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Abstract

Component-based approaches are becoming increas-
ingly popular in the areas of adaptive distributed systems,
web services, and grid computing. In each case, the under-
lying infrastructure needs to address a deployment prob-
lem involving the placement of application components
onto computational, data, and network resources across
a wide-area environment subject to a variety of qualita-
tive and quantitative constraints. In general, the deploy-
ment needs to also introduce auxiliary components (e.g.,
to compress/decompress data, or invoke GridFTP sessions
to make data available at a remote site), and reuse pre-
existing components and data. To provide the flexibility re-
quired in the latter case, recently proposed systems such as
Sekitei and Pegasus have proposed solutions that rely upon
AI planning-based techniques.

Although promising, the inherent complexity of AI plan-
ning and the fact that constraints governing component de-
ployment often involve non-linear and non-reversible func-
tions have prevented such solutions from generating deploy-
ments in resource-constrained situations and achieving op-
timality in terms of overall resource usage or other cost
metrics. This paper addresses both of these shortcomings
in the context of the Sekitei system. Our extension relies
upon information supplied by a domain expert, which clas-
sifies component behavior into a discrete set of levels. This
discretization, often justified in practice, permits the plan-
ner to identify cost-optimal plans (whose quality improves
with the level definitions) without restricting the form of the
constraint functions. We describe the modified Sekitei al-
gorithm, and characterize, using a media stream delivery
application, its scaling behavior when generating optimal
deployments for various network configurations.

1 Introduction

A growing number of distributed applications spanning
varied areas such as adaptive component frameworks, web

services, and grid computing, are being structured as aggre-
gations of multiple independent components. Components
cooperate to realize application functionality by invoking
each other’s services, processing data streams, or reading
and writing files. Given the modularity benefits of well-
defined component interfaces, the notion of a “distributed
application” is shifting from the traditional view of stati-
cally deployed entities into one defined by a high-level de-
scription of its components, their locations, and the linkages
between them. Different domains use different terminology
and representations for this high-level description. For in-
stance, current-day grid applications rely upon scripted in-
teractions between logical resources, which are executed by
tools such as Condor DAGman [16]. In the web services
area, an application is represented by a BPEL or OWL-
S composite service [1, 2]. Similarly, adaptation-capable
component frameworks such as Partitionable Services [8],
describe the application in terms of type-based linkages be-
tween component interfaces.

Despite different representations, the underlying infras-
tructure in each case needs to solve a common deployment
problem that we refer to as thecomponent placement prob-
lem(CPP). In general, CPP involves the placement of appli-
cation components onto computational, data, and network
resources across a wide-area environment subject to a vari-
ety of qualitative and quantitative constraints. For instance,
in a grid computing application described in terms of a task
graph exchanging information using logical files [3], a so-
lution to the CPP would result in a mapping of tasks to
concrete components on specific computational hosts, the
mapping of logical files to physical replicas, and orches-
tration of any required data transfers across the different
hosts. Thus, the solution needs to satisfy both logical (qual-
itative) constraints on the components (e.g., that a certain
kind of task operates on a certain logical file) as well as
resource-oriented (quantitative) constraints (e.g., that data
transfers would consume no more than a specified amount
of CPU or network resources). Ideally, the solution should
also achieve optimality with respect to one or more metrics,



e.g., consume the least amount of resources and/or involve
the fewest number of components.

The general nature of CPP requirements — (1) the need
to satisfy both qualitative and quantitative constraints, and
(2) the fact that application deployment may involve choos-
ing amongst compatible components as well as insertion
of auxiliary components — means that the CPP cannot be
solved by just optimizing the mapping of components onto
network resources. For this reason, recently proposed sys-
tems such as Pegasus [3] and Sekitei [11] have advocated
the use of general AI planning approaches.

Although promising, such approaches suffer from an in-
herent conflict between capturing general constraints and
achieving optimality. To clarify this using an example,
in our Sekitei system targeting the Partitionable Services
framework [11, 8], general constraints (both on interface
properties and component resource consumption) are repre-
sented using non-reversible functions involving real-valued
variables. The implication of non-reversibility is that the
planner needs to adopt a greedy “worst-case” approach
when allocating network resources. While sufficient for
several situations, the greedy approach suffers from two
shortcomings. First, it may, in resource-constrained situa-
tions, not produce a deployment plan when one does in fact
exist. Second, the approach is unable to achieve optimality
in terms of overall resource usage or other user-specified
cost metrics. Both shortcomings stem from the inability
of the approach to reason about minimal requirements on
resource consumption (more generally, constraint satisfac-
tion) in the presence of non-reversible functions.

