MSCS DEGREE REQUIREMENTS FORM EFFECTIVE FALL 2009 last revised (5/28/10) ID #: _____ Requirement A: 36 credits of approved coursework 21 credits - standard graduate CS classroom-based courses. Course Semester Grade Credits: Course Semester Grade Credits: Course _____ Semester ___ Grade ___ Credits: ____ Course _____ Semester___ Grade__ Credits: ____ Course _____ Semester ____ Grade ___ Credits: ____ Course _____ Semester___ Grade__ Credits: ____ Course _____ Semester___ Grade Credits: 6 credits - standard graduate CS & Math classroom-based courses; independent study; MS thesis (no external internships) Independent study and master's thesis require DGS approval. Course _____ Semester ___ Grade ___ Credits: ____ Course _____ Grade ___ Credits: ____ Remaining 9 credits in any of above or: credits transferred from graduate study in CS; external internship; and relevant graduate courses. At most 6 credits of external internship. Relevant graduate courses and external internships require DGS approval. Course _____ Semester ___ Grade ___ Credits: ____ Course _____ Grade ___ Credits: ____ Course Semester Grade Credits: **Requirement B:** A student must take the three foundational courses and maintain a rolling GPA of 2.7 or better in the courses: G22.1170-001 Fundamental Algorithms Semester_____ Grade Credits: Placement Out G22.2110-001 Programming Languages Semester Grade Credits: Placement Out G22.2250-001 Operating Systems Semester Grade Credits: Placement Out **Requirement C:** A student must pass **ONE** course in **TWO** of the following four designated application areas Course _____ Semester___ Grade__ Credits: ____ Course _____ Semester___ Grade__ Credits: ____ Graphics * Advanced Computer Graphics * Computer Vision and Tracking * Advanced Computer Vision * Experiments in Motion Capture * Computational Geometry * Geometric Modeling * Computational Photography * Interactive Shape Modeling * Computer Games * Multimedia * Computer Graphics * User Interfaces

* Visualization

* Computer Vision

Computation for Science and Society

- * Advanced Topics in Numerical Analysis: Convex & Nonsmooth Optimization
- * Advanced Cryptography
- * Applied Cryptography & Network Security
- * Bioinformatics
- * Bioinformatics and Genomics
- * Computational Biology
- * Computational Fluid Dynamics
- * Computational PDEs
- * Computational Systems Biology
- * Cryptographic Tools in Deployed Systems: What Does the Padlock Mean?
- * Financial Computing I
- * Financial Computing Projects
- * Financial Software Projects
- * High Performance Scientific Computing
- * Immersed Boundary Method
- **★** Information & Communication Technology for Developing Countries
- * Introduction to Cryptography
- * Introduction to Finance for CS
- * Linear Programming
- * Monte Carlo Methods
- * Numerical Methods I
- * Numerical Methods II
- * Numerical Methods for Time-Dependant PDEs
- * Scientific Computing
- * Speech Recognition
- * Topics in Numerical Analysis
- * Values Embodied in Information and Communications Technology

Intelligent Systems

- * Advanced Computer Vision
- *Advanced Topics in Natural Language Processing
- *Artificial Intelligence
- * Computer Vision
- * Data Mining
- * Data Warehousing and Mining
- * Deductive Verification of Reactive Systems
- * Foundations of Machine Learning
- * Heuristic Problem Solving

- * Information Science of Marketing
- * Logic in Computer Science
- * Machine Learning
- * Mobile Robots
- * Natural Language Processing
- * Optimization in Machine Learning
- * Programming Semantics, Analysis & Verification by Abstract Interpretation
- * Topics in Automated Deduction
- **★**Web Search Engines

Databases

- * Advanced Database Systems
- * Data Mining
- * Data Warehousing

- * Database Systems
- * Distributed Storage Systems

Requirement D: A student must complete a designated capstone course with the grade of B (3.0) or better. Alternatively, subject to requirements and prior approval of the DGS, a student may complete a master's thesis or advance lab.

Course	_ Semester	Grade	_ Credits:
* Advanced Computer Graphics	* Distributed Systems		
* Advanced Database Systems	★ Info Tech Projects		
* Compiler Construction	★ Software Engineering		