we would not. For example, comparing

the equality of functions is undecidable, whereas we often want to compare two lists

for equality. To highlight the issue, consider this de�nition of the in�x operator

function in which tests for membership in a list:

fun x op in ([]) => false

| x op in (y^ys) => (x=y) or (x in ys)

Recall that ^ is the list constructor. For stylistic reasons, operators like in are

de�ned in in�x form. Intuitively speaking, the type of in should be: � ! list � !

bool. But this would imply that = has type �! �! bool, though we just mentioned

we do not expect = to be de�ned for all types. Even if = were de�ned on all types,

comparing two lists for equality is very di�erent from comparing two integers. In

this sense, = is expected to be overloaded to carry out these various tasks.

In GriÆn, classes provide a structured way to control ad hoc polymorphism (or

parametric overloading) [43]. Classes conveniently �xes both problems by allowing

us to declare which types are instances of a certain class, and to provide de�nitions

of the overloaded operations associated with a class. For example,

class Eq = ffun op = (mytype;mytype) : bool;g;

Class Eq denotes the set of all types such that there is an operator = de�ned which

takes two parameters of that type and returns a value of boolean type.
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We can now use the Eq class to re�ne the function de�nition of in mentioned

above:

fun [t::Eq] (x:t) op in ([]:list[t]) => false

| x op in (y^ys) => (x=y) or (x in ys)

The parameter can be of any type t that is in the set designated by class Eq. The

polymorphism of the function in is suitably bounded by the class mechanism.

Abstract data types

Abstract data type (ADT) supports the information hiding principles and control

access. Information hiding principles refers to that one must provide the intended

user with all the information needed to use the module correctly and nothing more;

the implementor is furnished with all the information needed to complete the mod-

ule and nothing more.

ADT is broken into two parts { an interface speci�cation and a body. The

interface speci�cation de�nes the interface between the inside and the outside of

the ADT; it is e�ectively a contract between the user and the implementor of the

ADT. The body may contain local functions (helper functions), variables, types

needed by the implementation.

In GriÆn, the class facility seen above is used to specify the interface of an

ADT, and the body of an ADT appears in the de�nition of the type.

Parameterized classes and types

GriÆn classes and types can be parameterized by other types (including parameter-

ized types) for richer expressiveness. Parameterized types (classes) are derived by
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applying type (class) constructors to appropriately constrained type parameters. It

is desirable to have a suÆciently powerful type system in a programming language

to facilitate the de�nitions of common aggregate types; parameterized types and

classes turn out to be the instruments for such purpose in GriÆn.

We should mention that there are problems in deciding, in general, when two

parameterized recursive type de�nitions represent the same type. Marvin Solomon

[80] described the problem and a reasonable solution which involves restricting the

form of parametric type de�nitions. GriÆn's type system observes these restrictions

to avoid the semi-decidability problem.

5.1.5 Type equivalence

GriÆn uses structural equivalence for all types except when the keyword new is

used in generative type de�nitions. Sometimes it is useful to introduce a new type

which is similar in most respects to an existing type but which is nevertheless a

distinct type. If t1 is a type,

type t2 = new t1;

introduces a new type t2 with the same operations as t1 but there are no interop-

erations between t1 and t2.

5.1.6 Concurrency

Concurrency in GriÆn [3] is achieved via the use of threads and channels which

are generalization of Ada tasks and entries. Threads provide concurrent execution

while channels provide communication and synchronization between threads.
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Thread variables are declared in the same manner as any other variables. Fol-

lowing is an example of thread creation by using thread expressions:

type intThread = thread[int];

var t: intThread = thread(1+f(x));

in which a new thread, t, is created to evaluate 1+f(x) concurrently with the

current thread.

There are several prede�ned operations for thread in GriÆn, including status(t),

which indicates if t is still being executed, abort(t), which causes t to be aborted,

and value(t) which blocks until t is �nished and then returns t's associated value.

GriÆn threads communicate via channels. Channels are passive concurrent-

access data structures that provide bidirectional anonymous communication be-

tween multiple senders and multiple receivers. Channels may be either synchronous

or asynchronous. Both threads and channels are �rst-class objects which can be

passed as parameters, returned as values.

Here are some examples of sending and receiving on channels:

var ach : channel[int];

var sch : channel[int,real];

send(ach,1);

recv ach(t) => foo(t); end;

r1 := send(sch,1);

r2 := sch(2); -- just like an Ada entry call

recv ach(i) => i+3.0; end;

The variable ach is a asynchronous channel variable of type channel[int], on
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which nonblocking send and recv can be performed. The next declaration creates

a synchronous channel, sch, over which integers are sent. The recv statement waits

for a message to be sent to a channel and then executes the body of the recv. The

statements to be obeyed during a rendezvous are described in the body of recv,

between => and the keyword end. After the end there may be further statements;

they are executed outside the critical region.

GriÆn provides a select statement which allows a thread to wait for a message to

arrive at one of several possible channels. A more general form of select statement

includes the use of the guarding conditions. Each branch of the select statement

commences with

when condition => : : :

and is then followed by a recv statement. Each time the select statement is

encountered all the guarding conditions are evaluated. The behavior is then as for

a select statement without guards but containing only those branches for which

the conditions were true.

5.1.7 Iterators, generators, and comprehension expressions

In this section, we give a formal introduction to comprehension expressions, which

will be used in later discussion (Section 7.12). The generalization of aggregate

(set, map, bag, list, etc.) comprehension is monoid comprehension [17]. A GriÆn

generator can be depicted as a monoid homomorphism [16]. In universal algebra a

semigroup is a set U together with an associative binary operation � : U �U ! U.

The set U is called the universe (short for universe of discourse in formal logic) or

carrier set of the semigroup. A monoid is a semigroup with an identity element;
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thus a monoid is not allowed to be empty: it must contain at least an identity

element. If S and T are semigroups with binary operation � and 
 respectively,

a function h : S ! T is a homomorphism between S and T if for all s; s0 2 S,

h(s � s0) = h(s) 
 h(s0). Homomorphism between monoids preserves the identity

elements: if e is the identity element of S, h(e) must be the identity element of T .

The aggregate generator is used to specify that a certain calculation is to be

performed for each of the elements in a given aggregate object. Common examples

includes higher-order functions map and various �lter functions.

An example helps illustrate the relationship between GriÆn generators and ho-

momorphism between monoids. Consider the problem of summing all the elements

of an integer set. In SETL, the expression /+S denotes the sum of all the ele-

ments of set S, where = is a reduction operator. Following the notation used above,

the set expression fa1; : : : ; ang can be modelled with the monoid S de�ned in

Figure 5.3, where [ (the binary operator) is the set union operator and N (the

universe) is the set of integers. The set itself can be apprehended constructively

as a1 � (a2 � : : : (an � e) : : : ), in which � is [. The reduction operator /+ is an

homomorphism mapping monoid S to the monoid T (also de�ned in Figure 5.3).

Using the notations above, we derive:

fa1; : : : ; ang = a1 � (a2 � : : : (an � e) : : : )
=+

====)) a1 
 (a2 
 : : : (an 
 h(e)) : : : ) = a1 +N : : :+Nan

The viewpoint is similar to that of the abstract list traversal operations foldleft

and foldright in ML. ML's foldleft and foldright only work on of lists. Grif-

�n generators can be de�ned for all aggregate types to allow concise algorithmic

programming.
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U : N

� : [

e : �

Monoid S

====))

U
0 : N


 : +
N

h(e) : 0

Monoid T

Figure 5.3: Monoid homomorphism

Generators are used in many GriÆn constructs. For example, they are used in

aggregate comprehension expressions to form other aggregates, in loop expressions,

or combining with quanti�ers to build useful queries.

A common query in programming contexts is: do all the objects in an aggregate

satisfy some stated criterion? Queries of this kind would be expressed in GriÆn by

means of constructs such as the following:

forall x in s1, y in s2, z in s3 | guardCondExpr

The guard expression guardCondExpr is used to test each expression as generated,

with the generator terminating yielding false when a false value is encountered (in

this case, x, y and z get the value unde�ned); otherwise yielding the value true.

Similarly, in

exists x in s1, y in s2, z in s3 | guardCondExpr

the construct searches the aggregate of all x in s1, y in s2, z in s3 for values

satisfying the guard condition guardCondExpr. If any such values are found, then
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it yields the value true and the variables x, y and z are instantiated to appropriate

values; otherwise it returns false and leaves x, y and z unde�ned.

In fact, GriÆn generators are more general than what is mentioned above: they

do not have to be associated with aggregates. For example, the generator that

produces the �rst 50 even integers is:

f i : 1..100 | even(i) g

where even is a boolean-valued predicate with a single integer parameter.

5.1.8 Exceptions

Exception is a mechanism to handle deviant conditions, so errors can be signalled

and trapped. When an exception is raised in GriÆn, it is transmitted by all func-

tions on the stacks until it is caught by an exception handler. An exception handler

tests for particular errors by pattern-matching so it is similar to a case expression.

Unlike Ada, GriÆn exceptions can return values. The exception handler speci�es

what to return for each kind of exception. An exception name in GriÆn is a con-

structor of the built-in type exn. There is one major di�erence between a case

expression and a exception handler: if no pattern matches, then the handler prop-

agates the exception rather than raise the built-in exception Pattern matching

failure. Exceptions can be viewed as objects of a datatype with a unique prop-

erty: its set of constructors can be extended.

5.1.9 Pattern matching

In GriÆn, pattern matching [33, 44, 46] is used in function de�nitions, lambda

expressions, bindings, and case expressions. Patterns are linear in GriÆn. Because
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GriÆn allows user-de�ned deconstructors, patterns may overlap, meaning that more

than one pattern can match the same subject (or subject expression). In case

ambiguity occurs we impose ordering | the order in which the patterns are written

down to decide which rule to apply. Shown in Figure 5.4 is an example that

illustrates the overlapping resulting from user-de�ned deconstructors.

GriÆn allows the layered pattern syntactic constructs, which are of the form v

as P where v is an identi�er and P is a pattern. As far as matching is concerned,

it is equivalent to P. To implement the layered pattern the only extra work is to

update the environment by binding v to p if the pattern matching succeeds.

type t = alt fa,b,cg;

fun ~ab(x) =
if x=a or x=b
then : : :
else : : :

case exp of
ab => "ab" ||
a => "a" ||
b => "b"

Figure 5.4: Overlapping pattern in GriÆn

In GriÆn, a function de�nition de�ned by a set of pattern matching equations

is as follows:

fun foo P0 => E0;

| foo P1 => E1;

...

| foo Pn�1 => En�1;
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5.1.10 Extensible records

Practical languages are less exible in the operations for record manipulations.

For example, they do not support polymorphic operations on records | such as a

general �eld selector function that extracts a value from any record that has an

�eld l.

In ML, the polymorphic function

fun foo r = #l r;

is not allowed because it assumes a exible record and its principal typing scheme

requires consistent treatment of polymorphic functions.

Wand [90] introduced the concept of row variables to allow incremental construc-

tion of record types. Rows are of the form fjl1 : �1; : : : ; ln : �njg where li 0s are

labels and �i
0s are their associated types; empty record is denoted by fj jg. Record

types are obtained by preceding rows with the symbol Rec and variant types are

constructed using Var; the situation is similar between these two as far as type

system is concerned so we only address the issues of records hereafter. Intuitively,

a record of type Recfjl : � j rjg is like a pair whose �rst component is a value of

type �, and whose second component is a value of type Rec r. Repeated use of any

label within a particular row is disallowed. According to the formulation above the

following two type expressions denote the same type

fjl1 : �1; : : : ; ln : �njg = fjl1 : �1 j : : : j fjln : �njg j fj jg jg

GriÆn record extension is based on the work described in [38] where the authors

present a way to support polymorphism and extensibility over record type, type
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inference and compilation. Note that two record types are considered the same in

GriÆn if they include the same �elds, regardless of the order in which those �elds

are listed.

5.2 Macrosemantics speci�cation of GriÆn

The complete macrosemantic description of GriÆn is given in Appendix A. The

description is processed by a macrosemantics processor, which yields a static ana-

lyzer for GriÆn in ML. The majority of the macrosemantic description comprises

of semantic equations of the form

semFunName [[ syntacticConstruct ]] otherParams

= semEqnRHS

where semFunName is the name of the current semantic equation, syntacticConstruct

is the syntactic construct de�ned by the semantic equation, otherParams denotes

additional parameters (environment, etc.) of the function, semEqnRHS is the right-

hand-side of the semantic equation containing information about the static analysis

of syntacticConstruct, the actions of the components of syntacticConstruct, and the

action representing the current syntactic construct.

Note that the type system used in G2A is parameterizable, i.e., we have sepa-

rated the static analyzer from the type system in such a way that it is possible to

plug in di�erent type systems as long as they satisfy the requirements laid down

by the interface for the static analyzer. This is a useful feature for experimenting

with various type systems especially in the development stages of a prototyping

language.
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Chapter 6

Overview of Ada95 as a target

language

The programming language Ada (after Ada Augusta, the Countess of Lovelace) is

a high-level programming language originally sponsored by the U.S. Department of

Defense for use in the so-called embedded system application area. First published

in 1980, the unconventional part of Ada includes concepts such as data encapsula-

tion, exception handling, concurrency, and generic subprograms. The conventional

part of Ada includes concepts present in then existing high-level languages such as

Pascal, C, PL/I, and Fortran.

Ada95 [1, 2, 7] is the revised version of it designed and standardized to support

and strongly encourage widely recognized software engineering principles: relia-

bility, portability, modularity, reusability, eÆciency, maintainability, information

hiding, abstract data types, genericity, concurrent programming, object-oriented

programming, etc.
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A brief introduction to Ada and Ada95 are given in this chapter. There is

considerable semantic gap between the source language GriÆn and target language

Ada95 that we experiment with in this thesis work. In the following sections we

will address certain features in GriÆn that do not translate straightforwardly to

Ada.

Although high performance is not our primary goal, the performance of the code

generated should compare favorably with the output of other language translators

by carefully choosing the semantic algebra, which implements the operators in the

action notation terms. Various optimization techniques can be applied to the target

code through a term-rewriting system to further improve the eÆciency.

6.1 Ada83

Ada (often referred to as Ada83 nowadays) will continue in use in its own right

for many years. Ada95 has been designed so that the great majority of Ada83 will

behave identically as their Ada95 programs to maximize compatibility.

6.1.1 The traditional language constructs

We will briey discuss the traditional programming language aspects of Ada83 in

this section.

Type declarations

A type in Ada is either an elementary type or a composite type. Elementary

types cannot be decomposed further whereas composite types are composed of a

few of components. Ada provides standard elementary types for integers, oating
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point numbers, characters and booleans. In addition, it provide four kinds of user-

de�ned types: enumeration types, array types, record types and pointer types

(called access types in Ada). There are prede�ned functions that apply to these

types.