This paper describes our extensions to the Sekitei model
and algorithm for addressing these shortcomings. Although
one could restrict the constraint functions so that they are
reversible, this restriction is incompatible with the behavior
of real components, typically captured as a table of profiled
values. We adopt a different approach that retains function
generality, but overcomes the reasoning obstacle by rely-
ing upon information supplied by a domain expert, which
classifies component behavior into a discrete set of levels.
This discretization, which is practically justified (we of-
ten think of components as behaving in different operation
regimes), permits the planner to identify cost-optimal plans
addressing both of the shortcomings above. The quality
of the generated plan depends on the level definitions, but
as our experimental results show, substantial benefits can
be obtained even with relatively imprecise definitions. In
terms of practical impact, the planner is better able to gener-
ate plans in resource-constrained environments and achieve
user-specified notions of optimality. For example, the mod-
ified Sekitei planner is capable of deploying the task graph
scenario described earlier in a way that minimizes resource
consumption while meeting specified deadline goals.

We start, in Section 2, by presenting the compo-

nent placement problem encountered in Partitionable Ser-
vices [8], and review the basic Sekitei algorithm [11]. Sec-
tion 3 presents the main ideas of the paper, describing lev-
els and a modified Sekitei algorithm that takes advantage of
them. For clarity reasons, we restrict our attention to con-
straints governing resource consumption (e.g., of node CPU
and link bandwidth), but note that our ideas are easily ex-
tendible to general constraints and other CPP formulations.
Section 4 evaluates the scaling behavior and solution qual-
ity of the modified algorithm using a media stream delivery
application. Section 5 discusses related work, and we con-
clude in Section 6.

2 The Component Placement Problem in
Partitionable Services

Partitionable Services [8] is an example of dynamic
component-based frameworks [6, 7], which permit dis-
tributed applications to adapt to their execution environ-
ments by dynamically selecting, composing, and mapping
their constituent components. Applications in the frame-
work are described at a high-level as type-compatible ag-
gregations of components, whose functionality is expressed
in terms of well-defined interfaces. We restrict our attention
in this paper to a special case of such applications, where
components consume and produce data streams that are sent
across links between nodes in a wide-area network.

Figure 1 illustrates one such application. TheServer
component, running on node 7, provides a combined media
(M) stream consisting of images and text, which must be
received with a certain minimum bandwidth by theClient
component on node 0. If there is a network path of suffi-
cient bandwidth between the two nodes, a direct connection
can be established. Otherwise, the data stream needs to be
transformed.Splitter andMerger components can be used
to divide the M stream into its text (T) and image (I) com-
ponents to enable their transmission along different paths,
with compression components (Zip and Unzip) providing
additional bandwidth reduction for the T stream.

The CPP for this application would, given as input a
model of network resources and the application structure,
determine which of the above components are required,
where they are placed, and how they are linked together so
as to satisfy client bandwidth requirements.

2.1 The basic model

The CPP is specified by a network topology and re-
sources, specifications of components, and a characteriza-
tion of the interactions between components and the net-
work environment [11].

The network is assumed built up out of nodes and links,
each characterized in terms of a number of resources. Our
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Figure 1. The example application. To deliver
the M stream from the server node to the client
node, additional components are injected into
the data path to transform the data stream in
order to cope with low bandwidth of the path
between nodes 1 and 4.

<componentname=Merger>
<linkages>

<requires>
<interface name=T>
<interface name=I>

<implements>
<interface name=M>

<conditions>
Node.cpu>= ( T.ibw+I.ibw )/5
T.ibw*3 == I.ibw*7

<effects>
M.ibw := T.ibw + I.ibw
Node.cpu -= ( T.ibw+I.ibw )/5

Figure 2. Component specification.

resources of interest include node CPU and link bandwidth.
In general, additional resources such as node memory and
disk bandwidth may be relevant, as well as other properties
such as link security, the available software on a node, etc.

