
FRIENDSHARE:

A DECENTRALIZED, CONSISTENT STORAGE REPOSITORY

FOR COLLABORATIVE FILE SHARING

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

Frank Chiang

May 2008

(Jinyang Li) Principal Adviser

(Lakshminarayanan Subramanian)

c© Copyright by Frank Chiang 2008

All Rights Reserved

ii

Acknowledgements

First and foremost, I would like to thank my advisor, Jinyang Li, for her knowledge,

advice, and unwavering support. I would also like to thank Nguyen Tran, whom

I worked with on both the Friendstore and Friendshare projects. This thesis was

made possible largely due to their efforts and guidance. I would also like to thank

Lakshminarayanan Subramanian for being my second reader.

This thesis was also made possible by many fantastic peers, including Sujay Lele

and Charles Reich, who helped in designing and coding the base platform for Friend-

share. I want to thank all my friends who participated in the painful task of beta

testing, including Vivek Bhattacharyya, Ned Campion, Alex Chik, William Holloway,

Warren Koo Tze Mew, Gordon Kwan, Jill Lee, Chris Li, Rebecca Quan, and Paul

Schetinin.

Finally, I want to thank my parents for their dedication, support, and love. I

cannot imagine where I would be without their presence.

iii

Contents

Acknowledgements iii

1 Introduction 1

1.1 Why a decentralized data repository? 2

1.2 Challenges . 3

1.3 Friendshare’s solutions . 4

1.4 Contributions . 6

1.5 Organization of thesis . 6

2 Design Overview 7

2.1 Design challenges . 7

2.2 Basic idea of Friendshare . 8

2.3 Friendstore data replication . 15

3 Metadata Consistency 16

3.1 Overview of the write process . 16

3.2 Accepting writes . 17

3.3 Propagating writes . 19

3.4 Committing writes . 19

4 Membership reconfiguration 21

4.1 Handling joins and non-primary departures 21

4.2 Primary election and view change . 23

4.3 Paxos performance problems . 26

iv

4.4 Paxos optimizations . 28

4.4.1 Eliminate-Duplicates optimization 28

4.4.2 Virtual-Token optimization 30

5 Implementation 33

5.1 Implementation overview . 33

5.2 Repository management . 34

5.2.1 Storing repository on hard disk 34

5.2.2 Creation . 35

5.2.3 Joining . 35

5.2.4 Managing . 37

6 Evaluation 39

6.1 Simulation setup . 39

6.2 Basic write performance . 40

6.3 Reconfiguration performance . 42

7 Related Work 47

8 Conclusions 50

Bibliography 52

v

List of Figures

2.1 Repository architecture writing. Member X writes/modifies data in

the repository by sending a new write request Write X to Admin C.

The write is then propagated to the other admins via gossiping. The

primary eventually receives and commits the write. 10

2.2 Repository architecture reading. Member X requests the metadata from

Admin C and decides to download Data Y from Member Y. 12

2.3 Write log and its virtual representation 13

3.1 WRITE request . 17

3.2 Admin A’s write logs and version vector 18

3.3 Gossip protocol . 20

4.1 Paxos protocol with 4 admins . 23

5.1 Creating a new repository . 35

5.2 Joining a repository . 36

5.3 Primary approving new members . 36

5.4 Downloading and deleting files . 37

5.5 Directory actions . 38

6.1 Time elapsed before a write is committed and consistent at various

online percentages. The online percentages are varied by setting OF-

FLINE MIN to be 2 hours and OFFLINE MAX to be 8 hours while

varying ONLINE MIN and ONLINE MAX. 41

vi

6.2 Probability that at least one admin is online when a new write is created

(i.e. Repository service availability) at various online percentages. The

online percentages are varied by setting OFFLINE MIN to be 2 hours

and OFFLINE MAX to be 8 hours while varying ONLINE MIN and

ONLINE MAX. 41

6.3 Time elapsed before consensus is reached by basic Paxos at various

online percentages. The online percentages are varied by setting OF-

FLINE MIN to be 2 hours and OFFLINE MAX to be 8 hours while

varying ONLINE MIN and ONLINE MAX. 43

6.4 Probability that a simulation fails in basic Paxos at various online per-

centages. The online percentages are varied by setting OFFLINE MIN

to be 2 hours and OFFLINE MAX to be 8 hours while varying ON-

LINE MIN and ONLINE MAX. 43

6.5 Optimizations comparison of Paxos duration at various online percent-

ages. The online percentages are varied by setting OFFLINE MIN

to be 2 hours and OFFLINE MAX to be 8 hours while varying ON-

LINE MIN and ONLINE MAX. For the Virtual-Token optimization,

admins hand-off their tokens 50% of the time. 44

6.6 Optimizations comparison of failure percentage. The online percent-

ages are varied by setting OFFLINE MIN to be 2 hours and OF-

FLINE MAX to be 8 hours while varying ONLINE MIN and ON-

LINE MAX. For the Virtual-Token optimization, admins hand-off their

tokens 50% of the time. 45

6.7 Time elapsed before consensus is reached by Virtual-Token optimized

Paxos at various token hand-off percentages 46

vii

Chapter 1

Introduction

Users have long relied on the Internet to publish and share data with each other.

Traditionally, a shared data repository is written and organized by only a single

author. There are many examples for single-writer repositories. Blogs are generally

managed by one user rather than a group of users. Flickr [11] allows individuals to

upload, organize, and share their own photos.

With the rise of Web 2.0, data sharing has become more and more collaborative

such that multiple writers can jointly write and organize the content in the reposito-

ries. This trend is evident in the emergence of online collaborations, such as Wikipedia

[40] and Google Groups [13]. Wikipedia is a popular online encyclopedia that allows

users to share their knowledge by modifying the encyclopedic entries. Google Groups

is a repository where users can post messages and share files. As a concrete example,

consider a group of friends wanting to share the photos that they take at gatherings.

At each party, multiple friends take pictures with their own cameras, which yields

multiple sets of photos for the same party. It would be useful if all the friends were

able to collaboratively organize the photos in a shared photo repository. The state of

the art approach to build a consistent and reliable shared repository is to rely on a

central site managed by a third party. However, centralized solutions are undesirable

sometimes because of privacy concerns and censorship, which are problems that can

be alleviated by switching to decentralized solutions. This thesis contributes the de-

sign and implementation of a decentralized multiple-writer data repository that can

1

CHAPTER 1. INTRODUCTION 2

support a variety of collaborative data sharing applications, such as repositories for

sharing music and movies, bulletin boards, etc.

1.1 Why a decentralized data repository?

The current practice of data sharing is for users to upload data onto a central site,

such as Wikipedia and Google. Centralized solutions have many benefits. First, a

central site can replicate the data on a set of tightly-coupled machines in well-managed

data centers to ensure that the data will be highly available. Second, it is relatively

straightforward to maintain the consistency of replicated data among highly-available

machines with low-latency network connections within a data center. Google’s GFS

[12] and Amazon’s S3 [2] are well-known examples of centralized data storage services.

However, centralized storage also has many drawbacks. First, by storing data us-

ing a service offered by commercial companies, user data is subject to the company’s

privacy policies. For example, Google’s Adsense program in Gmail reads a user’s

emails to display targeted ads. Facebook [10] has already been criticized regarding

data privacy issues in its short existence, such as for broadcasting purchase informa-

tion on news feeds [3, 39]. Companies may also engage in censorship. Normally, this

is to eliminate offensive content but there have been some reports of inappropriate

censorship. For example, Facebook has been accused by various blogs of censoring

their competitors’ names [36] and tampering search results for a presidential candi-

date [35]. Second, companies only provide sharing services at little or no cost if they

can eventually profit from it. This means that specialized applications that are useful

to a small group of people may remain undeveloped due to its lack of popularity. It

would be beneficial to allow these users to maintain their own storage without paying

for expensive data storage services, such as the Amazon S3.

In a decentralized system, the data repository is distributed on a set of machines

belonging to users who want to share data with each other. In contrast to centralized

data repository solutions, decentralized peer-to-peer solutions have several advan-

tages. First, users can choose to store data only on nodes they manage and trust as

opposed to a third party’s machines. Therefore, there is less concern for privacy and

CHAPTER 1. INTRODUCTION 3

censorship. Second, decentralized solutions can have a grass-root deployment to sup-

port a wide variety of different applications, even unprofitable ones. Because of these

potential advantages, this thesis explores a decentralized design for a multiple-writer

data repository, which spreads the storage over peer nodes owned by individual users.

1.2 Challenges

There are three requirements for a decentralized data repository supporting multiple

writers: durability, availability, and consistency. A storage system is durable if the

data can be recovered in the event of permanent failures, such as disk crashes. Avail-

ability refers to how likely a piece of data can be retrieved in the face of temporarily

unavailable nodes. The main strategy to achieve high durability and availability is to

replicate data onto multiple nodes. In this way, even if a node fails or goes offline, the

data that was stored on the failed node can be retrieved or recovered from another

replica [42]. Since writers can potentially modify replicas stored at different nodes

and many data operations involve many different objects, maintaining consistency

among multiple replicas becomes a challenge. The consistency requirements of a sys-

tem dictate that the same sequence of data modifications are applied to all replicas

at different nodes. Consider the example where replica nodes A and B both perform

modifications to the repository. If a system does not provide consistency, it is possible

that one replica applies writeA then writeB whereas another replica applies writeB

then writeA, resulting in different replica states. If a system is consistent, the final

ordering of the operations will be identical for all nodes.

It is difficult to achieve the durability, availability, and consistency requirements

in a decentralized fashion among peer nodes for the following reasons:

1. Peer nodes have limited bandwidth and storage space. This prevents us from

simply replicating the entire repository on every node because transferring all

replicas to all nodes would consume too much bandwidth and the nodes might

not have enough disk space to store all the data in the repository. Therefore,

a decentralized solution must employ more flexible replication techniques to

efficiently ensure high data durability and availability.

