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ABSTRACT

DTAC: A method for planning to claim in Bridge

Paul M. Bethe

The DTAC program uses depth-first search to find an unconditional claim in bridge – that

is, a line of play that is guaranteed to succeed whatever the distribution of the outstanding

cards among the defenders. It can also find claims that are guaranteed to succeed under

specified assumptions about the distribution of the defenders’ cards. Lastly, DTAC can find

a claim which requires losing a trick at some point. Using transposition tables to detect

repeated positions, DTAC can carry out a complete DFS to find an unconditional ordered

claim in less than 0.001 seconds on average, and less than 1 second for claims which lose a

trick. The source code for DTAC is available from: http://cs.nyu.edu/˜pmb309/DTAC.html
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Chapter 1

Introduction

In planning a line of play in bridge, a declarer may have to consider adversarial plans: if the

defenders do this, then I can do that. Often, however, a declarer can plan an unconditional

line of play that is guaranteed to work regardless of the defenders’ responses. In such a case,

declarer will often save time in the play by claiming ; that is, laying down his/her hand, and

showing this sequence of plays.

In this paper, I present an algorithm for declarer to find a claim. This is the first

published bridge algorithm to compute a line of play that is guaranteed to succeed. Previous

bridge programs used Monte Carlo testing with random distributions of the unknown cards;

thus the plans they returned are only probabilistically valid. Our algorithm can also be

applied to find a claim that is valid under an assumption about the splits in given suits; e.g.

assume that the 5 spades held by defenders split either 3-2 or 4-1 and that the 6 diamonds

split either 3-3 or 4-2. The algorithm has been implemented in a program named DTAC

(an acronym for the common phrase, “draw trumps and claim”).

In bridge, a claim occurs during the play when a player faces their cards and in most

cases provides an ordering of their cards that will take a certain number of tricks, despite

any unstated distributions of the opponents’ unknown cards. Although a defender may

sometimes claim, it is based on having all winners in their own hand, so it is not as frequent

as a claim by declarer and not part of this research. The ordering when stated by declarer

will include cards from both his and dummy’s hands. In bridge, claims are encouraged as

they speed up the play. So, it is a natural advancement for bridge “bots” to be able to

make and accept claims.

The ability to find claims should be useful for computer-bridge and the general class of

declarer play as it will: i) allow for a faster and more enjoyable game against computers

through early claiming; ii) improve the strength and speed of double dummy imperfect-

information search, as well as bidding; and finally iii) by using claim(K), K < N , provide

a baseline for the number of certain tricks when trying for more.

From the perspective of automated planning, claiming in bridge is an interesting applica-
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tion of domain specific conformant planning: i.e. finding an unconditional plan that is guar-

anteed to solve a problem despite incomplete information [Hoffmann and Brafman, 2006;

Palacios and Geffner, 2009; Rintanen, 2004]. Abstractly speaking, the technique being used

here is to map the actual partial-knowledge planning problem P into a complete knowledge

problem P
′ (the combined defender, described in Section 3.2.1), which is a conservative, or

pessimistic approximation in the sense that any solution to P
′ is also a solution to P . We

suspect that the success of this technique in bridge is related to the rather simple causal

structure of bridge play, in that successful play can be approximated to zeroth-order by

planning playing the high cards. Also, there is a limited number of interactions and inter-

ferences, thus very good heuristics limiting search can be developed. As we shall discuss

in Section 3.5.1, a substantial percentage of bridge hands end in a state where the declarer

can claim the remaining tricks. Therefore, it is worthwhile searching for such a claim.
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Chapter 2

Background

In order to fully appreciate the problem of claiming, the reader must have a background

in the card-play stage of Bridge, general search, game tree search, and finally the current

state of applying those Computer Science techniques to Bridge.

2.1 Blind Search, Adversarial Game Tree Search, minimax

and A-B pruning

If a human were given a standard chess board and asked to place eight Queens on the board,

such that no queen can take any other, how might it be done? Most likely, one Queen would

be placed on the board, then each additional Queen would be placed so as not to attack

any others. Eventually, either a solution would be found, or the human would find that the

7th or 8th Queen has no valid location on which to be placed.

Q / / / / / / /

/ / / / Q / / /

/ Q / / / / / /

/ / / / 2 Q / /

/ / Q / / / / /

/ / / / / / 1 /

/ / / Q / / / /

/ / / / / / / /

Figure 2.1: Chess-board trying to place a 7th Queen

In Figure 2.1, the only location to safely place the seventh Queen is location 1 but that

fails as there is no valid location in the 8th column. At this point in the search, the previous

move, in the 6th column, would be discarded and one would look for the next valid location.

However there is none, so the search backtracks to the 5th Queen, which can be placed at
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location 2, and now the 6th Queen is placed, and so on. This method of backtracking is

guaranteed to cover all possible ways to place queens on the board, and so if a solution

exists, one will be found. Only one solution matters, so once a single valid placement is

found, the human is done and need look no further. This is an example of blind search or

state-space search1, an operation which is easy to implement effectively on a computer, as

it only requires a method of enumerating the states and a verification function to test if the

result is still valid. However, the number of possible moves which may be searched through

is exponential in size, such that the search can take a long time. A set of good heuristics

can give a better guess as to which move to try and can provide significant speed up, as

once a single solution is found, the search is over. Of course, there are better methods to

solve the N-Queens problem, (see for example [Norvig and Russell, 2009] pp 151).

2.1.1 Minimax in Games

When playing a game with opponents, blind search runs into a problem. Let us examine

the easiest example, using Tic-Tac-Toe as in Figure 2.2:

? O

? X

X O

Figure 2.2: Tic-Tac-Toe with a winning position

At X’s turn, a human can clearly see that playing in the top or middle left box will

deliver victory, because O is unable to block in two places. But how can a computer

discover these two plays are the only winning ones? At each turn when considering X’s

move, the computer must try each counter play for O, assuming that the opponent will play

optimally. Consider if X tried to play in the bottom right corner, if O plays anywhere but

top left, X wins. A blind DFS would have its solution, but not an adversarial search. The

search must backtrack to the last play for O and try every possible play. In this case, top

left would be found as blocking the win, so the search must continue.

This type of search can be represented by a minimax tree, where X’s moves are or

nodes, as only a single valid solution is needed at those, but O’s moves are and nodes, as

X’s previous winning move must work for all of O’s possible moves. X is considered the

maximizer as he is trying to win, while O is the minimizer, as from X’s perspective he is

trying to force X to lose.

Looking at Figure 2.3, a lot depends on the move order. We know which two moves are

winning, but the computer X does not. It may pick any of the others first and waste time

1Although I have moved slightly to an informed search by recognizing that each Queen must have its

own column
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_|_|O

_|X|_

X|O|_

_|X|O

_|X|_

X|O|_

X|_|O

_|X|_

X|O|_

_|_|O

X|X|_

X|O|_

_|_|O

_|X|X

X|O|_

_|_|O

_|X|_

X|O|X

X|_|O

O|X|_

X|O|_

try to block

X|_|O

_|X|_

X|O|O

but fail

. . .

e tc

_|_|O

O|X|X

X|O|_

O has 1 play to force a  draw

doesn’ t  mat ter

other  plays

winning

Figure 2.3: Tic-Tac-Toe minimax
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discovering that they are unsuccessful. When it does pick one of the two winning moves, it

must exhaust all of O’s possible moves before it can declare a win.

