
Using Views for Customizing Reusable Components
in Component-Based Frameworks

Anca-Andreea Ivan Vijay Karamcheti
Department of Computer Science Department of Computer Science

Courant Institute of Mathematical Sciences Courant Institute of Mathematical Sciences
New York University, New York, NY 10012 New York University, New York, NY 10012

ivan@cs.nyu.edu vijayk@cs.nyu.edu

Abstract
Increasingly, scalable distributed applications are being

constructed by integrating reusable components spanning
multiple administrative domains. Dynamic composition
and deployment of such applications enables flexible QoS-
aware adaptation to changing client and network char-
acteristics. However, dynamic deployment across multi-
ple administrative domains needs to perform cross-domain
authentication and authorization, and satisfy various net-
work and application-level constraints that may only be ex-
pressed in terms meaningful within a particular domain.

Our solution to these problems, developed as part of
the Partitionable Services Framework, integrates a decen-
tralized trust management and access control system (dR-
BAC) with a programming and run-time abstraction (object
views). dRBAC encodes statements within and across do-
mains using cryptographically signed credentials, provid-
ing a unifying and powerful mechanism for cross-domain
authorization and expression of network and application
constraints. Views define multiple implementations of a
reusable component, thus enriching the set of compo-
nents available for dynamic deployment and enabling fine-
grained, customizable access control. We describe the run-
time support for views, which consists of a view genera-
tor (VIG) and a host-level communication resource (Switch-
board) for creating secure channels between pairs of com-
ponents. We present a simple mail application to illustrate
how dRBAC, views, and Switchboard can be used to cus-
tomize reusable components and securely deploy them in
heterogeneous environments.

1. Introduction

Increasingly, scalable distributed applications are be-
ing constructed by integrating reusable component services

spanning multiple administrative domains. Grid frame-
works like Globus [9], or component frameworks like
DCE [27], DCOM [30], and CORBA [24] provide infras-
tructural support to ease construction of such component-
based applications, allowing services to register with a com-
mon substrate that provides basic services — discovery, re-
source management, security.

Although most such frameworks rely on static com-
ponent linkages, a growing number of systems (Active
Frames [23], Eager Handlers [33], Ninja [28], Active
Streams [4], CANS [12], Partitionable Services [16], Con-
ductor [21] and a recent version of Globus [9]) advocate
a more dynamic model, where components are combined
at run-time, based on the current state of the environment
and QoS requirements of the clients. This dynamic model
enables applications to flexibly and dynamically adapt to
changes in resource availability and client requests. For ex-
ample, low bandwidth can be masked by deploying a cache
component close to the client. Similarly, security-aware ap-
plications can deploy an encryptor/decryptor pair to protect
sensitive data crossing insecure links.

However, dynamic component-based frameworks must
overcome several challenges before these benefits become
possible. On top of the fact that component deployments
need to span multiple administrative domains, necessitat-
ing cross-domain authentication and authorization among
dynamically created principals (a problem that grid appli-
cations also encounter and address), dynamic frameworks
must address two additional issues. First, they need to work
with a set ofreusable components, selecting among and
specializing these components as appropriate for the envi-
ronment and client QoS requirements. Second, the compo-
nent selection and specialization process must be cognizant
of various application and environment constraintswhich
may only be expressed in terms meaningful within a partic-
ular domain. For example, nodes in the network may be
required to have certain software packages, or component

code may need to be signed by somebody the node owner
trusts. We believe that frameworks that provide flexibility in
component selection and expressiveness for cross-domain
constraints are likely to see wider usage than others.

This paper describes our solutions to these issues, devel-
oped in the context of the Partitionable Services Framework
(PSF) [16]. PSF is a dynamic component-based frame-
work which allows applications to flexibly adapt to hetero-
geneous environments by assembling and deploying their
constituent components as required by the network charac-
teristics and the client’s QoS requirements.

In this paper, we integrate a decentralized trust man-
agement and access control system calleddRBAC with a
programming and run-time abstraction calledobject views
to refine assumptions of PSF-like component-based frame-
work: (1) the availability of a reusable set of customizable
components, without detailing how these arise; (2) appli-
cation and network-level constraints expressed using the
same terms; and (3) a relatively simple authentication and
access control model for applications based on client and
node credentials. dRBAC encodes statements within and
across domains using cryptographically signed credentials,
enabling expression and resolution of diverse application
and environment constraints. Views define multiple imple-
mentations of a reusable component, enriching the set of
components available for dynamic deployment and thereby
increasing the likelihood of a successful deployment satis-
fying constraints. In addition, dRBAC and views together
provide a unifying mechanism for cross-domain authentica-
tion and authorization, supporting single sign-on and fine-
grained access control. We also describe the run-time sup-
port required for deploying component views, which con-
sists of a view generator called VIG and a host-level com-
munication resource called Switchboard for creating secure
channels between pairs of components. To illustrate how
dRBAC, views, and Switchboard work together to facilitate
customization and secure deployment of reusable compo-
nents in a heterogeneous environment, the paper presents a
case study of a simple component-based mail service.

The rest of the paper is structured as follows. In Sec-
tion 2., we review PSF, the context for this work, and
a security-aware component-based mail application, orig-
inally introduced in [16]. Sections 3. and 4. describe the
dRBAC trust management system and the object views ab-
straction, and their use in PSF. We discuss related work in
Section 5. and conclude in Section 6..

