
Efficient Cryptographic Primitives for

Non-Interactive Zero-Knowledge Proofs

and Applications

by

Kristiyan Haralambiev

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

May 2011

Victor Shoup

c© Kristiyan Haralambiev

All Rights Reserved, 2011

Abstract

Non-interactive zero-knowledge (NIZK) proofs have enjoyed much interest in cryp-

tography since they were introduced more than twenty years ago by Blum et al.

[BFM88]. While quite useful when designing modular cryptographic schemes, until

recently NIZK could be realized efficiently only using certain heuristics. However,

such heuristic schemes have been widely criticized. In this work we focus on de-

signing schemes which avoid them. In [GS08], Groth and Sahai presented the first

efficient (and currently the only) NIZK proof system in the standard model. The con-

struction is based on bilinear maps and is limited to languages of certain satisfiable

system of equations. Given this expressibility limitation of the system of equations,

we are interested in cryptographic primitives that are “compatible” with it. Equipped

with such primitives and the Groth-Sahai proof system, we show how to construct

cryptographic schemes efficiently in a modular fashion.

In this work, we describe properties required by any cryptographic scheme to mesh

well with Groth-Sahai proofs. Towards this, we introduce the notion of “structure-

preserving” cryptographic schemes. We present the first constant-size structure-

preserving signature scheme for messages consisting of general bilinear group ele-

ments. This allows us (for the first time) to instantiate efficiently a modular construc-

tion of round-optimal blind signature based on the framework of Fischlin [Fis06].

Our structure-preserving homomorphic trapdoor commitment schemes yield the

iii

first efficient leakage-resilient signatures (in the bounded leakage model) which satisfy

the standard security requirements and additionally tolerate any amount of leakage.

Furthermore, we build a structure-preserving encryption scheme which satisfies

the standard CCA security requirements. While resembling the notion of verifiable

encryption, it provides better properties and yields the first efficient two-party pro-

tocol for joint ciphertext computation. Note that the efficient realization of such a

protocol was not previously possible even using the heuristics mentioned above.

Lastly, we revisit the notion of simulation extractability and define “true-simulation

extractable” NIZK proofs. Although quite similar to the notion of simulation-sound

extractable NIZK proofs, there is a subtle but rather important difference which

makes it weaker and easier to instantiate efficiently. As it turns out, in many scenar-

ios this new notion is sufficient.

iv

Contents

Abstract iii

List of Tables ix

1 Introduction 1

1.1 Structure-Preserving Cryptographic Primitives 3

1.1.1 Signatures . 4

1.1.2 Commitments . 6

1.1.3 Encryption . 8

1.2 Applications . 10

1.3 Simulation Extractability Revisited 14

2 Preliminaries 16

2.1 Basic Definitions . 16

2.1.1 Digital Signatures . 16

2.1.2 Public-Key Encryption . 18

2.1.3 Trapdoor Commitments . 20

2.1.4 Non-Interactive Zero-Knowledge Proofs 22

2.1.5 Leakage-Resilient Cryptographic Primitives 26

2.2 Notation and Common Setup . 28

v

2.3 Assumptions . 30

2.4 The Groth-Sahai Proof System . 33

2.5 Pairing Randomization Techniques 38

3 Simulation Extractability 41

3.1 Definitions . 42

3.2 Generic Construction of f-tSE . 45

3.3 Comparison with Previous Works and the Naor-Yung Paradigm . . . 48

3.4 Application: Efficient Leakage-Resilient Encryption 49

3.4.1 Generic Construction . 50

3.4.2 Instantiation . 52

4 Structure-Preserving Commitments 58

4.1 Constructions . 58

4.1.1 Scheme TC1 . 60

4.1.2 Scheme TC2 . 62

4.1.3 Scheme TC3 . 63

4.1.4 Scheme TC4 . 65

4.2 One-Time Signatures . 67

4.2.1 A One-Time Signature Scheme in Any Setting 67

4.2.2 More Efficient Scheme in the Asymmetric Setting 70

4.2.3 Signing Unbounded-Size Messages 70

4.3 Applications . 71

4.3.1 Leakage-Resilient Hard Relation 72

4.3.2 Structure-Preserving SPR Relation 74

4.3.3 Leakage-Resilient Signatures 77

4.3.4 Instantiation . 79

vi

5 Structure-Preserving Signatures 83

5.1 Main Scheme . 84

5.1.1 Construction . 84

5.1.2 Security . 85

5.1.3 Notable Properties . 90

5.1.4 Variations . 93

5.2 Signing Unbounded-Size Messages . 94

5.2.1 Overview . 94

5.2.2 Construction . 95

5.3 Simulatable Signatures . 97

5.3.1 Overview . 97

5.3.2 Definitions . 99

5.3.3 Construction . 101

5.3.4 Security . 103

5.4 Signing Mixed-Group Messages in the Asymmetric Setting 107

5.4.1 Overview . 107

5.4.2 Construction . 108

5.4.3 Security . 109

5.5 Strongly Unforgeable Signatures . 111

5.6 Applications . 113

5.6.1 Round-Optimal Blind Signatures 114

5.6.2 Group Signatures with Concurrent Join 117

6 Structure-Preserving Encryption 124

6.1 Structure-Preserving Encryption . 125

6.2 Application: Joint Computation of Ciphertext 130

vii

Bibliography 135

viii

List of Tables

3.1 Comparison of Leakage-Resilient Encryption Schemes 53

4.1 Comparison of Structure-Preserving Trapdoor Commitment Schemes 59

4.2 Comparison of Leakage-Resilient Signature Schemes 79

5.1 Comparison of Blind Signature Schemes 116

5.2 Comparison of Group Signature Schemes 121

ix

Chapter 1

Introduction

The notion of zero-knowledge proofs [63] is a fundamental and extremely powerful

cryptographic tool. It allows a party to convey the correctness of a statement with-

out revealing anything but the correctness. These seemingly contradictory property is

usually realized using several rounds of communications between a prover and a veri-

fier, where the former tries to convince the latter that a statement is correct without

giving any other information. Zero-knowledge proofs are an essential building block

for the modular construction of many cryptographic schemes, e.g., multi-party com-

putation protocols in which each party has to provide evidence that they have carried

their computation correctly in order to show the protocol secure against malicious

parties.

Non-interactive zero-knowledge proofs [19], as their name suggests, were intro-

duced as a means of carrying out zero-knowledge (ZK) proofs while removing the

interaction between the prover and the verifier. This is done with the help of a ran-

domly generated common reference string which both the prover, when producing a

proof, and the verifier, when checking the validity of a proof, can read. Non-interactive

zero-knowledge (NIZK) proofs have many cryptographic applications. A well-known

1

example is the Naor-Yung paradigm [85] which constructs a IND-CCA encryption

scheme (see Definition 4) out of two semantically secure ones together with NIZK

proofs (with certain special properties). While quite useful when designing modu-

lar cryptographic schemes, NIZK proofs could only be realized efficiently when using

certain heuristics until recently. That is, to transform efficient interactive ZK proofs

into NIZK proofs using the random oracle paradigm [16] or to directly use interactive

assumptions [82]. Due to a series of criticisms against such heuristics starting with

[41], we are interested in schemes which avoid them.

Nevertheless, we consider modular design of cryptographic protocols to be the

right approach. While some cryptographic tasks find “cleverly crafted” efficient so-

lutions dedicated to their own purposes, modular constructions make cryptographic

schemes easier to build and understand, less prone to errors in the proof of correctness,

and a good alternative for comparison when the buildings blocks have efficient instan-

tiations. Moreover, such modular constructions can be instantiated under different

assumptions as the designer can choose the concrete realization of the underlying

cryptographic primitives.

An efficient NIZK proof system, however, has been absent until recently. In [71],

Groth and Sahai presented the first efficient one (and current the only one) in the

standard model. The construction is based on bilinear maps and limited to statements

which can be expressed as a system of equations of certain types. We review the

Groth-Sahai (GS) proof system in Section 2.4. As its expressibility is limited to

only a few types of equations, the most interesting of which is the pairing-product

equation (PPE), we are particularly interested in cryptographic primitives that are

“compatible” with it. We call such cryptographic primitives structure-preserving.

Before proceeding further, the reader is encouraged to familiarize themselves with

the notions and notations in Chapter 2 which we are going to use in this work.

2

1.1 Structure-Preserving Cryptographic Primitives

Let us start with a short motivation in the case of signatures. The combination of dig-

ital signatures and NIZK proofs of knowledge appears frequently in privacy-protecting

cryptographic protocols such as blind signatures [55, 4], group signatures [15, 76, 17],

anonymous credential systems [13, 12], verifiably encrypted signatures [24, 37, 94],

non-interactive group encryption [44] and so on. There are efficient signature schemes,

e.g., [20, 35, 13, 33], whose verification predicates are pairing-product equations, and,

hence, possibly suitable counterparts to the GS proofs system. However, they can-

not be used in NIZK proofs of knowledge as none of them has both signatures and

messages consisting only of group elements. Since only group elements can be ex-

tracted from GS proofs, this entails limited applicability of those schemes or requires a

stronger security notions such as F -unforgeability [13]. Research on signature schemes

that are compatible with GS proofs was initiated in [66]. While the design goal is

clear and simple, giving an efficient instantiation has proved hard for years.

The desirable properties of a cryptographic scheme which allow modular design

together with GS proofs are the following:

1. the scheme satisfies the standard notion of security: unforgeable against chosen-

message attacks (EUF-CMA) in the case of signatures, indistinguishability

against chosen-ciphertext attacks (IND-CCA) for encryption, etc.;

2. the public keys, messages, and results of the main algorithm of the scheme

(Enc for encryption, Sign for signatures, Com for commitments) are elements of

a bilinear group1;

1If witness indistinguishable (WI) rather thank zero-knowledge proofs suffice for our needs, we

relax this to allow elements of the target group.

3

3. the correctness of computation for that algorithm can be verified using a con-

junction of pairing product equations over the public key, the message, and the

output of the algorithm2.

Note that this proscribes the use of cryptographic hash functions, which usually play

a central role in the construction of EUF-CMA signatures and IND-CCA encryption.

We therefore call such a scheme structure preserving.

Combined with GS proofs, such structure-preserving scheme allow proving knowl-

edge of a messages, signature/ciphertext/commitment, and public key without actu-

ally revealing them.

1.1.1 Signatures

We present the first constant-size structure-preserving signature scheme for messages

of general bilinear group elements. A signature consists only of 7 group elements

regardless of the size of the message. For a message (m1, . . . ,mk), a signature

(z, r, s, t,u,v,w) fulfills the verification equations

A = ê(gz, z) ê(gr, r) ê(s, t)

k∏

i=1

ê(gi,mi), and

B = ê(hz, z) ê(hu,u) ê(v,w)

k∏

i=1

ê(hi,mi)

where the verification key is (A,B, gz,hz, gr,hu, {gi,hi}
k
i=1), for a fixed constant k,

and ê is a bilinear map. The security is based on a novel strong, “q-type”, assumption

which is fairly complex. However, it has an optimal quadratic security bound in

generic bilinear groups unlike the popular strong Diffie-Hellman assumption and its

variations. Then, we explore several variations.

2Note that if there is a public verification algorithm, e.g., in the case of signatures, essentially

this requirement holds for the verification predicate.

4

We present a scheme that signs unbounded-size messages based on the observation

that the constant-size signatures allow unbounded “signature chaining”. We address

the case of signing group elements from both base groups G1 and G2 for asymmetric

pairings when the SXDH assumption holds; it is not trivial to sign a message con-

sisting of elements from both groups as there are no efficient mappings between the

two groups. Also, we consider structure-preserving signatures that provides strong

unforgeability. Finally, we define the notion of simulatable signatures and give an

efficient instantiation. It is defined in the common reference string (CRS) model and

allows creating valid signatures using the trapdoor associated with the CRS. Such a

property is useful in building adaptively secure protocols where a simulator has to

have correct signatures without having help from a corrupted signer [4].

Related Work. Feasibility of structure-preserving signatures on group elements

was first shown by Groth [66], who presents a construction based on the decision

linear assumption (DLIN). While it is remarkable that the security can be based on a

simple standard assumption, the scheme is not practical as signatures consist of hun-

dreds of thousands of group elements. Based on the q-Hidden LRSW assumption for

asymmetric bilinear groups, Green and Hohenberger presented a structure-preserving

signature scheme that provides security against random message attacks [65]. Unfor-

tunately, an extension to the chosen message security is not known. In [56], Fuchs-

bauer presented a scheme based on (a variant of) the Double Hidden Strong Diffie-

Hellman Assumption (DHSDH) from [57]. Their scheme is pretty efficient but has

limited generality since a trusted set-up is necessary and the messages must be in a

special form called a Diffie-Hellman pair. In [44], Cathalo, Libert and Yung showed

a scheme based on a combination of the Hidden Strong Diffie-Hellman Assumption

(HSDH), Flexible Diffie-Hellman Assumption, and the DLIN assumption. Their sig-

5

nature consists of 9k+4 group elements and it is left as an open problem to construct

constant-size signatures.

1.1.2 Commitments

In this work, we consider (non-interactive) public-key homomorphic trapdoor commit-

ments [72, 92]. Although we do not use the homomorphic property in our applications,

most of our commitments are homomorphic. Common to all homomorphic trapdoor

commitment schemes prior to the recent work of [68] is that they are homomorphic

with respect to addition in a ring or field. However, in public-key cryptography, we

often work over groups that are not rings, like in the case of PPEs of Groth-Sahai

proofs, so it is useful to be able to commit to group elements.

Firstly, we present a trapdoor commitment scheme which satisfies the slightly

relaxed structure-preserving noton. Its message and public key consist of group el-

ements, ~m and (g,h, {gi,hi}
k
i=1), respectively; but the commitment c = (C1,C2)

consist of elements in the target group:

C1 = ê(g, d1)

k∏

i=1

ê(gi,mi) ∧ C2 = ê(h, d2)

k∏

i=1

ê(hi,mi).

Here, the pair (d1, d2) is the opening of the commitment, often referred to as a

decommitment. When working in the SXDH setting, the public key and com-

mitment sizes could be reduced in half so that the verification equation becomes:

c = ê(g, d)
∏k

i=1 ê(gi,mi). Clearly, these commitment schemes are length reducing, a

property than only a few trapdoor commitment schemes possess.

Next, we present a commitment scheme that satisfies the full structure-preserving

notion by representing the target group elements as a product of random pairing

6

product equations3:

C1 = ê(g, a0)
k∏

i=1

ê(gi, ai) = ê(g, d1)
k∏

i=1

ê(gi,mi) ∧

C2 = ê(h,b0)
k∏

i=1

ê(hi,bi) = ê(h, d2)
k∏

i=1

ê(hi,mi).

To do so, we use novel techniques for pairing product randomization. Note, however,

that the commitment c = ({ai,bi}
k
i=0) is no longer length-reducing.

Lastly, we construct a commitment scheme whose message is a scalar but can be

verified using a PPE. Its verification equation is ê(g, c/g̃m) = ê(d, f̃). Although it is

not structure-preserving in general, for the special case when the message in given

in clear together with the proof, it is fully compatible with GS proofs and provides

better efficiency than the last scheme.

The security of all commitment schemes is based on novel simple assumptions

which are implied by the well-known SXDH or DLIN.

Related Work. There are many examples of homomorphic commitments. Ho-

momorphic cryptosystems such as [61, 87, 88, 25, 22] can be seen as homomorphic

commitment schemes that are perfectly binding and computationally hiding. Com-

mitments based on homomorphic encryption can be converted into computationally

binding and perfectly hiding homomorphic commitments, see for instance the mixed

commitments of Damgard and Nielsen [50] and the commitment schemes used by

Groth et. al. [70], Boyen and Waters [28], Groth [66], and Groth and Sahai [71].

Even in the perfectly hiding versions of these schemes the size of a commitment is

larger than the size of a message though. This length increase follows from the fact

3These equations are for the case of symmetric pairings; the asymmetric case is handled slightly

differently.

7

that the underlying building block is a cryptosystem whose ciphertexts must be large

enough to include the message.

There are also direct constructions of homomorphic trapdoor commitment schemes

such as Guillou and Quisquater commitments [72] and Pedersen commitments [91].

The latter is one of the most used commitment schemes in the field of cryptography.

They are perfectly hiding with a trapdoor and if the discrete-logarithm problem is

hard they are computationally binding. There are many variants of the Pedersen

commitment scheme. Fujisaki and Okamoto [58] and Damgard and Fujisaki [49] for

instance suggest a variant where the messages can be arbitrary integers. However,

none of the trapdoor commitment schemes prior to the recent work of Groth [68] has

messages being (vectors of) group elements.

1.1.3 Encryption

As we mentioned earlier, Groth [66] initiated the study of structure-preserving crypto-

graphic primitives by looking into signatures. While it is surprising, the construction

he gave is based on DLIN, its instantiation is extremely inefficient. The three build-

ing blocks used in that construction are a proof system, a one-way function, and a

(slightly relaxed variant of) IND-CCA encryption. While the first two components

could be instantiated efficiently, there is no appropriate CCA encryption as the ex-

isting efficient schemes do not satisfy all three structure-preserving properties. On

the one hand, many IND-CPA schemes would satisfy the second and the third prop-

erty, but will not provide the desired IND-CCA security. On the other hand, the

existing efficient IND-CCA encryption schemes come short of satisfying the second

and third property as well. For example, the well-known Cramer-Shoup (CS) en-

cryption [46], for example, which provides IND-CCA security and can be modified to

8

work in a bilinear group [99], does not satisfy the third property because of the way

it computes its validity element, and one cannot prove that a ciphertext is correctly

computed without revealing the ciphertext itself. While it is sufficient for many appli-

cations when combined with GS proofs, including our leakage-resilient constructions

discussed later, it does not satisfy the full structure-preserving notion. In particular,

in the construction of [66], a signature consists of a ciphertext and a proof, so it

is not possible to give a NIZK proof of knowledge of a signature without revealing

significant part of that signature, hence, violating the ZK property.

With this motivation in mind, we consider the problem of structure-preserving

IND-CCA encryption. The construction we present has some similarities with the

(Linear) CS encryption in that it also produces a ciphertext which consists of a

randomness vector ~u = (gr
1, g

s
2, g

r+s
3), a one time-pad of the message c = m · hr

1h
s
2,

and a validity element V. As a side note, observe that if the validity element is

omitted, the resulting scheme is essentially the Linear encryption by Boneh et. al. [22].

However, unlike previous work, we compute V while keeping the underlying algebraic

structure, i.e. V =
∏3

i=0 ê(f
r
i,1f

s
i,2,ui) · ê(f

r
4,1f

s
4,2, c) · ê(f

r
5,1f

s
5,2, `), where ` is a label.

Furthermore, using the novel pairing randomization techniques, we have the choice

whether V is represented as a single group element in the target group or pairing

products of random group elements. While this construction is structure-preserving,

it requires a little work-around to handle its pairing product equations which are

slightly more demanding than that which GS pairing-product equations provide. This

is done by introducing additional variables and using the other GS equation types

when proving that V is computed correctly. Nevertheless, up to our knowledge,

this is the first structure-preserving encryption in the literature, and it provides an

important step to even more efficient schemes to come. Moreover, our encryption

allows solving efficiently the problem of joint ciphertext computation for the first

9

time.

Related Work. The notion of verifiable encryption has long been used in the cryp-

tographic community. Essentially, for certain encryption schemes, it allows to encrypt

a message and then prove that the plaintext of the produced ciphertext satisfy certain

useful properties, or interweave the two steps. As pointed out by [8, 37], the earlier

work on verifiable encryption ignored the fact that IND-CPA security is not sufficient

for most applications. Moreover, work prior to [37] used expensive “cut-and-choose”

proofs, the computational and communication complexity of which grows linearly in

the security parameter, rather than “sigma-protocols”. While the work of [37] is quite

efficient, like previous efficient constructions, it uses interactive proofs, and the only

way to translate it non-interactive setting is using heuristics such the random oracle.

Non-interactive commitments of bits were used in previous constructions, e.g., [70],

and used as a building block for efficient applications, e.g., [100]. However, they do

not provide IND-CCA security as required for our needs.

While verifiable encryption is extremely useful, and could be realized for certain

non-interactive scenarios using the (Linear) CS encryption and GS proofs, e.g. [31],

it comes short of the full power of structure-preserving encryption. Also, it cannot

be used to solve the above-mentioned problem of joint ciphertext computation.

1.2 Applications

Privacy-Preserving Schemes. As we mentioned earlier, NIZK proofs of knowl-

edge of signatures are the essence of many cryptographic protocols. Clearly, com-

bining GS proofs and structure-preserving signatures allows instantiating those con-

structions easily. From the many possible privacy-preserving applications, we consider

10

blind signatures and group signatures in Chapter 5.

First, we give an instantiation Fischlin’s round-optimal blind signature frame-

work [55] which has been an open problem since Crypto’06 and considered as diffi-

cult [79]. We describe the framework next. To obtain a signature from the signer,

the user commits to a message and sends the commitment to the signer. Then, the

signer signs the commitment and sends back the signature. The user produces a

NIZK proof of knowledge of a commitment, an opening of the commitment to that

message, and a signature on the commitment. This proof constitutes a blind signa-

ture for the message. Despite its simplicity, the scheme has not been instantiated

efficiently in the standard model because it requires a signature scheme which signs

trapdoor commitments and whose verification equations should mesh well with the

GS proof system.

We then revisit group signatures which have enjoyed much interest since they were

introduced by Chaum and van Heyst [45] almost twenty years ago. Most previous

constructions, [38, 10, 22, 35, 17, 28, 29, 66] among others, could be viewed as un-

satisfactory in some aspect: relying on the random-oracle heuristic, satisfying weaker

security definitions, or not being efficient. The scheme by Groth [67] is both practical

and satisfies the strengthened security definitions of [17]. However, it does not sup-

port concurrent join of new users. Using our signature schemes in combination with

the GS proof system and an appropriate encryption scheme [80, 99], we overcome

this shortcoming and construct a group signature scheme under the strongest secu-

rity definitions which supports concurrent join while achieving comparable efficiency.

Our construction follows a common approach used, e.g., in [38, 67]. The dynamic join

protocol between a group member and the issuer simply consists in the issuer signing

the member’s verification key. To sign a message m, the member signs the message

using her secret key and produces a NIWI proof of knowledge of a verification key, a

11

signature on that key by the issuer, and a signature on the message under that key.

Joint Ciphertext Computation We consider the two-party protocol for joint

CCA ciphertext computation with respect to a third-party public key, in which the

two parties provide verifiable inputs; also, we require that only one of the parties learn

the output where the other party gets no output. While the desired properties of this

protocol might not be immediately clear, those are exactly the right requirements

of a building block when constructing oblivious revocation authority [32] to handle

disputes between users and service providers. While existing solutions seemingly

solve this problem for such revocation authority, they require each party to provide

too much identifying information to the authority.

While quite simply formulated, the two-party protocol cannot be solved efficiently

using known encryption schemes and proof systems (interactive or not) as they do

not work well together in this case. In particular, the practical verifiable encryption

of [37] comes short because the CCA encryption relies on cryptographic hash function

which prevents achieving the two competing requirements, i.e. the first party outputs

a ciphertext of the joint inputs, but is unable to produce any related ciphertext, and

the second party learns no information about the ciphertext.

Leakage-Resilient Cryptography Traditionally, the security of cryptographic

schemes has been analyzed in an idealized setting, where an adversary only sees the

specified “input/output behavior” of a scheme, but has no other access to its internal

secret state. Unfortunately, in the real world, an adversary may often learn some

partial information about secret state via various key leakage attacks. That is why

the cryptographic community has recently initiated the investigation of increasingly

general (formally modeled) classes of leakage attacks, with the aim of constructing

12

leakage-resilient cryptographic schemes that remain provably secure even in the pres-

ence of such attacks.

We consider the bounded leakage model recently introduced recently by Akavia et

al. [5], which has already attracted a lot of attention [83, 7, 75, 6]. In this model, an

adversary is allowed to learn the output of any efficiently computable function of the

secret key while being constrained that the information learned is bounded by ` bits.

Unfortunately, we observe that the existing solutions of “leakage-resilient” encryption

and signature schemes fail to satisfy at least one of the following desirable properties:

efficiency — while we are interested in a modular cryptographic construction, it

should have some efficient instantiation based on standard cryptographic assumptions;

strong security — the construction should satisfy the standard security definitions,

i.e., EUF-CMA for signatures and IND-CCA for encryption; leakage flexibility —

it should be possible to set the parameters of the scheme so that the relative leakage

`/sk is arbitrarily close to 1.

Looking at the existing schemes, we notice that they can be largely divided into

two categories: efficient schemes with some inherent limitation to achieve relative

leakage approaching 1 and more theoretical schemes [83, 75] which achieve good rel-

ative leakage but rely on the notion of simulation-sound NIZK (ss-NIZK) proofs [95].

Without getting into the definition of ss-NIZK proof here, we point out that the ex-

isting cryptographic machinery does not allow us to instantiate non-trivial ss-NIZK

proofs efficiently. The work of [66] construct ss-NIZK proofs for practical languages

and uses them them to construct group signatures, but the resulting schemes has

signature size of “thousands or perhaps even millions of group elements” [67]. On the

other hand, the recent breakthrough of Groth and Sahai [71] allows us to construct

efficient NIZK proofs for a non-trivial class of languages. While the techniques of [66]

could be applied to GS proofs to achieve ss-NIZK proofs, the resulting proofs are sig-

13

nificantly less efficient. Therefore, we generalize the existing construction sufficiently,

so that they rely only on regular NIZKs, in the hope that we can then instantiate

them efficiently using the powerful Groth-Sahai techniques.

In the end, this is indeed what we realize. The generic leakage-resilient signature

scheme presented in Section 4.3.3, which generalizes the construction of [75], can

be easily instantiated with GS proofs and a structure-preserving second-preimage

resistant relations derived from our structure-preserving commitments. Furthermore,

in the line of that work, we abstract the notion of true-simulation extractable NIZK

proofs which we discuss next. Equipped with this powerful and efficiently realizable

notion, we are also able to construct efficient leakage-resilient encryption scheme that

satisfies the desired properties described above.

1.3 Simulation Extractability Revisited

In the process of generalizing the existing theoretical leakage resilient schemes [83,

75], we abstract away an elegant notion of independent interest: true-simulation

extractable (tSE) NIZK proofs. While quite similar to the notion of simulation-sound

extractable NIZK proofs [66], it involves a subtle but rather important difference:

whether the adversary has oracle access to simulated proofs for arbitrary (even false)

statements or only true ones. Intuitively, both the Naor-Segev’s leakage-resilient CCA

encryption [83] and Katz-Vaikuntanathan’s leakage-resilient signature scheme [75]

used the technique of encrypting a witness x for some relation R, and then providing

a ss-NIZK proof π that the ciphertext c indeed contains an encryption of a valid

witness x. The main reason for using this technique is to allow the reduction to

extract a valid witness from any “new” valid pair (c?, π?) produced by the attacker A

(who saw many such valid pairs earlier). We abstract this property into the tSE notion

14

mentioned above (of which the above mentioned technique is a specific example, where

the pair (c, π) together makes up a single tSE-NIZK proof). We believe that true-

simulation extractability, as we abstract it, is precisely the right notion for generalizing

and proving the security of the previous constructions. Moreover, using Groth-Sahai

proofs, we are able to instantiate these new generic constructions efficiently.

15

Chapter 2

Preliminaries

We denote the security parameter as λ, which customarily is given to setup algorithms

in the form of 1λ. We say that an algorithm is efficient if it runs in probabilistic

polynomial time in the security parameter. Throughout this work, all algorithms are

considered to be efficient unless explicitly stated otherwise. With negl(λ), or simply

a negligible function for an implicit security parameter, we denote a function f such

that |f(λ)| < o(1/λc) for every positive integer c.

2.1 Basic Definitions

2.1.1 Digital Signatures

Definition 1 (Digital Signature Scheme). A digital signature scheme SIG is a tuple

of algorithms (SIG.Key, SIG.Sign, SIG.Vrf) defined as follows:

SIG.Key(1λ): A randomized key generation algorithm that takes a security parameter

1λ and generates a verification key vk and a signing key sk. The verification

key also determines a message spaceM.

16

SIG.Sign(sk, m): A randomized signature generation algorithm that computes a sig-

nature σ for the input message m using the signing key sk.

SIG.Vrf(vk, m, σ): A verification algorithm that outputs 1 for acceptance or 0 for re-

jection depending on whether (m, σ) is a valid pair with respect to vk.

A signature scheme must provide correctness in the sense that for properly gener-

ated keys, a signature on a message generated with SIG.Sign is always accepted. The

security parameter 1λ allows SIG.Key implicitly to select an appropriate algebraic

setting. SIG.Key may also take some other parameters if necessary.

We use standard notion of existential unforgeability against adaptive chosen mes-

sage attacks [64] (EUF-CMA in short) formally defined as follows.

Definition 2 (Existential Unforgeability against Adaptive Chosen Message Attacks).

A signature scheme is existentially unforgeable against adaptive chosen message at-

tacks if, for any polynomial-time adversary A, the following experiment returns 1 with

negligible probability.

ExpEUF-CMA:

(vk, sk)← SIG.Key(1λ)

(m?, σ?)← AOsign(·)(vk)

Return 1 if m? 6∈ Qm and SIG.Vrf(vk?, m?, σ?) = 1. Return 0 otherwise.

Osign(·) is a signing oracle that takes message m and returns σ ← SIG.Sign(sk, m).

Qm denotes the set of messages submitted to Osign(·). By requiring (m?, σ?) 6∈ Qm,σ

where Qm,σ is the set of pairs of messages and their corresponding singatures observed

by Osign(·), we have the notion of Strong EUF-CMA (denoted by sEUF-CMA for

short).

17

2.1.2 Public-Key Encryption

Definition 3 (Public-Key Encryption). A public-key encryption scheme ENC is a

tuple of algorithms (ENC.Key,ENC.Enc,ENC.Dec) such that:

ENC.Key(1λ): A randomized key generation algorithm that takes security parameter

1λ and generates a public key pk and a secret key sk. A message space M is

implicitly associated with pk.

ENC.Enc(pk, m): A randomized encryption algorithm that computes a ciphertext c for

the input message m with respect to the public key pk.

ENC.Dec(sk, c): A decryption algorithm that recovers the plaintext m from the cipher-

text c using the secret key sk. If the ciphertext is invalid, it returns ⊥.

An encryption scheme must provide correctness, i.e., for any properly generated

key pair any message encrypted with ENC.Enc should be recovered using ENC.Dec

from the ciphertext with the corresponding secret key. In this work, the encryption

schemes work over groups of prime order. The security parameter 1λ allows ENC.Key

to select such a group of an appropriate size. ENC.Key may also take additional

parameters if necessary.

We use the standard notion of indistinguishability against chosen-ciphertext attack

(IND-CCA) [84, 53] formally defined as follows.

Definition 4 (Indistinguishability against Chosen-Ciphertext Attack). An encryp-

tion scheme is indistinguishable against chosen-ciphertext attack if for any polynomial-

time adversary A the following experiment returns 1 with probability 1
2
+ negl(λ).