This search space is much larger than a simple blind search. In general, verifying a

successful plan requires presenting a tree with branches for every possible move for O; the

problem is thus not in NP (the class of problems whose solution verification takes polynomial

time). The unfortunate consequence is that all of the improvement on the N-Queen search

discussed in [Norvig and Russell, 2009] Chapter 5 are not applicable to adversarial search.

2.1.2 Alpha-Beta Pruning

Alpha-Beta pruning is an enhancement to minimax search which prunes nodes early when

it discovers that there is no reason to continue searching. Alpha corresponds to a global

known value that max can already achieve, where Beta is the value that min can confirm.

If at any point at a max-node (or-node) the maximizer can play to a better outcome than

Beta, the search is abandoned, as min will make a better choice earlier in the search tree.

The same is true when evaluating and-nodes, if the minimizer has a play which will lead

to a lower option than Alpha, the search is abandoned, as max will make a better choice

higher in the tree.

Figure 2.4 shows a a portion of a simplified game tree where the value of a combination

of moves is assigned a score (rather than win/loss/tie as in Tic-Tac-Toe). The max-player

is trying to maximize the outcome, and the min-player to minimize it.

Figure 2.4: Subsection of a game-tree to demonstrate Alpha-Beta game pruning
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The left two nodes go to a parent or-node (denoted by the arc connecting the branches),

and a parent and-node (not shown), whose parent is the top or-node we can see. Let us

assume that at the unseen and-node, the best available play yielded 1. At the given or-node

both branches are visited, and the minimizer determines that 2 is the best outcome from

here. The unseen parent and-node determines that it can do better than the previous 1,

by taking the rightmost branch to the sub-tree we just analyzed. At the root or-node, the

minimizer determines that by playing left, it can guarantee a score of 2, and so it sets Beta

to be 2. Now, the search continues to the right of our root, then goes left at the and-node

first (by convention). However, when the search reaches the leaf with a result of 9, this

entire sub-tree can be pruned. The minimizer set a Beta of 2, so they will never play right

from the root or-node, knowing that the maximizer could play left and score 9.

2.1.3 Conformant Planning and Kriegspiel

Conformant planning is the procedure of generating a plan under uncertainty which will

succeed regardless of the true state of the world [Hoffmann and Brafman, 2006]. The initial

problem is transformed from one with uncertainty to a state space search, where the current

state is actually a set of belief-states about the possible worlds. This is somewhat similar

to Ginsberg’s Lattice approach, which will be covered later in section 2.3.3.

Russell and Wolfe explored a new method of solving imperfect information games via

their belief-state AND-OR search in [Russell and Wolfe, 2005]. It is similar to DTAC only

in that it explores a method of securing a guaranteed plan to an adversarial game. Unlike

DTAC, it uses belief-state space to do an exact search up to resource limitations. This

technique showed solid success on a limited database of checkmate positions for 3-ply and

5-ply searches.

2.2 Bridge

Bridge is a partnership card game played by four players, using a standard deck of 52 cards.

Compass directions North, East, South, and West are used to identify the players, with the

order of the bidding and the play in that order, clockwise around the table, and the partners

seated across from each other: either N and S, or E and W. All of the cards are dealt out,

and then the bidding proceeds clockwise from the dealer. The process of the bidding is

irrelevant here (though in actual Bridge it can contain information useful for play). The

result of the bidding is a contract, which specifies a particular partnership as holders, the

number of tricks they are to win, and either a trump suit, or Notrump. The bidding process

also determines which of the players in the team winning the contract is declarer and which

is dummy; the opposing team is called the defenders. By convention, the number of tricks

to be won is stated in terms of the number of tricks beyond a six-trick “book”; for example,
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a contract of 4♠ is a commitment to win 10 tricks with spades as trump (out of the 13

available on each deal).

The player to the left of the declarer leads to the first trick (’the opening lead’). Here-

after, the winner of the previous trick leads any card they wish to begin the next trick.

After the opening lead, the partner of the declarer (the dummy) lays his cards on the table

for all to see, and the declarer is charged with playing cards from both hands to maximize

his side’s ability to take the most tricks. Thus, the declarer knows the cards in his hand and

in dummy’s hand (where hand is a common description of the cards held by one player),

but he does not know how the remaining 26 cards are divided between the defenders. Each

of the defenders knows his own hand and after the opening lead dummy’s. In a single trick,

the players each play one card in sequence. The first player of a trick (the leader) may

play any card in his hand. Each of the remaining players must play a card in the suit that

has been led (by following suit) unless they are void (out of cards) in that suit. If they

are void, they may discard any card in their hand and are said to show-out of the suit led.

The winner is then determined as the highest card played in the suit led. Or, if there is

a trump suit, any player void in the suit led may discard a trump, commonly known as

ruffing or trumping, and in that case, the highest trump played determines the trick winner

(as multiple players may ruff on the same trick).

Following the last trick, the number won by the declaring side is compared to the

contract, and a score is obtained. As previously mentioned, at any point during the play, a

player will often speed up the game by claiming all or some of the remaining tricks.

2.2.1 Diagrams and Nomenclature

A typical diagram involves 1, 2 or 4 hands. The single hand diagrams ♠AK♥AKQ

♦AKQJ♣AKQJ are most often used to explore bidding problems, as in the play, each

player can see the dummy and therefore has knowledge of 2 hands.

A diagram showing two paired compass directions (East and West, or North and South)

is used to tackle declarer play problems.

♠AK

♥AKQ

♦AKQJ

♣AKQJ

W
N

S
E

♠ 432

♥ 432

♦ 5432

♣ 432

Figure 2.5: Sample two-hand diagram

All unseen cards are assumed to be held by the opponents, in any possible distribu-

tion. We will use these two-handed diagrams often to give examples of our claim engine.

Sometimes these problems also include the bidding, as that makes distributional inference
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available.

There are also problems where a defender is given the dummy as information to decide

what to do, these will not be used in this paper, so no examples are given. Finally, there are

double-dummy diagrams where all 4 hands are given, either for compactness of a problem,

or to examine exact search possibilities (see Figure 2.6).

♠QJ109

♥ J109

♦ 10987

♣ 109
♠AK

♥AKQ

♦AKQJ

♣AKQJ

W
N

S
E

♠ 432

♥ 432

♦ 5432

♣ 432
♠ 8765

♥ 8765

♦ 6

♣ 8765

Figure 2.6: Example double-dummy layout

’-’ versus ’=’ It is often useful to speak of an unknown distribution of cards in a suit

through shorthand. For example ’3-0 clubs’ describes either opponent holding all three

missing clubs (and the other none), but with both options available. However in ’3=0 clubs

with North’, by using ’=’ the shorthand implies the specific layout of three clubs with North

and none with South (so 3-0 is the combination of 3=0 and 0=3).

