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Abstract

This thesis concerns the acquisition, modeling and manipulation of the human

form.

First, we acquire body models. We introduce an efficient bootstraped algo-

rithm that we employed to register over 2,000 high resolution body scans of male

and female adult subjects. Our algorithm outputs not only the traditional vertex

correspondences, but also directly produces a high quality model which can be

immediately deformed. We then employ the result to fit noisy depth maps com-

ing from now commercially available 3D sensors such as Microsoft’s Kinect and

PrimeSense’s Carmine.

We then switch focus to the topic of body manipulation. We first revisit the

more traditional way of specifying bodies from a set of measurements, such as

coming from clothing sizing charts, showing how the statistics of the population

learned during the registration can aid us in accurately defining the body shape.

We then introduce a new manipulation metaphor, where we navigate through the

space of body shapes and poses by directly dragging the body mesh surface.

We conclude by describing a new real-time system for image-based body manip-

ulation called BodyJam, that lets you change your outfit with a finger snap. Body-

v



ABSTRACT

Jam is inspired by a technique invented by the surrealists a century ago: “Exquisite

Corpse”, a method by which a collection of images (of body parts) is collectively

assembled. BodyJam does it on a video display that mirrors the pose in real-time

of a real-person standing in front of the camera/display mirror, and allows the

user to change clothes and other appearance attributes. Using Microsoft’s Kinect,

poses are matched to a video database of different torsos and legs, and “pages”

showing different clothes are turned by hand gestures.
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Introduction

The study of the human form played a central role during the Renaissance,

where artists such as Leonardo da Vinci and Albrecht Dürer undertook detailed

studies on the proportions of the human body, greatly influenced by the classical

work of the Roman architect Vitruvius (Pollio n.d.). This influence is summarized

in the famous illustration, Vitruvian Man, by da Vinci (figure 5.1a), which has

now become part of popular culture.

Dürer, the famous German painter and printmaker, in particular, wrote an en-

tire treatise on the human form, Four Books on Human Proportion (Dürer 1528),

published posthumously through the efforts of his wife Agnes and close friend

Willibald Pirckheimer. The first two books are mainly concerned about construc-

tions on ideal human proportions, basely largely on Vitruvius and on his own

observations. The third book is particularly interesting, where Dürer describes

how the ideal proportions presented before in the first two books can be altered

and changed, with the parts being lengthened and shortened to become different

than the original (see figure 0.2). He details geometric constructions with which

the figure can be systematically deformed. Interestingly, this is a departure from

the search of ideal proportions, and beauty now comes from the whole of the

1



INTRODUCTION

(a) (b)

Figure 0.1: Study of the human form during the Renaissance. (a) Vitruvian Man,
by Leonardo da Vinci (c.1485-90) (b) Albrecht Dürer’s Four Books on Human
Proportion (1528). Illustration from the first book.

population, instead of an ideal intentioned by God. He once wrote:

“If you wish to make a beautiful human figure, it is necessary that you

probe the nature and proportions of many people: a head from one; a

breast, arm, leg from another...”

Dürer then includes specific methods to modify the human face, describing how

to alter the proportions of the features of the head, and warns on how pushing them

to the extremes brings us into the grotesque (see figure 0.3a). At this point the

connection with da Vinci is clear. Leonardo da Vinci was fascinated with the

grotesque, and was constantly sketching deformed, ugly faces, in contrast to his

more “divine” paintings celebrated in the 20th century (figure 0.3b).

On a modern setting, anthropometry, or measurements of the human body,

is a science by itself, which applications to clothing design, industrial design and

2
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Figure 0.2: Albrecht Dürer’s Four Books on Human Proportion. Illustrations from
the third book, on deformations of the human form.

ergonomics. With the rise of mass production in the 20th century, it became of

paramount importance to understand the statistics of human body variation in

order to optimize the production. In clothing design, for instance, ready-to-wear

clothing sizes are designed to cover the variation of body types of the brand’s aver-

age customers, while the typically more expensive made-to-measure and bespoke

garments are designed in accordance with the measurements of a specific person.

Recently, however, with the advance of manufacturing technologies, such as

3D printers and fabric cutting technology, we are entering a new area of mass

personalization, were it is becoming increasingly cost effective to create products

customized to a specific person. Therefore, efficient algorithms for measuring and

manipulating the human form are growing in importance. Moreover, relatively

inexpensive 3D sensors such as Microsoft’s Kinect, and hand held devices equipped

3
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(a) (b)

Figure 0.3: Deforming the human face into the grotesque. (a) Dürer’s head trans-
formations. Illustration from the third book of Four Books on Human Proportion.
(b) Study of five grotesque heads, by Leonardo da Vinci (Milan, c. 1494). Royal
Collection, Windsor Castle, London, UK.

with multiple cameras are starting to populate the consumer market, making them

a more than ever valuable source of data to understand the body.

On this thesis we focus on the efficient acquisition, modeling and manipulation

of the human form, in a way revisiting Dürer’s ideas from the perspective of the

21st century. Our specific contributions are:

• An efficient bootstrapped registration algorithm used to register over 2,400

high resolution body scans from the CAESAR body scanning dataset. Our

algorithm differs from traditional registration algorithms by directly learning

inside the body model space in additional to only computing the vertex corre-

4
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spondences, using the learned deformation of the body as a strong regularizer

during the optimization.

• We then present a fast algorithm to fit the learned body model to noisy depth

maps, improving on comparable published methods (Weiss et al. 2011) from

about an hour of optimization to just a few seconds.

• Slightly changing gears, we introduce a new, direct body manipulation tech-

nique, where body shapes and poses are specified by directly dragging the

vertices of the body mesh. We show how this technique can be employed to

directly manipulate body images and point clouds of human bodies

• Finally, still on the topic of body manipulation, we conclude by showing

a real-time video-base body manipulation system used to puppeteer video

recordings of another person

5



Chapter 1

Human Body Model

We begin by reviewing the human body model used throughout this work, as

well as describing important practical observations and calculations that will be

crucial to efficiently manipulate the model.

1.1 Related Work

Human Body Models On the faster-but-less-realistic side of the spectrum,

human characters are modeled with pure geometric priors, such as in linear blend

skinning (LBS) and related methods (Kavan et al. 2008), which lack in realism

but can be computed very efficiently for real-time applications. Skin weights are

either painted manually by artists, or automatically computed by methods such

as (Baran et al. 2007).

Pose space deformation (Lewis et al. 2000) tightens the modeling and animation

evaluation loop, where vertex positions driven by generic parameters are interpo-

6



CHAPTER 1. HUMAN BODY MODEL

lated using radial basis functions. Similarly, shape-by-example (Sloan et al. 2001)

interpolates a set of example meshes by computing cardinal basis functions. Even

though these methods are not necessarily specific to human bodies, we cite them

as representatives of methods used in systems that model the human body with a

human artist in the loop.

Pushing the number of examples to the extreme, on the other side of the spec-

trum is the class of methods that try to automatically learn the space of human

bodies from a greater set of examples. Allen et al. 2003 learns a morphable model

from examples obtained from high resolution body scans, and (Anguelov, Srini-

vasan, Koller, et al. 2005) builds on this model to also allow for pose deformation,

with further extensions in (Hasler et al. 2009). We draw from this class of models

for the current work.

1.2 SCAPE

In this work we use the SCAPE (Anguelov, Srinivasan, Koller, et al. 2005)

model to represent human bodies, which we review in this section. Please refer to

the original paper for the details.

On the SCAPE model, a point in the space of human bodies is represented by a

set of body shape (β) and pose (ω) parameters. The model itself is a triangle mesh,

with vertex positions in a given configuration specified differentially by setting, in

the least squares sense, the two edges of each triangle k “ 1, . . . , nT to

ek,j “ RppkqpωqSkpβqQkpωqek,j, j “ 1, 2, (1.1)

7



CHAPTER 1. HUMAN BODY MODEL

where the components are:

Current Model and Template Mesh Edges: ek,j “ xk,j ´ xk,0 is the edge in the

current configuration pβ,ωq and ek,j is the corresponding edge in a template mesh

used as reference to train the model.

Rigid Body Parts Rotations: Rppkq P SOp3q is the rotation of the body part

ppkq to which triangle k belongs. One can think of it as purely geometric prior,

defined directly by the pose.

Body Shape Variation Matrices: Sk is a 3 ˆ 3 matrix used to account for

body shape variation between individuals, learned from scans of different people

in roughly the same pose. It is computed as linear subspace using PCA for all the

sample mesh deformations and, in terms of the shape parameters β, is given by

Skpβq “ S0
k `

ř

i βiS
i
k. Stacking up vertically the matrices for all triangles reshaped

into column vectors, we can write

Spβq “ S0 `
ÿ

i

βiS
i. (1.2)

In the next chapter we present the details of the technique we developed in order

to learn the shape deformation matrices.

Pose Dependent Triangle Deformation Matrices: The remaining 3 ˆ 3 matrix,

Qk, accounts for triangle shape variations between poses. It is learned for each

triangle from a set of registered scans of one single individual in various poses. For

a given pose ω, Qk is computed as an linear function of the exponential coordinates

of the rotations of the joints adjacent to the body part to which the triangle

belongs. For instance, for a triangle on the biceps, Qk would be computed as a

linear function of the exponential coordinates of the elbow and shoulder rotations.

8
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The linear function is learned for each triangle from the training data. Intuitively,

after the rotation of the body part is applied to a triangle one can think of the

pose dependent deformation matrices Qk as learned to act on top of the underlying

deformation Rk trying to “fix” the triangle to match the examples and account for

what remains in the deformation. Despite its simplicity, this linear function works

surprisingly well in practice.

With all the components described, note that 1.1 defines the final vertex posi-

tions in the least squares sense, and one must solve for the 3 components of the

vertex positions. The positions are defined up to a translation, so we can, say, fix

one vertex position, and solve the system for the remaining vertices.

After this quick review of the SCAPE model, we add a couple of our own

remarks that will be important for the current work when manipulating the model.

1.3 Real-time Model Evaluation

We first make the observation that the most costly part of evaluating the model

is solving the sparse least squares system defined by 1.1. However, note that only

the right hand side of equation 1.1 changes with the model parameters, so the

system can be decomposed offline and solved in real-time with only forward and

back substitution.

More precisely, if we stack vertically the vertex coordinates as rows of a nV ˆ 3

matrix X, we can rewrite the linear system defined by 1.1 as

MX “ E
1
pω,βq, (1.3)

9



CHAPTER 1. HUMAN BODY MODEL

where M is the nE ˆ nV sparse matrix transforming the mesh vertices into edges,

where nE is the number of edges, and E
1 is the nE ˆ 3 matrix of transformed

template edges defined by the right hand side of 1.1, whose solution is given by the

normal equation

X “ pMTMq´1MTE
1
pω,βq. (1.4)

In our implementation, we prefactor the system above using sparse Cholesky

factorization (Yanqing Chen et al. 2008), so that, whenever the model parameters

change, we only have to compute the right hand side of 1.3 and solve the system

by forward and back substitution, which makes the model practical for interactive

applications.

1.4 Hierarchical Rotations

Slightly different from the original SCAPE model, we represent the rotation of

each body part with a skeleton joint hierarchy, instead of directly parameterizing

the rotations Rppkq in 1.1 of each body part in the root coordinate system. This

is useful in the optimization since the relative joint rotations are encoded directly

in the parameterization, instead of having to be imposed as extra regularization

constraints. We automatically insert a skeleton on the template mesh using (Baran

et al. 2007).

To fix the notation, the rotation of each body part Rppkq then is written in

10



CHAPTER 1. HUMAN BODY MODEL

terms of the chain of joints influencing ppkq as a forward kinematics equation

Rppkq “ RG
kn “ Rl

k0
R0

k0k1
. . . Rl

ki
R0

kiki`1
. . . Rl

kn , (1.5)

where R0
kiki`1

is the relative rotation between joints ki and a child joint ki`1 in

the rest pose, and Rl
ki

is the local rotation of joint ki. RG
kn

is used to denote the

accumulated global rotation of joint kn.

Going back to 1.5, in coordinates it can thus be written as

Rppkq “ epωk0R0
k0k1

. . . epωkiR0
kiki`1

. . . epωkn (1.6)

and ω “ pωiqi“1,...,nj
then becomes the model pose parameters.

1.5 Efficient Optimizations with Respect to the

Body Model Parameters

During optimization, having analytical expressions for the Jacobians of the

objective function in hands generally results in algorithms with orders of magnitude

faster than relying on numerical estimations of the Jacobians with finite differences.

This is particularly true when function evaluations are expensive, which is the case

when working with objective functions depending on the SCAPE model. Each

evaluation of the model involves costly substeps, including solving a sparse linear

system 1.3 after going through all the prior steps necessary to update its right

hand side we have described. In this section we derive the analytical expressions

for the Jacobians of the model vertex positions with respect to the shape and pose

parameters.

11
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We also describe an optimization strategy on pose space, which will be a recur-

ring problem in the following chapters, so we factor out the main results in this

section.

1.5.1 Shape Parameters

By equation 1.3, the model vertex positions depend linearly on the transformed

template edges, which, in turn, depend linearly on the shape parameters. There-

fore, for a fixed pose, the Jacobian matrix with respect to the shape parameters

is constant. Combining equations 1.1, 1.2 and 1.3, we can express the final vertex

positions during shape manipulation as a linear combination of basis Xi:

X “ X0 `
ÿ

i

βiXipωq, (1.7)

and the Jacobian matrix with the respect to the pose parameters can be computed

by concatenating the columns Xi:

BβX “ pX1, . . . , Xi, . . . , Xnq. (1.8)

The basis Xi are obtained by solving, for each shape parameter βi,

Xi “ pMTMq´1MTEi
1
pωq, (1.9)

with Ei
1 defined in a similar way to E

1 in 1.3, this time with the transformed tem-

plate edges computed with respect to a single component of the shape deformation

matrix. The transformed edges forming the rows of Ei
1 are given by

e1
i

k,j “ RppkqpωqSi
kQkpωqek,j, j “ 1, 2, (1.10)

12
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where index i corresponds to the index of the shape component, the index k, for

the triangle, and j, for the edge on triangle k.

Combining 1.8 and 1.9, we can summarize the calculations for the Jacobian as

BβX “ pMTMq´1MT pE1
1
, . . . , Ei

1
, . . . , En

1
qpωq, (1.11)

which can again be solved with the sparse Cholesky factorization computed offline,

with multiple simultaneous right hand sides given by the transformed template

edges Ei
1. Moreover, since Xi depends only on the pose parameters, the basis have

to be computed only once for a fixed pose.