A component is defined as consuming and producing
zero or more interfaces (data streams), each of which is as-
sociated with a number of application-specific properties.
The interfaces in our example have anibw property, which
corresponds to the stream bandwidth. The component spec-
ification additionally contains formulae describing resource
requirements and effects of component deployment. For ex-
ample, the merger component described in Figure 2 requires
text (T) and image (I) streams and produces a combined me-
dia (M) stream. This component can be deployed on a node
if there are sufficient CPU resources, and can process the in-
coming streams when their bandwidths (rates) are in a par-
ticular relation to each other. As a result of a deployment,
node CPU resources are consumed, and a new M stream is
generated with bandwidth defined as a function of the in-
coming streams.

Similar to the effect formulae, specification of each inter-
face contains formulae describing the interactions of that in-
terface with network links. This might include consumption
of link bandwidth, accumulation of latency on the stream,
or a change in application-specific properties such as the
delivered stream bandwidth.

Note that in general, the formulae referred to above are
non-reversiblefunctions of real-valued resource and prop-
erty variables. Non-reversibility refers to the fact that for
the specification above, it isnotpossible to compute the re-
quired resources and properties on all input streams given
properties of any of the output streams. For example, in
Figure 2, given a value for theibw property of the output
M stream, in general, there is no way of computing the re-
quired node CPU resources and values of theibw property
of the input T and I streams.

2.2 The Sekitei planner

In [11, 12] we described an algorithm, called Sekitei,
which solves the CPP by viewing it as an AI-style planning
problem. The latter has two types of actions: (1) placement
of a component on a node (placeX(?node) , whereX is
the name of the component, and?node is a variable de-
scribing the node); and (2) the crossing of a network link
with an interface (cross(?interface ?fromNode
?toNode) ). Sekitei determines the sequence of actions
that produce the desired goal (availability of certain inter-
faces on certain nodes). Since the scale considerations of
the CPP are very different from classical AI planning do-
mains, Sekitei incorporates a number of domain-specific
optimizations [12].

Sekitei deals with the non-reversible nature of functions
in the CPP specification by assuming that the functions
are monotonic (e.g., that if the bandwidth of the I input
stream in Figure 2 increases, that the bandwidth of the out-
put M stream would not decrease), and adopting a greedy
approach while planning by considering the maximum pos-
sible utilization of a resource. The rationale for the latter
is that if a plan is feasible assuming maximum amount of
data being pushed through the deployed components and
network resources, it continues to be feasible even when
lower amounts of data are transfered.

2.3 Shortcomings of the basic algorithm

A consequence of the greedy approach described above
is that Sekitei-like planning approaches can guarantee fea-
sibility, but cannot minimize resource consumption. In our
original version, a post-processing step attempted to achieve
this latter goal, but this is not enough as the following ex-
amples demonstrate:

Scenario 1. Consider the example in Figure 3, where we
want to deliver at least 90 units of bandwidth of the M



lbw(n0, n1) = 70
n0n1

Goal:
ibw(M, n1)>=90

ibw(M, n0) = 200
cpu(n0) = 30

Figure 3. Resource optimization is required to
find a plan.

place Splitter on node n0,
place Zip on node n0,
cross with Z stream from n0 to n1,
cross with I stream from n0 to n1,
place Unzip on node n1,
place Merger on node n1.

Figure 4. Plan for the problem presented in
Figure 3.
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Figure 5. Effect of cost functions on the
choice of plan.

stream (the requirement of the client component) over the
link with bandwidth 70. The source node has 200 units of
M available, but only 30 units of CPU. Suppose, transfor-
mation of 200 units of M by the splitter requires 40 units of
CPU. Sending the M stream directly to the client does not
satisfy client’s bandwidth requirements, and the amount of
CPU available on noden0 is less than that required for pro-
cessing all available bandwidth of the M stream, as would
be required by the greedy approach. Consequently, the lat-
ter will not find a solution to the CPP even though one ex-
ists. If we allow the splitter to transform only 90 units of
bandwidth of the available M stream (the amount required
by the client), then the total CPU requirements of the Split-
ter and Zip components may be less than 30 units, and the
solution shown on Figure 4 can be found, which involves
splitting the M stream and compressing its text component
on noden0 and performing the reverse transformations on
noden1 .1

1We assume that the target node has sufficient CPU resources for the
Unzip and Merger components.

