CORE EXAMINATION
Department of Computer Science

New York University
January 22, 1999

This is the common examination for the M.S. program in CS. It covers
core computer science topics: Languages and Compilers, Operating Systems,
and Algorithms. The exam has two parts. The first part lasts three hours
and covers the first two topics. The second part, given this afternoon, lasts
one and one-half hours, and covers algorithms.

Attempt all of the questions. You are not required to take the algorithms
section of the exam if you have passed the FOCS exam in the past.

Use the proper booklet for each question. Each booklet is marked with
the Area and Question number, in the form PL&C1, PL&C2, PLC&C3,
0S1, 082, ALGS1, ALGS2, ALGS3. Use the appropriate booklet for each
question. DO NOT put your name on the exam booklet. Instead, your
exam number must be on every booklet.

You will be graded according to your exam number, shown on the enve-
lope containing the booklets. Remember your exam number: when grades
are given out, they will be published according to this number, not by name.

Make sure your name and signature are on the envelope. This is the
only place where your name appears. Please include all the booklets inside
the envelope. You can keep the exam.

Good luck!

Programming Languages and Compilers

Question 1

consider the following function in some Pascal-like language:

function F(x, y : integer) return integer is
begin

x :=x+1; y :=y + 1; return (x - y);

end F;

1. Give and example in which this program behaves differently under
call-by-value/result and call-by-reference.

2. Give an example in which this program behaves differently under call-
by-value/result and call-by-name.

3. Explain briefly how call-by-name is implemented, and why this is not
a parameter-passing mechanism used in modern programming lan-
guages.

Solution

1. the call F(i, i) distinguishes between call-by-value/result and call-by-
reference.

2. the call F(i, A[i]) distinguishes between call-by-value/result and call-
by-name.

3. Call-by-name has a high run-time cost associated with it, both in
representation and in procedure invocation. Recall that the evaluation
of the actuals occurs in the environment of the caller, and not the calle.
This
makes it necessary to change the environment to that of the caller every
time a name parameter is accessed. This is commonly implemented
wirth ”thunks” and involving passing a parameterless function (not
just a value or a location) as the actual parameter.

Question 2

Compilers for Modern RISC machines perform instruction scheduling, as
a result of which instructions may be executed in an order different from
that suggested by the source program. Of course, instruction scheduling
must respect the semantics of the original program. Consider the following
fragments of C code. In each of the following cases, state which of the
following three conditions holds:

1. The statements must be executed sequentially in the order given
2. The statements can be executed in parallel

3. The statements can be reordered, but not executed in parallel

Assume that the following declarations apply in all cases:

int a,b,c,d;
int *pa,*pb,*pc;

|
o
[

(a) a=
c=a+1;

(b) a = b;

(c) a=a+b;

a=a+ c;
(d) =*pa = b;
¢ =4d;

(e) a = *pa;

b =c;
(f) pa = pb;
a = *pb;

(g) Describe a general rule that determines which of the three situations
holds for two consecutive assignment statements.

(h) It is clear that pointers cause trouble, especially in C. What kinds of
information might a global optimizer be able to collect to remove some of
these limitations?

Solution
First let’s answer question g) and then apply the rule:

g) We gather the set of variables referenced and assigned by each assign-
ment statement, being conservative if we do not have accurate information,
for example, a reference to *p is considered to be a reference to all variables
of the designated type of the pointer p.

Call these sets Al, A2, R1, R2, (A1/A2 are sets of variables assigned by
statement 1 and 2 in the pair being considered, R1/R2 are the correspond-
ing reference sets).

if Al does not intersect R2 and
A2 does not intersect R1 and
Al does not intersect A2
then
statements can be executed in parallel, case 2.

(it does not matter if R1 and R2 have a non-null intersection)

elsif Al does not intersect A2
then

statements must be executed in sequence, because one statement
sets variables referenced in the other.

Now we are considering possible case 3’s. It is hard to catch all possible cases
of reordering being allowed. The following case is feasible (and suggested
by the examples).

a)

b)

c)

else

if Al and A2 consist of exactly one variable, and both statements
are induction statements of the form

var := var op expression;

and var appears in neither expression
and op is associative

then the statements can be reordered

otherwise they must be executed sequentially

Now apply this to the examples:

Al
A2

Al
A2

Al
A2

{a}, R1
{c}, R2

{b}
{a}

Al intersects R2 => case 1 sequential

{a}, R1
{c}, R2

{b}
{d}

No intersections => case 2 parallel

{a}, R1 = {a,b}
{a}, R2 = {a,c}

Intersections suggest case 1, but this pair of assignments meets the require-
ments for case 3. If you are being really pedantic, and reading the ANSI C
standard carefully, and worrying about undefined overflow conditions, then
you could argue for case 1, but in practice no compilers would be affected
by this (an answer of case 1 here would only be acceptable with this expla-
nation, which no one gave!)

d) A1 = {all int variables}, Rl = {b}

A2 = {c}, R2 = {d}
Al intersects R2 => case 1 sequential

e) Al
A2

{b}
{a}

{a}, R1
{c}, R2

Al intersects R2 => case 1 sequential

f) Al
A2

{pa}, R1 = {pb}
{a}, R2 = {all int variables}

No intersections (pa is not an int variable) => case 1 sequential
Finally, the answer to h).