2. Background

2.1. PSF - Partitionable Services Framework
In order to allow applications to flexibly adapt to het-

erogeneous environments, PSF relies on four elements: (1)
a declarative specification of application and environment

characteristics, (2) amonitoring module, (3) aplanning
module, and (4) adeployment infrastructure.

Similar to the Corba Component Model [25], compo-
nents are modeled as entities thatimplement and require
typed interfaces, each of which is associated with a set of
properties. The environment itself is modeled in terms of
nodes and links that possess their own set of properties, and
are additionally capable of influencing the implemented in-
terface properties of deployed components. Such model-
ing of application and network behaviors permits the use of
type compatibility to define what constitutes a valid appli-
cation configuration: two components can be linked to each
other if one implements interfaces the other requires. The
current PSF implementaion works with Java-based compo-
nents. However, PSF can be easily extended to other models
for expressing component functionality (e.g. WSDL [31] in
web services) and connectivity (e.g. matching web services
at the method level).

The planning module is responsible for selecting
amongst valid application configurations the satisfy the
level of service requested for the deployment while factor-
ing in application and network-level constraints, updates to
which are tracked by themonitoring module. Our current
planner, Sekitei [18], combines regression and progression
techniques from classical AI planning to cope with general
constraints and network scale concerns. The output of the
planner is a sequence of component deployments, realized
using thedeployment infrastructure which securely instanti-
ates, links, and executes the components on the given nodes.

2.2. Component-based mail application

We will use a security-aware mail application throughout
the paper to illustrate how dRBAC and views work in PSF.
The main components of this application are:mail clients
with different capabilities, amail server that manages the
mail accounts for all users,view mail server components
that can be replicated as a cache close to the client, and
encryption/decryption components that ensure the privacy
of all messages sent over insecure links.

The mail application offers different levels of QoS,
where each level is defined by the number of processed re-
quests and the message privacy. PSF ensures that clients
receive the required level of service by assembling and de-
ploying components, as described in Section 2.1.. For ex-
ample, PSF adapts to low available bandwidth by placing a
view mail server close to the client and to insecure links by
placing<encryptor/decryptor> pairs.

Based on the mail application, we build the following
scenario: the mail service is used by a company (Comp) to
provide e-mail facilities to its members, across three sites:
the main office in New York, a branch office in San Diego,
and a partner organization (Inc) in Seattle. The three sites
compare to LANs, with fast and reliable links, connected

to each other by high latency and insecure WAN links. Sec-
tions 3. and 4. use this scenario to describe how dRBAC and
views work in PSF.

3. dRBAC: Decentralized Role-Based Access
Control

3.1. dRBAC features and implementation

dRBAC [5] is a PKI-based trust management and role-
based access control system originally developed for ex-
pressing and enforcing security policies in coalition envi-
ronments spanning multiple administrative domains. Such
environments are characterized by partial trust and the ab-
sence of central policy roots. dRBAC credentials, called
delegations, express the mapping of an equivalence class
of access rights in one trust domain to members of another
equivalence class, possibly in another trust domain. Each of
these equivalence classes is represented by a dRBACrole.
These delegations potentially include attenuation of valued
attributes. A summary of relevant features of dRBAC fol-
lows; a more complete description appears in [5].

Each dRBAC delegation is cryptographically signed by
its issuer. Additional credentials may be required as evi-
dence of the issuer’s authorization to administer the rights
proved by the delegation. As with other role-based ac-
cess control systems, dRBAC delegations may be transi-
tively chained to form proof graphs indirectly authorizing
a required class of access rights. A dRBAC credential can
be tagged with expiration dates and also may additionally
require online validation monitoring from an authorized
“home” which is aware of any revocation of the delega-
tion. Similar to other distributed trust management engines
(SPKI [7], KeyNote [2], PolicyMaker [3]), dRBAC supports
third party delegations and linked namespaces.

Table 1 presents the three types of dRBAC creden-
tials: self-certifying, third-party, and assignment delega-
tions. The self-certifying and third-party delegations allow
an Issuer entity to give the permissions associated with an
Entity.Role role to a different entity or role (Subject). The
difference between them is based on whether the owner of
that role is also the Issuer. An Issuer entity uses the as-
signment delegation to give theright of assignment for En-
tity.Role to another entity (Subject) located outside the Is-
suer’s space. The assignment delegations permit the usage
of private roles outside the defining domain. The (0) mark
indicates that the Subject is allowed to assign Entity.Role to
other Subjects.

Using dRBAC, a trust-sensitive componentC can deter-
mine if a set of dRBAC credentialsX gives some subjectS
the set of access rights represented by a roleR continuously
over some duration. To do this,C presents the public iden-
tity of S, a set of required access rightsR, and the credentials

Table 1. dRBAC delegation types.

Self-certifying [Subject! Issuer.Role] Issuer
with Attr1=Val1, Attr2=Val2, ...

Third-party [Subject! Entity.Role] Issuer
with Attr1=Val1, Attr2=Val2, ...

Assignment [Subject! Entity.Role ’] Issuer
with Attr1=Val1, Attr2=Val2, ...

X to a dRBAC implementation. The dRBAC module first
authenticates the signatures and establishes validity moni-
tors for all the credentials inX . Authorization is granted
if the dRBAC module can construct a graph (proof) from
valid and authenticated credentials inX that “proves” thatS
possesses the rights required byR.

dRBAC credentials are stored in a distributed repository.
To assist in collecting dRBAC credentials that authorize a
particular role, dRBAC contains a mechanism that relies on
discovery tags associated with credential subjects and ob-
jects. These tags identify an entity as “searchable from sub-
ject” or “searchable from object”, permitting queries about
credentials involving the entity to be directed as appropriate
to its home node.

