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Abstract

A growing number of network services are being con-
structed using the XML Web Services architecture. By de-
sign, client interactions with such services are governed by
open protocols such as UDDI, WSDL, and SOAP that per-
mit programmatic discovery and functionality invocation.
Additionally, for a large number of currently deployed ser-
vices, it is possible to interpret service requests as struc-
tured accesses against a (physical or virtual) database.
These two trends suggest the possibility of building net-
work intermediaries that can inspect traffic flowing between
clients and services, infer models for service access pat-
terns, and potentially improve service scalability by taking
actions such as replication, request redirection, or admis-
sion control. This paper reports on our experience design-
ing and implementing such a network intermediary archi-
tecture. Experiments on an emulated WAN using synthetic
workloads show that our approach achieves significant per-
formance improvements in client-perceived response time.

1 Introduction

Thanks in part to a cross-industry standardization effort,
a growing number of network services are being built to
support programmatic interaction using the XML Web Ser-
vices platform. Illustrative examples include Amazon Web
Services [1], the Google Web APIs service [2], and imagery
services such as Microsoft’s MapPoint [3], TerraServer [5]
and SkyServer [4]. However, responses to requests for such
services are usually dynamically generated and hence con-
sidered “uncacheable” by traditional caching architectures.

One way of remedying this situation is by developing al-
ternative caching architectures, which improve scalability
and performance using on-demand replication and request
redirection strategies based on service usage locality infor-

mation. Such architectures benefit from two characteristics
shared by these example services.

First, to permit discovery and convenient integration
with different kinds of clients across heterogeneous net-
works, services expose their functionality using standard
XML-based specifications such as WSDL, SOAP, and
UDDI [8]. A key consequence of this design is that net-
work messages flowing between clients and services have a
well-defined structure, one which is easily inferred from the
WSDL specification of the service interfaces.

Second, many of the web services deployed today em-
phasize interactions that can be categorized as structured
data retrieval. A large fraction of client traffic directed
towards such services takes the following form: requests
identify attributes of the items of interest (book title or
ISBN, search keywords, map locations, etc.) and responses
return information about the selected items (book informa-
tion, list of matching pages, maps or other imagery, etc.).
This behavior permits one to associate a semantic struc-
ture with such services: requests can be viewed as if they
were accessing relations in a multi-attribute database. The
database can be physical (as in our example services), or
logical. A consequence of having such a structure is that
one can associate the region of attribute values covered by
a group of requests to the service internal data required for
servicing this group.

Together, these two characteristics provide the context
for an architecture where a distributed collection of net-
work intermediaries, augmented with some service-specific
knowledge, can (1) inspect traffic flowing between clients
and services, (2) infer models for how a service is being
accessed (specifically, if there are any locality patterns),
and (3) potentially improve service scalability and client-
perceived access times by taking actions such as replication,
request redirection, or admission control. The first charac-
teristic, use of standard XML-based protocols, enables the
intermediaries to operate in a service-agnostic fashion. The
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second characteristic, the semantic structure of database
access, provides the mechanism for detecting locality and
reasoning about appropriate actions. The intended use of
this architecture is as a service hosting platform, which im-
proves client experience in the same way that a content-
distribution network improves client-perceived latency for
accessing static or streaming web content.

The effectiveness of such an architecture is of course
determined by the extent to which usage locality is pre-
sented in real-world data-centric web services. In [14],
we investigated request logs from two such sites, Sky-
Server [4] and TerraServer [5], to analyze service usage lo-
cality across several dimensions: data space, network re-
gions and timescales. Our results validate the potential of
the proposed architecture by showing that both workloads
exhibit high degree of spatial and network locality over dif-
ferent time epoches. For example, in TerraServer’s log,
among all requests for dynamic content, 10% of clients con-
tributed to ∼83.94% of the requests and 99.94% of requests
hit on 10% of the regions in the data space. Similarly, in
SkyServer’s log, we found that 10% of clients contributed
to ∼99.95% of the requests and 84.04% of requests hit on
30% of the regions in the data space. These results suggest
that creating appropriate replicas of portions of the overall
service database at a few locations in the network can yield
considerable performance improvements.

This paper reports on our experience in designing and
implementing a network intermediary architecture that au-
tomatically detects usage locality and creates service repli-
cas to realize the above potential. The rest of the paper is or-
ganized as follows. Section 2 discusses related approaches.
The details of our design, covering the functionality of an
intermediary node, its interactions with other entities, and
distributed algorithms for service replica placement are pre-
sented in Sections 3 and 4. We have built a prototype im-
plementation of our proposed architecture using Microsoft’s
ASP.NET, and in Section 5, we report on its performance on
an emulated WAN using synthetically generated workloads.
We discuss outstanding issues in Section 6, and conclude.