Ada adopts name equivalence to determine the equivalence of type expressions

(see Section 7.1 for more details).

Data declarations

A type is a set of values plus a set of operations that can be performed upon these

values. An object is an entity with which a type is associated; a value of this type

can also be associated with the object. An object is created and its type speci�ed

by means of a declaration. All objects must be explicitly declared in Ada. An

initial value may be given to the object in the declaration (which will override a

default initial value associated with the object type). There are two kinds of objects

| constants and objects. The value given to a constant cannot be changed, while

that given to a variable can be changes.

Expressions

Expressions are formed using operators and operands. In evaluating an expression,

operators with a higher precedence are applied �rst. Operators having the same

precedence are applied in textual order from left to right. Parentheses may be used

to change the order of evaluation imposed by the precedence of the operators.
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Control statements

The control statements found in Ada are of the following kinds: assignment state-

ments, procedure statements, conditional statements, iteration statements, and

control ow statements. In addition to permitting assignment to structured vari-

ables, Ada allows assignments to parts of arrays (called slices).

Subprograms and parameters

Subprograms in Ada come in two varieties | procedures and functions. A pro-

cedure is executed for its side e�ect (e.g., changing the values of the in out pa-

rameters, supplying values to out parameters or updating global variables) and

functions are used to return values.

Subprograms are invoked (executed) by means of subprogram calls. A procedure

call is a statement, while a function call is an operand in an expression. Functions

in Ada can only have in parameters. Ada supports name parameter association,

which enables the programmer to disregard the order of subprogram parameters

and explicitly associates a particular value with the desired parameter.

Scoping rules

In Ada, visibility of names comes from the current and outer scopes. The scope

rules for blocks are identical to those for procedures and functions. The naming

convention for task entries is the same as that for record �elds: a particular entry

is selected by pre�xing its name with the task name.
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6.1.2 Language support for software engineering issues

Software engineering is concerned with the design, organization, implementation

and maintenance of large systems. The main concern of software engineering is the

complexity that results from the largeness of these systems.

Modularity

For a large software system, modularity support from the language in order to

partition the system into separately manageable pieces is indispensable. Ada sup-

ports this need in two ways: by program unit constructs and separate compilation.

Besides the traditional modularization constructs of subprograms (i.e., procedures

and functions), Ada provides the task and package constructs. The latter is partic-

ularly important because it enables the designer to group related program pieces

into larger units.

A package consists of two distinct parts: the visible speci�cation and the im-

plementation body. The visible part is accessible to the user of the package and

may contain declarations of types, constants, data objects, subprograms, tasks, and

even packages. The implementation, however, is hidden from the user.

Concurrency

Systems that require concurrent processes are very diÆcult to write correctly in

languages that do not support concurrency. Problems arise in areas such as access to

shared data and sharing resources. Ada was one of the few programming languages

that provides support for concurrent processes in the language itself in early 1980s.

The construct supporting concurrency in Ada is the task construct. Structurally
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a task is similar to a package: it consists of a visible part and an implementation

body. Notwithstanding the similarities between tasks and packages, there are two

basic di�erences: in contrast to a package body, a task body de�nes an independent

activity and the task interface de�nes a number of entry points in the task.

Exception handling

A signi�cant part of a large software system is concerned with handling errors.

The Ada language was designed for programs whose reliability is essential. Such

programs must be capable of responding in a sensible way to unexpected situations.

Depending on the application, this sensible response may entail terminating in a

well-de�ned state, issuing a warning and continuing normal execution, retrying

some computation using a di�erent algorithm, or continuing execution in a degraded

mode, for example.

In the Ada language, an unexpected situation is called an exception. The re-

sponse to an exception is speci�ed by a handler for that exception. Handlers can

be speci�ed at the end of subprogram body.

6.2 The target language: Ada95

Among the new additions of Ada95, protected types are particularly useful in the

translation of GriÆn threads and channels. Ada95 introduces a low overhead, data-

oriented synchronization mechanism based on the concept of protected objects.

The operations on a protected object allow two or more tasks to synchronize their

manipulations of shared data structures. From the implementation perspective, a

protected object is designed to be a very eÆcient conditional critical region. The
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protected operations are automatically synchronized to allow only one writer or

multiple readers. The protected operation are de�ned using a syntax similar to

a normal subprogram, with the mutual exclusion of the critical region happening

automatically on entry, and being released automatically on exit.

6.2.1 Object-oriented features

A brief introduction to the object-oriented paradigm is �rst given in this section,

followed by a quick overview of the object-oriented features in Ada95. Unless

otherwise stated, class in this section refers to the concept used in object-oriented

paradigm rather than GriÆn's class. Over the past two decades, the essential

concepts of object-oriented paradigm, namely inheritance and polymorphism, have

emerged as mechanisms that can guarantee interface compatibility at compile time

while deferring the binding to particular types or subprogram implementations to

run time. A major advantage of this approach is the reuse of existing reliable

software without the need for modi�cation, recompilation, and retesting.

In object-oriented design and programming, the most fundamental concept is

that the program is a model of some aspects of reality. The classes in a program rep-

resent the essential notion of the \reality" being modelled. Real-world objects and

artifacts of implementation used by the designers and programmers are represented

by objects of these classes.

The concept of derived classes and its associated language mechanism is to

express hierarchical relationship, i.e., the commonality between classes. Derived

classes provide a simple, extensible, and eÆcient mechanism for de�ning a class

by adding facilities to an existing class without reprogramming or recompilation.
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Inheritance is the sharing of attributes and operations among classes of objects

based on a hierarchical relationship. Generalization is the relationship between

a class and the re�ned versions of it. Generalization and inheritance are powerful

abstractions for sharing similarities among classes while preserving their di�erences.

The class being re�ned is called the superclass and each re�ned version is called a

subclass. Attributes and operations common to a group of subclasses are attached

to the superclass and shared by each subclass. Each subclass is said to inherit

the features of its superclass. Generalization and inheritance are transitive across

arbitrary number of levels. A superclass is sometimes called a base class or a parent

class, and a subclass a derived class or a child class. A subclass extends its superclass

and thus can be used in places where the superclass is legal.

This is a form of polymorphism: an object of a given class can have multiple

forms, either as a member of its own class or any superclass it extends. The run-

time choice of functions (procedures) taking argument belonging to a superclass is

called dynamic dispatching and is key to the exibility of class-wide programming.

A class can be de�ned broadly and then re�ned into successively �ner subclasses.

Each subclass incorporate, or inherits, all of the properties of its superclass and adds

its own unique properties. The properties of the superclass need not be repeated in

each subclass. The ability to factor out common properties of several classes into

a common superclass and to inherit the properties from the superclass can greatly

reduce the repetition within design and programs and is one of the main advantages

of an object-oriented system. Inheritance has become synonymous with code reuse

within the object-oriented programming community. Often code is available from

past work (such as a library) which the developer can reuse and modify, where
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necessary, to get the precise desired behavior.

Type extension of Ada83 builds upon the concept of derived types. A derived

type inherits the operations of its parents and could add new operations but not new

components. The whole mechanism is thus somewhat static. By contrast, Ada95

allows extension to a type by adding new components, thus it becomes much more

dynamic and exible.

In Ada95, tagged types are record types which may be extended on derivation.

As the name implies, values of tagged types carry a tag at run time. With each

tagged type T there is an associated class wide type T'class, whose values are the

values of T and all its derived types. A subprogram that takes a class-wide argument

cannot know of the speci�c types because it needs to work if a new tagged type

is added to the class. This runtime choice of subprograms is the key to achieve

dynamic dispatching in Ada95.

Some languages permit a subclass to be derived from more than one superclass.

These languages are said to support multiple inheritance. Ada95 does not sup-

port the general form of multiple inheritance. However, some forms of multiple

inheritance can be simulated with existing language features.

Multiple dispatching refers to that the dynamic dispatching can depend on more

than one argument. To avoid run-time ineÆciency and adding another dimension

of complexity to the language semantics, multiple dispatching is not supported in

Ada95 either.
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6.2.2 Type system

Tagged records in Ada95 are generalized record types which can be extended and

form the basis for object-oriented programming. A class-wide type is declared

implicitly whenever a tagged record type is de�ned. Protected types are composite

types that provide synchronized access to the shared data components via a number

of protected operations. Objects of protected types are passive and do not have a

distinct thread of control; the mutual exclusion is provided automatically.

106



Chapter 7

Target code generation

In this chapter we outline the translation techniques used to deal with some of the

semantic di�erences between GriÆn and Ada95, such as structural versus name

equivalence of type expressions, garbage collection, closure conversion, exception,

and concurrent constructs. The translations of certain GriÆn features such as

iterators, generators, comprehension expressions, and pattern matching that are

not straightforward are detailed in the form of macrosemantic equations.

7.1 Structural equivalence versus name equivalence

Depending on the treatment of names, two divergent concepts of equivalence of

type expressions arise. Name equivalence views each type name as a unique type.

Under structural equivalence, names are replaced by their de�nitions, so two type

expressions are considered structurally equivalent if, after all type names have been

substituted out, they represent two structurally equivalent type expressions. For
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example, in the following declaration

type t = �

t denotes a new type distinct from any other type in name equivalence, whereas

under structural equivalence, it is merely a synonym of the type expression � .

For convenience of programmers, structural equivalence is superior in some

cases. On the other hand, name equivalence simpli�es the decidability and complex-

ity issues of a type system. Therefore, even though most programming languages

primarily have either structural equivalence or name equivalence, a hybrid form of

both notions is implemented for practical considerations.

GriÆn adopts structural equivalence while Ada uses name equivalence. Let

�1 � �2 denote the type expression �1 is structurally equivalent to �2. Note that in

GriÆn, two recursive types [61] are never structurally equivalent, because the only

way to introduce a recursive type is through the algebraic type former alt, which

always results in a generative type. For basic type expressions, substitutions of

type expressions for type names is enough to check whether two type expressions

are structurally equivalent or not. It is then straightforward to inductively verify

the structural equivalence of compound type expressions.

G2A performs whole-program transformation, i.e., it needs all the GriÆn pro-

gram components available before the translation process starts. We �rst collect

all the structurally equivalent type expressions, �1; : : : ; �n, in the GriÆn program.

Since structural equivalence induces an equivalence relation among type expres-

sions,

�1 � : : : � �n
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implies

[�1] = : : : = [�n]

where [� ] designates the equivalence class (or the \type", \abstract type") of the

type expression � . A unique type name t is introduced in the target code (most

likely to be wrapped in a Ada package) for each equivalence class, and all occur-

rences of �1; : : : ; �n in the source programs are replaced with the type name t in

the target program.

Note that after this stage of transformation, each type check only takes constant

time in the target code.

7.2 Coercion calculus based translation of existential types

Existential types [61, 20] can be used to model implementations of abstract data

types. An existential type asserts the existence of objects that have a particu-

lar instance of the type, without revealing the type information of the particular

instance, thereby making the usage of the existential type independent of any par-

ticular instance type.

A coercion [60, 41, 40] is a conversion from one type to another, which can

be explicit or implicit. According to [4], coercions are limited in many languages

to situations where no information is lost in principle; e.g., an integer may be

converted to a real but not vice-versa. In practice, however, loss is possible when a

real number must �t into the same number of bits as an integer.

Two primitive operations in GriÆn are used to construct and deconstruct objects

of an existential types: packing (or wrapping, closing) introduces the existential
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quanti�er 9 into the type of objects, and unpacking (or unwrapping, opening)

eliminates the existential quanti�er 9. Operationally, these two operations do not

actually change the value of an object; they behave like type coercions.

According to the GriÆn syntax given in Section 5.1.1, packing and unpacking

have the following form:

pack hid = �i; in e end pack

unpack e as p in e end unpack

The operation pack is the only mechanism for creating objects of existential

types in GriÆn. Objects of an existential type must be unpacked before they can

be used. In GriÆn, pack and unpack are the only two primitive operations that

can manipulate objects of existential types. A simple example demonstrating the

use of existential types is given in Figure 7.7.

We will discuss the translation of existential types in their full generality, i.e.,

with an arbitrary number of 9-quanti�ed type variables, and nested at di�erent

levels. There are several possible choices for the translation; e.g., converting all

uses of an existential type to a corresponding universal type appearing at the dual

positions [40]. That is, a use of the existential type 9�:Q[�] such as (9�:Q[�])! �,

where � =2 freevar(�) (so no escaping is possible), is converted to its equivalent form

8 �:(Q[� ] ! �). This equivalence can be intuitively understood from the syntax

of GriÆn unpack expression (the only way to manipulate objects of an existential

type in GriÆn)

unpack e1 as p in e2 end unpack

where e1, p, e2 are of types 9�:Q[�], Q[�], and �, respectively. The part \as p

in e2" can be viewed as a function �p:e2, which takes an argument of Q[�] and
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returns a value of type �, universally quanti�ed over type variable �. The entire

unpack expression is thus an application of this function to expression e1, therefore

of type 8 �:(Q[� ] ! �). In this translation scheme, objects of type Q[� ] which is

an instance of 9�:Q[�] in the source program are mapped to objects of the type

T[[Q[� ]]] in the target program, where T[[Q[� ]]] denotes the translation of Q[� ]. The

drawback of this approach, however, is that objects of a certain existential type in

the source program are no longer of the same type in the target program. Therefore,

it violates our goal of type-preserving translation|objects of the same existential

type in GriÆn should be translated into the same type in Ada95. Due to this

problem, we explore an alternative approach by using the object-oriented features

in Ada95 to give a type-preserving translation.

If Q is a term and � is a substitution, �Q is a term obtained by applying substi-

tution � to Q. We treat substitutions as functions. For example, when substitution

� = [x 7! y] is applied to a term Q, �Q is the term obtained by substitutes y for

all free occurrences of variable x in Q.

The general form of a GriÆn existential type is 9 ~�:Q[~�], where ~� = (�1; : : : ; �n),

and Q[~�] is a type expression with possible free occurrences of type variables

�1; : : : ; �n. Essentially, for each GriÆn existential type (modulo �-conversion)

9~�:Q[~�], where ~� = (�1; : : : ; �n), a corresponding vector of abstract base types

~B� = (B�1 ; : : : ;B�n) denoting all instances of ~�, is de�ned in Ada95. All objects

of the type 9~�:Q[~�] in GriÆn are mapped to objects of types T[[[~� 7! ~B�]Q]] (thus

all of them have the same type in the target code), with the 9 quanti�er removed

and �i substituted by B�i , 8 i 2 1 : : : n.

Given the syntax of the source and target types in Figures 7.1 and 7.2, we for-
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mulate the type translation that eliminates the existential quanti�er in Figure 7.3.

