
CORE EXAMINATION

Department of Computer Science

New York University

May 16, 1997

SOLUTIONS

Programming Languages and Compilers

Question 1

Consider the following two programs whose purpose is two swap the values of two variables:

void swap (int x, int y) {

int temp = x;

x = y;

y = temp;

}

void swap (int x, int y) {

int foo () {

int temp = x;

x = y;

return temp;

}

y = foo();

}

Disregarding the C-syntax, assume that calls to these procedures pass parameters a) strictly by
value, b) by reference, c) by name. In each case, discuss whether the procedures correctly swap the
values. You may want to consider di�erent forms that the variables can take.

Solution

� No, Yes, and No. Parameter passing by value, as used e.g. in C, can never a�ect the actuals in
the call. For parameter passing by name, consider the call swap (i, A[i]).

� Also No, Yes, and No. For parameter passing by name, the previous example works, because
the call to foo captures the value of A[i], but consider the call swap(i, A[i++]).

1

Question 2

In the language of your choice (but a real language, not pseudocode) give the speci�cation for a queue
manager. This speci�cation may be in the form of a package, a module, a class, or some other kind
of software component. A queue is characterized by the type of the objects that it can hold, and
by its maximum capacity. The queue supports at least operations of insertion, removal, and test for
emptiness. You are to write the implementation of at least one of these operations. Explain carefully
how your code addresses the following:

1. Using the same speci�cation, how can one create queues that hold values of di�erent types? How
does one create queues with di�erent capacities?

2. What exceptional conditions can arise when executing each queue operation?

3. How are these conditions signalled to the caller?

Finally, in your chosen language, write a driver program that tries to over�ll a queue and handles the
corresponding exceptional condition.
Solution

The question asks for a software component that encapsulates the queue manager. In Ada this will
be a package, in C++ a class, and in Java a class or a package with several classes. In C, there is no
clear notion of a software component in this sense. A group of functions using some common types
does not constitute a clean abstraction, and the only (imperfect) way of indicating that a collection of
functions has some uni�ed meaning is to place them in a �le by themselves. This is clearly inferior to
the other solutions. A possible solution in Ada is given by:

generic

type Element is private;

Capacity: Natural;

package Queue_Manager is

type Queue is private;

procedure Insert (Q: in out Queue; E: Element);

procedure Remove (Q: in out Queue; E: Element);

function Is_Empty (Q : Queue) return Boolean;

function Front (Q : Queue) return Element;

Empty_Error, Overflow_Error: Exception;

private

type Arr is array (Natural range <>) of Element;

type queue is record

Front, Back: Natural := 1;

Num : Natural := 0;

Contents : Arr (1 .. Capacity);

end record;

end Queue_Manager;

2

The algorithms for each subprogram can be found in any textbook.

� In order to parametrize the queue by the type of the element stored in it, we want to use a
generic package (in Ada) or a template (in C++). C does not have a generic facility, so the C
solution has to use void* pointers, which allows the construction of completely heterogeneous
queues, but loses all type safety. Java does not have a generic capability either. Declaring the
element type to be Object provides the same universal polymorphism as the C solution, and the
corresponding loss of type checking (except that the run-time will provide type-checking when
retrieving from such a queue.

� The parametrization by size can be obtained in various ways. In Ada, the generic package may
contain an integer parameter that speci�es the capacity of a queue, or the queue type may be
discriminated. Similarly, the C++ template may have an integer parameter, or the constructor
may have one. In C and Java, the call to the constructor will specify size.

� Attempting to insert an element into a full container, or attempting to delete from an empty
container, are the standard illegal operations that we must be able to handle. The cleanest is to
de�ne exceptions that signal the error, and raise these exceptions in the queue operations, when
they cannot be performed. In C, one must use the low-level setjmp-longjmp mechanism (using
a return value is conventional but clearly inferior because every direct or indirect caller must
examine the return value). In C++ and Java, exceptions are classes, In Ada they are special
entities, but the mechanism is similar: there is a mechanism to signal an exception (raise or
throw) and a way to handle an exception that has been signalled (use an exception handler or a
try-catch block. For example, over
ow is detected as follows:

procedure Insert (Q : in out Q; E : Element) is

begin

if Num = Capacity then raise Overflow_Error;

else ... -- modify Num and Back index, and insert element.