Scenario 2. Another desirable feature not provided by the
basic model is the ability to specify preferences over the
space of generated plans. For example, in the scenario in
Figure 5, there are two possible ways to deliver sufficient
bandwidth of the T stream from the server node to the client:
one involving a crossing of three links, and another that
would require two link crossings and the use of Zip and
Unzip components. Which plan would perform better in a
given situation depends on the relative cost of link band-
width and node resources. Such tradeoffs can be performed
by introducing a cost function that depends on resource con-
sumption, which an ideal planner can then optimize. Note
that, in general, the cheapest plan is not necessarily the one
with the smallest number of steps.

3 Resource-Optimal Solutions for the CPP

The scenarios described in the previous section repre-
sent two general shortcomings of the greedy planning ap-
proach adopted in Sekitei-like planners: inability to find
plans in resource-constrained environments, and inability to
optimize resource consumption or other user-supplied cost
and performance metrics. The fundamental reason under-
lying these shortcomings is the non-reversible nature of the
resource functions, which prevent the planner from reason-
ing about resource availability and consumption.

Thus, to address these issues, one needs a way of permit-
ting the planner to understand what effect its actions have
upon network resources. The simplest way of doing this is
to assume reversibility of functions; however, this is at odds
with what one finds in practice. Functions describing com-
ponent behavior are often represented by tables obtained by
application profiling. It is not always possible to derive an
analytical representation of such functions, and even less
reasonable to assume reversibility of such functions. Conse-
quently, we adopt a different approach, which approximates
optimality while still being practically usable. We start by
providing the intuition behind our approach, and then de-
scribe a modified algorithm to solve the CPP.

3.1 Intuition: Resource Levels, Leveled Actions

The key insight underlying our approach is that more
than an exact understanding of the resource consumption
effects of a planning action, what we care about is the abil-
ity to identify actions that come close to the right (optimal)
decision. The latter is somewhat easier and more reasonable
for a domain expert to provide information on. In particular,
we leverage the observation that experts are already used to
thinking of different operational regimes for components as
also qualitatively different regions of values for network re-
sources, to augment the basic planning problem defined in
Section 2 with the notion ofresource levels.



<interface name=M>
<cross_effects>

M.ibw’ := min( M.ibw, Link.lbw )
Link.lbw’ -= min( M.ibw, Link.lbw )

<levels>
<cutpoint value=30>
<cutpoint value=70>
<cutpoint value=90>
<cutpoint value=100>

Figure 6. Specification of an interface with re-
source levels. The tick mark in the specifi-
cations serves to distinguish the value of a
resource after the link crossing operation.

Resource levels Every interface property or network re-
source, which appears as a real-valued variable in a specifi-
cation formula, is assumed to have one or morelevelsasso-
ciated with it. The levels specify disjoint intervals of values
of the resource and are defined by the interval bounds. Re-
sources for which no intervals are specified are assumed to
have one interval[0,∞). For example, the specification of
the M stream shown in Figure 6 defines five intervals for the
bandwidth property:[0, 30), [30, 70), [70, 90), [90, 100),
and[100,∞).

Additionally, a property or a resource can be marked as
beingdegradable, upgradable, or neither. A degradable re-
source tag indicates that the availability of a resource at a
higher value indicates its availability at a lower value as
well. For example, link bandwidth is a degradable resource.
Similarly, an upgradable resource is assumed available at
a higher value when a lower value is present. Information
about degradability (upgradability), which can be obtained
automatically by syntactic analysis of the problem specifi-
cation or provided manually, helps the planner to find plans
in resource-constrained situations as described below.

Leveled actions The main benefit from identifying re-
source levels is that we can incorporate that information
when defining actions for the AI-style planning problem
compiled from the CPP specification. Specifically, we in-
troduce two extensions to the basic model described earlier.
First, levels for all resources mentioned in the action spec-
ification are added as parameters to the action. Whenever
possible, additional (in)equalities can also be added to ac-
tion preconditions to limit possible combinations of level
values. Second, an action is extended with a user-specified
cost formula dependent on the values of its resource vari-
ables. For example, the cost of placing a Merger compo-
nent on a network node might be defined as a function of
the total processed bandwidth:1+(I.ibw+T.ibw)/10 .

