
Honors Algorithms/Written Qualifying Exam
Wednesday, Dec. 21, 2011

This is a 31
2 hour examination.

All questions carry the same weight.
Answer all six questions.

• Pleaseprint your name on the sticky note attached to the outside envelope, and nowhere else.

• Pleasedo notwrite your name on the examination booklets.

• Please answer each question in aseparatebooklet, andnumbereach booklet with that question
number.

• Read the questions carefully. Keep your answers brief. Assume standard results, except when
asked to prove them.

•When you have completed the exam, please reinsert the booklets back into the envelope.

Problem 1 [10 points]New numbered exam booklet PLEASE

a) Consider the following problem.

– Input: A target boundK and an undirected graphG = (V,E) with n vertices andm edges.

– Question: Is there a subsetW of 3K vertices such that there are exactly3K edges inE that have
both endpoints inW , and these edges formK disjoint triangles?

– Prove that this problem is NP-Complete.
The reduction can use any standard problem that is known to beNP-Complete.

Solution

a) First, this problem is in NP: I can write a program to check the solution: it counts the number of
triangles, checks that all of its edges are inE, verifies that they are disjoint, and checks to see if there are
any other edges inE that have both endoints in the set of3K vertices.

b) We reduce Independent Set to this problem. The IS problem is: given an undirected graphH = (W,F)
and targetK, is there a set ofK vertices inW such that no pair of these vertices are connected by an edge
in F?

The reduction is: for eachw in W , insertw, w1 andw2 into V , and edges(w,w1), (w,w2), (w1, w2) into
E. Also insertF into E. It is clear that a solution to IS gives a solution to this problem. To see that a
solution to this problem gives a solution to IS, note that each triangle can have no more than two vertices
that lie outsde ofW , so the it suffices to select from each solution triangle a vertex that belongs toW to
get independent set of at leastK vertices.

b) Consider the following problem.

– Input: An undirected graphG = (V,E) with V = {1, 2, 3, . . . , n}, and a boundK.

– Question: Is there a subsetS of vertices fromV where each edge inE has at least one endpoint in
S, and the sum of the vertex number-names inS is no more thanK?

– Prove that this problem is NP-Complete.
Hint: The difficulty with this problem is that as defined, far more vertices with small number-names
can be used in a cover than with large number-names.

Solution

a) First, this problem is in NP: I can write a program to check the solution: it verifies that the solution is a vertex
cover, and adds up the vertex numbers to see if the sum is at most K.

b) We reduce Vertex Cover to this problem. The VC problem is: given an undirected graphH = (W,F) and
targetT , is there a setS of K vertices inW where each edge inF has at least one endpoint inS.

The idea is: Let|W | = n. GivenH, createG as follows: it hasn2 isolatied edges with left endpoint vertices
named1 throughn2 and right endpoint vertices namedn2 + 1 through2n2. And it contains a copy ofH with
vertex numbers2n2 + 1 through2n2 + n. SetK = 1 + 2 + . . . + n2 + T (2n2 + n). The solution must find at
mostT vertices inW because(T + 1)(2n2 + 1) > 2Tn2 + 2n2 > T (2n2 + n). So a solution to this problem
for G is a solution forH. Likewise, a solution forH gives a solution for this thing onG.

2

Problem 2 [10 points]New numbered exam booklet PLEASE

Let G be an undirected graph with edge weight functionw, andm edgese1 . . . em in sorted according to their
weight: w(e1) ≤ w(e2) ≤ . . . ≤ w(em). Imagine you just ran the some MST algorithm onG and it output
an MSTT of G. Now suppose that somebody changes the weight of a single edge ei from w(ei) to some other
valuew′. For each of the following 3 scenarios, describe (at a high level) the fastest algorithm you can think of
to transform the original MSTT of G into a new (and correct) MSTT ′ of G after the edge weight change. Be
sure to justify the correctness of your answers, and to express your running time as a function ofm andn.

a) Supposeei is in the MSTT andw′ < w(ei) (so the weight of the MST edgeei is decreased).

Solution

T is an MST solutionT ′. So the answer runs in constant time. Correctness: all cuts are the same for each
tree, and the same edges are min cost connectors across thosecuts.

b) Supposeei is not inT andw′ < w(ei) (so the weight of a non-MST edgeei is decreased).
Hint: Compute the unique shortest path inT between the two end-points ofei.

Solution

Orient the tree via a DFS so that each vertex (other than the root) has an parent. Now it is easy to trace
the cycle formed by conceptually adding the edgeei to T . If w′ is cheaper than some edge on the cycle,
remove the most expensive edge on the cycle and keepei in the new solution treeT ′. Otherwise the
solution is the originalT .