Here, we assume that all type variables occurring in the source type expression

are introduced by an existential quanti�er, so we can translate them into the cor-

responding base type in the target program. For other type variables, since they

remain unchanged while the packing and unpacking operations are applied, they

can be simply be treated as type constants.

Before we proceed with the translation of existential types (along with the as-

sociated packing and unpacking operation), here we give the outline of deriving the

translation:

� First, we need to determine the general syntactic relationship between the

translations of two source types related by the packing/unpacking operations,

i.e., an existential type 9~�:Q[~�] and an arbitrary instance Q[~� ] of it. We prove

a suitable Substitution Lemma to show that the translation of the instance

is a substituted form of the translation of the existential type. The problem

of translating the packing and unpacking operations in the source program is

then reduced to the problem of �nding invertible coercions between these two

target types.

� Next, we present a general approach to inductively construct coercions be-

tween translations of an existential type and its instances, given the base

coercions between translations of the 9-bound type variable and a ground

type. Such base coercions are constructed using the class hierarchy in Ada95.

The scheme to translate existential types is illustrated in Figure 7.4. Here,

without loss of generality, we concentrate on the case where the existential quan-

ti�er introduces only one type variable � (in the implementation, we use the more
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� ::= � (type variables)

j K
Grf

(primitive types)

j �1 ! �2 (function types)

j 9~�:� (existential types)

j �1 � � � � � �n (product types)

Figure 7.1: GriÆn source types (with 9 quanti�ers)

� ::= B� (base types)

j K
Ada

(primitive types)

j �1 ! �2 (function types)

j �1 � � � � � �n (product types)

Figure 7.2: Ada95 target types (without 9 quanti�ers)

general form of existential types that quanti�es over a vector of type variables

as a notational convenience, since though type 9~�:� is isomorphic to the type

9�1: � � � :9�n:� , the former form incurs less run-time cost than the latter because

fewer packing/unpacking operations are needed). The type �, an arbitrary ground

type, is wrapped by the packing operation. As usual, the substitution [� 7! �] �

is non-capturing. The implementation essentially mimic the e�ect of packing and

unpacking using a pair of coercion functions embed and proj. In order to do so,

we need to determine the relationship between the two target types.

Lemma 7.1 (Substitution Lemma). Given source type 9�:� , ground source type
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T[[�]] = B�

T[[K
Grf

]] = K
Ada

T[[�1 ! �2]] = T[[�1]]! T[[�2]]

T[[9~�:� ]] = T[[� ]]

T[[�1 � � � � � �n]] = T[[�1]]� � � � � T[[�n]]

Figure 7.3: Existential type translation (removing 9 quanti�ers)

GriÆn 9�:�

unpack
//

T[[ ]]

���
�
�
�
�
�

� [�=�]
pack

oo

T[[ ]]

���
�
�
�
�
�

Ada T[[9�:� ]]
proj //

T[[� [�=�]]]
embed

oo

Figure 7.4: Schematic view of the translation of existential types

�, and corresponding abstract base type B�, we have

T[[[� 7! �]� ]] = [(T[[�]]) 7! B�](T[[� ]])

Proof. By structural induction the proof splits into �ve cases according to the

structure of type expression � :

� ::= �0. There are two subcases:

� �0 = �.

lhs = T[[[� 7! �] �0]] = T[[[� 7! �] �]] = T[[�]]

rhs = [(T[[�]]) 7! B�](T[[�0]]) = [(T[[�]]) 7! B�](T[[�]]) = [(T[[�]]) 7! B�]B� = T[[�]]
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� �0 6= �.

lhs = T[[[� 7! �] �0]] = T[[�0]] = B�0

rhs = [(T[[�]]) 7! B�](T[[�0]]) = T[[�0]] = B�0

� ::= K
Grf
.

lhs = T[[[� 7! �]K
Grf
]] = T[[K

Grf
]] = K

Ada

rhs = [(T[[�]]) 7! B�] (T[[KGrf
]]) = T[[K

Grf
]] = K

Ada

� ::= �1 ! �2. By induction hypothesis,

T[[[� 7! �] �1]] = [(T[[�]]) 7! B�](T[[�1]])

T[[[� 7! �] �2]] = [(T[[�]]) 7! B�](T[[�2]])

so

lhs = T[[[� 7! �](�1 ! �2)]]

= T[[[� 7! �]�1 ! [� 7! �]�2]]

= T[[[� 7! �]�1]]! T[[[� 7! �]�2]]

= [(T[[�]]) 7! B�](T[[�1 ]])! [(T[[�]]) 7! B�](T[[�2 ]])

= [(T[[�]]) 7! B�](T[[�1 ]]! T[[�2 ]])

= [(T[[�]]) 7! B�](T[[�1 ! �2]])

= rhs

� ::= 9�:� 0. By induction hypothesis,

T[[[� 7! �]� 0]] = [(T[[�]]) 7! B�](T[[�
0]])
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therefore

lhs = T[[[� 7! �](9�:� 0)]]

= T[[9�:([� 7! �]� 0)]]

= T[[[� 7! �]� 0]]

= [(T[[�]]) 7! B�](T[[� 0]])

= [(T[[�]]) 7! B�](T[[9�:�
0 ]])

= rhs

� ::= �1 � � � � � �n. By induction hypothesis,

T[[[� 7! �]�i]] = [(T[[�]]) 7! B�](T[[�i ]]) i 2 f1; : : : ; ng

so

lhs = T[[[� 7! �](�1 � : : :� �n)]]

= T[[[� 7! �]�1 � : : :� [� 7! �]�n]]

= T[[[� 7! �]�1]]� : : :� T[[[� 7! �]�n]]

= [(T[[�]]) 7! B�](T[[�1 ]])� : : :� [(T[[�]]) 7! B�](T[[�n]])

= [(T[[�]]) 7! B�](T[[�1 ]]� : : :� T[[�n]])

= [(T[[�]]) 7! B�](T[[�1 � : : :� �n]])

= rhs

In all cases of � we have shown T[[[� 7! �]� ]] = [(T[[�]]) 7! B�](T[[� ]]). By the

principle of structural induction (a special case of well-founded induction [93]), we

conclude that the induction hypothesis holds for all � .

For the packing and unpacking operations in Figure 7.4, we need to �nd a pair
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of coercions between T[[9�:� ]] (T[[� ]]) and T[[[� 7! �]� ]] ([T[[�]] 7! B�] (T[[� ]])). In the

following, we will show how to implement this pair of coercion functions by

1. Using the object-oriented features in Ada95 to construct base coercions be-

tween a ground type C (T[[�]] in our case) and a base type B�.

2. Based on these base coercions, inductively construct the coercions between Q

and [C 7! �]Q for an arbitrary target type Q (T[[� ]] in our case).

7.2.1 Base coercions through class hierarchy

A brief introduction to the object-oriented programming features of Ada95 is given

in Section 6.2.1, which helps to explain the translation algorithm of GriÆn existen-

tial types.

Superclasses and subclasses are operationally related by embedding (embedding

of an element of a subclass into a superclass) and projection (projection of an

element from a superclass to its subclass) as shown in Figure 7.5 1.

In a �-calculus with subtyping, the statement �1 � �2 is traditionally construed

as a semantic coercion function of type [[�1]] ! [[�2]] that projects (extracts) the \�2

part" of an element of �1. Embedding is also called upcasting or expanding, while

projection called downcasting or narrowing. With such an operational understand-

ing of subtyping in mind, it is natural to directly use inheritance to implement

the embedding and projection pair between an a unique abstract base type and an

arbitrary concrete type (implemented as a subclass of the base type).

1In an object-oriented paradigm, the embedding operation is usually implicit, and the projection

operation appears as an explicit type coercion operation.
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base type
B
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derived type
�1
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derived type
�n
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ddIIIIIIIII

: : : : : : : :

Figure 7.5: Superclass and its subclasses

Projection of an element from a superclass to a subclass is not always safe, but

embedding is. The pair can be described as:

projB�i Æ embedB�i = id�i

(embedB�i Æ proj
B
�i
)(x) =

8<
:

x if x : �i

? otherwise

where id� is the identity function on � , proj
�
� 0 is the projection from � to � 0, embed�� 0

is the embedding from � 0 into � , B and �i's are the base and derived types respec-

tively.

G2A only translates type-correct GriÆn programs, where the typing rules for

pack and unpack ensures that a projection function to a type � will only be

applied to a value which is previously embedded from the same type � . In the target

program, every projection proj�� 0 will be performed on a value that was previously

formed by the embedding embed�� 0 . This ensures that the following equation holds

in the target program of a G2A translation (proj Æ embed = id always holds):

embed Æ proj = id
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Indeed, if x = embed(x0), then

(embed Æ proj) x = embed(proj(embed(x0))

= embed((proj Æ embed) x0)

= embed(id(x0))

= x

7.2.2 Coercions for composite types

We present a translation of GriÆn existential types based on a coercion calculus

[41, 40, 94], in which the primitive coercions, i.e., embedding and projection, are

implemented using the object-oriented features of Ada95 (see previous section).

A coercion is the conversion from one type to another. Rather than using the

notation � ! �, we use � ; � to designate the coercion from � to �, to avoid

confusion when we apply coercions to function types. An induced coercion is a

coercion implied inductively by primitive coercions. For instance, if integers are

coercible to reals, the boolean-valued functions of real arguments are coercible to

boolean-valued functions of integer arguments.

Recall that we only need to �nd coercions between target type Q (which corre-

sponds to a source existential type) and target type [C 7! B�]Q (which corresponds

to an instance of the existential type) for the translation of GriÆn existential types.

Theorem 7.1. Let Q be a (target) type expression with possible free occurrences

of type variables B�. Given a concrete type C, if we have projC : B� ; C and

embedC : C ; B� which are a pair of inverse functions, one can induce a pair of

functions EQC : [C 7! B�]Q ; Q and P
Q
C : Q ; [C 7! B�]Q which are inverse of

each other.
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Proof. By structural induction the proof splits into four cases according to the

structure of type expression Q.

Q ::= B�0. There are two subcases:

� �0 = �. De�ne EQC = embedC and P
Q
C = projC . Since embedC and projC

are inverse functions of each other,

E
Q
C Æ P

Q
C = embedC Æ projC = idQ

P
Q
C Æ E

Q
C = projC Æ embedC = id[C 7!B�]Q

E
Q
C and P

Q
C are also inverse of each other.

� �0 6= �. In this case, Q = [C 7! B�]Q = B�0 . De�ne EQC = P
Q
C = �x:x :

B�0 ! B�0 , which are apparently a pair of inverse functions.

Q ::= K. De�ne EQC = P
Q
C = �x:x : K ! K = id. The induction hypothesis is

trivially true.

Q ::= Q1 ! Q2. By the induction hypotheses for type Q1 and Q2, there exist E
Q1

C ,

E
Q2

C , PQ1

C , and P
Q2

C , where

E
Q1

C Æ P
Q1

C = idQ1
and P

Q1

C Æ E
Q1

C = id[C 7!B�]Q1

E
Q2

C Æ P
Q2

C = idQ2
and P

Q2

C Æ E
Q2

C = id[C 7!B�]Q2

De�ne EQC f = E
Q2

C Æ f Æ P
Q1

C and P
Q
Cg = P

Q2

C Æ g Æ E
Q1

C .

(EQC Æ P
Q
C)f = E

Q
C (P

Q
Cf)

= E
Q2

C Æ (P
Q2

C Æ f Æ E
Q1

C ) Æ PQ1

C

= (EQ2

C Æ P
Q2

C ) Æ f Æ (EQ1

C Æ P
Q1

C )

= idQ2
Æ f Æ idQ1

= f
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(PQC Æ E
Q
C )g = P

Q
C (E

Q
C g)

= P
Q2

C Æ (E
Q2

C Æ g Æ P
Q1

C ) Æ EQ1

C

= (PQ2

C Æ E
Q2

C ) Æ g Æ (PQ1

C Æ E
Q1

C )

= id[C 7!B�]Q2
Æ g Æ id[C 7!B�]Q1

= g

Therefore,

E
Q
C Æ P

Q
C = idQ and P

Q
C Æ E

Q
C = id[C 7!B�]Q

Pictorially, this construction of the projection and embedding pair is illus-

trated in Figure 7.6.

Q1

E
Q
C f

//

P
Q1
C

��

Q2

[C 7! B�]Q1
f // [C 7! B�]Q2

E
Q2
C

OO

(a) Construction of EQC

[C 7! B�]Q1

P
Q
Cg //

E
Q1
C

��

[C 7! B�]Q2

Q1
g // Q2

P
Q2
C

OO

(b) Construction of PQC

Figure 7.6: Construction of projection and embedding for function types

This can be expressed directly in Henglein's coercion calculus found in [40] as

c1 : �; �0 c2 : �
0
; �

c1 ! c2 : (�0 ! � 0); (�! �)
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where c1 and c2 are coercions, �, �
0, �, � 0 are type expressions. The induced

coercion c1 ! c2 (! is overloaded to denote coercion construction) is con-

travariant in the signature of the �rst coercion argument (negative position).

Q ::= Q1 � � � � �Qn. By the induction hypotheses for types Q1 to Qn, the follow-

ing equations hold.

E
Qi

C Æ P
Qi

C = idQ and P
Qi

C Æ E
Qi

C = id[C 7!B�]Q i 2 f1; : : : ; ng

De�ne

E
Q
C (x1; : : : ; xn) = (EQ1

C x1; : : : ; E
Qn

C xn) and

P
Q
C (x1; : : : ; xn) = (PQ1

C x1; : : : ;P
Qn

C xn)

Hence

(EQC Æ P
Q
C)(x1; : : : ; xn) = E

Q
C (P

Q
C (x1; : : : ; xn))

= E
Q
C (P

Q1

C x1; : : : ;P
Qn

C xn)

= (EQ1

C (PQ1

C x1); : : : ; E
Qn

C (PQn

C xn))

= ((EQ1

C Æ P
Q1

C )x1; : : : ; (E
Qn

C Æ P
Qn

C )xn)

= (x1; : : : ; xn)

(PQC Æ E
Q
C )(x1; : : : ; xn) = P

Q
C (E

Q
C (x1; : : : ; xn))

= P
Q
C (E

Q1

C x1; : : : ; E
Qn

C xn)

= (PQ1

C (EQ1

C x1); : : : ;P
Qn

C (EQn

C xn))

= ((PQ1

C Æ E
Q1

C )x1; : : : ; (P
Qn

C Æ E
Qn

C )xn)

= (x1; : : : ; xn)

We conclude

E
Q
C Æ P

Q
C = idQ and P

Q
C Æ E

Q
C = id[C 7!B�]Q
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Again, this can also be expressed in the coercion calculus as

c1 : �1 ; �1
0 : : : cn : �n ; �n

0

c1 � : : :� cn : (�1 � : : :� �n); (�1
0 � : : :� �n

0)

where c1; : : : ; cn are coercions, �1; : : : ; �n; �1
0; : : : ; �n

0 are type expressions.

