
Honors Algorithms/Written Qualifying Exam
Thursday, Dec. 19, 2002

This is nominally a three hour examination, however you will be
allowed up to 31

2
hours. All questions carry the same weight. An-

swer all six questions.

• Please print your name and the question number on each exam
booklet. Write your name and number on the envelope. each ques-
tion in a separate booklet, and number each booklet according to
the question.

Read the questions carefully. Keep your answers brief. Assume
standard results, except where asked to prove them.

1

Problem 1 [10 points] New Exam booklet PLEASE
Let the Double Trouble problem be the following:

Given: An undirected graph G = (V, E) with positive integer edge cost c(i, j) for each
edge (i, j) in E.

Question: Does G contain a Hamiltonian circuit C where the sum of the costs of the
edges in C is exactly half of the sum of all edge costs in the graph G?

Prove that Double Trouble is NP-Complete.

Problem 2 [10 points] New Exam booklet PLEASE
The Monopoly Restaurant problem is the following. You are given a linear row of
restaurants of sizes S[1..n]. The objective is to specify merging operations so that all of
the restaurants are merged into a single very large restaurant. The merging rules are as
follows:

At any step, only a pair of consecutive restaurants can be merged into a new
restaurant that is the physical union of the two buildings.

The size of the new restaurant is the sum of the sizes of the two restaurants
being merged.

The cost of a merge is equal to the size of the larger restaurant.

The total cost of a sequence of n−1 mergings is the sum of the costs of the individual
mergings.

The problem is to give an efficient algorithm that computes the minimum total cost
for creating one restaurant from the original n restaurants.

Problem 3 [10 points] New Exam booklet PLEASE
In this problem, we maintain an unsorted linear list L of nodes, beginning with an empty
list. There are three operations:

InsertAfter(x, y), which inserts y after x in L. (If x = Nil, then x is inserted
as the first item in the list.)

Delete(x), which removes x from L.

Rank(x), which returns the number of nodes in L that appear prior to x in the
list L.

Please assume that the operations are legal, so that x is already in L, and y is not.
Also assume that the variable x, in each case, is provided as a pointer to the relevant
node in L.

Explain how to store L by using standard data structures with suitable enhancements
so that each of the three operations will run in O(log |L|) time, where |L| is the number
of elements in L.

Go to the next page

2

Problem 4 [10 points] New Exam booklet PLEASE
Let G = (V, E) be a directed graph with weighted edges and where all cycles have
positive weight. We say that two paths from i to j in G are distinct if the sequence of
vertices encountered when traversing the two paths from i to j are not exactly the same.
(Thus, they must have some different edges.) Present an algorithm that computes, for
each pair of vertices i, j the number of distinct shortest paths from i to j in G. That
is, the algorithm should compute n2 answers, one for each of the n2 pairs of vertices.
(However, the question for the number of paths from i to i is uninteresting, and can be
zero or one as you wish.)

Problem 5 [10 points] New Exam booklet PLEASE
The Tower of Hanoi problems below all begin with n red rings of decreasing size stacked
on pole A, with poles B and C empty. The objective is to move the rings one-by-one so
that they all wind up on pole B. The rules are that on any stack, the rings of a given
color must always have smaller rings above larger rings. Whenever a ring is removed
from the top of one stack, it must be immediately placed on the top of another.

a. Let T (n) be the exact number of ring moves for the best solution to the Tower of
Hanoi problem with n rings on pole A. Present the recurrence equation for T (n).

b. Now change the problem as follows. Let ring k be the k-th smallest ring, so that
ring 1 is the smallest. Let all of the rings be red. To move a size k red ring from the
top of one stack on pole X to the top of another on pole Y (that has no smaller rings),
the process begins by transforming the ring at no cost as follows. If k = 1, there is no
change, and the ring is moved in a single step. If k > 1, ring k is replaced by a stack of
k − 1 green rings of sizes 1 to k − 1 sorted by size, smallest on top. These replacement
rings are still on pole X. Now move the entire stack of k − 1 green rings from pole X
to Pole Y according to the usual Towers of Hanoi rules. The extra requirements are
that green rings must be above all red rings regardless of the size of the red ones, but
the green rings must obey the usual size requirement that smaller sizes cannot be below
larger size green rings. Once the green stack is on pole Y , it is transformed back into a
single red ring of size k.

Present the recurrence equation for U(n), the total number number of red and green
ring moves for an efficient solution to this problem. Include, in the count each actual
ring move; there is no cost for the transformation from a red ring into the green rings
and back. You can refer, in the equation, to the solution for T (n) in part a.

c. The Unlimited Color Problem (UCP). Now let unlimited colors be available, and
modify the usual solution as follows. Whenever a ring of size k > 1 is to be moved,
replace it by k − 1 rings of a new color with sizes 1 to k − 1 stacked with the smallest
on top, and solve the subproblem for the k− 1 rings first, as in part b. Note that every
move of a ring of size k, for k > 1 (and any color) now requires the number of steps that
is needed to solve the fully recursive UCP on k − 1 rings (of another color). Let W (n)
be the number of ring moves needed for this problem. Present the recurrence equation
for W (n).

Go to the next page

3

Problem 6 [10 points] New Exam booklet PLEASE
Let s be a string over an alphabet Σ.

We say that OneReverse(s) is the collection of all strings uvy where s = uvRy,
and vR is the reverse of v.

Thus, OneReverse(abcd) = {abcd, bacd, cbad, dcba, acbd, adcb, abdc}.
If L ⊆ Σ∗ is a language, we say that OneReverse(L) is the union of all sets
OneReverse(s) for s in L.

a. Show that if L is regular, then OneReverse(L) is regular. Major hint: use nonde-
terminism. That is, show how to transform a DFA that recognizes L into an NFA that
recognizes OneReverse(L).

b. Show that if L is context free, then OneReverse(L) is not necessarily context free.
Major hints:

(i) You can use the fact that if H is a context free language and J is a regular
language, then H

⋂
J is also context free.

(ii) Let the underlying alphabet be Σ = {a, b, c, d}

4