Since the planning algorithm can be thought of as per-
forming directed search through the space of possible ac-

tion sequences, the implication of the above two extensions
is that this search process can be guided by a more detailed
knowledge of resource utilization and plan cost metrics than
possible in the original model. Specifically, the level infor-
mation helps prune out certain actions during the planning
process by dictating the resource assumptions that must be
satisfied for an action to be selected. Formally, the intervals
corresponding to the resource levels form an action’sopti-
mistic resource map. The fact that the optimistic map of
an actionac contains an interval[m, M) for a resource
variableX implies thatac has a resource preconditionm ≤
X < M, and this information can be used for pruning. Op-
timistic maps also provide benefits for estimating the cost
of performing an action sequence, which enables the use of
A*-like search strategies to optimize the plan cost.

The level information is used along with the notions of
degradability and upgradability defined earlier to guide the
search procedure to explore other alternatives when the cur-
rent path does not yield a solution. This feature is what
allows the planning algorithm we describe below to come
up with a plan for Scenario 1 that transmits a lower amount
of M stream bandwidth upon finding that network resources
are inadequate for the maximum amount.

3.2 Algorithm

After compilation and leveling, the CPP is described by a
set of AI-style planning actions, each specified using propo-
sitional as well as non-reversible real-valued preconditions
and effects. The planning algorithm is guided primarily by
the propositional part, and uses the real-valued functions for
pruning and ensuring soundness of the solution.

The algorithm proceeds in phases, using solutions to re-
laxed problems to estimate the cost of achieving goals. The
first phase of the algorithm estimates the minimum cost of
achieving a proposition from the initial state. Both resource
restrictions and interactions between actions are ignored in
this case.2 Given the minimum proposition cost, the second
phase computes the minimum logical cost of achieving aset
of propositions. This phase takes into account logical inter-
actions between actions, but ignores resource restrictions.
Finally, during the last phase, the search for a plan is per-
formed that uses all types of restrictions and estimates the
remaining cost using the logical cost of achieving a set of
propositions.

3.2.1 Cost of propositions

The algorithm first constructs a per-proposition logical re-
gression graph (PLRG), which estimates the minimum log-
ical cost of achieving a proposition from the initial state and
identifies the set of relevant actions [11]. Since the PLRG

2Except for the resource restrictions reflected by the leveling of actions.



placed(Cl,n1) INIT

L(ibw(M,n0))=2

L(cpu(n0))=0

L(lbw(n0,n1))=0

L(cpu(n1))=0

0
placeSp(n0)

L(ibw(T,n0))=2

L(ibw(I,n0))=2

8cross(T,n0,n1)
1

1
cross(I,n0,n1)

L(ibw(T,n1))=2

L(ibw(I,n1))=2

placeMr(n1)
8

L(ibw(M,n1))=2placeCl(n1)
1

Figure 7. A part of the PLRG for the problem shown on Figure 3. The notation L(v)=n means that the
resource variable v has level n. Numbers above action nodes show costs of those actions given the
resource levels. Cl stands for Client, Sp for Splitter, and Mr for Merger.

only considers logical preconditions and effects, its cost es-
timates are a lower bound on the actual cost of achieving
a proposition, and therefore can be used as an admissible
heuristic in the later stages of the algorithm.

The PLRG is expanded from the goal state until a solu-
tion is obtained, a bound is reached, or no further expansion
is possible. The latter implies that the goal is logically un-
reachable from the initial state, and that the problem has no
solution.

Figure 7 shows a portion of the PLRG for the problem in
Figure 3. Actions for crossing the link with the M stream
with levels above 1 are pruned during the leveling because
of limited link bandwidth. Therefore, the cheapest way to
achieve the propositionL(ibw(M,n1))=2 , which states
that the M stream bandwidth on noden1 is in the second
level interval, is to use Splitter and Merger components.

The PLRG consists of action and proposition nodes, and
thus contains information about logical support. When es-
timating the cost of a proposition, the cost of a proposition
node is taken as the minimum of the costs of supporting
actions, and the cost of an action node as the maximum
cost of its preconditions. For example, the logical cost of
achieving the propositionplaced(Cl,n1) in Figure 7 is
18. Obtaining this cost requires sending both image and un-
compressed text streams over the link. This would lead to
violation of client’s bandwidth requirements, but this fact
cannot be detected in the PLRG.

3.2.2 Cost of sets of propositions

The second phase of the algorithm estimates the minimum
logical cost of a set of propositions using the Set LRG
(SLRG). The nodes of the SLRG correspond to sets of
propositions. New nodes are generated by regressing over
actions. The construction of the SLRG employs A* search
and uses the logical cost of achieving propositions obtained
from the PLRG as an estimate of the remaining cost.

