
Efficiently Distributing Component-Based Applications
Across Wide-Area Environments

Deni Llambiri, Alexander Totok, and Vijay Karamcheti
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University, New York, NY, USA

{llambiri,totok,vijayk}@cs.nyu.edu

Abstract
Distributed deployment of network applications in wide-

area environments has proven effective for improving end-
user experience. Another trend is the use of compo-
nent frameworks for building network services. Their
component-based nature makes such applications natural
candidates for distributed deployment, but it is unclear if
the design patterns underlying component frameworks also
enable efficient service distribution.

In this paper, we investigate the application design
rules and accompanying system-level support essential to
a beneficial and efficient service distribution process. Our
study targets the widely used Java 2 Enterprise Edition
(J2EE) component platform and Java Pet Store, a sample
component-based e-commerce application.

Our results present strong experimental evidence that
component-based applications can be efficiently distributed
in wide-area environments using a small set of generally-
applicable design rules for orchestrating interactions and
managing component state. We additionally discuss en-
forcement of these rules, and their automated implementa-
tion by container frameworks.

1. Introduction

The Internet currently provides access to a variety of
sophisticated network-accessible services such as e-mail,
banking, on-line shopping, and entertainment. Given their
increased functional and implementation complexity, and
the necessity to access distributed sources of data, these ser-
vices are often realized as distributed applications.

The design and development of such applications ex-
hibits two major trends. First, these applications are in-
creasingly being built on top of commercial-off-the-shelf
(COTS) component middleware frameworks. Industry-
standard frameworks, exemplified by OMG’s CORBA [2],
Sun Microsystems’ Java 2 Platform Enterprise Edition
(J2EE) [27], and Microsoft’s .NET [20], permit assembly of

services from reusable components, relying upon container
environments to provide commonly required support for
naming, communication, security, clustering, persistence,
and distributed transactions. In addition to providing an in-
tegrated environment for component execution, which sig-
nificantly reduces the time to design, implement, and deploy
applications, such frameworks incorporate “best practices”
designs. The latter provides developers withdesign pat-
terns, suggesting a standardized structure upon which dis-
tributed component-based systems should be based.

The second trend manifests itself in the fact that, gener-
ally speaking, application data and data processing in net-
work services is being broughtcloser to the clients. This
is being done in order to cope, on the network level, with
the inherently bursty and unpredictable nature of traffic in
wide-area environments, and, on the application level, with
high-volume, widely varying, disparate client workloads.
Examples of this approach vary from conventionalcaching
of static content, to web content delivery usingcontent-
distribution networks, to systems such as Akamai’s Edge-
Suite [7] and IBM’s WebSphere [28], which offload part of
the data processing from web servers toedgeservers.

In this work, we combine these two natural trends and
explore the question of whether component-based appli-
cations can benefit from a distributed, edge deployment
in wide-area environments. Distributed deployment brings
several advantages. Cacheable components can be posi-
tioned in edge nodes, effectively bringing the service closer
to clients, and thus improving not only client perceived
latency, but also overall service availability since client
requests can utilize several entry points into the service.
Furthermore, specific “hot” components can be replicated
and/or redeployed on-demand in new physical nodes in re-
sponse to higher client loads or congested network links.
However, despite these advantages, component-based ap-
plications are typically deployed only in a centralized fash-
ion in high-performance local area networks. In the rare

Vijay Karamcheti
To appear in the Proceedings of the International Conference on Distributed Computing Systems (ICDCS), 2003.

cases when these applications are distributed in wide-area
environments, the systems tend to be highly customized
and handcrafted. One explanation for this situation is that
there are no guidelines for how component-based applica-
tions should be engineered to enable efficient service distri-
bution in heterogeneous and high-latency network settings.

In this paper, we address this issue by investigating the
application design rules and accompanying system-level
support required for a beneficial and efficient service dis-
tribution process. This study targets the Java 2 Platform
Enterprise Edition (J2EE) component platform and Java Pet
Store, a sample best-practices application that covers most
aspects of the platform. We deploy Java Pet Store in a fixed,
simulated wide-area environment, apply various design pat-
terns and optimizations in an incremental fashion, and af-
ter each step measure the performance of the application
and draw conclusions about the impact of the changes. Our
approach focuses onapplication-level design patternsand
optimizationsand is orthogonal to other efforts that have
looked at improving container-level mechanisms such as
RMI performance [14].

While the overall performance of a network-accessible
service usually depends on its component distribution and
combined client load, response times observed by clients
also significantly depend onclient behavior, as the execu-
tion of different types of requests involve different sets of
service components. To model this behavior, we introduce
the notion of aservice usage pattern, a frequently executed
scenario of service invocation, which reflects typical client
behavior. Considering different service usage patterns, first,
helps to identifywhichgroups of clients benefit most from
certain service distribution and replication strategies, and
second, provides an application deployer with knowledge
of howapplications should be deployed to satisfy the needs
of certain client groups.

Our results present strong experimental evidence that
component-based applications can be efficiently distributed
in wide-area environments using a small set of generally-
applicable design rules for orchestrating interactions and
managing component state. Moreover, we argue that the
burden of implementing some of the suggested functionality
could be shifted from application programmers to container
providers. Application deployers need only declaratively
express the desired component behavior via (extended) de-
ployment descriptors; the needed system and application
level components could be automatically configured, in-
stantiated and linked by container infrastructures.