A finesse is a technical play by any player that attempts to take an extra trick conditional

on a certain card being held by a specific opponent. For example, in Figure 2.7, West is on

lead at Notrump and leads any spade, with North then playing small (shorthand for playing

any small card in the same suit).

Of course while the Ace will always win, playing the Queen will also win whenever the

King is with North, but lose when South holds it (as South gets to play the King after

seeing the Queen played). If the finesse is successful, the declarer will cash the Ace (playing

a card which is guaranteed to take a trick).

2.2.2 Ending with a Claim

In actual play, almost every hand ends with a claim, where the declarer faces his cards and

states a line of play to take a certain number of the remaining tricks. The opponents can

then accept the claim and enter the score, or reject the claim. In the latter case, they do
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♠ ?4

♥ –

♦ –

♣ –
♠ 32

♥ –

♦ –

♣ –

W
N

S
E

♠AQ

♥ –

♦ –

♣ –
♠ ??

♥ –

♦ –

♣ –

Figure 2.7: Simplest finesse

not continue play, but instead call the director (the ’referee’ who adjudicates matters of law

and irregularities), to figure out what would have happened. In such a case, the declarer

is assumed to play reasonably given the actual distribution of the cards, but also to take a

wrong turn whenever there was a normal choice of plays. It is important to recognize that

while the opponents’ unknown cards could be distributed in numerous ways, it is implied in

a claim that there does not exist a distribution which can defeat the proposed line of play.

2.3 State of Bridge Play, GIB, and Monte Carlo

Since the first fully automated Bridge program, Bridge Baron, was published [Throop, 1983],

there have been large strides in AI Bridge. Bridge has 3 distinct types of problems: bidding,

single-dummy play (imperfect-information), and double-dummy play (perfect information).

Each of these have different rules, objectives, and inferences that can be drawn, and research

has tended to focus on only one aspect at a time. In this paper we focus on the work related

to single-dummy play.

Where previous and parallel work had tried to encode Bridge player heuristics and

planning techniques to solve the single-dummy problem [Smith et al., 1998; Frank et al.,

1998], Ginsberg took advantage of modern computing power and explored a declarer-play

algorithm that used a Monte Carlo simulation. Each path was represented by an exact

distribution of the cards, consistent with current information, and then solved using a

double-dummy solver [Ginsberg, 2002].

Double-dummy is a Bridge term referring to a situation with perfect information, and

as such, an exact solution, can be solved for using the previously discussed technique of

adversarial search with Alpha-Beta pruning. However a double-dummy solver with only

Alpha-Beta was still not fast enough. Considerable work was done by Ginsberg to build
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on existing adversarial search pruning techniques, and by adding in his ’partition-search’

algorithm [Ginsberg, 1999; Ginsberg, 1996], solutions to the double-dummy problem could

be computed very efficiently. At each play the move returned is the one with the maximal

expected value over the layouts that have been analyzed via the solver. The algorithm has

a number of shortcomings. Obviously, the choice of move is based on a statistical estimate.

More subtly, there is the problem of strategy fusion [Frank and Basin, 1998] which is the

following: the algorithm estimates the value of a move in a state of partial knowledge as

its expected value averaging over all complete knowledge elaborations of that state. But

there are circumstances where that estimate is not valid, because it assumes that all future

moves can be chosen correctly, whereas they may in fact depend on information that will

not be known.

2.3.1 Strategy-fusion

♠KJ10

♥A

♦ –

♣ –

W
N

S
E

♠A98

♥ 2

♦ –

♣ –

Figure 2.8: Example of strategy-fusion

In Figure 2.8, West is declarer, on lead to take the rest of the tricks. The opponents

are known to hold 4 hearts, 1 diamond, and 3 spades including the Queen. Due to earlier

play (for example, South discarding on diamonds), North is known to hold the remaining

diamond. If spades are 2-1, the Queen will always fall, but if they are 3-0, which way

should declarer guard for the finesse2? Playing the King of spades first will only succeed

when North holds all three spades, but playing to the Ace fails in that case. Conversely

playing to the Ace succeeds when South has all three spades, but fails when North turns

out to have them.

A sound declarer would always make this contract without guess, by making a “discovery

play”. By taking the Ace of hearts first, declarer learns what he needs to know. If North

discards the diamond, all four hearts are known to be in the South hand, and by inference

the Queen and all of the spades are in the North hand. Three spade tricks can be taken via

the “marked” finesse through North. If, on the other hand, North follows to the first heart,

he can have at most 2 spades. This is known by inference, as North is also known to hold

at least one diamond, and started with only four cards. Declarer no longer needs to guard

against North holding all 3 spades, and so he plays the Ten of spades to dummy’s Ace, able

to take the “marked” finesse coming back if North has revealed the position by discarding.

2defined in Section 2.2.1
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From the perspective of a Monte Carlo approach, leading the Ten of spades always

succeeds. In 3=0 splits where North has the Queen the finesse is taken successfully, as the

double-dummy solver “knows” it will work. In other cases, the solver plays the Ace and also

takes all the tricks. When taking an expectation over possible leads, the King of spades fails

when the Queen is with South, but the other two leads of the Ace of hearts and the Ten

of spades work equally (taking the Ten and Jack as equals). So one of the two “winning”

options is chosen at random, and 50% of the time, Monte Carlo has chosen the inferior line,

which may fail in 11% of the actual distributions3.

2.3.2 HTN

One attempt at trying a different approach involved building an algorithm using Hierarchical-

Task-Network planning [Smith et al., 1998]. HTN planning, as in the name, uses a hierarchy

of “recipes” to solve a problem by applying high-level concepts, each of which contain smaller

tasks, which may also contain even smaller ones until atoms are reached [Ghallab et al.,

2004]. However, it was slow, could only handle endings with 4 or fewer cards per player, and

it did not provide better solutions often enough to be more useful than Ginsberg [Ginsberg,

2002].

2.3.3 Lattice Methods, and Squeaky Wheel Optimization

In an attempt to overcome strategy-fusion, Ginsberg employed a lattice method for solving

binary decision diagrams [Nielsen, 2001]. This technique worked and was found to be

useful for small end-positions, but as the number of cards remaining increased, the time

increased as well (to over 1 minute for 8-card positions). However, Ginsberg modified this

technique using achievable sets and a modification to the selection order called squeaky wheel

optimization [Joslin and Clements, 1999], which created an approximation of the problem

that was solvable in reasonable time. Profiling this technique against GIB’s Monte Carlo

engine showed a small but significant improvement in the play. This is the method that is

currently used by GIB, but it is still an approximation that does not allow for a claim.

2.3.4 Recent Research

Since Ginsberg’s paper in ’02 , computers have been considered experts at the play of

the hand, and the small amount of published research on Bridge has looked at improving

bidding [Ginsberg, 2002; Amit and Markovitch, 2006].

It was assumed that no more research was needed on the play, but this paper will show

otherwise.