The estimate of the cost of a set of propositions by the
SLRG is more accurate than that obtained directly from the
PLRG. For example, the cost of achieving a singleton set
{placed(Cl,n1) } is 19, because the two link crossing
actionscross(T,n0,n1) andcross(I,n0,n1) are

now considered in sequence rather than in parallel.
During the leveling of actions, the level propositions

are created for all resource variables mentioned in actions.
However, only levels of interfaces need to beachieved, and
the rest are only checked. Only actions that achieve such
important propositions are used for branching.

The SLRG computes set costs for important proposi-
tions only. For each important proposition, the best achiev-
able levels of unimportant resources are computed in the
PLRG. This information is then used to improve esti-
mates of the cost of achieving sets of important proposi-
tions. For example, if both interface bandwidth and link
bandwidth are leveled, it may be possible to detect in
the SLRG the fact that sufficient levels of text and image
streams cannot be delivered by usingcross(T,n0,n1)
andcross(I,n0,n1) actions, because both of them also
decrease the level of available link bandwidth.

3.2.3 The main regression graph

The final phase of the algorithm is construction of the main
regression graph (RG). The RG contains totally ordered
plan tails and is expanded using A* search. The logical cost
of achieving a set of propositions is used as an estimate of
the remaining cost.

Whenever a new node is created by regressing the cur-
rent cheapest node over an action, the plan tail including
this action is replayed in the optimistic map of this action
(see Figure 8). If the execution fails, the new node is pruned
from the search. Such partial execution allows early detec-
tion of violations of quality-of-service requirements, and,
for example, discarding of partial plans whose total latency
exceeds a given limit.

The optimistic map contains intervals for all resource
variables required by the action as specified by its leveled
resource preconditions. Before execution of each subse-
quent action in the plan tail, the interval produced by execu-
tion of the previous action is intersected with the optimistic
interval of the current action, and new optimistic intervals
are added if necessary (Figure 8).

The main difference between SLRG and RG is propa-
gation of resource maps in the RG. Since resource failures
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Figure 8. Propagation of resource maps in the RG. Each RG node has an action and a set of propo-
sitions describing the state in which the action is to be executed (only important propositions are
shown). The action of a node needs to achieve at least one proposition of the parent node. Arrows
connect actions to propositions they achieve. Logical preconditions of actions are underlined. In
the resource maps, dashed lines mark newly added optimistic intervals, and solid lines show values
added as a result of action execution. Intervals resulting from action execution are merged with the
previous values for the same resource.

depend on the plan tail, it is not possible to reuse nodes in
the RG. The RG is a tree, while the PLRG and SLRG are
general graphs.

The search in the RG ends when all propositions, both
important and unimportant, are present in the initial state,
and the plan tail successfully executes in the resource map
of the initial state.

4 Evaluation and Discussion

Extending the basic model of the CPP with cost func-
tions and resource levels pursues two goals: allowing the
planner to find solutions in resource constrained situations
(Scenario 1) and specifying preferences over plans (Sce-
nario 2). We decided to achieve this functionality by op-
timizing a cost function depending on resource consump-
tion. Given approximation of actual resource values by dis-
crete levels, our algorithm optimizes the minimum cost of
the plan instead of the exact cost. However, in our examples
this approximation was sufficient.3

The ability of our planner to achieve the desired func-
tionality depends greatly on the actual specification of lev-
els. Without levels, or with a poor choice of values for lev-
els, the benefits from additional functionality are lost (how-
ever, solutions found by the planner are still correct). On the
other hand, using multiple levels for each resource increases

3With some extra effort it is possible to ensure that the real cost of
the plan, rather than the lower bound, is optimal. However, as we discuss
below, this is usually unnecessary.

the size of the problem and negatively affects performance
of the planner.

The following experiment shows how the choice of lev-
els affects scalability of the planner and quality of solutions.
Since the focus of this paper is on the ability of AI planning
approaches to generate resource-aware plans (assuming that
the specifications provided to it are correct), we evaluate the
algorithm using simulated network configurations.

4.1 The experiment

We tested the planner on the CPP described in Figure 1
with three different sizes of the network and five different
level specifications.