1.5.2 Pose Parameters

Optimizations with respect to the pose parameters become more complicated

due the nonlinearity in the rotation optimization. We want an efficient formulation,

like in the previous section, that makes use of the prefactorization of the system

1.4. Unlike traditional optimizations on the Euclidean space, which would compute

the updates on each step in the global parameter space, we optimize here the

incremental steps directly on the rotation group manifold (or, more precisely, the

Cartesian product manifold SOp3q ˆ ¨ ¨ ¨ ˆ SOp3q “ SOp3qnj , for nj joints).

Specifically, at each step we solve for incremental rotations, ∆Ri, for the rota-

tion of joint i, and the updates are given by the right translations Rl
i Ð Rl

i∆Ri.

In coordinates, the updates can be written as

pωi Ð pωi
1

“ logpRl
i expp y∆ωiqq “ logpexpp pωiq expp y∆ωiqq, (1.12)

13
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and we seek the local parameters ∆ωi’s that minimize our energy in each step. The

optimization, thus, corresponds to Gauss-Newton steps (or, Levenberg-Marquardt

steps) on the manifold.

When optimizing specifically on the pose parameters of the SCAPE model, we

first use the observation from (Anguelov, Srinivasan, Koller, et al. 2005) that most

of the variation in the model shape is due to the geometric prior Rk, so we can

keep Qk fixed at each iteration. The transformed template edges on 1.10 simplify

at each step to

e1
k,j “ Rppkqpω

1qSkQkpωqek,j “ R1
ppkqẽk,j “ R

1G
kn ẽk,j, (1.13)

where ẽk,j now denotes the locally deformed template edge ek,j, before the body

part rotation (and, therefore, constant during an iteration step).

Incorporating the forward kinematics equation 1.5 and the incremental rotation

in the equation above we arrive at

e1
k,j “ Rl

k0
R0

k0k1
Rl

k1
. . . Rl

ki
R0

kiki`1
. . . Rl

kn ẽk,j. (1.14)

Computing the directional (Lie) derivatives in the direction of our rotation
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increments for each joint, with some algebraic manipulation we have

B∆ωi
e1

k,j

ˇ

ˇ

∆ω“0
“ Rl

k0
R0

k0k1
Rl

k1
. . . Rl

ki
z∆ωkiR

0
kiki`1

. . . Rl
kn ẽk,j

“ RG
ki

z∆ωki

`

RG
ki

˘´1
RG

ki
R0

kiki`1
. . . Rl

kn ẽk,j

“ RG
ki

z∆ωki

`

RG
ki

˘´1
RG

kn ẽk,j

“
“

RG
ki
∆ωki

‰^
ẽGk,j

“ ´
“

ẽGk,j
‰^

RG
ki
∆ωki

“
`

´
“

ẽGk,j
‰^

RG
ki

˘

∆ωki .

(1.15)

Now, note that ẽGk,j “ RppkqSkpβqQkpωqek,j is exactly the transformed template

edges computed at the current pose, which we have already computed in order to

evaluate the model at the current pose. The term inside the parenthesis is thus

precisely the Jacobian expressed in the canonical local parameterization we are

looking for, which resembles the manipulator Jacobian for inverse kinematics.

With the Jacobian of the transformed template edges with respect to the differ-

ential pose parameters in hands, we only have to include the dependency from the

edges of the actual vertex positions in order to obtain the Jacobian of the vertex

positions with respect to the pose parameters. From 1.4,

B∆ωX “ B∆ω

”

pMTMq´1MTE
1
pω,βq

ı

“ pMTMq´1MTB∆ωE
1
pω,βq,

(1.16)

where B∆ωE
1
pω,βq is given by 1.15, and B∆ωX can be efficiently computed again

with the Cholesky factorization we have computed offline.
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With the Jacobian matrix, we can perform the local optimization in the differ-

ential rotations parameters ∆ω, say, using Levenberg-Marquardt, and update the

local joint rotations with Rl
k Ð Rl

k exppy∆ωkq on each accepted iteration step.

1.6 Biased Levenberg-Marquardt Pose

Optimization

We conclude this chapter by presenting a technique for biasing iterative opti-

mizations with respect to the model pose parameters towards solutions that pass

closer to the sample poses. At each step, we work by locally modifying the metric

to introduce the bias, and our algorithm fits nicely withing a typical Levenberg-

Marquardt (LVMA) or Gauss-Newton steps optimization framework.

This will be useful when optimizing with respect to the pose parameters, where

not only we want solutions that minimize the objective function, but also that

somehow lie close to the region of the domain where the model is well defined.

Related Work. The technique described in this section can be compared to

(Grochow et al. 2004), where the authors apply dimensionality reduction techniques

to construct a gaussian process latent variable model to learn a lower dimensional

representation from a large set of motion capture data. Our technique differs in an

important way though. There, the authors learn the GPLVM from long sequences

of complete motions as training data, modeling specific motion styles (running,

throwing a pitch, etc…), while here our data contains only a very sparse set of

isolated poses, not representing any motion in particular, chosen only to cover the
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deformations of the body parts.

In order to fix the notation, we first we review the standard LVMA algorithm,

then proceed to describe the details of our biased pose optimization. Refer to (No-

cedal et al. 2006; Press et al. 2007; K. Madsen April 2004) for more details.

1.6.1 The Levenberg-Marquardt Algorithm

Say we want to minimize a least squares energy

minEpωq “ ||Fpωq ´ y||2 “ ||rpωq||2, (1.17)

where Fpωq is some function of the model pose parameters, such as, for example,

some subset of skeleton joint position in an inverse kinematics problem (and where

y would be the target positions).

In a typical LVMA iteration, we linearize F around the current solution ω:

Fpω ` ∆ωq « Fpωq ` Jpωq∆ω (1.18)

and the step of each iteration is the solution to the linear system

pJTJ ` λDTDq∆ω “ JT py ´ Fpωqq. (1.19)

where D is a diagonal matrix. In Levenberg’s original algorithm (Levenberg 1944),

D is set to the identity matrix. λ is the damping parameter, which weights how

much the step direction deviates from pure Gauss-Newton steps towards the gra-

dient descent direction. When λ is small, we have JTJ∆ω « JT py´Fpωqq, which

corresponds to Gauss-Newton steps. On the other hand, when λ is large, we have
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∆ω 9
„ JT py´Fpωqq, which is exactly the gradient descent direction. Around min-

ima, where gradient descent performs poorly, we use the Hessian approximation

JTJ to locally approximate F by a quadratic function, and the Gauss-Newton step

corresponds to moving towards the minima of the approximation. On the other

hand, far from the minima, where the quadratic approximation is poor, we move

with gradient descent steps. The contribution from Marquardt (Marquardt 1963)

was to notice that, even far from the minima, we can use information from the

Hessian approximation in order to make use of estimated local curvature. Mar-

quardt replaced the identity matrix of Levenberg’s algorithm by the diagonal of

the Hessian DTD “ diagpJTJq, which scales the gradient descent direction to move

further in the directions where the gradient is smaller in order to circumvent the

classic zigzagging on narrow valleys problem of gradient descent.

It is useful to rewrite the iteration above as the solution to the least squares

system

¨

˚

˝

J
?
λD

˛

‹

‚

∆ω “

¨

˚

˝

y ´ Fpωq

0

˛

‹

‚

. (1.20)

Or, equivalently, another way of looking at the damping term is that at each

step of the optimization we are actually solving the linear least squares problem

min
∆ω

||Fpωq ` Jpωq∆ω ´ y||2 ` λ||D∆ω||2, (1.21)

and the damping shows up as a Tikhonov regularization term. The damping

parameter λ is adjusted at each iteration to control the trust region of where the

18



CHAPTER 1. HUMAN BODY MODEL

Figure 1.1: Local metrics for the right shoulder and elbow during an inverse kine-
matics manipulation. The points in yellow correspond to the k nearest neighbors,
and the ellipses illustrate the local covariance matrix. The 2D projection of the
3D coordinates is chosen along the 2 principal directions of the whole sample set.

linear approximation is good. Large λ imposes a smaller radius, and small λ, less

weight of the regularization, allowing a larger radius for ∆ω.

1.6.2 Local Joint Rotation Metric

Now, we show how to bias the iteration with a metric induced by the sample

poses. To simplify the discussion, we consider only one isolated joint first, and

the extension to multiple joints is straightforward. Say that the sample data

contains poses R1, . . . , Rn, Ri P SOp3q, as sample rotations of the joint. During

the optimization, if the current solution is ω, with the orientation of the joint in

question being R0, we first find the k nearest neighbors to R0 using the Riemannian
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metric

dpR0, Riq “
1

?
2

|| log pRT
0Riq||F “ ||∆ωi||, (1.22)

where ∆ωi “ logpRT
0Riq

_ corresponds to the exponential coordinates of the rota-

tion along the geodesic from R0 to Ri, given by gptq “ R0 exppt y∆ωiq . Without

loss of generality, we will assume the k nearest neighbors are ∆ω1, . . . ,∆ωk.

Next, we compute a local metric based on the Mahalanobis metric induced by

the neighboring rotations. We start by computing the covariance matrix of the

sample local rotations

Σj “
1

k

k
ÿ

i“1

∆ωi∆ωi
T , (1.23)

and then the precision matrix Σ´1
j “ Σj, which will actually induce the metric.

Figure 1.1 illustrates the local metric for the right shoulder and elbow during an

inverse kinematics manipulation.

1.6.3 Biased Iterations

Now we show how to bias the LVMA algorithm iterations based on the local

joint rotation metrics.

We first compute the local metric for each joint, Σ´1
i , and then normalize the

metrics for the different joints as follows. We start with the eigendecomposition of

the precision matrix

Σ´1
i “ UΛUT , (1.24)
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where U is the 3ˆ3 matrix of eigenvectors in each column, and Λ “ diagpλ1, λ2, λ3q,

λ1 ą λ2 ą λ3 ą 0, is the diagonal matrix of eigenvalues. We scale the principal

axis so that the largest eigenvalue is 1,

Λ “

¨

˚

˚

˚

˚

˝

1

λ2{λ1

λ3{λ1

˛

‹

‹

‹

‹

‚

, (1.25)

and reassemble in the new scaled precision matrix Σi
´1

“ UΛUT . This normaliza-

tion is used to ensure that all the joints have roughly the same scale in the bias,

and we mainly influence the step direction within each joint.

In order to integrate this local metric into the optimization framework, we then

compute the Cholesky decomposition of the scaled precision matrix

Σi
´1

“ LT
i Li, (1.26)

and we formulate a new least squares system (as in the corresponding linear sys-

tem 1.33)

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

J

?
αL1

. . .
?
αLi

. . .
?
αLJ

?
λI

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

∆ω “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

y ´ Fpωq

0

...

0

...

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.27)
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Abbreviating the diagonal of Li entries into a block diagonal matrix B, we have

¨

˚

˚

˚

˚

˝

J

?
αBpωq

?
λD

˛

‹

‹

‹

‹

‚

∆ω “

¨

˚

˚

˚

˚

˝

y ´ Fpωq

0

0

˛

‹

‹

‹

‹

‚

. (1.28)

For comparison with 1.21, the solution of the least squares linear system is the

minimum of

min
∆ω

||Fpωq ` Jpωq∆ω ´ y||2 ` α||B∆ω||2 ` λ||D∆ω||2, (1.29)

where the new Tikhonov regularization term is a block diagonal matrix with the

local metrics

Γ “ BTB “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

LT
1L1

. . .

LT
i Li

. . .

LT
JLJ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Σ´1
1

. . .

Σ´1
i

. . .

Σ´1
J

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

(1.30)

In a typical LVMA implementation, we have to provide methods that evalu-

ate the function and Jacobian at a given parameter. In order to implement the

biased scheme above, note that we only have to augment the function evaluation

to, instead of returning y ´ Fpωq, appending the zeros to the end of the vector

corresponding to the bias terms

r1pωq “

¨

˚

˝

y ´ Fpωq

0

˛

‹

‚

(1.31)
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As for the Jacobian, appending the block diagonal matrix

J 1 “

¨

˚

˝

J

?
αB

˛

‹

‚

, (1.32)

the optimization thus becomes a standard LVMA formulation

¨

˚

˝

J 1

?
λD

˛

‹

‚

∆ω “

¨

˚

˝

r1pωq

0

˛

‹

‚

(1.33)

(compare to equation 1.33).

1.7 Conclusion

This chapter was a quick summary of the body model we are going to use

throughout the following chapters. Besides reviewing prior work, we have presented

non-trivial observations that in our experience revealed to be crucial to efficiently

manipulate the model. To the best of our knowledge, they are entirely missing

in the literature. We also presented an optimization technique in pose space that

bias optimization trajectories using local curvature information obtained from the

learning data. With this machinery in hands, we can proceed to apply the model to

our problems without having to completely rely on black-box optimization solvers.
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Chapter 2

Body Registration

2.1 Introduction

In this chapter we present an efficient algorithm used to register the body model

of a single person deformable to multiple poses with a high resolution body scan

of another person.

A major difference and advantage of our algorithm over methods that produce

generic mappings between surfaces (such as Allen et al. 2003; Anguelov, Srinivasan,

Pang, et al. 2004; Kim et al. 2011) is that ours produces not only vertex-to-vertex

correspondences, but, by learning the correspondences while constrained to the

human bodies manifold, we directly produce a full deformable model of the target

subject to which we are registering. The result can then be immediately used to

place the subject in multiple poses. Not only we avoid the extra step of learning

the body model after the registration, but also, and more importantly, we incor-

porate knowledge of the deformation of the human body to help in establishing
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Figure 2.1: Overview of the registration process. (a) The deformable model learned
for a single person is registered with a high resolution scan. (b) We then synthesize
a texture and normal map for the model learned for that specific person. (c) The
textured model can then be deformed into various poses.

the correspondences. Another practical benefit is that we can reuse during the

registration all the machinery already implemented to manipulate the body model.

On the downside, the registration technique is specific to human body meshes, but

we feel that this is a class important enough to deserve dedicated attention.

We applied our algorithm to register over 2000 high resolution body scans from

the CAESAR body scanning database, and used the results to learn a general

model of the male and female population.

2.2 The CAESAR Body Scanning Database

The Civilian American and European Surface Anthropometry Resource (CAE-

SAR) database is the result of a survey carried out by the U.S. Air Force on a
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Figure 2.2: High resolution body scans from the CAESAR database.

population sampled from the United States, Canada, The Netherlands and Italy,

the last two picked for being the tallest and shortest population in the NATO

(North Atlantic Treaty Organization), respectively. It consists of about 2000 body

scans of male and female adults, each mesh with approximately 200k vertices and

415k faces. The scans are provided as reconstructed meshes, with colors and a con-

fidence measure as vertex attributes. Figure 2.2 shows six scans from the database.

