
CORE EXAMINATION

Department of Computer Science

New York University

September 28, 2007

This is the common examination for the M.S. program in CS. It covers core computer science
topics: Languages and Compilers, Operating Systems, and Algorithms. The exam has two parts. The
first part lasts three hours and covers the first two topics. The second part, given this afternoon, lasts
one and one-half hours, and covers algorithms.

Use the proper booklet or answer sheet for each question. Each booklet is marked with the Area
and Question number in the form PL&C1, PL&C2, PLC&C3, OS1, OS2, ALGS1, ALGS2. However,
there is an answer sheet for the Algorithms problem 3 instead of a booklet. Use the appropriate
booklet/answer sheet for each question. DO NOT put your name on the exam booklet. Instead, your
exam number must be on every booklet.

You will be graded according to your exam number, shown on the envelope containing the booklets.
Remember your exam number: when grades are given out, they will be published according to this
number, not by name.

Make sure your name and signature are on the envelope. This is the only place where your name
appears. Please include all the booklets inside the envelope and the answer sheet. You can keep the
exam.

Good luck!

1

Algorithms

Question 1

This question deals with the problem of finding the intersection of two sorted arrays A and B.
For simplicity, please assume that the elements of A are distinct, and likewise the elements of B are
distinct. You can use any standard algorithm, provided you state exactly what the algorithm does.

1. [4 points] In this question, we assume that the two arrays are relatively short, e.g., |A| = |B| =
1000. Describe an algorithm to print the intersection and write the pseudocode. What is the
complexity of your algorithm as a function of |A|, when |A| and |B| are approximately equal?

Solution A.

Merge the two sets and scan them for consecutive values that are equal. Both steps take
Θ(|A|+ |B|) time.

Solution B.

For specificity, let the indices of the arrays begin at 0, so that the A-index goes from 0 to |A|−1.
For simplicity, let A[|A|] = B[|B|] = ∞. An algorithm that performs a linear scan of the keys
in increasing order is as follows:

adex← 0;
bdex← 0;
repeat

if A[adex] < B[bdex] then adex← adex + 1
elseif A[adex] > B[bdex] then bdex← bdex + 1
else

Print(A[adex]);
adex← adex + 1;
bdex← bdex + 1

endif

until adex = |A| and bdex = |B|;

The operation count is Θ(|A| + |B|) because each iteration increases an index of A or B, and
each iteration does constant work.

2. [6 points] Now assume that B is much larger than A. For example, let |A| = 100 and |B| = 109.
Give a better-suited algorithm for this case. What is the complexity of your algorithm as a
function of |A| and |B| in the case |A| < |B|?

Solution A.

Let Bsearch(B, key) be a Boolean function that uses binary search to return true if key is in
the array B, and false if not.

One solution reads:

for j ← 0 to |A| − 1 do

if Bsearch(B,A[j]) then Print(A[j]) endif

endfor

The operation count is Θ(|A| log |B|) because each key in A is processed just once, and the
processing requires a binary search over B.

A somewhat better solution (which is NOT required) can be devised by, for example, using

binary search for the middle value A[|A|
2

]. The search will split B into a sequence of values

that are less than A[|A|
2

] and a sequence that is larger. Then the search for common elements

2

is applied recursively for A[0.. |A|
2
− 1] and the subsequence of B that is less than A[|A|

2
] and for

A[|A|
2

+ 1..|A| − 1] and the subsequence of B that is greater than A[|A|
2

].

The operation count is subtle, and is Θ(|A| log(|A|+|B|
|A|)). An unreasonably sophisticated solution

might use some version of interpolation search, and other considerations would be appropriate
for extremely large data sets.

Question 2

Let T be a balanced search tree such as a 2-3Tree (or a balanced binary search tree) so that find(x),
delete(x), and insert(x) can execute in Θ(log n) operations when T stores n records.

1. [5 points] Let rank(x) be the number of records in T that have key values which are less than
or equal to x. For simplicity, you can assume that no two records have the same key value. Give
a high-level description of the enhancements necessary so that rank(x), find(x), insert(x) and
delete(x) can all run in Θ(log n) operations. This description should include:
One sentence to describe the enhancement(s).
One sentence to explain the changes when a new element is inserted into T . It in NOT necessary
to explain what happens when a node splits (for a 2-3Tree) or a rotation occurs (for some other
balanced search tree.)
One short sentence about why the operation count is still Θ(log n).

Solution.

Use a 2-3 Tree. In each internal node v, maintain a count of the number of data leaves in the
subtree rooted by v.