18

ExpIND-CCA:

(pk, sk)← ENC.Key(1λ)

(m0, m1, state)← A
Odec(·)(pk)

b← {0, 1}

c? ← ENC.Enc(pk, mb)

b? ← AOdec(·)(state, c?)

Return 1 if b = b?; 0, otherwise.

Odec(·) is a decryption oracle that takes a ciphertext c and returns a message

m ← ENC.Dec(sk, c) before b is chosen, and returns m ← ENC.Dec(sk, c) only if

c 6= c? after that. If A tries to submit c? to the oracle, the query gets rejected (or

otherwise the adversary can trivially recover b).

We can also define a labeled encryption ENC in which a message is encrypted

and decrypted according to a public label L. We write ENC.EncL(m) to denote

the encryption of a message m under a label L. Similarly, we use ENC.DecL(c) to

denote the decryption of ciphertext c under the label L. In this case, we extend the

correctness to require ENC.DecL(ENC.EncL(m)) = m. Also, the experiment defined

in Definition 4 is modified as follows. A query to the decryption oracle now consists of

a ciphertext c and a label L, to which the oracle responds with m = ENC.DecL(sk, c).

In the challenge generation stage, A outputs a label L? as well as messages m0, m1

and the challenger computes c? ← ENC.EncL
?

(pk, mb). Finally, in the second stage of

decryption queries the adversary is allowed to ask for decryptions of any ciphertext c

under a label L for which (L, c) 6= (L?, c?).

19

2.1.3 Trapdoor Commitments

Definition 5 (Trapdoor Commitment Scheme). A trapdoor commitment scheme TC

is a tuple of algorithms (TC.Key,TC.Com,TC.Vrf,TC.Sim,TC.Open) such that:

TC.Key(1λ): A randomized key generation algorithm that takes security parameter

1λ and generates a commitment key ck and a secret trapdoor key tk. The

commitment key implicitly defines a message spaceM.

TC.Com(ck, m): A randomized algorithm that outputs (c, d), where c is a commitment

of the input message m and d is the corresponding decommitment value.

TC.Vrf(ck, c, m, d): A verification algorithm that verifies whether the commitment c

corresponds to the messagem with an opening d with respect to ck. If so, returns

1; otherwise, 0.

TC.Sim(ck, tk): A randomized algorithm takes the trapdoor key and computes a equiv-

ocal commitment c and a corresponding equivocation key ek.

TC.Open(ck, c, m, ek): An equivocation algorithm algorithm takes an equivocal com-

mitment c, a message m, and an equivocation key ek, and outputs a decommit-

ment d for which TC.Vrf(ck, c, m, d) = 1.

Such trapdoor commitment scheme has to be correct: any commit-

ment/decommitment pair produced by TC.Com for a message m should satisfy the

verification algorithm TC.Vrf . We say that a trapdoor commitment scheme TC is

secure if it satisfies the following definitions of perfect hiding, computational binding,

and perfect trapdoor [72, 91, 68]:

Definition 6 (Perfect Hiding). A commitment scheme is said to be perfectly hiding

if for every adversary A, the following experiment returns 1 with probability 1
2
.

20

ExpPerfect Hiding:

(ck, tk)← TC.Key(1λ)

(m0, m1, state)← A(ck)

b← {0, 1}

c← TC.Com(ck, mb)

b? ← A(state, c)

Return 1 if b = b?; otherwise 0.

Definition 7 (Computational Binding). A commitment scheme is computationally

binding if for every polynomial time adversary A, the following experimetn returns 1

with negligible probability.

ExpComp.Binding:

(ck, tk)← TC.Key(1λ)

(c, m0, m1, d0, d1)← A(ck)

return 1 if m0 6= m1 and 1 = TC.Vrf(ck, c, m0, d0) = TC.Vrf(ck, c, m1, d1);

otherwise, return 0.

Definition 8 (Perfect Trapdoor). A trapdoor commitment scheme is a perfect trap-

door one if for every polynomial time adversary A, the following experiment returns

1 with probability 1
2
.

21

ExpPerfect Trapdoor:

(ck, tk)← TC.Key(1λ)

(m, state)← A(ck)

b← {0, 1}

if b = 0

(c, ek)← TC.Sim(ck, tk)

d← TC.Open(ck, c, m, ek)

else

(c, d)← TC.Com(ck, m)

b? ← A(state, c, d)

return 1 if b = b?; otherwise return 0.

2.1.4 Non-Interactive Zero-Knowledge Proofs

We start by recalling the notion of non-interactive zero-knowledge (NIZK) [19, 54].

In fact, we use the stronger notion of composable NIZK [66].

Definition 9 (Non-Interactive Zero-Knowledge). Let R be an NP relation on pairs

(x, y) with a corresponding language LR = {y | ∃ x s.t. (x, y) ∈ R}. A NIZK proof

system Π for a relation R is a tuple of algorithms (Π.Crs,Π.Prove,Π.Vrf) defined as

follows:

Π.Crs(1λ): A randomized algorithm generating a common reference string crs.

Π.Prove(crs, y, x): A randomized algorithm that outputs a proof π that R(x, y) = 1.

22

Π.Vrf(crs, y, π): A verification algorithm that verifies whether proof π that y ∈ LR is

correct. If it is, the algorithm outputs 1; otherwise, 0.

A NIZK proof system Π is required to satisfy perfect correctness, perfect soundness,

and (composable) zero knowledge defined as follows:

Definition 10 (Perfect Correctness). Π is said to be perfectly correct if for every

adversary A the following experiment never returns 1.

ExpPerfect Correctness:

crs← TC.Key(1λ)

(y, x)← A(crs)

π ← Π.Prove(crs, y, x)

return 1 if (x, y) ∈ R and Π.Vrf(crs, y, π) = 0

ohterwise, return 0.

Definition 11 (Perfect Soundness). Π is perfectly sound if for every adversary A the

following experiment never returns 1.

ExpPerfect Soundness:

crs← TC.Key(1λ)

(y, π)← A(crs)

return 1 if Π.Vrf(crs, y, π) = 1 and y /∈ LR;

otherwise, return 0.

To define zero-knowledge, we need to specify two randomized algorithms. The

first one, Π.SimCrs(1λ), takes a security parameter and generates a simulated com-

mon reference string with a corresponding trapdoor key tk. The second, a simulator,

23

Π.Sim(crs, y, tk) takes as input a statement and the trapdoor key, but not any wit-

nesses, and outputs a proof π for which Π.Vrf(crs, y, π) accepts. Note the simulation

algorithm can be used to produce proofs for any statement since it does not check

whether y ∈ LR or not.

Definition 12 ((Composable) Zero-Knowledge). Π is said to be zero-knowledge if

for any polynomial time adversaries A and B, both experiments defined next return 1

with probabilities 1
2
+ negl(λ). If we let B be computationally unbounded and require

ExpSIM-IND to return 1 with probability 1
2
, we say that Π has a perfect zero-knowledge

simulation.

ExpCRS-IND:

b← {0, 1}

if b = 0, crs← Π.Crs(1λ);

else, (crs, tk)← Π.SimCrs(1λ)

b? ← A(crs)

return 1 if b = b? and 0 otherwise.

24

ExpSIM-IND:

(crs, tk)← Π.SimCrs(1λ)

(y, x, state)← B(crs)

π0 ← Π.Prove(crs, y, x)

π1 ← Π.Sim(crs, y, tk)

b← {0, 1}

b? ← B(state, πb, tk)

return 1 if b = b? and (x, y) ∈ R;

otherwise, return 0.

Sometimes, we will resort to a weaker form of proofs, i.e., non-interactive witness-

indistinguishable (NIWI) proof system. The difference from the above definition of

NIZK is that simulation indistinguishability is replaced by witness indistinguishabil-

ity:

Definition 13 ((Composable) Witness-Indistinguishability). Π is said to be witness-

indistinguishable if for any polynomial time adversaries A,B the experiment

ExpCRS-IND, as defined above, and the following experiment ExpWI return 1 with prob-

abilities 1
2
+ negl(λ). If we let B be computationally unbounded and require ExpWI to

return 1 with probability 1
2
, we say that Π is perfect witness distinguishable for the

simulated common reference string.

25

ExpWI:

crs← Π.SimCrs(1λ)

(y, x0, x1, state)← B(crs)

b← {0, 1}

π ← Π.Prove(crs, y, xb)

b? ← B(state, π, tk)

return 1 if b = b? and (x0, y), (x1, y) ∈ R;

otherwise, return 0.

For our purposes later, it will be slightly more convenient to use the notion of

(same-string) NIZK argument from [96]. That is, the common reference string is

generated using Π.SimCrs, rather than using Π.Crs, along with the corresponding

trapdoor key; and the originally defined Π.Crs is used only in the proof of soundness.

In that case, the soundness holds only for polynomial time adversaries. Note, however,

that the definitions and constructions given in Section 3 can be easily extended to

the case of NIZK proofs.

2.1.5 Leakage-Resilient Cryptographic Primitives

Following previous works [5, 83], we model leakage attacks by giving the adversary

access to a leakage oracle, which he can adaptively access to learn leakage on the

secret key. A leakage oracle Oλ,`(·) is parameterized by a leakage parameter `, a

security parameter λ, and (implicitly) a secret key sk. A query to the oracle consists

of a function ~i : {0, 1}
∗ → {0, 1}αi, to which the oracle answers with yi = ~i(sk).

We only require that the functions ~i be efficiently computable, and the total number

26

of bits leaked is
∑

i αi ≤ `.

Definition 14 (Leakage Resilient EUF-CMA Signatures(`-LR-EUF)). A signature

scheme SIG is `-leakage resilient if it is existentially unforgeable against adaptive

chosen message attacks in the presence of key leakage. That is if no polynomial

time adversary wins with non-negligible probability the experiment ExpEUF-CMA form

Definition 2 modified so that A has an oracle access to Oλ,`(·) in addition to Osign(·).

Definition 15 (Leakage Resilient IND-CCA Encryption(`-LR-CCA)). We say that

an encryption scheme ENC is `-leakage resilient IND-CCA if any polynomial time

adversary A wins with probability 1
2
+ negl(λ) the experiment ExpIND-CCA from Def-

inition 4 modified so that A has an oracle access to Oλ,`(·) in addition to Odec(·) in

the first phase, i.e., before the challenge ciphertext is computed.

Note that a 0-LR-CCA encryption is simply an IND-CCA encryption.

Definition 16 (Leakage Resilient CPA-Secure Encryption (`-LR-CPA)). We say

that an encryption scheme ENC is `-leakage resilient IND-CPA if any polynomial

time adversary A wins with probability 1
2
+ negl(λ) the experiment ExpIND-CCA from

Definition 4 modified so that A has an oracle access to Oλ,`(·) in the first phase but

no oracle access to Odec(·) at all.

Note that an encryption that is 0-LR-CPA is in fact IND-CPA secure, i.e., the

standard notion of semantically secure encryption; we do not use it in this work.

Finally, we define the notion of leakage resilient hard relations which generalizes

the notion of (leakage-resilient) one-way functions.

Definition 17 (Leakage Resilient Hard Relation(`-LR-HR)). A relation R with a

randomized sampling algorithm Sample is an `-leakage resilient hard relation if:

27

For any (y, x)← Sample(1λ) it holds that (x, y) ∈ R.

There is a polynomial-time algorithm that decides whether (x, y) ∈ R.

For any polynomial time adversary A with an access to the leakage oracle Oλ,`(·),

the following experiment returns 1 with negligible probability.

ExpLR-R:

(y, x)← Sample(1λ)

x? ← AO
λ,`(·)(y)

output 1 if R(x?, y) = 1; and 0 otherwise.

Notice that without loss of generality, we can assume that A queries Oλ,`(·) only

once with a function ~ whose output is ` bits.

2.2 Notation and Common Setup

Let G be a group of prime order p. For clarity, we are write groups elements, such as

g,h ∈ G, in boldface to distinguish them easily from exponents such as x, y, α, β ∈ Zp.

The identity element of the group is denoted with 1G or simply 1. Also, when working

in a group equipped with a bilinear map, a.k.a. pairing, we write in capital elements

in the target group, e.g., A,B ∈ GT . Occasionally, we deviate from these rules when

denoting keys associated with a scheme, e.g., pk, sk, or the main result of our schemes,

i.e., a signature σ, a ciphertext c, a NIZK proof π, etc., without emphasizing their

particular structure.

When using vectors, our presentation benefits from the following notation. For

two vectors ~a, ~b ∈ Gn, when we say that we “multiple” them, we mean component-

wise multiplication of each of the n components, i.e. ~a · ~b = (a1b1, . . . , anbn). This

extends to a product of k vectors
∏k

i=1 ~ai = (
∏k

i=1 ai,1, . . . ,
∏k

i=1 ai,n). Lastly, for

28

a vector of group elements ~a ∈ Gn and a vector of scalars ~χ ∈ Zn
p , we define the

“inner-product” 〈~a, ~χ〉 =
∏n

i=1 a
χi

i ∈ G.

Following previous works, e.g. [23], we denote with ê an efficiently computable

map ê : G1 ×G2 → GT which is:

• Bilinear: for all a ∈ G1,b ∈ G2, and α, β ∈ Z, ê(aα,bβ) = ê(a,b)αβ ;

• Non-degenerate: the map does not send all pairs inG1×G2 to 1GT
. In particular,

if G1 and G2 are prime order groups generated, respectively, by g and g̃, then

ê(g, g̃) is a generator of GT .

Moreover, let Λ := (p,G1,G2,GT , ê, g, g̃) be a description of groups G1, G2 and

GT of prime order p equipped with such efficient bilinear map ê : G1 ×G2 → GT . It

also includes a random generator g of G1 and g̃ of G2. By G∗1 we denote G1 \ {1G1
},

and similarly for G∗2 and G∗T . By Λsym we denote a special case of Λ where G1 =

G2 = G. Similarly, Λxdh denotes a case where the Decision Diffie-Hellman (DDH)

assumption holds for G1 (DDHG1
in short). This setting implies that there is no

efficiently computable homomorphism G1 → G2. And Λsxdh denotes a case where the

DDH assumption holds for both G1 and G2. This means that no efficient mapping is

available for either direction. The Λxdh and Λsxdh settings are usually referred to as

the (Symmetric) External Diffie-Hellman Assumption (SXDH) [98, 22, 60, 101]. For

differences of these settings in practice, we refer to [59]. A scheme (or an assumption

or a proof) designed and proven in one setting may not necessarily go through in a

different setting. In particular, if the scheme is for Λsym and uses the homomorphism

between G1 and G2, it does not work, or not known to be secure when used with Λxdh

or Λsxdh. We treat Λ as a common parameter implicitly given to all algorithms of

interest. However, we present our constructions with care so that it is clear in which

setting they work and are secure.

29

2.3 Assumptions

First, we review the well-known DDH assumption:

Assumption 1 (Decisional Diffie-Hellman Assumption (DDH)). Let G be a group

of prime order p. Let g1, g2 ← G and r, r1, r2 ← Zp. The decisional Diffie-Hellman

(DDH) assumption states that the following two distributions are computationally

indistinguishable: (G, g1, g2, g
r1
1 , g

r2
2) and (G, g1, g2, g

r
1, g

r
2).

When working in the Λsym setting, we often use a generalization of DDH:

Assumption 2 (Decisional Linear Assumption (DLIN)[22]). Let G be a group of

prime order p and let g1, g2, g3 ← G. The DLIN assumption holds if for r, s, t← Zp

no probabilistic polynomial time adversary could distinguish between

(G, g1, g2, g3, g
r
1, g

s
2, g

r+s
3) and (G, g1, g2, g3, g

r
1, g

s
2, g

t
3),

with a non-negligible advantage.

Both DDH and DLIN can be viewed as instances of an even more general as-

sumption, the K-linear assumption, for K = 1 and K = 2 respectively. Although we

do not use K-linear for K > 2, it is useful when describing generic schemes which

depend on K. So, for completeness, we define it here.

Assumption 3 (K-Linear Assumption (K-linear)[74, 99]). Let G be a group of prime

order p. Also, let g0, g1, . . . , gK ← G and let r0, r1, . . . , rK ← Zp. The K-linear as-

sumption holds if no probabilistic polynomial time adversary could distinguish between

(G, g0, g1, . . . , gK , g
r1
1 , . . . , g

rK
K , g

∑K
i=1 ri

0) and (G, g0, g1, . . . , gK , g
r1
1 , . . . , g

rK
K , gr0

0),

with a non-negligible advantage.

30

Next, we introduce a simple assumption, called Double Pairing Assumption, that

holds in asymmetric bilinear setting when (S)XDH holds, i.e., Λ ∈ {Λxdh,Λsxdh}.

Assumption 4 (Double Pairing Assumption (DBP)). Given Λ ∈ {Λxdh,Λsxdh} and

(gz, gr)← G∗1
2, it is hard to find (z, r) ∈ G∗2 ×G∗2 such that

1 = ê(gz, z) ê(gr, r). (2.1)

It is obvious that DBP does not hold for Λ = Λsym since (z, r) = (g−1r , gz) 6=

(1, 1) fulfills the relation. On the other hand, we can show that DBP holds for

Λ ∈ {Λxdh,Λsxdh} where DDH is assumed hard in G1.

Theorem 1. If DDHG1
holds for Λ, then DBP holds for Λ.

Proof. Assume that the DBP assumption does not hold and there is an adversary

A that produces a pair (z, r) 6= (1, 1) satisfying equation (2.1) for randomly chosen

gz, gr with non-negligible probability. We construct B which breaks DDHG1
.

Let B be given a challenge tuple (g, gα, gβ, gγ), where gα = gα, gβ = gβ,

and gγ = gγ. Then, B chooses δ ← Z
∗
p and runs A on the input (gδ, gδ

α)

along with the appropriate public parameters. If A outputs (z, r) 6= (1, 1) sat-

isfying ê(gδ, z) ê(gδ
α, r) = 1, it is true that z = r−α. Then, it holds that

ê(gβ, z) ê(gγ, r) = ê(gβ, r−α) ê(gγ, r) = ê(g, r)γ−αβ; that equation is equal to 1 if

and only if αβ = γ mod p.

Therefore, B has the same success probability of breaking DDHG1
as A of breaking

the DBP assumption.

We note that the DBP assumption could be viewed as a simpler version of the

Simultaneous Triple Pairing Assumption (STP) [68]. The DBP assumption was in-

troduced in an earlier version of this work, and independently in [69] (personal com-

munication) by Groth, who also showed explicitly that DBP implies STP.

31

Next is an extension of DBP, called Simultaneous Double Pairing Assump-

tion (SDP), which is a weaker assumption and can be justified in any setting

Λ ∈ {Λsym,Λxdh,Λsxdh} by a standard argument in the generic bilinear group model.

Assumption 5 (Simultaneous Double Pairing Assumption (SDP)). Given Λ and

(gz,hz, gr,hu)← G∗1
4, it is hard to find (z, r,u) ∈ G∗2

3 such that

1 = ê(gz, z) ê(gr, r) and 1 = ê(hz, z) ê(hu,u). (2.2)

As shown in [44], SDP is implied by DLIN.

Finally, we introduce a novel assumption by extending SDP so that it should be

hard to find another answer given several answers. Observe that, given an answer

to an instance of SDP, one can easily yield more answers by exploiting the linearity

of the relation to be satisfied. We eliminate such a linearity by multiplying random

pairings to both sides of the equations in (2.2). The intuition is that, it should be

hard to merge two random pairings ê(s, t) ê(s′, t′) into one equivalent pairing ê(s′′, t′′).

We call such a random part flexible as random pairings can be easily randomized or

combined when their relation with respect to the same bases is known.

Assumption 6 (Simultaneous Flexible Pairing Assumption (SFP)). Let Λ be a

common parameter and let gz, hz, gr, and hu be random generators of G1. Let

(a, ã), (b, b̃) be random pairs in G1×G2. For j = 1, . . . , q, let Rj = (z, r, s, t,u,v,w)

that satisfies

ê(a, ã) = ê(gz, z) ê(gr, r) ê(s, t) and ê(b, b̃) = ê(hz, z) ê(hu,u) ê(v,w). (2.3)

Given (Λ, gz,hz, gr,hu, a, ã,b, b̃) and uniformly chosen R1, . . . , Rq, it is hard to find

(z?, r?, s?, t?,u?,v?,w?) that fulfill relations in (2.3) under the restriction that z? 6= 1

and z? 6= z ∈ Rj for every Rj.

32

Theorem 2. [3] For any generic algorithm A, the probability that A breaks SFP

with ` group operations and pairings is bound by O(q2 + `2)/p.

Note that the following relation holds with respect to SFP and SDP.

Theorem 3. SFP⇒ SDP.

The proof of the theorem follows immediately by the following observation: given

an answer (z?, r?,u?) to SDP, if one lets (s?, t?,v?,w?) = (a, ã,b, b̃), then the result-

ing tuple R? = (z?, r?,u?, s?, t?,v?,w?) satisfies equations (2.3); and by the uniform

choice R1, . . . , Rq, it breaks the SFP assumption with overwhelming probability.

Lastly, for completeness, we recall a simple assumption which plays a minor role.

Assumption 7 (Computational Co-Diffie-Hellman Assumption (co-CDH) [27]).

Given Λ and (g, g̃, g̃α) ∈ G∗1 × G∗2 × G∗2 for random α ∈ Z∗p, it is hard to compute

gα ∈ G1.

2.4 The Groth-Sahai Proof System

In this section, we review the NIZK proof system of Groth and Sahai [71] for proving

that a system of equations is satisfiable. We give details for the type of equations

used in this work, i.e., pairing-product (one-sided in the DLIN case) and one-sided

multi-exponentiation. For full details and more general form of these types refer to

[71]. In fact, we use the system mainly as a NIZK argument system, achieving only

computational soundness. This can be done by running all the algorithms with a

simulated CRS. Note that in the GS proof system, there are two types of common

reference string (CRS) and those are computationally indistinguishable: the real one

gives perfectly sounds proofs whereas the simulated one yields perfect witness indis-

33

tinguishable proofs, which could in many cases be transformed into zero-knowledge

proofs.

When working under the K-linear assumption (K = 1 for SXDH and K = 2 for

DLIN), the common reference strings for the proof system Π can be defined as crs =

(~u0,~u1, . . . ,~uK ,~u). Regardless of the crs type, ~ui = (u0, 1, . . . , 1, ui, 1, . . . , 1), for i =

1, . . . , K, where u0, . . . , uK are randomly chosen group elements in G∗1. The secret

key sk which enables extraction for a real CRS consists of the discrete logarithms of

u1, . . . , uK with respect to u0. Let’s denote with U the linear span span(~u1, . . . ,~uK),

and note that (g, 1, . . . , 1) 6∈ U.

For a real CRS, which yields perfectly sound proofs, ~u0 ← U and ~u ← G
K+1
1 \U.

When the CRS is simulated, ~u0 ← G
K+1
1 \U and ~u ← U. In the case of asymmetric

pairings, i.e. in the Λsxdh setting, another set of vectors ~v0,~v1, . . . ,~vK ,~v ∈ G
K+1
2 is

defined analogously for randomly chosen v0, . . . , vK ∈ G∗2. Although in the symmetric

setting Λsym we use only one-sided equations and a second set of vectors is not needed,

we set ~v = ~u and ~vi = ~ui, i = 0, . . . , K, and use the two sets of vectors interchangeably

for consistent notation (in the two settings).

The GS proof system gives a proof for a set of equations being satisfiable by

committing to each witness component separately and computing corresponding proof

elements for each of the equations. First we describe how those commitments are

computed, and, then, how those proofs elements are computed and verified. Some of

the notation if borrowed from [31].

Witness Commitments

Each witness is composed of several group elements, each in G1 or G2, and expo-

nents from Zp. To commit to a group element x ∈ G1, the prover chooses ran-

domness ~s ← Z
K+1
p and computes a commitment ~ax ← GSCom({~ui}

K
i=0,x;~s) =

34

(x, 1, . . . , 1) ·
∏K

j=0~u
sj
j . Group elements x̃ ∈ G2 are committed analogously as

~bx̃ ← GSCom({~vi}
K
i=0, x̃;~s) using the other set of vectors. Note that when crs is

real, ~u0 ∈ U and ~v0 ∈ V, so the commitments are perfectly binding. And using sk

which consists of the discrete logarithms of ui with respect to u0 and vi with respect

to v0, for i = 1, . . . , K, one can extract the committed value since the commitment

is essentially a linear encryption.

To commit to an exponent χ using randomness ~t ← ZK
p , the prover computes

~aχ ← GSCom((~u, {~ui}
K
i=1), χ;~t) = ~uχ

∏K
j=1~u

tj
j . Depending on the equation in which

the witness is used, the exponent can be committed using the other set of vectors

from crs, i.e., as ~bχ ← GSCom((~v, {~vi}
K
i=1), χ;~t). Committed exponents cannot be

extracted efficiently like group elements despite the commitments being perfectly

binding for a real common reference string.

One-sided Multi-exponentiation Equations

For an equation of the following type:

g0 = gχ1

1 gχ2

2 . . .gχn

n

where g0, . . . , gn ∈ G2 are constants (one could view an equation being described by

those constants) and χ1, . . . , χn ∈ Zp are variables (the witness for which the equation

is satisfiable), the proof elements are p1, . . . , pK :

pj =
n∏

i=1

g
ti,j
i , j = 1, . . . , K,

where ~ti is the randomness used to commit to χi, i.e. ~aχi
= GSCom(χi; ~ti).

When verifying a proof, for each equation g0 = gχ1

1 gχ2

2 . . .gχn
n the verifier checks

that the proof elements corresponding to the equation and the commitments satisfy

n∏

i=1

Ê(~ai, gi) = Ê(~u, g0) ·
K∏

j=1

Ê(~uj, pj),

35

where E : GK+1
1 × G2 → G

K+1
T , sending ((a0, . . . , aK),b) to (ê(a0,b), . . . , ê(aK ,b)),

is a bilinear map.

The proofs for multi-exponentiation equations are zero knowledge (ZK). The size

of a proof for set of M such equations being satisfiable with a witness of size N is

(K+1)N +KM group elements. Note again that K = 1 when working under SXDH

and K = 2 under DLIN.

(One-sided) Pairing Product Equations

A pairing-product equation over variables x1, . . . ,xm ∈ G1 and x̃1, . . . , x̃n ∈ G2 is

defined as:
n∏

i=1

ê(gi, x̃i)
m∏

i=1

ê(xi, g̃i)
m∏

i=1

n∏

j=1

ê(xi, x̃j)
ci,j = T

where {gi}
n
i=1 ∈ G1, {g̃i}

m
i=1 ∈ G2, {ci,j}

m, n
i=1,j=1 ∈ Zp, and T ∈ GT are constants.

When the equations involve variables only in one of the groups, we could use

simpler, one-sided, equations which also yield more efficient proofs:

n∏

i=1

ê(gi, x̃i) = T.

We use this particular type in Section 4.3 and Section 5.6. The proof elements

p0, . . . , pK are computed as:

pj =
n∏

i=1

g
si,j
i , j = 0, . . . , K,

where ~si is the randomness used to commit to x̃i, i.e. ~bx̃i
= GSCom(x̃i;~si). When

verifying a proof, for each equation
∏n

i=1 ê(gi, x̃i) = T the verifier checks that the

proof elements corresponding to the equation and the commitments satisfy

n∏

i=1

Ê(gi,~bi) = (T, 1, 1, . . . , 1) ·

K∏

j=0

Ê(pj,~vj),

36

where E : G1 × G
K+1
2 → G

K+1
T , sending (a, (b0, . . . ,bK)) to (ê(a,b0), . . . , ê(a,bK)),

is a bilinear map.

These proofs are only witness indistinguishable (WI), and for a set of M pairing

product equations satisfiable with a witness of size N , the proof size is (K+1)(M+N).

When representation of T as a pairing product is know it could be transformed into

ZK [71] but resulting in somewhat larger proofs.

In Section 4.3, we use T represented as T−1 = ê(g0, x̃0) where both g0 and

x̃0 are constants. So, we could transform the above equation into an equation

∏n
i=0 ê(gi, x̃i) = 1 and give a WI proof accordingly treating x̃0 as a part of the

witness. Then, we produce a second commitment of ~b′x̃0
= GSCom(x̃0;~s

′
0), include

its randomness ~s′0 and a NIZK proof that ~bx̃0
and ~b′x̃0

are commitment to the same

message using a set of one-sided multi-exponentiation equations. This way, when the

simulator has to produce a ZK proof for the equation, it samples any (x̃′1, . . . , x̃
′
n)

along with the appropriate x̃′0, and gives a simulated proof that ~bx̃0
= GSCom(x̃′0;~s0)

and ~b′x̃0
= GSCom(x̃0;~s

′
0) are commitments to the same message. That results in

additional 2(K +1)2 group elements and (K +1) scalars per equation to achieve ZK.

(The count is as follows: (K + 1) group elements for ~bx̃0
, (K + 1) Zp-elements for ~s′0,

(K+1)2 group elements for the commitments to each component of ~s0, and K(K+1)

group elements for the NIZK proof of ~b′x̃0
and ~b′x̃0

being commitments of the same

value (using (K + 1) one-sided multi-exponentiation equations).

So, under DLIN we get ZK proofs of size 3N + 21M elements in G and 3M

elements in Zp for a set of such M equations being satisfiable with a witness which

has size N .

In the SXDH setting, the equation is no longer one-sided as T = ê(y, g̃) and

y ∈ G1 whereas x̃i ∈ G2. However, we could still apply the idea of treating y as a

part of the witness and computing a second commitment ~a′y = GSCom(y;~s′y), and

37

then showing that the commitments ~ay and ~a′y are commitments of the same message.

According to [71], the WI GS proofs under SXDH are of size 2N + 8M for a set of

M equations being satisfiable and the witness being of size N . Combining this with

the extra group elements we need per equations to achieve ZK, we get proofs of size

2N + 16M group elements and 2M scalars when working under SXDH.

2.5 Pairing Randomization Techniques

Abe et al. [3] introduced techniques that randomize elements in a pairing or a pair-

ing product without changing their value in GT . These useful techniques are used

throughout this work.

• Inner Randomization (x′,y′) ← Rand(x,y): A pairing A = ê(x,y) 6= 1 is

randomized as follows. Choose γ ← Z∗p and let (x′,y′) = (xγ,y1/γ). It then

holds that (x′,y′) is distributed uniformly over G1 ×G2 under the condition of

A = ê(x′,y′). If A = 1, then first flip a coin and pick ê(1, 1) with probability

1/(2p−1). If it is not selected, flip a coin and pick either ê(1,y′) or ê(x′, 1) with

probability 1/2, and, respectively, y′ or x′ uniformly from the corresponding

group except for 1. This way too (x′,y′) is distributed uniformly over G1 ×G2

conditioned on 1 = ê(x′,y′).

• Sequential Randomization {x′i,y
′
i}

k
i=1 ← RandSeq({xi,yi}

k
i=1): A pairing

product A = ê(x1,y1) ê(x2,y2) . . . ê(xk,yk) is randomized into

A = ê(x′1,y
′
1) ê(x

′
2,y

′
2) . . . ê(x

′
k,y

′
k) as follows :

Let (γ1, . . . , γk−1) ← Zk−1
p . We begin with randomizing the first pairing by

using the second pairing as follows. First verify that y1 6= 1 and x2 6= 1.

