
CORE EXAMINATION
Department of Computer Science

New York University
May 14, 1999

This is the common examination for the M.S. program in CS. It covers
core computer science topics: Languages and Compilers, Operating Systems,
and Algorithms. The exam has two parts. The first part lasts three hours
and covers the first two topics. The second part, given this afternoon, lasts
one and one-half hours, and covers algorithms.

Attempt all of the questions. Use the proper booklet for each question.
Each booklet is marked with the Area and Question number, in the form
PL&C1, PL&C2, PLC&C3, OS1, OS2, ALGS1, ALGS2, ALGS3. Use the
appropriate booklet for each question. DO NOT put your name on the exam
booklet. Instead, your exam number must be on every booklet.

You will be graded according to your exam number, shown on the enve-
lope containing the booklets. Remember your exam number: when grades
are given out, they will be published according to this number, not by name.

Make sure your name and signature are on the envelope. This is the
only place where your name appears. Please include all the booklets inside
the envelope. You can keep the exam. Good luck!

Programming Languages and Compilers

Question 1

For each of the following constructs, write down the code that will be gener-
ated by a typical compiler. Use your favorite assembly, or else conventional
quadruples. In what follows A and B are local arrays of known size, X is
a local integer variable, GX is an integer variable declared in an enclosing
scope. S is a dynamic array whose size is not known at compile-time. Obj
is a pointer to an object of class C, and Func is a virtual method of that
class, which appears in the 7th entry of the vtable for C. First three cases
use Ada syntax, last two use C++

(a) A (5) := B (5);
(b) A (I + 1) := B (I + 1);
(c) A (GX) := 0;
(d) for (int X = 0; X < N; X++) S[X] = 0;
(e) Obj -> Func (X);

1

Question 2

In Java, to create a generic sorting method, we can define an interface as
follows:

interface Comparable {
boolean LessThan (Comparable X);

}

We can then write a sorting method that sorts an array of objects that im-
plement this interface.

a) Write the body such a method (any simple sorting algorithm will do).

b) The method cannot be used to sort an array of ints. Write a wrap-
per class for integers, that will allow us to use the method written in a) to
sort such an array.

c) In Ada or C++ write a generic procedure or template that has the same
functionality as your Java method.

Question 3

Consider the following (not-quite-C) program

#include <stdio.h
voids main (char **argv; int argc) {

int a = 1234a6754;
{

printf ("the value of a is %d, a)
}

Assume you have a really clever compiler, that gives optimal error messages
for the above pitiful attempt at C. Show the error messages that would be
produced.

For each error message, indicate which component of the compiler will gener-
ate it, and describe how the compiler can recover from the error and proceed
with the compilation. Write down the productions that are relevant.

2

Operating Systems

Question 1

The following 2-process critical section solution was invented in 1966 and
was long considered to be correct. Show convincingly that the solution is
not correct.

LOOP
flag[i] = TRUE;
WHILE (turn != i) DO {

WHILE (flag[j]) DO;
turn = i;

}
... Critical Section;
flag[i] = FALSE;
... Remainder Section;

END; /* process Pi */

Question 2

Allowing two portions of a process’s virtual address space to map to the same
set of physical pages enables different protections to be associated with each
portion.

1. what additional operations does an operating system need to perform
at page-fault time to provide this support?

2. How can such support be used to decrease the amount of time needed
to copy a large amount of memory from one place to another? Your
answer must ensure that updates to the destination are not visible in
the source portion.

3. Suppose you have a system with 4 kilobyte pages, 4 bytes per word,
and that the cost of a read/write per word is tma. The cost of a
protection fault is tpf , Given the following access pattern to memory:

copy B pages from source saddr to destination daddr

for (i = 0; i < K; i++)
update the first word of page i, starting at daddr

what is the maximum value of K (as a fraction of B) for which your
copying scheme will perform better than the traditional scheme?

3

Part II: Basic Algorithms

Question 1

Describe a linear-time algorithm that takes a binary search tree of arbitrary
shape and constructs a perfectly balanced binary search tree. Assume that
extra storage is available as needed. Give details of the code, and show
convincingly that the performance is linear in the number of nodes in the
tree.

Solution

The solution consists in copying the values from the unbalanced tree into
an array, sorted in increasing order. This is done by a single traversal of
the tree copying the values from the nodes in “inorder” order, that is, left
subtree, current vertex, right subtree. Next, the elements of the array are
linked into a balanced tree using a recursive bisection algorithm. The value
from the middle element of the array goes into the root of the tree.