3.2. Use of dRBAC in PSF

dRBAC is used in two ways in PSF. Its first use is con-
ventional, for authenticating and authorizing various enti-
ties in the framework—clients, components, and network
resources—even when these entities span multiple admin-
istrative domains. The second use is somewhat novel,
for translating between application and network-level con-
straints each of which are expressed in terms meaningful
only within their respective domains. It is this latter use that
motivated the use of a general trust management system like
dRBAC as opposed to existing grid security architectures
such as GSI [10] or CAS [19].

Cross-domain authentication and authorization The se-
curity requirements of PSF are described as follows. Clients
requesting access to an interface must first be authenticated
and then authorized to receive an appropriate level of ser-
vice. In particular, the planing module takes into consider-
ation the client credentials, the component credentials, and
network resource credentials to generate a deployment that
achieves the desired level of service and is realizable. The
latter entails component and network resource authoriza-
tion: a node is authorized to host a component, and a com-
ponent is authorized to execute on a node. Additionally, de-
ployed components may make their own requests for their
required interfaces, which triggers this process recursively.

The challenge in achieving the above results from the
fact that component deployments span multiple administra-

tive domains, and components can be accessed by anony-
mous clients as well as deployed on nodes that the compo-
nent developer is not aware of a priori. dRBAC provides
mechanisms by which each administrative domain can is-
sue independent credentials to its clients, components, and
network resources, and yet these credentials can be com-
bined to permit cross-domain authorization decisions. The
latter is enabled using dRBAC delegations, which provides
a mechanism for mapping roles in other domains to roles
in the current one. This allows domains/resource owners to
set their own security policy, independent of who is likely to
access them. Clients belonging to other domains are autho-
rized for a service as long as they present credentials that
prove their possession of a role local to the service’s do-
main. Instantiated components receive their own set of cre-
dentials permitting use of similar mechanisms for servicing
their requests.

The trust management solution to cross-domain authen-
tication and authorization generalizes the approach adopted
in Globus-like systems [10, 19], which rely on the trans-
lation between a system-wide “grid credential” (virtual
organization-level credential in CAS) and local accounts
to authorize and enforce security policy for client requests.
Our approach offers advantages of scalability (multiple pol-
icy roots are permitted), easier configuration (local policy
need not include translation between grid and local cre-
dentials, which is automatically inferred), and finer-grained
control (the rights afforded a request can be modulated to
the credentials associated with it as opposed to the account
these translate to). We defer a detailed discussion of the
latter advantage to Section 4..

Expressing application and network constraints The
second use of dRBAC is motivated by the observation that
dRBAC credentials are juststatements about entities within
and across administrative domains, whose authenticity can
be cryptographically verified. Thus, a dRBAC credential
that grants the permissions associated with an Object role
to a Subject role can also be interpreted as the statement
that “it is true that Subjectis an Object”.

This interpretation allows the use of dRBAC credentials
to encode various application and network-level properties
and constraints on these properties, which drive the deploy-
ment process. Properties associated with application com-
ponents and network resources are encoded using dRBAC
credentials. Constraints are specified in terms of dRBAC
system queries: “is X a Y?” (more precisely, the constraint
is that X must possess role Y). Note that by design, dRBAC
permits properties and constraints to be defined in terms of
local names, relying onrole mapping delegations to define
translations across domains.

3.3. Example: dRBAC use in mail application

In this section, we will use the mail application to explain
how PSF uses dRBAC to:

1. Authorize clients before accessing a service.

2. Authorize nodes before choosing them for component
deployment. This step also includes mapping the net-
work properties onto application specific properties.

3. Provide the necessary credentials, such that nodes can
authorize components before executing them.

We start with the scenario described in Section 2.2., and
assume that each site (New York, San Diego, Seattle) is run-
ning PSF. Beside the main modules – registrar, monitor,
planner, deployer – the framework has a security module
(Guard) that manages the site security by generating certifi-
cates, defining roles, creating access control lists, authen-
ticating, and authorizing. We assume that (i)NY-Guard is
responsible for the correct use of the mail application and
all clients located in New York, (ii)SD-Guard manages the
San Diego clients even though they should be considered
as belonging to the same logical domain as the New York
clients, and (iii)SE-Guard manages all clients from Seat-
tle. Table 2 presents an example of dRBAC credentials that
ensures correct authorization of clients, nodes, and compo-
nents.

Client authorization. The goal is to allow clients to use
credentials defined by their localGuard for both local
and cross-domain authorization. PSF achieves this goal
by using dRBAC to find a mapping from a role to an-
other role, even if the roles are created by different domais.
For example, Bob works in San Diego and holds creden-
tial (11) created bySD-Guard, which associates the role
Comp.SD.Member with Bob’s identity. If Bob wants to
access the mail service, he should be authorized as one of
the roles defined byNY-Guard (e.g. Comp.NY.Member or
Comp.NY.Partner). In this case, dRBAC proves that Bob
isComp.NY.Member by presenting credentials (2) and (11).

Node authorization. The node authorization process con-
sists of two steps: (i) the actual authorization of the node,
and (ii) the transformation of the node properties into prop-
erties meaningful to the application. The second step
decides whether the node is useful during adaptation or
not. The first part of the node authorization can be easily
achieved in a similar way to the client authorization.