These leaf counts are easy to update during an insertion or deletion with constant work per
node because the nodes with values that change are along the path from the root of T to the
inserted or deleted leaf. Splits and joins are easily processed, since the leaf count in any v is the
sum of the counts for its children (or the number of children if they are leaves).

The rank of a key x is one plus the sum of the leaf counts in the roots of the subtrees that hang
off of (and to the left of) the path from the root of T to x. That is, for each v on the path
through to x, the leaf counts for v’s zero, 1, or 2 left-siblings are added to compute a running
sum, which, when increased by 1, equals rank(x). The count for each leaf that is a left-sibling
of the leaf x is one (leaf). Since there are just O(log n) values that are added together, the total
operation count is as requested.

2. [5 points] Now suppose we also wish to search by rank as well as by key value. So let GetR(r)
return the key with rank r.

(a) Does your solution to part 1 contain enough information to compute GetR(r) in O(log n)
operations? If not, briefly present additional enhancements that would allow GetR(r) to
have this performance while maintaining the O(log n) operation counts for rank, insert,
delete, and find.

Solution.

Yes. See below.

(b) Briefly explain why GetR(r) can be computed efficiently with your final structure. No
algorithm is requested; all that is needed is a brief explanation about how GetR(r) would
work.

Solution.

Just as the leaf counts for the subtrees rooted by the internal nodes of T can be used to
determine the rank of a key x, so can they be used in search for the key with a specified

3

rank r. The nicest solution is to search for the key with a relative rank r in a subtree rooted
by the internal node w. Initially, w is T , and the relative rank is r. Upon descending from
w to the correct child of w, r is decreased by the leaf counts for the children of w that are
to the left of the child that is on the path. The child of w that stores the key being sought
is the right-most child where the adjusted rank is positive.

Question 3

Let T be a tree. For each of the problems listed on the next page, you are given a standard DFS
traversal of T . But the code is incomplete, and there are blank lines in the code where you can insert
additional instructions as needed. For each of the three parts on the next page, insert the necessary
instructions so that for each vertex v in T , v.val will be set equal to the value that is requested in the
problem. There are only six different instructions you can write in a blank line:

“T.val ← 0;”
“T.val ← 1;”
“T.val ← Temp;”

“Temp← Temp + 1;”
“Temp← 0;”
“Temp← Temp− 1;”

You will need just two or three instructions for each problem. You might decide to write two
instructions in a blank line. That is okay. These problems are elementary, but you do need to think
clearly. To avoid mistakes, think abstractly. As you read each question, think about this. As I walk
down the tree, what do I need to do at first entry to a descendant vertex? What do I do just before
or just after a last exit from the vertex?

A sample problem and sample solution with the solution written like this is shown below.

Sample problem zero points
z) For each v, v.val should be the preorder
number of v in T .

global Temp;
Temp← 1;
procedure DFS(T);

foreach child v of T do

DFS(v);

endfor;

end procedure;

Sample solution
z) For each v, v.val should be the preorder
number of v in T .

global Temp;
Temp← 1;
procedure DFS(T);

T.val←Temp;

Temp←Temp+1;

foreach child v of T do

DFS(v);

endfor;

end procedure;

4

Question 3 – PLEASE WRITE YOUR ANSWERS ON THIS PAGE

exam number

Available Commands

“T.val ← 0;”
“T.val ← 1;”
“T.val ← Temp;”

“Temp← Temp + 1;”
“Temp← 0;”
“Temp← Temp− 1;”

Insert the two or three commands needed to solve each problem as specified.

1. [3 points] For each v, v.val should be the
postorder number of v in T .

global Temp;
Temp← 1;
procedure DFS(T);

foreach child v of T do

DFS(v);

endfor;
T.val← Temp;

Temp← Temp + 1
end procedure;

2. [3 points] For each v, v.val should be the
depth of v in T as measured in edges, where
the root has depth 1, and its children have
depth 2, etc.

global Temp;
Temp← 1;

procedure DFS(T);

T.val← Temp;

Temp← Temp + 1;
foreach child v of T do

DFS(v);

endfor;

Temp← Temp− 1;

end procedure;

3. [4 points] For each v, v.val should be zero if
v is a leaf and one if v is not a leaf. No Temp

is needed. Reminder:

{

leaves← 0;

others← 1.

procedure DFS(T);

Temp← 0;

if T has children then

foreach child v of T do

DFS(v);

Temp← 1
endfor

endif;

T.val← Temp

end procedure;

5