Project Context The work presented in this paper is part
of a bigger research effort, theMutable Servicesproject,
which focuses on the construction of aflexible service dis-
tribution infrastructure for component-based applications
for serving different groups of clients along differentaccess
paths. Each access path represents a different deployment

of the service’s components to underlying physical nodes,
enabling the associated client group to receive differentiated
service. By creating and controlling resources allocated to a
particular path, the infrastructure permits a service to adapt
to a broad range of “unfriendly” system conditions, includ-
ing network congestion, bandwidth mismatches and high la-
tency between client and server locations, as well as node
and link failures.

The rest of the paper is organized as follows. Section 2
provides some background on the Java 2 Enterprise Edition
component platform and Java Pet Store application. Sec-
tion 3 describes our testing methodology. Section 4 intro-
duces design patterns and optimizations one at a time and
details how they were applied to the application, and out-
lines the impact of the changes by analyzing resulting per-
formance. Section 5 describes how the identified design
rules can be incorporated in component models and frame-
works, and discusses how some of the proposed function-
ality can be automated by container environments. Related
work is discussed in Section 6 and we conclude in Section 7.

2. Background

Java Pet Store [24] is a best-practices sample J2EE ap-
plication from Sun Microsystems’ Java BluePrints program.
It represents a typical e-commerce application – an on-line
store – and covers the most important features of the J2EE
component platform in a relatively small application. This
paper refers to Java Pet Store version 1.1.2.

Java 2 Enterprise Edition The J2EE platform supports
the development of network applications, whose function-
ality is decomposed across three tiers - Web, Enterprise
JavaBean (Business Logic) [8], and Data. J2EE com-
ponents across these tiers fall into two main categories:
stateless and stateful. Stateless components are exempli-
fied by (synchronous) stateless session beans and (asyn-
chronous) message-driven beans, and typically provide
generic application-wide services. Since they do not con-
tain any state, the replication of stateless components is
rather straightforward. Stateful components can be classi-
fied into two categories: those that hold session state on a
per-client basis, thus effectively acting as an extension of
the client’s run-time environment on the server-side, and
components that represent shared state corresponding to the
domain layer of the application. In the J2EE realm, the first
category is exemplified by web components - servlets and
JavaServer Pages (JSP) - that hold HTTP session informa-
tion, and stateful session beans that offer improved scala-
bility and transactional awareness, whereas the second cat-
egory consists of entity EJBs. Generally speaking, session-
oriented stateful components tend to be in-memory objects,
whereas shared stateful components are transactional, per-
sistent entities that are typically co-located with database
servers. Since stateful session components are not shared

Web Tier EJB Tier Data Tier
EntitySession

Account
Order

Cart

Catalog

Inventory

Shopping Cart

Catalog

Account

Order

Inventory

account

 order
 orderstatus
 lineitem

 category
 product
 item

inventory

Customer

Figure 1. Pet Store component architecture.

they can be deployed in edge servers for better locality. We
discuss our approach for replicating shared stateful compo-
nents later in the paper.

Java Pet Store The fundamental design pattern used
in Java Pet Store is well-knownModel-View-Controller
(MVC) architecture [26], which decouples the application’s
data structure, business logic, data presentation, and user
interaction.

The Model represents the structure of the data in the
application, as well as application-specific operations on
those data. Java Pet Store stores application data across all
three tiers - Web, EJB, and Data. The web tier uses servlet
HTTPSession and ServletContext objects as well
as JavaBeans accessed from JSP pages, to store client ses-
sion state. In addition, the web tier directly manages JDBC
connections to the database. In the EJB tier, state is main-
tained using stateful session beans and entity beans. The
application also maintains persistent product, inventory, ac-
count, and order data in a relational database.

TheViewconsists of objects that deal with presentation
aspects of the application. The implementation of the view
in Pet Store is completely contained in the Web tier, and is
built on top of a reusable framework for web applications.

The Controller translates user actions and inputs into
method calls on the Model, and selects the appropriate View
based on user preferences and Model state. In Pet Store, the
Controller is split between the Web and EJB tiers.

The main relationships among the most accessed Java
Pet Store components are shown in Figure 1, and the most
relevant EJBs to our experiments are listed in Table 1.

3. Methodology
We deployed Java Pet Store in a fixed, simulated wide-

area environment, and applied various design patterns and
optimizations in an incremental fashion. After each step,
we measured its performance and drew conclusions on the
impact of the changes.

3.1. Network topology
Our network topology aims at capturing a simple scaled-

down wide-area distributed deployment of Java Pet Store.
The system consists of two application servers (JBoss
2.4.4 [15]) and a single database server (Oracle 8.1.7 En-

Table 1. EJBs in Java Pet Store.
EJB Name Description
Stateless Session Beans

Catalog Handles read-only queries to product database

Customer Serves as a façade to Order and Account

Stateful Session Beans

ShoppingCart Maintains list of items to be bought by customer

Sh.Cl.Contr. Manages model objects and processes events

Entity Beans

Inventory Records availability information for each item

SignOn Keeps userid/password information

Order Keeps order information

Account Keeps account information

terprise Edition), each running on a dedicated 1GHz dual-
processor Pentium III workstation. A wide-area network
(WAN) separates the two application servers. One of the ap-
plication servers is located in the same LAN as the database
server, hence acting as themain server of the system. The
other application server acts as anedge server. In addi-
tion, there are two client machines, one for each application
server. The network topology was emulated by connecting
all of the above nodes using a software router built with the
Click modular router infrastructure [6]; traffic shaping com-
ponents were used to simulate 100 ms latency each way in
the WAN link.