The signature of component type extends covariantly to the signature of the

induced coercion.

By the principle of structural induction, we conclude that the induction hypoth-

esis holds for all Q.

Theorem 7.1 gives a constructive proof for the existence of the induced coercions,

i.e., the packing (EQC ) and unpacking (PQC) operations in GriÆn. They are inverse

of each other, i.e., unpacking a previously packed value gives the original value.

7.2.3 An example

The terms upcasting and downcasting were chosen in the target code in preference

to the set-theoretical projection and embedding, simply because they are more often

used in the programming community,

In order to gain better understanding of the the complete Ada target code

generated, a more abstract \pseudo target code" is �rst given in Figure 7.8.

The existential types and the upcasting functions are typeset in a way to make

the example more apprehensible. The function " is an upcasting function with one

argument. If the argument is a function f of type �2, "�1�2 (f) denotes a function

of type �1. In other words, "�1�2 (f) returns the appropriate upcast version of its

function argument. If the argument is a value of a primitive type, "�1�2 (x) is a base
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-- negation : bool -> int
fun negation true => 0
| negation false => 1;

-- square : real -> real
fun square (r:real) => r*r;

-- inc : int -> int
fun inc (i: int) => i+1;

var x : 9 �; � : � � (� ! �) � (� ! int)
= pack �=bool, �=int in

� � (� ! �) � (� ! int) (false,negation,inc)
end pack;

var y : 9 �; � : � � (� ! �) � (� ! int)
= pack �=real, �=real in

� � (� ! �) � (� ! int) (2.5,square,round)
end pack;

fun foo p => unpack p as (v,f,f') in f' (f v) end unpack;

output(stdOut, foo x); ---- 2
output(stdOut, foo y); ---- 6

Figure 7.7: Example of GriÆn existential type

coercion. The complete de�nitions of the above four wrapper functions along with

the rest of the translation are eshed out in Figure 7.9.

7.3 Type translation

The basic translation schemes of the type formers of GriÆn, namely enum, alt,

thread, channel, function types, and rec are described in the following sections.

When translating GriÆn types, auxiliary de�nitions may have to be generated to

conform to the static semantics of Ada.
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procedure main is
---- essentially no change
function negation(b:boolean) return integer is : : : ;
function square(f:float) return float is : : : ;
function inc(i:integer) return integer is : : : ;

---- quanti�ed type variables appearing in the existential type
type � is abstract tagged null record;
type � is abstract tagged null record;

---- instantiate an existential quanti�ed type variable with concrete type ��
-- (* instance of � *) ---
type �_concrete is new � with

record data : ��; end record;

function downcast(x:�) return �� : : : ;
function upcast(x:��) return � : : : ;

-- (* instance of � *) ---
: : :

type existType is
record

f1 : �;
f2 : � ! �;
f3 : � ! int;

end record;

function foo(p: existType) return integer is
begin return p.f3 (p.f2 (p.f1)); end;

x : existType := (" �boolfalse, " �!�
bool!int(negation), " �!int

int!int(inc));

y : existType := (" �real2.5, " �!�
real!real(square), " �!int

real!int(round));
begin

Int_IO.put(foo(x)); ---- output 2
Int_IO.put(foo(y)); ---- output 6

end main;

Figure 7.8: Pseudo code for the translation of the example existential type

7.3.1 Generative and non-generative types

G2A requires access to all GriÆn programs before translation starts. Essentially

GriÆn has structural type equivalence and Ada has name equivalence. All non-
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with TEXT_IO;
use TEXT_IO;

procedure main is
package Int_IO is new Text_IO.Integer_IO(integer);

------------ existential type variables -------------
generic

type existTypeVar is abstract tagged private;
package ExistTypeVarPkg is

subtype absExistTy is existTypeVar;
type absExistTyPtr is access all absExistTy'class;

end ExistTypeVarPkg;

------------ alpha -------------
type alpha is abstract tagged null record;
package AlphaPkg is new ExistTypeVarPkg(alpha);

------------ beta -------------
type beta is abstract tagged null record;
package BetaPkg is new ExistTypeVarPkg(beta);

------------ concrete existential type -------------
generic

with package AbsExistTyPkg is new ExistTypeVarPkg(<>);
type t is private;

package ExistConcretePkg is
type existConcreteType is new AbsExistTyPkg.absExistTy with

record
data : t;

end record;

function downcast(x: access AbsExistTyPkg.absExistTy'class)
return t;

function upcast(x: t) return AbsExistTyPkg.absExistTyPtr;
end ExistConcretePkg;

package body ExistConcretePkg is
function downcast(x: access AbsExistTyPkg.absExistTy'class)
return t is

begin
return existConcreteType(x.all).data;

end;

function upcast(x: t) return AbsExistTyPkg.absExistTyPtr is
begin

return new existConcreteType'(data => x);
end;

end ExistConcretePkg;

Figure 7.9: Existential type in Ada95
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type beta_2_int_ptr is
access function(x: access BetaPkg.absExistTy'class) return integer;

type alpha_2_beta_ptr is
access function(x: access AlphaPkg.absExistTy'class)
return BetaPkg.absExistTyPtr;

------------ existential type -------------
type existType is

record
f1 : AlphaPkg.absExistTyPtr;
f2 : alpha_2_beta_ptr;
f3 : beta_2_int_ptr;

end record;

------------ package instatiations -------------
package AlphaRealPkg is new ExistConcretePkg(AlphaPkg, float);
package AlphaBoolPkg is new ExistConcretePkg(AlphaPkg, boolean);
package BetaIntPkg is new ExistConcretePkg(BetaPkg, integer);
package BetaRealPkg is new ExistConcretePkg(BetaPkg, float);

------------ negation : boolean -> integer -------------
function negation(b: boolean) return integer is
begin

if b then return 0; else return 1; end if;
end;

function negation_alpha_2_beta(b: access AlphaPkg.absExistTy'class)
return BetaPkg.absExistTyPtr is

begin
return BetaIntPkg.upcast(negation(AlphaBoolPkg.downcast(b)));

end;

------------ square : real -> real -------------
function square(f:float) return Float is
begin

return f*f;
end;

function square_alpha_2_beta(r: access AlphaPkg.absExistTy'class)
return BetaPkg.absExistTyPtr is

begin
return BetaRealPkg.upcast(square(AlphaRealPkg.downcast(r)));

end;

Figure 7.9: Existential type in Ada95 (continued)
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------------ inc : integer -> integer -------------
function inc(i:integer) return integer is
begin

return i+1;
end;

function incBetaInt(r: access BetaPkg.absExistTy'class)
return integer is

begin
return inc(BetaIntPkg.downcast(r));

end;

------------ round : real -> integer -------------
function round(r:float) return integer is
begin

return integer(r);
end;

function roundBetaReal(r: access BetaPkg.absExistTy'class)
return integer is

begin
return round(BetaRealPkg.downcast(r));

end;

------------ foo : existType -------------
function foo(x: existType) return integer is
begin

return x.f3(x.f2(x.f1));
end;

------------ x,y -------------
x , y : existType;

begin
x := (new AlphaRealPkg.existConcreteType'(data => 2.5),

square_alpha_2_beta'access,
roundBetaReal'access);

y := (new AlphaBoolPkg.existConcreteType'(data => false),
negation_alpha_2_beta'access,
incBetaInt'access);

Int_IO.put(foo(x)); ---- 2
Int_IO.put(foo(y)); ---- 6

end main;

Figure 7.9: Existential type in Ada95 (continued)
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generative GriÆn types are �rst collected. For structurally-equivalent types, a

unique type is generated in the target code and all references to those structurally-

equivalent types in GriÆn program will be replaced by reference to the newly

introduced type. For generative types, a unique type in the target Ada program is

introduced with the keyword new.

7.3.2 Enum types, tuple types and array types

Enumerated types and array types have similar semantics in both languages so the

translation is straightforward.

GriÆn tuples are �xed length aggregates and can be appropriately represented

by Ada records.

7.3.3 Function and procedure types

In Ada95 there are no subprogram types, only access-to-subprogram types. A

value of such a type can designate any subprogram matching the pro�le in the type

declaration, whose lifetime does not end before that of the access type. A GriÆn

function type will be translated into Ada access-to-subprogram type and implicit

dereferencing will be done whenever necessary according to the static analysis.

7.3.4 Thread types

If a declaration of a thread type thread(�) or a use of it is encountered, a generic

Ada package which implements polymorphic threads will �rst be created; and then

instantiated to type � . The generic package wraps the task which implements the

concurrent activity of the thread expression along with the expected return type.
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generic
type RetType is private;

package GeneThread is
type RetTypeFuncPtr is access function return RetType;

task type thread is
entry eval(funcPtr: in RetTypeFuncPtr);
entry value(x:out RetType);

end thread;
end GeneThread;

package GeneThread is
task body thread is

r : RetType;
begin

accept eval(funcPtr: in RetTypeFuncPtr) do
r := funcPtr.all;

end eval;

loop
accept value(x: out RetType) do

x := r;
end value;

end loop;
end thread;

end GeneThread;

Figure 7.10: Thread packages

Whenever a GriÆn thread of type � is seen, a task object whose type is de�ned in

the instantiated package will be created.

The speci�cation and body of the generic package implementing threads are

shown in Figure 7.10. The body of the function whose access value is passed to

eval is the thread expression.
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7.3.5 Channel types

Channels are passive objects in GriÆn so the natural translation to Ada would be

a protected type. A protected object is like a conditional monitor which provides

coordinated access to shared data, through calls on its visible protected operations,

which can be protected subprograms or protected entries. A protected unit is

declared by a protected declaration which has a corresponding protected body.

A protected declaration declares a protected unit, and may be a protected type

declaration, in which case it declares a named protected type; alternatively, it may

be a single protected declaration, in which case it de�nes an anonymous protected

type, as well as declaring a named protected object of that type [2]. The protected

type translation of GriÆn channel is:

protected type Channel is

entry Put(e: in ITEM);

entry Get(e: out ITEM);

entry Mget(q: out Queue);

private

ch: Queue;

end Channel;

where Queue is an instantiation of a generic package implementing queues and ITEM

is the generic type formal of the generic package in which the above declaration

resides.
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type inttree_enum is (empty,leaf,node);

type inttree;

type acc_inttree is access inttree;

type inttree(tag: inttree_enum) is
record

case tag is
when empty =>

null;
when leaf =>

intElem: integer;
when node =>

inttreeElem1 : acc_inttree;
inttreeElem2 : acc_inttree;

end case;
end record;

Figure 7.11: Alt type translation

7.3.6 Alt types

GriÆn's alt type is similar to ML's datatype. To translate the alt type we �rst

create an Ada enumeration type whose enumeration literals are the value construc-

torsof the alt type. If the alt type being de�ned is a recursive one, an Ada access

type to it will also be created so it can refer to itself in the recursive de�nition.

Finally an Ada discriminated record type containing variant parts will be created

which is the translation of the alt type. Nullary value constructors are mapped to

null records in the variant part and we can distinguish them by the discriminants.

For example, a tree of integers can be algebraically de�ned as

type inttree = alt fempty, leaf(int), node(inttree; inttree)g;

will be translated into the Ada95 code in Figure 7.11.

For a mutually recursive alt type de�nition, forward declarations of the access
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types of all types being de�ned are generated before the target code of the alt type

itself.

7.3.7 Tuple types

GriÆn tuple are �xed length aggregates. The translation of the following tuple

type

type t = (int,real,char);

would be:

type t is

record

t1: integer;

t2: real;

t3: character;

end record;

Appropriate projection functions for the translated tuple types should also be gen-

erated in the target code.

7.3.8 Other aggregate types

Other aggregate types like sets, bags and lists will be translated into Ada singly

linked list of the corresponding element type. For maps their Ada counterparts

are singly linked lists of a record type with two components whose types are the

domain and codomain type of the map types.
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7.4 Identi�ers

In some languages such as Lisp, identi�ers are computable objects, i.e., one can

manipulate identi�ers in Lisp programs. Being atoms, Lisp identi�ers can be pa-

rameters to functions that convert atoms to strings. For example, the following

Lisp program yields the value 123

(setq abc 123)

(eval (implode '(a b c)))

where the built-in function implode concatenates a list of atoms. Identi�er com-

putation is a kind of reection, which is always a powerful and dangerous feature

(run-time errors can occur because of this kind of reection). The target code of

a language supporting identi�er computation needs to carry the textual represen-

tation of identi�ers at run-time, and run-time environment lookup is also required.

In a sense, the mapping of identi�ers from the static to dynamic aspects is a \cross-

over point" [52] in the semantic equation for identi�ers.

However, identi�ers are considered to be syntactic entities in most languages

(Pascal, C++, ML, Java, Ada, GriÆn, etc.) so one cannot compute with iden-

ti�ers. Usually the valuation function of identi�ers simply looks them up in the

environment to avoid potential mistakes at compile-time, thus the textual repre-

sentation of an identi�er is neither needed nor available at run-time.

7.5 Parametric overloading

The following function de�nition of double is often used to explain parametric

overloading (or bounded polymorphism):
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double(x) = x+x

ML disallows such function de�nitions because the type of the operator + is not

inferable in the Hindley-Milner type system.

Both Ada95 and GriÆn support some sort of bounded polymorphism, which

are very di�erent. So there is no straightforward translation of functions with class

constraints like the following:

fun [mult: A * A -> A] sq(x:A) => mult(x,x)

fun [= : A * A -> bool] eqlist (L1:list[A], L2) =>

if head(L1) = head(L2)

then eqlist(tail L1, tail L2)

else false

Translation of parametrically overloaded functions relies on arity raising, which

means the original function is translated into a semantically equivalent function

with \evidence" parameter (as de�ned in the discussion of quali�ed types by Mark

Jones [47]) corresponding to the constraint passed in.

For brevity, the target code for the two functions above will be depicted in F!

rather than actual Ada code as shown in Figure 7.12.

When a GriÆn polymorphic function de�nition is encountered, a corresponding

Ada95 generic function de�nition will be created (with the exception of polymorphic

functions involving row variables of extensible records, which will be addressed in

Section 7.7). When a function call to that function is �rst seen, the generic function
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sq0 :

�� : � mult : �� � ! � : � x : � : mult(x; x)

eqlist0 :

�� : � = : �� � ! bool : � (L1; L2) : list[�]� list[�] :

if head0 � L1 = head0 � L2

then eqlist0 � = (tail0 � L1; tail
0 � L2)

else false

Figure 7.12: Arity raising

will be instantiated to the appropriate type and a corresponding function call to

the instantiated function will be generated. Further function calls with the same

parameter types are simply translated into calls to that function.