2 Related Work

The main ideas behind our intermediary architecture are
(1) the in-network inspection of service requests, and (2)
use of the collected information for making service replica-
tion and request redirection decisions. Others have looked
at similar ideas across four broad areas: network-layer
congestion control, web caching and content distribution,
edge deployment of network applications, and caching tech-
niques for database-backed web applications.

Researchers in the networking community have pro-
posed inspection of message traffic to cope with hotspot
congestion along links. For example, work by Mahajan

et al. [22] considers how individual routers can detect ag-
gregates responsible for DoS attacks or flash crowds, and
then request upstream routers to “push back” (throttle)
these flows. Our approach benefits from the availability
of application-level semantics associated with the requests,
which enables requests to not only be throttled but also redi-
rected to dynamically created replicas.

Web caching infrastructures and content distribution net-
works such as Akamai, as well as recently proposed peer-
to-peer caching infrastructures such as Squirrel [16] and
Coral [12] improve performance of web sites serving static
content by caching (or hosting) this content closer to the
network edge. A key observation is that such systems are
effective primarily because intermediate nodes understand
the structure of the request (i.e., that it is HTTP and refers
to a particular URI), and because there is a well-established
notion of the object referred to by this URI (the web page).
Our approach builds on this observation by imposing a sim-
ilar structure for general web service requests and making
explicit what data a request refers to, in order to cache these
requests which are usually considered “uncacheable” due to
their dynamically generated responses.

Within the web caching context, researchers have also
looked at optimal placement of replicas [25] and coor-
dinated page placement and replacement policies [18].
In [25], the authors work with a “complete” replication
model, where all of the web server contents are available
at each replica. Under the assumption that a client uses a
single replica, the authors reduce the placement problem to
a K-median problem with an objective of minimizing global
access costs. The work in [18] on the other hand, assumes
a “partial” replication model, where individual objects are
placed onto nodes organized in a hierarchical cluster-tree
topology. A minimal cost flow formulation and its greedy
and amortized approximations, are used to determine which
subset of the objects to place on which nodes so as to min-
imize global access costs. The placement problem we de-
scribe in Section 4 is somewhat different from but combines
elements of both of these works. Like [18], we are inter-
ested in a partial replication model but differ in the fact that
given the large volumes of data associated with the services
of interest, the cost of (even partial) replica creation and
maintenance cannot be ignored. [25] indirectly considers
this cost (in limiting the number of replicas that are cre-
ated) but our problem context needs it to be more directly
accounted for.

Recent efforts have also cached part of the application
functionality (e.g., servlet execution for dynamic web con-
tent) closer to the network edge. Akamai’s EdgeSuite [6]
and IBM’s WebSphere [15] contain similar support, as do
research projects such as Gemini [24] and Active Cache [9]
that attempt to improve generation and delivery of dynamic
web content. Our approach similarly attempts to move re-
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Figure 1. Overview of the intermediary ar-
chitecture (routers in the architecture are
application-level routers)

quest processing closer to clients, but differs in trying to de-
termine automatically what this functionality should be. For
achieving the latter it assumes that the functionality of a ser-
vice replica can be implicitly specified in terms of regions
of the physical or virtual database underlying the service.

From that perspective, more closely related are ap-
proaches that cache portions of the physical back-end
database backing a web server on a local system to im-
prove performance seen by queries originating from remote
sites [11, 21, 7]. Of the different cache storage organiza-
tions that have been proposed, the work in this paper is most
influenced by the notion of semantic regions [10]. Seman-
tic regions refer to the range of relation values accessed by
queries (requests). The differences in our approach are that
(1) such regions may only be virtual, serving to specify the
internal service data required for servicing a group of re-
quests, (2) that these regions can dynamically split/collapse
based on current load of requests, and (3) that the regions
are cached across a distributed intermediary network in-
stead of only at the endpoints.

3 Intermediary Architecture

Figure 1 shows an overview of our network intermedi-
ary architecture, which consists of service-neutral “router”
nodes that interact with one or more service replicas. One
of these replicas is assumed to always be active, and corre-
sponds to the origin service. End clients connect to distin-
guished routers called entry routers. The router nodes are
hierarchically organized, and relay requests and responses

between the end-clients and service replicas1.
In our architecture, the router network and the replica

network can be maintained separately. Specifically, we as-
sume that the service replicas are maintained by service
providers; this permits service providers to offload service
functionality and portions of the associated data on-demand
onto the replicas without security concerns. The portions
of data being offloaded onto or removed from a specific
replica are determined by our distributed service replication
algorithm and replication management mechanism, both of
which run on the router network.

3.1 Router Functionality

Each of our routers is an application-level SOAP router,
as defined by the Web Services architecture. The additional
functionality they provide is the inspection of SOAP request
messages to build a model for service usage; and the use of
this model to improve service scalability and performance.