3taking the probability of any 3-0 to be 22%
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A more in depth review of Bridge research can be found by reading my review paper

from 2009 [Bethe, 2009].

2.3.5 Current Programs

GiB is available as an opponent on BridgeBase.com, but no longer competes in the WCBC

(World Computer Bridge Championships). Over the last five years, two other programs

have reigned as champions of the WCBC : Jackbridge and Wbridge5. Jackbridge, written

by Kuijf and Heemskerk from the Netherlands, won in 2006 and 2009. Wbridge5, written

by Yves Costel from France, won in 2005 and 2007-8. Both programs are rumoured to be

written using a customization of the Monte Carlo and double-dummy techniques first pro-

posed by Ginsberg [Norvig and Russell, 2009]. However exact details of these two program

are proprietary.

In practice, none of these programs nor published works display the ability for a com-

puter player to be able to claim with certainty.
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Chapter 3

Planning for a Claim

3.1 Introduction

3.1.1 What is a Claim?

A claim in bridge is a statement by any player except the dummy, that indicates a number

of tricks remaining that will be taken by the claiming side, from zero to all of the remaining

tricks.

The complexity of a claim can vary from very easy to very complicated. There are very

easy claims, for example if one of the declaring side’s hands has all high winners. Slightly

more complicated examples involve using the proper sequence of plays to unblock certain

cards to end up in the right hand at the right moment. The most complicated of claims

offered by declarer usually involves a trick to be lost at some point in the play, after which

no matter what the opponents try, declarer will succeed.

The key part of a claim, which makes it different from an individual bid or play, is that

it is a guaranteed line of play (possibly with conditional plan when losing a trick), which

has no possible losing outcome no matter what the actual distribution of the opponents

cards is.

3.1.2 Why are we interested in Claims?

Claims allow the game to be played faster, as the players do not need to waste time playing

out a deal with a known conclusion. Nearly all bridge hands end in a claim or concession,

and that is almost always made by declarer. In the data we have used from championship

play, only 95 out of 55,343 deals were played out through the twelfth trick, where the rest

were recorded as a claim. In fact, the average number of tricks claimed in our data was six.

So it follows that having algorithms to verify a claim presented by an opponent, and more

importantly to find a valid claim are important components of an expert computer player.
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3.1.3 Why is a new algorithm needed?

Let us see what happens if Monte Carlo methods are used to solve for a claim of all the

tricks on this hand, with West to lead at Notrump (Figure 3.1).

♠A

♥KQJ10

♦ –

♣ –

W
N

S
E

♠ –

♥A

♦ –

♣AKQ2

Figure 3.1: An easy claim

For this example, assume that the opponents hold four clubs, and the Monte Carlo

solver is attempting to find a winning line. The raw probability of the opponents’ clubs

dividing no worse than 3-1 (neither opponent having none) is 91%. When N random deals

of the opponents cards are made, if the distribution follows the probability, on those deals

with 2-2 or 3-1 clubs, one winning line which could be found by the double-dummy searcher

is: any heart to the Ace, then the Ace, King, Queen and deuce of clubs. The deuce of clubs

will win the last trick as the opponents are out.

A possible perfect layout during Monte Carlo is in Figure 3.2

♠ 10

♥ 8

♦ 109

♣ 10
♠A

♥KQJ10

♦ –

♣ –

W
N

S
E

♠ –

♥A

♦ –

♣AKQ2
♠ 9

♥ 9

♣ J98

Figure 3.2: A possible layout dealt by the Monte Carlo

So on this layout, the solver records that for all possible leads by declarer (which is

just two: hearts or spades), all the tricks are taken. However, in the other 9% of cases,

clubs break 4-0 and the only winning line starts with spades. As of the last published

work, GIB was using 100 paths as a reasonable amount to solve1 [Ginsberg, 2002]. The

number of distributions of 10 cards into 2 hands is
(

10

5

)

= 252, so not all deals can be

evaluated. The probability that the sampling of deals includes at least one where clubs are

1with advances in computing that is likely to be more today.
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4-0 is 100 ∗ (1 − [(0.91)100]) = 99.992%, so there is a good chance that the right line will

be found. However, in that very small chance that it can go wrong MC finds both lines to

work equally well and will then choose randomly.

Even in the case where MC finds the right line, from the perspective of the solver, there

is no way to assert a claim. The solutions may have exhibited strategy-fusion (see Section

2.3.1), or simply not have included some outlying case in the random draws.

3.2 Moving beyond Monte Carlo

To claim in bridge, you need 100% confidence that a proposed solution is valid, and it is

clear that Monte Carlo cannot provide that.

3.2.1 Conformant Planning with the Combined Defender

In order to be able to search for a plan in reasonable time, we needed to be able to map

the problem of finding a claim from a complete adversarial search to a blind search. In

order to do so we conceived of a construct which could replace the pair of defenders by an

imaginary combined defender. Conceptually, the combined defender plays two cards in each

trick; he can always play the highest card held by either defender; and he can trump a trick

if it is possible (relative to the declarer’s knowledge) that either defender is void in the suit

that has been led. The combined defender is thus an over-estimate of the power of the two

separate defenders. If a pair of cards can actually be played by the actual separate defenders

under any division of the outstanding cards between them, then it can be played by the

combined defender; if the actual defenders can win a trick, then the combined defender

can; if a line of play succeeds against the combined defender, it will succeed against any

distribution in the actual defenders.

Moreover, since we are evaluating claims (unconditional play by declarer), we can further

simplify the problem by conceptually requiring the declarer to state his entire line of play

at the outset. The combined defender can choose the entire response on the basis of the

declarer’s entire plan.

Use of the combined defender simplifies the problem of finding a claim in two ways.

First, it renders the uncertainty of the division of cards between the two defenders irrelevant.

Second, it is easy to compute whether a claim of all tricks is valid. Let TC be the time at

which the claim is announced (or considered) and TT be the time at some later trick that

is part of the claim. Assume that declarer is planning to lead suit SL at TT and to win this

trick with card C in suit SW. Assume that he has already played KL tricks in SL, and KT

tricks in trump between TC and TT. Let ML be the minimum number of cards that either

defender may hold in suit SL at TC. Then the combined defender can win the trick if any

of the following three hold.
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A. SL=SW at TC: combined defender had at least KL+1 cards in SL and his top card

in SL was better than C.

B. SL=SW; ML ≤ KL: so one of the defenders may now be void in SL at TT; and

combined defender had more than KT trump at TC. That is, defender can win a trick

by trumping when declarer was planning to win in another suit.

C. SW=trump 6= SL; ML ≤ KL: combined defender held more than KT trump at TC;

and defender’s top card in trump is greater than C. That is defender can over-trump

declarer’s intended ruff of this trick.

Since it is easy to compute whether the combined defender can defeat a claim, it is not

necessary to do any search among his possible plays. The only search necessary is in space

of plays for declarer. Thus, we have converted a problem of partial knowledge, adversarial

search into a problem of complete knowledge, state space search.

