
CORE EXAMINATION
(Algorithms Part)

Department of Computer Science
New York University
September 26, 2008

This is the common examination for the M.S. program in CS. It covers three core computer science
topics: Programming Languages, Operating Systems, and Algorithms. The exam has two parts. The
Systems Part (PL and OS) lasts two and one half hours and covers the first two topics. The Algorithms
Part (Algo) lasts one and one-half hours, and covers the last topic.

THE REST OF THESE INSTRUCTIONS CONCERN THE ALGORITHMS EXAM.

You will be assigned a seat in the examination room.

Use the proper booklet for each question. The three exam booklet for this Algorithms Part is
marked with Question numbers ALG1, ALG2 and ALG3. DO NOT put your name on the exam
booklet or answer sheet. Instead, your exam number must be on every booklet.

You will be graded according to your exam number, shown on the envelope containing the booklets.
Remember your exam number: when grades are given out, they will be published according to this
number, not by name.

Make sure your name and signature are on the envelope. This is the only place where your name
appears. Please include all the booklets inside the envelope. You can keep the exam.

Good luck!



Algorithms

Question 1

Recall that a max-heap A with heapsize n is a special binary tree on nodes {1, 2, . . . , n}. Each
node i has an associated value, normally denoted by key[i]. The max-heap property is that when
i = parent[j], we must have key[i] ≥ key[j]. The height of a node is the number of edges in the longest
simple downward path from the node to a leaf.

a. [2 points] What is the maximum height as a function of n?

Solution

⌊lg n⌋. (Comment: lg n is close enough).

b. [2 points] Asymptotically (but with the correct constant) how many nodes have height one (as
a function of n)?

Solution

n

4
. Half the nodes are leaves and a quarter are parents of leaves.

c. [2 points] Let S be the sum of the heights of all the nodes. Find (with argument) the asymptotics
of S. Your answer should be of the form S = Θ(f(n)) for some natural function f(n).

Solution

S = Θ(n). There are n

2
with height zero, n

4
with height 1, n

8
with height 2, etc. This gives

∼ n(0(1/2)+1(1/4)+2(1/8)+ . . .), but the sum converges so the total is ∼ n. (Comment: This
is a tough one but part of the analysis in HEAPS. Some partial credit for O(n lg n).)

d. [2 points] Describe an algorithm for adding a new element, with key value x, to the heap.
Analyze how long the algorithm will take in the worst case. How long will it take in the best
case?

Solution

This is precisely HEAP-INSERT. Increment heapsize, set i to new heapsize, set key[i] = x. Then
while i 6= 1 and key[parent[i]] < key[i] exchange key[i], key[parent[i]], reset i to parent[i]. The
maximal time is Θ(lg n) if you go up to the root, the minimal time is O(1) if the new value is
smaller than its parent at the start.

e. [2 points] Let u = ⌊√n⌋. Describe an algorithm for creating an array B[1 · · ·u] consisting of
the top u values in the heap, in descending order. How long (again your answer should be in
the form Θ(f(n)) for some natural function f(n)) does your algorithm take?

Solution

Apply HEAP-EXTRACT-MAX u times. Each time takes Θ(lg n) so the total time is Θ(
√

n lg n).

Question 2

In this question, a document is viewed as a sequence of words and a position refers to word position
in that sequence. You are given N arrays of sorted integers representing the positions of N words in
a single document. The following is an example with N = 3.

the: 7 14 21 35 51

magic: 10 16 31 44



page: 3 23 61 69

A text window is a consecutive sequence of positions in a document, i.e. a sequence of positions
(i, i + 1, i + 2, . . . , j) for some positive integers i ≤ j. The size of the window is j − i + 1.

You are asked to find a text window of the smallest size in the document that contains each of the
N words at least once.

Denote by k the largest number of occurrences of any of the N words in the text (i.e. k is the
largest size of any of the N arrays).

a. [4 points] Assume that N = 2. Give an efficient algorithm to solve this problem. What is the
time complexity of your algorithm? (Hint: Merge the two arrays?).

Solution

O(k). Merge the two arrays in O(k) time to obtain a single sorted array. Each array element
holds a position as well as the word at that position. Now scan the array from left to right and
whenever you find two consecutive array elements corresponding to two different words, take the
difference in the positions as the size of a text-window that contains both the words. Maintain
the minimum over all such text-windows.

b. [6 points] Give a general algorithm to solve this problem for N ≥ 2. What is the time complexity
of your algorithm?

Solution

O(kN log k). Merge the k arrays into a single sorted array. This takes O(kN log k) time by
repeatedly merging pairs of arrays (Comment: This step is non-trivial. Partial credit for sub-
optimal answers). Call the merged array A[1, . . . , kN ] where each element holds a position and
the corresponding word. Now the problem can be solved by one scan of the array A in time
O(kN) by maintaining and appropriately updating:

• Two pointers that indicate left and right endpoints of the current text-window.

• An array count[1, . . . , N ] that keeps a count of number of occurrences of each word in the
current window.

• An integer variable W that keeps track of the number of words that appear at least once
in the current text-window.

If W < N , then move the right pointer by one step and enlarge the window. If W = N , move
the left pointer by one step and shrink the window. Other details are omitted, but students are
expected to provide full details.

Question 3

Let G = (V, E) be a directed acyclic graph where V is the vertex set and E is the set of edges. (Note:
A directed graph is called acyclic if it does not contain any directed cycle).

a. [3 points] Prove that the graph must have a vertex t that has no outgoing edge.

Solution

Start with an arbitrary vertex, take an outgoing edge if possible, and repeat. This process must
terminate since the graph has no cycle and that yields a vertex with no outgoing edge.

b. [3 points] Suppose |V | = n. A topological ordering of the acyclic graph is a labeling of its
vertices by integers from 1 to n such that

• Any two distinct vertices receive distinct labels.



• Every (directed) edge goes from a vertex with a lower label to a vertex with a higher label.

Give a polynomial time algorithm to find a topological ordering of the graph. What is its
running time? Don’t worry about getting the optimal running time. Assume adjacency list
representation of the graph.

Solution

For i = n, n − 1, . . . , 1, find a vertex with no outgoing edge, label it with i, delete that vertex,
and repeat. This can clearly be implemented in polynomial time, say O(n2) time, since for each
index i, we can find a vertex with no outgoing edge and then delete it in O(n) time.

c. [4 points] Fix a node t that has no outgoing edge. For every node v ∈ V , let P (v) be the number
of distinct paths from v to t. Define P (v) = 0 if no such path exists and define P (t) = 1 for
convenience. Give a polynomial time algorithm to compute P (v) for every node v. What is its
running time? Don’t worry about getting the optimal running time.

Solution

Take the topological ordering of the graph. Initialize P (t) = 1 and P (u) = 0 ∀ u 6= t. Initialize
the current vertex to be the one immediately preceding t in the topological order. For the
current vertex v, define P (v) to be the sum over all P (w) such that (v, w) is an edge. Move the
current vertex to the one immediately preceding it in the topological order. This can clearly be
implemented in polynomial time, say O(n2) time, since for each vertex, we can sum over all its
outgoing neighbors in O(n) time.