38

If y1 = 1, replace the first pairing ê(x1, 1) with ê(1,y1) with a new random

y1(6= 1). The case of x2 = 1 is handled in the same manner. Then multiply

1 = ê(x−γ12 ,y1) ê(x2,y
γ1
1) to both sides of the formula. We thus obtain

A = ê(x1x
−γ1
2 ,y1) ê(x2,y

γ1
1 y2) ê(x3,y3) . . . ê(xk,yk). (2.4)

Next we randomize the second pairing by using the third one while leaving the

first one in tact. As before, if yγ1
1 y2 = 1 or x3 = 1, replace its pairing with a ran-

dom one which also equals 1. Then multiply 1 = ê(x−γ23 ,yγ1
1 y2) ê(x3, (y

γ1
1 y2)

γ2).

We thus have

A = ê(x1x
−γ1
2 ,y1) ê(x2x

−γ2
3 ,yγ1

1 y2) ê(x3, (y
γ1
1 y2)

γ2y3) . . . ê(xk,yk). (2.5)

This continues up to the (k − 1)-st pairing. When done, the value of the i-

th pairing distributes uniformly in GT due to the uniform choice of γi. The

k-th pairing follows the distribution determined by A and preceding k− 1 pair-

ings. To complete the randomization, every pairing is processed by the inner

randomization.

The sequential randomization can be used to extend a product of k pairings a

product of arbitrary k′, k′ ≥ k, pairings by appending ê(1, 1) before random-

ization. By {x′i,y
′
i}

k′

i=1 ← RandExtend({xi,yi}
k
i=1) for k′(> k) we denote the

sequential randomization with extension. Parameters k and k′ should be clear

from the input and the output.

• One-side Randomization {x′i}
k
i=1 ← RandOneSide({gi,xi}

k
i=1): Let gi be an

element in G∗1 of symmetric setting Λsym. A pairing product

A = ê(g1,x1) ê(g2,x2) . . . ê(gk,xk) is randomized into

39

A = ê(g1,x
′
1) ê(g2,x

′
2) . . . ê(gk,x

′
k) as follows. Let (γ1, . . . , γk−1)← Zk−1

p . First

multiply 1 = ê(g1, g
γ1
2) ê(g2, g

−γ1
1) to both sides of the formula. We thus obtain

A = ê(g1,x1g
γ1
2) ê(g2,x2g

−γ1
1) ê(g3,x3) . . . ê(gk,xk). (2.6)

Next multiply 1 = ê(g2, g
γ2
3) ê(g3, g

−γ2
2). We thus have

A = ê(g1,x1g
γ1
2) ê(g2,x2g

−γ1
1 gγ2

3) ê(g3,x3g
−γ2
2) . . . ê(gk,xk). (2.7)

This continues until γk−1 and we eventually have A = ê(g1,x
′
1) . . . ê(gk,x

′
k).

Observe that every x′i for i = 1, . . . , k− 1 distributes uniformly in G due to the

uniform multiplicative factor gγi
i+1. In the k-th pairing, x′k follows the distribu-

tion determined by A and the preceding k − 1 pairings. Thus (x′1, . . . ,x
′
k) is

uniform over Gk under constraint of being evaluated to A.

Note that the algorithms yield uniform elements and thus may include pairings

that evaluate to 1GT
. If it is not preferable, it can be avoided by repeating that

particular step once again excluding the bad randomness.

40

Chapter 3

Simulation Extractability

We revisit the notion of simulation extractable NIZK arguments [97, 43, 90, 89, 66],

and define a new primitive called true-simulation extractable NIZK arguments. Apart

from satisfying the three properties described earlier, Definition 10-12, an NIZK argu-

ment Π is simulation extractable if there exists a polynomial time algorithm extractor

Π.Ext which (when given an additional extraction trapdoor ek associated with the

crs) extracts a witness x′ from any proof π produced by a malicious prover A, even

if A has previously seen some simulated proofs for other statements. We make an

important distinction between our new definition of true-simulation extractability,

where all simulated proofs seen by A are only of true statements, and the stronger

notion of any-simulation extractability, where A can also see proofs of false state-

ments. As we will see, the former notion is often simpler to construct and sufficient

in our applications.

41

3.1 Definitions

We generalize our definition to f-extractability, where Π.Ext only needs to output

some function f(x′) of a valid witness x′. We further extend this definition to support

labels, so that the Π.Prove, Π.Vrf, Π.Sim, and Π.Ext algorithms now also take a public

label L as input, and the correctness, soundness, and zero-knowlegde properties are

adjusted accordingly. If Π = (Π.Crs,Π.Prove,Π.Vrf) is an NIZK argument with a

simulator Π.Sim and extractor Π.Ext, we write Π.ProveL,Π.VrfL,Π.SimL,Π.ExtL to

denote proof, verification, simulation, and extraction under label L, respectively.

Definition 18 (Non-Interactive Simulation-Extractable Zero-Knowledge). Let R be

an NP relation with a corresponding language LR as defined in Definition 9. A NIZK

argument system with labels Π is a tuple of algorithms (Π.Crs,Π.Prove,Π.Vrf) defined

as follows:

Π.Crs(1λ): A randomized algorithm generating a common reference string crs and

corresponding simulation and extraction keys, respectively tk and ek.

Π.ProveL(crs, y, x): A randomized algorithm that outputs a proof π to show the va-

lidity of the statement R(x, y′) = 1, where y′ = (y, L).

Π.VrfL(crs, y, π): A verification algorithm that verifies whether proof π that y′ ∈ LL
R

is correct, where y′ = (y, L). If it is, the algorithm outputs 1; otherwise, 0.

Π.Sim is defined in the same way it is in Section 2.1.4; and Π.ExtL(crs, y, π, ek)

takes as input a statement and a valid proof, and using ek extracts a witness x′ for

which (x′, (y, L)) ∈ R. For the sake of clarity, we write Π.Prove, Π.Vrf , Π.Sim, and

Π.Ext without the crs parameter when using a single proof system and it is clear

from the context.

42

We now give a formal definition of true-simulation extractability. First, let us

define a simulation oracle Osim(·). A query to the simulation oracle consists of a

witness x and a statement y′ = (y, L). The oracle checks if (x, y′) ∈ R. If true,

it ignores x and outputs a simulated argument Π.SimL(crs, y, tk); and outputs ⊥

otherwise.

Definition 19 (True-Simulation f-Extractability). Let f be a fixed efficiently com-

putable function and let Π = (Π.Crs,Π.Prove,Π.Vrf) be an NIZK argument for a

relation R, satisfying the completeness, soundness and zero-knowledge properties de-

fined above. We say that Π is true-simulation f-extractable (f-tSE) with labels if for

all polynomial time adversaries A, the following experiment returns 1 with negligible

probability.

ExpSIM-Extractability:

(crs, tk, ek)← Π.SimCrs(1λ)

(y?, L?, π?)← AOsim(·)(crs)

z? ← Π.ExtL
?

(y?, π?, ek)

output 1 if:

(a) Osim(·) was never queried with a statement (y?, L?),

(b) Π.VrfL
?

(y?, π?) = 1,

(c) and for all x′ such that f(x′) = z? it holds that R(x′, (y?, L?)) = 0;

otherwise, return 0.

In the case when f is the identity function, we simply say that Π is true-simulation

extractable (tSE).

In other words, the adversary wins if the extractor fails to extract a good value

43

z? which corresponds to at least one valid witness x′. Note that f is the identity

function the third requirement could be rephrased as R(z?, (y?, L?)) = 0.

We give several variations of this new primitive. First, we define one-time sim-

ulation extractability, in which the adversary A is only given a single query to the

simulation oracle Osim(·).

Second, we define the notion of strong simulation extractability by changing the

winning condition so that A is now required to output a new statement/argument

pair instead of a new statement, similarly to the way sEUF-CMA strengthens EUF-

CMA the security requirements for digital signatures. More formally, the first winning

requirement becomes: the tuple (y?, L?, π?) is new, that is, either (y?, L?) was not the

statement of any query to the simulation oracle; or if it was, π? is different from the

proofs returned to A by Osim(·) on those queries. We observe that we can generically

construct strong f-tSE NIZK arguments from (standard) f-tSE NIZK arguments if

we additionally use a sEUF-CMA-secure one-time signature. In particular, the prover

now computes the standard f-tSE argument, signs it, and attaches the verification

key vk to the public label. To verify, we first check that the signature is valid and

then verify the f-tSE argument.

Finally, we say that an NIZK argument Π is any-simultation f-extractable (f-aSE)

(similar to the notion of simulation-sound extractability of [66]) if the adversary

A instead has access to a modified simulation oracle Osim(·)) that responds to all

simulation queries without checking that R(x, (y, L)) = 1 (and hence might also give

simulated arguments of false statements). In this work, we do not make use of this

variation, but state it here because as we will see, this notion has been implicitly used

in prior works. However, f-aSE is a stronger notion than f-tSE and is not needed, as

we will show that f-tSE is sufficient in constructing leakage-resilient signatures and

CCA encryption.

44

3.2 Generic Construction of f-tSE

Let f be any efficiently computable function, and let R be an NP relation. We show

how to construct an f-tSE NIZK argument Ψ from any labeled CCA encryption

scheme and (standard) NIZK arguments.

Let E = (E .Key, E .Enc, E .Dec) be a CCA encryption scheme supporting labels,

and let Π = (Π.Crs,Π.Prove,Π.Vrf) be an NIZK argument for the relation

R̂ =
{
((x, r) , (y, c, pk, L)) | R(x, y) = 1 ∧ c = E .EncL||y(f(x); r)

}
, (3.1)

where L||y is the label L appended with y. We define f-tSE NIZK argument Ψ

(supporting labels) as follows:

• Ψ.Crs(1λ): Compute (pk, sk)← E .Key(1λ) , (crs, tk)← Π.CrsΠ(1
λ) and

output crsΨ = (crs, pk), tkΨ = tk, ekΨ = sk.

• Ψ.ProveL(y, x; r): Let c ← E .EncL
′

(f(x); r), where L′ = L||y, and π be a proof

that (y, c, pk, L) ∈ L
R̂
, i.e., π ← Π.Prove((y, c, pk, L), (x, r)). Output the proof

ψ = (c, π).

• Ψ.VrfL(y, ψ): Parse ψ = (c, π) and return the result of Π.Vrf((y, c, pk, L), π).

Theorem 4. The above described proof system Ψ is f-tSE NIZK argument for the

relation R if E is a labeled IND-CCA encryption scheme and Π is an NIZK argument

for the relation R̂.

Proof. Correctness and soundness follow from the correctness and soundness proper-

ties of Π. We show that the zero-knowledge and true-simulation extractability hold

as well.

45

Zero-Knowledge. We construct Ψ.Sim as follows: On input (y, tkΨ) and label L,

compute c ← E .EncL
′

(0) and π ← Π.Sim(y, c, pk, L), and output ψ = (c, π). By

the IND-CCA of E and the zero-knowledge of Π, we have that the distribution of a

simulated argument Ψ.SimL(y, tkΨ) is computationally indistinguishable from a real

argument Ψ.ProveL(y, x; r).

True-Simulation Extractability. We construct Ψ.Ext which takes a label label L

and input (y, ψ, ekΨ), where ψ = (c, π) and ekΨ = sk, and outputs x← E .DecL(c, sk).

To show that it satisfies the security requirements we consider the following sequence

of games in which we perform ExpSIM-Extractability.

Game 1: In this game, the experiment is as described in Definition 19. Let the simu-

lation queries asked by A are (x1, (y1, L1)), . . . , (xq, (yq, Lq)) and let (y?, L?, ψ?),

where ψ? = (c?, π?), be the output of A. Note that the simulator uses xj only

to check R(xj, (yj, Lj)) = 1; in other words, the answer ψj = (cj, πj) to query

(xj , (yj, Lj)) is a simulated argument and therefore contains an encryption of 0,

rather than of f(xj), and a simulated argument πj .

Game 2: We change the experiment in the way the simulation oracle answers queries.

For the j-th submitted query (xj , (yj, Lj)), j = 1, . . . , q, if it satisfies the

relation, i.e. R(xj , (yj, Lj)) = 1, the oracle sets cj ← E .EncLj (f(xj)) and

πj ← Π.Sim((yj, cj, pk, Lj), tk), and outputs ψj = (cj, πj); otherwise it returns

⊥. To see that Game 1 and Game 2 are computationally indistinguishable

we perform a sequence of hybrid experiments. The i-th hybrid experiment,

i = 0, . . . , q, is defined like in Game 1 with the difference that the j-th query,

j ≤ i, is answered like in Game 2. Clearly, this sequence of experiments trans-

form the experiment from Game 1 into the one from Game 2.

46

As each two consecutive hybrid experiments are computationally indistinguish-

able by the IND-CCA of the encryption E , so are Game 1 and Game 2. If the

former does not hold and an adversary A can distinguish between two hybrids,

we could construct an adversary B that given pk runs (crs, tk) ← Π.Crs(1λ),

computes all cj for j 6= i accordingly, sets ci to be its challenge ciphertext

(which is an encryption of 0 or f(xi) under label L
′
i = Li||yi), and simulates all

the proofs for A. Notice that we need to rely on the stronger notion of IND-

CCA, instead of the weaker IND-CPA, since B needs one decryption query in

order to extract the plaintext z? of c? and check the f-tSE winning condition.

Moreover, note that B is allowed to query its decryption oracle with c? and

the corresponding label because the fact that (y?, L?) was never queried by A

guarantees L?||y? 6= L′i.

Game 3: We change the simulator oracle so that the queries (xj , (yj, Lj)), for j =

1 . . . q, are answered as follows: if R(yj, xj) = 0, it returns ⊥ as before; but

if R(xj , (yj, Lj)) = 1, it computes ciphertext cj ← E .Enc
L′
j (f(xj)) and proof

πj ← Π.Prove((yj, cj, pk, Lj), xj), and outputs ψj = (cj , πj). Games 2 and 3 are

indistinguishable by the zero-knowledge of Π.

Notice that if adversary A wins in the experiment from Game 3, then it must be the

case that Ψ.VrfL
?

(y∗, ψ∗) = 1 and the extracted value z? has no corresponding x? for

which f(x?) = z? and R(x?, y?) = 1. However, that would contradict the soundness

of Π. Hence, any polynomial time adversary can have only negligible probability of

breaking the true-simulation extractability property if E is IND-CCA and Π is an

NIZK argument.

47

3.3 Comparison with Previous Works and the

Naor-Yung Paradigm

We view tSE NIZK proofs as having two major advantages.

First, it makes the generic constructions of (leakage resilient) encryption and sig-

nature somewhat more intuitive, both for proving and understanding. For example,

the traditional “double-encryption” paradigm of Naor-Yung [85] for designing IND-

CCA schemes from semantically secure (IND-CPA) schemes, also used by [83] in the

context of key leakage, can be stated as “CPA-encrypting message m under two keys

and proving plaintext equality”. Using our more general “simulation-extractability

view”, it is now stated as “CPA-encrypting m and proving that one knows the plain-

text”. We believe that the latter view is not only more general, but also more intuitive

as a way of explaining “CPA-to-CCA” transformation. It also follows the original in-

tuition of Rackoff and Simon [93], who combine IND-CPA encryption with NIZK

proofs of knowledge to achieve IND-CCA encryption, but in the model where the

sender also has a secret key.

A similar discussion is true for our leakage-resilient signature constructions when

compared with that of [75]. Furthermore, using our “simulation-extractability view”

of signatures, i.e., “a signature onm is a tSE proof of a preimage of a (leakage-resilient)

one-way function with a label m”, we also encompass the structure-preserving signa-

ture scheme of [66]. So, all one would need to instantiate this generic construction

will be efficient building blocks.

The second point is about efficiency. Clearly, f-tSE NIZK proofs can be con-

structed from ss-NIZK proofs and CPA encryption scheme. However, as we showed

in the last section, there is a generic way to build tSE-NIZKs which avoids using (more

expensive) ss-NIZK proofs. Instead, our method uses regular NIZK proofs and any

48

CCA-secure encryption scheme. Given the current state-of-the-art NIZK and CCA

schemes, the combination “CCA + NIZK” appears to be more efficient in practice

than the combination “CPA + ss-NIZK”.1

Moreover, in the case of leakage-resilient signatures, this more intuitive view al-

lowed us to construct efficient underlying primitives, prior to which there was no

efficient way to realize the construction of [75] regardless of the flavor of NIZK. As a

result, we were able to provide a general framework for building leakage-flexible sig-

nature and CCA-encryption schemes, eventually allowing us to efficiently instantiate

our schemes (by avoiding using ss-NIZKs). We summarize our results in Section 3.4

and Section 4.3.3.

Finally, note that our generic construction of tSE NIZK did not require the full

power of CCA encryption. The reduction algorithm needed only one decryption query

after seeing the challenge ciphertext. Although there are weakened notions of IND-

CCA such as RCCA [42] which would suffice for our purposes, as observed in [66], we

do not benefit from that as current constructions do not provide better efficiency.

3.4 Application: Efficient Leakage-Resilient En-

cryption

In this section, we give a generic construction of leakage-resilient IND-CCA encryption

from leakage-resilient IND-CPA encryption and strong f-tSE NIZK arguments. Then,

we instantiate it under the K-linear assumption in the Λsxdh and Λsym settings.

1Indirectly, the same realization was made by Groth [67] and Camenisch et al. [31] in different

concrete contexts. While using ss-NIZK is an alternative which degrades efficiency “only” by a

(small) constant factor, such constants are not be ignored for efficiency.

49

3.4.1 Generic Construction

Let LR-E † = (LR-E .Key†, LR-E .Enc†, LR-E .Dec†) be an `-LR-CPA encryption scheme

and let Π = (Π.Crs,Π.Prove,Π.Vrf) be a strong one-time f-tSE NIZK argument for

the relation

R = {
(
(m, r), (pk†, c†)

)
| c† = LR-E .Enc†(pk†, m; r)},

where f(m, r) = m, i.e., the extractor only needs to extract the message m, but

not the randomness r used to encrypt. We show how to construct an `-LR-CCA

encryption scheme LR-E out of LR-E † and Π. Define LR-E as follows:

• LR-E .Key(1λ): Let (pk†, sk†) ← LR-E .Key†(1λ) and (crs, tk, ek) ← Π.Crs(1λ).

Output pk = (pk†, crs) and sk = sk†.

• LR-E .Enc(pk, m, r): Encrypt m with LR-E †, i.e., c† ← LR-E .Enc†(m, r) and pro-

duce an argument for the statement (pk†, c†), i.e. π ← Π.Prove((pk†, c†), (m, r)).

Output c = (c†, π).

• LR-E .Dec(sk, c): Parse c = (c?, π). If the argument π verifies, return the output

of LR-E .Dec†(sk†, c†); otherwise, output ⊥.

Theorem 5. If LR-E † is `-LR-CPA and Π is a strong one-time f-tSE NIZK argument

for the relation R defined above, where for any witness (m, r) the function f returns

f(m, r) = m, then LR-E is `-LR-CCA secure.

Before proving the theorem, we note that if Π supports labels, then we can nat-

urally extend our construction to yield `-LR-CCA encryption with labels by passing

the encryption labels to Π (and using them to verify the proofs).

Proof. To prove the theorem, we consider a series of games and their corresponding

experiments, all of which are variants of the experiment from Definition 15. In all of

50

them the adversary is given a correctly generated public key pk = (pk†, crs), and any

leakage queries are answered using the correctly generated secret key sk. The games

differ in the way the challenge ciphertext c? is generated and how the decryption

oracle Odec(·) answers queries c = (c†, π).

Game 1: This is the original experiment of `-LR-CCA encryption. The challenge

ciphertext and the decryption queries are, respectively, generated and answered

correctly. That is, c? = (
(
c†
)?
, π?), where

(
c†
)?
← LR-E .Enc†(mb, r) and π

? ← Π.Prove((pk†, c†), (mb, r));

and decryption queries c are answered with the output of LR-E .Dec(sk, c).

Game 2: In this game, we modify the experiment so that the tk is remembered and

all arguments π are simulated, i.e., computed using Π.Sim(·, tk). Then, the

challenge ciphertext is computed as follows:

(
c†
)?
← LR-E .Enc†(mb, r) and π

? ← Π.Sim((pk†, c†), tk);

and decryption queries c are answered with LR-E .Dec(sk, c). Note that the

adversary sees only one simulated argument and it is of a true statement.

Game 1 and Game 2 are indistinguishable by the zero-knowledge property of

the argument system Π.

Game 3: The experiment is further modified so that ek is stored, and any decryption

query c = (c†, π) is answered with the output of Π.Ext(·, ·, ek) which returns a

message m according to the definition of f above. The challenge ciphertext is

computed as before. That is, c? = (
(
c†
)?
, π?), where

(
c†
)?
← LR-E .Enc†(mb, r) and π

? ← Π.Sim((pk†, c†), tk);

51

and decryption queries c are answered with Π.Ext((pk†, c†), π, ek).

Games 2 and Game 3 are indistinguishable by the strong one-time tSE f-

extractability of Π. That is, the adversary only gets a single simulated argument

π? of a true statement, and, therefore, cannot produce any new statement-

argument pair ((pk†, c†), π) for which Π.Vrf verifies but Π.Ext fails to extract a

correct message.

Game 4: In this game, the challenge ciphertext c? is computed by encrypting 0 (or a

random message from the message space). This way, we have: c? = (
(
c†
)?
, π?),

where
(
c†
)?
← LR-E .Enc†(0, r) and π? ← Π.Sim((pk†, c†), tk);

and decryption queries c are answered with Π.Ext((pk†, c†), π, ek).

Games 3 and 4 are indistinguishable by the `-LR-CPA security of LR-E †. Re-

call that leakage queries are always answered using sk and so we need to rely

on leakage-resilience here. However, IND-CPA security now suffices since the

decryption secret-key sk is never used otherwise in Games 3 or Game 4.

Notice that the experiment in Game 4 chooses a bit b at random but it is completely

independent from the challenge ciphertext, hence from the output bit b?. Therefore, it

returns 1 with probability 1
2
. As all the games are computationally indistinguishable,

any polynomial time adversary A wins the experiment from the security definition of

`-LR-CCA with probability 1
2
+ negl(λ).

3.4.2 Instantiation

In order to use the construction from the last section, we need a (1− ε)|sk|-LR-CPA

encryption scheme E1 = (E1.Key, E1.Enc, E1.Dec) and a strong f-tSE NIZK argument

52

Reference Attack Model Leakage Efficient?

[5, 83] CPA Standard 1 Yes

[83] CCA Standard 1/6 Yes

[83] CCA Standard 1 No

This Work CCA Standard 1 Yes

Table 3.1: Comparison of previous leakage-resilient encryption schemes with our work.

(see Section 3.1), which we can construct from IND-CCA encryption scheme support-

ing labels E2 = (E2.Key, E2.Enc, E2.Dec), a strong one-time signature scheme, and an

NIZK argument Π for the relation

Req = {((w1, w2), (c1, c2, L)) | ∃m s.t. c1 ← E1.Enc(m;w1) ∧ c2 ← E2.Enc
L(m;w2)}.

The same technique was used in [31] to construct an efficient IND-CCA encryption

scheme with key-dependent message (KDM) security from a IND-CPA version of the

scheme. We use the same technique in the leakage-setting, to achieve leakage-resilient

IND-CCA encryption from leakage-resilient IND-CPA encryption.

LR-CPA Encryption.

We use a (1 − ε)|sk|-leakage resilient CPA-secure encryption scheme based on the

K-linear assumption. Similar versions of this scheme appear in [83] and [31] (based

on the KDM scheme of [26]), but we use the more efficient variant due to [51] which

has shorter public key and ciphertext by a factor of log p.

Let G be a group of primer order p, and let J be an integer. We define the

encryption scheme LR-E as follows:

• LR-E .Key(1λ): Choose f0,1, . . . , f0,J , f1, . . . fK ← G and ~x ← ZK+J
p . Define vec-

53

tors ~f1, . . . ,~fK ∈ GK+J as follows:

~f1 = (f0,1, . . . , f0,J , f1, 1, . . . , 1)

~f2 = (f0,1, . . . , f0,J , 1, f2, . . . , 1)

...

~fK = (f0,1, . . . , f0,J , 1, 1, . . . , fK)

Let hi = 〈~fi, ~x〉, for i = 1, . . . , K, and let ~h = (h1, . . . ,hK).

Output pk = ({~fi}
K
i=1,

~h) and sk = ~x.

• LR-E .Enc(pk,m): Choose ~s← ZK
p , and compute ~f =

∏K
i=1

~fi
si
and the one-time

pad of the message a = m · 〈~h, ~s〉. Output c = (~f , a).

• LR-E .Enc2(sk, c): Parse c as (~f , a) and output m← a/〈~f , ~x〉.

Theorem 6. [51] For any ε > 0, if J ≥ 1
ε
(K+λ/ log(p)+1), then the above encryption

scheme is `-LR-CPA, where ` = (1− ε)|sk|, if the K-linear assumption holds.

For the instantiation, we use LR-E as E1 working in the group G2, with all ele-

ments of the public key pk1 = ({~fi}
K
i=1,

~h) being in G2. We encrypt m ∈ G2 under

randomness ~s ∈ ZK
p as the ciphertext c1 = (c1,1, . . . , c1,(J+K+1)) which is computed

as:

c1 ← LR-E .Enc(pk1,m;~s) = (f
∑K

i=1
si

0,1 , . . . , f
∑K

i=1
si

0,J , f s11 . . . , f sKK , m

K∏

i=1

hsi
i)

The size of the ciphertext is J +K + 1.

IND-CCA Encryption.

We review the K-linear Cramer-Shoup encryption scheme from [99], modified to sup-

port labels as in [31]. We extend it to be multi-message randomness-reuse encryption

54

using the paradigm of [14], which we further optimize by reusing the validity cipher-

text element.

Let G be a group of prime order p, H : {0, 1} → Zp be a collision resistant hash

function, which defines the label space as {0, 1}∗, and n be a positive integer.

• CS-E .Key(1λ):

1. Choose g0, g1, . . . , gK
$
←− G and choose ~x1, . . . , ~xn, ~y, ~z

$
←− ZK+1

p .

2. Define vectors ~g1, . . . , ~gK ∈ GK+1 as follows:

~g1 = (g0, g1, 1, . . . , 1), ~g2 = (g0, 1, g2, 1, . . . , 1), . . . , ~gK = (g0, 1, . . . , 1, gK)

3. For i = 1, . . . , K and j = 1, . . . , n:

let dji ← 〈~gi, ~xj〉, ei ← 〈~gi, ~y〉, fi ← 〈~gi, ~z〉

4. Output a public key pk = ({gi}
K
i=0, {dji}

K,n
i=1,j=1, {ei}

K
i=1, {fi}

K
i=1) and a se-

cret key sk = (~x1, . . . , ~xn, ~y, ~z).

• CS-E .EncL(pk, (m1, . . . ,mn)):

Define ~gi as in CS-E .Key, For i = 1, . . . , K, and pick ~r ← ZK
p Output

c = (~g, a1, . . . , an,b)

=

(
K∏

i=1

~gri
i , m1 ·

K∏

i=1

dri
1i, . . . , mn ·

K∏

i=1

dri
n,i,

K∏

i=1

(eif
t
i)

ri

)
,

where t = H(~g, a1, . . . , an, L)

• CS-E .DecL(sk, c): Parse c = (~g, a1, . . . , an,b) and let t ← H(~g, a1, . . . , an, L).

If b 6= 〈~g , ~y + t~z〉, output ⊥. Else, for j = 1, . . . , n, let mj ← aj/〈~g, ~xj〉, and

outputs ~m = (m1, . . . ,mn).

Theorem 7. [31] If the K-linear assumptions holds for G, then the above encryption

scheme is IND-CCA.

55

For the instantiation, we use the K-linear encryption scheme in G2 as E2. For a

public key pk2 ← CS-E .Key(1λ), we encrypt a message m ∈ G2 under randomness

~r ∈ ZK
p and label L as c2 = (c2,1, . . . , c2,(K+3)) ← E2.Enc

L(m;~r). The size of the

ciphertext is K + 3 group elements.

NIZK Argument System.

We use the NIZK argument system described in Section 2.4. Let c1, c2 be as described

above. To prove that there exists (m, w1, w2) such that ((w1, w2), (c1, c2, L)) ∈ Req,

we use a system of one-sided multi-exponentiation equations.

c2,1 = g
∑K

i=1
ri

0 ;

c2,(i+1) = gri
i , for i = 1, . . . , K;

c2,(K+3) =
∏K

i=1(eif
t
i)

ri;

c1,(J+K+1)/c2,(K+2) =
∏K

i=1 h
si
i (d

−1
i)ri;

c1,j = f
∑K

i=1
si

0,j , for j = 1, . . . , J ;

c1,(J+i) = f sii , for i = 1, . . . , K.

This corresponds to a system of J + 2K + 3 equations with witness

(r1, . . . , rK , s1, . . . , sK). The Groth-Sahai proof system yields an argument consisting

of 2K commitments, each of size (K + 1) group elements, and K proof elements for

each equation. So, the total argument size is K(J + 4K + 5).

Based on SXDH: If we work in Λsxdh setting, hence DDH holds in both G1 and

G2, K = 1 and the size of the argument is J + 9 proof elements.

Based on DLIN: If we work in Λsym and assume DLIN to hold for G, K = 2

and the size of the argument is 2J + 26 group elements.

56

One-Time Signature.

We use the strong one-time signature of [66]. Let H2 : {0, 1}∗ → Zp be a collision-

resistant hash function.

• Σ.Key(1λ,Λ): Output vk = (f̃ , h̃, ã) and sk = (γ1, γ2, δ1, δ2), where:

γ1, γ2, δ1, δ2 ← Z
∗
p , f̃ ← g̃γ1 , h̃← g̃γ2 , ã← f̃ δ1h̃δ2

.

• Σ.Sign(sk, m): Choose r ← Zp, compute

s←

(
(γ1(δ1 − r) + γ2δ2 −H2(m))

γ2

)
,

and output σ = (r, s), where.

• Σ.Vrf(vk, m, σ): Parse σ = (r, s) and verify that ã = g̃H2(m)f̃ rh̃s.

The size of the one-time signature is 2 elements in Zp.

Putting Everything Together. Combining both ciphertexts, together with the

NIZK argument, and the one-time signature, we have that the size of the ciphertext

is 2J + 18 group elements and 2 elements in Zp in the SXDH case, and 3J + 37

group elements and 2 elements in Zp in the DLIN case. From Theorem 6 we need

J ≥ 1
ε
(K + λ/ log(p) + 1). This gives us the following ciphertext size:

Based on SXDH: The size of the ciphertext is (2/ε)(2 + λ/ log p) + 18 group

elements and 2 elements in Zp.

Based on DLIN: The size of the ciphertext is (3/ε)(3 + λ/ log p) + 37 group

elements and 2 elements in Zp.

57

Chapter 4

Structure-Preserving

Commitments

4.1 Constructions

This section presents several homomorphic trapdoor commitment schemes in bilinear

settings. All of them have specific properties which find different applications later

on. We note that all the schemes in this section can also work as a chameleon hash.

Namely, it is possible to equivocate any commitment generated by TC.Com rather

than the ones simulated by TC.Sim. Indeed, we integrate TC1 as a chameleon hash

in the construction of SSIG in Section 5.3.