The interesting question is how to transform the node
properties generated by one administrative domain into
properties that are meaningful to the application. The chal-
lenge arises from the fact that the component developer has
no a priori knowledge of the node(s) where the component
may be deployed. For example, the policy of the mail ap-
plication is expressed only in terms meaningful to the pro-
grammer’s domain, and states that Dell machines installed

Table 2. The roles and certificates generated by the Guard modules

New York
User Auth. (1) [Alice! Comp.NY.Member] Comp.NY

(2) [Comp.SD.Member! Comp.NY.Member] Comp.NY
(3) [Comp.SD! Comp.NY.Partner ’] Comp.NY

Node Auth. (4) [Dell.Linux! Mail.Node with Secure=ftrue,falseg Trust=(0,10)] Mail
(5) [Dell.SuSe!Mail.Node with Secure=ftrue,falseg Trust=(0,7)] Mail
(6) [IBM.Windows!Mail.Node with Secure=ffalseg Trust=(0,1)] Mail
(7) [Comp.NY.PC! Dell.Linux] Dell

Component Auth. (8) [Mail.MailClient! Comp.NY.Executable with CPU=100] Comp.NY
(9) [Mail.Encryptor! Comp.NY.Executable with CPU=100] Comp.NY
(10) [Mail.Decryptor! Comp.NY.Executable with CPU=100] Comp.NY

San Diego
User Auth. (11) [Bob! Comp.SD.Member] Comp.SD

(12) [Inc.SE.Member! Comp.NY.Partner] Comp.SD
Node Auth. (13) [Comp.SD.PC! Dell.SuSe] Dell

Component Auth. (14) [Comp.NY.Executable! Comp.SD.Executable with CPU=80] Comp.SD

Seattle
User Auth. (15) [Charlie! Inc.SE.Member] Inc.SE
NodeAuth. (16) [Inc.SE.PC! IBM.Windows] IBM

Component Auth. (17) [Comp.NY.Executable! Inc.SE.Executable with CPU=40] Inc.SE

with Linux are secure and have a trust level between 0 and
10 (credential 4), Dell machines installed with Suse are se-
cure with a trust level between 0 and 7 (credential 5), and
IBM machines installed with Windows are not secure and
have a trust level between 0 and 1 (credential 6). Similarly,
all node credentials are defined as properties local to their
domains. For example, all machines from the San Diego
site have a credential (13) generated by Dell, stating that
they are running SuSe. PSF decides to deploy a mail com-
ponent on a node only if dRBAC finds a possible chain of
credentials that maps a node credential to a policy creden-
tial. In our example, the machines from San Diego can be
mapped from credential (13) to credential (5). A similar
process can be used to map link properties onto application
properties.

Component authorization. The second part of the mutual
authorization between a node and a component requires that
a node accept the component before allowing it to run. In
this case, nodes should be able to authorize components,
even if the components might belong to a different do-
main. In our example,NY-Guard creates local credentials
for three components that need to be deployed in differ-
ent domains:MailClient in New York, Encryptor in
San Diego, andDecryptor in Seattle.SD-Guard defines a
Comp.SD.Executable role to specify that all components
having this role will be allowed to run on the San Diego
machines with a limit of 80% in CPU consumption. In
a similar way,SE-Guard defines aInc.SE.Executable
role that restricts the CPU consumption to 40%. Then,

both SD-Guard andSE-Guard associate these roles to the
Comp.NY.Executable role. This allowsNY-Guard to
generate only local credentials (Comp.NY.Executable)
for the MailClient, Encryptor, andDecryptor com-
ponents. Whenever a component is deployed on a node, it
presents a chain of credentials. The component is accepted
only if the node recognizes the chain of credentials as valid.

4. Views: Customizing Reusable Compo-
nents

Object views [22] were originally proposed in the con-
text of parallel programming languages supporting a shared
object space. In that context, views allowed reduction of co-
herence traffic by defining a coherence granularity smaller
than the object and encapsulating application-specific pro-
tocols. PSF employs the same underlying mechanism but
for very different goals: to increase flexibility of distributed
component deployment in the presence of application- and
network-level constraints, and to enable fine-grained access
control.

4.1. The views abstraction
Views provide a mechanism by which to define multiple

physical realizations of the same logical component. An
object is aview of another object, calledoriginal object, if it
(1) implements a subset of the functionality of the original
object; or (2) works with a subset of the original object’s
data. We refer to the former asobject views, and to the latter
asdata views. Most views in practice are likely to exhibit

Table 3. (a) The original Java object. (b) The XML rules to define a view.

public interface MessageI f
public void sendMessage(Message mes)
public Set receiveMessages()

g
public interface AddressI f

public String getPhone(String name)
public String getEmail(String name)

g
public interface NotesI f

public void addNote(String note)
public boolean addMeeting(String name)

g
public class MailClient

implements MessageI,
AddressI,
NotesI f

Account[] accounts;
public void sendMessage(Message mes)fg
public Set receiveMessages()fg
public String getPhone(String name)f

return findAccount(name).getPhone();
g
public String getEmail(String name)f

return findAccount(name).getEmail();
g
public void addNote(String note)fg
public boolean addMeeting(String name)fg

private Account findAccount(String name)f
return accounts.get(name);

g
g

<View name =ViewMailClient Partner>
<Represents name =MailClient>

<Restricts>
<Interface name =MessageI type =local >
<Interface name =NotesI type =rmi >
<Interface name =AddressI type =switchboard >

<Adds Fields>
<Field name =accountCopy type =Account>

<Adds Methods>
<MSign> ViewMailClient Partner(...)
<MBody> /** constructor body **/

<MSign> void mergeImageIntoView(byte[])
<MBody> /** code to merge image into the view **/

<MSign> void mergeImageIntoObj(byte[])
<MBody> /** code to merge image into object **/

<MSign> byte[] extractImageFromView()
<MBody> /** code to extract image from view **/

<MSign> byte[] extractImageFromObj()
<MBody> /** code to extract image from object **/

<Customizes Methods>
<MSign> String addMeeting(String name)
<MBody> /** new code for method**/

characteristics of both object and data views: we focus on
such hybrid views in the rest of the paper.