The CPP involves delivering a media stream from the
server to the client. Locations of both the server and the
clients are given. The client requires at least 90 units of
bandwidth of the media stream, and the server is capable
of producing up to 200 units. The costs of component
placement and link crossing are proportional to the pro-
cessed/transfered bandwidth. Such definition of the cost
favors application configurations with the minimum num-
ber of additional components and the minimum bandwidth
consumption along the data path.

The three networks used in our experiments have the
same distribution of resources. LAN links of the networks
have bandwidth 150 units, WAN links 70 units. The CPU
resources on all nodes are sufficient for placing Splitter and
Zip (or Unzip and Merger) components to process up to
111 units of the media stream. TheTiny scenario corre-



Scenario Levels of bandwidth of M Levels of link bandwidth
A [0,∞) [0,∞)
B [0, 100), [100,∞) [0,∞)
C [0, 90), [90, 100), [100,∞) [0,∞)
D [0, 30), [30, 70), [70, 90), [90, 100), [100,∞) [0,∞)
E [0, 30), [30, 70), [70, 90), [90, 100), [100,∞) [0, 31), [31, 62), [62,∞)

Table 1. Resource level scenarios. Bandwidth levels of interfaces T, I, and Z are proportional to those
of the M stream.
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Figure 10. The 93-node network for the Large
scenario.

sponds to the two-node network shown in Figure 3. Given
any reasonable cost function, the plan in this case contains
7 actions (the six actions shown on Figure 4 plus the client
placement). TheSmallscenario involves a 6-node network.
The shortest plan has 10 actions and cost of 72 (Figure 9
top). Since the media stream is sent over the LAN links, the
bandwidth required there is 90 units. The optimal plan has
13 actions and a cost of 63 (Figure 9 bottom). This plan re-
quires only 27+31.5=58.5 units of bandwidth of LAN links.
Finally, theLargescenario corresponds to the similar prob-
lem in a 93-node network (Figure 10) generated using the
GeorgiaTech ITM tool [18]. Most of the nodes of this net-
work do not participate in the plan, but cannot be statically
pruned.

Table 1 shows the five resource scenarios. Scenario A
corresponds to the original version of Sekitei (without re-
source levels). In this scenario, the limited network re-
sources prevent the planner from finding any plan. Table 2
shows experimental results for the other 4 scenarios on each
of the three network configurations.

4.2 Quality of solution

Even a single cut point 100 introduced in scenario B,
which puts an upper bound on resource consumption, al-
lows the planner to find a solution whiere only 100 units of
the available stream are processed. However, in theSmall
andLarge networks the found application configuration is
suboptimal with respect to the reserved LAN link band-
width (Column 4).

To ensure that the found plan is optimal with respect to
the user-specified cost function, the lower bound on the cost
function (Column 2 in the table) obtained by the planner
needs to approximate the real cost of the plan as close as
possible. The level specifications of scenarios C, D, and E
allow the planner to select the best configuration.

The plans selected in scenarios C, D, and E involve pro-
cessing 100 units of bandwidth of the M stream, which is
more than strictly required to satisfy the client’s require-
ments. The best quality of a solution would be achieved
if the bandwidth of the media stream is cut at two points
exactly around 90. Obtaining such values automatically re-
quires reversibility of resource functions. Scenario C ap-
proximates the ideal values: It selects the optimal configu-
ration, but requires slightly more resources than absolutely
necessary (the bandwidth required on LAN links is 65 in-
stead of the optimal 58.5).

4.3 Scalability

Table 2 also provides information on scalability of our
algorithm. The first number in Column 9 is the total time
including reading problem files and construction of actions.
The second number is the time spent in search and con-
struction of the graphs. Column 5 gives the total number of
actions evaluated after leveling and using the pruning pro-
cedure. Sizes of the three graphs characterize memory re-



Quality of the solution Work done by the planner
Scenario lower bound actions reserved total # of graph sizes planning

on cost in plan LAN bw actions PLRG SLRG RG time (ms)
1 2 3 4 5 6 7 8 9

Tiny B 7 7 N/A 32 27 / 19 24 25 / 7 260 / 90
C 42 7 N/A 46 26 / 20 24 16 / 5 271 / 70
D 42 7 N/A 76 26 / 22 24 16 / 5 310 / 60
E 42 7 N/A 174 48 / 25 51 28 / 16 331 / 70

Small B 10 10 100 152 138 / 49 139 246 / 159 721 / 420
C 63 13 65 222 136 / 50 188 98 / 64 611 / 291
D 63 13 65 364 136 / 52 188 98 / 64 731 / 330
E 63 13 65 1152 366 / 70 2888 3198 / 2558 5128 / 4366