A global optimizer can find out tighter information on what pointers
might point to. Trivially if the & operator is never applied to a non-array
variable, then it is impossible for a pointer to legitimately point to this vari-
able. For example in d, if the & operator was never applied to the variable d,
then we know the intersection is false, and the statements can be executed
in parallel. .

A more elaborate approach could use dataflow to determine more precisely
what possible variables could be referenced by a given pointer at each point
in the flow graph, again giving more precise results on the intersection tests,
and allowing more statements to be executed in parallel (or reordered as the
case may be).

Question 3

1. Explain the purpose of the dispatch table (the vtable in C++ parlance)
in the run-time environment of object-oriented languages.

2. Given the following declaration:

class A {
int value;
public:
void Reset { value = 0;}
virtual int retrieve { return value;};
virtual int set (int New_Val) { value = New_Val;}
virtual void combine (A thing);

Indicate the data layout of an instance of A, and the layout of the
vtable for A.

3. Suppose class B is an extension of A. How do you declare a method
combine in class B, that overrides the method combine inherited from
A? What does the vtable of B look like?

4. Suppose class B also declares the following methods:

virtual void combine (int x1, x2);
int mangle (double z);

What is the vtable for B now?

5. Consider the following code:

Ax thingl
Ax thing2

new B;
new B;

thing2 -> Combine (thingl);

Sketch the code that the compiler must generate for the call to Com-
bine. You can use C for your answer. or assembly code for any machine
you know.

Solution

1. The dispatch table is a run-time data-structure used to support poly-
morphism in object-oriented languages. It is a table of pointers to

virtual methods (primitive operation in Ada) whose identity is deter-
mined at run-time by the class of the object to which they are applied.

2. For class A, the dispatch table will hold pointer to methods retrieve,
set, and combine. In C++, only methods that are declared virtual
need to appear in the dispatch table (in Java, all methods are virtual,
and they are all present in the dispatch table). An instance of A
stores the data members (in this case only value) and a pointer to
the dispatch table. The dispatch table is shared by all instances of the
class, so there is no need to place it in each object.

3. To override an inherited method, the new definition must have the
exact same signature:

virtual void combine (A thing);

The dispatch table for B has the same layout as that for A, but the
entry for combine points to the body of the overriding definition, not
the inherited one.

4. The declaration of combine has a different signature, and is an over-
loading of the previous one, so it has its own entry in the dispatch
table, which is now extended.

5. The run-time call must retrieve the operation to ve invoked from the
corresponding entry in the dispatch table. The method combine ap-
pears in the third slot in the table, so the code generated has the
form:

(*thing2.vtabl(2)) (&thing2, thingl);

Note that the dispatching call must carry the actual parameter for this.

Operating Systems

Question 1

e List three scheduling criteria that might impact the choice of unipro-
cessor CPU scheduling policy in an operating system.

e Choosing one or more of the criteria above, show examples of situations
in CPU scheduling where:

1. FIFO (non-preemptive) performs better that Round Robin
2. Round Robin performs better than FIFO (non-preemptive).

Assume that a process can be modeled as alternating bursts of CPU
and I/O activity, a process blocks for I/O; upon completion of I/0O
activity it rejoins the CPU ready queue.

To answer the above, in each case, show the CPU and I/O burst
nature of the processes and draw the diagrams. Also, indicate the
criterion by which you can say that a policy ‘performs better’.

Solution

O0S 11

The choice of CPU scheduling algorithms is influenced by the criteria that
are being optimized by the operating system. The question was not referring
to job or system characteristics (such as lengths of CPU and I/O bursts, or
the amount of memory in the system): these influence how the algorithm
may perform, but not what it does. Any three of the following list of criteria
would have been an acceptable solution:

Long- and Medium-term Schedulers:

1. Relative importance given to different classes of jobs (e.g., batch, in-
teractive, etc.).

2. The degree of multiprogramming.

Short-term Schedulers: From the system’s perspective:

1. Average waiting time: how long do jobs wait to get the CPU?

2. Throughput: the number of processes completed per unit time.

3. CPU utilization: percentage of time the CPU is busy.
4. Fairness: ensuring that no process is starved for resources.

5. Emforcing priorities: higher-priority processes should not wait for lower-
priority processes.

From the user’s perspective:

1. Response time: time it takes to produce the first response.

2. Turnaround time: time spent from the time of submission to time of
completion.

3. Deadlines: time within which the program must complete. The CPU
scheduling algorithm would attempt to maximize number of deadlines
met.