In the context of PSF, views define (a family of) aux-
illary components that embody different ways of realizing
the component functionality. In general, the functionality of
the original object can either be completely replicated in the
auxillary component, be completely present in the original
object (with the auxillary component just serving as a gate-
way to this functionality), or be somewhere between these
two extremes. To assist with view construction, Table 3(b)
shows a simple schema that can be used as a guideline,
using as example a component from our mail application
given in Table 3(a). TheViewMailClient Partner is a
restricted version of theMailClient component, able to
send/receive messages, add notes into a remote diary, and
query the address book in a secure fashion. Such a compo-
nent is useful if clients use untrusted machines (e.g. airport
terminal) to check e-mail.

A minimal view is fully described by a name

(ViewMailClient Partner), and a represented object
(MailClient). The minimal view can be enriched by
providing a list of implemented interfaces (MessageI,
AddressI, NotesI), defining new methods and fields, and
copying or customizing existing methods. For each inter-
face, the view description can specify a type (local, rmi,
or switch) that indicates how the interface is available to
clients. The methods defined by alocal interface should
be available only to clients running in the same JVM as
the view. Interfaces can be also required to be only avail-
able on the original object. Access to such interfaces
is permitted either via RMI (rmi) or a secure communi-
cation channel called Switchboard (switch), as described
below. Beside general methods, a view definition must
contain descriptions of several special methods: at least
oneconstructor declaration, and complete implemen-
tations for cache coherence-specific methods. The cache
coherence methods describe how the state of the view can
merged/extracted into/from the view/object [22].

4.2. Use of views in PSF

Views offer two advantages in the context of the parti-
tionable services framework: (1) they improve the likeli-
hood of successful component deployment in constrained
environments; and (2) they provide a finer granularity at
which to authorize and enforce access control decisions.

Increased flexibility in component deployment Dy-
namic component-based frameworks work with a set of
reusable components, selecting among and customizing
these components as appropriate for the environment and
client QoS requirements. Thus, whether or not the planning
module is in fact able to come up with a deployment sched-
ule is dependent on the set of available component types.

Views provide a convenient mechanism for enriching the
set of components, without requiring onerous application
developer input. By merely distributing component func-
tionality between the original and auxillary objects, views
increase the likelihood of the planner finding a component
deployment in constrained environments. Additional flexi-
bility arises from allowing view properties to be specified at
creation time.

Fine-grained, single sign-on authorization By defini-
tion, views implement a subset of the functionality of the
original object. Thus, restricting access at the level of meth-
ods or interfaces is easily achievable by defining appropriate
views. Also, views can be customized to have different im-
plementations depending on their intended users, say by se-
lecting appropriate property values. Access control lists can
be established, per component, which specify the level of
service (the view) associated with a given dRBAC role. As
described earlier, such policy can be established using only
roles within the local namespace: cross-domain requests are
first translated by dRBAC into local roles before any access
control decisions are made.

Table 4 depicts the description of some access con-
trol rules created for the mail application scenario. All
members of the company (Comp.NY.Member) are al-
lowed to send/receive messages, access the phone and
email directories, and add notes and meetings to their
calendar (ViewMailClient Member). The partners
(Comp.NY.Partner) can execute the same operations,
with the exception that the functionality for setting up
a meeting is reduced to only requesting the right to set
up a meeting (ViewMailClient Partner). All other
clients have only the right to browse the email directory
(ViewMailClient Anonymous).Enforcement of these access control decisions comes
naturally because views contain only the subset of object
state required for their local methods, and must interact with
the original object to realize the rest of their functionality (if
any). Views permit single sign-on usage, because authenti-
cation and authorization decisions can be completed when
the view is first instantiated. After that clients are free to

Table 4. Rules defined to restrict the client’s
access to the service. These rules are also
used for automatic view creation.

Role View name
Comp.NY.Member ViewMailClient Member

Comp.NY.Partner ViewMailClient Partner

others ViewMailClient Anonymous

access the view they receive, without additional access con-
trol. Moreover, by using a secure communication channel
between the view and the original object, as described be-
low, requests that are deferred to the original object can also
proceed without requiring additional checks.

4.3. Run-time support for view deployment

To understand what run-time support is required for view
deployment, consider the sequence of actions that take place
in PSF in response to a client request for a service inter-
face. This request is passed on to the planning module,
along with any client credentials. The planning module is
aware of both the component and view specifications, as
well as the current state of network resources. The client
credentials serve to identify the subset of components that
can be used for deployment (based on access control deci-
sions). Once the planning module finds a valid plan that
satisfies the client’s QoS requirements, the run-time system
is responsible for instantiating, downloading, and securely
connecting the views.

View instantiation The generation of the code for a view
is deferred to the time this view is first deployed. This en-
sures that despite their flexibility, views incur management
costs proportional to their utility.

The view generation is handled by a tool calledVIG
(View Generator), which takes the class file of the repre-
sented object and an XML definition of the view and pro-
duces a new classfile corresponding to the view. Table 5 il-
lustrates the view generation process by presenting the Java
code for theViewMailClient Partner view, as defined
in Table 3.