The most common mistake was to try to rebalance the tree using rota-
tions, such as are used in AVL or red-black trees. This cannot work in the
required time. If the tree is very unbalanced, it can take many rotations
just to put the median of the values into the root position, so the overall
complexity gains a logarithmic factor.
The following is a very detailed answer to the question. Full credit did not
require all of the following.
Suppose we have a data type

binaryTreeElement {
binaryTreeElement* left; // pointer to left child, NIL if none.
binaryTreeElement* right; // pointer to right child, NIL if none.
number value; // The key, or value, of this node.

}

The owner of the unbalanced binary tree might or might not know the
number of elements in the tree. If not, here is a procedure that does DFS
(depth first search) to find the number:

int treeSize(binaryTreeElement v) {
int size = 1; // Count this vertex.
// If some subtree is present, count its vertices
if (v.left != NIL) size += treeSize(*(v.left));
if (v.right != NIL) size += treeSize(*(v.right));
return size;

}

4

Here is the procedure that does the “inorder” traversal of the tree to copy
its elements into the array:

void treeToArray(binaryTreeElement root, number A[], int *next) {

/* Copy the tree starting at root, including root into the array A
starting at location "next". ASSUME someone has allocated a
large enough array.

*/

if (root.left != NIL) // If present,
treeToArray(*(root.left), A, next); // copy its elements to A.

A[(*next)++] = root.value; // Next, the root,
if (root.right != NIL) // then the right.

treeToArray(*(root.right), A, next); // if present.
}

This procedure creates a new balanced binary search tree from the elements
of a sorted array.

*binaryTreeElement arrayToBalancedTree(number A[], int n) {

/* Create a balanced binary search tree from the elements of A, which
is sorted in increasing order. n is the number of elements in A */

binaryTreeElement* root;

//Create the root element and set it up.
root = new(binaryTreeElement);
int median, leftSubtreeSize, rightSubtreeSize;
median = n/2; // rounded to (n-1)/2 if n is odd.
*root.value = A[median - 1]; // The first element of A is A[0].
*root.left = NIL; // overridden later if there are subtrees.
*root.right = NIL;

leftSubtreeSize = median - 1;
if (leftSubtreeSize > 0)

*root.left = arrayToBalancedTree(A, leftSubtreeSize);
rightSubtreeSize = n - median - 1;
if (leftSubtreeSize > 0)

*root.right = arrayToBalancedTree(&A[median], rightSubtreeSize);
}

Each of the procedures, treeSize, treeToArray, and arrayToBalancedTree,
visits each element once. Therefore, the total work is O(n), for the n ele-
ments.

5

Question 2

We want to store N = 106 (roughly 220) telephone numbers in a balanced
search tree with branching factor b and height h. The tree is stored on a
slow disk. Each internal node in the tree has b children, and can be read
into memory in time T = T0 + T1b, where T0 = 25msec and T1 = 2msec.
All phone numbers are stored in the leaves.

a) What is the relationship between N , b and h?

b) Suppose that b and h are much larger than one. Find an approximate
expression for the maximum time taken to find a given phone number in the
tree. Ignore the cost of miscellaneous arithmetic operations.

c) Use the result of part (b) to show that b = 16 is a better value than
4 or 100.

Solution

a) The number of leaves in a tree with height h and branching factor b is
bh. If all the numbers are stored in leaves, this means

N = bh .

Note: a tree with a single element will have height zero in this convention.

b) To get to a leaf from the root, you have to read h nodes. (This assumes
that the root is always in memory, otherwise we have to read h + 1 nodes,
this does not significantly affect the result of the following computations).
Each node takes T = T0 + h · T1, so the total time is

Ttot = h (T0 + h · T1) .

c) We need a formula for h as a function of N and b. Take logarithms in
the most convenient base of N = bh to get

lg(N) = h · lg(b) or
h = lg(N)/ lg(b) .

For b = 4, lg(b) = 2, lg(N) = 20, this gives:

h = 20/2 = 10
T = 25 + 4 · 2 = 33 msec

Ttot = 10 · 33 = 330 msec .

6

For b = 16, lg(b) = 4, lg(N) = 20, this gives:

h = 20/4 = 5
T = 25 + 16 · 2 = 25 + 32 = 57 msec

Ttot = 5 · 57 = 285 msec .

For b = 128 ≈ 100, lg(b) = 7, lg(N) = 20, this gives:

h = 20/7 ≈ 3
T = 25 + 128 · 2 = 25 + 256 ≈ 280 msec

Ttot ≈ 3 · 280 = 560 msec .

similar result if we take log10(N) = 6, log10(b) = 2 The time for b = 16 is
the smallest of the three.