end if;

end Insert;

and the exception is used as follows:

declare

package Int_Queue is new Queue_Manager (Integer, 100);

use Int_Queue;

Test_queue : Queue;

begin

for I in 1 .. 1000 loop

Insert (Test_Queue, I**2);

end loop;

exception

when Overflow_Error =>

Put_Line ("Queue capacity exceeded. Program terminated");

raise Program_error; -- for example.

end;

3

Question 3

Consider the following in a language allowing nested procedures

procedure a is

x : integer;

procedure b is

y : integer;

procedure c is

z : integer;

begin

print (x + y + z);

..

end c;

..

end b;

..

end a;

The two most common methods of handling the evaluation of x+y+z in procedure c are referred to
as the global display method and the static chain method. Answer the following questions about these
methods (a few sentences for each will be su�cient).

1. What is a global display?

2. What is the state of the global display at the point of evaluating x+y+z?

3. How is the global display used to evaluate x+y+z?

4. How is the global display maintained?

5. What is a static chain?

6. What is the state of the static chain at the point of evaluating x+y+z?

7. How is the static chain used to evaluate x+y+z?

8. How is the static chain maintained?

9. The presence of multi-tasking in a language makes the static chain method more attractive, why?

10. What is meant by register allocation in a compiler? If you have a really good register allocator,
the static chain method becomes relatively more attractive, why?

11. The presence of procedure pointers in a language makes the static chain method more attractive,
why?

Solution

4

1. A global display is a global data struture that is an array where the N'th element is a reference
to the stack frame of the currently visible N'th level procedure.

2. In this case, the �rst three entries in this global display at the point where x+y+z is evaluated
would be pointers to the stack frames of a, b, and c respectively.

3. Evaluation requires one level of indirection, to �rst get the right frame pointer, then an o�set
reference to get the right variable. The indirection can be eliminated by keeping the display in
registers.

4. The display is maintained by adjusting the appropriate display entry on calling a procedure, and
restoring it on return.

5. The static chain method works by keeping in each stack frame a constant that is a reference to
the stack frame of the statically enclosing procedure.

6. In this case, at the point where x+y+z is evaluated, the stack frame of c would contain a reference
to the stack frame of b, which would in turn contain a reference to the stack frame of a.

7. The evaluation involves climbing this chain to the right level (in this example, z is immediately
available, y is obtained by using the static link in the c frame, x is obtained by using the static
link in the b frame, which in turn requires using the static link in the c frame.

8. The static chain is maintained by passing an implicit parameter, which is a reference to the stack
frame of the procedure that statically encloses the called procedure.

9. In a multi-tasking environment, one would need a global display for each task, and some way of
switching between them. But the static chain requires no special handling, since everything is
local to stack frames, which are task speci�c in any case.

10. Register allocation refers to the phase in a compiler that chooses what values to put and keep
in registers, attempting to minimize memory references. The static chain method may require
repeated references high up in the chain, but a good register allocator may be able to arrange
to get the link once, and then keep it in a register, reducing the penalty from this situation.

11. A procedure pointer in a language with nested procedures is more than a code pointer, since
one must also reference the enclosing environment. In the static chain case, it is good enough
to just reference the stack frame of the relevant procedure, since the chain link is in this frame.
For the global display method, a procedure pointer must contain a complete copy of the display.

5

Operating Systems

Question 1

The well-known Belady's anomaly shows that for some page replacement algorithms, the number of
page faults can increase if the number of frames is greater.

� Brie
y describe why the LRU page replacement algorithm does not su�er fromBelady's anomaly.
LRU is considered to be a good page replacement algorithm, but it is not used in practice. Ex-
plain why.

� brie
y describe the following, so called LRU approximation algorithms:
(a) the additional-reference-bits algorithm, and (b) the second-chance algorithm.

Solution

In the LRU algorithm, if the number of frames is increased, the set of pages actually kept in memory
becomes a superset of the original set. Therefore no new page faults can appear and some old ones
can disappear. However, the algorithm is too expensive in its pure form to be used in a real OS.

Additional-reference-bits algorithms maintain information as follows. For some selected number of
contiguous time intervals in the past, we know whether a particular page was accessed in a particular
time interval. The approximation for "least recently used page" is : page which is not used for the
largest number of contiguous time intervals from the present into the past.