3.2. Service usage patterns

While designing this study, we observed that overall re-
sponse times observed by clients depended not only on the
application distribution and combined client load, but also
on therequest typesince the execution of different requests
involves different sets of service components. To model this
behavior, we divide all clients into twoservice usage pat-
terns: BrowserandBuyer.

Browser This pattern represents a user that merely
browsesthe application web site in search of items of in-
terest. This user neither logs in, nor buys any products.
A typical scenario for a browser would consist of a (rel-
atively long) sequence of accesses to pages that present
product-related information. Our tests use browser sessions
of length 20, made up of individual page requests with the
weights shown in Table 2. Each session is a logically or-
ganized sequence of requests starting with theMain page.

Buyer This pattern represents the behavior of a client who
already knows what to buy. A buyer logs in, finds item(s)
of interest, probably accessing a few product-related pages,
puts desired items into the shopping cart, and checks out.
For our tests, we organized buyer sessions as a sequence of
pages emphasizing these activities: a buyer signs in, buys
an item, and signs out (see Table 3).

Separating out these patterns is a core aspect of this

Table 2. Browser session.
Page Functionality Requests

(%)

Main Serves as an entry point to the application 5%
Category Displays list of products associated with a

particular category
15%

Product Displays list of items associated with a par-
ticular product

30%

Item Displays details about an item, including
description, price, and the quantity in stock

45%

Search Displays list of products, whose names
match the specified search keyword(s)

5%

study, and was motivated by our efforts to accurately and
meaningfully analyze our performance measurements. In
general, knowledge of such usage patterns can not only help
identify which groups of clients benefit most from certain
service distribution and replication strategies, but also guide
how the application should be distributed to satisfy the de-
mands of a certain client group. The application configu-
rations and measurements described in Section 4 embody
both these points.

3.3. Client simulation
Client sessions were created by inserting asoft delayaf-

ter each request to simulate user think time. Soft delays
ensure a steady client load independent of response times.

Preliminary testing indicated that client response times
did not depend on the relative ratio of browsers and buyers,
but rather on the combined load coming from all clients. In
all of our tests, we use a combined client load of 20 web
page requests per second, coming from a mixture of 80%
browsers and 20% buyers, equally divided betweenRemote
andLocal client machines. Each test lasted for one hour,
preceded by 30 minutes of system “warm-up.”

Some of the static content of Java Pet Store consists of
96 images totaling 318 Kbytes. During our tests, we did not
send HTTP requests for these images, because in real-life
environments web browsers and proxies tend to success-
fully cache such content.

3.4. Code modifications
Java Pet Store was not designed as a J2EE performance

benchmark, so we made several modifications to define a
fair baseline for our experiments. We increased the size of
the database to allow testing of a greater number of concur-
rent users without contention for the data. Specifically, we
added five artificial categories, 50 products and 300 items.
We also removed unnecessary database requests and made
other changes analogous to those made in another J2EE per-
formance study [23]. Furthermore, we optimized all entity
beans so thatejbStore() calls do not access the database
at the end of read-only transactions.

This study focuses more on the performance impact of
wide-area latencies on client response times, and less on

Table 3. Buyer session.
Page Functionality
Main Entry point to the application

Signin Prompts user to enter user ID and password

Verify Signin System authenticates submitted credentials

Shopping
Cart

Upon the user adding an item to the shopping cart,
the updated cart content is displayed

Checkout User initiates checkout process

Place Order User confirms the order

Billing and
Shipping

User confirms billing and shipping information

Commit
Order

User commits order; all necessary database updates
happen here

Signout User signs out

the impact of specific application servers, web servers, and
database servers (or combinations thereof). For this reason,
we keep a modest load throughout all of our experiments,
and do not overstress the servers.

4. Distributing Pet Store
Table 4 shows average response times per page for the

five Pet Store configurations described below (for web page
descriptions refer to Tables 2 and 3). Bold numbers indicate
significant changes in performance, as compared to previ-
ous experiments.

4.1. Centralized Pet Store
In the first experiment, we ran the centralized undis-

tributed version of Java Pet Store with the modifications
noted above. In this configuration, which represents the low
end of the distribution spectrum, the main server received
all 20 HTTP requests per second and no requests were sent
to the edge server. As seen in Table 4, accessing the service
across a WAN link incurs approximately an extra 400 ms
due to two round trips: one for TCP handshaking and an-
other for the HTTP request (our tests did not use keep-alive
HTTP connections).

4.2. Remote façade
The centralized configuration suffers from two major

problems. First, the system does not utilize all its re-
sources, since the edge server is not used. Second, HTTP
requests from remote clients incur significantly higher re-
sponse times in comparison to local client requests. Both
of these problems can be addressed by migrating part of the
application components into the edge server.