CHAPTER 1. INTRODUCTION 4

2. Peer nodes have low availability. Since peer nodes may go offline for extended

periods of time, a decentralized solution must use a replication factor larger than

that required in a centrally managed system to ensure that the overall system

is highly available. More importantly, low node availability poses challenges

in maintaining data consistency. Strong consistency, where all nodes see an

identical total ordering of writes at all times, is ideal for usability. However,

ensuring strong consistency where participating nodes are not highly available

has been shown to cause limited data availability [14, 23, 5]. In order to achieve a

reasonable level of data availability, we must relax the consistency requirements.

3. Over the lifetime of its operation, the system might incur membership churn

where new nodes join and existing ones leave occasionally.. The system must

be able to reconfigure itself to reflect the membership changes without compro-

mising its availability and consistency goals.

1.3 Friendshare’s solutions

This thesis presents Friendshare, a decentralized multiple-writer data repository where

the repository is distributed across the peer nodes. Any user running Friendshare can

create a repository named by a globally unique ID. Other users can then request to

become members of the repository. The repository can be written, managed, and

organized by the members of the group and can be potentially read by all users in

the system.

There are three classes of repository users: members, admins, and the primary.

Any user that has joined the repository is a member. Admins are a set of privileged

members that help maintain the consistency of the repository. One of the admins is

elected to be the primary and is responsible for administrative tasks, such as approving

new members and promoting members to become admins. Since admins are hand-

picked by the primary, we expect them to remain in the system for an extended period

of time and to be trustworthy. This provides several benefits to the system. Because

admins are expected to eventually come back online, the system does not need to

CHAPTER 1. INTRODUCTION 5

aggressively generate new replicas whenever an admin goes offline. In addition, the

system does not need to maintain a high replication factor. Finally, users can trust

that the admins will not act maliciously, such as by refusing service or changing

repository content.

Friendshare replicates the repository content on the admins to maintain high dura-

bility and data availability. In order to support efficient replication, Friendshare sep-

arates the management of metadata from the data. Metadata is a description of

the data, including information such as the name and location of the data and the

organization of different data objects within the repository. For example, in a photo

repository, the data objects are the photos and the metadata describes the virtual file

system hierarchy in which the photos are organized. The metadata is replicated on all

admins while the data is distributed across the members. Since the metadata is much

smaller than the actual data, metadata replication is inexpensive. Only the metadata

is mutable whereas all data objects remain unchanged after creation. Because data

is immutable, Friendshare only needs to perform expensive replica synchronization

required for consistent access on the small metadata. As a side advantage, because

all admins hold a complete replica of the metadata, it is possible to browse the orga-

nization of the repository quickly by contacting any one admin node. The approach

of separating the metadata from the data is similar to PRACTI’s separation of inval-

idation messages and update messages [9]

Since providing strong consistency causes limited data availability, Friendshare

strives to achieve eventual consistency. Eventual consistency ensures that new writes

will eventually propagate throughout the system via gossiping techniques and the

ordering of all write operations form a total order, eventually leading to identical

metadata states at all admins. Friendshare’s consistency system is similar to the

Bayou data replication scheme [29, 37]. The admins periodically gossip with each

other to exchange any new writes and the primary determines the total ordering of

the writes to ensure that all admins have a consistent view of the repository.

Throughout the lifetime of the system, new users may request to join the repos-

itory and existing members may leave either gracefully or unexpectedly. When such

CHAPTER 1. INTRODUCTION 6

events occur, Friendshare repositories can automatically reconfigure itself. Each mem-

ber in the repository will update its membership list to reflect the joins and leaves.

If an admin leaves, the primary can promote another member to become an admin

in order to maintain the same metadata replication factor. If the primary leaves the

repository unexpectedly, the remaining admins run a consensus protocol to elect a

new primary.

1.4 Contributions

We contribute the design and implementation of a decentralized community-based

data repository system that allows multiple users to create, delete, and organize

data in a repository. Our design is suitable in a deployment environment where

nodes have limited resources and low node availability. We explore the usage of

consensus protocols in a decentralized peer-to-peer environment and offer a number

of optimizations to improve its running time. As proof of concept, we built a media

repository application on top of our system that allows multiple users to share and

organize photos, videos, and other files into a common repository.

1.5 Organization of thesis

In Chapter 2, we discuss the challenges of decentralized storage in further detail and

present an overview of Friendshare’s design. This leads to an in-depth discussion of the

Friendshare architecture in Chapter 3, including details on the metadata replication

scheme. Chapter 4 describes the reconfiguration process of Friendshare after node

joins and departures. In Chapter 5, we will discuss our implementation of Friendshare.

Chapter 6 will contain simulations and evaluations that we observed with Friendshare.

Finally, in Chapter 7, we will talk about the related work on the topics of sharing

and data replication.

Chapter 2

Design Overview

In this chapter, we will first discuss Friendshare’s design challenges in detail and then

describe the basic approach of Friendshare to solve the challenges.

2.1 Design challenges

The goal of Friendshare’s design is to provide data durability, availability, and consis-

tency even though peer nodes have limited resources, low node availability, and may

occasionally leave the system unexpectedly.

A strawman design for a read/write data repository is to store all data on a single

peer node. Such a design is flawed for many reasons. First, since the network has

limited bandwidth and storage space, it would take too long to upload the entire

repository’s data onto the single node and the single node’s hard disk might not

have enough storage space to contain everything. To rectify this problem, we want a

solution that spreads data across many nodes. Second, the repository maintained by

a single peer node has low data availability and durability because if the single node

goes offline or crashes, all data would be unavailable or lost. Thus, the repository

data should be replicated on multiple peer nodes in order to improve data availability

and durability.

The main advantage of the strawman design is that it achieves data consistency

7

CHAPTER 2. DESIGN OVERVIEW 8

trivially because the single peer node handles all read and write requests for all ob-

jects. On the other hand, employing distributed data replication creates consistency

challenges. When data is replicated across multiple nodes, any sequence of write op-

erations that are performed by one replica should be performed in the same order on

the other replicas. Since node failures are common in peer-to-peer networks, a service

must accept write operations at any node in order to remain available. This, in turn,

may cause writes to be accepted concurrently of each other at different nodes. There-

fore, there must be a consistent total ordering of these concurrent writes in order to

retain eventually-identical images across all the replicas.

Maintaining strong consistency across all the replicas is the ideal choice from an

application standpoint but it can be costly to maintain in peer-to-peer environments.

In general, strong consistency schemes need to employ consensus algorithms or lock

implementations to cope with potential failures, both of which exhibit limited data

availability when operating in low-availability networks [4, 14, 23, 5]. Weakening the

consistency requirements to be eventually consistent increases data availability and

scalability.

Adding to the difficulties is that, once in a while, nodes might leave the system

forever unexpectedly. For example, the user may lose interest in the system or their

hard disk may crash. When this happens, the data stored on that node can never

be retrieved. In this case, we must ensure that a new replica is created elsewhere.

Abrupt departures can also cause problems for consistent data replication schemes

so the system must be able to reconfigure itself carefully when such events arise. We

will first present the details of Friendshare’s data replication scheme in Chapter 3 and

then discuss the reconfiguration process in Chapter 4.

2.2 Basic idea of Friendshare

Friendshare is a decentralized multiple-writer data repository where the data is dis-

tributed and replicated across multiple nodes in the network. Friendshare allows

members to organize data in the repository into a file system-like hierarchical names-

pace by making directories and adding files into those directories. Each repository has

CHAPTER 2. DESIGN OVERVIEW 9

a set of admin nodes, which are privileged members that help maintain node mem-

bership and consistency of the repository’s hierarchical namespace. Since admins are

manually promoted, we assume that they are not malicious, have reasonable availabil-

ity, and will stay in the system for a long time. The admins elect one of themselves

as the primary, who is responsible for handling various administrative tasks such as

approving of new member joins, promoting members to become admins, and evicting

malicious members.

Friendshare treats metadata differently from data. Metadata contains a descrip-

tion of the data object, including the physical node location where the data is stored

and how the object is organized into the hierarchical namespace. Metadata is muta-

ble and is replicated by all admins using a protocol that ensures eventual consistency.

Data is immutable and each data object is replicated on a small set of member nodes.

The metadata is much smaller than the data and therefore the expensive eventual

consistency protocol is run on a much smaller size. As an additional advantage, since

a complete replica of the metadata exists at each admin, users can browse and search

the entire collection of metadata from one of the admins.

Data objects are created from local files and are named with a fileID, which

is generated by running a hash algorithm on the file content. There are several

ramifications of using the file contents to generate the data object’s fileID. First,

we can easily distinguish if two files are the identical by comparing their fileIDs.

This is desirable because each file has its own unique global name, regardless of the

original filename. For example, a picture of a dog can be named jip.jpg, dog.jpg,

or DSC1523.jpg, but the data object generated from each file will have the same

fileID. Second, the fileID acts as an implicit security authentication to check if the

file that the user downloaded corresponds to what the user expected from its fileID.

After downloading, the user can simply run the hash algorithm on the file to check

if it indeed generates the fileID expected. Third, data objects are immutable and

cannot be changed. If a file is modified, it will correspond to a new data object with

a different fileID. If a file is modified after it was shared to a repository, the member

should issue a write to delete the old data object and then issue another write to add

the new data object.

CHAPTER 2. DESIGN OVERVIEW 10

Figure 2.1: Repository architecture writing. Member X writes/modifies data in the
repository by sending a new write request Write X to Admin C. The write is then
propagated to the other admins via gossiping. The primary eventually receives and
commits the write.

CHAPTER 2. DESIGN OVERVIEW 11

When a member wants to write a file to the repository, it first creates a data object

that points to the file. The member then creates a write request corresponding to

the data object that specifies the nodes where the data file is physically stored and

the virtual directory in which the file should be placed (e.g. /photos/2008summer/).

Finally, the member sends the write request to one of the admins in the repository.