3.3 Implementation

The requirements for implementing state space search are:

• A method for enumerating over the moves available to the player on lead, and the

valid plays by their partner.

• A recursive function findClaim which searches through the pairs of moves available

to declarer at the current trick returning False if all are defeatable by the combined

defender. For all accepted moves, a recursive call to findClaim is made down to the

final trick.

• An accept function which returns True if the combined defender cannot defeat the

trick.

The accept function is simple: assume that the opponents can and will do the worst

available to them. So if the defenders combined holding in a suit includes four cards,

including the Jack, do not accept any play in the first four rounds of the suit that is not the

Ace, King, or Queen. Inputs to accept are: the defensive constraints, the cards involved in

this trick, and the rounds played for each suit in this search.

Definition 1. Let the combined defensive assets be represented as a quad of triples (H, L,

M), one for each suit. Where:

H is the highest card the opponents have in that suit.

L is the max length that either opponent could have in a suit.

M is the min length that either opponent has in a suit.

Which can be represented as:

CD= [♠=(H,L,M); ♥=(H,L,M); ♦=(H,L,M); ♣=(H,L,M)]
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This data structure represents the relevant aspects of declarer’s knowledge of the state

of the combined defender. It can also be used to encode further hypothetical constraints on

the division of cards in a suit between the two defenders.

The function

accept(CD,Trumps,RoundsPlayed,Lead,Follow)

takes as arguments the state of the combined defender, the trump suit, the number of

rounds played in each suit, the card led in the proposed trick, and the card played by their

partner. (That is, if declarer is leading then Follow is the card played by dummy and vice

versa.) It returns False if defenders can win the trick and True if declarer will necessarily

win the trick.

We can now define the function

findClaim(CD,Trumps,K,State)

which returns a claim, if one can be found. The arguments CD, Trumps, and K are fixed

for the search, representing the initial constraints ascribed to the combined defender, the

trump suit, and the number of tricks K that declarer is trying to take. State is a data

structure recording the cards held by declarer and dummy, the state of the CD, and the

identification of which player holds the lead (which can by either of declarer or dummy).

FindClaim does a simple DFS through the space of states. An operator corresponds to a

choice of cards for the contract team. The accept function is used to prune search; if accept

is false, then the current branch of the DFS fails. The base-case used to indicate success in

the DFS is when the total rounds played is equal to K.

In practice, the depth-first search can be made much more efficient by rules that de-

termine that two cards are equivalent, for example, if the declarer is about to try playing

both the 9 and the 7 of the same suit, but knows that the 8 has already been played, only

one of these must be tried as they have become logical equivalents. Further pruning can

be done by adding rules that determine that some plays are pointless, as well as heuristics

that guide the most promising lines of play to search first: like drawing trumps or leading

honors from the short hand first, and, as described further in Section 3.3.3, hashing states

to avoid repeated search.

3.3.1 Revisiting our Example

Consider the same Notrump hand from Figure 3.1 with West to lead:

Two claim lines exist, one of which is to cash the ♠A discarding the ♥A, making the

west hand high, and the other which is to discard the club deuce on that first round, making

the dummy high.

However our algorithm, unlike a Monte Carlo approach (when the specific distribution

allows), will reject a line that tries to win with the deuce of clubs, as an attempt to win
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♠A

♥KQJ10

♦ –

♣ –

W
N

S
E

♠ –

♥A

♦ –

♣AKQ2

Figure 3.3: Easy claim again

the fourth club trick after taking the Ace, King, and Queen will fail accept as either of the

opponents might have started with four clubs. DTAC finds the line of pitching the small

club under the the Ace of spades, and the CD is unable to defeat any of the proposed tricks

(Figure 3.4).

SA C2

HT HA

CQ HJ

CK HQ

CA HK

Figure 3.4: DTAC’s Unconditional Claim

Consider the hand in Figure 3.5 at spades, where the opponents hold the spade Ten,

two hearts, and some cards in the other two suits.

♠AKJ

♥ 2

♦ –

♣ –

W
N

S
E

♠Q9

♥ –

♦ 2

♣ 2

Figure 3.5: Simple ruffing claim

This easy claim for a human, is simply to ruff the heart high, with the Queen, then

win with high trumps. Again, a Monte Carlo approach should find the winning line, but

without the extra “proof” that all the tricks will be taken. The DTAC program find the

easy claim, and the solution file is displayed in Figure 3.6.
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SJ S9

H2 SQ

C2 SK

SA D2

Figure 3.6: Unconditional Claim w/ a trump suit

3.3.2 Constrained Search

In order to find a claim, we assumed the worst of the opponents’ card distribution, then

looked for a solution. However, the presented algorithm does not have to be run for just

the worst-case distribution.

Constraints on splits such as “spades are not split 5-0” can be easily incorporated by

limiting the plays open to the combined defender and adjusting the findClaim algorithm

to use different values of L and M. This could be used to mimic the way a human often

analyzes a hand, by restricting the opponents to have at least one or two cards in every

suit, and look for a winning line of play conditioned on those constraints.

♠A86532

♥A6

♦KQ

♣ 853

W
N

S
E

♠KQJ

♥K10732

♦A87

♣AJ

Figure 3.7: Hand with an optimal line via constraints

In Figure 3.7, against West’s contract of 7♠, North leads the King of clubs, and declarer

wins dummy’s Ace. An unconditional claim is impossible (DTAC confirms no solution),

as with trumps possibly 4-0, after playing the King, Queen, Jack, declarer must cross to a

winner via a different suit. However, this trick is not accepted, as the CD construct could

trump in.

However, the highest percentage line2 involves assuming that: trumps do not break 4-0,

hearts break 3-3 or 4-2, and diamonds break 4-4 or 5-3. If a new search is made, with these

assumptions in the combined defender, in about 0.001s (after optimizations discussed in

2expert consensus
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3.3.3), the correct line is returned by DTAC (See figure 3.8). This is the highest percentage

line available, and the search for it does not require a Monte Carlo approach.

This winning line (under these assumptions) is to the play the King and Queen of

diamonds and then Ace of hearts (playing low each time from the dummy is implied when

nothing else is written). Cross to dummy via a low spade to the King, play the Ace of

diamonds to discard the low heart, and then lead a low heart, ruffing with a low spade3.

Next, a low spade to dummy’s Queen and another low heart, this time ruffed with the Ace

(protecting against North having started with only two hearts). A third round of spades

by playing low to the Jack draws the outstanding trumps (under the 3-1 assumption), and

now King and Ten of hearts provide discards for the losing 8 and 5 of clubs (the Ten of

hearts is the fifth round, and wins if neither opponent started with more than four). This

sequence is quite complicated, and would not be found by the average bridge player, as the

play of discarding a heart on the Ace of diamonds is very advanced play.

3.3.3 Optimization via Transposition Table

There were several hands in our data set which could take up to 30 or more seconds to search

for a simple claim. Only small improvements were achieved by adding better heuristics for

which move to pick, and eliminating touching cards: e.g. with the choice of the 9 or 7 of a

suit, but with the 8 already played, consider only one move. More was needed to get the

search to a usable speed, and the simplicity of information required to uniquely describe a

search position lead to the definition and use of a transposition table.