4. Predictability: expectation that the job runs the same regardless of
system load.

0S 1.2

The question asked for examples of situations where the first-come first-
served (FCFS) scheduling policy (without preemption) would outperform
the round-robin (RR) policy, and where RR would outperform FCFS. One
would get only partial credit for general discussions of job characteristics
better suited to FCFS as compared to RR. To get complete credit, the
answer needed to specify: (a) the metric by which one policy outperforms
the other, (b) process arrival times and order, (c) process CPU and I/O
burst lengths, (d) the quanta used by the RR policy, and (e) the overhead
of context switching.

One of the simplest examples showing the relative merits of FCFS and
RR involves two jobs, P, and P», with the following characteristics:

e P arrives at time t=0 and comprises a single long CPU burst of 10
units.

e P arrives at time t=0 and comprises a single short CPU burst of 2
units.

e The quanta used by the RR policy is 1 unit, and the overhead of
context switching is assumed to be negligible (as compared to the
chosen time scale).

Using average completion time as the metric, FCFS outperforms RR
when P, arrives before P;. The average completion time using FCFS is

FCFS RR (quanta = 1)

P, Py Py | Py | P2 Py

tme — —_ time —m8»

(2412)/2 = 7. The average completion time using RR is (3+12)/2 = 7.5.
The Gantt charts for the two policies are shown below:

Using average completion time as the metric, RR outperforms FCFS
when P, arrives before P». The average completion time using FCFS is
(104+12)/2 = 11. The average completion time using RR is (4+12)/2 = 8.
The Gantt charts for the two policies are shown below:

FCFS RR (quanta = 1)

time ———>» — time —mMM»

Question 2

There are four processes, PO, P1, P2, P3. There are four semaphores in an
array called s. The structure of each process is:

while (1) {
P(s[id]);
print id;
V (s[(id+1) mod 4];

id is a variable local to each process, that contains the process-id of the
process, that is to say id=0 for P0. etc.
Semaphore s[0] is initialized to 1, and all the others are initialized to zero.

e Describe the execution behavior of the processes, and indicate what
the output of the system is.

e Write the code for the processes using a Monitor.

Solution

10

OS 2.a

Initially, only process Py will be able to proceed past the P(s[id]) statement
since only s[0] is initialized to 1. After P, finishes executing the print id
statement, it will set s[1] to 1 and go back to the head of the while loop
where it will wait for someone to set s[0] to 1 again. Meanwhile P, can
proceed past the P(s[id]) and wakes up P, which in turn wakes up Ps,
which in turn wakes up Py and so on. Note that the semaphores ensure that
only one process executes the print statement at any one time, resulting in
the following output: 0, 1, 2, 3, 0, 1, 2, 3,

OS 2.b

The following shows how the process synchronization structure can be ex-
pressed using Conditional Critical Regions:

Define a critical region v consisting of an integer field, turn, which sig-
nifies the process that has to go next. Initially, turn = 0.

var v : shared record
turn: integer;
end;

Process F; executes the following code. The condition ensures that the
process waits until it is its turn, prints its id, and then updates turn to
allow P;; to proceed.

while (1) {

region v when (turn == id)
do begin
print id;
turn := (turn + 1) mod 4;
end;
}
0S 2.c

The following shows how the process synchronization structure can be ex-
pressed using Monitors:

Define a monitor type, turnMonitor, which contains an integer turn
variable, and an array of condition variables, queue. The turn variable is
used to designate the process whose turn it is next, and the queue condition
variable is used to queue processes that enter the monitor out of turn. Note
that the use of per-process condition variables ensures that a process is
woken up only when it is its turn. The doPrint procedure just queues a
process if it is not yet its turn, signalling the next process upon completion.

11

type turnMonitor = monitor

var turn: integer;
var queue: array [0..3] of condition;

procedure entry doPrint(id: integer);

begin
if (turn !'= id) then queuvel[id].wait;

print id;
queue[(id+1) mod 4].signal;

end;
begin

turn := 0;
end;

Process P; executes the following code:

var tm : turnMonitor;
while (1) {

tm.doPrint(id);

}

12