Upon receipt of the write request, the admin accepts and stores the write in a local

write log and gossips with other admins to propagate the new write in the system,

providing eventual consistency. Newly accepted writes are marked as tentative since

it can be preceded by other writes that the admin has not yet received. The primary

is responsible for committing the tentative writes to establish a total-ordering of the

write operations. Figure 2.1 illustrates the following write process:

1. To share Data X in the repository, Member X sends a write request for Data X

(Write X) to Admin C in the repository.

2. Admin C accepts the write and eventually gossips the new write to the other

admins A, B, and the primary.

3. The primary receives Write X and commits it. The commit action will eventu-

ally be propagated to all the other admins in the repository.

In order to view data in the repository, a user queries a random admin to download

the repository state. The admin constructs the repository state locally from its write

log and sends it back to the user. After the state has been received, users can choose

to download files described in the state. Embedded inside the state are the member

locations where each file is stored so the user can download the file by connecting

directly to the members. Figure 2.2 illustrates the following read process:

1. Member X wants to view the data in the repository so it gets the state from

Admin C.

2. After viewing the state, Member X decides to download Data Y, which is located

on Member Y.

3. Member X connects to Member Y to download Data Y.

CHAPTER 2. DESIGN OVERVIEW 12

Figure 2.2: Repository architecture reading. Member X requests the metadata from
Admin C and decides to download Data Y from Member Y.

CHAPTER 2. DESIGN OVERVIEW 13

The metadata write log can be parsed in order to form the repository’s virtual

file system representation, which can be displayed to the user. Figure 2.3 shows the

virtual file system representation generated by parsing a sample write log.

WRITE(MKDIR, /dir1, �)

WRITE(MKDIR, /dir2, �)

WRITE(ADD, /dir1/file1a, �)

Committed write log

WRITE(ADD, /dir1/file1b, �)

WRITE(ADD, /dir2/file2a, �)

WRITE(DELETE, /dir1/file1a, �)
file1b

dir2dir1

root

file2a

WRITE(ADD, /dir1/file1c, �)

file1c

Figure 2.3: Write log and its virtual representation

Eventual consistency plays a role in viewing data. In eventual consistency, ten-

tative writes may differ from admin to admin. This can happen if concurrent writes

are sent to different nodes. If tentative writes are included in the results displayed to

the user, the user may see inconsistent results depending on which admin it queried.

However, if only committed writes are shown, users may not see new data writes

because those writes have not yet been committed. Since this decision is application

specific, Friendshare allows the application to design the UI, in which the application

developers can decide how to display the writes. To support this feature, Friendshare

admins send both tentative and committed writes but flag the tentative results so the

application can distinguish between the different types of writes.

From time to time, the membership of the repository can change as users join

and leave. As will be discussed in Chapter 4, Friendshare can tolerate unexpected

CHAPTER 2. DESIGN OVERVIEW 14

departures from all members, using the normal write protocol, except the primary. If

the primary dies, the admins run a consensus protocol to elect a new primary. Every

instance of a Friendshare repository operates under a specific view, identified by a

view number. At the end of the election process, the new primary increments the

view. The view number is attached to all admin messages (e.g. gossip) so that the

admins can identify if a message is outdated.

Because Friendshare only provides eventual consistency, some applications may

not be suitable to be built on top of Friendshare. For example, financial applications

require stronger consistency to implement transactions properly. Other examples of

applications that may not be suitable include distributed databases, file systems,

and version control systems. Additionally, because data is immutable, modifying

an existing file is costly because it requires creating a new data object and garbage

collecting the old one. Therefore, Friendshare is more suitable for applications where

the data does not frequently change, even though it also supports applications that

do not fit this criterion. Some suitable applications for Friendshare are as follows:

1. Media (photo/video/music) repository that can be organized by a group of

friends. Media files generally remain unmodified, which makes it suitable for

Friendshare.

2. Broadcast authored work: blogs, vlogs, stories, poetry, composed music. Au-

thored work are usually final after they are published.

3. Bulletin boards for people with common interests. Since bulletin board posts

rarely change after posting, we can store each post as a separate file.

4. Review repository for restaurants, clothing stores. As before, reviews are un-

modified, and therefore are suitable for Friendshare.

As can be seen, Friendshare can be used in a variety of different ways. In order

to facilitate this, we wrote a flexible API to allow developers to easily construct their

own applications with the Friendshare backend.

CHAPTER 2. DESIGN OVERVIEW 15

2.3 Friendstore data replication

Although we have described how repository metadata is replicated on the admins, we

have not yet discussed how Friendshare replicates repository data. For this purpose,

Friendshare is built on top of Friendstore [38], a cooperative peer-to-peer backup sys-

tem where data is stored on trusted nodes. Traditional peer-to-peer backup systems

replicate data on arbitrary peer nodes and have low availability. In Friendstore, each

node only replicates its data on a subset of trusted peer nodes, typically belonging

to a user’s friends or colleagues. Because friends in real life have agreed to cooperate

with each other to share their nodes’ storage resources, trusted peer nodes tend to be

more available for each other’s requests.

The Friendstore implementation allows users to choose a list of friends with whom

they entrust their data and a list of directories to backup. These directories are

monitored and any changes are automatically backed up onto the user’s friends, or

“helpers”. Periodically, owners request hashes of the replica data stored on the helpers

in order to verify the integrity of the replica and recreate new replicas if existing ones

are lost.

During setup, each user in Friendstore is assigned a public-private key pair that

is used for authentication. The userID is generated by taking the SHA-1 hash of the

public key and concatenating the machine name. Due to the property of hash func-

tions, the userID is guaranteed to be globally unique. The userID is self-certifying,

similar to SFS’s self-certifying pathnames [25], in which users can verify the identity

of a remote user by checking if its userID matches its public key.

Friendshare uses Friendstore to increase data durability and availability through

replication. When a user wants to write a file to a repository, Friendshare sends

the file to Friendstore to backup onto the user’s friends. The file’s metadata is then

written to the repository by the process described in Chapter 3. Included in the write

request is the location of the file, which includes the owner-user’s computer and the

owner’s helpers. When another user wants to download a file, Friendshare performs

load reduction by allowing the owner and its helpers to serve the file.

Chapter 3

Metadata Consistency

Friendshare’s metadata replication scheme is based on Bayou [29, 37]. This chapter

describes how Friendshare maintains metadata consistency when the admin member-

ship configuration is static. Membership reconfiguration will be discussed in the next

chapter.

3.1 Overview of the write process

As mentioned in Chapter 2, a member of the group writes a local file into a repos-

itory by creating a data object pointing to the file and then creating a metadata

WRITE request for the data object. WRITE requests include the write type, vir-

tual repository location, accept-stamp, commit-stamp, owner (which is the member

that created the write), and the data object. The write type can be actions such

as ADD, DELETE, MKDIR, RMDIR, JOIN GROUP, LEAVE GROUP, etc, which

defines the write’s actions on the repository. The virtual repository location is the

parent directory in the virtual repository file system where this write should be per-

formed (e.g. /photos/2008summer/). For writes that do not affect the file system,

such as JOIN GROUP and LEAVE GROUP, this field is unused. The accept-stamp

and commit-stamp are left empty at creation time and will be filled in later. Figure

3.1 shows the WRITE request fields.

A summary of the write process is shown below:

16

CHAPTER 3. METADATA CONSISTENCY 17

Write Type Virtual Location Accept-stamp Commit-stamp Owner Data Object

Figure 3.1: WRITE request

1. A member wants to share a local file in the repository, so it creates a data object

with a unique fileID based on the file content.

2. The member creates a write request for the data object. This write request

could be to ADD a file, DELETE a file, MKDIR, RMDIR, etc.

3. The member sends the write request to an admin in the repository. If the

member is an admin itself, this step can be skipped.

4. The admin stamps the write’s accept-stamp with the current value of its clock

and adds the write to its tentative write log.

5. The admin gossips the write to all other admins, including the primary.

6. The primary receives the write, stamps the write’s commit-stamp, and commits

the write. The admins will consequently move the write from its tentative write

log to its committed write log when they learn of the commit via gossiping. The

write can now be seen by all users.

We describe this process in further detail in the following sections.

3.2 Accepting writes

We use the Lamport clock [21] to determine a total ordering of operations on the

metadata among all admins. Each clock consists of a counter and a unique value,

which we set to be the userID that is assigned when the user installs Friendshare. If

two clocks’ counters are equal, we break the tie by comparing the unique value. The

clock operates by obeying the following rules. First, the clock increments its counter

on every local event. Second, when communicating with a remote admin, the clock

CHAPTER 3. METADATA CONSISTENCY 18

synchronizes with the remote admin’s clock by setting its clock counter to be greater

than the maximum of the two clocks.

Admins have two local write logs: a tentative write log and a committed write

log. When an admin receives a write from any member, the admin will stamp the

write’s accept-stamp with its clock value and add the write to its tentative write log.

Initially, all new writes are marked to be tentative since the admin may later receive

a write from another admin through gossiping that precedes existing writes.

Version vector

My clock (Admin A)

Admin B

Admin C

6 : aID

3 : bID

2 : cID

WRITE(ADD, /dir/file2, &)

Tentative write log

WRITE(ADD, /dir/file3, &)

WRITE(DELETE, /dir/file2, &)

Committed write log

WRITE(MKDIR, /dir/, &) 0:View0

Commit-stamp

1 : cID

Accept-stamp

∞

Commit-stamp

2 : bID

Accept-stamp

∞ 5 : aID

∞ 3 : bID

WRITE(ADD, /dir/file1, &) 1:View0 2 : cID

Figure 3.2: Admin A’s write logs and version vector

CHAPTER 3. METADATA CONSISTENCY 19

Each admin keeps a version vector VV, which holds the last accept-stamp known

to be accepted by all admins in the system. For instance, admin X’s version vector

entry for admin A, V VA, would contain the largest accept-stamp that X has received

from A. The version vector is used both during gossiping and committing.