Definition 2. The cards left to be played, the rounds played in each suit, and the player

next to lead, uniquely define a searchable position.

Given that, a position can be defined as a 69-bit string: 52 bits to hold which cards are

left to be played, 4-bits for each suit, to allow rounds played up to 12, and a single bit to

indicate which player is next to lead. A transposition table now becomes a hashset on this

key.

We modified the search algorithm to check for an already visited position at the begin-

ning of findClaim, and then added a position’s key if a move was accepted as a final step

before making the recursive call. Once the search algorithm was so modified, the resulting

speed-up was impressive and will be demonstrated later in the results section.

3.4 Losing a Trick

Consider this simple hand at Notrump with just declarer’s cards (as dummy’s are irrelevant):

3here cross is used to indicate that the intent is win the trick in the opposite hand from the last, to alter

the next to lead
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D7 DQ

DK D8

HA H2

S2 SJ

DA H6

H3 S3

S5 SQ

H7 SA

S6 SK

HK C5

HT C8

CJ S8

Figure 3.8: Claim when trumps not 4-0, hearts not 5-1, and diamonds not 6-2

♠A

♥A

♦A

♣KQJ

Figure 3.9: Simplest 1-loser hand
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It is easy to see that five tricks are automatic. The declarer plays clubs, trying to lose

to the Ace. If the Ace is taken, there is a claim, as this player is prepared and able to win

any suit returned by the opponents.

However, until now, our algorithm did not handle the notion of losing the lead. To find

such a solution we make use of a single adversarial and-node, which requires that winning

lines are available for all suits that the opponents have to lead.

When the King of clubs is lead, if the opponents hold 2 or more clubs, the player holding

the Ace may choose to duck by playing low, or they may win their Ace. If they duck, the

regular search continues with declarer to determine the next play. However if they win,

declarer must be able to find a claim in each suit that the defenders may lead. Notice that

in the case when they duck, at the next round, declarer constructs another and-node which

requires valid claims for the opponents ducking, as well as all suits.

After DTAC was modified to incorporate this improvement, a solution was found for

this example (see Figure 3.10).

CJ C2

CQ C3

Duck

Opps Lead

Out r ank

DA D2

Duck

Opps Lead

Out r ank

HA H2

SA S2

CK D2

C

DA D2

D

HA H2

H

SA S2

S

DA D3

HA H2

SA S2

HA H2

SA S2

CK D3

DA D2

SA S2

CK D3

DA D2

HA H2

CK D3

CQ C3

C

DA D2

D

HA H2

H

SA S2

S

DA D2

HA H2

SA S2

CK D3

CQ C3

HA H2

SA S2

CK D3

CQ C3

DA D2

SA S2

CK D3

CQ C3

DA D2

HA H2

CK D3

Figure 3.10: DTAC’s classic plan

In our method, once a trick was lost, the search proceeds as before and no more losers

are allowed. While solutions are no longer verifiable in linear time, there is at most one
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and-node per depth of the tree, which is limited by the number of cards. Thus verification

is quadratic, and an improvement on classic adversarial search.

In fact, we can use this technique to solve much more complicated hands where the

declarer would not claim at the table, but DTAC is able to provide a best line for Figure

3.11.

♠ –

♥ –

♦AK

♣AJ8

W
N

S
E

♠ 7

♥ –

♦ –

♣K743

Figure 3.11: Small example of a 1-loser claim in trumps

With clubs as trumps and declarer having ruffed once already (leaving the opponents

with 5 total trumps), he wants to take all the tricks but one (which we assume fulfills his

contract). If trumps split 3-2, the problem is easy to solve. (DTAC’s solution is illustrated

in Figure 3.12)

C8 CK

C3 CA

DK C4

S7 CJ

Duck

Opps Lead

Out r ank

Sucess

Duck

Opps Lead

Out r ank

DA C7

D

DA C7

H

DA C7

S

DA C7

D

CJ C7

H

CJ S7

S

S7 CJ DA S7 DA C7

Figure 3.12: Claim when trumps 3-2
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With the knowledge that trumps are 3-2, DTAC quickly finds the claim of drawing two

trumps with the King and Ace, and then cashing4 side winners and waiting for the opponent

with the master trump (the highest outstanding trump, most likely here, the Queen), to

take it. At that point DTAC is prepared to win the required number of tricks after any

return that is made. However the same search fails with trumps allowed to break 4-1.5

In a more complicated example of requiring trumps to split, we look at Figure 3.13:

♠ 10

♥AKQ

♦KJ1043

♣AJ85

W
N

S
E

♠ 76543

♥ 2

♦AQ5

♣K743

Figure 3.13: A more complicated hand for trumps 3-2

Playing in a contract of 5♣ the opponents lead and win the Ace of spades, and continue

with another high spade. Declarer ruffs in (with the Five of clubs), and needs to take 10 of

the remaining 11 tricks. At this point, assuming trumps 3-2, DTAC provides a conditional

plan that involves drawing two trumps and then playing winners. DTAC’s solution is shown

in Figure 3.14, and is just a more complex version of the solution from Figure 3.11.

Perhaps the bridge “bot” will continue to think or look for a higher probability solution,

but it also can compute the percentage of the 3-2 split and consider that plan amongst its

options.

My last example is a hand from example 28 of one of the great Reese and Trézel books

[Reese and Trézel, 1978]. Declarer plays at 6♦ on the lead of a club (a spade would have been

tougher). A Monte Carlo solver should find the solution, but it will discover that in 75% of

the distributions, North holds one of the spade honors, and when declarer always guesses

correctly in that solver (knowing perfect information), it will expect to make the contract

on all of those hands by simply drawing trump. So again, depending on the sampling, there

is a very small percentage chance that all paths will include a spade honor onside, and MC

will be forced to pick randomly between the winning line and the inferior one (which suffers

from strategy-fusion).

DTAC can find a guaranteed solution if told only that each opponent has at least 1

club, 1 spade, and 2 hearts (meaning no ruffs are coming when a trick is lost). A low trump

is lead to dummy, which allows an opponent to win the Jack (which would not have been

a loser with the opponents holding only 3 trumps). Now any return can be won, and the

dummy entered with a low diamond to the 8, which is now high. The Ace and King of

4playing known winners

5Note that deciding when to settle for a solution under certain distributions is not addressed in this

paper.
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♠A65

♥ –

♦AKQ109732

♣AK

W
N

S
E

♠Q1072

♥AK32

♦ 86

♣ 432

Figure 3.15: Forcing an entry in 6♦

hearts provide discards for the small spades, and low heart is ruffed with a high trump to

return to hand, and trumps are drawn (if they broke 3-0). This line of play rates at about

95%, and is found by DTAC. (DTAC’s solution diagram is in figure 3.16)

3.4.1 Addendum to Optimization with a Loser

A position with an allowed loser is not the same as one without. So in order to share the

transposition table that showed such improvement in simple claims, one extra bit is required

to indicate if a loser was allowed. That way if a position is reached which had no solution

when no losers were allowed, it is still a viable position to search when a loser is an option.