To start with, we deployed all of the Java Pet Store web
components as well as theShoppingCart and Shop-
pingClientController stateful session beans in both
servers. However, we observed that doing so resulted in
wide-area HTTP requests being substituted by multiple,
more expensive, wide-area inter-component RMI calls. An
additional problem results from the fact that theCategory,

Table 4. Average response times (in ms) for five Pet Store configurations.
Client Browser Buyer

Configuration Page M
a

in

C
a

te
g

P
ro

d

It
e

m

S
e

a
rc

h

M
a

in

S
/in

V
e

ri
f

C
a

rt

C
h

/o
u

t

P
l.O

r.

B
ill

C
o

m
m

it

S
/o

u
t

Centralized Pet Store Local 87 95 94 88 106 98 78 89 120 76 70 70 158 90
(section 4.1) Remote 488 492 492 486 496 489 480 482 658 477 646 482 708 447

Remote façade Local 64 78 80 72 82 61 52 63 85 54 51 54 134 54
(section 4.2) Remote 72 387 389 373 384 60 54 630 407 61 57 61 500 63

Stateful component Local 55 82 84 55 77 60 51 65 77 53 50 55 584 54
caching (section 4.3) Remote 55 394 390 57 393 68 52 629 80 50 49 53 950 62

Query caching Local 56 50 51 54 87 58 51 61 70 50 50 54 614 52
(section 4.4) Remote 55 51 51 55 481 61 49 638 69 51 52 53 966 54

Asynchronous updates Local 61 54 53 57 92 61 53 64 75 53 53 56 195 56
(section 4.5) Remote 59 51 53 58 459 59 48 632 69 50 50 50 536 52

Product, Item and Searchpages present product informa-
tion to end users, retrieving information from the Product
database directly via JDBC. The lifecycle of opening, man-
aging, and properly recycling database connections, as well
as traversing query results demands verbose communica-
tion with the database server, resulting in overwhelmingly
degraded performance when the web tier and database are
separated by a high-latency network.

Both these problems result from an application struc-
ture that relies on fine-grained invocations of core compo-
nents (such as entity EJBs and the data sources) from front-
end components in the web layer. In addition to the per-
formance disadvantages described above, such as structure
contributes to less maintainable, less reusable, and tightly
coupled code. Fortunately, both of these concerns can be
alleviated using a simple, straightforward design pattern,
where the domain model, typically implemented as a col-
lection of possibly related entity beans, is wrapped with a
new thin layer offaçade objects[5, 19]. Clients, which only
have direct access to the façade, can delegate execution of
use cases in just one network call to the remote façade. The
latter in turn can efficiently execute the use case performing
possibly multiple local calls against co-located domain ob-
jects. Besides reducing the number of remote method invo-
cations, the façade provides a single entry point into the do-
main model, enabling improved transactional and security
control. The pattern does not suggest a singleton façade re-
sponsible for the entire application; instead, multiple façade
objects should be created to serve collections of related use
cases. For the pages used in our experiments, we rewrote
the application code so that every page incurs no more than
one RMI call to shared components. The only exception
is theVerify Signinpage, which makes two RMI calls, one
to create aCustomer session bean for the customer that
logged in, and another for retrieving the customer’s profile
for future use. Figure 2 illustrates an example of the use of

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

Catalog
<<SessionEJB>>

(Facade)
WAN

Edge Server Main Server

RDBMS

JD
BC

Figure 2. Remote Façade.

the façade pattern for theCatalog bean.
Façades also address the remote database access problem

by instead directing client requests to an object that is co-
located with the database server. In our case, we substituted
all direct database accesses from the web layer with calls to
theCatalog bean that served as a façade.

Average client response times for this application config-
uration (shown in Table 4) make the following points:
• Many pages (HTTP requests) can be served com-

pletely using only session information stored in the
edge server. In particular, six out of nine buyer page
requests can be served locally.

• RMI can require more than one round trip for a single
method invocation, which slightly diminises the bene-
fits of the façade pattern. It has already been pointed
out that this is mainly due to ping packets and dis-
tributed garbage collection [25].

• The response times of local clients improve because of
better load distribution.

4.3. Stateful component caching
The previous configuration improves locality and load

distribution by deploying session-oriented stateful compo-
nents on both servers. However, it does not yield much
benefit for pages that trigger invocations on shared stateful
components. In the third configuration, we focus on these
components, exemplified in Pet Store by entity EJBs.

Our experience suggests that entity beans are excellent
at handling heavy, concurrent transactional access, but they
can be quite inefficient when used as data caches. However,
data locality is critical when it comes to efficient wide-area
service partitioning. Fortunately, entity beans can be eas-
ily transformed into read-only data caches by minor mod-
ifications to their lifecycle definition. As a matter of fact,
most application server vendors already support some form
of read-only entity beans.

Such support typically consists of invalidating the read-
only bean upon updates, forcing it to refresh itself by
“pulling” data from the database. This approach works well
in a local-area setting, where the communication overhead
with the database is negligible, but results in unacceptable
performance in the wide-area. To avoid opening and main-
taining remote database connections, read-only beans can
efficiently refresh their content by querying a remote façade
upon the first business method call after the invalidation.
Another approach would be topush the updated stateto
read-only beans as a parameter of the invalidation call. This
push-based scheme has the major advantage that clients
of read-only beans will always have local response times,
which is not the case with the pull-based approach. At first
sight, it might seem that since the push-based scheme is not
demand-driven, it can result in sending superfluous updates.
However, the number of RMI calls is the same in both cases,
because the invalidation call has to be made anyway. In the
push-based scheme, more data potentially is being trans-
ferred. Several simple and effective optimizations can be
applied, to cope with this problem, such as: transferring
only the changes instead of the entire bean’s state (i.e., fields
that were modified), and compressing large fields for better
bandwidth utilization.