Figure 3.2 shows Admin A’s tentative and committed write logs as well as its

version vector. There are 2 other admins in this example repository where the last

accept-stamp that Admin A has seen from Admin B is 3 and from Admin C is 2. The

version vector also stores A’s current clock value (6 : aID). Admin A’s userID is aID,

B’s userID is bID, and C’s userID is cID. These userIDs are also used as the unique

value of the Lamport clock, as can be seen in the accept-stamps. Two writes (MKDIR

and ADD(file1)) accepted by Admin C have already been committed and so the dir

directory containing file1 is visible to users. Both commits happened in the same

view. Several writes remain tentative, as evidenced by the infinite commit-stamp

value.

3.3 Propagating writes

The admins gossip with each other to propagate new writes and to synchronize their

clocks. Admins periodically choose a random admin with whom to perform gossiping.

First, the admins, which we will refer to as A and B, exchange clock values in order to

synchronize their clocks. Second, if admin A is gossiping to admin B, A will request

for B’s version vector. Using B’s version vector, A can determine the writes (both

tentative and committed) that B has not yet seen. Therefore, instead of sending all

the writes in its write log, A only needs to send the incremental write changes. Figure

3.3 illustrates the gossip protocol where admin A gossips to admin B.

3.4 Committing writes

Tentative writes must eventually be committed in a consistent order across all the

admins. Friendshare uses a primary commit scheme [37] that designates one admin

as the primary and allows it to commit writes that it sees. As long as the primary

CHAPTER 3. METADATA CONSISTENCY 20

Admin A Admin B

B sends
clock and

 version
vector

A makes list of

writes that B has

not seen yet
A sends incremental writes

A initiates gossip and sends clock

Figure 3.3: Gossip protocol

node is online, it can commit writes despite the unavailability of other admin nodes.

Thus, this approach is better suited for environments where nodes can be offline for

extended periods of time. If the primary is offline temporarily, admins can continue

to accept tentative writes, which can be committed when the primary comes back

online. When the primary commits a tentative write, the write is removed from the

primary’s tentative write log, stamped with a commit-stamp number, and added to

the primary’s committed write log. The commit-stamp consists of the current view

number and a monotonically increasing counter. Commit-stamps are ordered first by

view number and then the counter so that committed writes from earlier views are

ordered before later views. The news of the commit is then gossiped to the other

admins so that all other admins will eventually learn about the committed writes and

move the writes from the tentative write log to the committed write log. As time

progresses, the write logs can become longer and longer. To prevent infinitely long

write logs, the primary can command all the admins to checkpoint the committed

writes and truncate the logs.

Chapter 4

Membership reconfiguration

From time to time, new users may join and existing members may leave a repository.

When the repository membership changes as nodes join and leave, the repository

must be able to reconfigure itself to maintain high data availability, durability, and

consistency. This chapter will describe the Friendshare reconfiguration process.

4.1 Handling joins and non-primary departures

Users can request to join an existing repository by sending a REQUEST JOIN to one

of the admins in the repository. Upon receiving the request, the admin will write the

REQUEST JOIN into its tentative write log. Eventually, the primary will receive the

REQUEST JOIN through gossiping and decide whether to approve the join request.

If it approves of the user, the primary will add and commit a new JOIN APPROVED

write and add the member to its membership list. If it rejects the user, the primary

writes a JOIN REJECTED write. The other admins will eventually learn of the

primary’s decision via gossiping and they will subsequently update their membership

lists as well.

In order to discover whether it has successfully joined the repository, joining users

periodically query a random admin of the repository to inquire if the joining user now

exists in the admin’s membership list. After the user successfully joins, it can issue

writes into the repository.

21

CHAPTER 4. MEMBERSHIP RECONFIGURATION 22

Existing members may occasionally leave a repository. Our definition of a node

“leaving” the repository group is when either the node has explicitly requested to

leave the group, which is the graceful departure scenario, or the node has been offline

for a prolonged period of time and is deemed unlikely to ever come back online.

Each admin keeps the last-online-time of every other member in the repository and

exchanges this information to other admins during gossiping. If the other member

is an admin, the last-online-time is updated after every successful gossip session.

For non-admin members, admins must periodically ping the member to update its

last-online-time. If a member has been offline for more than a pre-specified timeout

value, the member is deemed to have left the system. This timeout should be set

to be a reasonable value depending on the environment in which the system is run.

For example, a typical user’s desktop machine may go offline for several days so the

timeout should not be set too short.

When the primary detects that a member has left the repository, the primary will

issue a LEAVE GROUP write specifying the departed member, commit the write,

and remove the member from its membership list. The LEAVE GROUP write will

be propagated to the other admins via gossiping. When each admin receives the com-

mitted LEAVE GROUP write, it removes the departed member from its membership

list.

Graceful departures follow a similar procedure, except that the departing member

issues the LEAVE GROUP write instead of the primary. This allows the member to

be removed faster since the primary does not need to wait for the pre-specified timeout

before detecting the departure. Through gossiping, the primary will eventually receive

the LEAVE GROUP write, commit it, and remove the member from its membership

list. The committed LEAVE GROUP write will then be gossiped to the other admins.

If the departing member was an admin, the metadata replication factor of the

repository will have decreased by 1 so the primary must determine whether it should

promote another member to become an admin in order to maintain metadata avail-

ability and durability.

CHAPTER 4. MEMBERSHIP RECONFIGURATION 23

4.2 Primary election and view change

If an admin detects that the primary has left the repository, the admin initiates a

variation of Paxos [22, 26], a consensus protocol, so all the admins can agree on a

new configuration that replaces the departed primary node with a new one. The

Paxos protocol allows a number of distributed nodes to eventually reach a consensus

on something, such as a number, as long as a majority of participating nodes are

available. The Paxos protocol is used in many distributed applications for reconfig-

uration including Google’s Chubby lock service [7] and Microsoft’s Autopilot cluster

management service [18].

PREPARE

PREPARE
PREPARE

Proposer Admin A Admin B Admin C

ACK

ACK

ACK

Received majority replies

ACCEPT

ACCEPT
ACCEPT

ACK ACK

ACK

Received majority replies

ANNOUNCE

ANNOUNCE

ANNOUNCE

P
R
E
P
A
R
E
 P
h
a
s
e

A
C
C
E
P
T
 P
h
a
s
e

A
N
N
O
U
N
C
E
 P
h
a
s
e

Figure 4.1: Paxos protocol with 4 admins

CHAPTER 4. MEMBERSHIP RECONFIGURATION 24

The basic protocol consists of three phases: PREPARE, ACCEPT, and AN-

NOUNCE. Figure 4.1 shows the flow of the protocol.

1. PREPARE phase: A proposer chooses a unique proposal number n, which is

generated by concatenating a monotonically-increasing counter with the pro-

poser’s userID. The proposer then sends a PREPARE request with this proposal

number n to all other admins. Each admin responds to PREPARE messages

as follows:

(a) If the admin has not seen a PREPARE request with proposal number

greater than n, it will send back the highest proposal number and its cor-

responding value that it has accepted from an ACCEPT request (or NULL

if none have been accepted yet) and promises to never accept another PRE-

PARE request with a proposal number less than n.

(b) If the admin has already seen a PREPARE request with a proposal number

greater than n, then it sends back a decline reply.

If the proposer receives promises from a majority of admins, it can move onto

the ACCEPT phase. If the proposer did not receive a majority of promises, it

will wait for currently offline admins to come back online.

2. ACCEPT phase: The proposer takes the value v proposed by the highest ac-

cepted proposal that it received in the replies from the PREPARE phase. If

no admin replied with a proposal number (this can happen if this proposal was

the first proposal ever), then the proposer can choose any new value v. In the

context of Friendstore, the value v is the next membership configuration, which

specifies the new primary and the new view number. It then sends an ACCEPT

request with proposal number n and value v to the other admins. Each admin

responds to ACCEPT messages as follows:

(a) If the admin has not replied to a PREPARE request with proposal number

greater than n, it will accept the proposal. The admin needs to write its

accepted proposal number and value to disk so that it can recover in the

event of a crash.

CHAPTER 4. MEMBERSHIP RECONFIGURATION 25

(b) If the admin has already seen a PREPARE request with a proposal number

greater than n, then it sends back a decline reply.

If the proposer receives accepts from a majority of admins, a consensus has

been reached with value v. However, the other admins do not know about the

consensus so we need to perform the final phase.

3. ANNOUNCE phase: The proposer sends an ANNOUNCE message to the ad-

mins, informing them that a new value v has been agreed upon. No reply is

necessary. At the end of Paxos, the admins have agreed upon value v, which

identifies the new primary and the new view number.

The ANNOUNCE phase of Paxos may not succeed in notifying all admins in the

repository since there may have been some offline admins during the phase. To ensure

that all admins eventually discover the view change, admins check their view numbers

at the beginning of the gossip protocol. If the view numbers are not equal, the admin

with the lower view number will request a dump of the repository metadata from the

higher admin.

At the start of the new view, the new primary immediately commits any tentative

writes in its write log. It is possible that there were writes committed in previous

views that the new primary did not see yet, which can cause inconsistencies. As an

example, consider a repository with admins A, B, C, and D where A is the primary

in view 2. A has committed writes up to commit-stamp counter 10, B has seen all

committed writes up to 10, C up to 9, and D up to 8. A dies and the other admins run

Paxos, eventually electing one of them as the new primary in the new view 3. There

can be inconsistencies in the admins’ commit write logs depending on who is elected

as the new primary. If B becomes the new primary, there are no inconsistencies since

B has seen all the writes that A has committed. If C becomes the new primary,

it can commit one of its tentative writes with commit-stamp counter 10, which is

inconsistent with the original write with commit-stamp 10 that was committed by

A in the previous view. Similarly, D can commit two writes with commit-stamps 9

and 10, resulting in an inconsistent write log. For this reason, Friendshare orders all

committed writes from previous views before any committed writes from later views

CHAPTER 4. MEMBERSHIP RECONFIGURATION 26

regardless of the commit-stamp’s counter value. Using this ordering scheme, if D

becomes the new primary, it can commit tentative writes w(9, 3) (with commit-stamp

counter 9 and view number 3) and w(10, 3) and eventually, all admins’ committed

write logs will be consistent: ..., w(9, 2), w(10, 2), w(9, 3), w(10, 3).