As stated earlier, to build this model, our architecture as-
sumes a semantic structure for the service, namely that its
requests can be treated as accessing relations in a logical
multi-attribute data space. Each router keeps track of how
portions of this data space are being accessed, and maintains
metrics that summarize the performance of requests that ac-
cess different portions. Based on this model of service us-
age, the routers cooperate with each other to determine what
actions, if any, need be taken to improve service scalabil-
ity and end-client performance. Actions supported by the
architecture include requesting (from the replica network)
activation of a service replica to service requests targeting
a specific portion of the service’s data space, followed by
redirection of affected request traffic to that replica. Sec-
tion 4 discusses the specific algorithm we use to determine
service action; here, we describe in more detail the request
inspection and model construction.

To support the functionality described above, the router
needs to (1) associate a SOAP request with the underlying
logical data space for that service; (2) translate the param-
eters of the request into a region in this data space; (3) ef-
ficiently maintain usage statistics for that region; and (4)
relay the request either to an upstream router or a nearby
replica.

3.1.1 Service Registration

The first two issues require active involvement of the ser-
vice provider. We envision our architecture being used as

1To improve fault-tolerance, a node can be extended to a “super-node”
that consists of a cluster of routers, which share information about usage
statistics and serve requests in a load-balanced fashion. In this paper, we
focus on the simple tree-structure when describing router functionality and
interactions.
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Figure 2. Cell Structure

a distributed hosting platform: services register with the ar-
chitecture, and as part of the registration step supply the
required information, which is then made available to all
routers. Such information includes service interfaces (e.g.,
the SOAPAction attribute of a SOAP request to the service),
the underlying logical data space for the service, the map-
ping scheme that maps a service request into a region in
the data space, and the desired performance metrics (we fo-
cus on service response time in this paper). This step also
identifies the entry routers, who publish, using UDDI or a
similar protocol, their ability to receive service requests.

The logical data space is specified in a straightforward
fashion, in terms of its dimensionality, the attributes corre-
sponding to these dimensions, and the value ranges taken
by these attributes. To translate arbitrary service requests
into regions of this data space, we adopt a solution that
leverages the XML-based nature of SOAP messages: the
service specifies XSL stylesheets that are used by XSLT
to transform each service request (identified by the corre-
sponding SOAP action). This solution has the advantages
of alleviating security concerns because XSLT is a safe lan-
guage (modulo third-party extensions, whose use can be
controlled), and of supporting the transformation in a lan-
guage and platform-neutral fashion.

3.1.2 Cell Structure

The third issue above, efficiently maintaining usage statis-
tics for a data region, is handled traditionally by keeping
track of the most popular requests and their responses in a
cache-like structure. However, such an approach is not suit-
able in a network services context because (1) it is unlikely
that a response to a previous request is reusable due to the
variation of values and forms of request parameters; and (2)
simple record keeping means that the router needs to store a
high volume of requests (could be millions per day for Ter-
raServer service), which leads to storage capacity concerns
and results in inefficiency in analyzing the statistics at run-
time. To solve these problems, we design a dynamic data
structure called the cell structure, shown in Figure 2

Informally, a “cell” is a representation of a hyper-region
in the logical service’s data space, assuming that this data
space is multi-attributed, and that the attributes are numeri-
cal or alphabetical rangeable. A cell maintains usage statis-
tics about the corresponding region of the service’s data
space: these include the number of requests hitting the re-
gion over a time period, and the average service time seen
by these requests (at a particular router).

When the number of requests hitting a cell exceeds a
threshold, the cell can be split into a set of disjoint sub-cells,
each of which covers a smaller region of the data space.
Subsequent statistics are only maintained at the level of the
sub-cells, each of which starts off with an equal share of
the parent cell’s hit count. Similarly, when the hit count of
all sub-cells drops below a threshold, the sub-cells can be
collapsed back into the parent cell. Thus, at any point in
time, a router maintains a cell tree, whose leaf nodes di-
vide the service’s data space into a set of disjoint regions.
The split and collapse operations permit efficient mainte-
nance of statistics for different locality patterns involving
coarse as well as fine-granularity regions.

Finally, the handling of the fourth issue, relaying of re-
quests, also involves the cell structure. Information about
regions of the service’s data space for which nearby replicas
are available are maintained as part of the cell structure. If
no replica for that cell is available, the request is forwarded
to the upstream router in the hierarchy.

3.2 Router-Router Interactions

In addition to cooperating to implement the service repli-
cation algorithm described in Section 4, the routers inter-
act with each other to help compute the performance statis-
tics seen by a group of requests. The downstream router
(closer to the client) records the send time for every request
forwarded to an upstream router. Upon receiving the re-
sponse for this request, the router computes the request ser-
vice time, which is defined to be the cumulative time spent
by the request in traversing any routers upstream of this one
and in processing at the service replica that satisfies the re-
quest. Each router, other than the entry router, piggybacks
its own service time in the response sent to the downstream
router, allowing the latter to maintain a dynamic estimate of
the round-trip time being seen between the pair of routers
for servicing a certain kind of request.