Each subject was scanned in 3 poses, one standing and two seated poses, al-

though we only used the standing pose for the registration. Moreover, each subject

is annotated with 74 markers placed in various body landmarks, and a set of body

measurements, such as chest/waist/hips circumference, height, arm length, etc….

In addition to the markers originally present in the database, we added two

more markers to improve the registration accuracy: one in the navel and one on

the tip of the nose. We also disregarded the markers placed on the ribs 1, since

they didn’t provide consistent landmarks. Figure 2.4 shows all the markers on a

subject.

1. Tenth rib, left and right, in the dataset nomenclature.
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Figure 2.3: Vertex confidences of a CAESAR scan.

2.3 Bootstrapped Registration Algorithm

2.3.1 Overview

Given a high resolution scan of one subject, our goal is to retrieve the pose

parameters ω, and the shape deformation matrix of each triangle of the template

mesh S “ tS1, . . . , ST u. Each matrix Si is a general 3ˆ 3 matrix that captures the

body shape deformation specific to each person. We alternate the optimization

of the pose and shape parameters, using the markers for the pose optimization,

and also point correspondences between the template and scan mesh for the shape

optimization.

For each vertex xi, i “ 1, . . . , V of the template mesh, we denote the corre-

sponding closest vertex on the body scan mesh by yi. The model vertex positions

are actually a function of the pose parameters ω, which we denote by xipωq when

we want to make this dependency explicit.
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Figure 2.4: Markers on a subject body scan in the standing pose from the CAESAR
database.

The set of markers on the template mesh is denoted by xMi
, i “ 1, . . . ,M , and

the corresponding markers on the scan by yMi
. Note that each marker corresponds

to a vertex on the template or target scan mesh, the former manually picked for

each CAESAR landmark before running the registrations, and the later found by

computing the closest vertex to each landmark position originally present in the

CAESAR dataset. Figure 2.5 shows the markers placed on the template model at

the rest pose.
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Figure 2.5: Landmarks on the template body model

Algorithm 1 Registration Algorithm
1: (Initialization) Initialize the shape matrices Si, i “ 1, . . . , T and global rigid

transformation with the optimal similarity transformation between the markers
2: while Epω,Sq ą ϵ do
3: Solve for the new pose ω
4: Solve for the vertex transformations Ti, i “ 1, . . . , V
5: Solve for the triangle transformations Si, i “ 1, . . . , T
6: Factor out the rigid components of the triangle transformations
7: end while
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2.3.2 Pose Optimization

For the pose optimization, since we had enough precisely placed markers, we

found it was enough to minimize the energy defined only by the marker errors

Epωq “

M
ÿ

i“1

||yMi
´ xMi

pωq||2. (2.1)

We solve this optimization with Levenberg-Marquardt on the rotation group

manifold using the Jacobian matrix we derived analytically in section 1.5.2. More

precisely, since xMi
forms a subset of the model vertices, and the target marker

positions yMi
are constants, the Jacobian of the energy above can be trivially

obtained from slices of the Jacobian matrix of the vertex positions with respect to

the pose parameters we derived in equation 1.16.

At each step, we solve the local optimization in terms of the differential rota-

tions parameters ∆ω, and update the local joint rotations with Rl
k Ð Rl

k exppy∆ωkq

on each accepted step.

2.3.3 Vertex Transformation Optimization

Given the vertex and marker correspondences, we first solve for an affine trans-

formation of each vertex. We want to solve for the 3 ˆ 4 vertex transformation

matrices Ti, i “ 1, . . . , V . Letting xH “ px, 1qT denote the homogeneous vector
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associated with the vector x, we minimize the energy

EpTq “ wD

V
ÿ

i“1

wi||yi ´Tixi
H ||2 `wM

M
ÿ

i“1

||yMi
´TMi

xH
Mi

||2 `wS

ÿ

pi,jqPE

||Ti ´Tj||
2
F .

(2.2)

The first term corresponds to the error of each vertex, where the vertex weights

wi P r0, 1s are set to the vertex confidence provided by the CAESAR dataset. The

second term corresponds to the marker error, and the third is a smoothness term

between the transformation of adjacent vertices, where ||¨||F is the Frobenius norm.

wtD,M,Su are smoothness weights of each energy term. The transformation matrices

are concatenated in a big column vector, and the energy is minimized by solving

the corresponding sparse least squares linear system.

We run the overall optimization in 3 stages, according to the following schedule

for the weights:

Stage wD wM wS

1 0 10 1

2 1 1 1

3 10 1 1

That is, on the first stage, we take only the markers into account, then give equal

weight to the markers and vertex proximity correspondences, then give a larger

weight to the vertex correspondences.

This step is similar to (Allen et al. 2003), where the authors resort to a mul-

tiresolution strategy in order to solve the optimization, since the energy above by
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itself requires the transformations to slowly propagate throughout the whole mesh,

and can easily be trapped in local minima.

In our strategy, however, the underlying body deformation model acts as a much

stronger geometric prior than the simple smoothness term in the energy above,

which not only speeds up the convergence, but also makes the optimization robust

to local minima. We solve the optimization directly, without any multiresolution

strategies. Moreover, we are ultimately interested in recovering the shape and

pose parameters of the model, so the vertex transformation optimization is only

an intermediate step for the whole optimization.

2.3.4 Shape Matrix Optimization

After optimizing for the transformation matrix of each vertex Ti, we minimize

the shape transformation matrix of each triangle Si, i “ 1, . . . , T . Let x̃i “ Tix
H
i

denote the transformed vertex positions, and ẽk,j “ x̃k,j ´ x̃k,0, a transformed edge.

Similarly to the previous section, we combine a data and a smoothness term in

the energy we want to minimize

EpSq “

T
ÿ

i“1

2
ÿ

j“1

||SiQipωqei,j ´ RT
ppiqẽi,j||

2 ` α
ÿ

adjpi,jq

||Si ´ Sj||
2
F , (2.3)

where ei,j, j “ 1, 2 denotes the two template edges of triangle i, and the sum on the

second term now is on adjacent triangles instead of vertices. Again, this is a sparse

least squares problem, and we solve as in the previous section by prefactoring the

sparse system during initialization with Cholesky decomposition and solving the

system at each iteration with a different right hand side.
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The shape matrices Si can then be directly incorporated into the SCAPE model

to define one subject in multiple poses.

2.3.5 Factoring Out Rigid Transformations

At this stage, the shape matrices of triangles Si in the same body part typically

share a rotation component which can be factored out and incorporated into the

pose. Therefore, after optimizing for the matrices Si, we perform an extra step in

order to extract such rotation component as follows:

Polar Decomposition. First, we compute the polar decomposition of each

matrix Si “ UiPi, where Ui is orthogonal and Pi is positive semi-definite (Shoe-

make 1994). Then, we want to somehow compute the “average” rotation of each

body part, given the orthogonal matrices Ui, so that this common factor can be

incorporated as pose instead of shape deformation.

Fréchet Mean on SOp3q. One way to define such a mean is to define a metric

on SOp3q, and compute the Fréchet mean of the given matrices. The Fréchet mean

is the point (assuming one exists) that minimizes the sum of distances to the other

points:

R “ argmin
RPSOp3q

ÿ

i

dpR,Riq. (2.4)

For instance, the arithmetic mean of a set of points minimizes the absolute

difference distance to the other points dEpx, yq “ |x ´ y|, and the geometric mean

minimizes the hyperbolic distance dHpx, yq “ | logpxq ´ logpyq|.

In SOp3q, one natural metric is the Euclidean distance of the ambient space

dEpR1, R2q “ ||R1 ´ R2||F . (2.5)
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Another metric, which better reflects the Riemannian structure of the manifold

is defined in terms of the shortest curve that connects the two rotation matrices

dRpR1, R2q “
1

?
2

|| logpRT
1R2q||F “ || logpRT

1R2q
_||. (2.6)

For our purposes, we decided to use the former, Euclidean distance, since it

becomes faster and straightforward to minimize 2.4, and we didn’t observe signifi-

cant gains when using the Riemannian distance. With the Euclidean distance 2.5

the solution to 2.4 is simply the polar factor of the arithmetic mean R “
ř

Ri{N

(Moakher 2002).

With the mean rotation matrix of each body part in hands, we factor it out

from the shape matrices Si, and incorporate the rotation matrices in the pose.

2.3.6 Initialization

With the pose fixed, we initialize all matrices Si with the scaling of the best

similarity transformation ps,R, tq that brings the markers on the template mesh

into alignment with the markers on the subject’s scan (figure). The rigid transfor-

mation components pR, tq are used to set the global rigid transformation of the

model.

Optimal Similarity Transformation. The optimal similarity transforma-

tion T “ ps,R, tq between corresponding point sets xi Ø yi can be computed as

follows. Let xi “
ř

xi{N and yi “
ř

yi{N denote the centroids of the source and

target point sets, respectively.
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1. Compute the rotation matrix from the SVD of the covariance matrix

C “
ÿ

pxi ´ xiq
T pyi ´ yiq

C “ UΣV T

R “ UDV T , where D “ diagp1, . . . , detpUV T qq

2. Compute the scale

s “

d

ř

||xi ´ xi||
2

ř

||yi ´ yi||
2

(2.7)

3. Then compute the translation vector

t “ yi ´ sRxi; (2.8)

We then begin the iterations of our registration algorithm, starting with the

pose optimization step described in section 2.3.2.

2.4 Appearance Synthesis

Normal Mapping: After the registration, much of the geometric detail is

inevitably lost since we are using a considerably lower resolution model than the

original scans. To circumvent this issue, we “fake” surface geometry details from

the high resolution scans by sampling a normal map for our model.

First, we compute a parameterization of the template mesh F : D Ă r0, 1s ˆ

r0, 1s Ñ M Ă R3 (figure 2.6b). Each pixel on the normal map image we are gener-

ating corresponds to a point pu, vq P r0, 1s ˆ r0, 1s Ă R2 in parameter space, which
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(a) Mesh parameterization (b) Mesh parameterization with debug grid

Figure 2.6

either corresponds to a point F pu, vq P R3 on the mesh surface, or corresponds

to no point at all. For the pixels with a correspondence, we compute its normal

by first finding the closest point to F pu, vq on the high resolution scan, and then

linearly interpolating the normals of the matched triangle vertices.

Note that with this strategy some of the points will have matches without a

reliable normal, i.e., when the model and scan normals do not point to the same

direction, when the matched points are too far apart, or the interpolated confidence

at the point matched on the scan is too low, which is commonly observed at the

armpits, between the legs and close to the ears. To fix the normals at the pixels

with bad matches, we interpolate the normals with a membrane energy by solving

the Laplace equation ∆n “ 0 at the problematic image regions, with the known

reliable normals as boundary condition. Figure 2.8b shows one example of a normal
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Figure 2.7: Zoom in of a color coded triangle IDs map used during the texture
synthesis for quickly looking up the triangle corresponding to a pixel in pu, vq

parameter space.

map after sampling and interpolation.

To quickly find the point on the model surface F pu, vq corresponding to a pixel

at parameter pu, vq we use the GPU to generate a triangle ids map (figure 2.7). For

each pixel, we can then lookup the triangle corresponding to that pixel in constant

time. In case there is a matching triangle, we then compute the pixel’s barycentric

coordinates in pu, vq space inside that triangle, and then find the corresponding

point on the template mesh by linearly interpolating the vertex positions of the

same triangle with the barycentric coordinates we computed in parameter space.

Figure 2.9a shows the model before and after applying the normal map for

comparison. Also note that, since the normal map is represented in tangent space,

we can directly use it when deforming the model into other poses (see figure 2.9b).

Despite the much lower resolution of the template model, most geometric details
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(a) (b) Normal map

Figure 2.8: (a) Sampling the normal map for a lower resolution mesh (blue) from
righer resolution scan (red). (b) A normal map (encoded in tangent space).

are captured in the normal mapped model.

Texture Synthesis: The CAESAR scanning data also includes a color at-

tribute for each vertex, and we would like to use this information in order to

generate color attributes for our registered model as well. We proceed by synthe-

sizing a texture to be used as diffuse map for our model after the registration is

completed.

As in the synthesis of the normal map, for each pixel in the texture image, we

compute the corresponding point on the low resolution mesh from the parameteri-

zation, then compute the color from the interpolated color of the closest point on

the high resolution scan. Figure 2.10 shows a texture atlas synthesized this way.

Note that, ideally, one would factor out the illumination and albedo from the
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(a)

(b)

Figure 2.9: Faking lost geometric detail with normal mapping. (a) Model before
and after normal mapping, and the high resolution scan for comparison. (b) The
model deformed into other poses, before and after using the normal map.
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Figure 2.10: Textures synthesized for the model after the registration by sampling
the high resolution scan.

diffuse map, but we leave it as future work, which can be easily incorporated.

2.5 Implementation and Evaluation

Numerical Solvers: For the nonlinear least squares solvers we used our own

implementation of the Levenberg-Marquardt algorithm, with the update strategy

for the damping parameter outlined in (K. Madsen April 2004). For the sparse

linear systems, we used the CHOLMOD sparse Cholesky solver (Yanqing Chen

et al. 2008) with the wrapper provided by the Eigen library (eigen.tuxfamily.org

n.d.).

Proximity Queries: In order to accelerate the model to scan vertex proximity

queries we employed axis aligned bounding boxes trees (AABBTree) on the model

and the scans.
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Figure 2.11: Error distribution of the high resolution scans with respect to the
registered model on a male and female subject.

Evaluation: We registered over 2,000 scans from the CAESAR database, using

the model learned for a single person using the already registered scans from the

original SCAPE dataset, kindly provided by Dragomir Anguelov. The SCAPE

meshes contain 12,500 vertices and 24,992 triangles, versus around 200,000 vertices

and 415,000 triangles on the high resolution scans. Figure 2.12 show 6 of the

resulting registered meshes on male and female subjects. To measure the accuracy

of the registration we computed the root-mean-square error (RMSE) using the

distance from all vertices of the high resolution scans to the closest point in the

model. Figure 2.11 shows the error distribution on two subjects. Despite the

overall very good quality of the registration results, note that the hands were not

completely captured since our single person model had his hands closed, while the

scans had them open. Table 2.1 shows the RMSE for the subjects depicted in

figure 2.12, as well as the overall error for all scans. Each registration took about

30 seconds on a MacBook Pro with a 2.2GHz Intel Core i7 processor, 8GB of RAM

and an AMD Radeon HD 6750M graphics card with 1GM of memory. Table 2.1

also details the running times for individual scans.
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CAESAR Standing Scan Time (s) RMSE (mm)
CSR0002A 32 5.6
CSR0016A 33 5.1
CSR0025A 32 5.2
CSR0064A 33 5.7
CSR0065A 32 5.4
Overall 32s/scan 5.2

Table 2.1: Registration root-mean-squared error and running time on a subset of
the CAESAR standing scans, as well as the overall performance on all the scans
from the database.