In the second chance algorithm, a FIFO queue is maintained. If a page at the head of the queue
has a reference bit of 0, it is replaced. It is a reference bit of 1, the reference bit is set to 0 and the
page is moved to the end of the queue.

6

Question 2

Brie
y describe and compare the following �le allocation methods: (a) Contiguous allocation, (b)
linked allocation,and (c) indexed allocation (simplest possible variant).

Your comparison should address: (i) e�cient sequential and direct access, (ii) wasted space, and
(iii) dynamically growing �les.

Solution

Contiguous allocation requires that the �le occupy a sequence of contiguous blocks on the disk.
This yields very cast sequential and direct access. Any reasonable implementation for dynamically
growing �les will waste considerable amount of space or will be very ine�cient because of reallocation.

Linked allocation maintains the �le as a linked list. This does not waste much space (links are the
only overhead). This yields fast sequential access but slow direct access.

Indexed allocation maintains the �le as a set of blocks pointed at by an index table storing pointers
to the blocks of the �le. This is space e�cient, unless the �le as a very small number of blocks. Both
sequential and direct access are reasonably fast.

7

QUESTION 1.

For each of the following statements state whether it is true or false, and give one sentence explaining
why or give a counterexample.

1. Consider Dijkstra's algorithm on a graph G = (V,E) with positive weights. Let S be a subset of
V, S = set of vertices whose minimum distance from the source is already known. At some point
in the algorithm let v be a new vertex just added to S, and let w =2 S. Is it possible that the new
shortest special path from the source to w should �rst visit v, and then some other node y in S?

2. Dr. Flubberty has invented a new comparison based algorithm for sorting arbitrary numbers that
runs in time O(n � log(logn)). Dr. Jibberty claims it cannot be correct. Could it be?

3. In an undirected graph, every cycle must have at least one vertex that is an articulation point, that
is, a vertex whose removal would cause the graph to be disconnected.

4. 16
log n
2 is the same order as 5logn.

5. Let G be a directed graph with positive weights. If P is the least cost path from v to w and Q is
the least cost path from w to u, then P followed by Q is the shortest path from v to u.

6. Suppose we have an array A of length N of integers in the range [0; ::;N3� 1]. The numbers can
be sorted in linear time, but it is not possible to do this in less than O(N3) storage.

7. In a breadth �rst search of an undirected graph, there are no back edges and no forward edges.

8. Dijkstras's algorithm to �nd the cheapest paths from a source to all vertices still works in all cases
if there are negative edge weights, but no negative cost cycles. (A negative cost cycle is a cycle
whose total cost is negative).

9. Prim's algorithm to �nd the Minimum Spanning tree of an undirected graph still works in all cases
if the edges are allowed to have negative weights and negative cost cycles are allowed too.

10. Suppose you are given a minimum spanning tree T of a graph G with positive weights on the edges.
If we add the vertex v to the graph G, along with some positive weight edges from v to vertices of
G, then the weight of a minimum spanning tree of the new graph is always bigger than the weight
of T .

SOLUTION 1.

1. The new vertex can not be part of a minimum path from v tow through y. Since v was just added,
but y is already in S, using v must provide a longer path than the one previously computed that
goes to y, and would also be a more expensive way to get to w.

2. Decision tree analysis of a comparison based sort gives a lower bound running time of O(n logn),
so an O(n log logn) must not be correct. (Dr. Jibberty is right).

3. False. Every cycle does not necessarily have an articulation point. The simple cycle below has no
articulation point. A complete graph has no articulation point.

4. False. 16logn=2 = 4logn < 5logn. Since limn!1
4log n

5log n
= 0, they are not the same order as each other.

5. False. For example, there could be a direct edge that costs less than P and/or Q that connect v to
u.

6. False. The array A could be sorted using 3 passes of radix sort, which uses O(N) storage. (In
other words, treat the numbers as 3 digit number in base N .)

7. True. A breadth �rst search in an undirected graph would reach a vertex that is adjacent to it as it
searched the �rst level of adjacent vertices, so that it would already be seen using a tree edge and
not a back edge. The same argument eliminates forward edges.