The measured request service time is used to update
the cell statistics, and the round-trip time updates per-link
statistics maintained at each router. Both pieces of informa-
tion are used by the service replication algorithm.

Proceedings of the 10th International Workshop on Web Content Caching and Distribution (WCW’05) 
0-7695-2455-9/05 $20.00 © 2005 IEEE 



3.3 Router-Service Interactions

After registration, the only direct interaction between our
routers and the services whose requests they forward is for
initiating replication actions. Depending on the outcome of
the replication algorithm, a router may request that a replica
be created to service requests targeting a certain region of
the service’s data space that is seeing unsatisfactory perfor-
mance.

A replication request is sent to the origin service, which
responds with a grant message in case it can create a replica
near the requesting router. A subsequent confirmation mes-
sage indicates the completion of the replication process, and
results in an update to the cell structure with the replica
information. The router can optionally queue up requests
that it sees for the region being replicated in the interim pe-
riod between a grant and its confirmation to allow the up-
stream network bandwidth to be utilized by the replica cre-
ation process. Note that the semantics of how the replica is
created, and how the replicas are kept consistent with each
other is left entirely up to the service. The network inter-
mediary infrastructure merely identifies data space regions
that ought to be replicated and the network regions that can
benefit most from such replicas.

The router that requested the replication can also suggest
that the replica is no longer required. This happens when-
ever the corresponding cell shows the region being accessed
infrequently. To ensure behavior that is robust against tem-
porary fluctuations, we adopt a policy that gradually ramps
down a replication indicator field as long as the cell sees
fewer than a threshold number of hits: when the field value
reaches 0, the replica can be removed.

4 Service Replication Algorithm

The replica placement problem has been well studied
and shown to be an NP-complete problem for general net-
work graph topologies. Systems have traditionally em-
ployed relatively simple heuristics such as demand-driven
caching of frequently accessed (usually all) data at the
network edge. More advanced approaches have also in-
cluded some reasoning of data access patterns across multi-
ple clients to determine where to place a replica. Example
approaches in this category include the “best-client”, “cas-
cading replication” and “fast spread” mechanisms discussed
in [26], which locate new replicas near clients that gen-
erate the most traffic, near other related replicas or along
shared paths from clients to the origin service. In ad-
dition to such best-effort mechanisms, several researchers
have also looked at formulations of the replica placement
problem where the goal is to optimize some global met-
ric, usually average client access costs. A representative
formulation models the placement problem of placing a M

Inputs: (maintained per-router for each leaf-level cell)
T̄ service: average service time
tlat: round-trip time between router and parent
Q: client-perceived response time threshold

(approximated by service time at entry router)

Entry router:
set tdec = T̄ service − Q
if tdec < 0

send “Satisfied” message to parent
else if tlat > tdec

request replication
send “Satisfied” message to parent

else
send [“Unsatisfied”,tdec] message to parent

Intermediate router:
collect messages from children
if all “Satisfactory”

send “Satisfied” message to parent
else

set tdec = minimum tdec of children
follow steps taken by Entry router

Root router:
collect messages from children
if any “Unsatisfactory”

request replication

Figure 3. Distributed algorithm for replica cre-
ation.

proxies on N nodes as a K-Median problem [23]: for tree
topologies, the latter problem admits an optimal solution
based on dynamic programming, albeit with high complex-
ity (O(N3M2)) [20], but approximations need to be em-
ployed for more general topologies [27, 25]. Researchers
have also examined optimal strategies for the partial repli-
cation problem, when one needs to determine both the sub-
set of replica objects and their placement [19, 18]. Most
known results in this category have restricted themselves to
hierarchical network topologies.

Our intermediary architecture described in the previous
section can react to unsatisfactory performance by employ-
ing any of a number of algorithms, including the ones men-
tioned above. However, our problem context of data-centric
network services precludes most of these algorithms from
being directly applicable. First, given the volumes of data
that such services involve, it may not be sufficient to cache
accessed data only at storage-constrained edge servers. Sec-
ond, and perhaps more importantly, even in situations where
only a subset of the service data is being replicated, the
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costs of replica creation and maintenance cannot be totally
ignored. Thus, our placement problem is closer to the op-
timal placement formulations described above and can be
stated in a general form as follows: given information about
client access patterns to different regions of the service’s
data space, determine what subset of the regions to repli-
cate and at what locations in the network, so as to satisfy,
with minimal cost of replica creation, client quality expec-
tations on average response time (say, specified in terms of
a maximum acceptable value).