By (K,M, C,D) we denote spaces for commitment-keys, messages, commitments,

and decommitments. The commitment-key refers to elements not included in the

group description Λ. Table 4.1 shows a summary of the schemes in their space pa-

rameters and performance in verifying the correct opening. For comparison, we list

schemes from [68] and [44] which are the only homomorphic trapdoor commitment

schemes we aware in the literature whose messages are group elements and the veri-

58

Scheme Λ K M C D #pairings #PPEs assump.

TC1 any 2k + 2[1] k[2] 2[T] 2[2] 2k + 2 2 SDP

TC2 Λxdh,sxdh k + 1[1] k[2] 1[T] 1[2] k + 1 1 DBP

Gro09[68] any 2k + 4[1] k[2] 2[T] 2[2] 2k + 4 2 STP

TC3 Λsym 2k + 2[1] k[1] 2k + 2[1] 2[1] 2k+ 2 2 SDP

CLY09[44] Λsym 5[1] 1[1] 3[1] 3[1] 9 3 DLIN

TC4 any 2[2] 1[p] 1[2] 1[1] 2 1 XDHI

Table 4.1: Summary of homomorphic trapdoor commitments. Columns from K to D

count the number of elements and indicating the groups they belong to ([1], [2], [T], and [p]

respectively for G1, G2, GT , and Zp). #pairings and #PPEs count the number of pairings

and pairing product equations in the verification predicate. On top are the multi-message

schemes committing to k group elements at once; in the middle are the schemes not using

any group element in GT ; and at the bottom is the efficient scheme when the message is in

Zp and the other components are in G1 and G2.

fication is done by checking pairing product equations.

TC3 and [44] are fully GS-compatible schemes whose components are all in the

base groups. In particular, TC3 is the first such commitment scheme that commits

to a message composed of k group elements at the same time; its commitment has

2k + 2 group elements. In contrast, [44] needs to commit each element separately,

thus commitment is of size 3k. It is an interesting open problem to construct a

constant-size commitment scheme while being compatible with GS-proofs.

Scheme TC2 is independently found in [69], the updated version of [68], and is

included in [1].

For multi-message commitment schemes, TC1,TC2,TC3, let ~m = {m1, . . . ,mk} ∈

G2
k be a message. For single-message commitment scheme, TC4, let m be an element

59

of Zp. In the following description, we assume that Λ is given to all algorithms

implicitly.

4.1.1 Scheme TC1

TC1.Key(1λ): Choose random generators gr,hu from G∗1. For i = 1, . . . , k, choose γi

and δi from Z∗p and compute gi = gγi
r and hi = hδi

u . Output commitment-key

ck = (gr,hu, g1,h1, . . . , gk,hk) and trapdoor tk = (γ1, δ1 . . . , γk, δk).

TC1.Com(ck, ~m): Choose r and u randomly from G2, and compute

C1 = ê(gr, r)
k∏

i=1

ê(gi,mi) and C2 = ê(hu,u)
k∏

i=1

ê(hi,mi). (4.1)

Output commitment c = (C1,C2) and decommitment d = (r,u).

TC1.Vrf(ck, c, ~m, d): Parse c into (C1,C2) and d into (r,u). Output 1 if (4.1) holds.

Output 0, otherwise.

TC1.Sim(ck, tk): Choose r and u randomly from G2 and compute C1 = ê(gr, r)

and C2 = ê(hu,u). Output commitment c = (C1,C2) and equivocation-key

ek = (tk, r,u).

TC1.Open(ck, c, ~m, ek): Parse ek into (tk, r,u) and tk into (γ1, δ1 . . . , γk, δk). Then

compute r′ = r·
∏k

i=1m
−γi
i , and u′ = u·

∏k
i=1m

−δi
i . Then output decommitment

d = (r′,u′).

The above scheme shares many similarities with that of Groth [68], but the security

is based on a different computational assumption, i.e., SDP. It should be noted that

both assumptions are implied by DLIN.

Theorem 8. Trapdoor commitment scheme TC1 is perfectly hiding, perfect trapdoor,

and computationally binding under the SDP assumption.

60

Proof. For perfect hiding and perfect trapdoor, observe that, for any (C1,C2) ∈ G2
T ,

any ~m ∈ Gk
2 , there exits a unique (r,u) ∈ G2

2 that fulfills relation (4.1).

For computational binding, suppose that there exists an adversary that success-

fully opens a commitment to two distinct messages. We show that one can break

SDP by using such an adversary. Given an instance of SDP, (Λ, gr,hu, gz,hz), do as

follows.

• Set gi = gχi
z gγi

r and hi = hχi
z hδi

u for i = 1, . . . , k, where χi, γi, δi ← Zp. As

the probability that any gi or hi, i = 1, . . . , k, is equal to 1G1
is negligible,

the reduction algorithm simply aborts in such cases. Otherwise, all group ele-

ments are from G∗1 and chosen uniformly at random, like in the key generation

algorithm. Run the adversary with ck = (gr,hu, {gi,hi}
k
i=1).

• Given two openings (~m, r,u) and (~m′, r′,u′) from the adversary, compute

z? =

k∏

i=1

(
mi

m′i

)χi

, r? =
r

r′

k∏

i=1

(
mi

m′i

)γi

, u? =
u

u′

k∏

i=1

(
mi

m′i

)δi

. (4.2)

• Output (z?, r?,u?).

Since the openings fulfills (4.1), we have

1 = ê
(
gr,

r

r′

)∏
ê

(
gi,

mi

m′i

)

= ê

(
gz,

k∏

i=1

(
mi

m′i

)χi

)
ê

(
gr,

r

r′

k∏

i=1

(
mi

m′i

)γi
)

= ê(gz, z
?) ê(gr, r

?)

and

1 = ê
(
hu,

u

u′

)∏
ê

(
hi,

mi

m′i

)

= ê

(
hz,

k∏

i=1

(
mi

m′i

)χi

)
ê

(
hu,

u

u′

k∏

i=1

(
mi

m′i

)δi
)

= ê(hz, z
?) ê(hu,u

?).

61

But ~m 6= ~m′, so there exists i such that mi/m
′
i 6= 1. Also, χi is independent from the

view of the adversary. That is, for every choice of χi, there exist corresponding γi and

δi that gives the same gi and hi. Therefore, z
? =

∏
i(mi/m

′
i)
χi 6= 1 with overwhelming

probability. Hence (z?, r?,u?) is a valid answer to the instance of SDP.

4.1.2 Scheme TC2

This is the most efficient scheme both in computation and storage. The scheme

virtually ’half’ the scheme of TC1. Let Λ ∈ {Λxdh,Λsxdh}.

TC2.Key(1λ): Choose random generators gr fromG∗1. For i = 1, . . . , k, choose γi from

Z∗p and compute gi = gγi
r . Output commitment-key ck = (Λ, gr, g1, . . . , gk) and

trapdoor tk = (γ1, . . . , γk).

TC2.Com(ck, ~m): Choose r randomly from G2, and compute

c = ê(gr, r)

k∏

i=1

ê(gi,mi). (4.3)

Output commitment c and decommitment d = r.

TC2.Vrf(ck, c, ~m, d): Output 1 if (4.3) holds. Output 0, otherwise.

TC2.Sim(ck, tk): Choose r randomly from G2 and compute c = ê(gr, r). Output

commitment c and equivocation-key ek = (tk, r).

TC2.Open(ck, c, ~m, ek): Parse ek as (tk, r) and tk as (γ1, . . . , γk). Then compute

r′ = r ·
∏k

i=1m
−γi
i , and Then output decommitment d = r′.

Theorem 9. TC2 is perfectly hiding, perfect trapdoor, and computationally binding

if the DBP assumption holds for Λ.

62

Proof. The hiding and trapdoor properties holds because, for any commitment c ∈ GT

and any ~m ∈ Gk
2, there exists consistent t ∈ G2 that fulfills relation (4.3).

The binding property is shown similarly to Theorem 8:

Given an instance of DBP, (Λ, gz, gr), do as follows.

• Set gi = gχi
z gγi

r . Run the adversary with ck = (gr, {gi}
k
i=1).

• Given two openings (~m, r) and (~m′, r′) from the adversary, compute

z? =

k∏

i=1

(mi/m
′
i)
χi, r? = (r/r′)

k∏

i=1

(mi/m
′
i)

γi . (4.4)

• Output (z?, r?).

Since the openings fulfills (4.1), we have

1 = ê
(
gr,

r

r′

)∏
ê

(
gi,

mi

m′i

)
= ê

(
gz,

k∏

i=1

(
mi

m′i

)χi

)
ê

(
gr,

r

r′

k∏

i=1

(
mi

m′i

)γi
)

= ê(gz, z
?) ê(gr, r

?).

But ~m 6= ~m′, so there exists i such that mi/m
′
i 6= 1. Also, χi is independent from the

view of the adversary. That is, for every choice of χi, there exist corresponding γi that

gives the same gi. Therefore, z
? =

∏
i(mi/m

′
i)
χi 6= 1 with overwhelming probability.

Hence (z?, r?) is a valid answer to the instance of DBP.

4.1.3 Scheme TC3

All components of this scheme are in G1 and G2. The underlying idea is to use TC1

and, instead of publishing a commitment inGT , we publish the decommitment and the

message in a randomized way by applying the one-side randomization RandOneSide

from Section 2.5. This construction works in the Λsym setting.

63

TC3.Key(1λ): Choose random generators gr,hu from G∗2. For i = 1, . . . , k, choose γi

and δi from Z∗p and compute gi = gγi
r and hi = hδi

u . Output commitment-key

ck = (Λ, gr,hu, . . . , gk,hk) and trapdoor tk = (γ1, δ1 . . . , γk, δk).

TC3.Com(ck, ~m): Choose r and u randomly from G2, and compute

{ca,i}
k
i=0 ← RandOneSide((gr, r), (g1,m1), . . . , (gk,mk)), and (4.5)

{cb,i}
k
i=0 ← RandOneSide((hu,u), (h1,m1), . . . , (hk,mk)). (4.6)

Output commitment c = ({ca,i}
k
i=0, {cb,i}

k
i=0) and decommitment d = (r,u).

TC3.Vrf(ck, c, ~m, d): Parse c into ({ca,i}
k
i=0, {cb,i}

k
i=0) ∈ G

2k+2
2 and d into (r,u) ∈ G2

2.

Output 1 if they satisfy the following predicates. Output 0, otherwise.

1 = ê(gr, r/ca,0)
k∏

i=1

ê(gi,mi/ca,i) and 1 = ê(hu,u/cb,0)
k∏

i=1

ê(hi,mi/cb,i)

TC3.Sim(ck, tk): Do the same as TC3.Com with ~m = (1, . . . , 1) and set ek =

(tk, r,u).

TC3.Open(ck, c, ~m, ek): Parse ek into (tk, r,u) and tk into (γ1, δ1 . . . , γk, δk). Then

compute r′ = r·
∏k

i=1m
−γi
i , and u′ = u·

∏k
i=1m

−δi
i . Then output decommitment

d = (r′,u′).

Theorem 10. Trapdoor commitment scheme TC3 is perfectly hiding, perfect trapdoor,

and computationally binding under the SDP assumption.

The hiding property is clear from the uniform output property of RandOneSide

and that of TC1, and so is the perfect trapdoor property due to the uniqueness of the

opening of a commitment to any message. The binding property is taken over from

TC1 and can be proven in the same way as for TC1.

64

One can have a variant of TC2 whose commitment is in G1 and G2 in a similar

way we convert TC1 to TC3. Unlike the previous case, however, RandOneSide cannot

be used as TC2 is in Λ = Λsxdh. So we instead use RandSeq keeping gr and hu

intact. This modification results in 2k+1 group elements in a commitment, which is

1 element less than that of TC3. However, depending on the applications, this may

be less efficient since the verification predicate is not one-sided.

4.1.4 Scheme TC4

Like the previous commitment scheme, this one has both its commitments and de-

commitments to be group elements of the base groups. However, the message is not a

group element but a scalar. This allows us to construct a more efficient scheme than

the last one, and we use it as a building block in Section 5.6.1.

Let g ∈ G1 and g̃ ∈ G2 be random bases. Common parameter Λ is given to all

algorithms described below.

TC4.Key(1λ): Select γ ∈ Zp and set f̃ = g̃γ. Output commitment key ck = (Λ, f̃)

and trapdoor tk = γ.

TC4.Com(ck, m): Choose random δ ∈ Zp and compute commitment c = g̃mf̃ δ ∈ G2

and decommitment d = gδ ∈ G1. Output c and d.

TC4.Vrf(ck, c, m, d): Output 1 if ê(g, c/g̃m) = ê(d, f̃). Output 0, otherwise.

TC4.Sim(ck, tk): Choose random δ ∈ Zp and output a commitment c = f̃ δ and an

equivocation-key ek = (tk, δ).

TC4.Open(ck, c, m, ek): Parse ek as (γ, δ). Output d = gδ−m/γ .

65

The correctness follows since

ê(g, c/g̃m) = ê(g, f̃ δ) = ê(gδ, f̃) = ê(d, f̃).

The trapdoor property holds because

ê(d, f̃) = ê(gδ−m/γ , f̃) = ê(g, g̃−mf̃ δ) = ê(g, c/g̃m).

To prove computational binding property, we assume that the following variant

of Diffie-Hellman inversion problem (XDHI) is hard with respect to Λ.

Assumption 8 (XDHI). Given Λ and (g, g̃, g̃α) ∈ G∗1×G∗2×G∗2 for random α ∈ Z∗p,

it is hard to compute g1/α ∈ G1.

Depending on setting Λ, the XDHI assumption is implied by basic assumptions:

Computational Diffie-Hellman Assumption (CDH), Computational Co-Diffie-Hellman

Assumption (co-CDH), and Decisional Diffie-Hellman Assumption in G2 (DDHG2
),

as follows. Note that, CDH is implied by DLIN in Λsym and DDHG2
is implied by

SXDH in Λsxdh.

Lemma 1. CDH ⇒ XDHI for Λsym. co-CDH ⇒ XDHI for Λxdh. DDHG2
⇒ XDHI

for Λsxdh.

Proof. Let A be an XDHI adversary. In Λsym, given an CDH instance (g, gα, gβ),

input (gα, gβ, g) to A. It outputs gαβ, which is the answer to the CDH instance.

Next, in Λxdh, given an co-CDH instance (gα, g̃, g̃β) ∈ G∗2
3, input (gα, g̃β, g̃) to A. It

outputs gαβ, which is the answer to the co-CDH instance. In Λsxdh, observe that, on

input (g, g̃δ, g̃), adversary A outputs gδ. Thus A provides a mapping from G2 to G1.

Now, given an instance (g̃, g̃α, g̃β, g̃γ) of DDHG2
, input (g, g̃α, g̃) to A and receive gα.

Then γ = αβ can be tested by checking if ê(gα, g̃β) = ê(g, g̃γ) holds or not.

66

Theorem 11. Trapdoor commitment scheme TC4 is perfectly hiding. It is binding if

the XDHI assumption holds for Λ.

Proof. The perfect hiding and perfect trapdoor properties hold from the fact that,

for any c ∈ G2, for every m ∈ Zp there exists a single consistent δ ∈ Zp.

The binding property is proven by showing a reduction to XDHI. Given an in-

stance of XDHI, (g, g̃, g̃α), set f̃ = g̃α. Suppose that an adversary outputs a commit-

ment c correctly opened to (m, d) and (m′, d′) for m 6= m′. Then ê(g, c/g̃m) = ê(d, f̃)

and ê(g, c/g̃m′

) = ê(d′, f̃) hold. By dividing both sides of the equations, we have

ê(g, g̃m−m′

) = ê(d′/d, f̃) = ê(d′/d, g̃α). Thus (d′/d)1/m−m
′

= g1/α, which is a correct

answer to the XDHI instance.

4.2 One-Time Signatures

The above described trapdoor commitment scheme TC1 and TC2 can easily be ex-

tended into one-time signature schemes. Next we present these signature schemes

which sign messages of fixed length k. Then, we discuss how to modify them to sign

messages of a priori unbounded length deferring the technique details to Section 5.2.

4.2.1 A One-Time Signature Scheme in Any Setting

Let Λ ∈ {Λsym,Λxdh,Λsxdh}.

• OTS1.Key(1λ): Choose random generators gz,hz, gr,hu ← G
∗
1. For i =

1, . . . , k, choose χi, γi, δi ← Zp and compute (gi,hi) = (gχi
z gγi

r ,h
χi
z hδi

u).

Also choose ζ, ρ, ϕ ← Zp and set a = gζ
zg

ρ
r and b = hζ

zh
ϕ
u . Set vk =

(gz,hz, gr,hu, {gi,hi}
k
i=1, a,b) and sk = (vk, ζ, ρ, ϕ, {χi, γi, δi}

k
i=1). Output

(vk, sk).

67

• OTS1.Sign(sk, ~m): Compute

z = g̃ζ

k∏

i=1

m−χi

i , r = g̃ρ

k∏

i=1

m−γii , u = g̃ϕ

k∏

i=1

m−δii .

Output σ = (z, r,u) as a signature.

• OTS1.Vrf(vk, ~m, σ): Parse σ into (z, r,u). Output 1 if the following equations

hold. Output 0, otherwise.

ê(a, g̃) = ê(gz, z) ê(gr, r)
k∏

i=1

ê(gi,mi) (4.7)

ê(b, g̃) = ê(hz, z) ê(hu,u)
k∏

i=1

ê(hi,mi) (4.8)

Theorem 12. One-time signature scheme OTS1 is strongly unforgeable against one-

time chosen message attacks if SDP holds for Λ.

Proof. Suppose that there is an adversary, A, that finds a forged signature σ† =

(z†, r†,u†) for message ~m† after seeing a one-time signature (z, r,u) for message ~m

of its choice. We construct a reduction algorithm to SDP as follows.

Given an instance (gz,hz, gr,hu) of SDP, do the same as OTS1.Key by using the

input instance as the bases. When A submit message ~m, run OTS1.Sign and return

(z, r,u) to A. Given output (z†, r†,u†) and ~m† from A, compute

z? =

(
z†

z

) k∏

i=1

(
m†i
mi

)χi

, r? =

(
r†

r

) k∏

i=1

(
m†i
mi

)γi

, u? =

(
u†

u

) k∏

i=1

(
m†i
mi

)δi

. (4.9)

Then output (z?, r?,u?). This completes the description of the reduction algorithm.

Suppose that adversary A is successful. By dividing both sides of (4.7) with

68

respect to (z?, r?,u?) and (z, r,u), we have

1 = ê(gz, z
†/z) ê(gr, r

†/r)

k∏

i=1

ê(gi,m
†
i/mi)

= ê(gz, z
†/z

k∏

i=1

(m†i/mi)
χi

) ê(gr, r
†/r

k∏

i=1

(m†i/mi)
γi
)

= ê(gz, z
?) ê(gr, r

?).

Similarly, with respect to (4.8), we have

1 = ê(hz, z
†/z) ê(hu,u

†/u)
k∏

i=1

ê(hi,m
†
i/mi)

= ê(hz, z
†/z

k∏

i=1

(m†i/mi)
χi

) ê(hu,u
†/u

k∏

i=1

(m†i/mi)
δi
)

= ê(hz, z
?) ê(hu,u

?).

Hence (z?, r?,u?) is a correct answer to the SDP instance.

What remains to show is z? 6= 1. We first consider the case of ~m = ~m†. In this

case, (z†, r†,u†) 6= (z, r,u) must hold. Observe that z† = z cannot be the case since

it implies r† = r and u† = u to fulfill (4.7) and (4.8). Thus we have z† 6= z and

z? = z†/z 6= 1. Next we consider the case of ~m 6= ~m†. In this case, there exists i?

for which mi? 6= m†i? holds. For such i?, parameter χi? is information theoretically

hidden from the view of the adversary. Namely, for any view of the adversary and

for any χi? , there exists a consistent coin toss which yields the same view. This can

be verified by seeing that (a,b), and (gi? ,hi?) are perfectly hiding commitments of

ζ and χi? , and the one-time signature does not identify them despite establishing

relation between them. Therefore, due to the term (m†i?/mi?)
χi?

, for m†i? 6= mi? , the

probability that z? = 1 is negligible.

69

4.2.2 More Efficient Scheme in the Asymmetric Setting

In the case of Λ ∈ {Λxdh,Λsxdh} we can construct a more efficient scheme, call it OTS2,

that halves OTS1 just like TC2 does for TC1. The scheme is defined as follows:

• OTS2.Key(1λ): Choose random generators gz, gr ← G∗1. For i = 1, . . . , k, choose

χi, γi ← Zp and compute gi = gχi
z gγi

r . Also choose ζ, ρ← Zp and set a = gζ
zg

ρ
r .

Set vk = (gz, gr, {gi}
k
i=1, a) and sk = (vk, ζ, ρ, {χi, γi}

k
i=1). Output (vk, sk).

• OTS2.Sign(sk, ~m): Compute

z = g̃ζ
k∏

i=1

m−χi

i and r = g̃ρ
k∏

i=1

m−γii

Output σ = (z, r) as a signature.

• OTS2.Vrf(vk, ~m, σ): Parse σ into (z, r). Output 1 if the following equation

holds. Output 0, otherwise.

ê(a, g̃) = ê(gz, z) ê(gr, r)

k∏

i=1

ê(gi,mi) (4.10)

Theorem 13. One-time signature scheme OTS2 is strongly unforgeable against one-

time chosen message attacks if DBP holds for Λ.

The proof is analogous to that of Theorem 12 and omitted.

4.2.3 Signing Unbounded-Size Messages

Using OTS1 from Section 4.2.1 we construct OTS1u that can sign unbounded-size

message. (Thus it is an automorphic one-time signature scheme.) The idea is to

sign a block of message together with a fresh verification-key used to sign the next

message block. A problem is that the verification-key of OTS1 is too large and not

70

covered by its message space. We can get around the problem by reusing the bases

(gz,hz, gr,hu, {gi,hi}
k
i=1) and only renew (a,b) for every message block. One way

to observe that is by viewing the former part of the key as a commitment key and

the latter one as a trapdoor commitment. The same trick is used in Section 5.5. The

unforgeability against one-time chosen message attacks can be proven based on SDP.

The proof is almost the same as that for OTS1 and omitted. (Since fresh a and b

brings new randomness ζ , the information theoretic nature exploited in the proof is

preserved.)

In the asymmetric case Λ = Λsxdh, one can do the similar construction based

on OTS2. Since a is not in the message space, we use dual signature scheme as in

Section 5.4 and sign messages in G2 and G1 in alternating manner.

4.3 Applications

Our structure-preserving commitment schemes have various applications. For exam-

ple, TC1 and its corresponding one-time signature scheme OTS1 are a major part of

the construction of EUF-CMA structure-preserving signature scheme in Section 5.1;

TC4 is an essential building block of the round-optional blind signature scheme in Sec-

tion 5.6.1; TC1 and TC2 are the key elements of the construction of leakage-resilient

hard relations, which combined with tSE NIZK yield the first efficient EUF-CMA

leakage-resilient signatures in the standard model; etc. In the rest of this section, we

focus on the construction of the leakage-resilient signature scheme.

We begin by showing how to generically construct leakage-resilient hard relations

from second-preimage resistant (SPR) relations. Informally, we say that a relation R is

SPR if given a random (x, y) ∈ R it is hard to find x′ 6= x such that (x′, y) ∈ R. Then

we give a generic construction of leakage-resilient signatures form leakage resilient

71

hard relations and tSE-NIZKs. And, finally, we instantiate it efficiently.

4.3.1 Leakage-Resilient Hard Relation

Let us first define the notion of an SPR relation:

Definition 20 (SPR Relation). A relation R with a randomized sampling algorithm

Sample is a second-preimage resistant if:

• For any (y, x)← Sample(1λ) it holds that (x, y) ∈ R.

• There is a polynomial-time algorithm that decides whether (x, y) ∈ R.

• For any polynomial time adversary A the following experiment returns 1 with

negligible probability.

ExpSPR:

(y, x)← Sample(1λ)

x? ← A(y, x)

output 1 if R(x?, y) = 1 ∧ x? 6= x; and 0 otherwise.

Before proving our main theorem in this section, we need several definitions and

a lemma that will be used in the proof of security.

Definition 21 (Min-Entropy). The min-entropy of a random variable X, denoted as

H∞(X), is defined to be H∞(X) = − log(maxx Pr[X = x]).

Definition 22 (Average-Conditional Min-Entropy [52]). The average-conditional

min-entropy of a random variable X conditioned on Z, denoted as H̃∞(X|Z) is:

H̃∞(X|Z) = − log
(
Ez←Z

[
max

x
Pr[X = x|Z = z]

])
= − log

(
Ez←Z

[
2H∞[X|Z=z]

])

72

Lemma 2 ([52]). Let X, Y, Z be random variables where Z takes values in a set of

size at most 2`. Then H̃∞(X|(Y, Z)) ≥ H̃∞((X, Y)|Z) − ` ≥ H̃∞(X|Z) − `, and in

particular, H̃∞(X|Y) ≥ H∞(X)− `

Next we define the average-case pre-image entropy of the SPR relation to be

Havg(R) = H̃∞(X | Y), where the random variables (X, Y) are distributed according

to Sample(1λ), and prove that any SPR relation is also a leakage resilient:

Theorem 14. If R is an SPR relation, then it is also an `-leakage resilient hard

relation for ` = Havg(R)− ω(log λ), where λ is the security parameter.

Proof. We assume, for the sake of contradiction, that there exists an adversary A

that succeeds in breaking the security of leakage-resilient hard relation R with non-

negligible probability ε. We construct B that breaks the security of the SPR relation

with non-negligible probability. On input (x, y), B simulates the environment of

ExpLR-R for A on input y and responds to A’s leakage queries using x. When A

eventually outputs x?, B also outputs x?.

We know that Pr[R(x?, y) = 1] = ε but we need to compute Pr[x? 6= x] since B

only breaks the SPR property if x? 6= x. Notice that:

Pr[B succeeds]

= Pr[A succeeds ∧ x 6= x?]

≥ Pr[A succeeds]− Pr[x = x?]

= ε− Pr[x = x?]

Notice that the only information that A has about x comes from y and the leakage

queries. Let X, Y be the random variables for x, y respectively, and let Z be the ran-

dom variable for the total leakage learned by A. Then H̃∞(X|(Y, Z)) ≥ H̃∞(X|Y)−`

73

and

Pr[x = x?] ≤ 2−H̃∞(X|Y)+` = 2−Havg(R)+`.

Assuming that ` ≤ Havg(R)−ω(log(λ)) we have that Pr[B succeeds] ≥ ε− 2−ω(log(λ)),

which is non-neglibible.

4.3.2 Structure-Preserving SPR Relation

Previous constructions of leakage-resilient primitives often use the SPR function

f(x1, . . . , xn) = gx1

1 gx2

2 . . .gxn

n ,

but it does not allow an efficient extraction of the witness (xn, . . . , xn) when using

GS proofs. The only way to make it structure-preserving would be if the witness is

committed bit by bit, but that would result in proofs growing linearly in the security

parameter, among other things. To overcome this problem, we use SPR functions

based on bilinear maps derived from TC1 and TC2. As we need our proofs to be not

only witness indistinguishable but also zero-knowledge, we prefer the notion of an

SPR relation to an SPR function. In particular, we use the structure-preserving SPR

relation R((x1, . . . ,xn),y):

ê(h1,x1)ê(h2,x2) . . . ê(hn,xn) = ê(y, g̃)

for Λsxdh. Whereas for Λsym we use R((x1, . . . ,xn), (y1,y2)):

ê(h1,x1)ê(h3,x3) . . . ê(hn,xn) = ê(g,y1)

ê(h̄2,x2)ê(h̄3,x3) . . . ê(h̄n,xn) = ê(g,y2)

As we show next, both constructions satisfy the properties of a structure-preserving

cryptography primitive.

74

Based on SXDH. Let Λ ∈ {Λsxdh,Λsxdh}, n ≥ 2 and h1,h2, . . . ,hn ∈ G1 be fixed

random elements for R. We construct the SPR relation:

• Sample(Λ, {hi}
n
i=1): Choose r1, . . . , rn ← Zp; set y =

∏n
i=1 h

ri
i and, for i =

1, . . . , n, xi = g̃ri; and output (y, ~x).

• R(~x,y): Output 1 if
∏n

i=1 ê(hi,xi) = e(y, g̃) and 0 otherwise.

Claim 1. If DBP holds for Λ, the relation R described above is SPR with average-case

preimage entropy Havg(R) = (n− 1) log(p).

Proof. For any fixed choice of y, the conditional distribution of ~x is uniform over

some n − 1 dimensional subspace of Gn
2 , which gives us the average-case preimage

entropy of (n− 1) log(p).

To see that the relation is SPR, note that any adversary A which wins ExpSPR

immediately implies an adversary B which wins ExpComp.Binding for TC2:

On input ck = (Λ,h1,h2, . . . ,hn), define the corresponding relation R, and sample

(y, ~x) ← Sample(Λ, {hi}
n
i=1). Let ~x? ← A(y, ~x) be the output of the adversary.

Then, B outputs (c, ~m0, ~m1, d0, d1), where c = ê(y, g̃), d0 = x1, ~m0 = (x2, . . . ,xn),

d1 = x?
1, and ~m1 = (x?

2, . . . ,x
?
n). As A breaks the SPR property of R, it must

hold that R(~x,y) = R(~x?,y) = 1 and ~x 6= ~x?. But then TC2.Open(c, ~m0, d0) =

TC2.Open(c, ~m1, d1) = 1 and ~m0 6= ~m1, as ~m0 = ~m1 would imply d0 = d1 (and hence

~x = ~x?).

Then, by Theorem 9, it is true that R is SPR if the DBP assumption holds.

As we know from Theorem 1, DDHG1
implies DBP; and together with Theorem 14,

it gives us the following corollary.

Corollary 1. The relation R described above is `-leakage resilient hard relation for

` = (n− 1) log(p)− ω(log λ) under SXDH.

75

Based on DLIN. Let n ≥ 3 and h1,h3, . . . ,hn, h̄2, . . . , h̄n ∈ G1 be fixed random

elements for R. We construct the SPR relation:

• Sample(Λsym, {hi}, {h̄j}): Choose r1, . . . , rn ← Zp; set xi = gri, for i = 1, . . . , n,

y1 =
∏

i∈{1,3,...,n} h
ri
i , and y2 =

∏n
i=2 h̄

ri
i ; and output ((y1,y2), ~x).

• R(~x,y): Output 1 if
∏

i∈{1,3,...,n} ê(hi,xi) = e(g,y1) ∧
∏n

i=2 ê(h̄i,xi) = e(g,y2)

and 0 otherwise.

Claim 2. If SDP holds for Λsym, the relation R described above is SPR with average-

case preimage entropy Havg(R) = (n− 2) log(p).

Proof. For any fixed choice of (y1,y2), the conditional distribution of ~x is uniform

over some n−2 dimensional subspace of Gn, which gives us the average-case preimage

entropy of (n− 2) log(p).