8. False. Dijkstra's algorithm does not work if there are negative edges weight either, since there
might be a cheaper path found later that would need to undo a previous step. For example, in the
graph below A would be chosen as having a minimum path of length 2 from the source S. However,
a cheaper path exists through B.

2

3

-2

S

A

B

9. True. Prims' algorithm works in all cases, whether or not there are negative edges or cycle. (In
fact, if a positive constant c is added to all edges, they are processed in the same order, and the
cost of the new tree is (N � 1) � c more than the cost of the old tree.)

10. False. The new vertex v could have a cheaper connection to a previously existing vertex than the
one in the old MST.

QUESTION 2.

Let G = (V;E) be a directed acyclic graph, represented by adjacency lists. Give a linear time
algorithm to �nd the longest path in a dag. You can use pseudo-code, as long as the algorithm is
presented clearly. (Hint: use DFS; what information is available when DFS(v) completes?).

SOLUTION 2.

The idea is to do a depth �rst search of the dag, and for each vertex, keep track of the longest path
starting at that vertex. This can be done in a postorder fashion, once the longest paths reachable from
the adjacent vertices are computed.

Thus, one pass through all the edges is still su�cient, and the running time remains the usual depth
�rst search time of O(V +E).

procedure DFS (V:vertex);

begin

Visited[V] := true;

MaxPath[V] := 0;

For each W adjacent to V do

begin

if not visited[W] then DFS(W);

MaxPath[V] = max(MaxPath[V], 1 + MaxPath[W]);

end

end

QUESTION 3.

Suppose that you have a heap whose keys are integers (positive or negative); the item with maximum
key is at the root. The problem is, given a positive integer k, to determine whether there are at least k
positive keys in the heap. Design an algorithm that solves the problem in time O(k), regardless of the
size of the heap. Be sure to argue that the running time is O(k).

SOLUTION 3.

The idea is to traverse the heap, counting the number of positive keys. If we encounter an item whose
key is nonpositive, then we can ignore all items below it, because they must have nonpositive keys also
(by the order property of heaps). If our count ever reaches k, then we can stop immediately.

More precisely, we will maintain a global integer variable called count, which is initialized to 0. Then
we call the following recursive procedure, with root set to the root of our heap.

procedure traverse(root);

begin

if (count < k) and (root <> nil) and (root^.key > 0) then

begin

count := count + 1;

traverse(root^.left);

traverse(root^.right)

end

end

After calling this procedure, if count� k, then there are at least k positive keys; otherwise, there are
not.

What is the running time of this algorithm? We have to bound the number of items that are visited.
Let S be the set of visited items whose children also get visited. Because count is incremented for each
such item, we must have jSj � k. Because the only items visited are the items in S and their children, at
most 2k + 1 items are visited. Hence the running time is O(k).

QUESTION 1.

For each of the following statements state whether it is true or false, and give one sentence explaining
why or give a counterexample.

1. Consider Dijkstra's algorithm on a graph G = (V,E) with positive weights. Let S be a subset of
V, S = set of vertices whose minimum distance from the source is already known. At some point
in the algorithm let v be a new vertex just added to S, and let w =2 S. Is it possible that the new
shortest special path from the source to w should �rst visit v, and then some other node y in S?

2. Dr. Flubberty has invented a new comparison based algorithm for sorting arbitrary numbers that
runs in time O(n � log(logn)). Dr. Jibberty claims it cannot be correct. Could it be?

3. In an undirected graph, every cycle must have at least one vertex that is an articulation point, that
is, a vertex whose removal would cause the graph to be disconnected.

4. 16
log n
2 is the same order as 5logn.

5. Let G be a directed graph with positive weights. If P is the least cost path from v to w and Q is
the least cost path from w to u, then P followed by Q is the shortest path from v to u.

6. Suppose we have an array A of length N of integers in the range [0; ::;N3� 1]. The numbers can
be sorted in linear time, but it is not possible to do this in less than O(N3) storage.

7. In a breadth �rst search of an undirected graph, there are no back edges and no forward edges.

8. Dijkstras's algorithm to �nd the cheapest paths from a source to all vertices still works in all cases
if there are negative edge weights, but no negative cost cycles. (A negative cost cycle is a cycle
whose total cost is negative).

