
DisCo: Middleware for Securely Deploying Decomposable Services
in Partly Trusted Environments

Eric Freudenthal and Vijay Karamcheti
Courant Institute of Mathematical Sciences, New York University

{freudent, vijayk}@cs.nyu.edu

Abstract

The DisCo middleware infrastructure facilitates the con-
struction and deployment of decomposable applications for
environments with dynamic network connectivity properties
and unstable trust relationships spanning multiple adminis-
trative domains. Consumers of these services, who are mu-
tually anonymous, must be able to discover, securely ac-
quire the code for, and install service components over the
network with only minimal a priori knowledge of their lo-
cations. Once installed, these components must be able to
interoperate securely and reliably across the network.

Solutions exist that address individual challenges posed
by such an environment, but they rely upon mutually in-
compatible authorization models that are frequently insuffi-
ciently expressive. The primary contributions of DisCo are
(1) a middleware toolkit for constructing such applications,
(2) a unifying authorization abstraction, and (3) a realiza-
tion of this authorization well suited for expressing partial
trust relationships typical of such environments. This pa-
per is primarily about the first two of these contributions,
[7] presents the third.

1. Introduction
Increasingly, distributed applications are being called

upon to execute in dynamic network environments spanning
multiple administrative domains, and in situations where the
principals involved are subject to changing trust relation-
ships. This trend is a consequence of many factors, includ-
ing an increase in user mobility and the growing popular-
ity of “out-sourced” applications such as those advocated
by the web services standardization efforts.

Such applications can involve dynamically deployed
code published by one organization, executed on be-
half of a user (or automated agent) in a second organiza-
tion, on a computer administered by a third. Such appli-
cations raise security concerns inadequately addressed by
current infrastructure.

In order to address the challenges of security and pro-
tection of system and application integrity, appropriate ac-
cess control mechanisms must be implemented at all levels:

hosts must be protected against corruption by “rogue” pro-
grams, programs must be protected from rogue hosts, and
communication channels must be secure and authorized.

Components and systems are available that address var-
ious portions of this problem space. However, the lack of
a coherent security infrastructure with a unified access-
control model increases the complexity of constructing
and deploying security-conscious applications and sys-
tems. DisCo is a security-aware middleware toolkit for con-
structing modular distributed applications that addresses
these challenges through the pervasive use of a unifying au-
thorization abstraction.
1.1. Security Challenges Addressed by DisCo

DisCo provides an API for dynamically deployable ap-
plications with the following features:

1. A modularreplaceableabstraction for access-control
that includes support for partial trust relationships.

2. A communication substrate and dynamically config-
urable execution sandboxes that use this abstraction.

3. Direct representation of continuous authorization rela-
tionships including mechanisms that report when au-
thorization characteristics change.

These features address shortcomings in existing middle-
ware, which often provide disjoint and incomplete solutions
to the challenges of security-aware distributed applications.
For example, TLS[5] provides an encrypted communication
channel merged with an X.509 authenticator,1 but there is
no mechanism available for using it with a different autho-
rization system. X.509 authentication is not well suited for
access control problems that require transitive authorization
between mutually-anonymous parties. Other combinations
of secure transport and authorization schema have been re-
cently proposed, however these solutions are not modular
and therefore also only offer fixed-point solutions with no
access control system accepted as being appropriate for all
applications.

In the absence of a universal authorization system, DisCo
utilizes a generic authorization schema for all access con-
trol decisions. While DisCo provides a realization of this

1 X.509 only provides authentication of identity. These authenticated
identities are commonly used as a subjects for boolean ACL autho-
rization.

freudent
Proc. ICDCS 2004, in press

schema using the dRBAC trust-management system, alter-
native realizations based on other authorization systems can
be easily substituted. This generic authorization schema is
used pervasively throughout DisCo including for authoriz-
ing component-host relationships.

Typical solutions that address the same problem as
the second feature above have relied on sandbox abstrac-
tions in languages, such as Java, which statically asso-
ciate particular code publishers with pre-set configurations
of a selectively-permeable membrane isolating system re-
sources from an object’s execution environment. Our work
extends this model to include configuration and mainte-
nance of membrane permeability based on characteristics
of dynamic partial trust authorization relationships be-
tween agents (who dynamically deploy applicationcompo-
nents), code publishers, and hosts.