Question 3

A spreadsheet in a spreadsheet program contains an N*M array of cells.
Each cell holds a numeric value. A value may be supplied directly by the
user, or it may be calculated in term of values in other cells:

B2 = B4 * (A1 + C23 + D5)

By convention, rows are indexed by letter and columns by number. Thus
cell B4 corresponds to the [2, 4] entry in the array. The dependency list for
a cell is the list of cells its value depends on. For example, the dependency
list for B2 given above is (B4, A1, C23, D5). If a cell has a constant numeric
value its dependency list is empty.
Suppose you are given a method Dependency List (cell X) which returns a p
ointer to the first element of the dependency list of the given cell. Describe
an algorithm that checks whether a given cell has a circular dependence,
that is to say depends directly or indirectly on itself (such circularities are
not allowed in normal usage). For example, given the previous definition for
B2, if we have the additional dependencies:

A1 = A2 + A5

then B2 has a circular dependency through A1 and A2.
Your algorithm should have a complexity proportional to the number of
cells on which the given cell depends (directly or indirectly) and should be
independent of the total size of the spreadsheet.

Solution

The following answer was good for 9 points out of ten. A completely correct
answer is more complicated.

7

Answer 1: The cells in the spreadsheet form the vertices of a directed
graph. There is an edge from X to Y if Y is in the dependency list of
X. The cell X has no circular dependence if and only if the directed graph
rooted at X has no cycles. We can test this using depth-first search (DFS)
starting at X. The vertices searched will be those on which X depends,
either directly or indirectly. The work for this is proportional to V + E,
where V is the number of cells on which X depends (directly or indirectly)
and E is the number of dependency relations involving those cells.

Criticism of Answer 1: To do DFS, we must first initialize by marking
all the vertices as not visited. If we initialize every cell in the spread sheet,
the work will be Θ(NM), which is not what the question askes for.

Answer to Criticism: When we visit a node, we must check whether the
node has been visited before. This can be done by putting the visited notes
into a hash table. The trouble is that we do not know how large the table
should be. If we make it big enough for the whole spreadsheet, it will take
Θ(NM) work to initialize. A solution is to use an expanding hash table.
Start with S = 2. If the number of elements in the table exceeds S/2, create
a new table with twice the size and hash all the old entries into the new
table. An amortized analysis shows that the work to insert k elements into
an expanding hash table is Θ(k).

Most common error: The most common mistake was is illustrated by the
following pseudocode:

boolean find (cell X, cellList L) {
if (L == NIL) return FALSE;
boolean found = FALSE;
for (cell Y in L) {

if (Y == X) return TRUE;
found = found or find(X, dependency_List(Y);

}
return found;

}

This will fail on the example

C1 = A2 + D4
A2 = D5 + B6
D5 = E7 + A2

Here, C1 has a circular dependcence that does not include C1. The above
code would be an infinite loop going back and forth between A2 and D5.

8

Question 4

We have two lists of words, A[N] and B[M]. We need to determine the
number of words that are common to both lists. We have a method

boolean Equals (word X, word Y);

whose performance takes constant time (words all have roughly the same
size). Assume that each list has no duplicates, but that many words in A
also occur in B. There are two ways of approaching this problem: sorting,
and hashing.

a) Assuming that storage is available as needed, which method will be faster?
Explain, and discuss worst cases.

b) Give details of the program for the faster algorithm.

Solution

Let’s suppose we have another method,

boolean Before(word X, word Y) ,

thar returns TRUE if X comes before Y in lexicographic order, and FALSE
otherwise.

a) Sorting: Suppose that A is the shorter list: N ≤ M . We sort A using the
Before method and quicksort or mergesort in O(N log(N)) time. In prac-
tice, it would be a packaged sort program that uses some optimized version
of quicksort. Without any information on the lengths of the words, it is
doubtful that radix sort will be faster. For each word in B, we can perform a
bisection search of the sorted A to find whether that word is in A. Each such
search takes lg(N) comparisons, so the total is M lg(N). The total work,
then, is O((N + M) lg(N)) = O(M lg(N). The equality is because N ≤ M .

b) hashing: Suppose N ≤ M . We hash the elements of A into a hash
table of size 2N , using, e.g. closed hasning to resolve collisions. If we have
a fast and good hash function

int hashFunction(word X)

this will take O(N) time in all. Now we probe the table with each word
from B and cound the hits (not the collisions). This takes O(M) time in
practice. The total work is O(N + M) = O(M).

Comparing these shows that hashing is faster. Note that if we are using
quicksort, the worst case is O(N2) instead of O(N lg(N)). We neve expect

9

to see this in practice. The worst case for hashing is also O(N2), which we
also do not expect to live to see.

10