With the shape deformation matrices of each registration in hands, we were

then able to deform the resulting models into various poses, shown in figures 2.13

and 2.14. We also show the final fully textured model being animated in figure 2.15.

Finally, each registration outputs the 3x3 shape deformation matrix for each

triangle, so by unrolling the matrices into a 9-dimensional column vector, and

stacking the vectors for all the T triangles, we have a 9T shape descriptor vector

for that person. On its simplest form, we can perform principal component analysis

on the person-specific descriptor (Allen et al. 2003; Anguelov, Srinivasan, Pang,

et al. 2004) to get a lower dimensional model for the space of human bodies. We

learned a model for the male and one for the female population this way.

2.6 Conclusion

In this chapter we presented an efficient algorithm employed to register over

2000 meshes of the CAESAR body scanning dataset. Our registration algorithm

not only computes vertex correspondences, but also produces a full SCAPE model
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specific to the subject that can be then manipulated into various poses. We have

also improved the visual quality of the registration results by synthesizing diffuse

and normal maps by sampling the high resolution scan.
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Figure 2.12: High resolution scan (left) and registration result (right).
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Figure 2.13: Registered male models deformed to other poses.
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Figure 2.14: Registered female models deformed to other poses.
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Figure 2.15: Pose deformation after registration and texture synthesis. The left-
most mesh is the high resolution scan, followed by the model resulting from our
registration algorithm after texturing, and then final model of the subject deformed
into various poses. 47



Chapter 3

Fast Body Model Fitting to Noisy

Depth Map

3.1 Introduction

The availability of relatively inexpensive depth sensors is making depth maps

a primary source of data for inverse problems and mixed and augmented reality

applications, and algorithms to efficiently work with such noisy depth maps are

gaining increasing attention in academia and industry. In this chapter we focus on

understanding the human body shape.

Unlike in chapter 2, where we were registering with a complete high resolution

3D scan of another person, here we focus on registering the model against noisy

depth images obtained from a single point of view. Specifically, the main contri-

bution of this chapter is to describe in detail an efficient algorithm that is able,

in couple of seconds, to find the closest point on the manifold of human bodies
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(a) Point Cloud (b) Initialization with IK (c) After Pose Fitting

(d) Base Shape (e) After Shape Fitting (f) Recovered Model

Figure 3.1: Overview of the optimization pipeline. Going from the top left to the
bottom right, the figures show (a) the user point cloud, (b) the initialization with
inverse kinematics (and the corresponding model and matched skeleton), (c) the
result after the pose refinement, (d) the starting (template) model mesh by itself
after the pose optimization, the result of the shape parameters optimization (e),
and, finally, the final fitted model mesh by itself (f). This whole process takes only
a couple of seconds, and the animation of the fitting process can be seen in the
accompanying videos.

learned from the high resolution 3D body scans to the depth data coming from in-

expensive noisy depth sensors such as Microsoft’s Kinect. It is a significant jump in

efficiency with respect to published comparable methods, opening new possibilities

for applications.
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3.2 Related Work

Body Scanning From Depth Maps. Related to our method, (Weiss et al.

2011) presents a technique to scan bodies from RGBD images coming from the

Kinect sensor. For initialization, they assume a rough initial pose from the user,

who is also required to input its height. In contrast, our method exploits the readily

available estimated user skeleton (OpenNI n.d.; Shotton et al. 2011) to initialize

the optimization, which has the benefit of greatly relaxing the assumptions in

the initialization, while, at the same time, placing less restrictions on the user’s

movement. Moreover, the authors report the optimization taking about 65 minutes

per body for 4 frames. We recognize it is hard to make fair comparisons here, but,

in contrast, by exploiting the structure of the objective function being minimized,

each frame in our optimization is solved in just a few seconds.

On a similar line, (Tong et al. 2012) presents a system to scan human bodies

using multiple Kinects while the subject stands nearly static on a turntable. The

various point clouds are registered to reconstruct a 3D mesh of the user. In (Wang

et al. 2012) the authors describe a technique to estimate a 3D body shape with

an approximate cylindrical model to the point cloud, while the user rotates in a

constrained pose. Finally, in (Cui et al. 2012), multiple scans from a single Kinect

are registered to reconstruct a 3D model of the user from a single pose without the

use of body templates.

Lastly, we should also mention commercial body scanning solutions, ranging

from expensive 3D scanners (e.g. (Cyberware n.d.)) to recent Kinect-based alter-

natives such as (Bodymetrics n.d.) and (Styku n.d.).
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Even though our method can be clearly used to build a 3D body scanning

system, and it is certainly a motivation for us, our main concern and contribution

in this chapter is to describe a fast technique to register a learned, expressive

parametric human body model to the point cloud coming from a single depth

camera. We believe that this is useful not only as a component of a 3D body

scanning system, but also to provide a richer semantic description of users in a 3D

scene.

ICP and Nonrigid Registration. During our optimization, we employ the

best practices of the iterative closest point algorithm (ICP), originally proposed

for rigid registration (Y. Chen et al. 1991; Besl et al. 1992). We won’t attempt to

cover the vast ICP literature here, and we refer the reader to (Rusinkiewicz et al.

2001) instead, which compares the best practices for rigid registration. In (Brown

et al. 2007), the ICP algorithm is extended to cope with moderately non-rigid

transformations between multiple scans.

Also related to our method are nonrigid registration techniques that seek to

reconstruct full meshes from partial views of deformable scans. We can make the

broad distinction between methods that make use of a template mesh to aid the

registration (Allen et al. 2003; Anguelov, Srinivasan, Koller, et al. 2005; De Aguiar

et al. 2008), often aided by markers or user selected correspondences, and methods

that work directly on the data without the aid of a template (Chang et al. 2009;

Cui et al. 2012). Recently, (H. Li et al. 2012) presented a technique that is able to

create temporally coherent watertight surfaces from high resolution partial scans

obtained from state of the art multi-view 3D acquisition systems.
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We should make the remark that our main goal is not to reconstruct a mesh

representing the user, but to gain semantic information about the user’s body. The

template is used not simply as an aid to the registration, but it is our representation

of the space of human bodies. For instance, even after very precise non-rigid

registration, there is no semantic knowledge of what each mesh vertex represents on

the body, which would still be necessary on a later “body semantic interpretation”

stage.

Pose Recognition and Human Motion Tracking. Finally, our algorithm

relies on skeleton pose recognition or tracking for initialization. We won’t attempt

to be exhaustive in the vast markerless human motion tracking literature, since

we are not concerned here in tracking per se, but it is used as an input for our

initialization, so the best algorithm in hands can be simply plugged in to initialize

our optimization. Nevertheless, we refer the reader to the survey (Forsyth et al.

2006), and to (Shotton et al. 2011) for the skeleton tracking algorithm for range

images in Microsoft’s Kinect.

3.3 Efficiently Fitting the Body Model to Noisy

Depth Map

Given a frame from a noisy depth map, the problem we want to solve is to

find the point on the space of bodies that best approximates the data. With an

established correspondence between 3D data and mesh points, xD
i Ø xM

i , we seek
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to minimize the sum of squared distances

Epω,βq “
1

N

N
ÿ

i“1

||xD
i ´ xM

i pω,βq||2 “ ||XD ´ XMpω,βq||2 “ ||F pω,βq||2 (3.1)

with respect to the model pose (ω) and shape (β) parameters. The shape param-

eters are the PCA coefficients learned from the registered scans of the CAESAR

dataset. It is a nonlinear least squares problem, similar to problems we have al-

ready formulated in the previous chapters, and, again, we must resort to iterative

methods, solving it using the Levenberg-Marquardt algorithm.

Note that even though the objective function has a similar form to the energy

we minimized during the registration to the high resolution scans in chapter 2,

the nature of the data requires a different ad-hoc optimization strategy. Our

optimization can be described in a typical ICP-style sample selection-matching-

parameter optimization framework, and we describe the steps next.

3.3.1 Initialization

An important point in our algorithm, which avoids many difficulties present in

nonrigid registration techniques, is that we exploit the readily available markerless

motion-captured skeleton computed from the depth map (OpenNI n.d.; Shotton

et al. 2011). We initialize the optimization with inverse kinematics solved directly

on the model skeleton, making each model joint correspond to a tracked joint, and

optimize the squared error of all matched joints simultaneously with Levenberg-

Marquardt iterations. Due to the high level of noise in the skeleton estimation,

in order to improve robustness in the initialization of the root joint orientation,
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(a) Triangle IDs Map (b) User Mask

Figure 3.2: (a): Triangle IDs map. The mesh is projected on the depth image
plane, with the depth camera projection matrix, and an image with the ID of the
triangle that projects into each pixel is quickly computed with the GPU. The map
is then used to quickly establish correspondences between 3D data points inside
the user mask and mesh triangles. (b): Point cloud and user mask created with
background subtraction on the depth map.

before solving the IK, we first estimate its root pose by directly solving for the rigid

alignment between the model skeleton and tracked skeleton torso joints (shoulders,

neck and hips). After a rough initialization has been computed with inverse kine-

matics, the pose and shape parameters are refined using the optimization we detail

in the following sections.

3.3.2 Point Cloud to Mesh Correspondence

The first step is to establish a set of correspondences between data points and

points on the model mesh for the current parameters.

We exploit the fact that the point cloud comes from a range image in or-
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der to quickly establish correspondences by projection, as in (Neugebauer 1997;

Rusinkiewicz et al. 2001) for rigid registration. Moreover, we use the GPU to

render the mesh using the calibrated depth camera as the projection matrix, and

output the triangle ID per pixel as the fragment “color”. The resulting image will

have, in each pixel, the triangle that renders into that pixel. Figure 3.2a shows a

model instance with the corresponding triangle IDs map. With this triangle IDs

map in hands, each pixel in the depth camera image plane will either lie on the

intersection between the user data mask and the mesh projection, on the user mask

and not on the mesh projection, or on the mesh projection but not on the user

data mask.

In the first case, on the overlap between the two masks, the correspondence

is immediate. The data point corresponding to the pixel (computed by inverse

projection) is matched to the triangle projecting to the pixel. On the other hand,

if a projected data point doesn’t correspond to a projected triangle, the correspon-

dence is found from the closest triangle on the triangle IDs map in image space.

Conversely, a pixel on the triangle IDs map not corresponding to any projected

data points is matched to a data point by finding the closest point on the user mask

(again, in image space). These correspondences can be efficiently computed with

the distance transform to the projected mesh and user data mask (Felzenszwalb

et al. 2012). Note that the distance transform to the data mask is constant during

the optimization, and can be computed only once, while the mesh’s mask has to

be updated whenever the body parameters change.

The user data mask is created by segmenting the user with background sub-
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traction on the depth map, which is simple, fast, and works well for our purposes.

Figure 3.2b shows an example of a point cloud and the corresponding user mask.

We found that it was necessary to include correspondences in both directions,

from model to data and vice-versa, since having source point samples to the prox-

imity queries coming only from one of the sets made the algorithm much more

susceptible to local minima.

Moreover, we only match a random subsample of the mesh and data points

(„ 3000 pairs, corresponding typically to 10% of the available pairs), which signif-

icantly speeds up the optimization with no perceived loss in accuracy.

3.3.3 Point to Triangle Distance and Associated Jacobian

Matrices

With the correspondences between data points and triangles in hands, the point

on the mesh corresponding to each data point is the closest point on the triangle.

When the model parameters change, the triangle vertices change positions, causing

the corresponding point to also move. The main goal of this section is to describe

how this closest point changes in terms of the Jacobians of the vertex positions

with respect to the model parameters, which we need to minimize 3.11. The actual

Jacobians of the vertex positions were already presented in section 1.5.2.

Given a point Q and a triangle T with vertices P1, P2, P3 P R3, defining a plane

π “ pP1, Nq passing through P1 with normal N “ pP2 ´P1qˆpP3 ´P1q, the closest
1. This discussion was missing entirely on the registration algorithm in chapter 2 since there

it was enough to consider only the correspondences from mesh vertices to the scanning data, which
remains fixed. Here it is not enough, and we have to consider bidirectional correspondences, from
model points to data points, and vice versa.
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point to Q on π is given by

P “ Q `
pP1 ´ QqTN

NTN
N “ Q ` ppP1 ´ QqTnqn, (3.2)

with n “ N{|N |. Differentiating with respect to any of the model parameters

BP “ B

„

pP1 ´ QqTN

NTN
N

ȷ

“ B
“

ppP1 ´ QqTnqn
‰

“ nB
“

pP1 ´ QqTn
‰

` rpP1 ´ QqTnsBn

“ nnTBP1 ` rnpP1 ´ QqT ` ppP1 ´ QqTnqIsBn.

By direct calculation, the derivative of the normalized plane normals are

Bn “ pI ` nnT q
BN

|N |
.

And, finally, for the plane normals, we have

BN “ BrpP2 ´ P1q ˆ pP3 ´ P1qs

“ BpP2 ´ P1q ˆ pP3 ´ P1q ` pP2 ´ P1q ˆ BpP3 ´ P1q

“ rP1 ´ P3s
^pBP2 ´ BP1q ` rP2 ´ P1s^pBP3 ´ BP1q.

Therefore, we have derived the Jacobian of the closest point on the plane of

triangle T in terms of its three vertices P1, P2 and P3, which are functions of the

model parameters. Summarizing the calculations above, we have

BP “ A1BP1 ` A2BP2 ` A3BP3, (3.3)

where the 3ˆ3 matrices Ai are determined by collecting the terms in the derivation,

and BPi are 3ˆp matrices, with one column for each of the p body model parameters

in question.
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Note that the closest point to the data point on the triangle T may lie outside

the triangle. The closest point will then be either on one of the triangle edges,

or be one of the triangle vertices. On the first case, we can then compute the

Jacobian of the point on the edge with respect to the two edge vertices in a similar

way as we did for the triangle plane. On the second case, the Jacobian in simply

the Jacobian of the closest triangle vertex (BP1, BP2 or BP3).

3.3.4 Parameter Optimization

We minimize the energy 3.1 by alternating minimization in shape and pose

parameters, and we describe each separately.

3.3.4.1 Shape Parameters

Again, as in section 4.4.1 for direct shape manipulation, the linear dependency

of the model vertex positions from the shape parameters turns 3.1 into a linear

least squares problem. We remind the reader that, with respect to the shape

parameters, the model vertex positions can be expressed as

X “ X0 `
ÿ

i

βiXipωq (3.4)

and the shape basis vectors Xi need to be update whenever the pose parameters

change.