Finally, existing access control solutions were developed
for authorization of atomic transactions that occur in some
instant of time. However, this transaction model is inap-
propriate for modular distributed components that engage
in sustained security-sensitive relationships. If access per-
missions are only evaluated at the time a trust relationship
is established, then the system suffers from time-of-check-
to-time-of-use (TOCTTOU) [9] vulnerabilities. We observe
that while the timely enforcement of reduced access rights
may be critical to maintain system integrity, these permis-
sion changes occur infrequently and asynchronously with
accesses; DisCo’s authorization framework decouples the
updating of access permissions from their use, thereby pro-
viding an efficient yet reliable representation of “continu-
ous trust” well suited to sustained relationships.

2. DisCo Overview
In this section, we describe the structure of a typical ap-

plication suited for the DisCo middleware and a notional
application that illustrates the challenges DisCo addresses.

2.1. Application Model
DisCo applications are assemblages of modular software

componentsthat may be deployed on multiple network-
connected hosts in response to requests from local or re-
mote users or even automated deployment controllers (that
we refer to as “agents”) acting as users . As with programs
running in conventional network-centric environments (e.g.,
using Java’s sandboxes and RMI), once deployed, compo-
nents are provided controlled access to system resources
and other network-connected components.

DisCo’s execution environments (calledexecution con-
tainers) and communication substrate (calledSwitchboard)
extend these controlled access models to “mutually anony-
mous” deployments where neither the deployed component
nor hosts are pre-configured with appropriate access restric-
tions. Instead, infrastructure is provided to allow access-
control configurations to be determined dynamically.

The following section describes an example modular ap-
plication and how it might benefit from DisCo.

2.2. TravelAnywhere Example
TravelAnywhere is a fictional Internet travel service in-

tended for use by corporate travel departments, and illus-
trates a typical DisCo application. TravelAnywhere is com-
prised of three primary components: (1) aquerysubsystem
for searching and choosing among available flights, (2) a
bookingandbilling subsystem that allows users to purchase
tickets, and (3) auser interfacefront-end component. These
components have the following security and integrity char-
acteristics:
• The query subsystem is compute-intensive, and given

TravelAnywhere’s interest in providing fast responses
to its user queries, can benefit from deployment in
proximity to users of the service. Corruption of this fa-
cility presents a liability to customers, and therefore
TravelAnywhere permits the query component for a
particular corporate entityC, to only be deployed on
hosts trusted byC.

• The booking subsystem is responsible for both finan-
cial and reservation transactions. Incorrect client au-
thorization or accounting is a risk for TravelAnywhere.
Therefore, TravelAnywhere is only willing to have the
booking component execute on hosts it authorizes.

• In order to be responsive to user needs (and adaptive
to changing component availability), the user interface
component prefers to be located in proximity to the
user on hosts trusted by the user.

Ideally, TravelAnywhere components can be dynami-
cally deployed onto computational hosts in a generic man-
ner – where neither the components nor the hosts need to be
pre-configured for each other, allowing computational re-
sources to be negotiated as a commodity. However, such
generic deployments must ensure that the integrity con-
straints of the components are preserved despite (1) the
initial mutual anonymity of hosts and components and (2)
changes in trust relationships, e.g., resulting from an expira-
tion of the contract between a vendor and TravelAnywhere
or between clients and their trusted hosting sites.

Once deployed, TravelAnywhere components must dis-
cover other appropriately authorized TravelAnywhere
components and establish inter-component communica-
tion channels, which we view as mutually authorized
pair-wise coalition relationships. Each component moni-
tors the authorization of its partners to guard against access
by agents whose authorization is revoked.

This deployment scenario can only be approximated
by conventional infrastructures. For example, TravelAny-
where may have installed dedicated systems that they
directly authorize. In addition, other vendors may con-
tract with TravelAnywhere to provide hosting environ-
ments with acceptable security properties. A conven-

tional approach to this deployment problem would involve
explicit pre-configuration of each potential host to pro-
vide appropriately isolated “sandbox” environments for
“TravelAnywhere” components. Such levels of customiza-
tion substantially increase the cost and limit the flexibility
of component deployment. Furthermore, sandbox permis-
sions are typically not adjustable at runtime, thus inhibiting
the ability of systems to disable already-deployed compo-
nents if authorization is lost.

