Name: ____________________________________ ID #:_____________________

Requirement A: 36 credits of approved coursework

- 21 credits - standard CS graduate classroom-based courses

 Course ________________________________ Semester_________ Grade_____ Credits: ___

 Course ________________________________ Semester_________ Grade_____ Credits: ___

- 6 credits - standard graduate CS & Math courses; independent study; MS thesis (no external internships)

 Independent study and master’s thesis require DGS approval.

 Course ________________________________ Semester_________ Grade_____ Credits: ___

 Course ________________________________ Semester_________ Grade_____ Credits: ___

- Remaining 9 credits from any of above or: credits transferred from graduate study in CS; external internship; and relevant graduate courses. At most, 6 credits of external internship. Relevant graduate courses and external internships require DGS approval.

 Course ________________________________ Semester_________ Grade_____ Credits: ___

 Course ________________________________ Semester_________ Grade_____ Credits: ___

Requirement B: A student must pass the Core Exam. Alternatively, a student may instead choose to write a master’s thesis if the following conditions are satisfied: the student has a cumulative GPA of 3.75 after six courses; the student has completed all three core courses with at least a B+ in each; the student has found a full-time faculty member to serve as a thesis advisor; and the student has received approval from the DGS.

Option: _______________________________ Completion date: __________

Requirement C: A student must pass one course in two of following four designated application areas.

Course ________________________________ Semester_________ Grade_____ Credits: ___

 Course ________________________________ Semester_________ Grade_____ Credits: ___

Graphics

- Advanced Computer Graphics
- Advanced Computer Vision
- Computational Geometry
- Computational Photography
- Computer Games
- Computer Graphics
- Computer Vision
- Computer Vision and Tracking
- Experiments in Motion Capture
- Geometric Modeling
- Interactive Shape Modeling
- Multimedia
- User Interfaces
- Visualization
Computation for Science and Society
- Advanced Topics in Numerical Analysis: Convex & Nonsmooth Optimization
- Advanced Cryptography
- Applied Cryptography & Network Security
- Bioinformatics
- Bioinformatics and Genomics
- Computational Biology
- Computational Fluid Dynamics
- Computational PDEs
- Computational Systems Biology
- Cryptographic Tools in Deployed Systems: What Does the Padlock Mean?
- Financial Computing I
- Financial Computing Projects
- Financial Software Projects
- High Performance Scientific Computing
- Immersed Boundary Method
- Information & Communication Technology for Developing Countries
- Introduction to Cryptography
- Introduction to Finance for CS
- Linear Programming
- Monte Carlo Methods
- Numerical Methods I
- Numerical Methods II
- Numerical Methods for Time-Dependant PDEs
- Scientific Computing
- Speech Recognition
- Topics in Numerical Analysis
- Values Embodied in Information and Communications Technology

Intelligent Systems
- Advanced Computer Vision
- Advanced Topics in Natural Language Processing
- Artificial Intelligence
- Computer Vision
- Data Mining
- Data Warehousing and Mining
- Deductive Verification of Reactive Systems
- Foundations of Machine Learning
- Heuristic Problem Solving
- Information Science of Marketing
- Logic in Computer Science
- Machine Learning
- Mobile Robots
- Natural Language Processing
- Optimization in Machine Learning
- Programming Semantics, Analysis & Verification by Abstract Interpretation
- Topics in Automated Deduction
- Web Search Engines

Databases
- Advanced Database Systems
- Data Mining
- Data Warehousing
- Database Systems
- Distributed Storage Systems

Requirement D: A student must pass ONE of the following designated large scale programming project courses.

Course _____________________________ Semester _______ Grade ______ Credits: ___

- Advanced Database Systems
- Compiler Construction
- Distributed Storage Systems
- Distributed Systems
- Finance Projects
- Heuristic Problem Solving
- High Perform Computer Architecture
- Honors Compilers
- Info Tech Projects
- Interactive Shape Modeling
- Networks and Distributed Systems
- Production Quality Software
- Software Engineering
- What if a Computer Lies?