To see that the relation is SPR, note that any adversary A which wins ExpSPR

immediately implies an adversary B which wins ExpComp.Binding for TC1:

On input ck = (Λsym,h1, h̄2,h3, h̄3, . . . ,hn, h̄n), define the corresponding relation

R, and sample ((y1,y2), ~x) ← Sample(Λsym, {hi}, {h̄j}). Let ~x? ← A((y1,y2), ~x)

be the output of the adversary. Then, B outputs (c, ~m0, ~m1, d0, d1), where c =

(ê(g,y1), ê(g,y2)), d0 = (x1,x2), ~m0 = (x3, . . . ,xn), d1 = (x?
1,x

?
2), and ~m1 =

(x?
3, . . . ,x

?
n). As A breaks the SPR property of R, it must hold that R(~x, (y1,y2)) =

R(~x?, (y1,y2)) = 1 and ~x 6= ~x?. But then

TC1.Open(c, ~m0, d0) = TC1.Open(c, ~m1, d1) = 1 and ~m0 6= ~m1,

as ~m0 = ~m1 would imply d0 = d1 (and hence ~x = ~x?).

Then, by Theorem 8, it is true that R is SPR if the SDP assumption holds.

As we know, DLIN implies SDP, so by Theorem 14 the following corollary holds.

76

Corollary 2. The relation R described above is `-leakage resilient hard relation for

` = (n− 2) log(p)− ω(log λ) in the Λsym setting under DLIN.

4.3.3 Leakage-Resilient Signatures

In this section, we give a generic construction of leakage-resilient signatures based

on leakage-resilient hard relations and tSE-NIZK arguments. Let R be an `-leakage

resilient hard relation with sampling algorithm Sample(1λ). Let Π = (Π.Crs, Π.Prove,

Π.Vrf) be a tSE-NIZK argument for a relation R supporting labels. Consider the

following signature scheme:

• LR-SIG.Key(1λ): Output vk = (crs, y), where (crs, tk, ek) ← Π.Crs(1λ) and

(y, x)← Sample(1λ), and sk = x.

• LR-SIG.Sign(sk, m): Compute π ← Π.Provem(y, x), where m is treated as a

label, and output σ = π.

• LR-SIG.Vrf(vk, m, σ): Output Π.Vrfm(y, σ).

Theorem 15. If R(x, y) is an `-leakage resilient hard relation and Π is a labeled

tSE-NIZK argument for R, then the above signature scheme is an `-leakage resilient

signature scheme.

Proof. Consider the following series of games and the success probability of an ad-

versary A in the corresponding experiments:

Game 0: This is experiment as described in the definition of leakage-resilient signa-

tures (Definition 14). Let A’s output forgery be (m?, σ?), where σ? = π?.

Game 1: We modify the signing oracle Osign(·) in the way it answers A’s queries.

Instead of returning an argument π which is the output of Π.Prove, it answers

77

each query for a message m with a simulated argument produced with Π.Sim.

Game 0 and Game 1 are indistinguishable by the zero-knowledge property of Π.

Note that the simulated arguments given to A are always of true statements.

As in the previous game, the experiment outputs 1 if A produces a valid forgery

(m?, σ?) such that Π.Vrfm
?

(y, σ?) = 1 and m? is fresh, i.e., m? /∈ Qm.

Game 2: We change the winning condition: the experiment outputs 1 if (m?, σ?)

is a valid forgery and R(z?, y) = 1, where z? ← Π.Ext(y, π?, ek). Game 1 and

Game 2 are indistinguishable by the true-simulation extractability of Π.

We need to show thatA has only a negligible probability of winning the experiment

in Game 2, and because Game 0 and Game 2 are computationally indistinguishable,

that will imply that A has a negligible probability of breaking LR-SIG.

For the sake of contradiction, assume that A wins the experiment in Game 2 with

a non-negligible probability. We construct an adversary B which breaks the security

of R: on input y, B generates (crs, tk, ek)← Π.Crs(1λ) and simulates the environment

of the experiment in Game 2 for vk = (crs, y). The queries to the signing oracle are

answered using Π.Sim and the leakage queries are answered by B’s own leakage oracle.

In the end, A outputs a forgery (m?, π?), for which B runs z? ← Π.Ext(y, π?, ek) and

outputs z?. The probability that B outputs z? for which R(z?, y) = 1 is exactly that

of A winning the experiment in Game 2. Therefore, A must have only a negligibility

probability of forging a signature.

Next, we instantiate the construction efficiently. Our construction is compared

with previous works on EUF-CMA leakage-resilient signatures in Table 4.2. We point

out that previously there was no efficient leakage resilient without resorting to the

use of random oracles.

78

Reference Unforgeability Model Leakage Efficient?

[7] Existential Random Oracle 1/2 Yes

[7] Entropic Random Oracle 1 Yes

[75] Existential Standard 1 No

This Work Existential Standard 1 Yes

Table 4.2: Comparison of previous work on leakage-resilient signatures with our result.

4.3.4 Instantiation

In order to efficiently instantiate the construction from the last section, we need to

give a leakage-resilient hard relation R, a CCA encryption scheme, and an efficient

NIZK argument for the relation R̂ defined in equation (3.1). We use the structure-

preserving SPR relation, which yields a leakage-resilient hard relation as shown in

Section 4.3.1, the K-linear Cramer-Shoup encryption described in Section 3.4.2 and

the Groth-Sahai proof system reviewed in Section 2.4. The three of them share a

common setup Λ := (p,G1,G2,GT , ê, g, g̃) and are secure if the K-linear assumption

hold in both G1 and G2, for K = 1 or K = 2. So, in the former case, we set Λ = Λsxdh;

and, in the latter, Λ = Λsym.

Instantiation 1: Based on SXDH.

SPR Relation. We use the above-described SPR relation in the Λsxdh setting. Re-

call its verification equation: ê(h1,x1)ê(h2,x2) . . . ê(hn,xn) = ê(y, g̃). It has average-

case preimage entropy of (n− 1) log(p).

CCA-Secure Encryption. We use the multi-message Cramer-Shoup encryption

scheme working in G2 to encrypt the relation witness. Formally, let the public key be

pk = (g0, g1,d1, . . . ,dn, e, f). To encrypt ~x = (x1, . . . ,xn) under the same random-

79

ness r and label m, compute the ciphertext c = (c1, c2, c3, . . . , cn+2, cn+3) as follows:

c← CS-E .Encm(x1, . . . ,xn; r) = (gr
0, g

r
1,x1d

r
1, . . . ,xnd

r
n, (ef

t)r),

where t = H(c1, . . . , cn+2, m). The total size of the ciphertext is n+ 3.

NIZK Argument. We use the Groth-Sahai proof system to produce an argument

that “R(~x,y) = 1 and c = CS-E .Encm(~x; r)”. First we show that R(~x,y) = 1 by

creating a commitment ~bi = GSCom(xi; (si,0, si,1)) for each component xi of the

witness and producing proof elements which show that the committed values sat-

isfy the pairing product equation
∏n

i=1 ê(hi,xi) = ê(y, g̃). Then, we show that

c = CS-E .Encm(~x; r) using a system of one-sided multi-exponentiation equations with

a witness (r, {si,0, si,1}
n
i=1) to show that the plaintext encrypted in c is equal to the

committed values in ~bi, i = 1, . . . , n. Details follow.

Let ~b1 = (x1, 1) · ~v
s1,0
0 · ~v

s1,1
1 , . . . , ~bn = (xn, 1) · ~v

sn,0

0 · ~v
sn,1

1 ,

and, as defined above, c = (c1, . . . , cn+3). Proving equality of the plaintext and the

committed values reduces to proving the satisfiability of the following system of 2n+3

equations:

~b1
(c3,1)

= ~v
s1,0
0 · ~v

s1,1
1 · (d−11 , 1)r , . . . ,

~bn
(cn+2,1)

= ~v
sn,0

0 · ~v
sn,1

1 · (d−1n , 1)r ,

c1 = gr
0 , c2 = gr

1 , cn+3 = er(f t)r .

The total size of the argument is 8n+ 21 group elements and 2 Zp-elements.

Combining the ciphertext and the NIZK argument makes the size of the signature

9n + 24 group elements and 2 elements in Zp. By Theorem 14 and Theorem 15,

we know that the above instantiation gives us a ((n − 1) log p − 1)-leakage resilient

signature scheme. To translate this into (1− ε)|sk| leakage tolerance, we need

n ≥
1

ε
+
ω(logλ)

ε · log p
=

1

ε
·

(
1 +

ω(log λ)

log p

)

80

This gives us signatures of size (9/ε)(1 + ω(log λ)/ log p) + 24 group elements and 2

elements in Zp.

Instantiation 2: Based on DLIN. In the case of G1 = G2 = G, we give an

instantiation under the DLIN assumption.

SPR Relation. We use the above-described structure-preserving SPR relation in

the Λsym setting. Recall It has average-case preimage entropy of (n− 2) log(p).

CCA-Secure Encryption. We use the multi-message Linear Cramer-Shoup en-

cryption scheme to encrypt the witness. Formally, let the public key be:

pk = (g0, g1, g2,d1,1,d1,2, . . . ,dn,1,dn,2, e1, e2, f1, f2).

To encrypt ~x = (x1, . . . ,xn) under the same randomness (r1, r2) and label m, the

compute the ciphertextc = (c1, c2, c3, . . . , cn+2, cn+4) as follows:

c← CS-E .Encm(~x, (r1, r2))

= (gr1+r2
0 , gr1

1 , g
r2
2 , x1d

r1
1,1d

r2
1,2, . . . ,xnd

r1
n,1d

r2
n,2, (e1f

t
1)

r1(e2f
t
2)

r2),

where t = H(c1, . . . , cn+3, m). The size of the ciphertext is n+ 4.

NIZK Argument. First we prove that R(~x, (y1,y2)) = 1 using the pairing product

equations

e(h1,x1)e(h3,x3) . . . e(hn,xn) = e(g,y1) and

e(h̄2,x2)e(h̄3,x3) . . . e(h̄n,xn)) = e(g,y2).

We create commitments ~bi = GSComΠ(xi; ~si) = (xi, 1, 1)~v
si,0
0
~v
si,1
1
~v
si,2
2 , for each com-

ponent xi of ~x = (x1, . . . ,xn) using randomness ~si = (si,0, si,1, si,2). Then we prove

that the plaintext of c = CS-E .Encm(~x; (r1, r2)) equals the committed values in ~bi,

for i = 1, . . . , n, by proving that the following system of 3n + 4 one-sided multi-

exponentiation equations is satisfiable with a witness (r1, r2, ~s1, . . . , ~sn):

81

~b1
(c4,1,1)

= ~v
s1,0
0 · ~v

s1,1
1 · ~v

s1,2
2 · (d−111 , 1, 1)

r1 · (d−112 , 1, 1)
r2 ,

. . .

~bn
(cn+3,1,1)

= ~v
sn,0

0 · ~v
sn,1

1 · ~v
sn,2

2 · (d−1n1 , 1, 1)
r1 · (d−1n2 , 1, 1)

r2 ,

c1 = gr10 g
r2
0 , c2 = gr11 , c3 = gr22 , cn+4 = (e1f

t
1)

r1(e2f
t
2)

r2 .

The total size of the proof is 18n+66 group elements and 6 Zp-elements.

Combining the ciphertext and the NIZK argument makes the size of the signature

19n + 70 group elements and 6 elements in Zp. By Theorem 14 and Theorem 15,

we know that the above instantiation gives us a ((n − 2) log p − 1)-leakage resilient

signature scheme. To translate this into (1− ε)|sk| leakage tolerance, we need

n ≥
2

ε
+
ω(logλ)

ε · log p
=

1

ε
·

(
2 +

ω(log λ)

log p

)

This gives us signature of size (19/ε)(2 + ω(log λ)/ log p) + 70 group elements and 6

elements in Zp.

82

Chapter 5

Structure-Preserving Signatures

In this chapter we construct structure-preserving signature schemes and consider some

of their applications. We start by describing our main scheme in detail and discussing

several variations. Next, we extend the scheme to be able to sign messages of unlim-

ited length without losing its structure-preserving properties. Also, we consider the

extension of simulatable signatures in the common reference string model. Lastly, we

construct a signature scheme with messages composed of group elements from both

base groups when working with asymmetric bilinear map and a strongly unforgeable

signature scheme.

To illustrate the applicability of such signature schemes, we consider a couple

case studies from numerous possible applications. We construct the first efficient

round-optimal blind signature scheme. The construction follows the generic frame-

work of Fischlin [55], the efficient instantiation of which has been an open problem.

Then, we present an efficient group signature scheme satisfying the strongest security

requirements and constructed in a modular fashion.

83

5.1 Main Scheme

Combining a trapdoor commitment scheme (chameleon hash) and a strong assump-

tion is a well-known approach for designing signature schemes [47, 21]. To bring this

idea into a real structure-preserving construction, we need an appropriate trapdoor

commitment scheme and a useful assumption which are compatible with each other.

As it turns out, TC1 and the SFP assumption are an excellent match for that purpose.

A remaining technical issue is how to deal with the exception that z? 6= 1 in

SFP. The signature scheme should not inherit it since when proving a knowledge of

a signature, the condition z 6= 1 is not trivial to prove and affects the efficiency. We

address this issue by involving another set of elements (a0, ã0) and (b0, b̃0) in the

verification predicate. In the proof of unforgeability, these elements hold a secret

random offset g̃ζ that will be multiplied to z in a forged signature so that the answer

to SFP, z? = zg̃ζ , happens to be 1 only by chance. (The real proof is more involved.)

The randomization techniques from Section 2.5 also help the construction and the

security proof in such a way so that the signature elements are uniform under the

constraint that the verification predicates hold.

5.1.1 Construction

Let ~m = (m1, . . . ,mk) ∈ Gk
2 be a message to be signed. Parameter k determines

the length of a message and shorter messages are implicitly padded with 1G2
. Let

Λ ∈ {Λsym,Λxdh,Λsxdh}. We recall that Λ := (p,G1,G2,GT , ê, g, g̃) is an implicit input

to the algorithms described below.

• Key Generation. SIG.Key(1λ): Choose random generators gr,hu ← G∗1. For

i = 1, . . . , k, choose γi, δi ← Z∗p and compute gi = gγi
r and hi = hδi

u .

Choose γz, δz ← Z
∗
p and compute gz = gγz

r and hz = hδz
u . Also choose

84

α, β ← Z∗p and compute {ai, ãi}
1
i=0 ← RandExtend(gr, g̃

α) and {bi, b̃i}
1
i=0 ←

RandExtend(hu, g̃
β). Set vk = (gz,hz, gr,hu, {gi,hi}

k
i=1, {ai, ãi,bi, b̃i}

1
i=0) and

sk = (vk, α, β, γz, δz, {γi, δi}
k
i=1). Output (vk, sk).

• Signature Issuing. SIG.Sign(sk, ~m): Choose ζ, ρ, τ, ϕ, ω randomly from Zp and

set:

z = g̃ζ, r = g̃α−ρτ−γzζ
∏k

i=1m
−γi
i , s = gρ

r , t = g̃τ ,

u = g̃β−ϕω−δzζ
∏k

i=1m
−δi
i , v = hϕ

u , w = g̃ω.

Output σ = (z, r, s, t,u,v,w) as a signature.

• Verification. SIG.Vrf(vk, ~m, σ): Parse σ into (z, r, s, t,u,v,w). Output 1 if

A = ê(gz, z) ê(gr, r) ê(s, t)

k∏

i=1

ê(gi,mi), and (5.1)

B = ê(hz, z) ê(hu,u) ê(v,w)

k∏

i=1

ê(hi,mi) (5.2)

hold for A = ê(a0, ã0) ê(a1, ã1) and B = ê(b0, b̃0) ê(b1, b̃1). Output 0, other-

wise.

5.1.2 Security

Theorem 16. SIG in Section 5.1.1 is correct. It is EUF-CMA if SFP holds for Λ.

Proof. correctness. Observe that

ê(gz, z) ê(gr, r) ê(s, t)
k∏

i=1

ê(gi,mi) =

= ê
(
gγz
r , g̃

ζ
)
ê

(
gr, g̃

α−ρτ−γzζ
k∏

i=1

m−γii

)
ê (gρ

r , g̃
τ)

k∏

i=1

ê (gγi
r ,mi) = ê (gr, g̃

α) = A

85

holds. Thus (5.1) is fulfilled. Relation (5.2) is verified in the same manner.

unforgeability. Let A be an adversary that has a non-negligible advantage of

forging a signature for the above scheme on a message ~m†, ~m† 6∈ { ~mj}
q
j=1, after

adaptively querying the signing oracle on messages ~mj , for j = 1, . . . , q, and receiving

signatures σj . We construct a reduction algorithm which takes an input Λ, gz, hz,

gr, hu, (a, ã), (b, b̃), and uniformly chosen tuples Rj for j = 1, . . . , q as defined in

Assumption 6, and simulates the view of A in the attack environment as follows:

• (Simulating SIG.Key) : Use (gz,hz, gr,hu) as given in the input. For i = 1, . . . , k

set gi = gχi
z gγi

r and hi = hχi
z hδi

u , where χi, γi, δi ← Zp. As the probabil-

ity that any gi or hi, i = 1, . . . , k, is equal to 1G1
is negligible, the reduc-

tion algorithm simply aborts in such cases. Otherwise, all group elements

are from G∗1 and chosen uniformly at random, like in the key generation al-

gorithm. Then select ζ , ρ, ϕ ← Zp, and compute ((a0, ã0), (a1, ã1)) ←

RandSeq((gζ
zg

ρ
r , g̃), (a, ã)) and ((b0, b̃0), (b1, b̃1))← RandSeq((hζ

zh
ϕ
u , g̃), (b, b̃)).

For convenience, denote gζ
zg

ρ
r with a′ and hζ

zh
ϕ
u with b′. The verification key is

vk = (gz,hz, gr,hu, {gi,hi}
k
i=1, {ai, ãi,bi, b̃i}

1
i=0).

• (Simulating SIG.Sign) : Given message ~m, take a fresh tuple Rj =

(zj, rj, sj , tj,uj ,vj,wj) from the input instance. Then compute

z = zj g̃
ζ

k∏

i=1

m−χi

i , r = rj g̃
ρ

k∏

i=1

m−γii , s = sj, t = tj,

u = uj g̃
ϕ

k∏

i=1

m−δii , v = vj, w = wj .

The signature is σ = (z, r, s, t,u,v,w). It is easy to verify that the signature

satisfies the verification equations.

86

When A outputs (~m†, (z†, r†, s†, t†,u†,v†,w†)), compute

z? = z† g̃−ζ
k∏

i=1

(
m†i

)χi

, r? = r† g̃−ρ
k∏

i=1

(
m†i

)γi
, u? = u† g̃−ϕ

k∏

i=1

(
m†i

)δi
,

and set s? = s†, t? = t†, v? = v†, and w? = w†. If any of the parameters χ1, . . . , χk

is 0 the reduction algorithm aborts; otherwise, outputs (z?, r?, s?, t?,u?,v?,w?). Like

in the previous abort case, the chance for that is negligible because the parameters

are chosen uniformly at random, and, therefore, we could ignore those cases in our

analysis without affecting the overall outcome. This completes the description of the

reduction algorithm.

The above signatures follow correct distribution. So, A outputs a successful

forgery with a non-negligible probability. Then, for the output of the reduction algo-

rithm, it holds that

ê(gz, z
?) ê(gr, r

?) ê(s?, t?)

= ê

(
gz, z

† g̃−ζ
k∏

i=1

(
m†i

)χi

)
ê

(
gr, r

† g̃−ρ
k∏

i=1

(
m†i

)γi
)
ê
(
s†, t†

)

= ê
(
g−ζz g−ρr , g̃

)
ê
(
gz, z

†
)
ê
(
gr, r

†
)
ê
(
s†, t†

) k∏

i=1

ê
(
gi,m

†
i

)

= ê
(
gζ
zg

ρ
r , g̃
)−1 1∏

i=0

ê(ai, ãi) = ê(a, ã).

One can also verify that ê(gz, z
?) ê(hu,u

?) ê(v?,w?) = ê(b, b̃) holds in the same way.

What remains is to show that z? is not in {1, z1, . . . , zq}. For that, first notice

that the parameters ζ and {χi}
k
i=1 are independent from the view of adversary A,

as proved in Lemma 3. Namely, for any view of the adversary and for any choice of

ζ and χi, for i = 1, . . . , k, there exist unique and consistent parameters ρ, ϕ, γi, δi,

i = 1, . . . , k and zj, rj, uj , j = 1, . . . , q.

First we show that the probability z? ∈ {z1, . . . , zq} is negligible. For every zj

and signature σ = (z, r, s, t,u,v,w) on a message ~m simulated by using zj, it holds

87

that

z?

zj
=

z† g̃−ζ
∏k

i=1

(
m†i

)χi

z g̃−ζ
∏k

i=1m
χi

i

=
z†

z

k∏

i=1

(
m†i
mi

)χi

.

Since ~m† 6= ~m, there exists i such that m†i 6= mi. Since χi ∈ Z∗p is information

theoretically hidden from the view of the adversary, the probability that z? = zj is

negligible due to the term (m†i/mi)
χi in the above equation. To show that z? =

(
z†
)
g̃−ζ

∏k
i=1

(
m†i

)χi

is equal to 1G2
only with a negligible probability, notice that

ζ is also independent from the view of the adversary and the claim holds due to the

uniform choice of ζ . Therefore, when the reduction algorithm does not abort, the

probability that z? 6∈ {1, z1, . . . , zq} is overwhelming.

Lemma 3. The parameters ζ, χ1, χ2, . . ., χk chosen by the reduction algorithm in

Theorem 16 are independent from A’s view. That is, independent from the verification

key, the signed messages, and the signatures.

Proof. Let vk = (gz,hz, gr,hu, {gi,hi}
k
i=1, {ai, ãi,bi, b̃i}

1
i=0) be the verification key

the adversary sees, ~m1, . . ., ~mq be the messages with which A queries the signing

oracle, and σ1, . . ., σq be the corresponding signatures. Furthermore, let assume that

(a, ã) and (b, b̃) given to the reduction algorithm are also fixed, though A does not

see them. That yields unique a′ and b′ such that

A = ê(a0, ã0)ê(a1, ã1) = ê(a′, g̃)ê(a, ã) and

B = ê(b0, b̃0)ê(b1, b̃1) = ê(b′, g̃)ê(b, b̃).

For any choice ζ̂ , χ̂i ∈ Zp of the parameters ζ, χi , for i = 1, . . . , k, there exist a unique

coin toss ρ̂, ϕ̂, γ̂i, δ̂i such that a′ = gζ̂
zg

ρ̂
r , b′ = hζ̂

zh
ϕ̂
u , gi = gχ̂i

z gγ̂i
r , and hi = hχ̂i

z hδ̂i
u .

This shows that the verification key and the parameters are independent. Next we

show that the chosen parameters remain independent fromA’s view even after signing

88

q adaptively chosen messages due to the uniform choice of the tuples Rj , j = 1, . . . , q,

as defined in Assumption 6.

Let the j-th message be ~m and the corresponding signature be σ =

(z, r, s, t,u,v,w). From the specification of the reduction algorithm we know that

(s, t) = (sj, tj) and (v,w) = (vj ,wj), where Rj = (zj , rj, sj, tj,uj,vj ,wj) is the j-th

tuple given as input. And for the fixed view, ζ, {χi}
k
i=1 determine uniquely the values

of zj = z g̃−ζ
∏k

i=1m
χi

i , rj = r g̃−ρ
∏k

i=1m
γi
i , and uj = u g̃−ϕ

∏k
i=1m

δi
i . Regard-

less of the particular choice of parameters ζ̂ , {χ̂i}
k
i=1, since σ satisfies the signature

verification equations

A = ê(gz, z) ê(gr, r) ê(s, t)

k∏

i=1

ê(gi,mi) and

B = ê(hz, z) ê(hu,u) ê(v,w)

k∏

i=1

ê(hi,mi),

it is true that the corresponding tuple R̂j = (ẑj, r̂j, sj, tj, ûj ,vj,wj) satisfies

ê(a, ã) = ê(gz, ẑj) ê(gr, r̂j) ê(sj , tj) and (5.3)

ê(b, b̃) = ê(hz, ẑj) ê(hu, ûj) ê(vj,wj). (5.4)

What remains to show is that the uniform choice of ζ̂ , {χ̂i}
k
i=1 together with A’s

view yields uniform distribution for the tuples R̂j , for j = 1, . . . , q, as specified by the

assumption description. If that is indeed the case, each set of tuples which could have

been given as input to the reduction algorithm is chosen with the same probability.

And because for any choice of ζ̂ , χ̂1, . . . , χk, there exist unique set {R̂j}
q
j=1, those

imply that each parameter selection looks equally likely for A.

To see the uniformity of R̂j , note again that (sj , tj) and (vj ,wj) are determined

uniquely from the view regardless of the parameters choice. Then, let’s define the

89

homomorphism φ:

φg̃, ~m(ζ̂ , χ̂1, . . . , χ̂k) = g̃−ζ̂
k∏

i=1

mχ̂i

i .

It is easy to verify that for uniformly chosen parameters, the homomorphism’s range is

uniformly distributed over G2. This in turn implies that for a fixed z and uniformly

chosen parameters, ẑj = z φ(ζ̂ , χ̂1, . . . , χ̂k) is uniformly distributed over G2. And

because R̂j satisfies (5.3) − (5.4), the values of r̂j and ûj are determined uniquely

by the other tuple values, which for a fixed view means determined by ẑj . To sum

it up, for a fixed view, the uniform random choice of the parameters gives uniformly

distributed ẑj which implies the uniformity of R̂j .

5.1.3 Notable Properties

Partial Perfect Randomizability. Given a signature (z, r, s, t,u,v,w) one

can randomize every element except for z by applying the sequential random-

ization technique with a small tweak as follows. Define the function SigRand ,

(r′, s′, t′,u′,v′,w′)← SigRand(r, s, t,u,v,w), as:

• Randomize (r, s, t) into (r′, s′, t′) as follows.

– First, if t = 1, set s = 1 and choose t← G
∗
2.

– Then, choose %← Zp and compute

r′ = r t%, (s′, t′)← Rand(sg−%r , t) (5.5)

• Randomize (u,v,w) into (u′,v′,w′) analogously.

Lemma 4. The above (r′, s′, t′,u′,v′,w′) distributes uniformly over (G2×G1×G2)
2

under the constraint that ê(gr, r) ê(s, t) = ê(gr, r
′) ê(s′, t′) and ê(hu,u) ê(v,w) =

ê(hu,u
′) ê(v′,w′).

90

Proof. Uniformity of r′ ∈ G2 follows from t 6= 1 and the uniformity of % in (5.5).

Under the described constraints, for any choice of r′, their is a unique value ê(s′, t′) =

ê(gr, r) ê(s, t) ê(gr, r
′)−1. Then, uniformity of s′ and t′ holds from the property of

Rand. The same is true for (u′,v′,w′).

The claim implies that (s′, t′,v′,w′) is information theoretically independent of

the signature element z, the message, and the verification key. (In general, the same

is true for publishing any two elements from (r′, s′, t′) and (u′,v′,w′) respectively.)

This property is useful in reducing the task of combined proofs. See Section 5.6.1 for

typical use of this property.

Signature Binding Property. This property states that no one but the signer

can obtain two signatures which have the same s and v. In the following formal

statement, the adversary is allowed to submit both ~m and ~m′ to the signing oracle.

Hence the property is not implied by EUF-CMA in general.

Lemma 5. Under adaptive chosen message attacks, no adversary can output (~m, σ)

and (~m′, σ′) such that 1 = SIG.Vrf(vk, ~m, σ) = SIG.Vrf(vk, ~m′, σ′), ~m 6= ~m′, and (s,v)

are shared in σ and σ′.

Lemma 5 implies that publishing (s,v) together with the verification key works as

a commitment of the signature and the message. (Recall that s and v are uniformly

chosen in the signature generation algorithm.) This property is used in Section 5.2,

and could find more applications.

Proof. Suppose that there is a successful adversary, A that outputs the signatures as

in the lemma. We then construct an adversary B that breaks EUF-CMA of SIG.

Given vk and oracle access to Osign(·), B invokes A with vk. Every signing

query from A is directly passed to Osign(·) and the signatures are returned di-

91

rectly to A. Hence B’s simulation is perfect. Eventually, A terminates and out-

puts σ = (z, r, s, t,u,v,w), ~m = (m1, . . . ,mk), σ
′ = (z′, r′, s, t′,u′,v,w′), and

~m′ = (m′1, . . . ,m
′
k).

B then chooses %← Zp and computes

z? = z
(
z′

z

)%
, r? = r

(
r′

r

)%
, t? = t

(
t′

t

)%
,

u? = u
(
u′

u

)%
, w? = w

(
w′

w

)%
, m?

i = mi

(
m′

i

mi

)%
.

Then outputs σ? = (z?, r?, s, t?,u?,v,w?) and ~m? = (m?
1, . . . ,m

?
k). This completes

the specification of B.

We verify the correctness of B as follows. Since these signatures are valid, they

satisfy

A = ê(gz, z
′) ê(gr, r

′) ê(s, t′)

k∏

i=1

ê(gi,m
′
i)

= ê(gz, z) ê(gr, r) ê(s, t)
k∏

i=1

ê(gi,mi)

and

B = ê(hz, z
′) ê(hu,u

′) ê(v,w′)

k∏

i=1

ê(hi,m
′
i)

= ê(hz, z) ê(hu,u) ê(v,w)
k∏

i=1

ê(hi,mi).

Note that we can divide the verification equations of the signatures which gives us:

1GT
= e

(
gz,

z′

z

)
e

(
gr,

r′

r

)
e

(
s,
t′

t

) k∏

i=1

e

(
gi,

m′i
mi

)
, and

1GT
= e

(
hz,

z′

z

)
e

(
hu,

u′

u

)
e

(
v,

w′

w

) k∏

i=1

e

(
hi,

m′i
mi

)
.

Exponentiating these equations with % and multiplying them with one of the signa-

tures yields σ? = (z?, r?, s, t?,u?,v,w?) and ~m? = (m?
1, . . . ,m

?
k) which clearly satisfy

the verification equations.

92

Since ~m′ 6= ~m there exists j such that m′j 6= mj . And due to the random choice

of %, m?
j = mj

(
m′

j

mi

)%
distributes uniformly over G2. Accordingly, ~m? is different

from any message vector observed by Osign(·) with overwhelming probability. Thus,

(σ?, ~m?) is a valid forgery to SIG.

5.1.4 Variations

• We can replace ai, ãi,bi, b̃i with A = ê(gr, g̃
α) and B = ê(hu, g̃

β) in a

verification-key, and use the A and B directly in the verification equations

(5.1) and (5.2). The reason we include a representation of A (and B) in G1

and G2 is to address the needs to put the verification key into the base groups.

The GS-proof system provides zero-knowledge property for statements that do

not include elements from GT except for 1GT
. When WI is of only concern, one

can include A and B in vk and use them directly in the verification. We use

this modification in Section 5.6.1. The same is possible for other constructions

in this chapter.

• Let 〈n〉 denote a deterministic encoding of non-negative integer n, n < p, to

an element of G∗2. By limiting the maximum message length to be k − 1 and

putting 〈| ~m|〉 at the beginning of the input message ~m, shorter messages can be

treated. Since the encoding is deterministic and black-box that is independent

of the representation of the elements in ~m, it does not impact the compatibility.