4.3 Paxos performance problems

Paxos does not guarantee liveness [22] and thus it is possible for the proposal to

take an infinite amount of time before reaching agreement. The following example

illustrates why a proposal might not succeed even though all nodes are available.

During reconfiguration, an admin proposes with proposal number 1. While the first

admin is in the PREPARE phase, another admin proposes with proposal number

2, so that when the first admin proceeds to the ACCEPT phase, many admins will

reject its request since they have seen a higher number (proposal 2). So, the first

admin proposes with proposal number 3, which blocks proposal 2, and so on.

In order to rectify this problem, Lamport suggests choosing a “distinguished pro-

poser” to be the only node that starts proposals [22]. However, if nodes are commonly

offline, which is precisely our situation, this would not work well because the “distin-

guished proposer” may be offline, so a new proposal would not be initiated until that

node comes back online.

One possible way to alleviate this problem is to use an exponential backoff time.

If a proposal fails, the proposer will double its backoff time before starting a new

proposal. This will decrease the probability of proposal conflicts. This works pretty

well in normal situations when a majority of admins are online. However, because

Friendshare runs on ordinary users’ desktop machines, we expect admins to be offline

more often than they are online. The effect of this “offline-heavy” tendency is that

proposals take longer to complete because proposers will spend most of their time

waiting for admins to come back online. As the proposal duration lengthens, the

probability of proposal conflicts increases. Simulation results in Chapter 6 show that

as admins become more offline-heavy, the basic Paxos protocol would increasingly fail

to reach a consensus.

CHAPTER 4. MEMBERSHIP RECONFIGURATION 27

In Paxos, a proposer must wait until it has received a majority of promises before

it can move onto the next phase. By the time the proposer can collect a majority of

replies, a multitude of events may have happened:

1. The proposer may have gone offline. Since proposals are not continued after

coming back online, this effectively terminates the proposal.

2. Another proposal may have overwritten the old proposal. The old proposal’s

proposer will discover this when it sends requests in the next phase or when it

receives requests from the newer proposer.

3. Some of the previously-online admins that accepted the PREPARE request

may have gone offline. Therefore, when the proposer moves onto the ACCEPT

phase, there may not be a majority online. In this case, the proposer once again

must wait for a majority to come online. If another proposal starts at this point,

all progress is lost. An example of this is described below (which we will refer

to as the “Overwrite” case):

(a) Admin1 sends PREPARE requests to admins 2, 3, 4, 5 (10 admins in

all), but is waiting for one more admin to come online in order to form a

majority.

(b) Admin3 goes offline then admin6 comes online.

(c) Admin1 sends a PREPARE request to admin6. Since it now has a majority,

it moves onto the ACCEPT phase.

(d) Admin1 sends ACCEPT requests to admins 2, 3, 4, 5, 6 but finds that

admin3 has gone offline. Therefore, it must wait for another admin to

come online to form a majority.

(e) Admin2 starts its own PREPARE phase, and broadcasts PREPARE re-

quests that overwrite admin1’s proposal. All progress is lost and we need

to start from the PREPARE phase again.

If a majority of admins are online at any point, proposals generally succeed. This is

because proposals finish faster when proposers do not need to wait for admins to come

CHAPTER 4. MEMBERSHIP RECONFIGURATION 28

online and therefore, there are less proposal conflicts. On the flip side, if a majority of

admins do not come online, the basic Paxos protocol almost never succeeds. This is

because while proposers are waiting for a majority to come online, another proposal

may have overwritten it (see the “Overwrite” case above). Unfortunately, in offline-

heavy situations, it is quite rare for a majority of admins to be online at one time.

Therefore, the “Overwrite” case happens very frequently.

4.4 Paxos optimizations

We propose two techniques to optimize the basic Paxos protocol so that it will work

well in an offline-heavy environment. In the Eliminate-Duplicates optimization, we

reduce proposal conflicts by preventing new proposals when there is an existing pro-

posal. In the Virtual-Token optimization, offline admins allow other admins to act

on their behalf to virtually increase the number of admins online.

4.4.1 Eliminate-Duplicates optimization

One problem with the basic protocol is that long-running proposals can be overwritten

by another proposal, which eliminates any progress and forces the consensus to start

from the beginning. One way to reduce conflicts is to reduce the number of concurrent

proposals. We propose an optimization, which we will refer to as the Eliminate-

Duplicates optimization, to reduce the number of proposals by preventing the creation

of new proposals if there is already an existing proposal. It is important to note that

we do not care about which admin succeeds in creating a proposal so long as a proposal

succeeds. We describe the optimization in detail using the “Overwrite” case:

1. Admin1 successfully sends PREPARE requests to admins 2, 3, 4, 5, but is

waiting for one more admin to come online in order to form a majority.

2. Admin3 goes offline then admin6 comes online.

3. Admin1 sends a PREPARE request to admin6. Since it now has a majority, it

moves onto the ACCEPT phase.

CHAPTER 4. MEMBERSHIP RECONFIGURATION 29

4. Admin1 sends ACCEPT requests to admins 2, 3, 4, 5, 6 but finds that admin3

has gone offline. Therefore, it must wait for another admin to come online to

form a majority.

5. Admin2 wants to start its own proposal but it knows that admin1 has already

started a proposal. It must contact admin1 and determine the proposal’s status.

At this point, several things may have happened:

(a) Admin1 is still proposing. In this case, admin2 cancels its own proposal

and initiates backoff. After its backoff, it will repeat the above procedure.

(b) Admin1 has gone offline. Since admin 1’s proposal cannot succeed now

that it is offline, admin2 can start its proposal.

(c) Admin1 has stopped proposing. This can happen if admin1 has received

a higher proposal request from another admin (which has not reached

admin2 yet) and has terminated its own proposal. In this case, admin2

will repeat the above procedure with the new proposer to discover whether

it is still proposing.

Our simulations show that this optimization improves performance as compared to

the basic Paxos protocol, especially in offline-heavy situations. It effectively eliminates

most proposal conflicts and enables one proposer to continue as long as possible.

The Eliminate-Duplicates optimization requires an admin to check the status of

existing proposals before proposing. To simplify the implementation, we piggyback

the status check with the gossip protocol. During gossiping, admins exchange their

proposer status in addition to their version vectors. If an admin is currently proposing,

it includes proposerStatus=TRUE in its gossip message. Each admin will keep the

proposer status for every other admin. When an admin wants to propose, it can

simply check the last status of the highest proposer. If the proposer was online

during the last gossip attempt and its proposerStatus=TRUE, then the admin will

not start a proposal. If the proposer was offline during the last gossip attempt or if

the proposer’s proposerStatus=FALSE, then the admin can start a new proposal.

CHAPTER 4. MEMBERSHIP RECONFIGURATION 30

4.4.2 Virtual-Token optimization

The Eliminate-Duplicates optimization does not address the problem that a proposal

can be prematurely terminated when the proposer goes offline. In extremely offline-

heavy situations, it is very likely that the proposer will go offline before finishing its

proposal simply because it takes much longer to see a majority of admins come online.

This forces proposals to start over repeatedly, thereby making no progress. In order

to further improve performance, we need to increase the number of online admins.

It is impossible to increase the number of admins physically online at a certain time

but it is possible to increase the number of admins virtually online.

In our Virtual-Token optimization, admins that are going offline try to gracefully

hand-off their virtual token to another admin (which we refer to as a token-holder).

The virtual token allows the token-holder to act on the offline admin’s behalf to

accept PREPARE and ACCEPT requests. If we add up all the online admins as well

as the virtual tokens that they are holding, the number of admins virtually online

can increase dramatically. We give an example of the optimization:

1. Admin1 gracefully hands-off its virtual token to admin2 and goes offline.

2. Admin3 starts a proposal and sends a PREPARE request to admin2.

3. Admin2 replies for itself as well as for admin1 (as admin1’s token-holder). Ad-

min3 now has 2 replies instead of 1.

Obviously, the number of virtually online admins depends on the probability that

an admin is able to gracefully hand-off its virtual token before going offline. If we

have perfect hand-off probability, then all admins are always virtually online if at

least one admin is physically online. That one physically online admin would act as

the token-holder for all the other offline admins. In a perfect hand-off situation with

at least one physically online admin, there is always a majority online and therefore,

Paxos would most likely succeed. However, we do not expect to achieve anywhere

close to perfect hand-off since admins can crash suddenly and be unable to hand-off

its virtual token. We will show in simulations that this optimization offers significant

improvements even when hand-offs are not perfect.

CHAPTER 4. MEMBERSHIP RECONFIGURATION 31

Each virtual token is identified by a globally unique tokenID, which is assigned

by the token-owner. After receiving an owner’s token, token-holders log the tokens

that it is holding onto disk so that it can recover them in the event of a failure. All

virtual tokens are only valid for the current view. When a new primary is elected,

all tokens of the previous views are considered void and not accepted during future

Paxos proposals. We will discuss the reasoning behind this rule below.

When an admin has handed-off its virtual token, it cannot participate in the Paxos

protocol until it has reclaimed its token because otherwise it would be able to vote

more than once in Paxos. For this reason, token-holders should return the tokens to

their owners as soon as possible by periodically checking whether the owners of the

held tokens have come back online. The reason that the token-owners can not directly

ask for the return of their tokens when they come online is that they do not know

which node is holding its token since its token may have been handed-off multiple

times. When returning a token to its owner, the token-holder specifies the tokenID

that it is returning to prevent a token-owner from confusing a delayed return message

of a prior token for the return message of the current token.