A key observation from this section is that when solving for the shape param-

eters we are actually solving two linear least squares problems, one for the vertex

positions, and one for the shape parameters. However, the first is by far the
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most expensive to compute, since it is on the size of the number of mesh vertices

(thousands), while the second is only on the order of the shape parameters (30

parameters in our case). By using our observation from section 1.3 that the linear

system corresponding to the normal equations of the vertex positions (1.7) can be

pre-factored offline, we are left with only the smaller linear system in shape param-

eters during the optimization, while the sparse linear systems necessary to compute

the shape basis in 3.4 are efficiently solved with the same Cholesky factorization

used to update the model vertices with forward and back substitution.

3.3.4.2 Pose Parameters

The optimization with respect to the pose parameters is again more complicated

due to the nonlinearity introduced by the rotations. The actual optimization is

once more completely analogous to the pose optimizations we encountered during

the registration algorithm in chapter 2 (section 2.3.2), and during direct pose

manipulation in chapter 4 (section 4.4.2), which employed the pose manipulation

Jacobian matrix derived in section 1.5.2. Here, however, we don’t have markers

or user constraints to guide the optimization, and the errors are thus measured

with direct closest point correspondences between model and data. The main

consequence for the optimization is that we have to solve a much larger linear

system in each iteration of the Levenberg-Marquardt algorithm. We also allow

during the pose optimization an overall translation of the root joint.
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Figure 3.3: Fitting results for different people.
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3.4 Results

Our data was collected with a Microsoft Kinect sensor, with pose annotated

by the skeleton computed with OpenNI. During the recording, we also extracted

with background subtraction the user mask we used later during the fitting.

Figure 3.3 shows qualitative results of our method on 3 different subjects. It

takes about 5s to optimize the shape and pose parameters. The initialization with

inverse kinematics by itself takes on average 20ms, the pose optimization, 2.9s, and

the shape optimization about 1.6s. As a comparison, (Weiss et al. 2011) reports 65

minutes to solve for 4 frames, so we have achieved a significant gain in performance.

The timings were computed on a MacBook Pro with Retina display, with a quad-

core Intel Core i7 processor, with 16GB of memory, a NVIDIA GeForce GT 750M

graphics card with 2GB of memory, running OS X 10.9

One limitation of our method is that it heavily relies on the initialization. If

the algorithm is initialized with a bad skeleton it becomes very hard to recover,

which comes at no surprise due to the ICP style nature of the algorithm.

3.5 Conclusion

We have described an efficient algorithm that is able to fit the rich class of

SCAPE body models, learned from high resolution 3D scans of human bodies, to

noisy depth maps obtained from relatively inexpensive depth sensors.

The efficiency was mainly achieved by (1) using the now readily available marker

less tracked skeleton for initialization, and (2) by exploring the structure of the
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bodies manifold during the optimization. By looking closely into the equations

defining the SCAPE model, we were able to derive the analytical formulas for

the Jacobians of the energies being minimized, as well as observe that key offline

prefactorizations greatly improve the speed in the model and Jacobians evaluations.

In this work we have focused on fitting the body model to isolated frames.

From here, we would like to explore temporal coherence to efficiently fit the model

to video sequences and real time data.
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Chapter 4

Human Body Manipulation

4.1 Introduction

Modeling and manipulating human bodies is important not only for computer

animation, games and special effects, but also when designing around the human

form, such as in apparel or product design, where it is important for designers,

who are typically not animation experts, to be able to easily manipulate body

shapes and poses with minimal training. We focus in this chapter on interactive

manipulation of the body model shape and pose.

As far as shape manipulation is concerned, we identify two modalities: (1)

Exact, quantitative specification, were the user directly sets the body parameters.

The requirements could come from a clothing sizing chart, for instance, in order to

create a typical body with a given set of measurements, say, to design a garment

on a CAD, or to virtually preview a product online. (2) Alternatively, body shape

can be interactively specified just by visual feedback, where one may, say, want to
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Figure 4.1: Direct manipulation of human body shape. The leftmost image shows
the starting shape, while the remaining three were obtained by directly dragging
the vertices in red to the positions in blue. Our system shows the result of the
manipulation in real-time to the user, who can, for instance, make the shoulders
wider simply by dragging them out, make the individual shorter by dragging its
feet up, and the belly bigger by dragging it out in a profile view, as shown in the
rightmost image.

make a given body a little taller, or thinner, or fatter, or to make the shoulders

wider by visual inspection without worrying about the exact measurements.

Body pose, on the other hand, is typically specified either by a combination of

IK/FK manipulators controlled by animators, were the kinematic chains underly-

ing the model are directly manipulated or driven from motion capture systems. In

inverse kinematics, joint orientations along the chains are solved in order to satisfy

a given set of end effectors constraints. The pose configuration is then used to

deform the model surface, such as a skinned mesh. We propose here to solve the

inverse problem one step further. Without exposing the joint hierarchy, we allow

users to directly manipulate the surface by dragging vertices, and then solving for
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the joint positions which produce the desired deformations.

We begin this chapter by revisiting the widespread linear model for shape

parameter specification, evaluating its accuracy against actual body measurements,

and then introducing an optimization strategy we employed in order to fine tune

the model to precise measurements when better accuracy is required. We also

show how to automatically infer all the measurements when only a subset of the

measurements is present as a requirement.

We then move to our main contribution in this chapter: a direct human body

manipulation technique, where the user specifies the body shape and pose by di-

rectly dragging mesh vertices to the desired positions, and a point on the bodies

manifold satisfying the user constraints is automatically found. We conclude by

showing how our direct manipulation metaphor can be applied to directly manip-

ulate images and 3D point clouds of bodies at interactive rates.

4.2 Related Work

Pose Manipulation. Traditionally, character poses are manipulated by a

combination of forward and inverse kinematics handles, or controlled directly from

motion capture systems (Vicon n.d.; Shotton et al. 2011). It is beyond our scope

to try to cover the extensive IK manipulation literature in robotics and computer

graphics, but we refer the reader to (Murray et al. 1994) as a reference. As far as

pose manipulation is concerned, our formulation is closely tied to IK manipulation,

but the underlying joint rotation hierarchy is not exposed to the user, which ma-

nipulates the mesh surface directly. Also related, (Grochow et al. 2004) learns a
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Gaussian Process Latent Variable Model for human poses from examples in order

to prefer poses lying close to the training data during IK manipulation.

Shape Manipulation. On the other hand, body shape parameters are tradi-

tionally controlled by GUI sliders that either directly control the model parameters

(e.g., PCA coefficients), or loosely describe the model parameters as functions of

semantic attributes such as height, weight, etc…(Allen et al. 2003; Hasler et al.

2009), which are then also controlled by sliders. A contribution of our work is to

automatically infer the model parameters based on the user direct interaction with

the mesh.

Closer to us is (Sumner et al. 2005), who describes a method to navigate on

a space defined by generic example meshes provided for training. More recently,

(Jacobson et al. 2012) describes a method to automatically infer the pose manipu-

lation degrees of freedom of a skinned mesh by constraining the space of solutions

with an as-rigid-as-possible energy.

Body Image Warping. We applied our direct body manipulation metaphor

to induce an image and space deformation, and let users directly manipulate images

and meshes of themselves. Related in spirit to our goals in this application, (Zhou

et al. 2010) presented a user-assisted fitting of a body model to change the shape of

human bodies in images, and (Jain et al. 2010) developed the original idea applied

to videos. Instead of indirectly controlling the body shape with sliders, a major

difference in our work is that we let the user directly manipulate the image.

Moreover, with the richer input provided by the Kinect sensor, we apply our

technique to the direct human-body aware manipulation of human body images
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and point clouds. We fully automatically fit the body model to the data, with an

algorithm several orders of magnitude faster than corresponding published methods

(Weiss et al. 2011) that we detail in the next chapter.

Spatial and Image Deformation. Touching our application to image and

point cloud warping, we relate to work on spatial deformation that traces back

at least to free-form deformation (Sederberg et al. 1986). We don’t try to be

exhaustive, but we feel that it is worth mentioning the work of (Schaefer et al.

2006), where image displacements are interpolated with moving least squares, and

(Botsch et al. 2005), which uses radial basis functions to define shape deformations

in a similar way that we do here to deform point clouds.

4.3 Shape Manipulation by Direct Specification

4.3.1 Mapping Measurements to PCA Coefficients

The scans on the CAESAR database are annotated with body measurements,

such as height, waist, hip and chest circumference. For a user manipulating the

shape of our body model, however, the PCA shape coefficients do not have an

intuitive meaning. Following (Allen et al. 2003), we learn a linear mapping from

a subset of the measurements accompanying the scans to the PCA coefficients by

fitting with linear least squares the measurements of each scan to the learned PCA

coefficients of each subject.

The linear mapping permits the user to directly pick the semantic body at-

tributes (height, waist, etc…), and the corresponding PCA coefficients are auto-
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matically computed.

4.3.2 Incomplete Measurements Inference

By itself, one drawback of the method described in the previous section is that

we have to set every measurement in order to specify a body. For instance, if we

only want to make the body taller, while keeping the circumferences measurements

proportional, we would also have to specify them if we don’t want to also make

the subject look disproportionately thinner. Or, for clothing sizing charts, which

typically specify only a subset of the measurements, depending on the type of

garment or the brand, we have to automatically infer reasonable values for the

parameters which are not specified in the chart.

To address this issue, we also learned a normal distribution for the body mea-

surements from the annotations of the scans. We learned a separate distribution

for men and women. If m „ N pµm,Σmq is a random variable denoting the body

measurements, let’s say that at one given point ms and mf denote the variables

that were specified by the user, and the ones that are free to vary, respectively.

We estimate the values for the free variables from the mode of the conditional

distribution P pmf|msq, which, in our case, is again a Gaussian and simplifies the

calculations.

For completeness, we include the full expression for the conditional mode. If Π

is a permutation matrix that puts the free variables first, followed by the specified

ones, the mean and covariance matrix of the permutation is µπ “ Πµm and Σπ “
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Algorithm 2 Sampling a Multivariate Gaussian Distribution N pµ,Σq

1: Generate a n-dimensional vector z of standard unidimensional gaussian sam-
ples obtained with the Box-Muller transform:

zi “
a

´2 lnui1 cosp2πui2q,

where ui1 and ui2 are uniform samples in the interval r0, 1q.
2: Decompose the covariance matrix Σ “ LLT with Cholesky decomposition
3: Compute the sample by applying the affine transformation Lz ` µ

ΠΣΠT , which we express in block form by

µπ “ pµf,µsq

Σπ “

¨

˚

˝

Σff Σfs

Σsf Σss

˛

‹

‚

,where Σsf “ ΣT
fs.

The conditional mode is then given by the conditional mean

mf “ µf |s “ µf ` ΣfsΣ
´1
ss pms ´ µsq. (4.1)

This way, the user can specify only a subset of the measurements ms, and we

automatically estimate the free measurements mf . The full set of measurements

can then be transformed into PCA coefficients with the mapping described in the

previous section.

4.3.3 Measurements Fine Tuning

Since (Allen et al. 2003), it has become common practice to specify the PCA co-

efficients through a linear mapping like the one described in section 4.3.1. However,

the mapping provides only a coarse approximation to the desired body specifica-

tion, and we address its accuracy in this section.
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Figure 4.2: Meshes from the male bodies sample used to evaluate the measure-
ments errors.

We first checked the accuracy of the linear mapping by drawing a sample of

bodies from the same multivariate Gaussian distribution of the measurements de-

scribed in the last section (see algorithm 2), and comparing the specified values

with the actual measurements taken on the meshes. Figure 4.2 shows a subset of

the sample. For each sample, we first transformed the measurements into PCA

coefficients with the linear mapping, which were then used to create body mesh

instances where we could actually take the measurements. Figure 4.3 shows the

curves used to take the measurements, traced in accordance with the procedure

used to take the measurements in the CAESAR dataset. Figure 4.4 shows the

errors of the measurements on the bodies obtained with the linear mapping. In

clothing size charts, for instance, note that the magnitudes of the errors are enough

for someone to go up or down a size. Therefore, the linear mapping by itself is not

accurate enough.
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To fix this problem we fine tune the measurements with a nonlinear optimiza-

tion we describe next. Each measurement is taken by either computing the length

of a curve defined intrinsically on the body surface, such as for chest/waist/hips

circumferences, or as the projected distance between two points on the surface,

such as for measuring the overall or shoulder heights. We seek to minimize

Epβq “ ECpβq ` ERpβq (4.2)

in terms of the shape parameters β. The energy is a combination of a curve length

errors term EC and a projected distance errors term ER.

Intrinsic Curve Length Error. Let Ci be the i-th measurement curve, linear

by parts defined by a sequence of points Cij on the surface. Each point, in turn,

is defined from its barycentric coordinates in a triangle of the mesh, so that the

curves change with the mesh:

Cijpβq “ α1
ijv

1
ijpβq ` α2

ijv
2
ijpβq ` α3

ijv
3
ijpβq, (4.3)

where α1
ij ` α2

ij ` α3
ij “ 1 and α1

ij, α
2
ij, α

3
ij ě 0. v

pkq

ij pβq are mesh vertices, and β

indicates the body shape parameters. The curves themselves were obtained either

as cross sections of the mesh, or as geodesics computed with the heat equation

method of (Crane et al. 2013).

If we denote the length of a curve Ci by |Ci|, given target measurements Li for

each curve we want to minimize

ECpβq “
ÿ

i

p|Ci|pβq ´ Liq
2 “ ||Fpβq||2. (4.4)
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Figure 4.3: Measurement curves used to take the chest, waist and hips circumfer-
ences measurements in the male and female models.

For the optimization it is useful to derive here the Jacobian matrix of the length

of a curve defined on the surface. Since

|Ci|pβq “
ÿ

j

||Cipj`1qpβq ´ Cijpβq
looooooooooomooooooooooon

sijpβq

|| “
ÿ

j

||sijpβq||, (4.5)

we have that

B|Ci| “
ÿ

j

B||sij|| “
ÿ

j

B

b

sTijsij “
ÿ

j

1

||sij||
sTijBsij, (4.6)

where

Bsij “ BCipj`1q ´ BCij. (4.7)
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Figure 4.4: Measurement errors with only the linear mapping, and after fine tuning
the measurements.

Since Cij are points on the mesh specified in barycentric coordinates, from equa-

tion 4.3 we have that

BCij “ α1
ijBv

p1q

ij ` α2
ijBv

p2q

ij ` α3
ijBv

p3q

ij (4.8)

and the remaining derivatives of the vertex positions with respect to the shape

parameters on the right hand side are constants that where already derived before

in equation 1.16. They remain constant throughout the optimization since the

body pose doesn’t change.