VIG uses the API’s provided by the Javassist [29] toolkit
to manipulate Java objects at bytecode level. The view gen-
eration process consists of two steps: (i) reading the XML
description and the represented object, and (ii) modifying
existing method/interfaces and adding new methods to the
view as specified by the XML rules. If VIG is unable to
generate correct bytecode (e.g. a new method uses a vari-
able that is not defined in the original object or the method),
it triggers an error that indicates how the XML rules can
be rectified. Therefore, VIG can be used to both generate

views at runtime and guide the programmer’s effort to write
correct XML files.

VIG decides how to generate the actual view bytecode
by processing, in order, (1) interfaces, (2) methods, and (3)
fields.

(1) Local interfaces do not require any processing, and
can be copied as is. However,rmi and switchboard in-
terfaces need to extendjava.rmi.Remote, respectively
java.io.Serializable. For all methods defined by
interfaces, VIG processes the actual method implementa-
tions as described below.

(2) Methods defined aslocal or by local interfaces do not
change, and can be copied from the represented object into
the view. The methods defined byrmi or switchboard inter-
faces are transformed into simple RMI, respectively Switch-
board calls against the original object. The main problem
when copying existing methods from the represented class
into the view is to find the correct implementation. This
problem arises when there is an inheritance chain from the
represented object to a unique super class. Javassist pro-
vides the necessary mechanisms to solve this problem by
following the inheritance chain and generating views for ev-
ery class in the chain such that the “extends” relationships
between views is similar to the “extends” relationships be-
tween the represented classes. Once VIG finds the right
method implementation to copy, VIG parses the method
code and copies the declarations of all used class fields.

In order to add a new method or customize an existing
method, VIG extracts the method signature and body from
the XML description of the view. The actual addition or
customization is simplified by the fact that Javassist allows
the insertion of pure Java code into the view bytecode. Be-
side general methods, the XML definition needs to provide
the descriptions for at least one view constructor and several
cache coherence-specific methods thatextract the view state
andmerge updates into it. Ideally, the code for the cache
coherence methods should be generated by VIG. Currently,
the method descriptions are provided by the programmer.
Our goal is to supply default handlers in an automatic fash-
ion, which can be overridden as necessary. Another require-
ment for the cache coherence protocol is that all methods
should work with the most current image. VIG ensures it by
placingacquireImage andreleaseImage method calls
at the beginning and the end of every method implemented
by the view.

(2) In general, fields are added either because they are used
by a method, or because they are declared by the XML de-
scription of the view.

Secure channels between components Once the views
are generated, the deployment infrastructure issues to the
generated view its own set of credentials, downloads them

onto their target nodes, and connects them to other com-
ponents using secure channels. These channels ensure that
component interactions possess the desired security proper-
ties, and avoid the need for additional access checks after
the channel has been established.

These channels are built on top of a novel communi-
cation abstraction called Switchboard, which permits the
establishment of secure, authenticated, andcontinuously
authorized and monitored connections between a pair of
components. The latter property distinguishes Switchboard
from abstractions like SSL/TLS [11].

Prior to forming a Switchboard connection, the com-
ponents at either end provide theirauthorization suites—
PKI identities (including private keys for authentication),
dRBAC credentials to be supplied to the partner, and
Authorizer objects for evaluating the partner’s creden-
tials. Authorizers generateAuthorizationMonitors,
which inform either partner when the trust relationship
changes. When Switchboard connections span multiple
hosts, a cipher is established using a key-exchange protocol,
and connectivity is monitored using replay-resistant heart-
beats that indicate liveness and round-trip latency. Switch-
board connections provide a two-way procedure-call (RPC)
interface appearing as a custom socket on top of which Java
RMI requests can be routed. A previous version of Switch-
boardStream that provides secure and monitored transport
is described in [6].

The continuous monitoring property of Switchboard
connections is crucial for supporting single sign-on in dy-
namic environments, where client and/or network creden-
tials can change in the middle of long-lived component in-
teractions. Such a change in credentials invalidates the cor-
responding dRBAC proofs, and results in notification to the
AuthorizationMonitorsat either end of the connection.
These monitors can then take appropriate action, including
requiring a component to revalidate itself prior to approving
future requests.

5. Related Work

The work described in this paper is related to previous ef-
forts that have looked at cross-domain authorization, mod-
eling application and network resource properties to permit
their use by automated planning modules, and support for
fine-grained access control.

Cross-domain authorization. Component-based frame-
works target application deployment in heterogenous en-
vironments spanning multiple administrative domains, and
thus raise new security issues. Several systems (DCE [27],
DCOM [30], CORBA [24], Globus [9] to cite some exam-
ples) aim to solve the cross-domain authentication and au-
thorization problems that result in such systems.