When a token-holder goes offline, it tries to gracefully hand-off its token and the

tokens that it is holding to another admin. If a token-holder goes offline abruptly,

then this situation is the equivalent of multiple admins going offline at once. It is

important to load balance the number of tokens held by each admin to reduce the

effect of it going offline. Therefore, when an admin is handing-off its virtual token,

it should always hand-off to the admin carrying the least number of tokens. To load

balance tokens, admins exchange a list of tokens that they are holding during gossip.

If a token-holder crashes, any admin whose token it is holding will be unable to

participate in Paxos until that token-holder comes back online so that the admin can

reclaim its token. If the token-holder never comes back online, it becomes impossible

for the token-owners to reclaim their tokens. If Paxos succeeds in creating a new view,

the admins that lost their tokens in the previous view can once again participate in

Paxos in the new view. However, if a majority of tokens are lost, Paxos cannot succeed

because there will never be a majority of admins virtually online. In the event that

Paxos becomes impossible, we allow a manual restart of the system. Essentially, an

CHAPTER 4. MEMBERSHIP RECONFIGURATION 32

admin initiates a manual restart by creating a new repository and copying the data

of the old repository. The admin, who becomes the new primary, then invites all the

members from the old repository to join the new repository.

With these changes, running Paxos with the Eliminate-Duplicates and Virtual-

Token optimizations out-performs basic Paxos in almost all situations. We will be

employing the Paxos protocol with both optimizations in our metadata replication

scheme whenever the primary is offline for a duration exceeding the timeout.

Chapter 5

Implementation

This chapter describes the implementation details behind Friendshare. We discuss

installation details, repository creation, and repository management.

5.1 Implementation overview

Friendshare is implemented in Java and requires Java 1.5 or higher. It can be run

as a daemon and is compatible with various operating systems. Friendshare is easily

installed and setup with a built-in installer that was developed using IzPack, a cus-

tom Java installer toolkit [19]. The installer allows users to choose the installation

directory and setup configuration parameters used in Friendshare and Friendstore.

Users can create, join, and manage repositories through the Friendshare GUI, which

is implemented using Java Swing.

The Virtual-Token optimization requires admins to hand-off their virtual token

before going offline. Friendshare uses the Java Service Wrapper [20] to implement

shutdown hooks for graceful virtual token hand-off. The wrapper attempts to call

the shutdown method whenever the user performs shutdown or if the Friendshare

application is closed.

When peer nodes are behind NATs, connection attempts may be blocked by the

NAT. In order to get around this issue, Friendshare uses NUTSS, a Java-based NAT

traversal technique, to punch a hole through the NAT [15]. The basic idea of NAT

33

CHAPTER 5. IMPLEMENTATION 34

traversal is that when a connection-request packet is sent out through the NAT, the

NAT opens a hole for the expected reply from the recipient. Unfortunately, a recipient

behind a NAT will not receive the initial request packet. However, an exposed third-

party can be used to coordinate the connection protocol. First, the connector notifies

the third-party and sends the connection-request packet to the recipient, which will

be blocked by the recipient’s NAT. The third-party will then notify the recipient and

instruct it to send a connection-request to the connector. Since the first step will

have opened a hole in the connector’s NAT, the recipient’s connection-request will be

successfully received by the connector.

5.2 Repository management

This section deals with details in repository management. In particular, we discuss

how the repository information and metadata is stored on a user’s hard disk, as well as

the details behind creating a repository, joining a repository, approving new members,

promoting members to admins, and evicting uncooperative members.

5.2.1 Storing repository on hard disk

The list of a user’s repositories and the repositories’ metadata (if the user is an admin)

must be stored on the user’s hard disk so that it can be reloaded when the user restarts

its computer. The list of repositories is stored in a single file Repositories.data,

which includes the repository ID, last-known membership list of the repository, and

the last-known role of each member. The membership list is used to find an admin

when the user wants to read or write in the repository. Since the membership list

changes periodically, the user may need to update the list from time to time. Each

repository of which the user is an admin has its own separate metadata file, which

includes the current view of the repository, tentative and committed write logs, and

version vector.

CHAPTER 5. IMPLEMENTATION 35

5.2.2 Creation

Users can create new repositories by using the GUI as shown in Figure 5.1. The GUI

will prompt the user to enter a repository name, which will be concatenated with

the user’s userID to generate the repositoryID. A listing for the new repository is

then added to Repositories.data. Since the creator user is the sole member of the

repository at creation time, it is designated as the primary. The repository view is

initialized to view number 0.

Figure 5.1: Creating a new repository

5.2.3 Joining

After a repository has been created, other users can request to join it. Figure 5.2

shows a user trying to join the TestGroup repository. As discussed in Chapter 4, a

user requests to join another repository by sending a REQUEST JOIN request to its

friend who will then forward the request to one of the admins in the repository.

The join request will eventually reach the primary through gossiping and is dis-

played in the GUI. The primary can then choose whether to approve or reject the

join request as shown in Figure 5.3.

CHAPTER 5. IMPLEMENTATION 36

Figure 5.2: Joining a repository

Figure 5.3: Primary approving new members

CHAPTER 5. IMPLEMENTATION 37

5.2.4 Managing

In the Repositories tab of the GUI, users can perform management actions on reposi-

tories of which they are members, such as downloading files, sharing new files, deleting

files, making new directories, and removing directories, as shown in Figures 5.4 and

5.5. When a user downloads a file, Friendshare connects to one of the replicas storing

the file to download. If a user wants to share a new file into a specific directory in

the repository, a file browser window is displayed, allowing the user to select a file to

share (see Figure 5.5). Friendshare then creates an ADD write request that specifies

that the selected file should be shared into the selected directory, and the request

is sent to an admin. Similarly, deleting files, making new directories, and removing

directories cause DELETE, MKDIR, and RMDIR write requests to be sent to an

admin.

Figure 5.4: Downloading and deleting files

To increase the replication factor of the repository metadata, the primary can

promote a member to become an admin. In order to accomplish this, the primary

CHAPTER 5. IMPLEMENTATION 38

Figure 5.5: Directory actions

writes a PROMOTE MEMBER entry in its write log and commits it. This write will

be passed to all the admins in the repository through gossiping and the member’s

status will be changed from MEMBER to ADMIN. The member will discover its

promotion when one of the admins gossips with it.

If a member is malicious or disruptive in some way, the primary can evict the

member from the repository group. Similar to admin promotions, the primary writes

a KICK MEMBER entry in its write log and commits it, which will be gossiped to

the other admins. The evicted member is thus removed from the membership list

and therefore unable to write to the repository anymore.

Chapter 6

Evaluation

This chapter presents our simulations of Friendshare’s performance in metadata repli-

cation and consensus protocols, focusing on the effects of a deployment environment

where nodes have low resources and low availability. The evaluation focuses on two

important performance measures. First, how quickly can a write be committed and

become visible to the nodes in the system? Second, if the primary leaves the system,

how quickly can a new primary be elected to form a new view?

6.1 Simulation setup

To conduct the simulations, we built an event-driven simulator in Java. Our simula-

tion experiments consist of 20 admins, where each admin would randomly go online

and offline. The online and offline durations are controlled by 4 variables: ON-

LINE MIN, ONLINE MAX, OFFLINE MIN, and OFFLINE MAX. For each admin,

the simulator randomly chooses a value between ONLINE MIN and ONLINE MAX

to determine how long the admin will stay online before going offline. Similarly, each

admin stays offline for a random duration chosen between OFFLINE MIN and OF-

FLINE MAX. Setting different values for these 4 variables allows us to control the

average online percentage of the admin. When online, each admin picks a random

admin to gossip with every 60 seconds to exchange version vectors and writes.

39

CHAPTER 6. EVALUATION 40

6.2 Basic write performance

After a write is accepted by an admin in a repository, it is propagated to the other

admins through gossiping and eventually committed by the primary. After some time,

all admins in the repository will learn that a write is committed and at this point the

write is “consistent” because the committed write logs of all admins will be identical

up to and including the consistent write.

From our discussion above, we are interested in the rate that writes are promoted:

1. How quickly is a write committed?

2. How quickly will a committed write become consistent? This happens when all

admins know that a write is committed.

To measure write performance, the simulator periodically generates new writes at

random intervals, with the average of one write every 15 minutes, and sends it to a

random online admin in the repository. One of the admins is designated as the pri-

mary and is responsible for committing the writes in the repository. Reconfiguration

is not included in this simulation as we are primarily interested in the rate at which

writes become committed and consistent.

Figure 6.1 shows a comparison of the time elapsed before a write is committed

and then becomes consistent as a function of the admins’ online percentages. When

admins have low online availability, write promotion takes longer. This is expected

because an admin needs to wait until offline admins come online before it can gossip

new writes to them. From the simulations, we find that writes are committed in

several minutes when the primary is online but in a few hours when the primary is

offline. Low availability also plays an important role in the rate that a write becomes

consistent, since it must be seen by all of the admins. Therefore, if there are not

enough admins online, a write must wait until more admins come online before it can

be promoted.

In order for a new write to be accepted into the repository, at least one admin must

be online. Figure 6.2 shows that the repository service is almost always available to

accept new writes at reasonable node availabilities. However, when admins are online

CHAPTER 6. EVALUATION 41

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

Online %

T
im

e
el

ap
se

d
(h

ou
rs

)

Committed
Consistent

Figure 6.1: Time elapsed before a write is committed and consistent at various on-
line percentages. The online percentages are varied by setting OFFLINE MIN to be
2 hours and OFFLINE MAX to be 8 hours while varying ONLINE MIN and ON-
LINE MAX.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Online %

R
ep

os
ito

ry
 s

er
vi

ce
 a

va
ila

bi
lit

y
(%

)

Figure 6.2: Probability that at least one admin is online when a new write is created
(i.e. Repository service availability) at various online percentages. The online per-
centages are varied by setting OFFLINE MIN to be 2 hours and OFFLINE MAX to
be 8 hours while varying ONLINE MIN and ONLINE MAX.