Time: linear. Correctness: IfT ′ isT there is nothing to prove. Otherwise call the excised edgeej . Imagine
running a min cut based MST algorithm where you omit any cut that would select the newei with costw′.
(You do this by selectingei when it is the min cost connector, but conceptually refrain from inserting it in
the MST.) This will build two subtrees of altogethern − 2 edges. Each edge inT minusej is a min cost
connector across its cut, and each edge inT minusej will qualify as such a min cost connector. So use
those edges. Now complete the construction by adding the cheapest connector across the remaining cut.
Two contenders areei andej but there cannot be any other connector (besidesei) of cost less thanw(ej),
sinceej belonged toT . Soei is the final edge to add.

c) Supposeei is in T andw′ > w(ei) (so the weight of the MST edgeei is increased).

Solution

Removeei and trace the two resulting subtrees to identify the vertices on each side of the cut. PartitionE
into the edges connecting opposite sides of the cut, and those that are useless. Select the cheapest of the
connecting edges. If it is cheaper thatw′ use it. If not, the tree is unchanged.

TimeΘ(|E|). Correctness:T is built from min-cut cost connectors.

3

Problem 3 [10 points]New numbered exam booklet PLEASE

You are given a collection of equations of the form variable =variable + constant
For example:

a = d+ 2

a = b+ 4

c = f − 1

a = f + 3

c = a− 2

etc.
For notational simplicity, you can assume that the variables area1, a2, . . . , an, and the equations are formulated
as them triples (D[i], E[i], F [i]) for i = 1, 2, 3, . . . ,m. The meaning of the triple(D[i], E[i], F [i]) is that
equationi reads:a

D[i]
= a

E[i]
+ F [i].

Present anO(m+ n)-time to determine if the system has a solution.
Hints:: Note that this system can be modeled as a graph. Moreover, ifthere is a solution, then you can find
another solution by adding the same constant to all of the variables. This means that if there is a solution, then
there is also a solution where – for example –a1 is zero. In addition, please note that the system might definea
graph that is not connected.

Solution

Create a directed graph ofn vertices where vertexi represents the variableai. For each triple
(D[i], E[i], F [i]) insert a directed edge from vertexD[i] to vertexE[i] with lengthF [i].

There are many ways to do the consistency check. One might check the strong components and then check
the overall DAG. But the easiest way is to double the edges by assigning the two edges(D[i], E[i]) with costF [i]
and(E[i],D[i]) with cost−F [i] to the graph. So letG be this graph, which is just a set of disjoint subgraphs
that are strongly connected. The consistency check is as follows.

Global : Consistent;
procedure Driver();

Consistent← TRUE;
mark all vertex costsNil;
foreach vertexv do

if v.cost is Nil then
v.cost← 0;
DFS(v)

endif
endfor;
print(Consistent)

end Driver;

procedure DFS(w);
foreach vertexu in Adj[w] do

if u.cost is Nil then
u.cost← w.cost+ Edgecost(w, u);
DFS(u)

elseifu.cost 6= w.cost+ Edgecost(w, u) then
Consistent← FALSE

endif
endfor

end DFS;

It is not difficult to create the adjacency lists forG in Θ(m+ n) time. The edge costs can then be stored in a
companion adjacency edge cost array so that thekth element inEcost[j] is the edge cost of(j, h), whereh is the
kth entry inAdj[j]. With this construction, total time to constructG and to run the algorithm isΘ(|V | + |E|),
which isΘ(m+ n).

4

Problem 4 [10 points]New numbered exam booklet PLEASE

LetA[1..n] be an array ofn floating point numbers.

a) Describe a linear-time algorithm that determines if morethann/2 of the elements have the same value.
Hint: Imagine seeing the data in sorted order (even though you cannot sort the data in linear time). Now
use the Blum Floyd Pratt Rivest Tarjan fast selection (or order statistics or rank selection) algorithm to
find a candidate element that could appear more than half of the time inA.

Solution

Use the BFPRT algorithm to find the median. Now collect all values equal to the median. If that count is
more thann/2 report yes. Otherwise report no.

b) Adapt your argument to the determine if more thann/3 of the elements have the same value.
Hint: You might need multiple passes of the BFPRT algorithm.

Solution

Use the BFPRT algorithm to find an element of rankn
3 . Now collect all values equal to that value. If that

count is more thann/3 report yes.

If not, use the BFPRT algorithm to find an element of rank2n
3 . Now collect all values equal to that value.

If that count is more thann/3 report yes. If not, report no.

c) Describe a fast algorithm that determines if there is an element that appears inA more thann/C times for
any input parameterC.
Your target operation count isO(C · n).

Solution

Fork sequencing from1 to C − 1 and while no yes has been reported do this:

Use the BFPRT algorithm to find an element of rankkn
C

. Now collect all values equal to
that value. If that count is more thann/C report yes.

If no yes has been reported then report no.

d) Adapt your solution for c) to present, for anyC = 2k, an informal, very high level description of an
algorithm that prints all of the elements that appear more thann/C times, and which runs inO(n+n logC)
time.

Solution
Let A be the set ofn num-
bers.