Furthermore, the authorization of dynamically formed
coalition partnerships between deployed components
is problematic with currently available communica-
tion and service discovery substrates. Insecure discovery
and RPC substrates such as Java’s JINI and RMI can be uti-
lized on systems with secure networks, but such a deploy-
ment prohibits the deployment of components of multiple
trust domains onto the same host. An alternative ap-
proach would utilize secure communication substrates such
as TLS which do not provide mutually anonymous or con-
tinuous authorization.

DisCo middleware can facilitate flexible deployment of
the TravelAnywhere application: DisCo’s container abstrac-
tion provides a more general mechanism for establishing an
appropriately permeable membrane between components
and system resources. With DisCo, TravelAnywhere and
administrators of computational resources can instead in-
directly authorize and configure hosts through policies ex-
pressed as credentials in a distributed trust management sys-
tem. DisCo’s authorized discovery and switchboard com-
munication library similarly provide a flexible infrastruc-
ture to support the authorized communication needs of the
deployed components.

3. Facilities DisCo Provides
Below, we enumerate the facilities provided to DisCo ap-

plication components.
Component Deployment and Installation
• Authorized and authenticated code distribution
• Remote and local installation of components
• Lazy code distribution
• Execution environments that impose access limitations

based on attributes of component and user authoriza-
tion

Monitored Authorization and Communication
• Authorized locality-aware discovery of components

providing named services
• Maintenance of parameterized inter-component con-

nection security and transport properties, including se-
crecy, integrity, timely delivery, liveness, and timely
response to changes in the trust relationship that au-
thorized the connection

• Ability to register a callback to handle failure if autho-
rization and transport requirements are violated.

Adaptation to Environment Changes
• Notification from the monitored authorization and

communication sub-system of changes to autho-
rization, which facilitates adaptation or failover to
alternative remote components should connectiv-
ity or authorization be lost

• An application- and connection-specific level of indi-
rection between connected service components which
can be used to implement security filtering, alternative
functionality, performance modulation, etc.

• Lifetime management of data structures involved in
inter-component coalitions (cleanup, garbage collec-
tion, etc.)

Functionality in the above features has been realized
through DisCo’s libraries, abstractions, and core com-
ponents built on top of Java 1.4. The components can
be conceptually grouped into four classes. First, a com-
mon authorization and access control model comprises
the core of all other components and is described in sec-
tion 4.1, with a specific realization of this model “dR-
BAC” described in Section 4.2. The second class, de-
scribed in 4.3, includes components for authorization- and
liveness-aware component communication and an indirec-
tion design pattern for communication. The third class,
a minimal runtime system capable of on-demand com-
ponent installation within a container execution environ-
ment with appropriate rights is described in 4.4. Finally,
a locality-aware discovery system with failover is de-
scribed in 4.5.

In the next section, we present the core components of
the DisCo middleware in greater detail. In subsequent sec-
tions, we describe sample applications, a performance eval-
uation of our online communication components, and a de-
scription of related work.

4. Architecture
We begin with DisCo’s unified authorization abstraction,

followed by a realization of this abstraction named dR-
BAC. We then describe major subsystems that provide au-
thorized inter-component communication channels and ex-
ecution environments.

4.1. Access-Control Infrastructure
All parties that engage in authorized relationships within

DisCo are identified using public keys. Trust-sensitive
coalition relationships in DisCo are authorized using a
generic abstraction called anAuthorizer . DisCo compo-
nents define Authorizer objects for each security-sensitive
interface. Authorizer objects evaluate authorization re-
quests that contain only the requester’s public-key identity
and credentials. If the Authorizer determines that the re-
quester has the required access rights, a DisCo authorizer
returns anAuthMonitor object representing the autho-
rizing relationship. The simplest AuthMonitors represent

interface Authorizer {
AuthMonitor authorize(

PublicKey id,
Credential creds);

}
interface AuthMonitor {

boolean isAuthorized();
updateCredentials(Object creds);
addCallback(AuthMonitorCallback t);
removeCallback(AuthMonitorCallback t);

}

Figure 1. Authorizer and AuthMonitor Inter-
faces

boolean authorization relationships, more advanced au-
thorization monitors that provide parameterized autho-
rization (for example, to authorize the access rights of a
program from a partially trusted publisher) are also de-
fined. Figure 1 shows the signatures of the DisCo Autho-
rizer and AuthMonitor classes.