For practical reasons, one would prefer algorithms that
address this problem to enable a distributed implementation
with minimal interaction between the participating routers.
We describe one such distributed algorithm below, which,
in the context of the hierarchical network topology we work
with, attempts to optimize replica creation costs but for now
ignores storage capacity constraints.

Although our algorithm employs well-known tech-
niques, some of our design choices may be of wider interest.
We assume a fairly general cost function to capture a vari-
ety of service-specific usage scenarios, requiring only that
it be monotonic non-decreasing in the size of the replicated
data space region and the distance of the replica location
from the origin server.2 Inputs to the algorithm include the
cell-level usage statistics on data space regions collected by
our routers, the measured service times, and the estimated
round-trip times seen by requests between a router and its
parent.

What makes the algorithm challenging is the cost as-
pect. If the latter were not a concern, one could simply
replicate the affected regions of the data space (which are
seeing unsatisfactory performance) on the routers closest
to end clients. Factoring in the cost, it turns out that the
replication problem as stated above is NP-hard, even on a
simple chain-based router hierarchy because of interactions
between different regions of the database. Consequently,
we approximate a solution to the general problem by plac-
ing the restriction that the replication solution should satisfy
the client response time threshold independently for each
of the data space regions (leaf-level cells). This restriction
breaks up the problem into a set of independent subprob-
lems, each of which can be solved in polynomial time for
tree-structured intermediary networks.

Figure 3 shows our distributed algorithm for the sub-
problem, which for simplicity is described in terms of the
actions taken by routers in a particular round of the protocol.
The basic idea is to use the round-trip service time estimates
available at each router to determine if creating an upstream
replica for the data space region can in fact satisfy the client-
perceived response time expectations. The first router in the
path from clients to the origin service that determines this

2The function can also incorporate any recurring consistency-
maintenance costs.
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Figure 4. Network configuration used in the
experiments.

in the negative is the one that ends up requesting the replica
creation at a nearby site. The algorithm requires at most D
rounds, where D is the depth of the hierarchy; the number
of messages sent by a hierarchy involving N routers is at
most 2N .

Implementation notes While we distinguish between en-
try, intermediate, and root routers in the hierarchy, note that
a single router can play multiple roles in which case it sim-
ply performs all relevant actions. A practical implementa-
tion of the algorithm would set a threshold on the request
hit-count seen by a cell before requesting replication; sim-
ilarly, a threshold on the granularity of a cell could be set
to prevent a large data space region from being replicated.
Moreover, routers need not explicitly send satisfactory mes-
sages: the absence of such a message over a time window
is assumed to indicate that the downstream router does not
need any action. Finally, a service replication request need
not always be sent to the origin service: an intermediate
router can short-circuit the request to a nearby replica.

5 Evaluation

Our experiments use a synthetic service that reflects
characteristics common to data-intensive web services such
as MapPoint, SkyServer, or TerraServer. In defining the
service data space and other request parameters, we used
as a guide the real MapPoint service: our service sup-
ports queries for maps in the North America and the logical
data space is defined by two attributes, latitude and longi-
tude, and represents North America region at a resolution of
50000:1. The cell structure supports splitting up to 6 levels,
partitioning the data space into a maximum of 212 regions.
The smallest region corresponds to map information at the
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Table 1. Network metrics on PlanetLab and our Click-based emulated WAN.

PlanetLab

Path RTT (ms) b/w (Mb/s)

UDP TCP

umich - caltech 72.75 38.24 6.79
umich - washington 66.49 44.68 6.0

columbia - cmu 73.79 5.68 5.36
columbia - princeton 13.89 45.76 17.28

nyu - umich 46.25 37.84 7.52
nyu - columbia 9.31 45.63 10.34

Emulated Network

Link RTT (ms) b/w (Mb/s)

UDP TCP

net1 - net5 72.75 12.76 2.28
net2 - net5 66.49 14.89 2.0
net3 - net6 73.78 1.90 1.5
net4 - net6 13.89 15.29 5.77
net5 - net8 46.25 12.62 2.51

net6, 7 - net8 9.31 15.21 3.45

city level. Sizes of requests and responses also come from
measurements against the real service: requests are 4 KB in
length and responses are 34 KB. Consequently, replicating
the smallest region requires transferring ∼11MB of data.

The experiments used a router implementation built on
top of Microsoft’s ASP.NET Framework 1.1. Each router
was configured to recompute cell-based statistics every 300
seconds, and request replication only for cells that (1) re-
ceived more than 500 requests over a period of 300 seconds;
(2) were at a splitting level deeper than 3 (roughly corre-
sponding to map information at the state level or smaller).

