
1. First, Double Trouble is clearly in NP; one need only guess a solution and check to see if it
meets the two requirements.

We will reduce Hamiltonian Circuit (HC) to Double Trouble (DT).

The easiest solution is to map a problem in HC into DT by assigning each edge cost to be
zero. (The exam should have stated (as it now does) that the edge costs must be positive.) For
completeness, we give a solution that uses all positive edge costs.

Method: derestriction by local substitution.
Solutions for positive edge costs.

Given an HC problem for graph G with vertices {1, 2, . . . , n}, and edge set E, we create a
new graph H where the HC problem for G corresponds to an equivalent DT problem for H as
follows. Let H have vertices named a, b, c, and 2, 3, . . . , n. Conceptually, vertex 1 is replaced
by vertices a, b and c. Vertices 2 through n are used as in G: in H, there is an edge from i to j
(for i, j 6= 1) if there is such an edge in G. In addition, H has an edge from a to j and from c to
j if G has an edge from 1 to j. Now add to H the edges {a, b}, {b, c}, and {a, c}. It is easy to
see that any HC in H must have a, b, c connected in a row (as otherwise b cannot be present),
and the other edges must correspond to a cycle in G. Similarly, any HC in G, plus {a, b} plus
{b, c} gives an HC in H. Let e be the number of edges in H (which includes {a, b} {b, c} and
{a, c}). Let {a, b} and {b, c} have a weight equal to x, {a, c} have a weight of z, and all other
edges have a weight of 1, All HCs in H have a weight of 2x + n. The sum of the edge weights is
e− 3 + 2x + z. So set e− 3 + 2x + z = 2(n + 2x). This will guarantee that any solution to HC
is a solution to the corresponding DT and vice versa. We just require that e− 3− 2n + z = 2x.
Pick z large enough to make x positive.

Let, say z = 2n + e + 3, and x = e. The purpose of edge (ac) and its weight z was just to
account for cases where e ≤ 2n + 3.

Correct solutions do not have to be nearly this detailed.

2. This problem is analogous to the dynamic programming problem for matrix multiplication.

Let Cost[i, j] be the cheapest total cost for a pairwise merging of restaurants i through j.

Then

Cost[i, i] = 0;

Cost[i, j] = mini≤k<j

{
Cost[i, k] + Cost[k + 1, j] + max(S[i] + S[i + 1] + · · ·+ S[k],

lS[k + 1] + S[k + 2] + · · ·+ S[j])
}
, i < j.

Clearly, an efficient implementation of this formulation will run in O(n3) time.
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3. This data structure problem is to maintain a chain of elements in a way where insertions or
deletion can occur anywhere in the chain, and run in O(log n) time. Moreover, the following
question can also be answered in O(log n) time, where n is the number of elements in the list:

Given an element in the chain, how many elements precede it in the chain?

The solution is to maintain the chain as, say, the leaves of a structure that has the same
linking as a 2-3Tree. Access is at the leaf level, and corresponds to either an insertion, a deletion,
or a query. Insertion and deletion rules are the same as for the search tree. There just happen
to be no key values in the structure. (This causes no difficulty since search keys are just used to
locate elements in a search tree, and in this case, we get pointers to locate the elements directly.)

We augment the tree by keeping, in each internal vertex v, the number of chain elements in
the subtree rooted at v. Updating these values during an insertion or deletion is straightforward.
Similarly, computing the number of predecessors of some leaf is easily done by backing up the
tree to the root and adding up the population counts of the leftward children of the nodes along
the path from the element in question to the root of the tree.

4. The easiest answer is to give the code.

procedure Count(C[1..n,1..n],Pcount[1..n,1..n]);
forall pairs i, j do

if C[i, j] 6=∞ then Pcount[i, j]← 1 else Pcount[i, j]← 0 endif
endfor;
for k ← 1 to n do

for i← 1 to n do
for j ← 1 to n do

if C[i, j] > C[i, k] + C[k, j] then
C[i, j]← C[i, k] + C[k, j];
Pcount[i, j]← Pcount[i, k]× Pcount[k, j]

elseif C[i, j] = C[i, k] + C[k, j] then
Pcount[i, j]← Pcount[i, j] + Pcount[i, k]× Pcount[k, j]

endif
endfor

endfor
endfor

end Count
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5a. The Tower of Hanoi. Recall that the algorithm is: if there are any rings to move, recursively
move the top n− 1 rings from pole A to pole C. Then move the top ring remaining on A to B,
and recursively move the n − 1 rings from C to B. Let T (k) be the number of ring moves to
solve this part.

The recurrence is T (n) = 2T (n− 1) + 1, and T (1) = 1.

b. Now a ring of size k requires T (k− 1) moves, if k > 1. Let S(k) be the number of ring moves
to solve this part. The recurrence reads:

S(1) = 1;

S(k) = 2S(k − 1) + T (k − 1), for k > 1.

c. Let W (k) be the number of ring moves to solve this part. Now the work to move a ring of
size k is W (k − 1). The recurrence reads:

W (1) = 1;

W (k) = 3W (k − 1), k > 1.

6a. Let G be any DFA (or NFA) that recognizes L. To get the construction for OneReverse(L)
right takes a little care. A reversed substring, within a string, requires a jump ahead from some
state i to a future state j, followed by a backwards traversal of the DFA to i, at which point the
computation jumps to state j to continue its forward wanderings through G.

We can build an NFA as follows. Let the states of G be the vertices 1, 2, . . . , n. Construct
n2 + 2 copies of G. Reverse the edge directions in n2 of the copies, and remove all start and
finish status assignments for vertices in these graphs. Let the names of these graphs be Gi,j . Let
one of the other two graphs be Gs, and the other be Gf . Remove the start status assignment
for the start vertex in Gf . For elegance, remove the finish status assignments for vertices in Gs.

Now build the NFA as follows. For each pair (i, j), connect an epsilon transition edge from
state i in Gs to state j in Gi,j, and likewise from state i in Gi,j to state j in Gf .

It is easy to see that the resulting NFA recognizes OneReverse(L) as defined in this problem.

b. Here the proof is by contradiction. A good starting language is: Let L be the set of strings
{anbmcmdn|m,n ≥ 0}. It is easy to build a PDA to show that L is CF.

Let LL = OneReverse(L).

Let L2 = LL ∩ a∗b∗d∗c∗. Then L2 = {anbmdncm|m,n ≥ 0}.
Suppose that LL is CF. Then L2 is CF since L2 is the intersection of LL and a regular

language. But the pumping lemma shows that this is not the case.

In particular, it says: There is a fixed length p where the following holds. Suppose s ∈ L2 is
longer that p. Then we can write s = uvwxy where |vx| > 0, |vwx| < p and uviwxiy must also
be in L2 for all i ≥ 0. But this is nonsense. The restrictions on L2 will require that both v and x
must be strings of just one type of letter as otherwise uviwxiy will not be of the form a∗b∗d∗c∗.
Let s = apbpdpcp. Then w is too short to be all of the b’s or all of the c’s in s. Consequently,
uwx can have at most two types of letters, since u has just one, as does x. But uwx cannot
have just one type of letter as the pumping lemma would then produce strings outside of L2.
Similarly, uwx cannot be restricted to the two types a and b, or b and d, or d and c for exactly
the same reason. No matter what, the resulting strings will be outside of L2.

Hence, the assumption that OneReverse(L) was CF is incorrect.
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