• As we observed in the very last stage of the security proof, (a0, ã0) and (b0, b̃0)

in a verification key is needed to handle the case where z† = 1 and ~m† =

(1, . . . , 1) happen at the same time. When such exception is not possible, for

example when ~m is encoded with with its length as ~m† = (〈n〉, 1, . . . , 1) and

the deterministic encoding 〈n〉 is never 1, the elements (a0, ã0) and (b0, b̃0) can

93

be removed from the scheme.

• In the asymmetric settings, one can swap G1 and G2 in the description of SIG

to get the ‘dual’ scheme of SIG whose message space is Gk
1 .

• Dropping the flexible part ê(s, t) and ê(v,w) from the construction results in a

strongly unforgeable one-time signature scheme based on the SDP assumption

as described in Section 4.2.

5.2 Signing Unbounded-Size Messages

5.2.1 Overview

This section presents a method to sign a message (m1, . . . ,mn) whose size n is not a-

priori bounded by the public-key. While some generic domain extension methods are

available, we present a specific and efficient construction based on a chain of signatures

taking the advantage of the constant-size signature scheme from Section 5.1. The

idea is that, first sign m1 to obtain σ1, and next sign σ1||m2 to obtain σ2, then sign

σ2||m3 and so on. (Note that this rough description lacks some important details. In

particular, signing only on m1 at the beginning results in an insecure scheme.)

A technical highlight is that, with our constant-size signature scheme, we only

need to involve a part of a signature, elements s and v, in each step of chaining to

constitute a secure chain. This is possible due to the signature binding property of

SIG as shown in Section 5.1.3.

94

5.2.2 Construction

Let SIG be the constant-size signature scheme from Section 5.1, whose message space

is Gk
2 for k ≥ 3. We construct an unbounded-message signature scheme, USIG1, as

follows. Let Λ = Λsym be implicitly given to the functions described below. Recall

that 〈n〉 is an encoding of n to an element of G∗2.

• USIG1.Key(1λ): Choose random (s−1,v−1) ← G2
1. Invoke (vk′, sk) ←

SIG.Key(1λ). Output vk = (vk′, s−1,v−1) and sk.

• USIG1.Sign(sk, ~m): Parse ~m into (m1, . . . ,mn). Let ` = dn+1
k−2
e. Let m0 = 〈n〉

and mi = 1G2
for i = n + 1, . . . , `(k − 2). For i = 0, . . . , ` − 1, com-

pute the signature σi = (zi, ri, si, ti,ui,vi,wi) ← SIG.Sign(sk, ~mi) where

~mi = (si−1,vi−1,mi(k−2), . . . ,m(i+1)(k−2)−1). Output σ = (σ0, . . . , σ`−1).

• USIG1.Vrf(vk, ~m, σ): Parse σ into (σ0, . . . , σ`−1) and ~m into (m1, . . . ,mn). Let

m0 = 〈n〉 and mi = 1G2
for i = n + 1, . . . , `(k − 2). For i = 0, . . . , ` − 1,

compute bi = SIG.Vrf(vk′, ~mi, σi) where ~mi is formed in the same way as in

SIG.Sign. Output 1 if bi = 1 for all i = 0, . . . , `− 1. Output 0, otherwise.

The resulting signature is in the size of 7 · dn+1
k−2
e.

Remarks. Filling 1G to the empty slots of the message space is for notational consis-

tency. It does not increase either computation or storage. Setting Λ = Λsym is needed

as (si,vi) is in G2
1 while the message space is Gk

2. It can be modified for the case of

Λ = Λsxdh using the signature scheme described in Section 5.4 (but not for the case of

Λ = Λxdh). If ~m is given as an on-line stream and the length is not known in advance,

one can use the trapdoor commitment scheme TC4 from Section 4.1 so that m0 is set

to a random commitment and later opened to n when n is fixed. The opening infor-

mation is included as a part of a signature. Since the opening information is a group

95

element and the commitment verification predicate is a pairing product equation, the

resulting verification predicate for USIG1 remains as a conjunction of pairing product

equations.

Theorem 17. If SIG is EUF-CMA, so is USIG1.

Proof. Suppose that there is a successful adversary, say A, that launches chosen

message attacks and outputs a valid forgery, ((m†1, . . . ,m
†
n), (σ

†
0, . . . , σ

†
`−1)). Let ~m†i

be the message vector associated to σ†i . We then have two cases.

Type-I. There is ~m†i that has never been signed by the signing oracle.

Type-II. Every ~m†i has been signed by the signing oracle (in separate queries).

Type-I forgery trivially breaks the unforgeability of SIG. For Type-II forgery, we

show a reduction to the unforgeability of SIG as follows. Given verification key vk′

of SIG and access to the signing oracle of SIG, we construct a simulator that uses

adversary A and simulates USIG1 as follows. Let Osign(·) be the signing oracle of SIG

with respect to vk′.

• (Simulating USIG1.Key): Generate a random message vector ~m−1 of size k and

send it to Osign(·). Receive signature (z−1, r−1, s−1, t−1,u−1,v−1,w−1) and out-

put vk = (vk′, s−1,v−1).

• (Simulating USIG1.Sign): On input ~m, follow the legitimate signing algorithm

by asking Osign(·) to compute SIG.Sign. Then output the resulting signature.

Observe that s−1 and v−1 generated in the simulated USIG1.Key are uniform and

independent of ~m−1. Simulation for USIG1.Sign is clearly perfect as it follows the

legitimate procedure.

96

Suppose that adversary A outputs a valid forgery for USIG1. Then there exists

a signing query (to the signing oracle of USIG1) in which ~m†`−1 is observed. Let

((m1, . . . ,mn′), (σ0, . . . , σ`′−1)) be the message and the signature with respect to the

query and let ~mi denote a message vector associated to σi. Let i
? be the index where

~m†`−1 = ~mi? happens. If ` − 1 = 0, then i? = 0 is not the case because the message

in the valid forgery must be fresh. In the case of ` − 1 6= 0 and i? = 0, it happens

that ~m†`−2 6= ~m−1 with overwhelming probability since ~m−1 is chosen randomly and

information theoretically independent from the view of the adversary. The same is

true for the case of ` − 1 = 0 and i? > 0. In the case of ` − 1 6= 0 and i? > 0, since

the messages are prefix-free, there exists j? such that ~m†`−1−j? 6= ~mi?−j? happens for

the first time when j? is increased from 0 to min(` − 1, i?) + 1. In any of the cases

(j? is set to 1 for the case of i? = 0 or ` − 1 = 0), signature σ†`−1−j? shares s and v

with σi?−j? as they are included in ~mi?−j?+1(= ~m†`−1−j?+1). This contradicts to the

signature binding property of SIG as claimed in Lemma 5.

5.3 Simulatable Signatures

5.3.1 Overview

A simulatable signature scheme is a signature scheme in the CRS model that makes

it possible to create valid signatures without the signing-key but with a trapdoor

associated to the common reference string. The notion is introduced in [4] but in an

informal way dedicated for their purposes. We elaborate the notion and present a

formal treatment with a reasonable construction in this section.

A simulatable signature is a useful tool in combination with a witness indistin-

guishable (WI) proof system. Unlike zero-knowledge (ZK) proofs, WI proof system

97

does not have a simulator. So when a signature is a part of the witness and the signer

is corrupt and useless, simulatable signature can provide a correct witness to the

entity having the trapdoor. This situation happens in reality, for instance, when we

attempt to instantiate Fischlin’s round-optimal blind signature scheme [55] (modified

to use WI as suggested in [73, 4]).

It is known that a simulatable signature scheme can be unconditionally con-

structed from any regular signature scheme by modifying the verification predicate

in such a way that a signature is accepted if it passes regular verification with re-

spect to the signer’s verification key or the verification key included in the CRS.

This generic construction, however, inherently involves disjunction in the resulting

verification predicate.

Our construction also uses the idea of two keys, but we use a trapdoor commitment

scheme and a signature scheme combined. The commitment key is part of the CRS

whereas the signing key is used for real signing. Also, a reference signature on a

default message is required as part of the verification key. When a signature has to

be simulated, the trapdoor for the commitment scheme is used to “equivocate” the

reference signature to the required message. Since our main scheme in Section 5.1

already integrates a trapdoor commitment scheme in its construction, it would seem

plausible to be able to move the commitment part of the verification key into the

CRS. Ultimately, that is what we do. A formal proof, however, reveals that we need

to have k flexible pairings to sign messages of size k, k ≥ 1, without the trapdoor

for the commitment part. This results in relying on k-SFP rather than SFP when

dealing with messages of size k ≥ 2.

98

5.3.2 Definitions

Definition 23 (Simulatable Signature Scheme). A simulatable signature scheme SSIG

consists of algorithms SSIG.{Crs,Key,Chk, Sign,Vrf, Sim} where SSIG.{Key, Sign,Vrf}

constitute a regular signature scheme (except that they take the CRS), and the extra

algorithms works as follows.

SSIG.Crs(1λ): A CRS generation algorithm that, on input security parameter λ, out-

puts a common reference string crs and a trapdoor tk.

SSIG.Chk(crs, vk): A verification key checking algorithm that, on input a verification

key, returns 1 or 0.

SSIG.Sim(crs, vk, m, tk): A signature simulation algorithm that computes a signature

σ for message m by using trapdoor tk.

By Mvk, we denote the message space associated to vk. By K, we denote the set of

(vk, sk) that can be generated by SSIG.Key(crs). Also by Ssk,m we denote the set of

signatures that can be generated by SSIG.Sign(crs, sk, m).

Completeness is defined in a standard way; with respect to correctly generated

CRS, verification keys, and signatures, the verification function outputs 1 with prob-

ability 1.

Signature simulatability is defined in such a way that whenever adversary selects

an appropriate message and verification key, then, by using the trapdoor of the CRS,

it is possible to generate a signature that could have been generated by the proper

signing operation. Formal definition follows.

Definition 24 (Signature-Simulatability). A signature scheme in the CRS model

is simulatable if, for every CRS crs generated by (crs, tk) ← SSIG.Crs(1λ), for any

99

(m, vk), if 1 = SSIG.Chk(crs, vk)∧m ∈Mvk, then there exists sk such that (vk, sk) ∈

K, and 1 = SSIG.Vrf(crs, vk, m, σ) holds for any σ ← SSIG.Sim(crs, vk, m, tk).

A relaxation would allow a negligible error in SSIG.Vrf for a message and a veri-

fication key chosen by an adversary. Note that the signature simulatability does not

require simulated signatures be indistinguishable from the real ones. It is considered

as a role of witness indistinguishable proof system coupled with the signature scheme.

Unforgeability is defined with respect to adaptive chosen message attacks. In

the CRS model, however, a CRS is used for generating many keys and therefore,

we must be careful that the keys should not be badly affected each other. By re-

flecting this concern, we allow an adversary to access an oracle that outputs cor-

rectly generated verification keys with respect to the same CRS. Furthermore, in

our potential applications, the adversary is given a witness indistinguishable proof

of holding a correct signature with respect to a given message and verification key.

Let π ← Π .Prove((crs, vki, m), σ) denote the proof system for this purpose. Here

(crs, vki, m) is public, and σ is the witness, and π is the proof. We do not give

much details to the proof system as the only property needed in this formulation is

witness indistinguishability. The CRS for this proof system is implicitly given to the

adversary. In summary the attack model includes the following three oracles.

• (Key Generation Oracle Ovk(·)): On receiving i-th request, compute

(vki, ski)← SSIG.Key(crs), and return vki. Record vki to QK .

• (Signing Oracle Osign(·)): On input (vki, m), return ⊥ if vki is not recorded.

Otherwise, compute σ ← SSIG.Sign(crs, ski, m) and return σ. Record m to

Qvki
m .

• (Proof Oracle Owi(·)): On input (vki, m), return ⊥ if 0 ← SSIG.Chk(crs, vki)

100

or m 6∈ Mvki
. Otherwise, compute σ ← SSIG.Sim(crs, vki, m, tk), and π ←

Π .Prove((crs, vki, m), σ). Then return π.

Definition 25 (Unforgeability with WI-Simulation). A signature scheme in the CRS

model is unforgeable against adaptive chosen message and random verification key at-

tacks with witness-indistinguishable simulation if, for any polynomial-time adversary

A, the following experiment returns 1 with negligible probability.

ExpCRS EUF-CMA:

(crs, tk)← SSIG.Crs(1λ)

(m?, σ?, vk?)← AOsign(·),Ovk(·),Owi(·)(crs)

Return 1 if vk? ∈ QK and m 6∈ Qvk
?

m and 1← SSIG.Vrf(crs, vk?, m?, σ?).

Return 0, otherwise.

5.3.3 Construction

Let Λ = (p,G1,G2,GT , ê, g, g̃) ∈ {Λsym,Λxdh,Λsxdh} be implicitly given to the algo-

rithms below.

• SSIG.Crs(1λ): Choose random generators gz,hz, gr,hu from G∗1. For i =

1, . . . , k, choose χi, γi, δi from Zp, and compute gi = gχi
z gγi

r and hi = hχi
z hδi

u .

The common reference string is set to crs = (gz,hz, gr,hu, {gi,hi}
k
i=1), and the

trapdoor key is tk = (χ1, γ1, δ1, . . . , χk, γk, δk).

• SSIG.Key(crs): Choose α, β ← Zp and compute {ai, ãi}
k
i=0 ←

RandExtend(gr, g̃
α) and {bi, b̃i}

k
i=0 ← RandExtend(hu, g̃

β). Let sk = (α, β).

For some default message ~m∗ ∈ Gk
2, compute a reference signature σ∗ =

101

SSIG.Sign(crs, sk, ~m∗) as shown below. Let vk = ({ai, ãi,bi, b̃i}
k
i=0, σ

∗). Out-

put (vk, sk).

• SSIG.Sign(crs, sk, ~m): For i = 1 to k and randomly chosen ζi, ρi, ϕi ← Zp, set

(If mi 6= 1) : s′i = gζi
z g

ρi
r g
−1
i , t′i = mi, v′i = hζi

z h
ϕi
u h−1i , w′i = mi,

(If mi = 1) : s′i = gζi
z g

ρi
r , t′i = g̃, v′i = hζi

z h
ϕi
u , w′i = g̃.

and

z =

k∏

i=1

t′i
−ζi , r = g̃α

k∏

i=1

t′i
−ρi, u = g̃β

k∏

i=1

w′i
−ϕi.

Then, compute

{si, ti}
k
i=1 ← RandSeq({s′i, t

′
i}

k
i=1) and {vi,wi}

k
i=1 ← RandSeq({v′i,w

′
i}

k
i=1)

. Output σ = (z, r,u, {si, ti,vi,wi}
k
i=1) as a signature.

• SSIG.Vrf(crs, vk, ~m, σ): Parse σ as (z, r,u, {si, ti,vi,wi}
k
i=1). Output 1 if

A = ê(gz, z) ê(gr, r)

k∏

i=1

ê(gi,mi) ê(si, ti), and (5.6)

B = ê(hz, z) ê(hu,u)

k∏

i=1

ê(hi,mi) ê(vi,wi) (5.7)

hold for A =
∏k

i=0 ê(ai, ãi) and B =
∏k

i=0 ê(bi, b̃i). Output 0, otherwise.

• SSIG.Chk(crs, vk): Parse vk into ({ai, ãi,bi, b̃i}
k
i=0, σ

∗) and return 0 if it fails.

Check if every element of σ∗ is in the appropriate groupG1 orG2, and verify that

1 = SSIG.Vrf(crs, vk, ~m∗, σ∗). If any of the checks fails, output 0. Otherwise,

output 1.

• SSIG.Sim(crs, vk, ~m, tk): Take σ∗ from vk and parse it into

(z, r,u, {si, ti,vi,wi}
k
i=1). By using tk = (χ1, γ1, δ1, . . . , χk, γk, δk), com-

102

pute (z′, r′,u′) as

z′ = z ·
k∏

i=1

(mi/m
∗
i)
−χi , r′ = r ·

k∏

i=1

(mi/m
∗
i)
−γi , and u′ = u ·

k∏

i=1

(mi/m
∗
i)
−δi .

Output σ = (z′, r′,u′, {si, ti,vi,wi}
k
i=1) as a signature for ~m.

5.3.4 Security

The security of SSIG relies on k-SFP, a generalization of SFP that has k flexible

pairings in each relation as formally defined below. In the case of k = 1, k-SFP

becomes SFP.

Assumption 9 (Simultaneous k-Flexible Pairing Assumption (k-SFP)). Let Λ be

a common parameter and let gz, hz, gr, and hu be random generators of G1. Let

{(ai, ãi), (bi, b̃i)}
k
i=1 be random elements in (G1 × G2)

2k. For j = 1, . . . , q, let Rj be

a tuple (z, r,u, {si, ti,vi,wi}
k
i=1) ∈ G2

3 × (G1 ×G2 ×G1 ×G2)
k that satisfies

k∏

i=1

ê(ai, ãi) = ê(gz, z) ê(gr, r)
k∏

i=1

ê(si, ti), and (5.8)

k∏

i=1

ê(bi, b̃i) = ê(hz, z) ê(hu,u)

k∏

i=1

ê(vi,wi). (5.9)

Given Λ, gz, hz, gr, hu, {(ai, ãi), (bi, b̃i)}
k
i=1, and uniformly chosen R1, . . . , Rq, it

is hard to find (z?, r?,u?, {s?i , t
?
i ,v

?
i ,w

?
i }

k
i=1), that fulfill relations (5.8) and (5.9). A

restriction is that z? 6= 1 and z? 6= z ∈ Rj for every Rj.

Theorem 18. [3] For any generic algorithm A, the probability that A breaks k-SFP

with ` group operations and pairings is bound by O(k2 · q2 + `2)/p.

The proof of Theorem 18 that justifies the assumption in the generic bilinear group

model. Like, k-SFP implies SDP for any k ≥ 1. Somewhat contradictory to the fact

that k-SFP is a generalization of SFP, there does not seem to be a useful reduction

between them for k ≥ 2.

103

Theorem 19. Signature scheme SSIG is correct and signature-simulatable. It is EUF-

CMA with WI-simulation in the multi-user setting if k-SFP holds for Λ.

Proof. Correctness. Let I (and I∗) denote the set of indexes where mi 6= 1 (and

mi = 1, respectively) in SIG.Sign. Regarding the first relation in the verification

predicates, we have:

ê(gz, z) ê(gr, r)
k∏

i=1

ê(gi,mi) ê(si, ti) =

= ê

(
gz,

k∏

i=1

t′i
−ζi

)
ê

(
gr, g̃

α
k∏

i=1

t′i
−ρi

)
·

·
∏

i∈I

ê (gi,mi) ê
(
gζi
z g

ρi
r g
−1
i , t′i

) ∏

i∈I∗

ê
(
gζi
z g

ρi
r , t

′
i

)

= ê

(
gz,

k∏

i=1

t′i
−ζi

)
ê

(
gr, g̃

α

k∏

i=1

t′i
−ρi

)
k∏

i=1

ê
(
gζi
z g

ρi
r , t

′
i

)

= ê(gr, g̃
α) = A

The other relation can be verified in the same manner as z =
∏k

i=1 t
′
i
−ζi =

∏k
i=1w

′
i
−ζi .

Signature-Simulatability. For every vk = ({ai, ãi,bi, b̃i}
k
i=0, σ

∗) such that

1 = SSIG.Chk(crs, vk), every elements in {ai, ãi,bi, b̃i}
k
i=0 is in the correct group G1

andG2. Clearly there are (α, β) so that
∏k

i=0 ê(ai, ãi) = ê(gr, g̃
α) and

∏k
i=0 ê(bi, b̃i) =

ê(hu, g̃
β) hold. Therefore such {(ai, ãi,bi, b̃i)}

k
i=0 and (α, β) are a correct key

pair. The rest is to show that SSIG.Sim correctly works to turn valid signature

σ∗ = (z, r,u, {si, ti,vi,wi}
k
i=1) for ~m

∗ into a signature σ = (z′, r′,u′, {si, ti,vi,wi}
k
i=1)

104

for message ~m. It holds that

ê(gz, z
′) ê(gr, r

′)
k∏

i=1

ê(gi,mi) ê(si, ti)

= ê(gz, z ·
k∏

i=1

(mi/m
∗
i)
−χi) ê(gr, r ·

k∏

i=1

(mi/m
∗
i)
−γi)

k∏

i=1

ê(gχi
z gγi

r ,mi) ê(si, ti)

= ê(gz, z) ê(gr, r)

k∏

i=1

ê(gi,m
∗
i) ê(si, ti) = A.

The other relation ê(hz, z
′) ê(hu,u

′)
∏k

i=1 ê(hi,mi) ê(vi,wi) = B can be verified in

the same way. Thus the output from SSIG.Sim is a valid signature for ~m.

EUF-CMA with WI-Simulation. Given an instance of k-SFP, we simulate the

view of A in the attack environment as follows.

• (CRS generation) : Do the same as original SSIG.Crs by using given gen-

erators (gr,hu, gz,hz) in the input instance. The commitment-key is as-

signed as a CRS, crs = (gz,hz, gr,hu, {gi,hi}
k
i=1), and the trapdoor is tk =

(χ1, γ1, δ1, . . . , χk, γk, δk).

• (Key Generation Oracle Ovk(·)) : Take {ai, ãi,bi, b̃i}
k
i=1 from the input in-

stance. Choose ζ, ρ, ϕ ← Zp and g̃ ← G
∗
2. Then compute {a′i, ã

′
i}

k
i=0 as the

output of RandSeq
(
(gζ

zg
ρ
r , g̃), (a1, ã1), . . . , (ak, ãk)

)
and {b′i, b̃

′
i}

k
i=0 as the se-

quential randomization RandSeq
(
(hζ

zh
ϕ
u , g̃), (b1, b̃1), . . . , (bk, b̃k)

)
. Then sim-

ulate a reference signature σ0 as described below. The verification key is

vk = ({a′i, ã
′
i,b
′
i, b̃
′
i}

k
i=0, σ0). Record vk to QK .

• (Signing Oracle Osign(·)) : Given message ~m and vk, return ⊥ if vk is not in QK .

Take a new tuple Rj = (zj, rj,uj, {sij , tij,vij ,wij}
k
i=1) from the given instance.

Then compute

z′j = zj g̃
ζ

k∏

i=1

m−χi

i , r′j = rj g̃
ρ

k∏

i=1

m−γii , u′j = uj g̃
ϕ

k∏

i=1

m−δii . (5.10)

105

by using (ζ, ρ, ϕ) used for generating vk in Ovk(·). The output signature is

σj = (z′j, r
′
j,u

′
j , {sij, tij,vij,wij}

k
i=1).

• (Simulation Oracle Owi(·)) : Given ~m and vk, return ⊥ if 0 ←

SSIG.Chk(crs, vki) or m 6∈ Mvki
. If vk is in QK , compute σ ← Osign(·)(~m, vk).

Otherwise, compute σ ← SSIG.Sim(crs, vk, ~m, tk). Then compute π ←

Π .Prove((crs, vk, m), σ) and return π.

When A outputs (~m†, z†, r†,u†, {s†i ,v
†
i , t
†
i ,w

†
i}

k
i=1), compute

z? =
(
z†
)
g̃−ζ

k∏

i=1

(
m†i

)χi

, r? =
(
r†
)
g̃−ρ

k∏

i=1

(
m†i

)γi
,

and u? =
(
u†
)
g̃−ϕ

k∏

i=1

(
m†i

)δi
,

and set s?i = s†i , t
?
i = t†i , v

?
i = v†i , and w?

i = w†i for i = 1, . . . , k. The reduction

algorithm outputs a tuple (z?, r?,u?, {s?i , t
?
i ,v

?
i ,w

?
i }

k
i=1) and terminates.

It can be verified by inspection that the CRS, the verification-key and the sig-

natures perfectly follow the legitimate distribution. When A is successful, for the

outputs of the reduction algorithm, it holds that

ê(gz, z
?) ê(gr, r

?)
k∏

i=1

ê(s?i , t
?
i)

= ê

(
gz,
(
z†
)
g̃−ζ

k∏

i=1

(
m†i

)χi

)
ê

(
gr,
(
r†
)
g̃−ρ

k∏

i=1

(
m†i

)γi
)

k∏

i=1

ê
(
s†i , t

†
i

)

= ê
(
g−ζz g−ρr , g̃

)
ê
(
gz, z

†
)
ê
(
gr, r

†
) k∏

i=1

ê
(
gi,m

†
i

)
ê
(
s†i , t

†
i

)

= ê(a0, ã0)
−1

k∏

i=0

ê(ai, ãi) =

k∏

i=1

ê(ai, ãi).

One can also verify that ê(gz, z
?) ê(hu,u

?)
∏k

i=1 ê(v
?
i ,w

?
i) =

∏k
i=1 ê(bi, b̃i) holds in

the same way.

106

What remains is to show that z? is not in {1, z1, . . . , zq}. Basically the argument is

the same as the one in the proof of Theorem 16 in Section 5.1.2 by using the fact that

the parameters ζ, χ1, . . . , χk are independent from A’s view. For the same argument

to hold, we have to show that when those values are also used for simulating Owi(·),

they remain information theoretically hidden even after π is seen by the adversary.

For vk generated by Ovk(·), simulation is done just by calling the signing oracle, and,

as we know, the signature does not reveal any information about the parameters. On

the other hand, for vk that is not generated by Ovk(·), SSIG.Chk guarantees that there

exists a corresponding signing key sk. Since Π .Prove is witness indistinguishable and

there exists randomness that is consistent to a valid signature that could have been

generated by the signing algorithm using sk, like in the previous case the parameters

remain hidden. Thus the claim holds.

5.4 Signing Mixed-Group Messages in the Asym-

metric Setting

5.4.1 Overview

The signature schemes presented so far are capable of signing messages composed of

group elements from one of the base groups. In the symmetric setting Λsym, when

G1 = G2, it does not matter which base group it is. However, for the case when

there is no efficiently computable homomorphism from G1 to G2 (or G2 to G1), it is

not immediately clear how to sign messages composed of elements from both G1 and

G2. Such case can easily arise when using a structure-preserving signature scheme

with Groth-Sahai proofs in the asymmetric setting. This setting is often of interest

as it provides more efficient bit-size representation of the group elements and usually

107

requires simpler assumptions [62].

In this section, we construct a signature scheme with message space G
k1
1 × G

k2
2 .

It is worth pointing out that splitting the message into two parts, one in G
k1
1 and

another in G
k2
2 , and signing each of them independently results in a trivial forgery

after two signing queries.

5.4.2 Construction

Let SIG2 be the constant-size signature scheme from Section 5.1, whose message space

is Gk2
2 . Let SIG1 be a ‘dual’ scheme obtained by exchanging G1 and G2 in the same

scheme. Let the message space of SIG1 is Gk1+1
1 . (Note that we use the same letters

for variables in a signature. Accordingly, z, r,u, t, and w are in the same group as

the input message while s and v are in the other group.) By using these signature

scheme, we construct signature scheme XSIG whose message space be G
k1
1 × G

k2
2 as

follows. Let (~m, ~̃m) be a message in G
k1
1 × G

k2
2 . For vector ~m ∈ G

k1
1 and single

element s ∈ G1, let ~m||s denote a vector in G
k1+1
1 obtained by appending s to the

end of ~m. Let Λ = Λsxdh be given to the functions described below.

• XSIG.Key(1λ): Run (vk1, sk1) ← SIG1.Key(1λ) and (vk2, sk2) ← SIG2.Key(1λ).

Output (vk, sk) = ((vk1, vk2), (sk1, sk2)).

• XSIG.Sign(sk, (~m, ~̃m)): Run σ2 = (z, r, s, t,u,v,w)← SIG2.Sign(sk2, ~̃m)

and σ1 = (z′, r′, s′, t′,u′,v′,w′)← SIG1.Sign(sk1, ~m||s). Output σ = (σ1, σ2).

• XSIG.Vrf(vk, (~m, ~̃m), (σ1, σ2)): Take s ∈ G1 from σ2. Run b2 =

SIG2.Vrf(vk2, ~̃m, σ2) and b1 = SIG1.Vrf(vk1, ~m||s, σ1). Output 1 if b2 = b1 = 1.

Output 0, otherwise.

108

5.4.3 Security

Theorem 20. If SIG1 and SIG2 are EUF-CMA, so is XSIG.

Proof. Suppose that there is a successful adversary that launches chosen message

attacks and outputs a valid forgery, ((~m†, ~̃m†), (σ†1, σ
†
2)). Consider s† included in σ†2.

Observe that σ†1 is a signature for m†||s†. We then have 3 cases.

Type-I ~m†||s† has never been signed by the signing oracle. This case contradicts to

the unforgeability of SIG1.

Type-II ~̃m† has never been signed by the signing oracle. This case contradicts to

the unforgeability of SIG2.

Type-III Both ~m†||s† and ~̃m† have been signed by the signing oracle in separate

queries. This case contradicts the DBP assumption, as we will show.

Since the first two forgery cases are trivial, we focus on Type-III. We construct

a reduction algorithm that simulates the environment for adversary A launching

an adaptive chosen message attack on XSIG. The simulator only simulates SIG2 and

honestly acts with respect to SIG1. We thus describe the simulation only with respect

to SIG2. Given an instance of the DBP assumption, (Λ, gz, gr), the simulator works

as follows:

• (Key Generation): Choose random hz and hu from G∗1. Then, for i = 1, . . . , k2,

set gi = gχi
z gγi

r and hi = hχi
z hδi

u for random χi, γi, and δi in Zp, and

choose α, β ← Zp. Then compute {ai, ãi}
1
i=0 ← RandExtend(gr, g̃

α) and

{bi, b̃i}
1
i=0 ← RandExtend(hu, g̃

β). Output vk2 = (gz,hz, gr,hu, {gi,hi}
k2
i=1,

{ai, ãi,bi, b̃i}
1
i=0).

109

• (Signature Issuing): Given message ~̃m ∈ G
k2
2 , choose ζ , ρ, τ , ϕ, ω ← Zp and set

z = g̃ζ

k2∏

i=1

m̃−χi

i , r = g̃ζρ/τ+α

k2∏

i=1

m̃−γii , s = gτ
zg

ρ
r , t = g̃−ζ/τ

u = g̃ζϕ/ω+β
k2∏

i=1

m̃−δii , v = hω
zh

ϕ
u , w = g̃−ζ/ω.

Output σ2 = (z, r, s, t,u,v,w).

To see the correctness of the simulated signatures, observe that

ê(gz, z) ê(gr, r) ê(s, t)
k2∏

i=1

ê(gi, m̃i)

= ê

(
gz, g̃

ζ

k2∏

i=1

m̃−χi

i

)
ê

(
gr, g̃

ζρ/τ+α

k2∏

i=1

m̃−γii

)
ê (s, t)

k2∏

i=1

ê (gχi
z gγi

r , m̃i)

= ê
(
gz, g̃

ζ
)
ê
(
gr, g̃

ζρ/τ+α
)
ê
(
gτ
zg

ρ
r , g̃

−ζ/τ
)

= ê(gr, g̃
α) =

1∏

i=0

ê(ai, ãi)

holds. The other verification predicate holds in the same way. It is also not hard to

inspect that the signatures follow a proper distribution due to the random coins in

the simulation.