Projected Distance Error. A projected distance measurement is defined

by a pair of points on the mesh pPi1pβq,Pi2pβqq, again, given in barycentric co-

ordinates in triangles of the mesh, and a projection direction ui. The height, for

instance, is defined by the bottom and topmost vertices of the mesh in the standing

pose, in the direction of the first principal direction extracted from the PCA of the

mesh vertices. Given target lengths Hi for each projection, we want to minimize

ERpβq “
ÿ

i

ppPi2pβq ´ Pi1pβqq ¨ ui ´ Hiq
2, (4.9)
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where we assume the point pairs are ordered such that the dot product is positive.

The derivatives are trivially computed using 4.8.

We position the body in the standing pose (figure 4.3), and solve the nonlinear

least squares problem 4.4 with the Levenberg-Marquardt algorithm, initialized

with the PCA coefficients computed from the linear mapping. Figure 4.4 shows

the measurements errors after the optimization for comparison with the original

error we started with from the linear mapping alone.

4.4 Direct Body Mesh Manipulation

In contrast to the previous section, where the user specified a body by set-

ting directly a set of body parameters, we present in this section an alternative

manipulation metaphor where the body is specified by direct manipulation of the

geometry. The user specifies the position for a set of vertices xci , i “ 1, . . . , C from

the mesh, dragging to the desired positions yci , and our goal is to find the point

on the space of human bodies that most closely approximates the user constraints.

On a given moment, the user can be either in a shape or pose manipulation

mode, and we seek to minimize the user constraints

Epαq “

C
ÿ

i“1

||yci ´ xcipαq||2 ` γ||Spα ´ α0q||2, (4.10)

where α is either the shape (β) or pose (ω) parameters. The regularization term

is used to measure how close to the initial configuration the pose or shape stays

after each drag of the cursor. S is a stiffness matrix, a diagonal matrix that sets

the stiffness of each parameter. When in shape manipulation mode (α :“ β), we
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set it to the identity matrix, and, for pose manipulation, (α :“ ω) the individual

diagonal entries are used to set the stiffness of each joint.

We now describe each optimization separately.

4.4.1 Body Shape Manipulation

When optimizing the shape after each drag of a control vertex, from the linearity

of the model with respect to the shape parameters it follows that minimizing

the energy 4.10 becomes a linear least squares problem. Using the results from

section 1.5.1, the new shape parameter is the solution to the linear system

¨

˚

˝

BβX
c

?
γI

˛

‹

‚

β “

¨

˚

˝

Y c ´ Xc
0

?
γβ0

˛

‹

‚

, (4.11)

where BβX
c is a 3C ˆ dimpβq matrix obtained from slices of the Jacobian matrix

of the model vertex positions with respect to the shape parameters (equation 1.11)

corresponding to the constrained vertices. This matrix remains constant as long

as the pose parameters don’t change. Y c P R3C is a column vector obtained by

stacking the target constraints positions yci , and, similarly, Xc
0 are slices from the

mean shape vertices of the model (equation 1.7).

4.4.2 Body Pose Direct Manipulation

The nonlinear minimization of energy 4.10 with respect to the pose parameters

ω is completely analogous to the pose optimization step during our registration

algorithm (section 2.3.2), so we refer the reader to the previous chapter. This time,
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Figure 4.5: Direct manipulation of female body shape. The leftmost image shows
the starting shape, while the remaining three were obtained by dragging the ver-
tices in red to the positions in blue.

instead of the constraints imposed by the markers on the high resolution scan, we

have position constraints imposed by the user.

The only significant difference is that since here we want responsiveness during

the manipulation, we are less strict with the convergence criteria, allowing a smaller

number of iterations (five) in order to avoid unexpected delays coming from the

optimization algorithm.

The regularization term in 4.10 comes in acting as a bias on each step of the

Levenberg-Marquardt iterations, giving a separate rotation stiffness for each joint.

4.5 Results and Evaluation

Using the registration results from the previous chapter on the CAESAR body

scans, we created an overall body shape model for the male and female population.
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Figure 4.6: Direct manipulation of human body pose. The leftmost image shows
the rest pose, while the remaining three were obtained by directly dragging the
vertices in red to the positions in blue.

The registration of each body produces a 3 ˆ 3 shape deformation matrix per tri-

angle, so we reshape the matrix into a 9 dimensional column vector, and vertically

stack all the vectors from all triangles of the mesh, resulting in a 9T dimensional

vector defining the body shape of a subject. We compute the principal components

for the whole training set, producing two models, one for the male, and another

for the female population.

With the body models in hands, we can then proceed to directly manipulate

them. Figure 4.1 shows the shape manipulation of the body shape on the male

model, and figure 4.5, on the female model. Figure 4.6 shows the pose manipulation

of the male model. The supplementary videos show the interactions in more detail.

Timing Benchmarks. In order to benchmark the performance of our manip-

ulation technique, we recorded a set of pose manipulation sequences, writing down

the target vertex positions while the user dragged the vertices to specify a pose,

starting from the rest pose. We recorded the manipulated vertex indices, as well as
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(a) Arm Raise (b) Leg Split (c) Walk

(d) Look Up (e) Kick (f) Boxing

Figure 4.7: Pose manipulation sequences for the timing benchmark.

the target cursor position after each mouse drag event. The 6 pose manipulation

sequences are illustrated in figure 4.7 with the corresponding labels.

As a performance baseline, we compared the timings with traditional inverse

kinematics. For each manipulation sequence, we computed the joint closest to the

dragged vertex, an run our IK solver to find the joint rotations. Our IK solver works

in exponential coordinates for the rotations, and we again solve the optimization

with Levenberg-Marquardt. We recorded the time taken by each optimization for

comparison, including the model update after the joint rotations are solved.
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Sequence Average Time(ms) Best Time Worst Time IK (Avg)
Arm Raise 125 102 153 27

Boxing 131 100 206 29
Kick 154 92 378 31

Leg Split 126 100 161 31
Look Up 171 92 251 29

Walk 129 106 137 31
Overall 134 92 378 30

Table 4.1: Pose Manipulation Benchmark (timings in milliseconds).

Table 4.1 summarizes the timing results for each optimization between user

events, i.e., the time spent searching for the optimal pose after each mouse drag.

Note that currently we can only guarantee interactive rates, but further optimiza-

tions would be necessary to achieve real-time performance. The timings were

measured in a MacBook Pro with Retina display, with a quad-core Intel Core i7

processor, with 16GB of memory, a NVIDIA GeForce GT 750M graphics card with

2GB of memory, running OS X 10.9.

We then ran a similar benchmark to measure the performance of pose manip-

ulation. Figure 4.8 shows the shape manipulation sequences, and table 4.2, the

timing results. Note that the timings do not include the initialization, which in-

volves computing the shape basis (equation 1.7) and can be done only once since

the pose parameters do not change. We trigger the initialization as soon as the

user activates the tool. The initialization by itself took 120ms in our benchmark.

Finally, note that whenever the model parameters change, the model needs to

be re-evaluated, which includes recalculating the vertex positions and updating the

normals and tangents. During the benchmark, we also measured the time taken by

the model update by itself, and in our current implementation it takes on average
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(a) Fatter (b) Thinner (c) Taller

(d) Shorter (e) Stronger (f) Short Legs

Figure 4.8: Shape manipulation sequences for the timing benchmark.

5ms per update.

4.6 Application to Body Warping

We conclude this chapter with an application of our direct body manipulation

metaphor. We describe in this section how it can be used to indirectly warp images

and point clouds of bodies, giving the user the impression that he is manipulating

the image or point cloud directly.
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Sequence Average Time(ms) Best Time Worst Time
Fatter 48 38 53

Thinner 49 45 53
Taller 48 40 53

Shorter 49 41 57
Stronger 49 40 53

Short Legs 48 40 98
Overall 49 38 98

Table 4.2: Shape Manipulation Benchmark (timings in milliseconds). Times do
not include the initialization, which took 120ms for this benchmark, and can be
done only once before all manipulations take place.

This application is close in spirit to (Zhou et al. 2010) and (Jain et al. 2010),

who describe a similar technique for images and videos. However, the main point

here is that the manipulation is achieved by direct interaction with the object we

are deforming, instead of indirectly controlled by sliders roughly linked to semantic

attributes by a linear mapping to PCA coefficients (Allen et al. 2003). Here, one

can make the shoulders wider, or make the hips thinner, for instance, by directly

dragging on the image/point cloud. Moreover, to our knowledge, the extension

to perform the body warping in a point cloud is also novel, which opens new

possibilities for levels of realism in the deformation.

We perform our deformation on snapshots of RGB+Depth images of people,

acquired with the Microsoft Kinect sensor, after fitting the model to the data with

the algorithm we described in the last chapter.
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4.6.1 Radial Basis Function Spatial Warping

As the body parameters are continuously modified, the mesh displacement

naturally induces a vector field on R3, and on an image plane of the camera who

is looking at the scene. We use this displacement to guide the warping.

We uniformly sample points xi on the body mesh at the rest pose, who are

transformed into x1
i at the current body parameters. For simplicity, in what fol-

lows xi will be used to denote both planar displacements on the image plane or

spatial displacements, since the method is completely analogous for the 2D and

3D cases, and when we say space one can think of either R2 or R3. We interpolate

the displacements across the embedded space using radial basis functions, which

induces, thus, a deformation on the image or point cloud.

More precisely, we want to interpolate the displacements δi “ x1
i ´ xi across

the space. Defining

δpxq “

K
ÿ

k“1

wkϕp||x ´ ck||q ` aT

»

—

–

x

1

fi

ffi

fl

(4.12)

for the px, y, zq coordinates displacements, the ck corresponds to the centers of

the radial basis ϕ, and aT is a linear polynomial term used to give an overall

approximation to the interpolation. We put a kernel centered on each body sample

xi, and use polyharmonic splines of degree 3, ϕpxq “ x3, for reasons no other

than that it was the lowest degree that produced good results, while avoiding the

tweaking of radius parameters of Gaussian kernels, for instance.

Equation 4.12 must be solved for the weights wi and linear coefficients a, given

the displacement constraints. This corresponds to solving a linear least squares
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problem of the form
„

Φ Xh

ȷ

»

—

–

w

a

fi

ffi

fl

“ ∆. (4.13)

Abusing the notation a little and setting Φpxq “ r. . . , ϕp||x ´ xk||q, . . .sT , k “

1, . . . , K, each row i of Φ, Xh and ∆ in in 4.13 is defined by

„

Φpxiq xi 1

ȷ

»

—

–

w

a

fi

ffi

fl

“ δi “ x1
i ´ xi (4.14)

for the x, y and z components. Again, note that only the right hand side changes

as the body parameters change, so we can prefactor the normal equations of the

least squares system, and quickly solve for the RBF weights and linear coefficients

whenever the body parameters change. Equation 4.12 can then be evaluated at

the locations we want to displace, which we evaluate directly on a vertex shader.

4.6.2 Direct Body Image Manipulation

First, on the 2D image setting, displacements are evaluated with the radial basis

function 4.12 at pixel locations, with the weights and linear coefficients obtained

by solving for the projection of the samples from the body mesh.

Figure 4.9 shows the result of “bulking up” a body by directly dragging the

shoulders to make them wider, and making the arms shorter.

4.6.3 Direct Body Point Cloud Manipulation

A contribution of this chapter is the observation that we can also apply the

spatial warping induced by the body deformation described in this section directly
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Figure 4.9: “Bulking up” with our method. The first figure shows the original
image, the middle figure, the result of our body fitting algorithm outlined in the
appendix, and, on the right, the result of dragging the red to the blue dots to make
the shoulders wider and the arms shorter (Note that we are aware of the border
effects, we simply didn’t place many points on the boundary to keep it completely
still here, which is secondary to the main point we are trying to illustrate.)

on the point cloud in 3D. After solving for the weights and linear coefficients in

equation 4.12, we apply the 3D displacements to the points on the cloud corre-

sponding to the body in the depth image, allowing the introduction of effects not

possible in the image setting, such as pushing out the belly to make the subject

all around fatter, as shown in figure 4.10.

The displacements δpxq are evaluated only on the points inside the body image

mask, noting that, even though the points are defined in 3D, they still correspond

to a 2D grid of depth image locations, which keeps the number of evaluations on

the same order besides the additional dimension. The evaluation cost increases

only because of the the RBF weights of the new dimension.

4.7 Conclusion

In this chapter we have visited the topic of body manipulation by user interac-

tion. We first revisited the traditional method of specifying body shapes by directly
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Figure 4.10: Point cloud deformation induced by direct manipulation. The first
figure shows the undeformed point cloud and the model fit to the Kinect data.
Then we show the belly progressively being pulled out to make the person look
fatter.

setting the model parameters from linear mappings, improving on accuracy and

describing a simple but practical way of inferring missing parameters from a body

specification.

Our main contribution was to present a new body manipulation metaphor by

directly interacting with the mesh. With our technique, a user can specify a body

model shape and pose by directly dragging vertices on the body surface, and a

“reasonable” body mesh is automatically computed.

As an application, we finished by showing how our direct manipulation metaphor

can be used to manipulate color and RGBD images of people. We believe that our

direct manipulation techniques could be a useful tool for the purpose of image

annotation for consumption of machine learning algorithms in computer vision.

85



Chapter 5

Body Swapping and BodyJam

5.1 Introduction

The “fashion crisis”: we have all suffered from it at one time or another, in

the morning or before a party or a talk. We don’t know what to wear, so we go

through our closet and try out endless combinations of clothes. The consequences

of this dreaded issue include arriving late to meetings, dates, and other events, and

ending up in a bad outfit despite it all. Now there is help on the way. We introduce

a new system called BodyJam, that lets you change your outfit with a finger snap.

It is inspired by a long history of games based on a technique invented by the

surrealists a century ago: ‘Exquisite corpse,” a method by which a collection of

images (of body parts) is collectively assembled (Reverdy 1918) (see figure 5.1).

Pages were folded into thirds, the top showing the head of a person or animal, the

middle, the torso, and the bottom, the legs. Players ‘mixed and matched” the

sections by turning the pages. Over the years the technique has been transformed
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(a) (b)

Figure 5.1: Exquisite Corpse (a) Nude. Cadavre Exquis with Yves Tanguy, Joan
Miró, Max Morise, Man Ray, 1927. (b) By Andre Breton, Jacqueline Lamba and
Yves Tanguy, 1938.

into children books, fashion retail websites, iPad apps, and art installations.

BodyJam does the same on a video display that mirrors the pose in real-time

of a real-person standing in front of the camera/display mirror, and allows the

user to change clothes and other appearance attributes. Using Microsoft’s Kinect

(Shotton et al. 2011), poses are matched to a video database of different torsos and

legs. “Pages” are turned by gestures interpreted through the Kinect tracking. The

current version of BodyJam is played by a single player, in choosing her/his appear-

ance of the day with quick hand gestures. It differs from all previous ”exquisite

corpse” incarnations that the body pose mirrors the player in real-time. Any pos-

sible mix-and-matched outfit moves with and conforms to the player’s pose and

motions.