Table 5. View source code.

public interface MessageI f
public void sendMessage(Message mes)
public Set receiveMessages()

g

public interface AddressI extends Serializable f
public String getPhone(String name)
public String getEmail(String name)

g
public interface NotesI extends Remote f

public void addNote(String note) throws RemoteException

public boolean addMeeting(String name) throws RemoteException

g

public class ViewMailClient Partner implements MessageI, AddressI, NotesI f

Account[] accounts;

public Account accountCopy;
CacheManager cacheManager;
NotesI notesI_rmi;
AddressI addrI_switch;

public ViewMailClient Partner (String[] args) f

if (System.getSecurityManager() == null)
System.setSecurityManager(new RMISecurityManager());

/** rmi code **/
notesI_rmi = (NotesI) Naming.lookup(...);

/** switchboard code **/
addrI_switch = (AddressI) Switchboard.lookup(...);

/** initialize cache manager **/
Properties properties = new Properties(Pname[], Pvalue[]);
cacheManager = new CacheManager(properties, name);

/** user supplied code **/
...

g

public void sendMessage(Message mes) f /** the original code **/ g
public Set receiveMessages() f /** the original code **/ g

public String getPhone(String name) f return addrI_switch.getPhone(); g

public String getEmail(String name) f return addrI_switch.getEmail(); g

public void addNote(String note) f notesI_rmi.addNote(); g

public boolean addMeeting(String name)f /** user supplied code **/ g

private void mergeImageIntoView(byte[] image) /** user supplied code **/
private void mergeImageIntoObj(byte[] image) /** user supplied code **/
private byte[] extractImageFromView() /** user supplied code **/
private byte[] extractImageFromObj() /** user supplied code **/

g

DCE [27] provides authentication and authorization
based on private-key cryptographywith a trusted third party.
CORBA [24] and the web services infrastructure [15] pro-
vide a general interface for authentication and authoriza-
tion, leaving it up to application programmers on how ex-
actly they choose to implement it. SESAME [17] authenti-
cates users and provides them with an authorization creden-
tial (Privilege Attribute Certificate) that can be used for all
authorization decisions. Legion system [14] controls het-
erogeneous, independent, and distributed resources present-
ing the user with the image of a single, coherent environ-
ment. From a security point of view, all resources are con-
sidered to be objects residing in a single shared namespace,
and are uniquely identified by a Legion Object Identifier
(LOID) [8] that contains a public key. Users are authenti-
cated using shortlived Legion credentials [32] generated the
first time the user logs on into the system.

Globus General Purpose Architecture for Reservation
and Allocation (GARA) [26] system relies on the Globus
Grid Security Infrastructure (GSI) [9] to handle all its au-
thentication and authorization problems. GSI assumes the
existence of a Public Key Infrastructure (PKI) and a single
shared namespace across domains. Recent work has looked
into replacing the PK credentials with Kerberos tokens [1].
In GSI, all resource providers (P) have the necessary au-
thentication/authorization information for all possible users
(U , thus implying a storage space proportional withP�U .
Floww-on work to GSI, CAS (Community Authorization
Service) [19] divides the users into communities such that
all providers know about communities only. In this way,
CAS improves the memory storage toC� (P+U), where
C is the number of communities. dRBAC reduces the mem-
ory storage isP+U + c, wherec represents the number of
credentials created to cross domains.

Our dRBAC-based solution differs from the above ef-
forts in not assuming a single policy root (hence namespace)
for credentials. This solution offers advantages of scala-
bility (multiple policy roots are permitted), easier config-
uration (local policy need not include translation between
global system-wide and local credentials, which is auto-
matically inferred), and finer-grained control (the rights af-
forded a request can be modulated to the credentials associ-
ated with it as opposed to the local credentials these trans-
late to).

Expressing component and network properties. Most
dynamic component-based frameworks ([28, 21, 12, 16])
rely on an application registration step, where complete
specifications of the application components are provided to
permit automated deployment planning. Our use of dRBAC
credentials to model general application and network-level
properties and constraints is in marked contrast to other sys-
tems [28, 21], which restrict themselves to specifying only
a small number of resource consumption properties (e.g.,

CPU usage, bandwidth consumption) determined a priori.

Granularity of access control. Except systems like
Sesame [17] and Adage [34] which only enforce access con-
trol at the level of the entire application, most object-based
distributed systems permit finer-grained access control.

The Java 2 environment [13] combined with the Java Au-
thentication and Authorization Service (JAAS) [20] uses se-
curity managers and policy files to define resources that in
principle can support any granularity of access control. Un-
fortunately, the security manager only checks rights to ac-
cess JVM resources, like files or sockets. In order to protect
other resources, the applications need to implement their
own access control mechanisms.

DCE [27] and CORBA [24] enable any level of granu-
larity for access control by letting the applications to de-
fine their own notion of resource. DCOM [30] applications
can control access to low level obejct only by taking advan-
tage of the API’s exposed by the DCOM programatic secu-
rity. Legion [14] objects must implement a special function,
MayI that is called to check credentials every time a user in-
vokes a method on the object.

Our view-based approach enables access control policies
to be specified at arbitrarily fine granularity (down to the
level of individual methods), and when coupled with the
Switchboard secure channel mechanism, additionally pro-
vides single sign-on benefits.

6. Summary and Future Work

In this paper, we have described how views and dRBAC
can solve the problems of (i) performing cross-domain au-
thentication and authorization, and (ii) satisfying various
network and application-level constraints, when properties
should only be expressed in terms meaningful within a par-
ticular domain. Views define multiple implementations of
a reusable component, thus enriching the set of compo-
nents available for dynamic deployment and providing fine-
grained, customizable, and low-level access control to re-
sources. dRBAC is a powerful mechanism for both cross-
domain authorization as well as expression of network and
application constraints.

One of the main assumptions made in the Partitionable
Services framework is that all domains are using dRBAC
as their authorization policy implementation. In order to
allow each domain to freely choose the policy implementa-
tion (e.g. roles, capabilities), the framework should provide
a service able to translate between that implementation and
dRBAC.

VIG is designed to create views based on a set of simple
rules and the original object. Ideally, VIG should automat-
ically generate the entire view code. The current version is
able to partially generate the code; the functions to extract

(merge) the image of the object (view) need to be specified
by the application programmer. In the future, we plan to
fully automate the process of creating views based on a few
hints from the programmer.