Note that in this last case, if no solution was found with a loser, then there is clearly also

no solution without an allowable loser.

Because of the and-node that is now needed for an opponent on lead, it is possible that

a solution may be found to a particular position and lead that is not accepted due to failure

under other suits lead. Therefore it is important to note that when adding the solution

to the hashtable, in case the player reaches this position again but gets to choose the lead

(which is different). Note we have moved from a hashset indicating visited positions to a

hastable with possible NILL entries for visited positions with no solution.

3.5 Experimental Results

These results were obtained on a Quad-core Intel Xeon machine, with a 64-bit distribution

of RedHat Linux (kernel 2.6.18), using gcc-4.1.2 to compile the C++ code for DTAC.

3.5.1 Compiling Data Sets

Two data sets were created for analysis. The first was obtained from the USBF (U.S. Bridge

Federation: usbf.org), containing 21,797 deals played in team-trials to represent the U.S.

in International competitions, and also from International competition6. The second set of

6http://usbf.org/docs/vugraphs/*/pbns, http://usbf.org/vugraphs/*/pbns/
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Figure 3.16: Claim via forced entry
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33,546 deals was acquired from the PBN (Portable Bridge Notation7) archive8, and contains

a somewhat disparate sampling of National and European championship tournaments.

The data includes a record of the hand the final score entered, and several rounds of

card play. Thus it is possible to infer the number of tricks claimed from the last round and

the score. However, as these files are human generated, there is the possibility of error in

the data if some of the last rounds were not recorded, although we believe that to be only

a small number.

The first test for our dataset was relevance. How often did claims appear to happen,

and would this work be useful? A quick scan of the data revealed that 33% of the deals in

the USBF data set ended with an early claim of the remaining tricks, and 99% of the rest

ended in a claim (but of fewer than all the remaining tricks). Less than 1% of deals were

completely played till the end. The average number of tricks claimed was 6.

3.5.2 Without Losing a Trick

Encouragingly 70% of deals in our dataset with a claim of all the tricks was also found by

the DTAC program. This means that our program was relevant in at least 23% of the deals.

We also looked at deals which ended prematurely, but with declarer claiming K tricks, K <

the number remaining. 67% of the USBF deals appeared to end that way, and DTAC (when

given K) found solutions in 49% of those cases, increasing the relevant number of deals to

roughly 50% of the dataset. However there is more work to be done by a program in order

to decide to claim only K tricks, rather than trying for more.

Data Set deals % found DTAC %

USBF, Claim All 21797 33% 23%

ARCH, Claim All 33546 18% 10%

USBF, Claim K 21797 67% 33%

ARCH, Claim K 33645 81% 31%

Table 3.1: Percentage of hands with claims and then found by DTAC

Initially, while DTAC was satisfactorily solving these datasets, and passing several re-

gression tests for example hands where claims should and should not be found, the time

required was discouraging.

Table 3.2 shows timing results before adding transposition tables, which included two

particularly long deals requiring 402sec and 6003sec.

The data in Table 3.3 shows the results after transposition tables were added as discussed

in Section 3.3.3. The branching factor was reduced significantly, but more importantly, the

7http://www.tistis.nl/pbn/

8http://www.angelfire.com/games2/pbnarchive/pbn/index.htm
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Data set Average time Std. dev. b-factor

USBF data 0.4294s 2.0676s 2.6

PBN arch 0.19s 6.8s 2.6

USBF claim-K 0.59s 51s 2.6

ARCH claim-K 0.36s 39s 2.6

Table 3.2: Unconditional search timing data without transposition tables

searches experienced a hit rate of 70%, and an average 1000 to 1 speed-up. The longest

search now takes less than 0.01s. In these tables the “b-factor” or branching factor is the

average number of moves tried at each node, and is an indicator to the size of the search

space.

Data set Average time Std. dev. b-factor

USBF data 0.00032s 0.0033s 2.3

PBN arch 0.00032s 0.0033s 2.2

USBF claim-K 0.00014s 0.0019s 2.3

ARCH claim-K 0.00015s 0.0026s 2.2

Table 3.3: Unconditional search with optimization

With the speed and relevance of this algorithm established, it now becomes reasonable

for computer players to look for a simple claim at each round they are to play, as well

as use DTAC to enhance play and bidding code to look for guaranteed lines under some

constraints.

3.5.3 When Losing a Trick

Any of the data which did not have a solution by winning the first K tricks to match the

human result was run through the lose-a-trick module of DTAC.

Data Set % of original # of deals DTAC finds %

USBF, Claim with Loser 38% 8030 26%

ARCH, Claim with Loser 52% 17015 12%

Table 3.4: Percent of remaining hands solvable for 1-loser with transposition tables

So of those remaining deals, DTAC can find a solution with loser 26% of the time for

the USBF data, and only 11% of the time for the PBN archive (as indicated in Table 3.4).

Again, the number of deals that this covers is large enough that it appears useful, but the

time required (even with transposition tables) was not as promising.
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Data set Average time Std. dev. Max b-factor

USBF claim-K 0.75s 3.3s 89s 2.4

ARCH claim-K 0.49s 3.2s 140s 2.4

Table 3.5: Time spent solving claim-K for 1-loser

Unfortunately, several of the searches which bore no fruit also took a long time to

exhaust the search space. The addition of the losing trick, even with the transposition

tables can be slow. While still useful to bridge programs, the search will have to be done

with time-out. It seems possible that better pruning heuristics about which tricks to try

after the loser could speed up the search. If at the and-node, we search three suits and find

a solution, but the 4th is a failure, we could have saved time had we known to try that 4th

suit first (and failed).

3.6 Limitations

There are certain types of claims that an expert bridge player would make that DTAC is

unable to find. During the play, one of the defenders may show out of a suit; that is, discard

another suit when they were out of the led suit. It is now possible to make a claim that can

be guaranteed valid given this information (for example taking a finesse), but our algorithm

is not able to do so. For example declarer and dummy hold:

A54 2 KJ10

if declarer wins a trick with the A of spades in his hand, dummy playing the Ten, and

the player after dummy discards (another suit). The Queen is now known to be held by

the player in front of dummy. When declarer leads a low spade and the player in front

of dummy plays low, declarer will play the Jack from dummy. If instead the opponent

produces the Queen, it will be beaten with the King, and the Jack is high. This finesse is

considered marked as the previous round indicated who held the Queen (marked describes

a situation where the holder of a card is known). It is routine for a claim here to use the

phrase “finessing for the the Queen of spades”.

Consider the last five cards of play to be in a single suit which has yet to be played by

any player, where declarer and dummy hold:

AK982 2 Q1054

(dummy’s other card being a known loser). An expert player would claim the remaining

five tricks, by stating a conditional plan: play the Ace, and if both defenders follow, the

Jack must fall two rounds under the King and Queen. But if one defender shows out by

discarding another suit, declarer follows with a conditional plan to finesse the defender

known to hold the Jack, as described in Section 2.2.1.
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As with losing a trick, both of these types of advancement seem possible with the same

type of partial adversarial search.