The above insights can be materialized in a version of so-
calledRead-Mostly Pattern[17] where transactional opera-
tions are sent to the read-write version of the bean, which is
typically co-located with the data source; non-transactional
read operations are handled locally by the read-only cache.
In addition, upon write operations, the read-write compo-
nents push the updates to the read-only beans. In this con-
figuration we strive for zero staleness: read-write entity
beans block while the update is pushed to the read-only
beans, hence a read operation that arrives after a previous
write has committed, will always read the correct value.

The following changes were made to Java Pet Store:

• Three new entity beans (read-write and read-only ver-
sions) were introduced:Category , Product , and
Item . These beans implement functionality that was
previously handled by theCatalog bean, which ac-
cessed the product database directly via JDBC.

• A blocking push-based update mechanism was imple-
mented between read-write beans and their read-only
counterparts. The updates make use of a remote façade

Edge Server

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

Catalog
<<SessionEJB>>

(Facade)

WAN

Main Server

RDBMS

JD
B

C

Catalog
<<SessionEJB>>

(Facade)

ItemRO
<<EntityEJB>>

ItemRO
<<EntityEJB>>

Updater
<<SessionEJB>>

(Facade)

Updater
<<SessionEJB>>

(Facade)

ItemRW
<<EntityEJB>>

CM
P

WAN

Figure 3. Stateful Component Caching.

so that each update incurs only one RMI call.
• The read-only beans and theCatalog bean were also

deployed on the edge server. The edgeCatalog bean
also has a reference to the centralCatalog bean, to
delegate requests that cannot be served by read-only
beans, such as aggregate queries.

Figure 3 shows a partial snapshot of the new component
graph. Due to space limitations, the figure illustrates the
read-mostly pattern only forItem EJB. Average response
times for this configuration (see Table 4) support the follow-
ing conclusions:

• Zero staleness for browsers penalizes buyers, since
they have to block while the updates are being pushed
across the wide-area to the edge servers. Specifically,
the Commit page of the buyer session updates the
Inventory bean, leading to higher response times
for this page (as compared to previous configurations)
for both local and remote buyers.

• Although the Commit page sees a higher response
time, the average buyer response time is not affected
as much because theShopping Cartpage is now served
locally by the newly introduced read-only beans.

• TheItempage of the browser session makes full use of
read-only entity beans and so has local response time,
but the other pages still need to go to the main server
to execute aggregate SQL queries.

4.4. Query caching
Entity bean instances typically correspond to rows in a

database table, implying that aggregate queries can only be
executed by a relational database system. In Java Pet Store,
as in most web-based e-commerce applications, aggregate
queries constitute a fair part of application data retrievals,
and hencecaching of query resultsin edge servers can fur-
ther reduce the number of remote invocations to centralized
database servers.

A general problem with caching query results is deter-
mining which queries are affected by changes that occur to

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

Catalog
<<SessionEJB>>

(Facade)

WAN

Edge Server Main Server

RDBMSJD
B

C

Catalog
<<SessionEJB>>

(Facade)
Query Cache

Manager

Updater
<<SessionEJB>>

(Facade)

Updater
<<SessionEJB>>

(Facade)

ItemRW
<<EntityEJB>> CM

P

WAN

Query Cache
Manager

Figure 4. Query Caching.

the database. This is a well-researched problem [18] and
we do not make any contributions to this field, nor try to
incorporate any advanced query caching techniques in our
experiments. Our focus is on the benefits of caching aggre-
gate SQL query results at edge servers to avoid expensive
trips to remote data centers. Such an optimization can be
implemented in several ways. One way would be to use
a demand-driven, pull-based update mechanism, whereby
upon receiving the first read request after invalidation, the
query cache manager gets the latest updates by re-executing
the query in the remote database. Alternatively, a push-
based protocol can be used that eagerly sends updates to the
query cache manager. Unlike the pull-based approach, this
scheme (1) does not penalize query readers because they
never trigger requests to the remote database; and (2) in-
volves small updates (typically single rows), making it eas-
ier to propagate only partial information [18] instead of re-
sending the entire query result, effectively reducing band-
width consumption.

We cache the results of two queries in Java Pet Store: the
set of products for a given category, and the set of items be-
longing to a given product. These queries are heavily used
by theCategoryandProductpages of the browser session.
The query result cache was incorporated in theCatalog
bean. For simplicity, we implemented the pull-based update
mechanism for caching query results. However, the impact
of invalidations is not visible in our test results, because the
catalog of Java Pet Store is effectively read-only.

Figure 4 shows the realization of this optimization. Av-
erage response times for this configuration (refer to Table 4)
support the following observations:
• As expected, query result caching lowers the remote

browser’s response times, but also has a local affect,
since it reduces required database accesses.

• The Searchpage performs a keyword query, which is
not cached, and hence it still incurs the cost of the re-
mote call to the database façade.

• Buyer’s performance does not improve because buyer
still blocks on updates.