Large B 11 11 100 2582 2286 / 742 3278 2348 / 1949 12418 / 3205
C 63 13 65 3780 2368 / 746 1062 254 / 203 10405 / 1041
D 63 13 65 6198 2368 / 748 1062 216 / 176 12138 / 671
E 63 13 65 20386 6594 / 1066 76179 4557 / 4243 40077 / 25426

Table 2. Scalability evaluation.

quirements of the planner. The table gives the number of
proposition and action nodes for the PLRG, the total num-
ber of set nodes for the SLRG, the total number of RG
nodes, and the number of RG nodes left in the A* queue
at the moment when a solution is found.

As the results show, introduction of resource levels sig-
nificantly increases the number of generated actions. How-
ever, it also permits identification of some resource conflicts
at earlier (and cheaper) phases of the search, which explains
the improved performance of Scenario C compared to Sce-
nario B and in several cases that of scenario D over C.

Adding more levels of interface bandwidth (scenario D)
and leveling link bandwidth (scenario E) does not always
improve the quality of solution, but negatively affects per-
formance of the planner. The good choice of levels de-
pends on requirements of application components and on
the definition of the cost function. Although it is not the
case in the presented experiment, we expect that for some
problems it might be beneficial to discretize such resources
as link bandwidth and node CPU. In the presence of non-
reversible resource functions the choice of levels needs to
be performed by a domain expert, possibly, based on profil-
ing results.

5 Related Work

The general CPP is at least PSPACE-hard [10], and ex-
isting planners usually restrict themselves to special cases
of the general problem. The CANS planner [5] can find op-
timal deployments of chains of components along network
paths. The Ninja planner [7] constructs DAG-structured ap-
plications out of components already available in the net-
work. Pegasus [3] is a planning architecture for construc-

tion of grid applications. Pegasus heavily relies on exter-
nal services for choosing components and nodes and does
not explicitly reason about resources. Sekitei can employ
external services, e.g., for enforcing matchmaking policies
[14], by incorporating calls to such services into the re-
source functions. Recall that the only restriction on such
functions is monotonicity.

Planning with real-valued resources has also been in-
vestigated by the AI community. SAPA [4] performs for-
ward search, and therefore suffers from the same problems
as the greedy version of Sekitei. Compilation-based plan-
ners achieve good performance by using fast algorithms for
solving a satisfiability or optimization problem constructed
from the original planning problem. Such planners also
provide additional functionality by supporting explicit op-
timization [9], and can, in principle, be used to optimize
resource consumption. However, such planners are limited
to linear functions and do not scale well with the size of
a problem specification. [17] and [15] propose to perform
resource selection (scheduling) separately from action se-
lection (planning). Such an approach works well when the
two problems are loosely coupled. In the CPP, action selec-
tion is driven by the resource restrictions. Without the latter,
there is usually a trivial solution to the problem (e.g. to con-
nect the client and the server directly in our example).

6 Summary

In this paper, we have presented an extended model of
the component placement problem that allows for explicit
optimization of resource consumption of generated deploy-
ment plans and reasoning about plan costs. This extensions
allows the planner to find a solution in some resource con-



strained situations where the traditional approach fails. Op-
timizing the cost function also allows tradeoffs between dif-
ferent resources depending on their costs. For example, one
can choose between longer network paths and additional
computation.

To construct an efficient planner, we chose to use discrete
resource levels instead of continuous resource variables in
action parameters. Such an approximation is sufficient to
achieve the desired functionality given a good choice of
level boundaries. We presented a planning algorithm that
works with this model. Our preliminary experiments with
the component placement problem show that the algorithm
achieves good performance despite the increase in the num-
ber of actions. An alternative approach might be to use op-
timization techniques to solve the problem with continuous
variables. We expect such approaches to have significantly
worse performance compared to our algorithm without pro-
viding sufficient improvement in the quality of solutions.

In the future, we plan to analyze the dependency between
the number and quality of resource levels and performance
of the algorithm in hopes of improving the algorithm’s per-
formance and scalability. We also intend to use our plan-
ner for repairing and adapting existing deployments by in-
troducing operators for migrating and reconnecting compo-
nents. Separate operators are necessary, because the cost of
migration differs from that of the initial deployment.
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