Global YesNo;
YesNo ← no;
many(A, k, n/C);
print(YesNo);

proceduremany(S,k,count)
if k is 0 OR YesNo is yes then return endif ;
Use the BFPRT algorithm to find the medianµ of S;
Collect three sets:W conains the elements< µ, X the values= µ

andY the values> µ;
if |X| > count thenYesNo ← yes
else

many(W,k − 1, count);
if YesNo is no thenmany(Y, k − 1, count) endif

endif
end many;

5

Problem 5 [10 points]New numbered exam booklet PLEASE

a) The baby sitting assignment problem

You are the CTO of a baby sitting company, and have a request tobaby sitn children one day. You can hire
any number of baby sitters for a fixed cost ofB dollars per baby sitter. Also, you can assign an arbitrary
number of childreni ≥ 1 to any baby sitter. However, each parent will only pay the amount p[i] if her
child is taken care of by a baby sitter who looks afteri children. For example, ifn = 7 and you hire2
baby sitters with one looking after3 children and the other managing4 children, then your total profit is
3p[3] + 4p[4]− 2B.

GivenB,n, p[1], . . . , p[n], your job is to assign children to baby sitters in a way that maximizes your total
profit. So you want to find an optimal numberk and an optimal partitionn = n1 + . . . + nk so as to
maximize revenueR = n1 · p[n1] + . . . + nk · p[nk]− k · B.

i) Present a recursive high-level program specification to find the maximum revenueR based on the
input dataB, n, andP [1..n].
Note: the technical difficulty with this problem occurs whenn is not a multiple of the “most prof-
itable” number of children to assign to each baby sitter. Forthis general case, you will not find a
convenient formula or simpler solution than that provided by dynamic programming.

Solution

LetBest[j] be the solution to the subproblem forj children. Then

Best[j] =

{

1; if j = 0;
max0≤h<j{Best[h] + p[j − h]−B}, if j > 0.

ii) Analyze – with a brief justification – the running time of your procedure when augmented with a
look-up table to ensure that each subproblem is solved just once. UseΘ(·) notation.

Solution

The operation count is quadratic because it takesΘ(j) time to check thej outcomes needed to compute
the answer for locationj of the look-up table when locations1 throughj − 1 are already filled.

6

b) Arithmetic to the max

You are given a sequence of positive floating point numbers. Insert+’s, ∗’s, and parentheses so as to get
the largest possible expression.

For example, suppose the sequence is1.5 2.0 2.5 1.0.

Options include:
(1.5 ∗ 2.0) + (2.5 ∗ 1.0) = 5.5

1.5 + 2.0 + 2.5 + 1.0 = 7.0

1.5 ∗ 2.0 ∗ 2.5 ∗ 1.0 = 7.5

(1.5 + 2.0) ∗ (2.5 + 1.0) = 12.25

Present a high-level recursive program specification to compute the largest possible expression for the data
A[1..n].

Solution

Let S[i, k] be the solution to the subproblem as defined onA[i..k]. Then

S[i, k] =

{

A[i] if i = k;
maxi≤j<k {max{(S(i, j) + S(j + 1, k)), (S(i, j) ∗ S(j + 1, k))}} if i < k.

Problem 6 [10 points]New numbered exam booklet PLEASE
For the two languages below, present a proof that shows if each is a CFL.
Hints: Recall that the recognizer can be nondeterministic, and when applying a pumping lemma, pick an
initial string wisely, and be ready to pump in any direction.

a) – LetLa = {aibjck : i, j, k in {1, 2, 3, · · ·} and (i 6= j or i 6= k)}.

– Present a proof that determines ifLa is a CFL.

Solution

The language is a CFL. We simply guess if it isj or k that is not equal toi. Then we push a token onto the
stack for everya that is read, and pop the stack as the guessed symbolb or c appears. When done, we want
the stack to be non-empty after or to have already been emptied before the last of the guessed symbols is
read. We also check to ensure that the string belongs toa+b+c+. So the language is a CFL.

b) – LetLb = {a
ibjcmax {i,j} : i, j in {1, 2, 3, 4, · · ·}}.

– Present a proof that determines ifLb is a CFL.

Solution

This language is not a CFL. To prove that, we use a pumping lemma.

Theuvxyz pumping lemma says: for any CFLLb, there is a countn such that: ifs is in Lb and|s| > n,
then we can writes = uvxyz where|vy| > 0, anduvixyiz is in Lb for i = 0, 1, 2, · · · .

Let s = anbncn. It is in Lb by definition. Sos = uvxyx for some stringsu, v, x, y, andz where the
pumping lemma is applicable. It is clear thatv must belong toa+ as otherwiseuvixyiz cannot belong to
Lb. And for the same reason,y must belong to eitherb+ or c+. But thenuv0xy0z cannot belong toLb

because its number ofas will be less than the number ofbs if y is in c+, or less than the number ofcs if y
is in b+.

7