Security-sensitive interfaces can either poll authorization
monitors (by calling theisAuthorized()method) whenever a
restricted transaction is requested, or instead register inter-
est in a change of authorization through a callback inter-
face. Authorization monitors can retain state and efficiently
monitor the status of dynamic authorization relationships.
For example, an authorizer that grants access based on a
time-sensitive credential can schedule itself to be invali-
dated when that credential expires. Alternative authoriza-
tion monitor designs can subscribe to online services for
credential validation, replacement or revocation.

The DisCo library includes Authorizers and AuthMon-
itors realized using the dRBAC system described below.
However, the authorization-management system imple-
mented within an Authorizer and the contents of its cor-
responding credential objects are opaque to all other
DisCo core components. Alternative authorization mon-
itors that implement other access control and authoriza-
tion management systems such as ACLs or theRT [16]
attribute-based access-control systems could be easily con-
structed and be used seamlessly throughout DisCo.

4.2. Summary of dRBAC’s Features
dRBAC is a role-based “trust management” system for

coalition environments. Like other distributed role-based
access control systems, dRBAC’s credentials, calleddele-
gations,express the granting of an equivalence class of ac-
cess rights in one authorization domain to members of an-
other equivalence class, possibly in another authorization
domain. Each of these equivalence classes is represented by
a dRBACrole. A summary of other relevant features of dR-
BAC follows; a more complete description appears in [7].

Each dRBAC delegation is cryptographically signed by

P: Provider of Service X

Xi : ServiceX Variant

Implementation

ServiceX Interface

Xj : ServiceX Variant

Implementation

ServiceX Interface

C: Consumer of

ServiceX

Out-Call

Proxy

ICO

Xk : ServiceX Variant

Implementation

(Proxy)

ServiceX Interface

…

ICOContainer

Lifetime

Manager
(replaceable)

ICO

Administrative

interfaces

C
o
n
n
ec

ti
vi

ty
A

le
rt

Control

A
u

th
o

ri
z
a
ti

o
n

A
le

rt

Live
Auth
MUX
RPC

Xport
Cipher

Live
Auth
MUX
RPC

Xport
Cipher

TCP

Figure 2. DisCo objects used in a Switch-
boardRPC Connection Through an ICO

its issuer.2 As with other role-based access control systems,
dRBAC delegations may be transitively chained to form
proof graphs indirectly authorizing a required class of ac-
cess rights. A dRBAC credential can also contain
• issue and expiration dates
• requirements for (continuous) online validation
• search tags that assist in the online discovery additional

transitive credentials
• attribute bindings that modulate access rights
dRBAC credentials are stored in a distributed repository.

To assist in collecting dRBAC credentials that authorize a
particular partnership, an automated credential discovery
mechanism has also been constructed.

A dRBAC Authorizer contains the dRBAC role and lim-
iting attenuation attributes that authorized subjects must
possess. The DisCo library contains a convenient factory
object to generate appropriate dRBAC Authorizers. dRBAC
constructs a proof that the subject requesting access has
the required authorization, returning a ProofMonitor. Proof-
Monitors extend the AuthMonitor interface, and are respon-
sible for detecting and reporting changes in authorization.

dRBAC can express and enforce multiple permissions at
modulated levels. For example, the following delegation:

MIT.stu→ NYU.stu w/ NYU.libLoan< 30

could express an authorization relationship providing an
MIT student the rights available to an NYU student, but
with library loan privileges limited to less than 30 days.
In our demonstration applications described in Section 5,
this representation of modulated access rights is used by
DisCo’s authorization management components for a vari-
ety of purposes including the configuration of an execution
container’s permeability.
4.3. Inter-Component Communication

The Switchboard library, an earlier version of which is
described in [8], provides a substrate for secure and autho-

2 Additional credentials may be required as evidence of the issuer’s au-
thorization to administer the rights granted by the delegation.

rized inter-component communication. Switchboard coali-
tion partnerships can be secure, authenticated, continuously
and mutually authorized connections whose channels are
monitored for connectivity.