9. Prim's algorithm to �nd the Minimum Spanning tree of an undirected graph still works in all cases
if the edges are allowed to have negative weights and negative cost cycles are allowed too.

10. Suppose you are given a minimum spanning tree T of a graph G with positive weights on the edges.
If we add the vertex v to the graph G, along with some positive weight edges from v to vertices of
G, then the weight of a minimum spanning tree of the new graph is always bigger than the weight
of T .

SOLUTION 1.

1. The new vertex can not be part of a minimum path from v tow through y. Since v was just added,
but y is already in S, using v must provide a longer path than the one previously computed that
goes to y, and would also be a more expensive way to get to w.

2. Decision tree analysis of a comparison based sort gives a lower bound running time of O(n logn),
so an O(n log logn) must not be correct. (Dr. Jibberty is right).

3. False. Every cycle does not necessarily have an articulation point. The simple cycle below has no
articulation point. A complete graph has no articulation point.

4. False. 16logn=2 = 4logn < 5logn. Since limn!1
4log n

5log n
= 0, they are not the same order as each other.

5. False. For example, there could be a direct edge that costs less than P and/or Q that connect v to
u.

6. False. The array A could be sorted using 3 passes of radix sort, which uses O(N) storage. (In
other words, treat the numbers as 3 digit number in base N .)

7. True. A breadth �rst search in an undirected graph would reach a vertex that is adjacent to it as it
searched the �rst level of adjacent vertices, so that it would already be seen using a tree edge and
not a back edge. The same argument eliminates forward edges.

8. False. Dijkstra's algorithm does not work if there are negative edges weight either, since there
might be a cheaper path found later that would need to undo a previous step. For example, in the
graph below A would be chosen as having a minimum path of length 2 from the source S. However,
a cheaper path exists through B.

2

3

-2

S

A

B

9. True. Prims' algorithm works in all cases, whether or not there are negative edges or cycle. (In
fact, if a positive constant c is added to all edges, they are processed in the same order, and the
cost of the new tree is (N � 1) � c more than the cost of the old tree.)

10. False. The new vertex v could have a cheaper connection to a previously existing vertex than the
one in the old MST.

QUESTION 2.

Let G = (V;E) be a directed acyclic graph, represented by adjacency lists. Give a linear time
algorithm to �nd the longest path in a dag. You can use pseudo-code, as long as the algorithm is
presented clearly. (Hint: use DFS; what information is available when DFS(v) completes?).

SOLUTION 2.

The idea is to do a depth �rst search of the dag, and for each vertex, keep track of the longest path
starting at that vertex. This can be done in a postorder fashion, once the longest paths reachable from
the adjacent vertices are computed.

Thus, one pass through all the edges is still su�cient, and the running time remains the usual depth
�rst search time of O(V +E).

procedure DFS (V:vertex);

begin

Visited[V] := true;

MaxPath[V] := 0;

For each W adjacent to V do

begin

if not visited[W] then DFS(W);

MaxPath[V] = max(MaxPath[V], 1 + MaxPath[W]);

end

end

QUESTION 3.

Suppose that you have a heap whose keys are integers (positive or negative); the item with maximum
key is at the root. The problem is, given a positive integer k, to determine whether there are at least k
positive keys in the heap. Design an algorithm that solves the problem in time O(k), regardless of the
size of the heap. Be sure to argue that the running time is O(k).

SOLUTION 3.

The idea is to traverse the heap, counting the number of positive keys. If we encounter an item whose
key is nonpositive, then we can ignore all items below it, because they must have nonpositive keys also
(by the order property of heaps). If our count ever reaches k, then we can stop immediately.

More precisely, we will maintain a global integer variable called count, which is initialized to 0. Then
we call the following recursive procedure, with root set to the root of our heap.

procedure traverse(root);

begin

if (count < k) and (root <> nil) and (root^.key > 0) then

begin

count := count + 1;

traverse(root^.left);

traverse(root^.right)

end

end

After calling this procedure, if count� k, then there are at least k positive keys; otherwise, there are
not.

What is the running time of this algorithm? We have to bound the number of items that are visited.
Let S be the set of visited items whose children also get visited. Because count is incremented for each
such item, we must have jSj � k. Because the only items visited are the items in S and their children, at
most 2k + 1 items are visited. Hence the running time is O(k).