CHAPTER 6. EVALUATION 42

less than 20% of the time, the repository service is at a greater risk of being unavailable

(no admins online to accept a new write). To make the overall repository service

more available, we should increase the number of admins in the system. However,

the tradeoff is that increasing the number of admins also increases the time taken for

committed writes to be promoted to the consistent state.

6.3 Reconfiguration performance

Friendshare runs Paxos to elect a new primary when the old one has timed out. As

mentioned in Chapter 4, Paxos requires high node availability. In this section, we

discuss our experiences in running Paxos with low node availability. We also present

performance statistics of our optimizations that were discussed in Chapter 4.

As in 6.2, the experiments include 20 admins that randomly go online and offline.

Each admin keeps track of the last-online-time of the primary. If an admin detects

that the primary has been offline for more than 30 minutes (timeout), it starts a new

Paxos proposal to elect a new primary. We chose a short timeout in order to allow the

simulations to finish faster. In real world deployment, the timeout should be set to

a much larger value (e.g. 1 day). A longer timeout would follow the same trend but

would have a different absolute value. After running the simulation for a while, the

simulator manually kills the primary. We stop the simulation when a new primary has

been elected. In the event that the simulation has exceeded the maximum threshold

time of 3 days without reaching an agreement, the simulation is recorded as a failure.

Figure 6.3 shows the time that it takes for the basic Paxos protocol to succeed

in reaching an agreement at various online percentages. We find that as the admin

availability drops below 50%, Paxos’ duration begins to increase dramatically. This is

because basic Paxos requires at least a majority of admins to be online simultaneously

for a proposal to succeed. As the admin availability drops below 50%, it becomes less

likely that a majority of admins will be online at one time. If a majority of admins

is not online, the proposer must wait for admins to come online. Since this increases

the proposal duration, there is a higher risk of proposal conflict. Figure 6.4 shows

that simulations begin to fail (i.e. exceed maximum threshold time) as the online

CHAPTER 6. EVALUATION 43

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Online %

P
ax

os
 d

ur
at

io
n

(h
ou

rs
)

Figure 6.3: Time elapsed before consensus is reached by basic Paxos at various on-
line percentages. The online percentages are varied by setting OFFLINE MIN to be
2 hours and OFFLINE MAX to be 8 hours while varying ONLINE MIN and ON-
LINE MAX.

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Online %

F
ai

lu
re

 %

Figure 6.4: Probability that a simulation fails in basic Paxos at various online per-
centages. The online percentages are varied by setting OFFLINE MIN to be 2 hours
and OFFLINE MAX to be 8 hours while varying ONLINE MIN and ONLINE MAX.

CHAPTER 6. EVALUATION 44

percentage drops below 40%.

Next, we compare the performance of basic Paxos with our optimizations. We run

four simulations side-by-side: basic Paxos, Paxos with the Eliminate-Duplicates opti-

mization, Paxos with the Virtual-Token optimization, and Paxos with both Eliminate-

Duplicates and Virtual-Token optimizations. As discussed in Chapter 4, Eliminate-

Duplicates tries to prevent new proposals if there is already an existing proposal and

Virtual-Token allows admins to hand-off their virtual token before going offline, al-

lowing other admins to operate on their behalf. We do not expect that admins will

always be able to hand-off their virtual tokens in real-life so we include a variable

TOKEN HANDOFF PROBABILITY which specifies the probability that an admin

will be able to hand-off its token before going offline.

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Online %

P
ax

os
 d

ur
at

io
n

(h
ou

rs
)

Basic Paxos
Eliminate−Duplicates
Virtual−Tokens
Both optimizations

Figure 6.5: Optimizations comparison of Paxos duration at various online percent-
ages. The online percentages are varied by setting OFFLINE MIN to be 2 hours and
OFFLINE MAX to be 8 hours while varying ONLINE MIN and ONLINE MAX. For
the Virtual-Token optimization, admins hand-off their tokens 50% of the time.

Figure 6.5 shows a performance comparison of basic Paxos and the optimiza-

tions by comparing the time that it takes for a consensus to be reached. We set

TOKEN HANDOFF PROBABILITY to be 50%. Our simulations show that the

CHAPTER 6. EVALUATION 45

Eliminate-Duplicates optimization performs slightly better than basic Paxos while

the Virtual-Token optimization offers substantial performance improvements. Using

both Eliminate-Duplicates and Virtual-Token optimizations together gives the best

performance across the entire online percentage spectrum.

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Online %

F
ai

lu
re

 %

Basic Paxos
Eliminate−Duplicates
Virtual−Tokens
Both optimizations

Figure 6.6: Optimizations comparison of failure percentage. The online percentages
are varied by setting OFFLINE MIN to be 2 hours and OFFLINE MAX to be 8
hours while varying ONLINE MIN and ONLINE MAX. For the Virtual-Token opti-
mization, admins hand-off their tokens 50% of the time.

When the admin availability drops to a certain level, Paxos has trouble reaching

a consensus. If a consensus has not been reached after 3 days of running Paxos, that

run is recorded as a failure. Figure 6.6 shows the probability that Paxos fails to reach

a consensus at various online probabilities. Both basic Paxos and the Eliminate-

Duplicates optimization begin to fail when admins are online less than 40% of the

time. The Virtual-Token optimization maintains reasonable success probabilities even

at low admin availabilities.

We are also interested in the effect that the admin’s hand-off probability (i.e.

TOKEN HANDOFF PROBABILITY) has on the performance. In Figure 6.7, we

compare the time taken to elect a new primary using the Virtual-Token optimization

CHAPTER 6. EVALUATION 46

0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Virtual handoff %

P
ax

os
 d

ur
at

io
n

(h
ou

rs
)

Figure 6.7: Time elapsed before consensus is reached by Virtual-Token optimized
Paxos at various token hand-off percentages

at various TOKEN HANDOFF PROBABILITY values. The online percentage is set

to 50% by setting both ONLINE MIN and OFFLINE MIN to be 2 hours and both

ONLINE MAX and OFFLINE MAX to be 8 hours. From the simulations, we find

that the Virtual-Token optimization provides reasonable performance even if admins

only hand-off their virtual tokens 40% of the time. None of the simulation runs failed,

which is expected since Figure 6.6 shows that an online percentage of 50% does not

cause any failures.

Chapter 7

Related Work

Shared repositories are currently implemented on centrally managed sites, such as

Facebook [10], Wikipedia [40], and Flickr [11]. However, centralized repositories have

privacy issues, censorship restrictions, and a limited variety of features based on

profitability. Friendshare offers a decentralized solution that allows multiple users to

write and modify a common repository.

Network data storage has been visited by many previous systems. Grapevine

[6] was one of the first systems to offer weak consistency in message delivery. NFS

[33] allows a user to transparently access files on remote machines. AFS [17] later

improved NFS’s performance by employing leases and caching. Coda [34] replicates

data to improve availability and allows all servers to accept writes. Harp [24] uses

the primary copy scheme, in which a single primary node is responsible to serialize

the writes to the system. These systems are generally “two-point” where there are

dedicated clients and servers.

Ivy [28] was the first read/write file system that allows multiple writers. Each

Ivy user has its own log, which is stored in a DHash distributed hash table. In

this way, the logs can be accessed even when the user is offline. Other examples of

multiple writer systems include Bayou [29, 37] and Farsite [1]. Bayou is a distributed

replication system that ensures eventual consistency by using the primary commit

scheme, in which the primary specifies the ordering of writes. As long as the primary

is online, the system is capable of accepting and committing writes. If the primary is

47

CHAPTER 7. RELATED WORK 48

offline, the nodes can still accept writes although they must wait for the primary to

come back online before writes can be committed. Bayou, as well as Ivy and TACT

[41], employ log propagation schemes to synchronize the replica data.

When exchanging updates, it is more efficient for a node to send only the incre-

mental changes to another node. To achieve this, systems such as LOCUS [30], Coda,

and FICUS [32] use version vectors to specify the writes that they have seen so far.

In addition, version vectors are used to detect and resolve any concurrent conflicts

that may occur during writing.

LOCUS, Coda, FICUS, Harp, and Bayou replicate data by storing a complete copy

on every node. However, this involves performing expensive replica synchronization

on large data sets. Both PRACTI [9] and Farsite optimize replica synchronization by

separating the metadata from the data. This separation allows the synchronization

to only be done on the smaller metadata.

If data objects are mutable, the system must either consume large amounts of

bandwidth to aggressively synchronize replicas or lazily propagate data modifications.

To eliminate the difficulties of updating data, systems such as Farsite, SWALLOW

[31], and Amoeba [27] restrict data objects to be immutable. Immutable data objects

prevent the system from continuously synchronizing every time the data is modified.

Instead, the old data object is deleted and a new data object is created when updating

modified data.

One aspect of distributed data storage that we do not discuss in great detail in

this thesis is data coding for efficient storage. Friendshare relies on Friendstore to

handle the data object replication. The common options of data storage are to either

generate complete replicas or perform data coding, which consists of either striping

or erasure coding. When striping, data is split up into chunks and distributed across

the nodes in the system. All of the chunks are required to reconstruct the original

data. Erasure coding overlaps the data during chunking, which allows reconstruction

even when some chunks are not available. Zebra [16] and Myriad [8] are examples of

systems that use erasure coding for data storage.

Friendshare’s metadata replication is based on Bayou because its primary commit

scheme allows the system to operate in low availability environments. One problem

CHAPTER 7. RELATED WORK 49

with Bayou is that it cannot tolerate the primary leaving the system forever unex-

pectedly. Unfortunately, this could be a situation that happens quite frequently in

peer-to-peer systems. Generally, nodes do not stay online for very long and once

they go offline, they may never come back online (e.g. they decided to uninstall the

application or their hardware died). Even if an admin does return online, a long time

may have elapsed since it was last online. Many things may have happened: the

user may have gone on vacation, their computer may have been in repair, or perhaps

they simply did not run the application. It is not reasonable to expect the repository

to wait and hope for the primary to come back online before committing any new

writes. In contrast to Bayou, Friendshare is capable of reconfiguring repositories if

the primary leaves the system by running a consensus protocol to elect a new primary.