Let σ† = (σ†1, σ
†
2), where σ

†
2 = (z†, r†, s†, t†,u†,v†,w†), be the forged signature for

a message (~m†, ~̃m†). By the forgery type constraints, there exists a signing query

with message (~m†, ~̃m) such that ~̃m 6= ~̃m† and its signature σ2 = (z, r, s, t,u,v,w)

satisfies s = s†. Accordingly, we have

ê(gz, z
†) ê(gr, r

†) ê(s†, t†)

k2∏

i=1

ê(gi, m̃
†
i) = ê(gz, z) ê(gr, r) ê(s

†, t)

k2∏

i=1

ê(gi, m̃i).

(5.11)

Recall that s† = s = gτ
zg

ρ
r . By dividing the left-hand of the above equation by its

110

right-hand, we have

1 = ê

(
gz,

z†

z

)
ê

(
gr,

r†

r

)
ê

(
s†,

t†

t

) k2∏

i=1

ê

(
gi,

m̃†i
m̃i

)

= ê

(
gz,

z†

z

k2∏

i=1

(
m̃†i
m̃i

)χi
)
ê

(
gr,

r†

r

k2∏

i=1

(
m̃†i
m̃i

)γi)
ê

(
gτ
zg

ρ
r ,
t†

t

)

= ê(gz, z
?) ê(gr, r

?),

where z? = z†

z
(t

†

t
)τ
∏

i(
m̃

†
i

m̃i
)χi and r? = r†

r
(t

†

t
)ρ
∏

i(
m̃

†
i

m̃i
)γi.

Since ~̃m† 6= ~̃m, there exists i? such that m̃†i?/m̃i? 6= 1. Observe that χi? is

independent of the view of the adversary. Hence the probability that z? = 1 is

negligible. The reduction algorithm outputs (z?, r?) as a valid answer to the given

instance of DBP.

5.5 Strongly Unforgeable Signatures

The following generic construction of sEUF-CMA signature scheme is in [18]. Let SIG

be a signature scheme and OTS be a one-time signature scheme. The construction

requires that the message space of SIG covers the public-key space of OTS.

• FSIG1.Key(1λ): Run (vk, sk)← SIG.Key(1λ). Output (vk, sk).

• FSIG1.Sign(sk, ~m): (vko, sko) ← OTS.Key(1λ), σ1 ← SIG.Sign(sk, vko|| ~m),

σ2 ← OTS.Sign(sko, σ1). Output σ = (vko, σ1, σ2).

• FSIG1.Vrf(vk, ~m, σ): Parse σ into (vko, σ1, σ2). Compute b1 ←

SIG.Vrf(vk, vko|| ~m, σ1) and b2 ← OTS.Vrf(vko, σ1, σ2). Output 1 if b2 = b1 = 1.

Output 0, otherwise.

As shown in [18], signature scheme FSIG1 is strongly EUF-CMA if SIG is EUF-

CMA and OTS is sEUF-CMA against one-time chosen message attacks. In the one-

111

time chosen message attacks, the adversary is allowed to make at most one signing

query. We refer to [18] for a proof.

By instantiating SIG and OTS by the ones in Section 5.1 and Section 4.2.1 with

setting Λ = Λsym, the resulting FSIG1 outputs a signature of 32 group elements

(|vko| = 22, |σ1| = 7, |σ2| = 3) which is a constant in the size of ~m.

We can gain efficiency by using the same bases in SIG and OTS in the above

instantiation. Let FSIG2 denote this variant. Concretely, in FSIG2, one-time signature

OTS takes bases (gz,hz, gr,hu, g1,h1, . . . , g7,h7) from the verification key of SIG.

Then vko only includes a and b. As a result, a signature of FSIG2 consists of 12

group elements.

The generic security argument for FSIG1 no longer holds for FSIG2 since SIG and

OTS are not independent. We are still able to show that FSIG2 is sEUF-CMA as

follows.

Theorem 21. Signature scheme FSIG2 is sEUF-CMA if SFP holds for Λ = Λsym.

Proof. First observe that we cannot show a black-box reduction to the security of

SIG and OTS by using their signing oracles since they share the bases. We instead

construct reduction to their underlying assumptions. This is possible because, in both

security proofs for SIG and OTS, bases (g1,h1, . . . , g7,h7) in the verificaion keys are

set in the same manner with respect to (gz,hz, gr,hu). Thus, while we simulate the

signing oracle for SIG, we can also simulate signatures of OTS.

Let Osign(·) be the signing oracle of FSIG2. Suppose that an adversary outputs a

valid forgery (vk†o, σ
†
1, σ

†
2, ~m

†). Let Qi = (vko, σ1, σ2, ~m) for i = 1, . . . , q be the record

of interaction between the adversary and Osign(·).

For a type of adversary that causes (vk†o, ~m
†) 6= (vko, ~m) for any Qi, we construct

a reduction to SFP by simulating SIG as shown in the proof of Theorem 16. We also

112

simulate OTS as shown in the proof of Theorem 12. Note that the simulation of OTS

is possible since the way bases gi and hi are set in simulating SIG is exactly the same

as that in simulating OTS. Thus we can successfully simulate FSIG2 by using these

simulated SIG and OTS. It is important to see that exponents hidden in gi and hi

remain independent of the view of the adversary even with the simulation of OTS.

Thus a successful forgery results in a contradiction to SFP as shown in the proof of

Theorem 16.

For the other type of adversary that causes (vk†o, ~m
†) = (vko, ~m) and (σ†1, σ

†
2) 6=

(σ1, σ2) for some Qi? , we show a reduction to SDP by simulating OTS as shown in

the proof of Theorem 12. Since simulation of SIG needs an instance of SFP, we

generate a random instance of SFP from that of SDP as follows. Given an SDP

instance (gz,hz, gr,hu), set a = gα
r , b = hβ

u, and ã = b̃ = g̃. Then for j = 1, . . . , q,

compute reference Rj = (z, r,u, s, t,v,w) by choosing ζ ← Zp and setting z = g̃−ζ,

r′ = g̃α, s′ = gz, t
′ = g̃−ζ, u′ = g̃β, v′ = hz, w

′ = g̃ζ and applying (r, s, t,u,v,w)←

SigRand(r′, s′, t′,u′,v′,w′). The rest of the simulation for SIG is the same as that

in the proof of Theorem 16. As well as the previous case, the simulation of SIG

retains independent of the exponents hidden in gi and hi. Thus a successful forgery

contradicts to SDP as shown in the proof of Theorem 12. Finally, applying Theorem 3

to reduce SDP to SFP completes the proof.

5.6 Applications

We present constructions for round-optimal blind signatures following the framework

of [55], the efficient instantiation of which has been an open problem since Crypto’06;

and efficient fully secure group signatures supporting concurrent join procedure, with

previous constructions being in the random oracle model, secure under weaker model,

113

not supporting concurrent join procedure, or being inefficient. Our signature schemes

not only embody known modular protocol designs, but also achieve an excellent ef-

ficiency. These are good examples that enlighten again the usefulness of modular

protocol design and significance of developing efficient structure-preserving building

blocks.

5.6.1 Round-Optimal Blind Signatures

We present an efficient instantiation of Fischlin’s round-optimal blind signature

scheme [55]. In fact, we use the modification of [73, 4] for which the generic con-

struction uses a non-interactive witness indistinguishable (NIWI) proof system and

a simulatable signature scheme. This gives the first efficient round-optimal non-

committing blind signature scheme adaptively secure in the universally composability

(UC) framework [39].

The structure of the framework is the following. A user commits to a message

m with opening d and sends the commitment c to the signer. The signer signs

commitment c and returns the signature σ to the user. Then the user computes a

NIWI argument π with a witness (c, d, σ) for the fact that he knows a commitment

c of the message m, he knows the correct opening d, and he has a valid signature on

c with respect to a verification key vk of the signer. The security follows from the

generic framework in [4].

To instantiate this generic scheme, we use the GS proof system, the simulatable

signature scheme SSIG from Section 5.3 for k = 1 (i.e. for signing only a single group

element), and the commitment scheme TC4 in Section 4.1.4. In fact, any commit-

ment scheme suffices for our purpose as long as commitment key, commitments, and

openings to be group elements and the verification is by pairing product equations.

114

The choice of TC4 is due to the efficiency; it has the smallest commitment size.

Let Λ ∈ {Λsym,Λsxdh} be the common parameter. Let (ck, tk) ← TC4.Key(1λ),

(crs′, tk′)← SSIG.Crs(1λ), and crs be the common reference string for the GS argu-

ment system. Concretely, those are ck = f̃ ∈ G2, vk = (gz,hz, gr,hu, g1,h1) ∈ G6
1,

and crs is set up in the way the simulated CRS is created according to Section 2.4.

The CRS for the blind signature scheme is Σ = (Λ, ck, crs′, crs). A signer runs

(vk, sk) ← SSIG.Key(crs′) where vk = (A,B, σ∗) and publish vk as his verification

key. The blind signature issuing protocols are as follows:

• On input m ∈ Zp, a user computes (c, d) ← TC4.Com(ck, m) where (c, d) =

(g̃mf̃ δ, gδ) ∈ G2 ×G1. Then the user sends c to the signer.

• The signer computes (z, r, s, t,u,v,w) ← SSIG.Sign(sk, c) and sends back the

signature σ to the user.

• The user computes (r′, s′, t′,u′,v′,w′) ← SigRand(r, s, t,u,v,w) as in Sec-

tion 5.1.3, and gives a GS argument π with a witness (c, d, z, r′,u′) for the

pairing product equations

ê(g, c) ê(d, f̃−1) = ê(g, g̃m), (5.12)

ê(gz, z) ê(gr, r
′) ê(g1, c) = A · ê(s′, t′)−1, (5.13)

ê(hz, z) ê(hu,u
′) ê(h1, c) = B · ê(v′,w′)−1. (5.14)

Then output a signature σBS = (s′, t′,v′,w′, π) for m.

Given (σBS, m), a verifier accepts σBS = (s′, t′,v′,w′, π) if π is a correct GS-proof

with respect to relations (5.12), (5.13), and (5.14).

In the construction, the use of SigRand is for better efficiency and does not affect

to the framework due to the nature of perfect randomness. The resulting blind

115

Scheme #rounds Communication Sig.Size Sec.Model Assump.

Oka06[86] 4 3[N
2], 4[1], 10[p] 4[1], 1[p] SA 2SDH,DCR

KZ08[79] 6 9[N
2], 7[1], 7[p] 4[1], 1[p] UC 2SDH,DCR

Fuc10[56] 2 22[1] 30[1] SA DAHSDH,HDL,DLIN

This Work 2 8[1] 28[1] UC SFP, DLIN

Table 5.1: Summary of efficiency of concurrently secure efficient blind signatures in the

standard model. Columns for “Communication” and “Signature Size” count the number

of elements, indicating the groups they belong to ([N2], [1], and [p], respectively, for ZN2 ,

G1 and Zp). UC: Universally Composable Security with Adaptive Corruption [40, 4]. SA:

Stand-Alone Security. 2SDH: 2-Variable Strong Diffie-Hellman Assumption [86]. DCR:

Decision Composite Residuosity [88]. DAHSDH,HDL: See [56]

signature consists of 4 group elements, 5 GS commitments to group elements, and

proof elements for 3 pairing product equations. Note that when Λ = Λsym, we could

swap the elements in the second pairing of equation (5.12) and get all three equations

to be one-sided pairing products. Thus, the size of final blind signature is 28 group

elements for Λ = Λsym using GS-proof system with DLIN setting. It can be reduced

to 26 group elements (precisely 8 in G1 and 18 in G2) for Λ = Λsxdh using GS-proof

system in the Λsxdh setting. The communication complexity is quite low. Only 8

group elements are exchanged in total, and achieves optimal 2 moves. These figures

could be a good efficiency standard for “crafted” constructions to compare.

By replacing SSIG with SIG from Section 5.1, one could also instantiate the very

original Fischlin’s scheme that is secure against static adversaries. This, however,

requires NIZK proofs and hence becomes less efficient; NIZK requires that we replace

A and B with their pairing product representations as originally described for SIG in

Section 5.1. We also remark that the construction can be extended to a partially-blind

116

scheme [2] as SSIG (and SIG) can sign multiple group elements at once.

Table 5.1 summaries efficiency of some known blind signature schemes. There

are other schemes that achieve concurrent security without random oracles, e.g.,

[34, 78, 73, 79]. [86] is a representative from those without GS-proofs. Sizes for

[86] vary in parameter setting and include some approximation. Numbers for [79]

translates numbers in ZN3 and ZN into that of ZN2 with appropriate factors . (Pre-

cisely, 9[N
2] is a translation of 1[N

3] +6[N
2] +3[N].) Our instantiation is very strong in

communication while the schemes in [86, 79] with classical blind-then-unblind struc-

ture have an advantage in the signature size.

5.6.2 Group Signatures with Concurrent Join

This section highlights a useful property of our signature schemes that the message

space is compatible with the verification key space. In particular, we present the most

efficient instantiation of a group signature scheme that allows efficient concurrent join

protocol [77].

In the symmetric setting Λ = Λsym, the message space of USIG1 from Section 5.2

includes the verification key space. This allows Alice to sign Bob’s key and Bob can

sign Charlie’s key and so on. Such a chaining can be hidden by applying NIZK. A

signature scheme which is capable of signing its own verification key is introduced as

“automorphic” in [56]. It is proven to have some interesting high-level applications

such as proxy signatures.

Conceptually, a group signature scheme is a special case of such anonymous dele-

gation system with only one hop of delegation. As sketched in [38] and embodied in

[77], the above single-round certification protocol between Alice and Bob brings some

favorable properties in the construction of efficient group signature schemes.

117

The security requirements for a group signature scheme are: correctness, which

guarantees that the algorithms succeed for honestly behaving users; anonymity, which

ensures that the signature does not reveal the signer’s identity; and traceability, which

guarantees that all signatures can be traced to a real signer (with non-frameability

ensuring that that signer participated in the computation of the signature). The

second property appears in two flavors in the literature: CPA-anonymity and CCA-

anonymity, with the latter providing the adversary with access to an opening (tracing)

oracle before and after receiving the challenge signature, whereas for the former the

adversary has no such oracle access. For formal definitions and more detailed discus-

sions of the two models refer to [15, 22, 17].

In the following, we revisit the general idea of [38, 77, 67] with CPA-anonymity [22]

by using terminology of proof of knowledge. The construction extends to CCA-

anonymity by following the generic construction in [67]. Let SIG0 and SIG1 be sig-

nature schemes, and Π be a witness indistinguishable proof of knowledge system.

A group signature, GSIG, consists of 5 algorithms {Setup, Join, Sign,Vrf,Open} such

that:

• GSIG.Setup is a setup algorithm that takes security parameter 1λ and runs

(vkc, skc) ← SIG0.Key(1λ) and (crs, sko) ← Π.Crs(1λ). Group verification-key

is vkg = (vkc, crs). The certification-key skc is given privately to the issuer and

the opening-key sko is given privately to the opener.

• GSIG.Join is an interactive protocol between a group member and the issuer.

The group member generates his own key-pair (vku, sku) ← SIG1.Key(1λ) and

send vku to the issuer. The issuer signs on vku by σc ← SIG0.Sign(skc, vku) and

send the certificate σc to the member.

• GSIG.Sign is a signing algorithm run by a group member to sign message m.

118

It consists of signing on message m by σu ← SIG1.Sign(sku, m) and gener-

ating a NIWI proof of knowledge π ← Π .Prove(crs, y, x) which proves that

SIG0.Vrf(vkc, vku, σc) = 1 and SIG1.Vrf(vku, m, σu) = 1 with respect to a wit-

ness x = (vku, σc, σu) for the statement y = (vkc, m). The final output is π

which is a group signature.

• GSIG.Vrf takes (vkg, m, π) as input and verifies correctness of π with respect to

y = (vkc, m) for the common reference string crs.

• GSIG.Open is an opening algorithm run by the opener who has opening-key sko.

Given π and sko as input, the algorithm runs the knowledge extractor of the

NIWI proof system and extracts witness (vku, σc, σu). The exposed verification

key vku identifies the group member who actually created π. This algorithm

will be associated with another algorithm that publicly verifies the correctness

of the opening.

Theorem 22. Group signature scheme GSIG is CPA-anonymous, traceable, and non-

frameable.

We refer to [22] and [17] for formal definitions of the security notions stated in the

theorem. Intuitively, CPA-anonymity is that the adversary cannot distinguish group

signatures from two members. As IND-CPA security, the adversary is not given oracle

access to the opener. Traceability guarantees that once a group signature is opened,

it identifies a group member who once completed GSIG.Join. Non-frameability means

that no one but a group member can issue a valid group signature that points to the

member if opened.

Proof. CPA-anonymity follows directly from the (computational) WI property [71]

of the proof system Π . For traceability, suppose that there is a valid signature π on

119

messagem. Due to the knowledge soundness of Π , the opener can extract (vku, σc, σu)

from π and (vku, σc) fulfills 1 = SIG0.Vrf(vkc, vku, σc). If vku does not point any group

member registered through GSIG.Join, σc is a valid forgery for SIG0, which contradicts

to the EUF-CMA property of SIG0. Thus vku allows tracing. For non-frameability,

suppose that the opener extracts (vku, σc, σu) from a group signature on message m.

If 1 = SIG1.Vrf(vku, m, σu) holds but the owner of vku have never signed on m, it is

a valid forgery against SIG1, contradicting the EUF-CMA property of SIG1.

As mentioned in [77], the above framework has been known without efficient in-

stantiation in the standard model. Using our main signature scheme SIG as SIG0 and

GS-proof system as Π , we can instantiate the construction efficiently. We assess the

efficiency in the setting Λ = Λsym as follows. Let SIG1 be a signature scheme whose ver-

ification key vku and signature σu consist of α and β group elements, respectively. Let

γ be the number of group elements needed to prove relation 1 = SIG1.Vrf(vku, m, σu)

including GS-commitments for vku and σu. Regardless of size vku to be certified,

our SIG0 outputs σc of size 7. Since 4 out of the 7 elements in σc can be perfectly

randomized and given in the clear as we have done in Section 5.6.1, we need only 3

GS-commitments in proving relation 1 = SIG0.Vrf(vkc, vku, σc), which consists of two

one-sided pairing product equations and costs 6 elements in a proof. (Commitments

of vku is already included in γ.) In total, this gives a group signature of size 19 + γ.

Alternatively, one can instantiate SIG0 with the signature scheme in [44], that has

9α + 4 elements in σc and 3α + 3 one-sided and 3α double-sided pairing product

equations in SIG0.Vrf . In that case, the size of a group signature is 63α+ 21 + γ.

If we instantiate SIG1 with the full EUF-CMA Boneh-Boyen signature scheme

from [21], vku consists of α = 4 group elements (including the bases). A signature

consists of one group element and one scalar value but the scalar value is totally

120

Scheme Concurrent Non- Signature Assumptions

Join Frameability Size

BW07[29] yes no 6[N] SD, HSDH

Gro07[67] no yes 28[1] SDH, q-U, DLIN

GSIG([44]+BB[21]) yes yes 297[1], 1[p] DLIN,SDH,HSDH

GSIG(SIG+BB[21]) yes yes 43[1], 1[p] SFP, SDH

Table 5.2: Summary of efficiency and properties of group signature schemes with CPA-

anonymity in the standard model. The signature size counts the number of elements and

indicating the groups they belong to ([1], [N], and [p] respectively for G1, ZN , and Zp). SD:

Subgroup Decision Assumption [25]. q-U: See [67].

random and independent of the verification-key. So we have 4 + 1 GS-commitments

in proving 1 = SIG1.Vrf(vku, m, σu). The verification predicate consists of a double-

sided pairing product equation, which yields 9 group elements in a proof. In total, we

have γ = 24 and a group signature consists of 43 group elements and 1 scalar value.

With [44] for SIG0, the signature size will be 297 group elements and 1 scalar value.

These figures can be slightly decreased by using the GS proofs in the SXDH setting.

Table 5.2 summarizes some efficient group signature schemes that provide CPA-

anonymity in the standard model with non-interactive assumptions. ([77] allows

concurrent join but the security is argued in the random oracle model [16]. A scheme

in [9] is non-frameable but only allows sequential join. It bases on strong interactive

assumptions.) [29] (and also [28]) provides efficiency with reasonable assumptions but

are frameable. The scheme in [67] is non-frameable but does not allow concurrent join

as their Join protocol includes 6 rounds of interaction. Also, the traceability of [67]

demands a strong dedicated assumption on top of the security of the building blocks.

Our construction GSIG(SIG+BB[21]) yields a signature that includes 15 more group

121

elements than that of [67]. This is the price for achieving concurrent join property and

allowing very simple and modular security argument without dedicated assumptions.

One of the advantages of using our SIG for SIG0 is that it allows inserting a

warranty in the clear to σc so that the signing policy given to a group member is

explicit. Due to the constant-size property of SIG, this useful extension can be done

without impacting to the size of the group signature (except for the warranty itself)

at all.

Finally, point out that our scheme is easily extended for CCA-anonymity using the

approach from [67]. This done with the use of a strong one-time signature scheme and

a IND-CCA encryption with labels (or selective-tag CCA secure tag-based public-key

encryption scheme [80]).

• GSIG.Setup is a setup algorithm that takes security parameter 1λ and runs

(pk, skenc) ← ENC.Key(1λ), (vkc, skc) ← SIG0.Key(1λ), and (crs, sko) ←

Π.Crs(1λ). Group verification-key is vkg = (pk, vkc, crs). The certification-key

skc is given privately to the issuer and the opening-key sko is given privately

to the opener.

• GSIG.Join is an interactive protocol between a group member and the issuer.

The group member generates his own key-pair (vku, sku) ← SIG1.Key(1λ) and

send vku to the issuer. The issuer signs on vku by σc ← SIG0.Sign(skc, vku) and

send the certificate σc to the member.

• GSIG.Sign is a signing algorithm run by a group member to sign message m. It

consists of generating one-time key pair (vkots, skots) ← OTS.Key(1λ), signing

the one-time verification key vkots by σu ← SIG1.Sign(sku, vkots), encrypting

σu under the public key pk with a label vkots by c ← ENC.Encvkots(pk, σu; r),

and generating a NIWI proof of knowledge π ← Π .Prove(crs, y′, x′) which

122

proves that SIG0.Vrf(vkc, vku, σc) = 1 and SIG1.Vrf(vku, vkots, σu) = 1, and

a NIZK proof ψ ← Π .Prove(crs, y′′, x′′) that ENCvkots(pk, σu; r) = c. The

joint witness and statement for the proofs are x = (vku, σc, σu, r) and y =

(pk, vkc, m, vkots, c). Finally, sign everything with the one-time key: σots ←

OTS.Sign(skots, (π, ψ, c, vkots, m)). Output as the group signature.

• GSIG.Vrf takes (vkg, m, (π, ψ, c, vkots, σots)) as input and verifies correct-

ness of the proofs with respect to the right statements as well as

OTS.Vrf(vkots, (π, ψ, c, vkots, m), σots) = 1.

• GSIG.Open is an opening algorithm run by the opener who has the opening-key

sko. Given a group signature (π, ψ, c, vkots, σots), the algorithm runs the knowl-

edge extractor of the NIWI proof system for the proof π and extracts witness

(vku, σc, σu). The exposed verification key vku identifies the group member who

actually created π.

This strengthening costs extra 15 group elements in a signature. Accordingly, we

have a CCA-anonymous group signature scheme with concurrent join whose signature

consists of 58 group elements and one scalar value.

123

Chapter 6

Structure-Preserving Encryption

We construct a structure-preserving IND-CCA encryption scheme, secure under DLIN

in the Λsym setting. For simplicity, we describe the scheme when encrypting a mes-

sage that is a single group element in G, but it is easily extended to encrypt a

vector of group elements. The scheme shares some similarities with the encryption

of Cramer and Shoup [46, 48] and the Linear Cramer-Shoup encryption described

by Schacham [99]. Those scheme are usually implemented using cryptographic hash

functions, but could also be realized in a hash-free manner by treating a part of

the ciphertext as a sequence of bits [46, 48]. However, neither version preserves the

underlying algebraic structure, hence the schemes are not structure-preserving.

Then, we use our construction to build a two-party protocol for joint computation

of ciphertext. Such protocol previously could not be realized efficiently using the

existing encryption schemes. We describe the proof of security through the ideal-

world/real-world paradigm, similarly to [36], which can easily be extended to a proof

in the more general simulation-based models by Canetti [39] and Küsters [81].

124

6.1 Structure-Preserving Encryption

Let Λ := (p,G,GT , ê, g). We construct a structure-preserving encryption ENC =

(ENC.Key,ENC.Enc,ENC.Dec) which supports labels. For simplicity, we assume that

a label ` is a single group element, but the scheme extends trivially for the case of

label being a vector of group elements. Also, labels from the space {0, 1}∗ could be

hashed to one or several group elements, but in that case they have to be part of the

statement rather than the witness for any NIZK proof.

• ENC.Key(1λ): Choose random group generators g1, g2, g3 ← G∗. For randomly

chosen ~x ← Z
3
p set h1 = gx1

1 gx3

3 , h2 = gx2

2 gx3

3 . Then, select ~y0, . . . , ~y5 ← Z
3
p,

and compute fi,1 = g
yi,1
1 g

yi,3
3 , fi,2 = g

yi,2
2 g

yi,3
3 , for i = 0, . . . , 5. Output pk =

(g1, g2, g3,h1,h2, {fi,1, fi,2}
5
i=0) and sk = (~x, {~y}5i=0).

• ENC.Enc`(pk,m): Choose random r, s← Zp and set

u1 = gr
1, u2 = gs

2, u3 = gr+s
3 , c = m · hr

1h
s
2,

V =

3∏

i=0

ê(f ri,1f
s
i,2,ui) · ê(f

r
4,1f

s
4,2, c) · ê(f

r
5,1f

s
5,2, `),

where u0 = g. Output c = (u1,u2,u3, c,V).

• ENC.Dec`(sk, c): Parse c as (u1,u2,u3, c,V). Then check whether

V
?
=

3∏

i=0

ê(u
yi,1
1 u

yi,2
2 u

yi,3
3 ,ui) · ê(u

y4,1
1 u

y4,2
2 u

y4,3
3 , c) · ê(u

y5,1
1 u

y5,2
2 u

y5,3
3 , `),

where u0 = g. If unsuccessful, reject the ciphertext as invalid.

Otherwise, output m = c · (ux1

1 ux2

2 ux3

3)−1.

Note that using the one-side randomization RandOneSide from Section 2.5, V ∈ GT

can be replaced by six random group elements v0, . . . ,v5 ∈ G for which the following

125

equation holds: V =
∏3

i=0 ê(vi,ui)·ê(v4, c)·ê(v5, `). This way, the ciphertext consists

only of elements from the base group.

To observe correctness of decryption, note that

c · (ux1

1 ux2

2 ux3

3)−1 = m · hr
1h

s
2 ·
(
(gr

1)
x1(gs

2)
x2(gr+s

3)x3
)−1

= m · (gx1

1 gx3

3)r(gx2

2 gx3

3)s ·
(
(gr

1)
x1(gs

2)
x2(gr+s

3)x3
)−1

= m.

The correctness of the validity element V can be verified similarly. Next we show the

IND-CCA security of the scheme.

Theorem 23. If DLIN holds for Λsym, the encryption scheme is IND-CCA.

Proof. We proceed in a sequence of games by modifying ExpIND-CCA in each of them.

We start with a game where the experiment is defined as in Definition 4. In that

experiment the challenge ciphertext is an encryption of mb, for a randomly chosen

bit b, where m0,m1 are the messages produced by A. In the last game, the exper-

iment produces a challenge ciphertext which is an encryption of a message chosen

uniformly at random from the message space. Then, we show that all those games

are computationally indistinguishable.

Game 0: The experiment is defined according to ExpIND-CCA.

Game 1: The experiment is modified so that the challenge ciphertext is computed

using the “decryption procedure”, i.e., c = m · ux1

1 ux2

2 ux3

3 and V is computed

the way it is verified. The change is only syntactical, so the two games are

identical from A’s perspective.

Game 2: The randomness vector ~u = (u1,u2,u3) of the challenge ciphertext is com-

puted as non-DLIN tuple, i.e., u1 = gr
1, u2 = gs

2, u3 = gt
3 where r, s, t ← Zp

and r+s 6= t. The experiments in Game 1 and Game 2 are indistinguishable by

126

DLIN. Note that all decryption queries with ciphertext which has a randomness

vector a DLIN tuple yield a unique plaintext and do not reveal any information

about the secret key.

Game 3: All decryption queries with ciphertext c which has a non-DLIN randomness

vector ~u are rejected. Consider the two possible cases:

• (~u?, c?, `?) = (~u, c, `). Such decryption query is rejected because it is either

the challenge ciphertext (when V = V?) or the verification predicate fails

trivially (when V 6= V?). This case is the same in the previous game.

• otherwise, when (~u?, c?, `?) 6= (~u, c, `). By Lemma 7, such decryption

query is always rejected in Game 2 except for a negligible probability,

whereas in Game 3 it is always rejected.

As the number of decryption queries is polynomial the experiments in Game 2

and Game 3 are indistinguishable except with a negligible probability.

Game 4: The challenge ciphertext encrypts a random message from the message

space. Game 3 and Game 4 are (information theoretically) indistinguishable by

Lemma 6.

In the last game, the challenge bit b is independent from the ciphertext, so the

experiment returns 1 with probability 1
2
. By the indistinguishability of the consecutive

games, A wins ExpIND-CCA with probability 1
2
+ negl(λ).

In the next two lemmas, let g1, g2, g3 ← G∗ and u1 = gr
1, u2 = gs

2, u3 = gt
3, where

r, s, t are randomly chosen from Zp such that r + s 6= t. And for convenience, let us

denote with z1, z2, z3 the discrete logarithms of g1, g2, g3 with base g.

127

Lemma 6. For randomly chosen ~x ← Z3
p, let h1 = gx1

1 gx3

3 , h2 = gx2

2 gx3

3 , and π =

ux1

1 ux2

2 ux3

3 . Then for a randomly chosen ψ ← G it is true that (h1,h2, π) ≡ (h1,h2, ψ),

where “≡” denotes distributional equivalence.

Proof. Note that h1 = gx1z1+x3z3 and h2 = gx2z2+x3z3 . Then, for the tuple (h1,h2, π)

the following equation holds:

z1 0 z3

0 z2 z3

rz1 sz2 tz3

·

x1

x2

x3

=

dlogg(h1)

dlogg(h2)

dlogg(π)

Denote the leftmost matrix by M . It has a determinant det(M) = z1z2z3(t− r − s)

which is not equal to 0 due to the choice of the parameters. Therefore the matrix is

invertible and for any π ∈ G, and fixed h1,h2, there exist a unique ~x which yields the

tuple (h1,h2, π).

Lemma 7. Let ~u? = (u?
1,u

?
2,u

?
2) be any tuple such that u?

1 = gr?

1 , u?
2 = gs?

2 , and u?
3 =

gt?