The class constraints on the GriÆn side are checked by the semantic analyzer

and functions are arity raised in the target programs. There will no be run-time

errors resulting from the violation of the class constraint, because the existence of

certain functions is guaranteed by the success of the static semantics check.

7.6 Closure conversion

GriÆn functions are more than code; they are composed of an environment as well

as code. A closure formalizes the notion of freezing the values of the free variables

in function bodies; whenever the value of a free variable is needed, it will be taken

from the saved environment.
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Closure conversion (or lambda lifting, functional defunctionalization) is the pro-

cess of converting a function that refers to non-local variables into a function with-

out such references. Without going into all of the pragmatic issues associated with

di�erent approaches to closure conversion, we �rst investigate the general form of

it. In �-calculus, combinator is a �-expression in which there are no occurrences

of free variables. �-lifting \lifts out" (abstracts) the free variables from possibly

nested �-abstraction to form a new combinator. Let fv(E) denote the set of free

variables in the expression E. The \lifting" function, L, therefore has the following

de�nition:

L(E) = E if E is in applicative form

L(�x1 : : : xm:E) = � v1 : : : vn if E is an applicative expression

and fv(E)� fx1; : : : ; xmg =

fv1; : : : ; vng

where � v1 : : : vn x1 : : : xm = E

L(�x1 : : : xm:E) = L(�x1 : : : xm:L(E)) if E is neither an

applicative expression

nor a �-abstraction

L(E1E2) = L(E1)L(E2) for �-expressions E1; E2

L((E)) = (L(E)) for �-expression E

Ada95 does not support closures so closure conversion must be performed in our

translation. We have to deal with the inde�nite extent of functions and their free

variables. In order to close an open function, it is represented by a closure, a data

structure containing both the pointer to its code and a record for its free variables.

In other words, the dependency on the environment is made explicit. Since the

lifetimes of the closures are not nested, all variables should be atly heap allocated.

A straightforward approach would convert closures into records which contain a
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pointer to the function body, the environment and the original function parameters.

However, we would also like the closure-converted program to be well-typed accord-

ing to the rules of the source language | rules that should also be enforceable in

the target language. The diÆculty is that two functions with the same type might

well di�er in the number and types of their free variables, and hence have closure

records of completely di�erent structural types in the target code. The following

simple example helps explain the problems involved:

f1 = �x : int : �y : int : x+ z

f2 = �x : int : �y : int : 1

z is of type int, the types of f1 and f2 are both int ! int ! int. However, if we

adopt the intuitive approach to convert closures to records containing pointers to

its free variables, f1 and f2 would have di�erent types (f1 : int! int! int! int,

f2 : int! int! int) in the target program since f1 has a non-local reference and

f2 has none.

Minamide, Morrisett, and Harper [59] have treated this problem, but their solu-

tions rely either on new language primitives for closure manipulation, which compli-

cate subsequent optimization, or on giving closure existential types, adding another

dimension of complexity to the type system. Worse yet, neither solution leads to

typable Ada.

Let g1 and g2 further denote the function bodies of f1 and f2 respectively.

g1 = �y : int : x+ z

g2 = �y : int : 1

Another possible approach that we have considered but rejected is the use of closure

algebraic datatypes proposed by Bell, Bellegarde and Hook [12]. Their approach
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relies on having the whole program available for analysis and translation. The

basic idea is to represent function closures as members of a closure algebraic data

type (i.e., discriminated union). There is one constructor corresponding to each

function de�nition in the original program; its arguments are the free variables

in the function body. All higher-order operations on functions are replaced by

equivalent operations on closure values. Function de�nitions are lambda-lifted, with

additional parameters of closure constructor applications, which are the wrapping

of the free variables.

The translation of the functions f1 and f2 mentioned above and their applica-

tions is shown in Figure 7.13.

datatype closure_g = G1 of fz:int, x:intg
| G2 of fg

and closure_f = F1 of fz:intg
| F2 of fg

fun g1(z,x,y) = x+z
fun g2(y) = 1
fun f1(z,x) = G1 fz=z, x=xg
fun f2(x) = G2 fg

fun apply_g(G1 fz,xg, y) = g1(z,x,y)
| apply_g(G2 fg, y) = g2(y)

fun apply_f(F1fzg, x) = f1(z,x)
| apply_f(F2fg , x) = f2(x)

Figure 7.13: Closure algebraic datatypes

A type-preserving translation for closures is not as easy as it sounds. A naive

translation from closures to records would violate the typable target code property

(Section 3.4). We choose a di�erent approach to closure conversion which enables

us to drop the whole-program transformation requirement and at the same time,
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achieves the goal of typable Ada95 code. The idea is to take advantage of the

object-oriented features of Ada95: GriÆn functions of the same type are assigned a

type corresponding to a unique abstract base type in the target code. Each concrete

derived type of the abstract base type extends the base type with a �eld for each

free variable. Each function invocation foo(bar) will be translated into the form

apply(foo',bar), wherein foo' is the closure representation of foo.

As a running example, consider the GriÆn functions f1 and f2 shown in Fig-

ure 7.15. Function f1 has a free variable whereas f2 has none. Dynamic dispatching

in Ada95 is achieved through the use of the \class" mechanism and pointers. Func-

tions of type int -> int are translated into pointers to objects of abstract type

Closure F in the target program as

type Closure_F is abstract tagged null record;

type Closure_F_ptr is access all Closure_F'class;

function apply(c:Closure_F, x:integer) return integer is abstract;

where the function apply (associated with type Closure F) dynamically dispatches.

For dynamic dispatching purposes, we have to de�ne the pointer to Closure F

type, Closure F ptr. The class relation among those \closure types" is shown in

Figure 7.14.

The type Closure F1 represents GriÆn functions of type int -> int with a

free variable of type int is de�ned by extending the type Closure F as follows:

type Closure_F1 is new Closure_F with

record

fv1 : integer;

140



Closure F.Closure

base type for all functions
of type int � int ! int

Closure F1.Closure

derived type for all functions
of type int � int ! int with
one free variable of type int

Closure F2.Closure

derived type for all functions
of type int � int ! int with

no free variables

??��������������������

__????????????????????

Figure 7.14: Class relation among closure types

end record;

For symmetry, we also de�ne the type Closure F2 (essentially the same type

as Closure F) for GriÆn functions of type int -> int with no free variables (also

by extending Closure F, but with a null record):

type Closure_F2 is new Closure_F with null record;

Both Closure F1 and Closure F2 are derived types of Closure F. Now we can

de�ne f1 and f2 as

f1,f2 : Closure_F_ptr;

and obtain a typable Ada95 target program because f1 and f2 have the same type.

Evidently, this approach can only be applied to target languages supporting the

object-oriented paradigm. As an example of the translation of closure conversion,

the target code for the following GriÆn program is shown in Figure 7.15.
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procedure closureConversion is
generic

type Domain is private;
type Codomain is private;

package GeneClosure is
type Closure is abstract tagged null record;
type ClosurePtr is access all Closure'class;
function apply(c:Closure; d:Domain) return Codomain is abstract;

end GeneClosure;

package Closure_F_Pkg is new GeneClosure(integer,integer);

package F1_Pkg is
type Closure_F1 is new Closure_F_Pkg.Closure with

record z : integer; end record;
function apply(c:Closure_F1; x:integer) return integer;

end F1_Pkg;

package body F1_Pkg is
function apply(c:Closure_F1; x:integer) return integer is

begin return x+c.z; end;
end F1_Pkg;

package F2_Pkg is
type Closure_F2 is new Closure_F_Pkg.Closure with null record;
function apply(c:Closure_F2; x:integer) return integer;

end F2_Pkg;

package body F2_Pkg is
function apply(c:Closure_F2; x:integer) return integer is

begin return 1; end;
end F2_Pkg;

f1,f2 : Closure_F_Pkg.ClosurePtr;
z : integer := 2;
use Closure_F_Pkg;

begin
f1 := new F1_Pkg.Closure_F1'(z=>z);
f2 := new F2_Pkg.Closure_F2;
Int_IO.put(apply(f1.all,3)); ---- 5
Int_IO.put(apply(f2.all,3)); ---- 1

end closureConversion;

Figure 7.15: Object-oriented approach for closure conversion

var z: int := 2;

fun f1 (x:int) => x+z;

fun f2 (x:int) => 1;
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f1(3); ---- 5

f2(3); ---- 1

7.7 Extensible records

Just as in Haskell or ML, it is not clear how to derive extensible records in the

Ada type system without any serious change. Extensible records are useful in

certain situations. For example, a common way to simulate many of the e�ects of

inheritance in ML would be greatly simpli�ed if extensible records were supported

in ML. If superClass has the following de�nition in ML:

type superClass =
f

l1 : �1
...
ln : �n

g

and subClass is derived from superClass so that subClass inherits all the �elds

of superClass, and extends it with one �eld ln+1 as follows:

type subClass =
f

l1 : �1
...
ln : �n
ln+1 : �n+1

g

The natural way to extend superClass with a new �eld is to write a function which

verbosely list all the �elds as the following:

fun createSubClass (sup:superClass) vn+1 =
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(f
l1 = #l1 sup
...
ln = #ln sup
ln+1 = vn+1

g) : subClass

However, if ML supports extensible records, the above function can be signi�cantly

simpli�ed as:

fun createSubClass (sup:superClass) vn =
supnln+1 with fln+1 = vn+1g

where r n l removes the �eld l from record r if r contains �eld l; otherwise it returns

r.

However, if the source language supports inheritance then the above argument

for the usefulness of row-variable polymorphism does not hold. In Ada83, since

records can be manipulated as whole objects and Ada has copy semantics for

assignments, the above problem can be easily addressed by a record assignment

statement.

It is not obvious how to translate a GriÆn polymorphic function involving row

variables to an Ada generic function. The generic discriminated record type is not

powerful enough to simulate extensible records because it limits one to components

of discrete types; neither is the generic formal type parameter which can be an

arbitrary extension of a tagged type in Ada95 as follows:

type parent is tagged record
l1 : �1
...
ln : �n

end record;
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generic
-- unspecified extension
type T is new parent with private;

package GP is
...

end GP;

The reason that this scheme will not work is that all record types are required to

be an extension of some tagged type. The translation of record with only one com-

ponent is obvious and its Ada counterpart is simply a tagged type with the same

component. For a record type with more than one component multiple inheritance

must be employed. This method of translation requires multiple inheritance to

work. Unfortunately multiple inheritance is not supported in Ada95 and simulat-

ing the e�ect of it is asymmetric [2]. Ideally, GriÆn functions would be translated

into Ada95 functions, with polymorphic functions being translated into generic

functions. In G2A polymorphic functions de�nitions involving row variables are

translated using di�erent approaches. The correctness of those function de�nitions

are checked in the static analysis. However, rather than translating GriÆn poly-

morphic functions involving row-variables into Ada generic functions, G2A create

monomorphic instances for all uses(invocations as well as passing around).

In the following code, there is a row-variable polymorphic function foo:

fun foo r => #l r;

var r1 : fi:int; l:real; b:boolg := fi=1, l=2.0, b=trueg;
var r2 : fi:int; l:char; b:boolg := fi=1, l='a', b=falseg;
var r3 : fl:int; c:realg := fl=4, c=5.0g;

foo r1; -- 2.0
foo r2; -- 'a'
foo r3; -- 4
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The type of foo is

8�; � : �nl) fl : �; �g ! �

where �nl denotes a type constraint as de�ned by Mark Jones [47], which speci�es

that the row denoted by � does not have a �eld labelled l.

We present two possible non-type-preserving translations for record polymor-

phism. The �rst one shown in Figure 7.16 is type-safe. However, if there ex-

ist many uses of a row-variable polymorhic function, the code generated becomes

pretty lenghty due to the monomorphic instances required. The other one given

in Figure 7.17 is type-unsafe, which employs unchecked conversion but generates

a shorter target code by instantiating instances of a geneic function rather than

having many copies of almost identical monomorphic functions.

The type-safe translation is straightforward by looking at the target code gen-

erated. In the type-unsafe translation, all GriÆn records are translated into Ada

linked lists, thus record �eld selection is implemented as list element projection.

GriÆn is a statically-typed language, therefore the type of the actual parameter

of foo is statically decidable. All the GriÆn record types will be pre-processed in

G2A so they conform to a canonical form: all the �elds in a record are listed in

their alphabetical order. The target function generated for foo will be arity-raised

and the extra parameter denotes the \o�set" of the record element (starting from

0). Records are translated into linked list of pointers rather than tuples for two rea-

sons: records are heterogeneous aggregates, and tuples are �xed length aggregates.

The nodes in the list contain a �eld data which is a pointer to the actual record

�eld. Since record �elds may have di�erent types, unchecked conversions have to

be performed so all the elements in the list are of the same type.
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with Text_Io; use Text_Io;

procedure main is
package Int_Io is new Integer_IO (Integer); use Int_Io;
package Flt_Io is new Float_IO (Float); use Flt_Io;

type recType1 is
record

b: boolean;
i: integer;
l: float;

end record;

type recType2 is
record

b: boolean;
i: integer;
l: character;

end record;

type recType3 is
record

c: float;
l: integer;

end record;

r1: recType1 := (true, 1, 2.0);
r2: recType2 := (false, 1, 'a');
r3: recType3 := (5.0, 4 );

function foo(r: recType1) return float is
begin

return r.l;
end;

function foo(r: recType2) return character is
begin

return r.l;
end;

function foo(r: recType3) return integer is
begin

return r.l;
end;

begin
put(foo(r1)); -- 2.0
put(foo(r2)); -- 'a'
put(foo(r3)); -- 4

end Main;

Figure 7.16: Type-safe translation of GriÆn record polymorphism
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...
generic

type FieldType is private;
function GeneFoo(r: RecList; offset:integer) return FieldType;

function GeneFoo (r: RecList; offset:integer) return FieldType is
i : integer := 0;
curNode : RecList;

begin
while (i /= offset)

curNode := curNode.next;
end loop;

return curNode.data
end GeneFoo;

-- creat a monomorphic instance
function foo is new GeneFoo(float);

-- Record fields are sorted alphabetically.
-- Create pointers ptr1, ptr2, ptr0 to integer 1, real 2.0,
-- and boolean true respectively.
-- Perform unchecked conversions so all pointers have the
-- same type.
r1 : RecList :=

insert(ptr0, insert(prt1, insert(ptr2, emptyList)));

-- Create pointers ptr1, ptr2, ptr0 to integer 1, character 'a',
-- and boolean false
r2 : RecList :=

insert(ptr0, insert(prt1, insert(ptr2, emptyList)));

-- Create pointers ptr1, ptr0 to integer 4, and real 5.0
r3 : RecList :=

insert(ptr0, insert(prt1, emptyList)));

-- offset starts from 0
put(foo(r1,2).all); -- 2.0
put(foo(r2,2).all); -- 'a'
put(foo(r3,1).all); -- 4

Figure 7.17: Pseudo code for the type-unsafe translation of GriÆn record polymorphism
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7.8 Channels

GriÆn channels are described in detail in Section 5.1.6. Channels are �rst-class

values, which provide bi-directional anonymous communication between multiple

readers and multiple writers.