Network configuration Figure 4 shows an overview of
the network configuration we use for the experiments. The
configuration consists of eight network domains, each with
a router and four clients that generate the service requests.
The 8 router nodes (R1 . . . R8) are organized into a tree as
shown in the figure, and serve as entry routers for the four
clients in the same domain. R8 acts both as a root router and
as the location of the origin service. A service replica can be
created on any of the other routers. We realized this config-
uration on a LAN cluster, emulating a WAN environment
using the Click modular router infrastructure [17]. The
specific emulation parameters came from measurements we
took between pairs of PlanetLab hosts over an extended pe-
riod (the bandwidth values were scaled down by a factor of
3 so as to accommodate the hardware limitation of a 100
Mb/s switch in our emulated system). Table 1 shows the
close correspondence between the metrics measured on the
two systems.

Workload Our clients repeatedly sent requests to the ser-
vice, waiting for a response before sending the next re-
quest. To prevent saturating our underlying emulation sys-
tem, each client was restricted to generating at most 5 re-
quests every second (the actual rate may be lower due to
congestion).

The workload generated by the clients reflects the results

from [14], which showed that real workloads exhibit local-
ity in both the regions of the service’s data space they ac-
cess and at the network level. To understand how our ar-
chitecture and algorithms behave for these kinds of locality,
our clients send requests according to the following pattern:
they first select a rectangular region in the dataspace (global
region) such that all clients within the same domain first
agree upon a group center point within the global region,
and then randomly request a point within a new rectangular
region (domain region) surrounding the group center point.
Thus, by controlling how close the group centers of differ-
ent domains are to each other (denoted as the parameter α,
whose value is the ratio of a side of the global region to the
range of the corresponding dimension in the origin datas-
pace), and how large the rectangular region is for each group
(denoted as the parameter β, defined similar to α above but
for the domain region), we can generate workloads that ex-
hibit either spatial locality, or network locality, or both.

For each of the experiments, all 32 clients generate re-
quests against the service simultaneously. Our service repli-
cation algorithm was given a maximum client response time
threshold of 500 ms as its input, and computed the usage
statistics and round-trip time estimates dynamically as dis-
cussed in Section 3. The cost function we chose for repli-
cating a region was a linear function of two parameters: vol-
ume of data to transfer and hop distance between the replica
and the origin service. Moreover, to prevent overwhelm-
ing the network, we imposed the restriction that concurrent
replica creations at a router had to happen in sequence.

The graphs presented below show the moving average of
the response time observed by the last 20 requests received
at a client, and is computed every second.

5.1 Results

We show and discuss only results for representative
clients along the longest path in our network configuration:
net1 (c0) - net5 (c16) - net8 (c28). Since the network config-
uration and client behavior is symmetric, the performance
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Figure 5. Performance on an unloaded net-
work.

of the other clients tracks the ones reported.
Figure 5 shows the baseline response time seen by clients

in an unloaded network. The fluctuation in the response
times stems from the (emulated) behavior of the network
paths and typifies the same characteristics as our Planet-
Lab measurements. The response time has two compo-
nents: round-trip time of the network path and the (non-
overlapped) latency introduced by the computation at each
router. The first component dominates: the computation at
each router adds ∼20 ms to the overall response time, with
only 5 ms attributable to our code (the rest is caused by the
.NET framework implementation).

Note that the response time threshold is not satisfied at c0

even in the unloaded network. Once the network is loaded
(Figure 6), without service replication, none of the clients
satisfy the threshold (even clients in the same domain as the
origin service due to the fact that the service needs to handle
a large number of requests).

In the rest of this section, we focus on discussion of two
interesting scenarios: a workload with low network local-
ity but high spatial locality, and a workload with both high
network locality and high spatial locality.

Workload with low network locality, high spatial local-
ity (α = 0.5, β = 0.01) Figure 7 shows that our infras-
tructure can dynamically detect the locality present within a
domain and replicate portions of the service properly to sat-
isfy client thresholds on response time. Given the locality
structure, service regions are replicated at the router node
in a domain to satisfy that domain’s clients. In this case, 3
regions — 0030223,3 0030222, and 0032000 — with high

3The region ID corresponds to the path in the cell tree taken to reach
this region. For a 2-dimensional space, each split produces four subcells
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Figure 6. Performance seen for a workload
that exhibits both low spatial locality and low
network locality (α = 1, β = 0.5). Notice that
the Y-axis is in logscale.

access rates are replicated on R1 starting at time 300 s, 900
s and 2400 s, respectively. Similarly, the 3 regions accessed
by the clients in Net5 — 0212333, 0213220, and 0212331
— are replicated at the domain router, R5, starting at time
300 s, 1200 s, and 2100 s, respectively. Note that each
replication request results in a 11 MB data transfer across
a congested network path: each such transfer takes approxi-
mately 300 s, and has the effect of serializing the replication
requests from different routers. Consequently, it is only at
time 2100 s and 2400 s that the clients of Net5 and Net1
see response times below their requested thresholds. The
spikes in response times seen at various points in the graphs
(e.g., at 600 s and 1200 s in the c0 graph) can be explained
as follows. Since a router queues up client requests for a
region that is being replicated (the intuition here was to not
have new requests compete with replica creation traffic for
scarce network bandwidth), once the replication completes
and these requests are serviced, their response times reflect
the queuing time as well.