4.5. Asynchronous updates
Achieving zero staleness for browsers penalizes the

buyer, who blocks while the update is propagated across the
wide-area to the edge read-only beans. This approach suf-
fers from severe scalability issues, since the response time
for write operations is proportional to the number of edge
servers times the number of individual fine-grained updates
triggered by a single façade call.

Pushing updates in anasynchronousfashion eliminates
this performance bottleneck. Upon transaction commit, up-
dates are asynchronously pushed across the wide-area to the
edge read-only components. But is the staleness of asyn-
chronous updates acceptable? One could argue that even if
the web tier components obtained the data from the trans-
actional read-write version of the bean or the database, the
information will likely be stale due to the user think time,
and other concurrent server activity. However, there could
be a problem if a client initiates a server-side update based
on data that it has read in a previous transaction, since the
update may be based on stale data. In such cases, where
a use case can span multiple transactions, it is the respon-
sibility of the application developer to ensure that the data
used to update the server is not stale. In a sense, in most
real-life scenarios the staleness of shared presentation data
is unavoidable, and the asynchronous updates design op-
timization takes advantage of this fact to significantly im-
prove response times.

The only change required to realize this pattern is to sub-
stitute the synchronous update façade with an asynchronous
message-driven bean (MDB) façade that propagates updates
to both read-only beans and query caches. The read-write
beans publish their updates in a local topic, where multiple
edge cache updaters are subscribed. This approach com-
pletely avoids the blocking problem and its scalability is
limited only by the messaging middleware.

Figure 5 shows a partial snapshot of the component
graph. Average response times for this configuration
(shown in Table 4) make the following points:

• The most noticeable impact of asynchronous updates
as compared to the previous configuration is improved
buyer response time.

• The average response time for the local buyer remains
slightly higher than that of the local browser since the
buyer session makes less use of query caching and
read-only beans.

• The remote buyer still incurs wide-area latencies in
two of the nine pages since it requires access to shared
components residing in the main server.

4.6. Summary
Figure 6 summarizes the results obtained from our tests.

The last configuration achieves the best overall performance
and scalability by accumulating all improvements. The

Edge Server

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

Catalog
<<SessionEJB>>

(Facade)
WAN

Main Server

RDBMS

JDBC
Catalog

<<SessionEJB>>
(Facade)

ItemRO
<<EntityEJB>>

ItemRO
<<EntityEJB>>

UpdateSubscriber
<<MDB>>
(Facade)

UpdateSubscriber
<<MDB>>
(Facade)

ItemRW
<<EntityEJB>>

C
M

P

UpdatePublisher
Updates

Topic
publish()

JMS Provider

onMessage()onMessage()

Remote
JMS

Provider
WAN

Figure 5. Asynchronous Updates.

0

100

200

300

400

500

600

Local Browser Local Buyer Remote Browser Remote Buyer

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
)

Centralized Pet Store

Remote Façade

Stateful Component Caching

Query Caching

Asynchronous Updates

Figure 6. Session average response times.

façadepattern avoids unnecessary remote method invoca-
tions and implicitly defines the optimal application par-
titioning granularity. Read-only entity beansand query
cachesdeployed in edge servers absorb the load gener-
ated by remote clients and save expensive trips to central-
ized data centers.Asynchronous propagation of updates
achieves scalability and guarantees that updaters are not pe-
nalized by blocking on write operations.

The overall effect of applied design patterns and opti-
mizations is two-fold. First and foremost, remote clients
are almost completely insulated from wide-area effects. In
the few cases when remote clients incur wide-area inter-
component RMI calls, the communication overhead is as
small as possible due to the façade pattern. Secondly, both
local and remote clients experience improved performance
due to aggressive caching of stateful components. Both
these effects validate the current trend towards distributed
deployment of network-accessible applications.

5. Framework Support for Design Rules

One of the major advantages of component-based devel-
opment is the incorporation of “best-practices” design pat-

terns as part of the component model, which“forces” the
adaptation of proven and effective design techniques. In
this section, we make several recommendations for incor-
porating the design rules that we applied to Java Pet Store
and automating their implementation.

Enforcement of Design Rules An underlying theme of all
the design rules advocated by this paper is to reduce com-
munication overhead imposed by high-latency networks.
The most important pattern available to designers and de-
velopers of distributed systems is the façade pattern, which
minimizes superfluous remote calls between the edge and
core tiers. Current-day systems employ various flavors of
the façade pattern, such as:synchronous(implemented as
session beans),asynchronous(implemented as message-
driven beans). Based on careful analysis of the application
requirements, developers should choose the most appropri-
ate flavor of the façade pattern for the scenario at hand, as
long as use cases that span several domain objects or other
server-side resources are performed on behalf of the clients
in one bulk remote call. Generally, the collection of a façade
and its co-located, logically related domain entities consti-
tutes the optimal partitioning granularity effectively serving
as aunit of distribution.

An effective way to promote and enforce the use of the
façade pattern is to define façades as the only components
that can be invoked by remote clients. Furthermore, all
other components present only local interfaces (as in EJB
2.0), so they can never be invoked remotely. If the compo-
nent model enforces this recommendation, web (edge) tier
components can never access core shared stateful compo-
nents directly, a practice that leads to expensive and unnec-
essary remote calls.