It has even been reported that to speed up the play, top experts will make a claim based

on a squeeze position that is expected due to knowledge gained from the bidding and play,

but we have no expectation of being able to duplicate this. For those interested, an example

squeeze position is in Figure 3.17.

♠ –

♥K54

♦AJ

♣ –
♠ –

♥QJ10

♦KQ

♣ –

W
N

S
E

♠ –

♥ 87

♦ 1098

♣ –
♠ 2

♥A32

♦ 2

♣ –

Figure 3.17: Example of a claimable squeeze

In the example of Figure 3.17 with South playing at Notrump and needing all the tricks,

West had opened with a bid of 1♥ and was therefore known to have started with most of

the missing high cards (the Jack, Queen, King, and Ace in any suit) and at least 5 hearts.

By this end position, West required both the King and Queen of diamonds for enough

points (a common method of evaluating hands in the bidding) to have opened the bidding.

Thus South is playing almost double-dummy, in knowing that East has at most 2 hearts,

and the location of the diamond honors (the Jack, Queen, King and Ace). When the last

spade is cashed, West is squeezed: a diamond discard allows the Jack to score, while a spade

discard allows declarer to score the third round. While fully conditional play is beyond

the current scope of DTAC, Monte Carlo methods have proven quite good at solving these

end-positions.
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Chapter 4

Conclusions and Further Work

4.1 Conclusions

The large percentage of deals for which DTAC finds a solution, as well as the speed in

which it is done, has proven that computer bridge programs will soon be claiming. With

constrained search and losing trick search, computers will be able to find baseline solutions

as alternatives to their results, as well as providing search bounds.

4.2 Further Work

While DTAC adds value to computer bridge, there are still lots of hands for which the

existing methods may not find the best solution. Best in this case meaning the one which

works on the highest probability of hands.

The cover of the famous Test Your Play book [Kantar, 1981], includes the problem in

Figure 4.1. On a trump lead to South’s contract of 7♥, the reader is asked whether it is

better to finesse in spades or diamonds, but this is a diversion. The correct play is first to

try for clubs 4-3, then fall back on the diamond finesse. Picking one finesse gives a 50/50

chance, but clubs break 4-3 62% of the time, and if they don’t then you can still try the

diamond finesse, which combines the odds of success to 81%.

As expected, DTAC finds a solution if told that clubs are 4-3. (See Figure 4.2) But

notice that from the algorithm’s perspective, leading to the diamond Ace at the 5th trick

is fine as it expects clubs to break. The optimal line enters dummy the second time by

ruffing a spade to ruff the 3rd round of clubs. At this point you discover whether clubs are

breaking or not. DTAC’s line does not allow the fall-back option of the diamond finesse

after this discovery.
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♠ 4

♥K763

♦AQJ

♣ 65432

W
N

S
E

♠AKJ9

♥AQ9854

♦ 53

♣A

Figure 4.1: Hand w/ best line assuming 4-3 clubs

H3 HQ

CA C2

H4 HK

C3 H5

D3 DA

C4 H8

SK S4

S9 H6

C5 H9

SJ H7

C6 D5

DJ HA

SA DQ

Figure 4.2: Claim for clubs 4-3
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♠AKJ1098

♥K

♦QJx

♣AJx

W
N

S
E

♠Q42

♥AJ10xxxxx

♦ x

♣ x

Figure 4.3: Optimal line available via discovery play

4.2.1 Discovery Play

Consider the hand in Figure 4.3. In a contract of 6♠ after North’s taking the first trick

with the Ace of diamonds, they then play a club to their partner’s King which is taken by

declarer’s Ace. Declarer must take all the remaining tricks to make the contract, so any

distribution where that is not possible is not worth worrying about.

The play of this hand is tricky. An expert (or double-dummy search) would see that

when hearts are 3-1 and spades 2-2, a winning line is to play the King of hearts, play a

spade to dummy’s Queen, ruff a low heart; draw the last trump, and ruff a club or diamond

to the good hearts (when started from the Ace). A double-dummy solver would also see

that if reversed (spades 3-1 and hearts 2-2), a winning line is to cash the King of hearts,

draw three rounds of spades ending with dummy’s Queen, and run hearts from the Ace.

However, while both of these lines of successful play start with the cashing of the King of

hearts, at the second trick the play diverges, and the declarer will not have the information

needed to know which line to take. This is another example of strategy fusion (as discussed in

2.3.1), and a known shortcoming of approximating imperfect game search via an expectation

of perfect solutions [Frank and Basin, 1998].

When given either set of constraints, DTAC finds a solution (Figures 4.4 and 4.5), but

as described above, they diverge too soon to be usable.

A human expert would see this, and realize that there is another winning line which

works in both cases by making a discovery play (A bridge term describing a choice of plays

which provide the partial knowledge needed to pick correctly from diverging plans). The

King of hearts is played, overtaking with the Ace. A low heart is lead and ruffed with

any spade, and one then discovers if the hearts are breaking 2-2 or 3-1 by observing the

opponents’ plays. At this point the lines diverge, but the human has learned the necessary

information to decide whether to draw trumps in three rounds ending in the dummy with

good hearts, or draw trumps in two rounds to dummy, in order to ruff another round of

hearts to then re-enter dummy via a ruff.

So, each distribution where a successful line exists has two options, each of which overlap

with a companion, one of which “discovers” the winning line, but the other one does not.

Will current programs that utilize double-dummy search find the winning line? The solver

will see that overtaking the King of clubs with the Ace or just allowing the King to hold,
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make on the same probability of distributions (as to the MC solver, it will guess which

distribution to play for). So it is purely random whether MC finds the discovery play.

How would DTAC aid in solving this? Given a set of constraints, each solution can

be obtained using a modified version of findClaim that returns multiple solutions. Rather

than searching through every possible layout of the missing cards, DTAC would search

through only the 225 different distributions (enumerating 3 for 4-0, 3-1, 2-2 hearts, etc.).

Then, and this is where further research must be done, some method of merging plans must

be engaged, with the additional requirement that at the time of plan divergence, enough

information must be available to select the correct one. Another promising approach is to

build upon Ginsberg’s Lattice approach, by using the combined defender approach to solve

deals.

We reported that DTAC found a solution to hands losing a trick under certain con-

straints. However, the method a computer bridge player would use to know which set of

constraints to search under is still an open problem of interest.
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S9 S2

HK H3

S4 SQ

H4 ST

CJ S3

HA CQ

H5 D7

H6 DJ

H7 SJ

SK H8

SA HJ

Figure 4.4: Claim for only spades 2-2, hearts 3-1
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S9 S2

ST S3

HK H3

S4 SQ

HA CJ

H4 CQ

H5 D7

H6 DJ

H7 SJ

SK H8

SA HJ

Figure 4.5: Claim for only spades 3-1, hearts 2-2
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