3 , for r
?+ s? 6= t?. And for randomly chosen ~y0, ~y1, . . . , ~y5 ← Z

3
p, let fi,1 = g

yi,1
1 g

yi,3
3 ,

fi,2 = g
yi,2
2 g

yi,3
3 , where i = 0, . . . , 5. For ~m and ~m? in G5, let π and π? denote

π =

5∏

i=0

ê(u
yi,1
1 u

yi,2
2 u

yi,3
3 ,mi) and π? =

5∏

i=0

ê((u?
1)

yi,1(u?
2)

yi,2(u?
3)

yi,3 ,m?
i),

where m0 = m?
0 = g. Then, for any ~m and ~m?, ~m 6= ~m?, the following distributional

equivalence hold: ({fi,1fi,2}
5
i=0, π, π

?) ≡ ({fi,1fi,2}
5
i=0, π, ψ), where ψ ← GT .

Proof. Similarly to the proof of the previous lemma, let us define all variables

which depend on {~y0} as result of a constant matrix M multiplied by the vector

(~y0||~y1|| . . . ||~y5). For convenience, denote with wi = dlogg(mi) and w
?
i = dlogg(m

?
i),

128

for i = 1, . . . , 5. Then, for a matrix

M =

z1 0 z3 − − − . . . − − −

0 z2 z3 − − − . . . − − −

− − − z1 0 z3 . . . − − −

− − − 0 z2 z3 . . . − − −

...
...

...
...

...
...

. . .
...

...
...

− − − − − − . . . z1 0 z3

− − − − − − . . . 0 z2 z3

rz1 sz2 tz3 w1rz1 w1sz2 w1tz3 . . . w5rz1 w5sz2 w5tz3

r?z1 s?z2 t?z3 w?
1r

?z1 w?
1s

?z2 w?
1t

?z3 . . . w?
5r

?z1 w?
5s

?z2 w?
5t

?z3

,

we have

M ·

|

~y0

|

...

|

~y5

|

=

dlogg(f0,1)

dlogg(f0,2)

...

dlogg(f5,1)

dlogg(f5,2)

dlogê(g,g)(π)

dlogê(g,g)(π
?)

.

We would like to argue that the rows of the matrix M are linearly independent. As

there exist i such that mi 6= m?
i , then if we choose the sub-matrix M ′ consisting

of the intersection of the last two rows and rows 1, 2, 2i + 1, 2i + 2 with columns

129

1, 2, 3, 3i+ 1, 3i+ 2, 3i+ 3, we get:

M ′ =

z1 0 z3 0 0 0

0 z2 z3 0 0 0

0 0 0 z1 0 z3

0 0 0 0 z2 z3

rz1 sz2 tz3 wirz1 wisz2 witz3

r?z1 s?z2 t?z3 w?
i r

?z1 w?
i s

?z2 w?
i t

?z3

.

If the rows of M are not linearly independent, so are the rows of M ′. However, M ′

has a determinant det(M ′) = ±z21z
2
2z

2
3(w − w

?)(t − r − s)(t? − r? − s?) which is not

equal to 0 due to choice of the parameters. Therefore, the rows of M are linearly

independent.

6.2 Application: Joint Computation of Ciphertext

We consider a two-party protocol, each party in possession of some secret value, for

a joint computation of a ciphertext of a function of the two secrets, encrypted under

a third-party public key pk. We study the case where only the first party learns the

ciphertext whereas the second has no output. We assume that the public inputs, i.e,

the function, the third-party public key, and commitments of the secrets, are agreed

upon prior to the execution of the protocol.

The idea of the protocol is that the first party computes a partial and blinded

encryption of their secret and sends it to the other party. Also, the first party proves

that the computation is carried correctly. The second party takes the values from

the first flow of the protocol and using its secret and some randomness computes a

blinded full encryption of the agreed function of the two secret keys. Then, the second

party sends those values and proves that they are computed correctly. Finally, the

130

P1’s input: P2’s input:

x1, w1, a
x2bw2 , pk x2, w2, a

x1bw1 , pk

ū′

1 = gt1 · gr1
1 ,

ū′

2 = gt2 · gs1
2 ,

ū′

3 = gt3 · gr1+s1
3 ,

ū′

4 = gt4 · ax1 · hr1
1 hs1

2 ,

V̄′

1 =
∏4

i=1
ê(fi,1,g

ti) · ê(g1,g
t5),

V̄′

2 =
∏4

i=1
ê(fi,2,g

ti) · ê(g2,g
t6),

ū′

1, ū
′

2, ū
′

3, ū
′

4, V̄
′

1, V̄
′

2
-

proof of correct comp.π1
-

ū0 = g,

ū1 = ū′

1 · g
r2
1 ,

ū2 = ū′

2 · g
s2
2 ,

ū3 = ū′

3 · g
r2+s2
3 ,

ū4 = ū′

4 · a
x2 · hr2

1 hs2
2 ,

V̄ =
(∏4

i=0
ê(fi,1, ūi)/V̄

′

1

)r2
(∏4

i=0
ê(fi,2, ūi)/V̄

′

2

)s2
,

ū1, ū2, ū3, ū4, V̄
�

proof of correct comp.π2
�

u0 = g,

u1 = ū1/g
t1 = gr

1

u2 = ū2/g
t2 = gs

2

u3 = ū3/g
t3 = gr+s

3

u4 = ū4/g
t4 = ax1+x2 · hr

1h
s
2

V = V̄ ê(u1g
−r1
1 ,gt5) ê(u2g

−s1
2 ,gt6)

∏4

i=0
ê(fr1i,1f

s1
i,2,ui)

Figure 6.1: Joint ciphertext computation.

131

first party unblinds the ciphertext and updates the consistency element to obtain a

valid encryption of the function of the two secrets under jointly chosen randomness.

The function can be a constant to the power of any polynomial of the two secrets;

for simplicity, we consider the function ax1+x2 where a is a fixed group element and

x1, x2 are the two secrets.

Recall the structure of the ciphertext of the public-key encryption scheme de-

scribed in Section 6.1: for a public key pk = (g1, g2, g3,h1,h2, {fi,1, fi,2}
4
i=0) and

randomly chosen r, s← Zp, the ciphertext is computed as

(u1,u2,u3,u4,V) =

(
gr
1, g

s
2, g

r+s
3 , m · hr

1h
s
2,

4∏

i=0

ê(f ri,1f
s
i,2,ui)

)
,where u0 = g.

Recall that the encryption supports labels, and our protocol can easily be modified

to support labels, but we omit that in favor of a clearer presentation.

Note that the protocol on Figure 6.1 computes a valid ciphertext because u1 = gr
1

for r = r1 + r2, u2 = gs
2 for s = s1 + s2, u3 = gr+s

3 , u4 = m · hr
1h

s
2 for m = ax1+x2,

and V =
∏4

i=0 ê(f
r
i,1f

s
i,2,ui). To see V is indeed computed this way, note that:

V̄ =

(
4∏

i=0

ê(fi,1, ūi)/V̄
′
1

)r2 (4∏

i=0

ê(fi,2, ūi)/V̄
′
2

)s2

=

∏4
i=0 ê(f

r2
i,1f

s1
i,2,ui)

ê(g1, gt5)r2 ê(g2, gt6)s2

and

V̄ ê

(
u1

gr1
1

, gt5

)
ê

(
u2

gs1
2

, gt6

)
= V̄ ê(gr2

1 , g
t5) ê(gs2

2 , g
t6) =

4∏

i=0

ê(f r2i,1f
s2
i,2,ui).

The security of the protocol is shown using the real-world/ideal-world paradigm.

In the ideal experiment, the joint computation is performed by a trusted party to

which the two parties simply give their secrets, and the trusted party carries the

computation and returns the corresponding outputs. In the real experiment, the

two parties execute the described protocol. The security requirement is that for any

misbehaving party A in the real experiment, there is a corresponding misbehaving

132

party B in the ideal experiment, for which no efficient distinguisher can tell between

the two experiments. But before proceeding with the security proof, let us see how

π1 and π2 are implemented

As we will see later, some elements of the witness for π1 and π2 have to be ex-

tractable in order security to hold. However, the witness consists only of exponents,

and if one wants to uses GS proofs, each exponent would have to be committed bit-

by-by (and proof equations adjusted) in order to be able to extract it. However, this

would be costly. Given that the protocol is interactive by nature, we favor the efficient

ZK proofs of knowledge using “sigma-protocols”.

The proofs of correct computation are carried using the notation and implementa-

tion from [30] which extend trivially to the bilinear setting when the bases are publicly

known group elements. The proofs π1 and π2 are computed as follows:

π1 = ∃ t1, . . . , t4 Kx1, r1, s1, t5, t6 :

ū′1 = gt1 · gr1
1 ∧ ū′2 = gt2 · gs1

2 ∧ ū′3 = gt3 · gr1+s1
3 ∧

ū′4 = gt4 · ax1 · hr1
1 hs1

2 ∧

V̄′1 =

4∏

i=1

ê(fi,1, g
ti) · ê(g1, g

t5) ∧ V̄′2 =

4∏

i=1

ê(fi,2, g
ti) · ê(g2, g

t6)

and

π2 = ∃ r2, s2 Kx2 :

ū1 = ū′1 · g
r2
1 ∧ ū2 = ū′2 · g

s2
2 ∧ ū3 = ū′3 · g

r2+s2
3 ∧

ū4 = ū′4 · a
x2 · hr2

1 hs2
2 ∧

V̄ =

(
4∏

i=0

ê(fi,1, ūi)/V̄
′
1

)r2 (4∏

i=0

ê(fi,2, ūi)/V̄
′
2

)s2

,

where ū0 = g.

To prove security of the above described protocol, we show that for any adversary

133

A attacking the real protocol, there exist an adversary B which attacks the ideal one.

As usual, B runs the real protocol with an instance of A internally and simulates the

protocol execution. The two cases to be considered for the security proof are when

P1 is corrupted and P2 is honest, and vice versa.

For the case when P1 is corrupted by A, in the first step B receives ū′1, ū
′
2, ū

′
3, ū

′
4,

V̄′1, V̄′2 as well as π1. Using the property of the proof system, B extracts

x1, r1, s1, t5, t6, and computes gt1 , . . . , gt4 from the elements received from A. Then,

B hands over x1 to the trusted party and receives back (u?
1,u

?
2,u

?
3,u

?
4,V

?) which is

the ciphertext to be computed at the end by P1. B computes:

ū1 = u?
1 · g

t1 , ū2 = u?
2 · g

t2 , ū3 = u?
3 · g

t3 , ū4 = u?
4 · g

t4 , and

V̄ = V? ·

(
ê

(
u?
1

gr1
1

, gt5

)
ê

(
u?
2

gs1
2

, gt6

) 4∏

i=0

ê
(
f r1i,1f

s1
i,2,u

?
i

)
)−1

,

and sends those to P1. The proof π2 is simulated using the ZK property of the proof

system.

In the case when P2 is corrupt, B chooses random ū′1, ū
′
2, ū

′
3, ū

′
4 ← G and V̄′ ←

GT , and delivers those to together with simulated proof π1. In the next step, B receives

from P2 the values ū1, ū2, ū3, ū4, V̄ as well as a proof π2 from which B extracts x2.

Finally, B submits x2 to the trusted party.

So, using interactive ZK proofs of knowledge, borrowing techniques from [30],

which require the strong RSA assumption [11] and the DCR assumption [88] to hold

for the appropriate additional groups, the two-party protocol described in Figure 6.1

is secure if DLIN holds for G.

134

Bibliography

[1] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-

preserving signatures and commitments to group elements. In Advances in

Cryptology - CRYPTO 2010, LNCS, pages 209–237. Springer-Verlag, 2010.

[2] M. Abe and E. Fujisaki. How to date blind signatures. In K. Kim and T. Mat-

sumoto, editors, Advances in Cryptology – ASIACRYPT ’96, volume 1163 of

LNCS, pages 244–251. Springer-Verlag, 1996.

[3] M. Abe, K. Haralambiev, and M. Ohkubo. Signing on group elements for

modular protocol designs. Cryptology ePrint Archive, Report 2010/133, 2010.

http://eprint.iacr.org.

[4] M. Abe and M. Ohkubo. A framework for universally composable non-

committing blind signatures. In M. Matsui, editor, Advances in Cryptology

- ASIACRYPT 2009, volume 5912 of LNCS, pages 435–450. Springer-Verlag,

2009.

[5] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits

and cryptography against memory attacks. In TCC, pages 474–495, 2009.

135

http://eprint.iacr.org

[6] J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs. Public-key

encryption in the bounded-retrieval model. In EUROCRYPT, pages 113–134,

2010.

[7] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography

in the bounded-retrieval model. In CRYPTO, pages 36–54, 2009.

[8] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital

signatures (extended abstract). In EUROCRYPT, pages 591–606, 1998.

[9] G. Ateniese, J. Camenisch, S. hohenberger, and B. de Medeiros. Practical

group signatures without random oracles. Cryptology ePrint Archive, Report

2005/385, 2005. http://eprint.iacr.org.

[10] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably

secure coalition-resistant group signature scheme. In M. Bellare, editor, Ad-

vances in Cryptology — CRYPTO 2000, volume 1880 of LNCS, pages 255–270.

Springer-Verlag, 2000.

[11] N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature

schemes without trees. In W. Fumy, editor, Advances in Cryptology — EURO-

CRYPT ’97, volume 1233 of LNCS, pages 480–494. Springer-Verlag, 1997.

[12] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and

H. Shacham. Randomizable proofs and delegatable anonymous credentials. In

CRYPTO, pages 108–125, 2009.

[13] M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. Non-interactive

anonymous credentials. In R. Canetti, editor, Theory of Cryptography,

136

http://eprint.iacr.org

Fifth Theory of Cryptography Conference, TCC 2008, volume 4948 of LNCS.

Springer-Verlag, 2008. Also available on IACR ePrint Archive, 2007/384.

[14] M. Bellare, A. Boldyreva, and J. Staddon. Randomness re-use in multi-recipient

encryption schemeas. In Public Key Cryptography, pages 85–99, 2003.

[15] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:

Formal definitions, simplified requirements and a construction based on general

assumptions. In E. Biham, editor, Advances in Cryptology - EUROCRPYT

2003, volume 2656 of LNCS, pages 614–629. Springer-Verlag, 2003.

[16] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for

designing efficient protocols. In First ACM Conference on Computer and Com-

munication Security, pages 62–73. Association for Computing Machinery, 1993.

[17] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case

of dynamic groups. In A. Menezes, editor, Topics in Cryptology – CT-RSA

2005, volume 3376 of LNCS, pages 136–154. Springer-Verlag, 2005. Full version

available at IACR e-print 2004/077.

[18] M. Bellare and S. Shoup. Two-tier signatures, strongly unforgeable signatures,

and fiat-shamir without random oracles. In Proceedings of the 10th International

Conference on Theory and Practice of Public-Key Cryptography - PKC 2007,

volume 4450 of LNCS, pages 201–216. Springer-Verlag, 2007.

[19] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its

applications. In Proceedings of the 20th annual ACM Symposium on the Theory

of Computing, pages 103–112. ACM, 1988.

137

[20] D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption.

In Advances in Cryptology — EUROCRYPT 2004, volume 3027 of LNCS, pages

223–238. Springer-Verlag, 2004.

[21] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin

and J. Camenisch, editors, Advances in Cryptology — Eurocrypt ’04, volume

3027 of LNCS, pages 56–73. Springer-Verlag, 2004.

[22] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin,

editor, Advances in Cryptology — CRYPTO ’04, volume 3152 of LNCS, pages

41–55. Springer-Verlag, 2004.

[23] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In

J. Kilian, editor, Advances in Cryptology – Crypto 2001, volume 2139 of LNCS,

pages 213–229. Springer-Verlag, 2001.

[24] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-

crypted signatures from bilinear maps. In E. Biham, editor, Advances in Cryp-

tology - EUROCRYPT 2003, volume 2656 of LNCS, pages 416–432. Springer-

Verlag, 2003.

[25] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.

In J. Kilian, editor, Theory of Cryptography Conference– TCC’2005, volume

3378 of LNCS, pages 325–341. Springer-Verlag, 2005.

[26] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption

from decision diffie-hellman. In CRYPTO, pages 108–125, 2008.

138

[27] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing.

In C. Boyd, editor, Advances in Cryptology – Asiacrypt 2001, volume 2248 of

LNCS, pages 514–532. Springer-Verlag, 2001.

[28] X. Boyen and B. Waters. Compact group signatures without random oracles.

In Advances in Cryptology — Eurocrypt ’06, volume 4004 of LNCS, pages 427–

444. Springer-Verlag, 2006. Full version available from IACR ePrint Archive

2005/381.

[29] X. Boyen and B. Waters. Full-domain subgroup hiding and constant-

size group signatures. In Public Key Cryptography—PKC 2007, vol-

ume 4450 of LNCS, pages 1–15. Springer-Verlag, 2007. Available at

http://www.cs.stanford.edu/~xb/pkc07/.

[30] J. Camenisch, N. Casati, T. Groß, and V. Shoup. Credential authenticated

identification and key exchange. In CRYPTO, pages 255–276, 2010.

[31] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme

secure against key dependent chosen plaintext and adaptive chosen ciphertext

attacks. In Advances in Cryptology - EUROCRYPT 2009, volume 5479 of

LNCS, pages 351–368. Springer-Verlag, 2009.

[32] J. Camenisch, K. Haralambiev, M. Kohlweiss, and J. Lapor. Accountability

without subliminal influence. unpublished manuscript, 2011.

[33] J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based on bilinear

maps and efficient revocation for anonymous credentials. In Public Key Cryp-

tography, PKC 2009, volume 5443 of LNCS, pages 481–500. Springer-Verlag,

2009.

139

http://www.cs.stanford.edu/~xb/pkc07/

[34] J. Camenisch, M. Koprowski, and B. Warinschi. Efficient blind signatures with-

out random oracles. In C. Blundo and S. Cimato, editors, Security in Com-

munication Networks, 4th International Conference, SCN 2004, Amalfi, Italy,

September 8-10, 2004, Revised Selected Papers, volume 3352 of LNCS, pages

134–148. Springer-Verlag, 2005.

[35] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous creden-

tials from bilinear maps. In Advances in Cryptology — CRYPTO ’04, volume

3152 of LNCS, pages 56–72. Springer-Verlag, 2004.

[36] J. Camenisch, G. Neven, and A. Shelat. Simulatable adaptive oblivious transfer.

In EUROCRYPT, pages 573–590, 2007.

[37] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of

discrete logarithms. In CRYPTO, pages 126–144, 2003.

[38] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.

In B. S. Kaliski Jr., editor, Advances in Cryptology — CRYPTO ’97, volume

1294 of LNCS, pages 410–424. Springer-Verlag, 1997.

[39] R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In Proceedings of the 42nd IEEE Annual Symposium on Foundations

of Computer Science, pages 136–145, 2001.

[40] R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. Technical Report 2000/067, IACR e-print Archive, 2005. 2nd version

updated on 13 Dec 2005.

140

[41] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,

revisited. In Proceedings of the 30th annual ACM Symposium on Theory of

Computing, pages 209–218, 1998.

[42] R. Canetti, H. Krawczyk, and J. Nielsen. Relaxing chosen-ciphertext security.

Technical Report 2003/174, IACR ePrint archive, 2003. Conference version

appeared in CRYPTO 2003.

[43] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-

party and multi-party secure computation. In Proceedings of the 34th annual

ACM Symposium on Theory of Computing, pages 494–503. ACM, 2002.

[44] J. Cathalo, B. Libert, and M. Yung. Group encryption: Non-interactive real-

ization in the standard model. In M. Matsui, editor, Advances in Cryptology

- ASIACRYPT 2009, volume 5912 of LNCS, pages 179–196. Springer-Verlag,

2009.

[45] D. Chaum and E. V. Heyst. Group signatures. In D. W. Davies, editor, Ad-

vances in Cryptology — EUROCRYPT ’91, volume 547 of LNCS, pages 257–

265. Springer-Verlag, 1991.

[46] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure

against adaptive chosen ciphertext attack. In H. Krawczyk, editor, Advances

in Cryptology — CRYPTO ’98, volume 1462 of LNCS, pages 13–25. Springer-

Verlag, 1998.

[47] R. Cramer and V. Shoup. Signature schemes based on the strong rsa assump-

tion. ACM Trans. Inf. Syst. Secur., 3(3):161–185, 2000.

141

[48] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption

schemes secure against adaptive chosen ciphertext attack. SIAM Journal on

Computing, 33(1):167–226, 2003.

[49] I. Damgsard and E. Fujisaki. A statistically-hiding integer commitment scheme

based on groups with hidden order. In Y. Zheng, editor, Advances in Cryptology

— ASIACRYPT 2002, volume 2501 of LNCS, pages 125–142. Springer-Verlag,

2002.

[50] I. Damgsard and J. Nielsen. Perfect hiding and perfect binding universally

composable commitment schemes with constant expansion factor. In M. Yung,

editor, Advances in Cryptology — CRYPTO 2002, volume 2442 of LNCS, pages

581–596. Springer-Verlag, 2002.

[51] Y. Dodis, K. Haralambiev, A. Lopez-Alt, and D. Wichs. Efficient public-key

cryptography in the presence of key leakage. Cryptology ePrint Archive, Report

2010/154, 2010. http://eprint.iacr.org/.

[52] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to

generate strong keys from biometrics and other noisy data. SIAM J. Comput.,

38(1):97–139, 2008.

[53] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In Proceedings

of the 23rd annual ACM Symposium on the Theory of Computing, pages 542–

552, New York City, 1991.

[54] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge

proofs based on a single random string. In Proceedings of the 31st IEEE Annual

Symposium on Foundations of Computer Science, pages 308–317. IEEE, 1990.

142

http://eprint.iacr.org/

[55] M. Fischlin. Round-optimal composable blind signatures in the common ref-

erence model. In C. Dwork, editor, Advances in Cryptology — CRYPTO ’06,

volume 4117 of LNCS, pages 60–77. Springer-Verlag, 2006.

[56] G. Fuchsbauer. Automorphic signatures in bilinear groups. IACR ePrint

Archive 2009/320. Revised March 17, 2010., 2010.

[57] G. Fuchsbauer, D. Pointcheval, and D. Vergnaud. Transferable anonymous

constant-size fair e-cash. IACR ePrint Archive 2009/146. Also to appear in

CANS 2009., 2009.

[58] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove mod-

ular polynomial relations. In B. S. Kaliski Jr., editor, Advances in Cryptology

— CRYPTO ’97, volume 1294 of LNCS, pages 16–30. Springer-Verlag, 1997.

[59] S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Technical

Report 2006/165, IACR ePrint archive, 2006.

[60] S. D. Galbraith and V. Rotger. Easy decision-diffie-hellman groups. LMS

Journal of Computation and Mathematics, 7:2004, 2004.

[61] T. E. Gamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,

1985.

[62] E. Ghadafi, N. P. Smart, and B. Warinschi. Groth-sahai proofs revisited. In

Public Key Cryptography, pages 177–192, 2010.

[63] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of inter-

active proof-systems (extended abstract). In STOC, pages 291–304, 1985.

143

[64] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme se-

cure against adaptive chosen-message attacks. SIAM Journal on Computing,

17(2):281–308, April 1988.

[65] M. Green and S. Hohenberger. Universally composable adaptive oblivious trans-

fer. In J. Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, vol-

ume 5350 of LNCS, pages 179–197. Springer-Verlag, 2008. Preliminary version:

IACR ePrint Archive 2008/163.

[66] J. Groth. Simulation-sound nizk proofs for a practical language and constant

size group signatures. In X. Lai and K. Chen, editors, Advances in Cryptology

- ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer-Verlag,

2006.

[67] J. Groth. Fully anonymous group signatures without random oracles. In Ad-

vances in Cryptology – Asiacrypt’07, volume 4833 of LNCS, pages 164–180.

Springer-Verlag, 2007.

[68] J. Groth. Homomorphic trapdoor commitments to group elements. Cryptology

ePrint Archive, Report 2009/007, January 2009. Update version available from

the author’s homepage.

[69] J. Groth. Homomorphic trapdoor commitments to group elements. Unpublished

Manuscript, 2010.

[70] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge

for NP. In S. Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006,

volume 4004 of LNCS, pages 339–358. Springer-Verlag, 2006.

144

[71] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear

groups. In Advances in Cryptology — Eurocrypt ’08, volume 4965 of LNCS,

pages 415–432. Springer-Verlag, 2008. Full version available: IACR ePrint

Archive 2007/155.

[72] L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted

to security microprocessor minimizing both transmission and memory. In C. G.

Günther, editor, Advances in Cryptology — EUROCRYPT ’88, volume 330 of

LNCS, pages 123–128. Springer-Verlag, 1988.

[73] C. Hazay, J. Katz, C. Koo, and Y. Lindell. Concurrently-secure blind signa-

tures without random oracles or setup assumptions. In Theory of Cryptography

Conference, TCC 2007, volume 4392 of LNCS, pages 323–341. Springer-Verlag,

2007.

[74] D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key en-

capsulation. In A. Menezes, editor, Advances in Cryptology – CRYPTO 2007,

volume 4622 of LNCS, pages 553–571. Springer-Verlag, 2007.

[75] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage re-

silience. In ASIACRYPT, pages 703–720, 2009.

[76] A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In

Advances in Cryptology – Eurocrypt 2005, volume 3494 of LNCS, pages 198–214.

Springer-Verlag, 2005.

[77] A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In

R. Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume 3494

of LNCS, pages 198–214. Springer-Verlag, 2005.

145

[78] A. Kiayias and H. Zhou. Concurrent blind signatures without random oracles.

In SCN 2006, volume 4116 of LNCS, pages 49–62. Springer-Verlag, 2006.

[79] A. Kiayias and H. Zhou. Equivocal blind signatures and adaptive uc-security.

In R. Canetti, editor, Theory of Cryptography Conference, TCC 2008, volume

4948 of LNCS, pages 340–355. Springer-Verlag, 2008.

[80] E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi

and T. Rabin, editors, Theory of Cryptography Conference – TCC’06, volume

3876 of LNCS, pages 581–600. Springer-Verlag, 2006.

[81] R. Kusters. Simulation-based security with inexhaustible interactive turing

machines. In Computer Security Foundations Workshop, 2006. 19th IEEE,

pages 12–320. IEEE, 2006.

[82] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In

Selected Areas in Cryptography, SAC’99, volume 1758 of LNCS, pages 184–199.

Springer-Verlag, 2000.

[83] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In

CRYPTO, pages 18–35, 2009.

[84] M. Naor and M. Yung. Universal one-way hash functions and their crypographic

applications. In Proceedings of the 21st annual ACM Symposium on the Theory

of Computing, pages 33–43, 1989.

[85] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen

ciphertext attacks. In Proceedings of the 22nd annual ACM Symposium on the

Theory of Computing, pages 427–437, 1990.

146

[86] T. Okamoto. Efficient blind and partially blind signatures without random

oracles. In S. Halevi and T. Rabin, editors, Theory of Cryptography Conference,

TCC 2006, volume 3876 of LNCS, pages 80–99. Springer-Verlag, 2006. Full

version avaialble on ePrint archive.

[87] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as

factoring. In K. Nyberg, editor, Advances in Cryptology — EUROCRYPT ’98,

volume 1403 of LNCS, pages 308–318. Springer-Verlag, 1998.

[88] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In J. Stern, editor, Advances in Cryptology — EUROCRYPT ’99,

volume 1592 of LNCS, pages 223–238. Springer-Verlag, 1999.

[89] R. Pass and A. Rosen. Concurrent non-malleable commitments. In 46th Annual

IEEE Symposium on Foundations of Computer Science (FOCS 2005), pages

563–572. IEEE Computer Society, 2005.

[90] R. Pass and A. Rosen. New and improved constructions of non-malleable cryp-

tographic protocols. In Proceedings of the 37th Annual ACM Symposium on

Theory of Computing (STOC 2005), pages 533–542. ACM, 2005.

[91] T. P. Pedersen. A threshold cryptosystem without a trusted party. In D. W.

Davies, editor, Advances in Cryptology — EUROCRYPT ’91, volume 547 of

LNCS, pages 522–526. Springer-Verlag, 1991.

[92] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable se-

cret sharing. In J. Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91,

volume 576 of LNCS, pages 129–140. Springer-Verlag, 1992.

147

[93] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge

and chosen ciphertext attack. In Advances in Cryptology — CRYPTO ’91,

volume 576 of LNCS, pages 433–444. Springer-Verlag, 1992.

[94] M. Rückert and D. Schröder. Security of verifiably encrypted signatures and a

construction without random oracles. IACR ePrint Archive 2009/027, 2009.

[95] A. Sahai. Non-malleable non-interactive zero-knowledge and chosen-ciphertext

security. In Proceedings of the 40th IEEE Annual Symposium on Foundations

of Computer Science, pages 543–553, 1999.

[96] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust

non-interactive zero knowledge. In J. Kilian, editor, Advances in Cryptology -

CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer-Verlag, 2001.

[97] A. D. Santis and G. Persiano. Zero-knowledge proofs of knowledge without

interaction (extended abstract). In FOCS, pages 427–436, 1992.

[98] M. Scott. Authenticated id-based key exchange and remote log-in with simple

token and pin number. Cryptology ePrint Archive, Report 2002/164, 2002.

http://eprint.iacr.org/.

[99] H. Shacham. A cramer-shoup encryption scheme from the linear assumption and

from progressively weaker linear variants. Cryptology ePrint Archive, Report

2007/074, 2007.

[100] H. Shacham and B. Waters. Efficient ring signatures without random oracles.

In Public Key Cryptography, pages 166–180, 2007.

[101] E. R. Verheul. Evidence that xtr is more secure than supersingular elliptic curve

cryptosystems. J. Cryptology, 17(4):277–296, 2004.

148

http://eprint.iacr.org/

	Abstract
	List of Tables
	Introduction
	Structure-Preserving Cryptographic Primitives
	Signatures
	Commitments
	Encryption

	Applications
	Simulation Extractability Revisited

	Preliminaries
	Basic Definitions
	Digital Signatures
	Public-Key Encryption
	Trapdoor Commitments
	Non-Interactive Zero-Knowledge Proofs
	Leakage-Resilient Cryptographic Primitives

	Notation and Common Setup
	Assumptions
	The Groth-Sahai Proof System
	Pairing Randomization Techniques

	Simulation Extractability
	Definitions
	Generic Construction of f-tSE
	Comparison with Previous Works and the Naor-Yung Paradigm
	Application: Efficient Leakage-Resilient Encryption
	Generic Construction
	Instantiation

	Structure-Preserving Commitments
	Constructions
	Scheme TC1
	Scheme TC2
	Scheme TC3
	Scheme TC4

	One-Time Signatures
	A One-Time Signature Scheme in Any Setting
	More Efficient Scheme in the Asymmetric Setting
	Signing Unbounded-Size Messages

	Applications
	Leakage-Resilient Hard Relation
	Structure-Preserving SPR Relation
	Leakage-Resilient Signatures
	Instantiation

	Structure-Preserving Signatures
	Main Scheme
	Construction
	Security
	Notable Properties
	Variations

	Signing Unbounded-Size Messages
	Overview
	Construction

	Simulatable Signatures
	Overview
	Definitions
	Construction
	Security

	Signing Mixed-Group Messages in the Asymmetric Setting
	Overview
	Construction
	Security

	Strongly Unforgeable Signatures
	Applications
	Round-Optimal Blind Signatures
	Group Signatures with Concurrent Join

	Structure-Preserving Encryption
	Structure-Preserving Encryption
	Application: Joint Computation of Ciphertext

	Bibliography