Automating Pattern Implementation Whereas the cor-
rect implementation of the façade pattern largely remains
the responsibility of developers, container environments can
and should automate transparent caching of stateful shared
components. One way of achieving this, and an approach
we are pursuing, is to rely on (1)extended deployment de-
scriptors, which specify desired behaviors, and (2)gen-
eral and flexible container environmentsthat implement re-
quired functionality.

Let us revisit the example of read-only entity beans op-
timization (read-mostly design pattern, section 4.3). The
extended deployment descriptor in this case would spec-
ify whether the bean is deployed in aread-writeor read-
only mode, also identifying for the latter case, the updater
read-write bean, the method of update (synchronous vs.
asynchronous), and any application-specific relaxed consis-
tency parameters [30]. The container infrastructure in turn
would transparently link the read-write entity bean contain-
ers with the corresponding read-only containers to enable
propagation of updates. Such automation frees develop-
ers from having to implement tricky update mechanisms

that require deployment of additional auxillary components
such as message-driven beans and JMS topics (Section 4.5).
Another advantage of this approach is that it allows flex-
ible demand-driven (re)deployment of additional read-only
beans in response to changing environment conditions, such
as higher client loads.

The caching of query results can also be automated using
a similar approach. The extended descriptors in this case
would identify the queries to be cached, the invalidation
mechanism, as well as operations (of possibly other compo-
nents) that can cause query result invalidations or updates.

6. Discussion and Related Work
Table 4 shows that even when all of our optimizations are

accumulated, transactional operations coming from remote
clients still incur wide-area latencies because they have to
access the main database server. Highly customized aggre-
gate queries (such as keyword searches) also end up being
executed in the database server, since their caching is typi-
cally ineffective. Both of these problems can be alleviated
by orthogonal techniques that involve database partitioning
and replication [29]. However, the main focus of this pa-
per is onlightweighttechniques for application partitioning
and replication. In particular, unlike database replication,
stateful component instantiation and (re)deployment can be
done on-demand at run-time.

Although this work has focused on one sample applica-
tion, and our conclusions, at first glance, may seem appli-
cation specific, they are in fact applicable to a wide class
of general purpose component-based applications. Java Pet
Store covers most of the J2EE component platform and fo-
cuses on common ways of building J2EE component ap-
plications, so the vast majority of current-day commercial
component-based applications share with it their architec-
tural design and functional organization.

The identified application design rules are relevant for
interactive scientific grid-based applications as well. These
applications show several of the same characteristics as
commercial component-based applications, typically in-
cluding client-side remote instrumentation and visualization
components, server-side data processing components, and
back-end distributed repositories storing structured data.
Ongoing efforts to integrate grid service frameworks with
commercial web services standards, exemplified by the
open grid-services architecture (OGSA) initiative [21], in-
dicate strong support for this emerging trend.

Although this paper has focused on the static deployment
of component-based distributed applications, our long-term
goal is to enabledynamic demand-drivendeployment of
application components in response to changing environ-
ment conditions (load shifts, congested links, client behav-
ior, and others). Existing component frameworks such as
J2EE [27] and Microsoft .NET [20], and grid-service archi-

tectures such as Globus [11] and Legion [1] provide support
for seamless interaction among distributed components, but
as we have shown, do not offer much guidance on how to
construct adaptive applications. Our work addresses this
shortcoming by identifying common design rules yielding
good wide-area performance for such applications.

The identified design rules themselves are related to pre-
vious work in two categories: application-level overlay net-
works and state replication in wide-area environments.

Application-level overlay networks Systems such as
Overcast [13] and RON [4] have demonstrated the utility of
application-level overlay networks for coping with the un-
predictable characteristics of wide-area networks in the con-
text of continuous media delivery and general traffic routing
respectively. Similar benefits have also been achieved for
web content delivery usingcontent-distribution networks.
Systems such as Akamai’s EdgeSuite [7] and IBM’s Web-
Sphere [28] extend the latter to offload part of the process-
ing from web servers toedgeservers, relying upon emerg-
ing specifications such as ESI [9] and OPES [22]. Our
work uses a similar notion ofedgecontainers to perform
application processing closer to the clients thereby poten-
tially offering performance insulated from the characteris-
tics of wide-area environments. However, in contrast to
the application-specific solutions described above, our ap-
proach is applicable to a large set of general applications
built using standard component frameworks.

State replication in wide-area environments Our identi-
fied design rules rely on efficient replication of application
components to improvedata localityandresponsivenessfor
end users. Such replication appears similar, at first look,
to the replication of stateful components already performed
in current-day enterprise systems such as J2EE application
servers (where stateful session EJBs are replicated). How-
ever, the latter is primarily done in a local scale forfailover
purposes, the application servers involved in the replication
are tightly clustered together, and low-level LAN-specific
mechanisms such as IP broadcast, are used to synchronize
among the replicas. Such tightly-coupled approaches do not
scale to wide-area environments, which requires scalable
and efficient mechanisms for inter-component synchroniza-
tion. In this regard, the design rules explored in our pa-
per are more related to (and can leverage) other work on
state replication in wide-area systems, examples of which
include Bayou [16], which proposes an anti-entropy pro-
tocol for flexible update propagation between weakly con-
sistent storage replicas, and TACT [30], which investigates
tradeoffs between consistency, performance and availability
of replicated services.