Acknowledgements

This research was sponsored by DARPA agreements F30602-
99-1-0157, N66001-00-1-8920, and N66001-01-1-8929; by NSF
grants CAREER:CCR-9876128 and CCR-9988176; and Mi-
crosoft. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright annotation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted
as representing the official policies or endorsements, either ex-
pressed or implied, of DARPA, Rome Labs, SPAWAR SYSCEN,
or the U.S. Government.

References

[1] W. Adamson and O. Kornievskaia. A Practical Distributed
Authorization System for GARA. Technical Report 01-14,
Center for Information Technology Integration, University
of Michigan, 2001.

[2] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust Management for Public-Key Infrastructures. InSecu-
rity Protocols International Workshop, volume 1550, pages
59–63. Springer LNCS, 1998.

[3] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance
checking in the policymaker trust management system. In
Financial Cryptography, pages 254–274, 1998.

[4] F. Bustamante and K. Schwan. Active Streams: An Ap-
proach to Adaptive Distributed Systems. InHotOS, 2001.

[5] E. Freudenthal et al. dRBAC: Distributed Role-based Access
Control for Dynamic Coalition Environments. InICDCS,
2001.

[6] E. Freudenthal et al. Switchboard: Secure, Monitored Con-
nections for Client-Server Communication. InRESH, 2002.

[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. Spki certificate theory, rfc 2693. InNetwork
Working Group, The Internet Society, 1999.

[8] A. Ferrari, F. Knabe, M. Humphrey, S. Chapin, and
A. Grimshaw. A Flexible Security System for Metacom-
puting Environments. InHPCN, pages 370–380, 1999.

[9] I. Foster, C. Kesselman, J. Nick, and S. Tuecke.
The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Integration.
http://www.globus.org/research/papers.html, 2002.

[10] I. T. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A
security architecture for computational grids. InACM CCS,
pages 83–92, 1998.

[11] A. Freier, P. Karlton, and P. Kocher. The SSL Protocol, Ver-
sion 3.0. InInternet Draft, 1996.

[12] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS:
Composable, Adaptive Network Services Infrastructure.
USITS, 2001.

[13] L. Gong. Java security: present and near future.IEEE Micro,
17(3):14–19, 1997.

[14] A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey.
Wide-Area Computing: Resource Sharing on a Large Scale.
Computer, 32(5):29–37, 1999.

[15] IBM Corporation and Microsoft Corporation. Security
in a Web Services World: A Proposed Architecture and
Roadmap.htpp://msdn.microsoft.com/, 2002.

[16] A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Parti-
tionable Services: A Framework for Seamlessly Adapting
Distributed Applications to Heterogenous Environments. In
HPDC, 2002.

[17] P. Kaijser, J. Parker, and D. Pinkas. SESAME: The Solu-
tion to Security for Open Distributed Systems. InComputer
Communications, 1994.

[18] T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained
Component Deployment in Wide-Area Networks Using AI
Planning Techniques. InIPDPS, 2003.

[19] L. Pearlman at el. A Community Authorization Service for
Group Collaboration. InIEEE Workshop on Policies for Dis-
tributed Systems and Networks, 2002.

[20] C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers.
User authentication and authorization in the Java platform.
In 15th Annual Computer Security Applications Conference,
pages 285–290. IEEE Computer Society Press, 1999.

[21] J. Li, M. Yarvis, and P. Reiher. Securing Distributed Adap-
tation. InOpenArch, 2001.

[22] I. Lipkind, I. Pechtchanski, and V. Karamcheti. Object
Views: Language Support for Intelligent Object Caching in
Parallel and Distributed Computations. InOOPSLA, pages
447 – 460, 1999.

[23] J. Lopez and D. O’Hallaron. Support for Interactive Heavy-
weight Services. InHPDC, 2001.

[24] Object Management Group. CORBA Security Services, Ver.
1.8. http://www.omg.org/, 2002.

[25] Object Management Group. CORBA Component Model.
http://www.omg.org/, 2003.

[26] R. Butler et al. A National-Scale Authentication Infrastruc-
ture. IEEE Computer, 33(12):60–66, 2000.

[27] W. Rosenberry, D. Kenney, and G. Fisher.Understanding
DCE. O’Reilly & Associates, Inc., 1992.

[28] S. Czerwinski et al. An architecture for a secure service
discovery service. InMobile Computing and Networking,
pages 24–35, 1999.

[29] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A Bytecode
Translator for Distributed Execution of Legacy Java Soft-
ware. pages 236–255, 2001.

[30] W. Rubin et al.Understanding DCOM. Prentice Hall, 1999.
[31] W3C. Web Services Description Language (WSDL) 1.1.

http://www.w3.org/TR/wsdl, 2003.
[32] W. Wulf, C. Wang, and D. Kienzle. A New Model of Se-

curity for Distributed Systems. Technical Report CS-95-34,
CS Department, University of Virginia, 1995.

[33] D. Zhou and K. Schwan. Eager Handlers - Communi-
cation Optimization in Java-based Distributed Applications
with Reconfigurable Fine-grained Code Migration.3rd Intl.
Workshop on Java for Parallel and Distributed Computing,
2001.

[34] M. E. Zurko, R. Simon, and T. Sanfilippo. A User-Centered,
Modular Authorization Service Built on an RBAC Founda-
tion. In IEEE Symposium on Security and Privacy, pages
57–71, 1999.

