
CORE EXAMINATION
Department of Computer Science

New York University
May 14, 2004

This is the common examination for the M.S. program in CS. It covers core computer science
topics: Languages and Compilers, Operating Systems, and Algorithms. The exam has two parts.
The first part lasts three hours and covers the first two topics. The second part, given this afternoon,
lasts one and one-half hours, and covers algorithms.

Use the proper booklet for each question. Each booklet is marked with the Area and Question
number, in the form PL&C1, PL&C2, PLC&C3, OS1, OS2, ALGS1, ALGS2, ALGS3. Use the
appropriate booklet for each question. DO NOT put your name on the exam booklet. Instead, your
exam number must be on every booklet.

You will be graded according to your exam number, shown on the envelope containing the booklets.
Remember your exam number: when grades are given out, they will be published according to this
number, not by name.

Make sure your name and signature are on the envelope. This is the only place where your name
appears. Please include all the booklets inside the envelope. You can keep the exam.

Good luck!

1

Basic Algorithms

Question 1

This problem concerns the cost to glue wooden blocks together to form longer blocks. The rules for
gluing blocks are as follows.

• Blocks can only be glued in pairs; the resulting object is a new block that is available for further
gluing.

• If block A has length x and block B has length y, then the two blocks, when glued together,
result in a block of length x + y.

• The cost to glue two blocks together is the length of the resulting block.

For parts 1 and 2 below, carefully describe your algorithm, and explain why it is correct and
why the total cost is as requested.

1. You are given n blocks of length 1.

Show how to glue then together with a total cost of O(n log n).
Solution

For expositional convenience, we can suppose that n is a power of 2. We imitate Mergesort.
Glue the blocks together in log n rounds as follows. At round 0 you have n blocks of length 20.
At round k + 1, take the n

2k blocks of length 2k, pair them up for gluing to get n
2k+1 blocks of

length 2k+1. The number of blocks halves at each round, and each block participates in just one
gluing at each round. Moreover, every block participates in a gluing event at each round. So
the cost of a round is n, and the number of rounds in log2 n. If n is not a power of 2, there are
dlog2 ne rounds. When there is an odd number of blocks, we omit gluing some longest block.
Anyhow, there are less than 1 + log n rounds and each round costs at most n. So the cost is
still O(n log n).

2. You are given n blocks with the varying lengths 1, 2, 4, 8, . . . , 2n.

Show how to glue them together with a total cost of O(2n).
Solution

For each of n− 1 rounds, glue together the two shortest blocks.

Each round decrements number of blocks (at the least possible cost). There are n − 1 rounds
of gluing, which guarantees that the algorithm succeeds.

The abstract gluing rule has the following pragmatic implication: After round k, the k (initially)
shortest blocks are glued together to form a block of length 2k+1− 1, and the remaining blocks
have length 2k+1, 2k+2, . . ., 2n. At the next round, the block with (original) length 2k+1 is
glued to the composite block. The cost for the full n − 1 rounds of gluing is 22 − 1 + 23 −
1 + 24 − 1 + · · · + 2n+1 − 1 = 2 + 4 + 8 + · · · + 2n+1 − (n − 1). The total cost is exactly
2n+2 − 2− (n− 1) = 2n+2 − n− 1, which is O(2n).

2

Question 2

There are n provinces numbered from 1 to n and each province is different. An advertising company
has developed a program Buyem(i, d) that, for province number i, computes the expected number
of votes that a candidate will receive from province i if the candidate spends d advertising dollars in
the province.

This year, candidate Kushberry has L dollars, and wants to spent them in a way that will max-
imize the total number of votes that she will get. Give a high level dynamic programming program
specification to solve this problem. A recursive formulation (or recurrence equation) is sufficient,
provided you state, in a sentence or two, how to make the code efficient. If there is no advertising for
province j, the number of votes, of course, will be Buyem(j, 0), so the problem is fully specified. You
can assume that the function Buyem(i, d) has been precomputed for all values of i and d, so that its
value can be returned in constant time.

Your solution should have an operation count that is polynomial in L and n (i.e. bounded by
O(Lrns) for suitably small constants r and s.)

Solution

Most students assumed that L dollars should be spent somewhere, which is to say that advertising
always helps. No points were deducted for (otherwise correct) solutions even if this assumptions was
not explicitly stated. We will initially make this assumption, and then remove it.

Let Winnings(J,D) be the expected number of votes that Kushberry will get from provinces 1
through J by spending D dollars in those J provinces in the best possible way.

A recursive specification for Winnings(J, d) is:

Winnings(J,D) =
{

Buyem(1,D) if J = 1,
max0≤d≤D{Winnings(J − 1,D − d) + Buyem(J, d)} if J > 1 .

This formulation says that if there is just one province, then spend all D dollars there. Otherwise
spend, for the best value of d, D − d dollars in the first J − 1 provinces and d dollars in the J th

province. Use the recursive solution to determine the best way to spend the D − d dollars in those
first J − 1 provinces.

The solution is computed as Winnings(n,L). If spending less money might win more votes, the
solution is max0≤`≤L{Winnings(n, `)}.

Dynamic programming ensures that the computation is efficient. That is, we make a table
Win[1..n, 0..L], and store in Win[J, `] the solution for Winnings(J, `). Each value is computed
just once, and is subsequently accessed by table look-up. There are nL table entries. The recur-
sive formulation above shows that each table entry is computed as the best of at most L different
cases that each require a single access to Win, and a single call to Buyem. So the total work is
O(nL× L) = O(nL2).

3

Question 3

The Dagnabit problem is the following. Let G be a directed acyclic graph G = (V,E) that is specified
any way you like. Each vertex v in V has three fields. v.val is a positive number that is already
stored in the field. The fields v.best and v.where are initially undefined.

a) Write an efficient program that inputs G and, for each vertex x in G, stores, in x.best, the
largest .val entry in the portion of the graph reachable from x. That is, x.best = d if either x.val
equals d, or there is vertex y that is a descendant of x where y.val = d, and d is the largest such value
where this is true. (In a DAG, y is a descendant of x if there is a path in the DAG from x to y).
For full credit, the program should solve the problem for all vertices of the graph with an operation
count of Θ(|V |+ |E|) (the number of vertices plus edges). Less efficient solutions will receive partial
credit.
Hint: think about how to solve this problem for a tree.

b) Present the code that solves part a) and that also stores, for x.where, the name of the vertex
that has its .val number stored in x.best. For full credit, your solution should not use post-processing,
and should run in the same time as your solution in part a.

Solution parts a and b combined

Procedure Driver;
foreach vertex v in V do

if v not marked, then DFS(v) endif
endfor

end Driver;

Procedure DFS(v);
mark v;
v.best← v.val;
v.where← v;
foreach vertex w in v’s adjacency list do

if w not marked then DFS(w) endif;
if w.best > v.best then

v.best← w.best;
v.where← w.where

endif
endfor

end DFS;

4