Friendshare’s consensus protocol is an optimized version of the Paxos protocol

[22, 26]. The Paxos protocol consists of 3 phases, PREPARE, ACCEPT, and AN-

NOUNCE, where the PREPARE and ACCEPT phases require acceptances from a

majority of nodes. Paxos does not guarantee liveness and our simulations show that

as nodes become more heavily offline, the protocol’s success rate decreases. To in-

crease the success rate of Paxos, we contribute optimizations and show the effects of

the optimizations with simulations.

Chapter 8

Conclusions

This thesis presents Friendshare, a decentralized data repository that can be created

and organized by multiple users. Friendshare provides high data availability, durabil-

ity, and consistency in peer-to-peer environments even when peer nodes have limited

bandwidth and storage space, low node availability, and may occasionally leave the

system unexpectedly.

Separating the metadata from the data allows Friendshare to provide efficient

metadata replication across the privileged admin nodes. Members write in the repos-

itory by creating data objects from files and issuing write requests for those data

objects to the admins in the repository. Friendshare ensures eventual consistency by

employing the primary commit scheme. Admins tentatively accept the writes and

propagate it to the other admins through gossiping. The primary eventually commits

the write to stabilize the total-ordering of the repository.

If the primary leaves the system unexpectedly, the remaining admins reconfig-

ure the repository by running Paxos, a consensus protocol, to elect a new primary.

We contribute two optimizations, Eliminate-Duplicates and Virtual-Token, for the

Paxos protocol to improve performance in low availability networks. In the Eliminate-

Duplicates optimization, we reduce the number of proposals by preventing new pro-

posals when there is an existing proposal. In the Virtual-Token optimization, we

virtually increase the number of online admins. To accomplish this, admins pass

their virtual token to another admin before going offline, which allows the other

50

CHAPTER 8. CONCLUSIONS 51

admin to act on its behalf in Paxos.

There are many possible future steps that can be taken. First, caching reposi-

tory metadata can improve performance and availability so that the repository can

be browsed without connecting to an admin. Second, the behavior of Friendshare

should be studied when there are malicious members or admins. Finally, real world

evaluations are needed to fully quantify the results in this thesis.

Friendshare is written in Java and can be run as a daemon on multiple operating

systems. The bundled installer allows for easy deployment. Friendshare offers a

flexible API that allows a wide variety of different applications to be built on top of

the Friendshare system.

Bibliography

[1] Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiken, R.,

Douceur, J. R., Howell, J., Lorch, J. R., Theimer, M., and Wat-

tenhofer, R. P. Farsite: federated, available, and reliable storage for an

incompletely trusted environment. SIGOPS Oper. Syst. Rev. 36, SI (2002), 1–

14.

[2] Amazon, 2008. http://aws.amazon.com/s. [Online; accessed 03-April-2008].

[3] Aspan, M. How sticky is membership on Facebook? Just try breaking free.

The New York Times (Feb. 2008).

[4] Baliga, A. Data replication: weak consistency is a strong paradigm! Rut-

gers University Technical Report (2006). http://www.research.rutgers.edu/

~aratib/presentations/weakconsistency.pdf.

[5] Bernstein, P. A., and Goodman, N. An algorithm for concurrency control

and recovery in replicated distributed databases. ACM Trans. Database Syst. 9,

4 (1984), 596–615.

[6] Birrell, A. D., Levin, R., Schroeder, M. D., and Needham, R. M.

Grapevine: an exercise in distributed computing. Commun. ACM 25, 4 (1982),

260–274.

[7] Burrows, M. The Chubby lock service for loosely-coupled distributed systems.

In OSDI ’06: Proceedings of the 7th symposium on Operating systems design and

implementation (Berkeley, CA, USA, 2006), USENIX Association, pp. 335–350.

52

BIBLIOGRAPHY 53

[8] Chang, F., Ji, M., Leung, S.-T., MacCormick, J., Perl, S., and

Zhang, L. Myriad: Cost-effective disaster tolerance. In FAST ’02: Proceedings

of the 1st USENIX Conference on File and Storage Technologies (Berkeley, CA,

USA, 2002), USENIX Association, p. 8.

[9] Dahlin, M., Gao, L., Nayate, A., Venkataramani, A., Yalagandula,

P., and Zheng, J. Practi replication for large-scale systems, 2004.

[10] Facebook, 2008. http://www.facebook.com.

[11] Flickr, 2008. http://www.flickr.com.

[12] Ghemawat, S., Gobioff, H., and Leung, S.-T. The Google file system.

SIGOPS Oper. Syst. Rev. 37, 5 (2003), 29–43.

[13] Google groups, 2008. http://groups.google.com.

[14] Gray, J., Helland, P., O’Neil, P., and Shasha, D. The dangers of repli-

cation and a solution. In Proceedings of the 1996 ACM SIGMOD International

Conference on Management of Data (1996), pp. 173–182.

[15] Guha, S., Takeda, Y., and Francis, P. Nutss: a sip-based approach to udp

and tcp network connectivity. In FDNA ’04: Proceedings of the ACM SIGCOMM

workshop on Future directions in network architecture (New York, NY, USA,

2004), ACM, pp. 43–48.

[16] Hartman, J. H., and Ousterhout, J. K. The zebra striped network file

system. ACM Trans. Comput. Syst. 13, 3 (1995), 274–310.

[17] Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan,

M., Sidebotham, R. N., and West, M. Scale and performance in a dis-

tributed file system. SIGOPS Oper. Syst. Rev. 21, 5 (1987), 1–2.

[18] Isard, M. Autopilot: automatic data center management. SIGOPS Oper. Syst.

Rev. 41, 2 (2007), 60–67.

[19] Izpack, 2008. http://izpack.org/.

BIBLIOGRAPHY 54

[20] Java service wrapper, 2008. http://wrapper.tanukisoftware.org/.

[21] Lamport, L. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM 21, 7 (1978), 558–565.

[22] Lamport, L. Paxos made simple. SIGACT News 32, 4 (December 2001), 51–58.

[23] Lindsay, B. G., Selinger, P. G., Galtieri, C., Gray, J. N., Lorie,

R. A., Price, T. G., Potzulo, F., and Wade, B. W. Notes on distributed

databases. Tech. Rep. RJ2571(33471), IBM, San Jose Research Laboratory, 1979.

[24] Liskov, B., Ghemawat, S., Gruber, R., Johnson, P., and Shrira, L.

Replication in the Harp file system. SIGOPS Oper. Syst. Rev. 25, 5 (1991),

226–238.

[25] Mazieres, D. Self-certifying file system. PhD thesis, 2000. Supervisor-M. Frans

Kaashoek.

[26] Mazières, D. Paxos made practical. January 2007.

[27] Mullender, S. J., and Tanenbaum, A. S. A distributed file service based

on optimistic concurrency control. In SOSP ’85: Proceedings of the tenth ACM

symposium on Operating systems principles (New York, NY, USA, 1985), ACM,

pp. 51–62.

[28] Muthitacharoen, A., Morris, R., Gil, T. M., and Chen, B. Ivy: a

read/write peer-to-peer file system. SIGOPS Oper. Syst. Rev. 36, SI (2002),

31–44.

[29] Petersen, K., Spreitzer, M., Terry, D., and Theimer, M. Bayou:

replicated database services for world-wide applications. In EW 7: Proceedings

of the 7th workshop on ACM SIGOPS European workshop (New York, NY, USA,

1996), ACM, pp. 275–280.

[30] Popek, G., Walker, B., Chow, J., Edwards, D., Kline, C., Rudisin,

G., and Thiel, G. Locus a network transparent, high reliability distributed

system. SIGOPS Oper. Syst. Rev. 15, 5 (1981), 169–177.

BIBLIOGRAPHY 55

[31] Reed, D. P., and Svobodova, L. Swallow: a distributed data storage system

for a local network. International Workshop on Local Networks (August 1980).

[32] Richard George Guy, I. FICUS: a very large scale reliable distributed file

system. PhD thesis, Los Angeles, CA, USA, 1992.

[33] Sandberg, R., Golgberg, D., Kleiman, S., Walsh, D., and Lyon, B.

Design and implementation of the sun network filesystem. 379–390.

[34] Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki, M. E.,

Siegel, E. H., and Steere, D. C. Coda: A highly available file system

for a distributed workstation environment. IEEE Trans. Comput. 39, 4 (1990),

447–459.

[35] TechCrunch. Facebook censors Ron Paul?, 2007. http://www.techcrunch.

com/2007/11/07/facebook-censors-ron-paul/.

[36] TechCrunch. Is Facebook really censoring search when it suits them?, 2007.

http://www.techcrunch.com/2007/11/22/is-facebook-really-censoring

-search-when-it-suits-them/.

[37] Terry, D. B., Theimer, M. M., Petersen, K., Demers, A. J., Spre-

itzer, M. J., and Hauser, C. H. Managing update conflicts in Bayou, a

weakly connected replicated storage system. 322–334.

[38] Tran, N., Chiang, F., and Li, J. Friendstore: Cooperative online backup

using trusted nodes. EuroSys Affiliated Workshop on Social Network Systems

(2008).

[39] Wikipedia. Criticism of Facebook, 2008. http://en.wikipedia.org/wiki/

Criticism_of_Facebook [Online; accessed 04-April-2008].

[40] Wikipedia. Wikipedia, 2008. http://en.wikipedia.org/wiki/Wikipedia [On-

line; accessed 02-April-2008].

BIBLIOGRAPHY 56

[41] Yu, H. Tact: tunable availability and consistency tradeoffs for replicated inter-

net services. SIGOPS Oper. Syst. Rev. 34, 2 (2000), 33.

[42] Yu, H., and Vahdat, A. The costs and limits of availability for replicated

services. ACM Trans. Comput. Syst. 24, 1 (2006), 70–113.