Figure 7 also shows two other interesting points. First,
note that some regions were replicated in a redundant fash-
ion: regions 0030222 and 0032000 are first replicated on R5

and then re-replicated on R1. There are two explanations
for this, which point out the need for some refinements in
our architecture:

• Our replication algorithm looks at the current round-
trip time estimate between an intermediary router and
its parent to decide where best to perform the replica-
tion. However, once a replica is created at the parent,

that are labeled 0–3. The ith digit in the region ID corresponds to the
parent subcell of the current region at level i.
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Event Region Router Replica lifetime Event Region Router Replica lifetime

1 0030223 R1 [300, -] 6 0212333 R5 [300, -]
2 0030222 R5 [895, 1620] 7 0213220 R5 [1200, -]
3 0030222 R1 [900, -] 8 0212331 R5 [2100, -]
4 0032000 R5 [1800, 2640]
5 0032000 R1 [2400, -]
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Figure 7. Performance seen for a workload that exhibits low network locality but high spatial locality.

it is possible that the parent can service more client
requests per unit time (remember that each client was
configured to send a maximum of 5 requests per sec-
ond, but the actual rate was ∼1.25 in a loaded network
without any replication (Figure 6)). After replication,
the increased incoming request rate at the parent in-
creases queueing delays and hence the round-trip times
seen by requests coming from the child router. What
is required is a better way of estimating the round-
trip time that would result after replication. Region
0032000 falls into this category.

• Each router operates asynchronously, with a thread
waking up every 300 s to participate in the distributed
replication algorithm. The following situation is thus
possible: in one round, a router may find the request
load for a region to be below the threshold required to
request replication and consequently send an “Unsat-
isfied” message to its parent, while in the next round,
the threshold may get crossed causing the router to ini-
tiate replication on its own. If the parent processes the
first message during this period, it may end up seeing
a request load that exceeds the configured threshold,
and thus request replica creation on its own. In our ex-
periment, region 0030222 falls into this category. Bet-
ter synchronization between the routers would fix this
problem.

Note that both of these missteps are corrected in subsequent
timesteps, with the replicas at R5 getting reclaimed at 1620
s and 2640 s because of inadequate use. What is interest-
ing is that before the replicas get reclaimed, they have an
unexpected benefit: reducing the latency for the replication
request for region 0030222 from region R1 at time 2400 s,
which is now satisfied by R5 instead of going all the way to
the origin service. This short-circuit manifests itself in the
fact that response time seen by c0 improves fairly quickly
after the replication is requested, unlike the behavior ob-
served for the earlier requests.

Workload with high network locality, high spatial local-
ity (α = 0.01, β = 0.01) Figure 8 shows that our in-
frastructure can successfully detect this kind of locality in
the higher levels of the router hierarchy, and replicate ser-
vice regions properly: regions 0211111 and 0122222 are
the commonly requested regions and hence are replicated at
both R1 and R5. In this case, the redundant replication is
warranted: clients in Net5 need to have the region replicated
in R5 to satisfy their response time threshold requirement,
while clients in Net1 cannot have their response time re-
quirements satisfied with a replica at R5 and hence, need a
closer replica. Rerunning the experiment with the response
time threshold raised to a higher value, 1500 ms, highlights
this point: in this case, replicas at R5 suffice for clients in
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Event Region Router Replica lifetime Event Region Router Replica lifetime

1 0211111 R5 [300, -] 4 0033333 R1 [900, -]
2 0122222 R5 [300, -] 5 0211111 R1 [900, -]
3 0300000 R5 [900, -] 6 0122222 R1 [1500, -]

 10000

 1000

 500

 100

 10

 0  300  600  900  1200  1500  1800  2100  2400  2700  3000  3300  3600

R
es

po
ns

e 
T

im
e 

(m
s)

Experiment Time (s)

1

2

4
5

6

c0
Threshold

 10000

 1000

 500

 100

 10

 0  300  600  900  1200  1500  1800  2100  2400  2700  3000  3300  3600

R
es

po
ns

e 
T

im
e 

(m
s)

Experiment Time (s)

1    2

3

c16
Threshold

(a) c0 (b) c16

Figure 8. Performance seen for a workload that exhibits both high network locality and high spatial
locality.