This paper extends ongoing efforts in our research group
investigating application-neutral techniques for building
adaptable general-purpose component-based distributed ap-
plications. Three of our previous systems — Application

Tunability [3], CANS [10], and Partitionable Services [12]
— have looked at introducing adaptation functionality at
the intra-component level, at the level of data streams flow-
ing between static application components, and at the inter-
component level. The approach outlined in this paper falls
into the third category above, but differs in attempting to
realize adaptation without requiring modification of appli-
cation components by instead relying upon additional func-
tionality in container environments and general-purpose
auxillary system components.

7. Conclusion
This paper has investigated whether component-based

applications, which represent a dominant trend for con-
structing network services, can be efficiently distributed
and replicated in wide-area environments. In the context
of the J2EE framework, we have proposed application de-
sign rules and accompanying system-level support essen-
tial to a beneficial and efficient service distribution process.
Based on incremental modifications to the Java Pet Store
sample application, we demonstrate that component-based
applications can be efficiently distributed in wide-area en-
vironments if they adhere to a small set of identified design
patterns and optimizations.

Finally, we argue that the burden of implementing some
of the suggested functionality could be shifted from appli-
cation programmers to container providers. With this sup-
port, application deployers need only declaratively express
desired component behavior via generalized (extended) de-
ployment descriptors, and needed system-level and applica-
tion level components could be automatically instantiated,
linked and configured by containers.

Acknowledgments
This research was sponsored by DARPA agreements

N66001-00-1-8920 and N66001-01-1-8929; by NSF grants
CAREER:CCR-9876128 and CCR-9988176; and Microsoft. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright anno-
tation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as representing
the official policies or endorsements, either expressed or implied,
of DARPA, SPAWAR SYSCEN, or the U.S. Government.

References

[1] A. Natrajan et al. Capacity and capability computing using
Legion. InProc. of the Int. Conf. on Comput. Science, 2001.

[2] Object Management Group.CORBA Components Specifica-
tion. Version 3.0.2002.

[3] F. Chang and V. Karamcheti. A framework for automatic
adaptation of tunable distributed applications.Cluster Com-
puting, 4:49–62, 2001.

[4] D. Andersen et al. Resilient overlay networks. InProc. of
the 18th Symp. on Oper. Syst. Princ. (SOSP), 2001.

[5] E. Gamma et al. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[6] E. Kohler et al. The Click modular router.ACM Trans. on
Comp. Syst., 18(3):263–297, August 2000.

[7] Akamai Technologies Inc. Edgesuite services.
http://www.akamai.com/html/en/sv/
edgesuite over.html .

[8] Sun Microsystems.Enterprise JavaBeans Spec. Version 2.0.
2001.

[9] Edge Side Includes (ESI).http://www.esi.org/ .
[10] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS:

Composable, Adaptive Network Services infrastructure.3rd
USENIX Symp. on Internet Technologies and Systems, 2001.

[11] I. Foster et al. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration.
www.globus.org/research/papers.html .

[12] A.-A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Par-
titionable Services: A framework for seamlessly adapting
distributed applications to heteregeneous environments. In
Proc. Int. Symp. on Hign Perf. Distr. Comp. (HPDC), 2002.

[13] J. Jannotti et al. Overcast: Reliable multicasting with an
overlay network. InProc. of OSDI 2000.

[14] J. Maassen et al. Efficient Java RMI for parallel program-
ming. ACM Trans. Prog. Lang. Syst., 2001.

[15] JBoss Open-Source Java Application Server.
http://www.jboss.org .

[16] K. Petersen et al. Flexible update propagation for weakly
consistent replication. InProc. of SOSP-16, 1997.

[17] S. Kounev and A. Buchmann. Improving data access of
J2EE applications by exploiting asynchronous messaging
and caching services. InProc. of VLDB-28, 2002.

[18] L. Degenaro et al. A middleware system which intelligently
caches query results. InProc. of Middleware 2000.

[19] F. Marinescu.EJB Design Patterns. John Wiley and Sons,
New York, 2002.

[20] Microsoft Corporation. Microsoft .NET.
http://www.microsoft.com/net/ .

[21] Open Grid Services Architecture.
http://www.globus.org/ogsa/ .

[22] Open Pluggable Edge Services (OPES).
http://www.ietf-opes.org/ .

[23] Oracle Corporation.Oracle9iAS J2EE Performance Study
Results.http://otn.oracle.com/tech/java/
oc4j/pdf/java performance results.pdf .

[24] Sun Microsystems.Java Pet Store Sample Application.
http://java.sun.com/blueprints/ .

[25] S. Campadello et al. Wireless Java RMI. InProc. of the 4th
Int. Enterpr. Distrib. Object Comput. Conf. (EDOC), 2000.

[26] I. Singh, B. Stearns, and M. Johnson.Designing Enterprise
Applications with J2EE Platform. Addison-Wesley, 2001.

[27] Sun Microsystems. Java 2 Enterprise Edition.
http://java.sun.com/j2ee .

[28] IBM Corp. Websphere platform.
http://www.ibm.com/websphere .

[29] Y. Amir et al. Practical wide-area database replication.
Techn. Report CNDS 2002-1, Johns Hopkins Univ., 2002.

[30] H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services. InProc. of the 4th
Symp. on Oper. Syst. Design and Implem. (OSDI), 2000.