7.8.1 Synchronous channels

Protected objects of Ada95 (similar to conditional monitors) support concurrent

programming. With protected objects, the unsatifactory polling and race conditions

often found in parallel activities are eliminated. The syntax of protected objects is

similar to that of a package or a task. This consists of a speci�cation describing

the interface, and a body depicting the dynamic behaviour of the protected object.

Besides the interface, the private part of the speci�cation of a protected object or a

protected type contains the hidden shared data and the speci�cation of subprograms

and entries which can only be used in the object. The main distinction between a

procedure and a function in the protected body is that a procedure can access the

private data in an arbitrary manner whereas a function is only allowed to read the

private data [2].

The syntax of an entry body is similar to that of a procedure body except

that it always has a barrier consisting of the keyword when followed by a boolean

expression. At the end of the execution of a procedure body or an entry body

of a protected object, all barriers which have queued tasks are re-evaluated thus

permitting the processing of an entry call which had been queued on a false barrier.

The dynamic behaviour of protected objects can be understood as a two-level

eggshell model [9]. We can picture that a protected object with its entry queues are
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surrounded by a shell, and the shell can only be penetrated by a new task trying to

call a subprogram or entry when the protected object is quiescent. Tasks can thus

be waiting at two levels, outside the shell where they are just milling around in an

unstructured way contending for access to the implementation lock which guards

the protected object as a whole, and inside the shell in an orderly manner on entry

queues. The internal waiting tasks always take priority over the external tasks.

In G2A, a GriÆn channel is implemented as a passive protected object rather

than a hidden thread and its associated bu�er; therefore the impact on scheduling

is clear from its speci�cation. The channel bu�er is implemented as a FIFO queue.

We use the requeue statement (new addition to Ada95) to program so-called

\preference control" [9] for modelling the semantics of operations put, get, and

multiple get on GriÆn synchronous channels as shown in Figure 7.18.

If a GriÆn thread performs a get or multiple get on a synchronous channel,

the barrier condition is that the channel is not empty. However, for multiple get,

the thread will be requeued so it can unblock threads that had been previously

queued on the PutWait entry.

For a thread that puts datum into a channel, it is requeued on the PutWait

entry automatically. Intuitively, the two boolean conditions getDone and mGet-

Done will be set to true only after a thread performs get or multiple get respec-

tively, which in turn release the thread that is blocked after executing a put.

7.8.2 Asynchronous channels

The translation scheme for asynchronous channels is simpler than that for the

synchronous ones and no agents are required:
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generic
type Item is private;

package GeneSyncChannel is
Package QueuePkg is new GeneQueue(Item);
use QueuePkg;

protected SyncCh is
entry Put(i: in Item);
entry Get(i: out Item);
entry Mget(q : out Queue);

private
entry PutWait;
entry MgetWait;
ch : Queue;
getDone : boolean := false;
mGetDone : boolean := false;

end SyncCh;
end GeneSyncChannel;

package body GeneSyncChannel is
protected body SyncCh is

entry Put(i: in Item) when true is
begin

QueuePkg.insert(ch,i);
requeue PutWait;

end Put;

entry PutWait when (getDone or mGetDone) is
begin

getDone := False;
end;

entry Get(i: out Item) when not(isEmpty(Ch)) is
begin

QueuePkg.remove(ch,i);
getDone := true;

end;

entry Mget(q: out Queue) when not(IsEmpty(Ch)) is
begin

QueuePkg.clone(ch,q);
QueuePkg.init(ch);
mGetDone := true;
requeue MgetWait;

end;

entry MGetWait when PutWait'Count = 0 is
begin

mGetDone := false;
end;

end SyncCh;
end GeneSyncChannel;

Figure 7.18: Translation of GriÆn synchronous channels
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� When a GriÆn asynchronous channel declaration is encountered, an Ada95

generic asynchronous channel package will be instantiated to appropriate

types.

� For each asynchronous channel send, a call to the channel manager's put

entry is created. The guard condition is true, so that the evaluation of the

barrier is always true and therefore the sender will not be blocked.

� Each GriÆn asynchronous channel recv is translated into an entry call to the

channel manager's get entry. The barrier condition blocks the receiver if the

channel bu�er is empty or returns an element if not.

� The case of multiple recv is very similar to that of recv except if there is

more than one item in the queue then all the elements in the channel bu�er

will be returned.

7.9 Garbage collection

G2A does not deal with garbage collection for the time being because an Ada95

implementation may have the garbage collector built in. Otherwise there already

exists commercial products translating Ada95 programs to Java byte code, in this

way garbage collection is taken care of by the Java virtual machine. If it really comes

to the point that we should deal with the garbage collection problem in G2A, then

all memory management routines could be done via Boehm's conservative garbage

collector [15] (by the use of C interface pragmas in the generated Ada code).

Some straightforward compile-time garbage collection may be performed for the

allocation of maps, sets and bags in the translation program.
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-- �le :: asyncchannel.ads

with GeneQueue;
with Text_IO;

generic
type ITEM is private;

package AsyncChannel is
package ItemQueue is new GeneQueue(Item);
use ItemQueue;

protected Channel is
entry Put (e: in ITEM);
entry Get (e: out ITEM);
entry Mget(q: out Queue);

private
ch: Queue;

end Channel;
end AsyncChannel;

-- �le :: asyncchannel.adb

with GeneQueue;
with Text_IO;

package body AsyncChannel is
protected body Channel is

entry Put(e: in ITEM) when true is
begin

insert(ch,e);
end;

entry Get(e: out ITEM) when not isEmpty(ch) is
begin

remove(ch,e);
end;

entry Mget(q: out Queue) when not isEmpty(ch) is
begin

copy(ch,q);
init(ch);

end;
end Channel;

end AsyncChannel;

Figure 7.19: Translation of GriÆn asynchronous channels
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7.10 Exceptions

GriÆn provides a type-safe, dynamically scoped exception mechanism which allows

programs to handle unusual or deviant conditions. GriÆn exceptions (described

in Section 5.1.8) are �rst-class values. To translate GriÆn exceptions we have to

associate with each GriÆn thread (Section 7.8) a global stack, which retains the

values for successively raised exceptions.

7.11 Pattern matching

Consider the familiar ML function length yielding the number of elements in a

homogeneous list:

fun length [] = 0

| length (x::xs) = 1 + (length xs)

The function argument is deconstructed to determine which branch should be eval-

uated. If the argument is an empty list, integer zero is returned; otherwise the

function returns the summation of one and the length of the \tail" of the argu-

ment.

A pattern serves two purposes: �rstly it speci�es the form that a formal argu-

ment must take before the corresponding branch can be applied; secondly it has the

e�ect of deconstructing the argument and introducing new bindings (except when

the pattern is a nullary data constructor or a literal).

In GriÆn, the syntax for pattern-matching formal parameter in a function def-

inition is as follows:
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fun foo s =>

case s of

P1 | C1 => E1; ||

...

Pn | Cn => En;

wherein each Pi jCi => Ei is a pattern branch, Pi is a pattern, Ci is a boolean-

valued expression and Pi j Ci is called a guarded pattern. The expression s that

is being matched against is called the \subject". In GriÆn, pattern matching

follows the order in which the pattern branches are written down in the source code.

When pattern-matched against each pattern branch, the subject is deconstructed

according to the pattern Pi. If the deconstruction succeeds, then the boolean

condition Ci is tested with possibly newly introduced bindings resulting from the

pattern deconstruction. Only if it is true, the pattern branch expression Ei is

evaluated and the result is the value of the entire pattern matching expression. If

none of the pattern branches matches, an exception is raised.

In order to make the presentation of the semantic equations for pattern-matching

terse and more readable, the following notations are used:

h : : : i (Syntax Construction) It encloses a piece of unevaluated syntax, which

can contain occurrences of computations p: : :y (see de�nition below). This is

similar to the Scheme back quote \`" operator.

p: : :y (Escape in Syntax Construction) Used inside a syntax construction. It

encloses a computation that will be �lled into its place in the syntax construc-

tion. This is similar to the Scheme anti-quote \," operator.
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� [x 7! � ] (Environment Perturbation) The environment is a function mapping

identi�ers to its associated values. The notation, � [x 7! � ], denotes the

function � perturbed to map x to � . In most block-strucutured programming

languages, environment perturbation is environment enriching.

x (Unique identi�er) All occurrences of x within a semantic equation denote

an identi�er, which is di�erent from all other identi�ers.

++ (Overloaded Aggregate Concatenation) We use ++ to denote the over-

loaded concatenation operator on lists, tuples, and environments. List con-

catenation is common in many languages and thus need not be elaborated any

further.

If �1 is the tuple type �11�: : :��1m, and �2 is another tuple type �21�: : :��2n,

then the tuple concatenation operator ++ has the following type:

++ : (�11 � : : :� �1m) ! (�21 � : : :� �2n)!

(�11 � : : :� �1m � �21 � : : :� �2n)

Sometimes we use (: : : )n to explicitly annotate that the length of a tuple is n.

The lookup in an environment � is a partial function mapping an identi�er to

its associated value. If x is de�ned in environment � (or x is in the domain of

�), we say x 2 �. The result of environment concatenation (or environment

composition) �1 ++ �2 is another environment, in which a lookup will be �rst

performed in �1, if an associated value is found, then return that value. Oth-

erwise, search �2 and the result will be the result for the entire lookup. The
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lookup in a concatenated environment can thus be de�ned as

(�1 ++ �2)(x) =

8<
:

�1(x) if x 2 �1

�2(x) otherwise

Furthermore, we de�ne ~++ to be a binary aggregate concatenation operator

which requires its arguments to be disjoint. That is, A1 ~++A2 requires that

A1 \ A2 = ;.

�i (Tuple Projection) If t is a tuple of length n, �i(t) where 1 � i � n yields the

ith component of tuple t.

+++ (Pairwise Concatenation of Two Aggregates) With SETL notation, the

pairwise concatenation operator on sets can be straightforwardly de�ned as

X+++Y= fa ++ b j a 2 X, b 2 Yg, where ++ is the overloaded concatenation

operator de�ned above. For example, if 8i 2 1 : : : n; Ai = (ai1; ai2; : : : ; ain),

then

A1 +++ A2 +++ : : : Am = [(a11; : : : ; am1); (a12; : : : ; am2); : : : ; (an1; : : : ; anm)]

It can be de�ned in ML as follows:

fun conc l = foldl (fn (l1,l2) => l1 @ l2) [] l;

fun +++ list1 list2 =

conc (map (fn s => map (fn t => s @ t) list2) list1)

where @ is the list concatenation operator in ML.
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Shown below are the semantic equations for function body (FB ) of the above

form, pattern matching (PM ), pattern branch (PB ), and pattern (P).

FB : funBodyAST ! env ! (mty,IACTION)

FB [[ case s of P1 "|" C1 "=>" E1 "||" : : : "||" Pn "|" Cn "=>" En ]] � =
let

(sMty,sIA) = E [[s]] �
in

PM [[P1"|"C1"=>"E1 "||" : : : "||" Pn"|"Cn"=>"En]] (sIA,sMty) �
end;

PM : patBrAST list ! (IACTION � semMty) ! env ! (mty,IACTION)

PM [[ patBrs ]] (sIA,sMty) � =
let

(pbsMty,caseBrsIA) = PB s [[patBrs]] ( x ,sMty) �
in

(
pbsMty,
h

Let
x = psIAy

In
pcaseBrsIAy

End
i

)
end;

PB s : patBrAST list ! (Name,semMty) ! env ! (mty,IACTION)

PB s [[ [ ] ]] (sName,sMty) � = hRaise PatExhaustExni

PB s [[ patBr "||" patBrs ]] (sName,sMty) � =
let

(pbMty,caseBrIA) = PB [[patBr]] (sName,sMty) �
(pbsMtys,caseBrsIA) = PB s [[patBrs]] (sName,sMty) �

in
if typeConformant(pbMty::pbsMtys) then

(
pbMty,
h

Case pcaseBrIAy Of
None => pcaseBrsIAy
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SOME x => x
End Case

i
)

else
errorMsg("Case branches type mismatch")

end;

PB : patBrAST ! (Name,semMty) ! env ! (mty,IACTION)

PB [[ pat "|" guardCond "=>" patBrBody ]] s � =
let

(pbMty,valuesIA,boundVarNames,�0) = P [[ pat ]] s �
((_,BoolType), guardCondIA) = E [[ guardCond ]] (�+ �0)
(patBrBodyMty,patBrBodyIA) = E [[ patBrBody ]] (� + �0)

in
(pbMty,
h

Let
x  pvaluesIAy
r  NONE

In
For e In x Loop

Let
pboundVarNamesy = e

In
If pguardCondIAy Then
f r  SOME ppatBrBodyIAy; Break;g

End If
End

End Loop

Return r
End

i
)

end;

P : patAST ! (IACTION,semMty) ! env ! (mty,IACTION,Name list,env)

(wild-card)
P [[ ]] (sIA,sMty) � = (sMty, h[()]i, (), ;)

(mutable binding)
P [[var x]] (sIA,sMty) � =
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if mutable(sMty)
then (sMty, h[(sIA)]i, (x), ;[x 7!sMty])
else errorMsg("Pattern Matching: aliasing conflict")

(constant binding)
P [[x]] (sIA,sMty) � = (sMty, h[(sIA)]i, (x), ;[x 7!CON(sMty)])