 10000

 1000

 500

 100

 10

 0  300  600  900  1200  1500  1800  2100  2400  2700  3000  3300  3600

R
es

po
ns

e 
T

im
e 

(m
s)

Experiment Time (s)

replicated regions were
invalidated at 1800s

c0
Threshold

Figure 9. Performance in the presence of a
data update for a workload that exhibits both
high network locality and high spatial locality.

both Net5 and Net1.

Workload with data update (α = 0.01, β = 0.01) Fig-
ure 9 shows the dynamic behavior of the infrastructure. A
data update event on the origin service at time 1800 s causes
the service replicas to be invalidated, and consequently re-
acquired as needed. The response time observed by client

c0 stays within the desired threshold in the time period from
1200 s to 1800 s after the required regions were replicated
on R1. The data update event at 1800 s causes these re-
gions to be invalidated, and results in a sharp increase of
response time observed by the clients. The infrastructure
reacts to this change by determining that these regions do
need to be replicated again, which happens at 2300 s and
2600 s, resulting in reduced response time again from 2700
s onwards.

6 Discussion

Our architecture and algorithms have been developed
and evaluated in the context of data-intensive XML web ser-
vices hosted on intermediaries organized into a tree topol-
ogy. Here, we discuss some ways in which the infrastruc-
ture can be extended and refined to permit broader applica-
bility of the underlying ideas. We are currently working on
the design and implementation of a more general architec-
ture that embodies these ideas.

Applicability to general network services The two cen-
tral ideas of this paper — in-network traffic inspection to
build a model of service usage, and using this model to
suggest service reactions to improve client performance —
are equally applicable to services that are not web services.
XML web services do make it simple to distinguish request
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messages from other traffic on the wire, to extract certain
parameters from the request messages, and to, in a service-
and platform-neutral fashion, relate these parameters to a
region in the service’s logical data space. However, the
only requirement is for an intermediary to be able to look
at a message’s contents and ascribe a semantic structure to
them.

Our description of the architecture and algorithms inte-
grated two functions: locality detection embodied in shape
of the cell-tree, and service replication. These two can be
decoupled. For example, one might prefer using the local-
ity detection functionality alone to model service usage pat-
terns and then use this information to determine a static data
partitioning strategy. To support applications of this nature,
our architecture would need to be extended to detect local-
ity over several timescales, as opposed to the current imple-
mentation that focuses on short-term patterns.

Our assumption of a tree-based hierarchy for the SOAP
routers was motivated by the observation that wide area
networks lend themselves naturally to this structure. Our
service replication algorithm makes use of this property to
prove its optimality. In practice, the algorithm can be ex-
tended to work on a more general topology where the hier-
archy is made up out of clusters of network intermediaries:
routers within the same cluster share usage statistics with
each other and coordinate their decision making.

Exploiting additional service structure Our architecture
works with the notion of a logical “view” of a dataspace to
model service usage, assuming that the details of the back-
end database may either not exist or are unlikely to be ex-
posed. In cases where the service owner would like to ex-
pose such information, the service replication algorithm can
and perhaps should be extended to come up with a replica-
tion solution for regions of the backend database as opposed
to the materialized view [13] embodied in the responses.
The former is likely to result in a lower amount of redun-
dancy as compared to the latter.

End-to-end security We have assumed a trust relation-
ship between the service owner and the intermediary ar-
chitecture. This manifests itself, among other places, in
the fact that in permitting inspection of SOAP messages,
we have assumed that messages are either not end-to-end
encrypted, or when they are, the service permits their de-
cryption at the intermediate sites. When the router is only
partially trusted by the service, we can relax this assump-
tion by requiring that only a portion of the message body be
made public (similar to the notion of message properties in
BPEL4WS). As long as these properties suffice to associate
a request with the service’s data space, the benefits of the
infrastructure can be made available while still protecting
sensitive information. The trust assumptions for relaying of

requests and responses are no different from that made for
network-level routers in current Internet-scale networks.

Hosting multiple services Although we have demon-
strated how our architecture operate on a single Mappoint-
like web service, the intended use of our architecture is as a
service hosting platform. To accommodate competition for
computation and network bandwidth among multiple ser-
vices being hosted on a router, additional resource sharing
policies are needed. Notice that different services need not
share the same underlying hierarchical network topology:
for each service, an intermediary separately maintains the
information about its parent and the origin web server.

7 Summary

This paper has described a network intermediary archi-
tecture, which leverages in-network detection of locality
patterns of web service usage to improve service scalability
using replication, request redirection, or admission control.
The architecture was motivated by our analyses of request
logs from two production services, which showed that real
workloads exhibit substantial locality across several dimen-
sions. Our experience implementing this architecture and
evaluating its performance on an emulated WAN against
synthetic workloads shows that the approach has the poten-
tial of achieving significant performance improvements in
client-perceived response time.
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