Our application strongly relies on the ability to produce photo-realistic ani-
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Figure 5.2: BodyJam: Overview of the application. Users can flip through different
combinations of outfits by using hand gestures, while their poses are mimicked by
the current outfit.

mations of people, one of the greatest challenges in current computer graphics

research. An even harder problem is to do this in real-time such that it mirrors a

user’s pose and motion. Previously, many retargeting systems have been proposed

that focus exclusively on facial remapping. When it comes to the domain of full

body transfer in real-time, only sub-problems have been addressed so far. Most

full body rendering solution are based on 3D mesh models, and texture mapping

based cloth, or simulation based cloth (Stoll et al. 2010). The best photo-realistic
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techniques so far have been based on image- or video-based rendering techniques

(Schödl et al. 2002; Flagg et al. 2009). None of these techniques were linked to

real-time marker-less input.

We propose a new system that takes advantage of recent progress in marker-

less skeletal tracking techniques using Microsoft’s Kinect. Unlike many example

based rendering systems that need marker based data, our system uses Kinect

based marker less annotation for the input video that is driving the animation and

maker-less annotation for the video based render database.

Marker-less capture and rendering systems were limited so far only to faces. The

face domain is much more constrained and has much less variations. Our current

work is to the best of our knowledge the first system that allows this for full-body

input motion, and full-body video based rendering techniques in real-time. Other

potential applications include real-time puppeteering for new forms of theater and

entertainment, real-time privacy filters, controlled appearance mapping for social

and psychological studies, and many other domains.

Our system is divided as follows: First, we record the performance of one person

(the model) wearing a piece of clothing, and create a database of the appearance

of this piece of clothing from multiple poses. Later, we allow the original perfor-

mance stored in the database to be controlled in real time by another person (the

controller) using the Kinect sensor. The controller may wish not only to see the

garment from different angles, but also how it would behave if he was wearing

it and moving his or her arms or body, in real time. This ability to puppeteer

the garment is a significant step towards the controller seeing him or her inside
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the garment in real time and with a dynamic performance, i.e., towards a virtual

mirror visual experience. This process is outlined in figure 5.3.

Furthermore, for the BodyJam, as outlined in figure 5.2, several image databases

are combined in a clothing library, and then concurrently running databases can

be used for the different body parts.

5.2 Related Work

As mentioned, BodyJam is inspired by the trail of games that started with

century old parlor games called “Exquisite corpse” (Reverdy 1918) to most recent

incarnations that extend it to video, face tracking, and hair/eye/mouth replace-

ment, like Reface (Levin et al. 2007) by Golan Levin and Zach Lieberman. While

Reface focuses exclusively on the face, it controls the appearance changes by ges-

tures, in Reface’s case, by eye-blinks detected in real-time with computer vision.

Computer graphics based full-body incarnations of this game have recently

attracted interest by many fashion retail websites, starting with early versions by

Glamour magazine (Glamour 2002), to H&M’s current retail website’s “Virtual

Dressing Room” (H&M 2007), and new startups like Embodee’s online try-onSM

experience (embodee 2011). All these applets are based on pre rendered still images,

and pre-defined models. A very interesting extensions has been recently featured

on JC Penny’s website in collaboration with Seventeen Magazine’s website using

augmented reality and the web-browser’s camera and a Flash plugin (Seventeen

20107). It has rudimentary face and body tracking, but it does not use video for

the cloth appearance change. Instead, a pre-rendered still image is used.
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Besides related application domains, BodyJam’s technology is also related to

many face and body retargeting and re-writing systems. As we previously men-

tioned, most related approaches are focusing on the human face only. It is beyond

the scope of this chapter to have an adequate summary of all facial retargeting sys-

tems. Video Rewrite was one of the first systems that used marker less annotation

of large amounts of video data (Bregler et al. 1997), but only used audio as driving

input. There have been several other systems that are controlled by audio, includ-

ing (Brand 1999; Ezzat et al. 2002). Using the face as input to control a different

output face has been reported by (Vlasic et al. 2005) using vision and subspace

techniques. Most recently, (Weise et al. 2011) showed a Kinect-based real-time fa-

cial retargeting system. Many other approaches are based on either marker-based

facial capture or vision-based tracking of facial features (Kemelmacher-Shlizerman

et al. 2010) ((Deng et al. 2007) contains a survey of several different approaches).

Our technique is also related to the large body of literature that proposes

full-body motion-capture based re-animation. Most techniques are inspired by

graph-based structures derived from large motion-capture data. (Such systems

were originally presented in the SIGGRAPH 2002 “motion-capture-soup” session

(Kovar et al. 2002; Arikan et al. 2002; Pullen et al. 2002; Y. Li et al. 2002; Lee et

al. 2002).) The input modality that drives these motion-capture based animation

techniques are either 2D floor path directories or rough motion sketches, including

key-frame animations. No video was used in these techniques. Again, it is beyond

the scope of this chapter to give justice to the large amount of papers that were

derived from these initial ideas.
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Most closely related to our new techniques are more general video based tech-

niques, like Video Sprites (Schödl et al. 2002), Human Video Textures (Flagg et al.

2009) and the video manipulation techniques of (Goldman et al. 2008). In those

cases either matting-based extraction is used without explicit skeletal annotation,

or a marker-based system in parallel to HD video acquisition is used, but no real-

time video input is used to drive the animations. 3D extensions of video based

acquisition techniques are recently reported by (De Aguiar et al. 2008; Huang et

al. 2009; Xu et al. 2011), to name a few. Most recently, new dynamic simulation

based cloth modeling have been incorporated into these 3D video based capture

techniques (Stoll et al. 2010).

In addition to the novel application, our technique differs in two ways to previ-

ous approaches: 1) We circumvent the explicit 3D representation with an appear-

ance based video database that samples the possible pose-space. 2) We utilize a

fast real-time matching technique without the use of graph-based search (we also

tried graph-based techniques, but they did not achieve better performance then

our faster method using flat representations).

5.3 Overview

This chapter is organized as follows: First, we describe Body Swapping, the core

technique on top of which we build our system, explaining how we create an image

database from the model’s performance, an then how the database can be used later

for another person to control the model’s performance in real time. Building of top

if this new technique, we then describe our main application, BodyJam, detailing
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Figure 5.3: Body Swapping: Overview of the technique.

how multiple image databases put together in a clothing library are used in our

system for users to flip through different combinations of clothes. We conclude by

showing results of our system in use.

5.4 Body Swapping: Image-based Puppeteering

The following two sections detail how we first create an image based database

for the task of clothing visualization, and clothing-remapping in real-time.

5.4.1 Creating the Image Database

To build the image database for a piece of clothing, we dress a model with it

and record a performance of him or her moving around, annotated by his/her 3D
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Figure 5.4: Image database. This figure shows a few sample entries from an image
database, where each entry holds an image from the video and the corresponding
skeleton.

skeleton. We use the Kinect sensor to capture the performance, with the skeleton

being computed by the OpenNI Framework (OpenNI n.d.). For each frame of

the performance, captured at a constant frame rate, we create a database entry
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containing the video frame image and the corresponding skeleton for the model’s

pose.

To establish a notation, an image database D “ tEfu is a set of pairs Ef “

pSf , If q, composed of a 3D skeleton Sf and an image If extracted from the video

of the performance. The video frame number is f . The skeleton Sf “ pJj; j “

1, . . . nq, in turn, is composed of the 3D joint positions Jj. Figure 5.4 illustrates

a database by showing a few frames from the video of a performance, along with

the corresponding annotations.

5.4.2 Accessing the Image Database for Real Time Video

Puppeteering

With a database D created from a previous recording in hands, we allow at a

later time a second person (the controller) to control in real time the performance

of the model stored in the database. This is accomplished by using the controller’s

skeleton Sptq, tracked in real time, at each moment t to query the database for

the frame that best matches his or her current pose. First, we look for the entry

Ef˚ “ pSf˚ , If˚q containing the best matching skeleton

f˚ “ argmin
f

dpSf , Sptqq, (5.1)

where d is a skeleton distance function we describe next, and then display image

If˚ on the screen back to the controller, giving him the impression that the model

is mimicking his performance.

Next, we address the details of the process outlined above:
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• Distance Function: For the skeleton distance function d used to search the

image database, we use a weighted sum of squared distance between the 3D

joints of the two skeletons. Moreover, in order to make the control insensitive

to translations, the skeletons are first centered around their torso’s joint (note

that the model is instructed to roughly move in place when recording the

performance for the image database).

More precisely, say that we want to compute the distance between skeletons

S “ pJi; i “ 1, . . . , nq and S1 “ pJ 1
i ; i “ 1, . . . , nq. Their joints are first

centered around the respective torsos JT and J 1
T , obtaining new, translated

skeletons

S̃ “ pJ̃i; i “ 1, . . . , nq “ pJi ´ JT ; i “ 1, . . . , nq,

S̃1 “ pJ̃ 1
i ; i “ 1, . . . , nq “ pJ 1

i ´ J 1
T ; i “ 1, . . . , nq.

The distance is then computed as:

dpS, S 1q “ dpS̃, S̃1q “

n
ÿ

i“1

wi||J̃i ´ J̃ 1
i ||

2, (5.2)

where the weights wi are used to both improve the playback smoothness

(e.g., joints on the torso should usually have higher weights than the limbs),

as well as to eliminate some of the joints from the controlling altogether. For

instance, if we are only interested in moving the upper body, the weights of

the leg joints are set to zero.

We also experimented with incorporating the joint velocities in addition to

the positions, which is a simple matter of extending the database with more
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Figure 5.5: Pose mimicking by the same person. Here we show a few frames from
the real time control by the same person at a later time. The smaller rectangle
shows the frame from the controller’s real time performance, and the large rectan-
gle, the corresponding frame fetched from the database shown back to him.

annotations. The velocities helped us resolve conflicts between nearby poses

(say, an arm moving up vs moving down).

We should mention that we also tried to use the distance between the joint

orientations quaternions, which are insensitive to the skeleton’s bone sizes.

However, simple joint positions yielded more robust results in general.

• Nearest Neighbor Search: For each query, we have to search through the

whole database for the entry which holds the skeleton closest to the con-

troller’s current pose. We use straight linear search for that. We decided not

to test more sophisticated nearest neighbor search algorithms, such as space

partitioning approaches, since simple linear search already gave us reason-

able real time performance. Clearly, on very large databases a better search
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Figure 5.6: Pose mimicking by another person. Here we show a few frames from
the real time control by a second person.

algorithm has to be employed.

• “Hysteresis” Thresholding for Smoothness: In order to remove jittering in the

real time playback and try to keep the video smooth, we try to use nearby

video frames in consecutive queries for as long as the skeleton distance stays

within a threshold. That is, say that the query at one moment t returned

the database entry Ef˚ptq “ pSf˚ptq, If˚ptqq. For the next query, at time t ` 1,

instead of searching the whole database, as in equation 5.1, we only use as

candidates entries inside a window of width w around frame f˚ptq:

f˚pt ` 1q “ argmin
f

|f´f˚ptq|ďw

dpSf , Spt ` 1qq, (5.3)

where Spt ` 1q is the controller’s skeleton, and f˚pt ` 1q will be the frame

number displayed next. Typically, we used w “ 4 in our experiments.
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When the distance of the local optimum computed with equation 5.3 becomes

too large, we allow a long transition by resorting back to searching the closest

matching skeleton over the whole database using equation 5.1 instead.

The main reason why this removes jittering is that, when the original model

moved around, he or she may have passed multiple times through nearby

poses, which becomes a source of jittering in the real time playback. By

using adjacent frames we try to force the system into using smoother video

sequences present in the original recording.

• Image Buffering: We fetch the images from disk to main memory on demand

when performing database queries. As an option to limit memory consump-

tion in the case of large databases, we assign a memory budget on how many

images we allow to be in memory at one given time. Then, we employ a LRU

cache replacement policy by, when necessary, swapping first back to disk the

frames with the oldest access time.

Moreover, we use a simple predictive caching scheme, pre-loading to main

memory a window of frames around the frame returned by a query.

• Frame Discarding: The system is organized around two main threads: the

image database matching thread, which produces the best matching frame

based on the controller’s real time skeleton, and the rendering thread, which

displays the matched frames on the screen. The matching thread adds frames

to a queue, annotated with a timestamp of the query, and the rendering

thread consumes frames from the queue. In order to avoid occasional long
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lags between the controller’s movement and the video that is displayed back

to him, maintaining the feel of real-time control, the rendering thread dis-

cards the frames that are too old when dequeueing a new frame for display.

5.5 Skin Color Swapping

In order for the user to better identify him/herself with the body that is being

shown on the screen, we also transfer his skin color to the model that was originally

used to create the database. Our approach is to modify the images from the

databases at runtime using a statistical model of the color distribution on both

skin regions. We need not only a transformation that gives convincing results, but

also that runs fast enough to be computed in real-time immediately after a new

user steps in without disrupting the experience.

We will develop a transformation that alters an image from the database (a

target image), based on a single image of the controller’s face (the source image).

Skin Color Transfer We first transform both images from RGB space into

lαβ space (Ruderman et al. 1998). The details of the transformation from RGB to

lαβ space can be found in (Reinhard et al. 2001). In the discussion that follows, we

assume the color is represented in lαβ space. We model the skin color distribution

of the target image ct as a Gaussian

ct „ N pct;µt,Σtq (5.4)
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and the color distribution in the source image cs as a mixture of Gaussians

cs „

n
ÿ

i“1

πiN pcs;µi,Σiq (5.5)

using the EM algorithm (Dempster et al. 1977). We use only two components

for the Gaussian mixture of the face (i.e., n “ 2), which appears to be enough in

practice to model in one component the actual skin pixels and, in the other, pixels

not corresponding to skin, such as eyes and hair pixels. We then use the Gaussian

distribution responsible for the greater number of pixels to model the user’s skin

color distribution. Denote this component by N pcs;µs,Σsq.

Having N pcs;µs,Σsq and N pct;µt,Σtq describing the skin color distributions

in the source and target images, respectively, we then transform each pixel in

the skin region of the target image by warping the distribution N pct;µt,Σtq into

N pcs;µs,Σsq. More precisely, let Vt be the 3ˆ3 matrix of eigenvectors of Σt, with

one eigenvector per column, and Dt a diagonal matrix holding the corresponding

eigenvalues in the main diagonal. Define Vs and Ds the same way for Σs.

Each pixel ct in the target image is then transformed by

c1
t “ D

1
2
s VsD

´ 1
2

t V T
t pct ´ µtq ` µs, (5.6)

and then converted back to RGB space.

Figure 5.7 shows examples of our skin color transfer applied to transfer various

skin tones to an image from one of our clothing databases.