(nullary value constructor)
P [[C]] (sIA,sMty) � =

let
Cmty = lookup(C,�)

in
if coercible(Cmty,sMty)
then (Cmty, hIf C = sIA Then [()] Else []i, (), [])
else errorMsg("Pattern Matching: type mismatch between

deconstructor and subject")
end

(value construction)
P [[C(p)]] (sIA,sMty) � =

let
(~C_mut, FunType(~C_domMty,~C_coDomMty)) = lookup(~C,�)
(pMty,valuesIA,boundVarNames,�0) = P [[p]] x �[ x 7! ~C_coDomMty ]

in
if coercible(~C_coDomMty,sMty)
then

(
~C_domMty,
h

Case ~C(psIAy) Of
SOME xs =>

Foldl ++ (Map (fn x => pvaluesIAy) xs ) [] |
NONE => []

i,
boundVarNames,
�0

)
else errorMsg("Pattern Matching: type mismatch between

deconstructor and subject")
end

(tuple)
P [[(p1; : : : ; pn)]] (sIA,sMty) � =

if coercible(sMty, (CON Tuple_n_Type(cMty1; : : : ; cMtyn ))) then
let
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(p1Mty; valuesIA1; boundVarNames1; �1) = P [[p1]] s1 �[ s1 7! cMty1]
: : :
(pnMty; valuesIAn; boundVarNamesn; �n) = P [[pn]] sn �[ sn 7! cMtyn]

in
(

Tuple_n_Type(p1Mty; : : : ; pnMty),
h

Let
s1 = �1p(sIA)y
: : :
sn = �np(sIA)y

In
pvaluesIA1y +++ : : : +++ pvaluesIAny

End
i,
boundVarNames1 ~++ : : : ~++ boundVarNamesn,
�1 ~++ : : : ~++ �n

)
end;

else errorMsg("Pattern Matching: type mismatch against
tuple pattern")

(layered pattern)
P [[x as p]] (sIA,sMty) � =

let
(pMty, valuesIA, boundVarNames, �0) = P [[p]] (sIA,sMty) �

in
(

pMty,
h

Map (Fn t => ((psIAy)1 ++ t)) pvaluesIAy
i,
(x)1++ boundVarNames,
�0[x 7!CON(sMty)]

)
end

GriÆn allows user-de�ned deconstructors. As a consequence, pattern matching

may have side-e�ects, thus the pattern-matching actions belong to the imperative

action domain instead of the environment-enriching declaration action domain. The

pattern matching is conducted in a way that the subject is matched against each

pattern branch until a certain pattern branch is satis�ed; otherwise the exception
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\Pattern Matching Failure" is raised. When writing the semantic equations for

pattern matching, special care should be taken to avoid causing the possible side

e�ects more than once.

var x: int := 1;

fun inc y => y+1;

fun foo z =>

case z of

1 => output("1"); ||

2 => output("2");

_ => output("number greater than 2");

foo(inc(x)); ---- output string "number greater than 2"

---- from an incorrect translation

A naive translation will increment the value of x to 4 and results in the string

number greater than 2 to be printed.

7.12 Generators, iterators, and comprehension expressions

In order to reduce the cost of programming, some high-level programming lan-

guages o�er composite objects, such as sets, bags, maps, lists, and tuples. Powerful

mathematical operations are available to manipulate these objects.

For example, the GriÆn expression

[for i in 1..10 => i**2]
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yields a list of the squares of integers from 1 to 10, in that order. \1..10" is a

generator, \i in 1..10" is an iterator, \for i in 1..10 => i**2" is a for-loop

generator, and the entire expression is a list comprehension expression.

An iterator is of the form \P in G", in which P is a pattern and G is a

generator. An iterator loops through the elements yielded by the generator G,

forces the pattern-matching between P and these elements, and provides a handle

for later processing.

A generator, which can take on various syntactic forms, is a stream of values.

Among these syntactic forms are the range \1..10" above, or an identi�er which

is of some aggregate type and a generator is de�ned for that aggregate type. For

instance, if S is a set used in a context which requires a generator, an implicit

coercion from a set to a generator is performed. The expression e in S is an

iterator yielding the elements of S one at a time. To be exact,

for e in S

is really a shorthand for

for e in gen(S)

where gen(S) is a generator. The overloaded function gen is a coercion function

which converts objects of an aggregate type to a stream of values of the aggregate

component type. The instance of gen that takes a generator is the identity function:

fun gen(g: gen['a]) => g;

De�nitions of gen for common aggregate types such as sets, bags, lists, tuples are

provided in the standard language library.
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Generators can be used in several contexts. For example, the for loop syntac-

tic construct covered before can be extended to a generator. A GriÆn for-loop

generator has the syntax

for P1 in G1; : : : ; Pn in Gn | C => E

where Pi in Gi are iterators 8i 2 1 : : : n, C is a boolean-valued expression used

as a guard, and E is an expression that yields the elements of the result. It is

semantically equivalent to the following form:

for P1 in G1

...

for Pn in Gn | C => E

Informally, the above generator matches pattern P1 against the values generated

by the corresponding generator G1; for each successful match, its bindings will be

added to the environment, and this process is repeated for pattern P2 and G2, and

so on. Every time this process reaches the guard, i.e., every time a binding resulting

from all successful matches is found, the guard is tested to decide whether we need

to evaluate expression E and accumulate its result. The for-loop generator yields

the sequence of values thus obtained. The formal action semantics description for

for-loop generators is given at the end of this section.

Comprehension expressions allow us to de�ne, construct, compare, and in gen-

eral manipulate aggregates of values. They are mathematical constructs which

make it relatively easy to represent complex control ow in a concise fashion. A

comprehension expression is a high-level abstract control mechanism that hoists

the looping capability from the conventional statement level (as it appears in most
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imperative languages) to the expression level. One can place a generator inside

square brackets to form a list comprehension expression as in

[for 1..10]

which is a list that contains integers from 1 to 10, in that order. To create a set of

integers containing 1 through 10, we write

ffor 1..10g

instead. Note that [for 1..10] is completely di�erent from [1..10], which is a

list of length one whose sole element is a generator, namely, 1..10.

A function in C or ML that takes an argument which is a set of sets, and returns

the number of element sets of length two in that set would probably take tens of

lines of code. In GriÆn, the programming e�ort is signi�cantly reduced. If S is a

set of sets and # is the cardinality function on sets, the number of element sets of

length two in S can be computed by the following expression,

#ffor x as f_,_g in S => xg

or

#ffor x in S | #x = 2 => xg

The syntax of a GriÆn for-loop generator is

FLG ::= for iterators "|" C "=>" E

iterators denotes a sequence of iterators. To better present the semantic equa-

tions, we can rearrange the above grammar as
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FLG ::= for B

B ::= "|" C "=>" E

| P "in" G "," B

in which the nonterminals FLG and B are for the for-loop generator and its body,

respectively.

Recall that P is the semantic function for patterns de�ned in Section 7.11. It

takes three parameters: pattern AST, subject, environment, and returns a triple

consisting of an action yielding a list of tuple of values, list of binding names, and

a new environment. The semantic equations for for-loop generator are:

B : GenBodyAST ! env ! (mty,IACTION)

B [["|" C "=>" E]] � =
let

(Cmty, guardCondIA) = E [[C]] �
(bodyExpMty, bodyExpIA) = E [[E]] �

in
(

bodyExpMty,
if coercible(Cmty,bool) then
hIf pguardCondIAy Then [pbodyExpIAy] Else []i

else
hRaise CondTypeNotBooleani

)
end

B [[P in G "," B]] � =
let

((genMut, genType), genIA) = E [[G]] �
(valuesIA,boundVarNames,�0) =

P [[P]] ( element ,componentType(genType)) �
(bodyExpMty,bodyIA) = B [[B]] �0

in
(

bodyExpMty,
h
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Let
( stream , retrieve ) = pgenIAy

results = []
In

While True Loop

Case retrieve ( stream ) Of
NONE => break;
SOME ( element , newStream ) =>

stream := newStream ;

Let
x = pvaluesIAy

In
For e In x Loop

Let
pboundVarNamesy = e

In
Let

result = pbodyIAy
In

results := results ++ result ;
End

End
End Loop

End
End Case

End Loop

Return results
End

i )
end

7.13 Interlanguage conventions

A translation scheme should detail the interlanguage translation conventions used;

a documentation of it is of considerable value in enhancing the readability of the

target program. For example, the naming idiosyncrasy in source or target language

like the combination of automatic declaration of variables and \I through N Rule"

in Fortran should also be dealt with in the scheme. Also, avoidance of identi�er

names in the standard language library is crucial in practical applications [31].
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Identi�ers are normally considered to be strictly syntactic entities, there is no

obvious conceptual di�erence between the syntactic construct of an identi�er and

its semantic counterpart. In language translation, however, it is quite reasonable

to maintain such a distinction for identi�ers [52]. The semantic counterpart of an

identi�er is thus referred to as a semantic identi�er. By �rst mapping syntactic

identi�ers to semantic identi�ers, the elaboration of identi�er names in the target

program is taken care in the microsemantics speci�cation.

In G2A, syntactic identi�ers appear in a GriÆn program are translated into

their corresponding semantic identi�ers in TPOT. Suitable names in Ada will be

chosen for them according to the name translation scheme in the microsemantics.

Ada is case-insensitive, that means, it considers upper and lower case forms of a

letter to be identical.

Lambda expressions have their arguments replaced by unique names, a process

known as alpha-conversion [83].

7.14 From TPOTs to Ada ASTs : term-rewriting

The intermediate representation of G2A, TPOT, is transformed into the �nal Ada

program in three phases. The �rst phase translates the TPOT into the extended

Ada AST, AdaAST+, which is an approximation of the TPOT but may not conform

to the Ada syntax rules completely. AdaAST+ allows some syntactic constructs

which are not permitted in Ada, for example, assignment expressions.

The next phase a term rewriting system turns the AdaAST+ into an syntacti-

cally correct Ada abstract syntax tree representation, AdaAST .

A term rewriting system (�, R) consists of signature � and a set of (rewrite)
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rules R. The rules have the form t1 ! t2, where t1 and t2 are terms over �.

Moreover, we must have:

� t1 is not just a variable

� Every variable that occurs in t2, must already occur in t1. A rewrite rule may

not introduce any new variables.

We impose appropriate restrictions to make the term rewriting system possess

the strong normalization property; that is, there is no in�nite sequence of reductions

t0 ! t1 ! t2 ! : : :

where ! denotes one step reduction.

The proof of the termination of our system can be approached by de�ning ter-

mination functions that returns the outermost function symbol of a term, with

symbols ordered by some precedence (a \precedence" is a well-founded partial or-

dering of symbols).

7.15 From Ada AST to textual representation

The last step of code generation is to produce the textual representation from an

Ada AST. \UN-parsing" is the reverse process of parsing, in which an AST is

the input and the textual representation of the AST is the output. UN-parsing of

operator expressions is an interesting topic of its own and will be addressed in more

detail in Section 7.15.1.

All code generation routines for pretty-printing are highly modularized func-

tionals; they use state transitions to carry the con�guration from one state to
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another. The lowest-level pretty-printing routines takes cares of tabbing, indent-

ing, unindenting, whitespaces, new line, etc. The next level routines take the

low-level routines as parameters to provide higher-level functionality; at this level

of abstraction, modi�cations to con�gurations are disallowed. One level up is the

language-dependent level containing the Ada speci�c pretty-printing routines to

generate Ada code for statements, expressions, declarations and other Ada syntac-

tic constructs. The main routine traverses the rewritten AdaAST , at each node it

invokes corresponding Ada printing routine to generate the Ada code.

7.15.1 UN-parsing operator expressions

Both precedence and associativity need to be taken into account in the translation

of expressions involving operators. In the interest of readability, we would like to

keep the generated code as parenthesis-free as possible.

Naively printed, expressions can be cluttered by lots of unnecessary parentheses,

which makes it hard for human readers to comprehend. To increase readability of

programs, we need to minimize the number of generated parentheses as long as the

semantics is preserved, i.e., the resulting textual representation parsed according

to the precedence and associativity of the operators should yield the same abstract

syntax tree.

For example, assuming the usual precedence of arithmetic operators, the ab-

stract syntax tree in Figure 7.20(a) and Figure 7.20(b) can be UN-parsed into

(1+2)*3 and 1+2*3 respectively. In the �rst case, subexpression 1+2 is enclosed

in parentheses, because its parent is a higher-precedence operator \�"; in the sec-

ond case, subexpression 2*3 does not need to be enclosed in parentheses, because
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(b) 1+2*3
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(c) 1-2+3

Figure 7.20: Example abstract syntax trees for operator expressions

its parent is a lower-precedence operator \+". The abstract syntax tree in Fig-

ure 7.20(c) is UN-parsed as 1-2+3, because operator \�" and operator \+" have

the same precedence and they are both left associative, and the subexpression 1-2

appears as the left subexpression of its parent. All the operators belonging to the

same precedence group must have the same associativity, otherwise the parser will

not be able to parse unambiguously expressions such as 1-2+3. Associativity is a

special syntactic issue that only exists among binary operators.

The above cases can be generalized to an algorithm for UN-parsing expressions

into their textual representations, which generates only the necessary parentheses.

Let \)" denote the function application operator. If we de�ne:

U = set of all unary operators

B = set of all binary operators

Op = U [ B

N = f1; 2; : : : ; n; n+ 1; n+ 2; n+ 3g

The following P function whose type is Op ! N , assigns integer precedence to
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operators:

P[[)]] = n + 2

P[[uop]] = n + 1 if uop 2 U

P[[bop]] 2 f1; : : : ; ng if bop 2 B

We illustrate the algorithm with the following grammar of expressions:

e := uop e j el bop er j aexp j e0(e1; e2; :::; en)

where uop 2 U , bop 2 B , aexp is an atomic expression such as a variable or a

constant literal, and e0(e1; e2; :::; en) is the form of function application.

Function applications have the highest precedence. All unary operators belong

to the same next highest precedence level, and all binary operators have lower

precedence.

We also extend the precedence function to expression parameters in a natu-

ral way: it maps expressions to the precedences of their top-level operators, if

they have one; otherwise their precedence is n + 3 (for the case of atomic expres-

sions). In addition, each binary operator bop also has an associativity assoc(bop) 2

fLeft;Right;Nong.

Based on the precedence and associativity of operators, our UN-parsing algo-

rithm can be formalized as a function U that computes the textual representation

of an expression (Figure 7.21). The auxiliary function paren parenthesizes a string,

e.g., paren(\1+2") = \(1+2)", and ++ is the overloaded concatenation function

de�ned on the disjoint sum of strings, atomic expressions, operators, and returns a

string.

To implement the above algorithm, a table (possibly user-con�gurable) is re-

quired by the code generation routine. The table documents the precedence level,
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U [[uop e]] = uop ++(if P[[e]] � n+ 1 then U [[e]] else paren(U [[e]]))

U [[el bop er]] = (if (P[[el]] < P[[bop ]]) or

(P[[el]] = P[[bop ]] and assoc(bop) 6= Left)

then paren(U [[el]])

else U [[el]])

++ bop ++

(if (P[[er ]] < P[[bop ]]) or

(P[[er ]] = P[[bop ]] and assoc(bop) 6= Right)

then paren(U [[er]])

else U [[er]])

U [[aexp]] = aexp

U [[e0(e1; : : : ; en)]] = if P(e0) � n+ 2 then U [[e0]] else paren(U [[e0]])

++ \(" ++U [[e1]] ++ : : : ++U [[en]] ++\)"

Figure 7.21: The UN-parsing algorithm that minimizes number of generated parentheses

and associativity of operators in the target language.

As a consequence of the above algorithm, we will not be able to keep the similar-

ity between the source and target program if there are unnecessary parentheses in

the source program. Since the generated code is more readable without the unnec-

essary parentheses, we consider our approach preferable. If we really want to keep

the similarity, we can annotate each node with an extra boolean �eld. If the value

of the �eld is true, surrounding parentheses will always be generated regardless of

the precedence or associativity of the node.
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7.15.2 Monadic-style multi-level pretty-printer

Software reuse is plainly visible in functional programs. Most functions in func-

tional programs capture very general programming idioms that are useful in almost

any context. But it is just as important to de�ne and use application speci�c id-

ioms. The functional programmers should approach a new application by seeking

to identify the programming idioms common in that application area, and to de�ne

them as functions (probably higher order). Each particular application program

should then be built by so far as possible combining these functions, rather than

writing \new code" (for this reason, such functions are often called combinators).

The bene�ts of such an approach are very rapid programming, once the library of

idioms is de�ned, and very often that application programs are correct the �rst

time, since they are built by assembling correct components.

Almost every program which manipulates symbolic data needs to display the

data to the user at some point | whether it is for internal compiler debugging,

or a program transformer writing its output. The problem of displaying symbolic,

and especially tree structured data, is a recursive one. A pretty printer's job is to

lay out structured data appropriately. Pretty-printing is complicated because the

layout of a tree node cannot just be inferred from its form. Instead, a pretty-printer

must keep track of much contextual information.

Our pretty printer is language independent at the lower levels; only the highest

level deals with language-speci�c syntactic constructs. It is a variant of the pretty-

printers originally designed by John Hughes [45] used in both the Chalmers and

Glasgow Haskell compilers. To give a avor of the monadic-style multi-level pretty

printer, some interesting code snippets are shown in Figure 7.22 (signature) and
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Figure 7.23 (implementation).

The pretty printer is strati�ed in three layers. At the lowest level (pretty printer

core), the representation of state (or con�guration) and various pretty printers are

de�ned. Essentially a pretty printers is a state transformer (of abstract type state

-> state). Functions that change the state belong to this level. Of particular

importance is the concatenation operator ++, which is de�ned as the function com-

position of the state transformers, thus is mathematically associative.

Functions de�ned at the lowest level have access to the representation of the

state. Such details are abstracted away to the higher-level pretty printing routines.

Only a few primitives are provided at this level.

Built upon the lowest level primitive pretty printer and combinators are higher-

level pretty printing routines at the second level such as seqMap, which pretty-prints

a sequence of elements. It is of type pp * pp * pp -> ('a ->pp) -> 'a list ->

pp. The �rst argument is a triple (prologue,separator,epilogue). prologue

and epilogue specify what should be pretty-printed before and after the sequence,

while separator specify what should be pretty-printed between elements. The

second argument is the pretty-printer for elements in the third arguments. For

example, to pretty-print a list of integers enclosed in square brackets, one can

write seqMap (lb,noOp,rb) intPP listOfInt, and sequence of statements can be

pretty-printed with seqMap (noOp,semi,noOp) stmtPP listOfStmt, where intPP

and stmtPP are the pretty-printers for integer and statement, respectively.

At the highest level, language-speci�c pretty printers are de�ned.
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(* Pretty printer core *)

type state
type pp

val indentation : int

val $ : string -> pp (* prefix a space to the string *)
val @@ : string -> pp (* identifier pretty printer *)

val tab : pp
val indent : pp
val unindent : pp
val nl : pp
val space : pp
val prog : pp -> string
: : :

(* Higher-level pretty printer *)

val ++ : pp * pp -> pp (* for concatenation *)

val string : string -> pp
val integer : int -> pp

val comma : pp (* , *)
val dquote : pp (* `` *)

val lp : pp (* ( *)
val rp : pp (* ) *)

val noOp : pp
val keywd : string -> pp
val block : pp -> pp (* first indent, then unindent *)
val seq : pp * pp * pp -> pp list -> pp
val seqMap : pp * pp * pp -> ('a -> pp) -> 'a list -> pp

val paren : pp -> pp
val bracket : pp -> pp
val brace : pp -> pp
: : :

(* Language-dependent level *)

val stmtPP : AdaAST.stmt -> pp
: : :

Figure 7.22: Signature of the monadic-style multi-level pretty-printer

176



(* Pretty printer core *)
type state = int * int * string
type pp = state -> state
val indentation = 3
fun $ s (i:int,p,t) = (i, p+1+size s, t ^ " " ^ s)
fun @@ s (i:int,p,t) = (i, p+size s, t^s) (* i:indentation, p:position *)
fun tab (s as (i,p,t)) = if p >= i then s else (i, p, t ^ whiteSpaces(i-p))
fun nl (i,p,t) = (i, 0, t ^ "nn")
fun indent (i,p,t) = (i+indentation,p,t)
fun unindent (i,p,t) = (i-indentation,p,t)
fun space (i,p,t) = (i, p+1, t ^ (whiteSpaces 1))
fun prog (pp:pp) = (#3(pp(0,0,"")))
: : :

(* Higher-level pretty printer *)
fun pp1 ++ pp2 = pp2 o pp1
val comma = @@ ","
val dquote = @@ "n""
val lp = @@ "("
val rp = @@ ")"
fun string s = dquote ++ (@@ s) ++ dquote
fun integer i = @@ (Int.toString i)
fun noOp pp = pp

fun seq (left,middle,right) (list : pp list) =
let

fun printSeqElems [] = noOp
| printSeqElems [x] = x
| printSeqElems (x::xs) = x ++ middle ++ printSeqElems xs

in left ++ (printSeqElems list) ++ right end

fun seqMap (left,middle,right) f xs = seq (left,middle,right) (map f xs)

fun block pp = indent ++ pp ++ unindent
fun line pp = tab ++ pp ++ nl
fun keywd kw = @@kw
fun paren pp = lp ++ pp ++ rp
fun bracket pp = lb ++ pp ++ rb
fun brace pp = lbr ++ pp ++ rbr
: : :

(* Language-dependent level *)
fun stmtPP (Block blockIdOpt,decls,stmts,exnHandlers) =

(blockIdOptPP blockIdOpt) ++
(blockDeclsPP decls) ++
(kwLine KWbegin) ++
(block (seqMap (noOp,noOp,noOp) stmtPP stmts)) ++
(exnHandlersPP exnHandlers) ++
(line ((@@KWend) ++ (endLabelPP blockIdOpt) ++ semi))

: : :

Figure 7.23: Implementation of the monadic-style multi-level pretty-printer
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Chapter 8

Conclusion and future work

The major purpose of this dissertation research is to propose a new approach to the

process of designing, developing, using, maintaining, and documenting prototyping

languages. We advocate that employing a translator from a prototyping language

to another high-level language serves as a fast and inexpensive testbed for the entire

process.

We have demonstrated a model for language translation based on action se-

mantics for quick development of language translators. A strength of our model

is that a semantic description of the source language can be given formally in a

concise manner inside the translator itself. The layered and modular structure of

this translator (G2A) makes it more abstract, more readable than existing transla-

tors that we know of, and readily accommodates changes to allow the translator to

evolve with the language. The type system used in the static analyzer of G2A is

parameterizable, which is a useful feature for experimenting with various type sys-

tems, especially in the development stages of a prototyping language. This better

description of the semantics of a language makes it easier for implementors to pro-
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vide a correct implementation, and for users or theoreticians to gain insights into

the language. Furthermore, this model facilitates mathematical reasoning and a

correctness proof of the entire translation process. Our implementation experience

indicates that the cost of describing the semantics of a language in action notation

is modest, certainly much lower than the price paid for unsound features and misun-

derstanding that can result from informal descriptions. We hope that our work will

help to convince designers of prototyping languages to regard an action-semantics

based language description as a reasonable support for the development e�orts,

like other essential tools of the language, rather than as an option too expensive to

consider. Although we have only implemented a translator from GriÆn to Ada95,

the generality of the system should apply to other language translators as well.

We have acquired a collection of techniques for the translation of certain non-

trivial high-level features of prototyping languages and declarative languages into

eÆcient procedural constructs in imperative languages like Ada95, while using the

abstraction mechanism of the target languages to maximize the readability of the

target programs. In particular, we translate GriÆn existential types into Ada95

using its object-oriented features, based on coercion calculus. This translation is

actually more general, in that one can add existential types to a language (with

slight change of its syntax) supporting object-oriented paradigm without augment-

ing its type system, through intra-language transformation. We also present a

type-preserving translation of closures which allows us to drop the whole-program-

transformation requirement.

Most of the chapters include sections giving a few of the ideas we have not been

able to follow up on yet. Overall, there are some possible extensions of this work
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which will be described in the following sections.

8.1 Dropping the whole-program-transformation require-

ment

A signi�cant restriction of our system is that it needs all the GriÆn program com-

ponents available before the translation process starts. Our translations of several

language features require access to the entire program before the translation starts,

such as the constraints collecting (Section 5.1.4), existential type translation (Sec-

tion 7.2), and structural type equivalence in GriÆn versus name equivalence in

Ada95 (Section 6.2).

8.2 Separate compilation

Modularization, the division of a program into a number of relatively manageable

modules, is an invaluable mechanism of programming languages to support \pro-

gramming in the large".

At the present time, GriÆn lacks a module system, therefore separate compi-

lation is not taken into consideration. With a modicum of extra apparatus, G2A

can embrace modular design. All the symbols used in a module have to be explic-

itly introduced in one of the following ways: in the module itself, in an external

speci�cation, or in a reference module (possibly along with some language-speci�c

conventions).
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8.3 Action semantics based type system

To obtain a coherent documentation style for the entire system, we can also express

the type system itself in action semantics. In this way, we also \stage" an action

semantics de�nition of a programming language into static and dynamic stages as

most other formal description methods do.

In our implementation, the GriÆn type system [70] is an external module. Aux-

iliary functions are established to invoke various functions for type inference or type

checking purposes.

To obtain an even stronger avor of action semantics in our implementation, we

can develop a type system for actions based on types and kinds. The types within a

kind can be partially ordered to reect subtyping. Such a type system description

would be similar to the one presented in [29, 30], wherein a type system and its

interpretation support an ML-style type inference algorithm for action expressions.

The authors describe a uni�cation-based, decidable type inference algorithm for

action semantics in great detail.

8.4 Extracting front-end from semantic speci�cations

It is possible and indeed preferable to derive lexers and parsers automatically from

semantic speci�cations. Using the system ASF+SDF [89] developed at Inria, one

speci�es concrete syntax rather than abstract syntax in the semantic equations, and

a lexer and a parser can be generated from the semantic speci�cation accordingly.

The automatically derived front-end could be further used in the development of

other tools such as the language debugger.
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Another possibility is the approach used in [52] in which the abstract syntax

(part of the semantic speci�cation) is speci�ed, but with some implicit naming

rules and auxiliary documentation, the front-end is derivable from the semantic

speci�cation.

Another minor point is that we can also make the operators of the source or

target language more dynamic by providing a mapping documenting their prece-

dence and associativity. The mapping would be read by the front-end generator to

produce the eventual lexer and parser.

8.5 Further development of the theory of action notation

Action equivalence provides suÆcient abstraction to verify various simple algebraic

laws. However, the general theory of action notation has not yet been fully devel-

oped, and at the time of writing it is not known whether the degree of abstraction

provided is high enough for general use in program veri�cation [64].

8.6 First-class polymorphism

Another interesting extension is to take into consideration of �rst-class polymor-

phism [48]. In most strongly typed languages, higher-order polymorphic functions

are not implemented because, in general, type inference, or even type checking,

is undecidable. However, GriÆn imposes certain syntactic restrictions to support

�rst-class polymorphism, which ensures the decidability of the type system.
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Appendix A

Macrosemantic speci�cation of

GriÆn for-loop generators

A.1 Abstract syntax trees of GriÆn for-loop generators

functor AstFunc (structure Lit : LIT
structure Type : TYPE
structure Prim : IR_PRIM
sharing Lit.Print = Type.Print) : AST =

struct
...
datatype expAST =

...
ForGenAST of generatorAST
...

and : : :
...

withtype iteratorAST =
f

pat : patAST,
expr : exprAST

g
and generatorAST =
f

iterators : iteratorAST list,

183



cond : bool
g

...
end

A.2 Grammar rules of GriÆn for-loop generators

%nonterm
...
| expr of expAST
| generator_expr of generatorAST
| iterator of iteratorAST
| iterators of iteratorAST list
...

%%
(* ----------- *)
(* rules *)
(* ----------- *)

expr :
...
FOR generator_expr

(ForGenAST generator_expr) |
...

generator_expr :
iterators |

(fiterators = iterators, cond = trueg)
iterators EqGt expr

(fiterators = iterators, cond = exprg)

iterators :
iterator

([iterator]) |
iterator Comma iterators

(iterator :: iterators)

iterator :
pat IN expr

(fpat = pat, expr = exprg) |
pat IN expr Vbar expr

(fpat = pat, expr = exprg)
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A.3 Semantic equations of GriÆn for-loop generators

The semantic equations for GriÆn for-loop generator are:

B : GenBodyAST -> env -> (mty,IACTION)

B [[ "|" C "=>" E ]] env =
let

(Cmty, guardCondIA) = E [[C]] env
(bodyExpMty, bodyExpIA) = E [[E]] env

in
(

bodyExpMty,
if coercible(Cmty,bool) then

IfThenElse(guardCondIA, [bodyExpIA], [])
else

Raise(CondTypeNotBoolean)
)

end

B [[ P "in" G "," B ]] env =
let

element = genSym()
stream = genSym()
retrieve = genSym()
results = genSym()
result = genSym()
x = genSym()
e = genSym()

((genMut, genType), genIA) = E [[G]] env
(valuesIA,boundVarNames,env') =

P [[P]] (element,componentType(genType)) env
(bodyMty,bodyIA) = B [[B]] env'

in
(

bodyExpMty,
LetInEnd
(
[
Bind((stream,retrieve),genIA),
Bind(results,[])
],
[
WhileLoop(
True,
[
Case (

FuncCall(retrieve,stream),
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[
(NONE, [Break]),
(

SOME (element,newStream),
[
Assign(stream,newStream),
LetInEnd (
[Bind(x,valuesIA)],
[
ForLoop(
e,
x,
LetInEnd(
[boundVarNames = e],
[
LetInEnd(
[Bind(result,bodyIA)],
[Assign(results, results ++ result)])

]))])])])]),
Return(results)
]

)
)

end
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