Defining the Skin Masks To capture the skin region in the source image,

whenever a new user jumps in, we run the Viola-Jones face detector (Viola et al.
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Figure 5.7: Skin color transfer. The top left image shows the original image, and
the others show the result of our skin color transfer transformation.

2001) to mask out the controller’s face in the source image. The target skin region,

on the other hand, can be computed offline, since it corresponds to images in the

clothing database. We mask the skin regions by rotoscoping the database videos

in Adobe After Effects using the Roto Brush tool. The result is that we simply

have to store a skin area mask for each frame in the database, along with the

Gaussian describing the skin color distribution of the reference model that was

used to record the garment (also computed offline).

At runtime, our skin color transformation can be applied very fast, since all

we have to do is estimate the Gaussian mixture inside the user face region in a

single frame, and then use the resulting model to compute transformation (5.6).

To further speed things up, transformation (5.6) and the lαβ Ø RGB color space

conversions are computed in a fragment program in the GPU whenever we show
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an image from the database.

Finally, as a comment, note that transformation (5.6) could have been directly

applied in RGB space, but, in practice, this resulted in much more desaturated

images and we opted for the lαβ space instead.

5.6 BodyJam: Mixing and Matching Clothing

Parts

We now describe our main application, BodyJam. Our system works as follows:

The user moves in front of Microsoft’s Kinect sensor, and a screen shows him or

her dressed in different clothes. By using hand gestures, he/she can independently

flip through the clothes dressing the upper and lower body. With this interface,

the user is able to choose between different styles, patterns, colors, as well as

to evaluate which garments go well together. Moreover, by making use of our

Body Swapping technique for real time video puppeteering, users not only can see

themselves in different clothes, but also control in real time the animation of the

body.

As a general comment on perception that guided our design, our motivation in

creating this system was to provide a nice experience for someone choosing what

to dress from a library of garments. We considered various techniques to align and

blend the controller’s head with the body from the image database. However, not

surprisingly, humans are extremely perceptive of any visual discrepancies that may

arise in the result (a manifestation of the concept of Uncanny Valley introduced
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by Mashiro Mori (Mori 1970)), so we chose to go in the opposite direction instead,

making the separation of body parts even more explicit by drawing a horizontal

line separating the different body segments. We believe the game-spirited approach

of this interface leads users to be more forgiving to the discrepancies, compared to

not-yet-mature real time techniques that would try to seamlessly mix heads and

bodies.

The remainder of this section describes the details of the system.

5.6.1 Library of Clothing Databases

In order to allow users to browse different clothes, we record the performances of

the reference model wearing various styles and colors of clothes. Each performance

gives rise to a separate image database capturing the clothes’ appearances from

multiple poses. All the databases are then collected in a clothing library. Note

that some databases were marked as being suitable exclusively for the upper body,

others, just for the lower body, while some can be used for both. Figure 5.8

illustrates a database library by showing a selection of its databases.

5.6.2 Controlling the Three Separate Body Parts

Overview of the UI: The screen is divided in three separate stacked layers, as

shown in figure 5.10: The upper layer shows the real time video of the controller’s

head, the middle layer shows the piece of clothing currently selected for the upper

body (shirts, jackets, etc..), and, the bottom layer, the piece of clothing currently

selected for the lower body (pants, skirts, etc…).
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Figure 5.8: Image database library. This figure shows three entries from an image
database library. Each row is a different clothing database, and, the columns,
entries within the same database covering various poses.

We keep a library of pre-recorded clothes databases, and, at each moment,

have one active for the upper body, and one for the lower body. The middle

and bottom layers display the video outputs of these two concurrently running

databases, driven by the user’s real time skeleton. Each of these two videos, in

addition to the cropped real time video of the user’s head, is then texture mapped

to its corresponding rectangle that is shown back to the user. Figure 5.5 shows a

few frames from a real time performance.

Note that we use the whole skeleton even when driving the lower body database.

This has the nice effect of making the arms and hands “cross the boundaries” and

show up in the lower layer consistently with the upper body. Even though the

alignment is not perfect most of the times, we believe that just seeing the arms

crossing the video boundaries adds a nice visual effect to our system.
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5.6.3 Aligning the Body Parts

In order to create the final composition of the three stacked layers, the real

time video of the controller, the upper, and the lower body videos generated by

the upper and lower body image databases have to be cropped, scaled and aligned:

• Cropping: We crop the video frames retrieved from a database feeding the

upper body video between the neck and waist line. For that, we use the

projection on Kinect’s image plane of the 3D skeleton annotations contained

in the result of a database query. When used for the lower body, we crop the

frames below the waist line. The real time video of the controller, in turn, is

cropped above the neck, this time using the real time skeleton tracked with

the Kinect.

• Alignment: The three images are then aligned based on the projected skele-

tons. The real time head position is aligned with the neck position contained

in the entry from the upper body database, and the lower body waist, in

turn, is aligned with the upper body’s.

• Scaling: Moreover, in addition to the alignment, the three videos have also to

be properly scaled in order to generate a convincing final composition. Again,

we use the projected joints for that. We scale the lower body in relation to

the upper body based on the ratio of the projected torsos of each. The head

is scaled in relation to the torso based on the distance from the neck to the

head. For precision, we also allow an additional manual scale factor for small

adjustments in cases where the size of the head is a little off.
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5.6.4 Changing Clothes

We implemented three distinct ways of flipping through the clothes, gesture

driven switch, timed random switch and a hand tracking interface:

• Gesture Driven Switch: When using hand gestures for control, at each mo-

ment we are either changing the clothes of the upper or the lower body,

indicated to the user by two small yellow circles aligned with the active layer

(see figure 5.11). A “push” gesture (moving the hand forward, towards the

camera, and back) alternates between the two, and a hand waving gesture

changes the piece of clothing of the active body part, accomplished in practice

by switching the image database associated with it.

The purpose of this mode is to offer a more playful interface, where users are

“surprised” by the clothes chosen for them. This is useful, for instance, to

promote a fixed set of looks with a very minimal interface, while still letting

the user have some control of when to change clothes.

• Timed Random Switch: As an alternative, we also have a timed switch be-

tween clothes that randomly alternates between the databases available in

the clothing library.

This interface has the same purpose as above, except that it demands less

effort from the user, which simply has to stand there, moving around, and

let the system show him/her wearing the different combinations.

• Hand Tracking Interface: In a more realistic setting, users should be able

to pick clothes from a catalog. For that, we also implemented a “hand
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cursor” interface, where thumbnails of the available clothes are overlaid on

the screen, and, by tracking the user’s hand, he/she is able to pick different

outfits by placing the cursor on top of the thumbnail of his choice of garment

(figure 5.9).

5.7 Results and Applications

5.7.1 Body Swapping

Figure 5.4 illustrates an image database with a reference model dressed in a

suit. The whole performance, lasting around 45 seconds, was then cropped in time

to its usable part. Note that we manually delayed the video for a couple of frames

when creating the database in order to compensate for the delay in the skeleton

computation. The resulting image database, with about 1200 entries, was then

used for the real time control.

Figure 5.5 shows a few frames from the real time control being used at a later

time. In this example, the controller is the same person as the model, but has

taken the suit off. Figure 5.6 shows a completely different person controlling the

performance of the model in real time. Note that, despite the significant differences

in body types between the controller and the reference model (her, being around

1.65m tall, while the reference model is 1.91m tall), the poses are very well matched

and the video played back to her is reasonably smooth. The video included as

supplementary material contains the real time performances.
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Figure 5.9: Hand tracking interface.

Figure 5.10: Real time animation with the clothes fixed. Note that the shirt and
board shorts were taken from two separate image databases. The small rectangle
shows the video of the controller, while the larger one, the content of the screen
shown back to him.

5.7.2 Floating Garment

Figure 5.12 shows another application of our technique. This time, using an

HD camera, we recorded the performance in front of a green screen, with the model

also wearing a green suit under a dark red sweater (figure 5.12a). Next, the footage

was keyed out, leaving only the garment “floating” in the air by itself (figure 5.12b).

Finally, after manually synchronizing the HD camera and Kinect footages, we used

the resulting image database to manipulate the floating sweater in real time, as

show in subfigure 5.12c. Again, the video included as supplementary material
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contains a clip of the performance.

5.7.3 BodyJam

Figure 5.8 shows entries from a few sample of databases composing a library

of clothes. To build such a library, we first recorded with the Kinect sensor per-

formances of the reference model wearing various outfits, each lasting around 1

minute, which were then cropped in time to its usable part. Finally, the resulting

8 image databases were put together in a clothing library, each being available for

use both as upper or lower body clothes during the real time performance. The

entire recording can be seen fast-forwarded in the video included as supplementary

material.

Figure 5.10 shows the real time control of one picked outfit composed of clothes

from two separate databases. We can see that the body is mimicking the con-

troller’s pose, shown with the real time video inside the small rectangle. In fig-

ure 5.11, the user is seen first picking different shirts, driven by the waving gesture,

while keeping the shorts fixed, and then switches to start picking shorts and pants

while keeping the chosen red shirt fixed. The video included as supplementary ma-

terial contains the whole performance of the user flipping through different outfits

through hand gestures, as well as a clip of the clothes randomly changing. The

whole process can be seen in a smaller scale in figure 5.2.
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Figure 5.11: On the first row, we are changing the clothes of the upper body,
keeping the clothes of the lower body fixed. While, on the second, we change the
clothing of the lower body. The yellow circles indicate to the user which body
segment is currently active for changing clothes.

5.8 Conclusions

We presented a new system called BodyJam, that lets you change your outfit

with a finger snap. BodyJam was inspired by a technique invented by the surrealists

a century ago: ”Exquisite corpse,” a method by which a collection of images (of

body parts) is collectively assembled.

BodyJam applies the ”Exquisite corpse” on a video display that mirrors the

pose in real-time of a real-person standing in front of the camera/display mirror,

and allows the user to change clothes and other appearance attributes. Using

Microsoft’s Kinect, poses are matched to a video database of different torsos and

legs, and “pages” are turned by hand gestures.

A limitation of our current system is that it is currently not able to handle
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(a) Performance with the Green Suit (b) Keyed Out Garment Footage

(c) Real time control of the floating garment

Figure 5.12: Floating Garment. This figure shows another application of our
technique, where the controller drives the pose of a floating garment created by
chroma keying.

poses radically different from the ones present in the database. We would like

to address this issue in the future by employing image warping techniques, where

the warping of the closest matched image could be guided by the controller’s pose,

retargeted to the skeleton of the model stored in the database. Currently, it is

not a major limitation due to the scope of our application (i.e., people undergo a

very limited set of poses when trying out clothes, and we are able to easily cover
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that space with a large enough database), but we would like to further explore this

direction in order to broaden the scope of our technique.

It would also be interesting to see the effects of warping the model’s body in the

clothes database in order to match the controller’s body measurements, employing

the techniques described in the last two chapters in a full, end-to-end system.
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Chapter 6

Conclusions

In this thesis we have touched the topics of human body acquisition, modeling

and manipulation. In chapter 1 we reviewed the exisiting SCAPE body model,

adding important observations for its efficient use and optimization. In chapter 2,

we introduced a new practical registration algorithm used to register thousands

of high resolution body scans, which generated a model that was then fitted to

noisy depth maps in a fast algorithm introduced in chapter 3. We then moved

to the topic of body manipulation, where our main contribution was a new body

manipulation technique based on direct interaction with the body mesh, showing

how it can be applied to directly deform images and point clouds of bodies. Finally,

we conclude with a real-time system for video-based body manipulation inspired

by a technique invented by the surrealists.
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Appendix A

Mathematical Background

A.1 Lie Algebra of the Rotation Group

Since we make heavy use of the Lie algebra of the rotation group, we make

a quick review here and refer the reader to Murray et al. 1994, Hall 2003 and

Varadarajan 1984 for more details on the subject.

The Lie algebra of SOp3q, denoted by sop3q, is the vector space of 3 ˆ 3 skew

symmetric matrices, which, in turn, is isomorphic to R3 with the mapping

ω “ pωx, ωy, ωyq ÞÑ pω “ rωs^ “

»

—

—

—

—

–

0 ´ωz ωy

ωz 0 ´ωx

´ωy ωx 0

fi

ffi

ffi

ffi

ffi

fl

. (A.1)

Without the hat we’ll be referring to the vector in R3, and, with the hat, to the

skew-symmetric matrix. ω corresponds to the rotation axis and its length, the

rotation angle.
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A.1.1 The Exponential Map

The connection between a Lie Algebra and the corresponding matrix group is

given by the exponential map

exppAq “

8
ÿ

i“0

Ai

i!
, (A.2)

which, for the rotation group in particular, can be computed in closed form with

the Rodrigues’ rotation formula

expppωq “ I ` sin |ω|
pω

|ω|
` p1 ´ cos |ω|q

pω2

|ω|2
, (A.3)

which can be easily derived from the Taylor series expansions of sin |ω| and cos |ω|

after noticing that the odd and even terms of the series A.2 simplify to to pω2i`1 “

p´1qi|ω|2ipω and pω2i “ p´1qi´1|ω|2pi´1q
pω2, respectively.

The following observation gives a more kinematic interpretation to the rotation

group and its Lie Algebra: If a point P is rotating around an axis ω, its instan-

taneous velocity is given by ω ˆ P “ pωP. Since exp ptωqP0 is the solution to the

ordinary differential equation
9P “ pωP, (A.4)

we can see that R “ exp ptωq represents a rotation by an angle t|ω| around the

axis ω.

A.1.2 The Logarithmic Map

The inverse mapping, the matrix logarithm, is defined for where the series

logpAq “

8
ÿ

i“1

p´1qi`1 pA ´ Iqi

i
(A.5)
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converges. For R P SOp3q in particular, the mapping is defined everywhere as long

as special care is taken at the singularities. From the Rodrigues’ formula, we have

that TrpRq “ 1 ` 2 cos θ, where θ “ |ω| is the rotation angle. The rotation angle,

therefore, is given by

θ “ arccos

ˆ

TrpRq ´ 1

2

˙

. (A.6)

Moreover, also from the Rodrigues’ formula, we have that R ´ RT “ 2 sin θ
θ

pω,

since the symmetric terms cancel out and, therefore,

logpRq “ pω “

$

’

&

’

%

0 if θ “ 0

θ
2 sin θ

pR ´ RT q otherwise
(A.7)

Using the canonical basis of R3, the parameterization induced by the exponen-

tial map

expppωq “ exppωxpex ` ωypey ` ωzpezq, |ω| ă π (A.8)

can be used to bijectively parameterize almost the whole group, almost because

of the the singularity that occurs at the radius π of sphere boundary, where the

antipodal points ω and ´ω represent the same rotation by 180 degrees around the

axis ω.
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