Switchboard communication channels are dynamically
constructed from modular internal components that imple-
ment encryption (and identity validation), liveness monitor-
ing and authorization, and modular interface components
that implement stream, object, and RPC interfaces. These
components are assembled automatically as specified by
application-specific constraints. For example, if a Switch-
board communication channel has no connectivity require-
ment, it will contain no liveness monitor.

Authorization in Switchboard is mutual: switchboard
connections are only consummated if authorized by both
parties. Potential partners specify Authorizers; authenti-
cated identities and credentials are conveyed during a com-
munication channel’s negotiation phase,

Components may require that clients be provided cus-
tomized interfaces. For example, some interfaces may re-
quire per-partner accounting and enforcement of dynam-
ically changing access limitations. Other interfaces may
publish a single remote interface to all eligible partners.
These two interface policies can be effectively achieved by
following the well-known adapter and proxy design pat-
terns [6], respectively. To permit the efficient implementa-
tion of both patterns, we encapsulate partnership policy for
coalitions established using RPC within LifetimeManager
objects that (1) examine the authorization monitor associ-
ated with the connection; (2) import and export appropriate
interfaces; and (3) respond to changes in authorization and
liveness. The Switchboard libraries include a standard Life-
timeManager class which implements a proxy service ex-
porting a single interface to all eligible suitors.

The construction of components that export RPC inter-
faces to multiple clients is simplified through the use of
the Switchboard “hydrant” class. Customization is achieved
through the use of a LifetimeManagerFactory class that
manufactures a LifetimeManager for each connection.

Figure 2 illustrates the relationship between a Switch-
board hydrant (server)S implementing an adapter pattern
and a typical clientC. In this case, a unique interface ob-
ject X1..Xn has been manufactured for each client by the
connection’s LifetimeManager based on each client’s au-
thorization relationship with X. As illustrated in this Figure,
a Switchboard interface, authorization monitor, and lifetime
manager are all encapsulated within a per-connection indi-
rect communication (ICO) object.

4.4. Runtime System
Hosts require protection against rogue objects loaded

from external sources. To achieve this, DisCo’s runtime
subsystem provides mechanisms to securely control the dis-
tribution, integrity, and installation of code corresponding

to an object provided by an external source. Once an object
is instantiated, its execution container is limited by a mem-
brane whose permeablity is derived from authorization re-
lationships with both the code’s publisher and the agent on
whose behalf it is executing.

ContainerSecurityAuthorizers , extend the autho-
rization abstraction used throughout DisCo, and provide a
bridge between access control systems (such as dRBAC)
and administrative security policy. As withAuthorizers ,
ContainerSecurityAuthorizers authorize a code publisher,
and are factories forContainerSecurityMonitors .
These monitors represent authorization to download pub-
lishers’ class files and to define Java security contexts
associated with each object.

As with authorization monitors used throughout DisCo,
ContainerSecurityMonitors can, dynamically modulate per-
missions after instantiation. Our extensions to Java security
contexts, described below, synthesize permissions from au-
thorization relationships with both the code provider and the
agent (local or remote user) that instantiates each object.

Java’s SecureClassLoader interface is responsible for the
secure retrieval of remote code and associating an access
control object called a “security context” with every code
source. Standard Java security enforcement mechanisms are
provided that are consulted each time an object attempts to
perform some restricted operation. Our approach is to ex-
tend this model to provide both “user” and “class” security
as follows: As with Java’s design, a security context is as-
sociated with each code source. In addition, at the time an
agent “logs in” to a system, a new thread group is estab-
lished, which is also associated with its own security con-
text. This model permits any host security policy to mod-
ulate access rights based on authorization relationships be-
tween both users and code publishers.

DisCo’s extends Java’s secure class loader to utilize
Switchboard to obtain class files and establish authoriza-
tion relationships with code providers. AuthMonitors for
the host attempting to obtain code provide a front-line de-
fense against the instantiation of objects from unauthorized
sources. These same AuthMonitors are also used to define
container security policy. Switchboard’s symmetrical au-
thorization of both correspondents permits a code provider
to restrict distribution of their code to authorized hosts.

As with other components of DisCo, ContainerSecurity-
Monitors (which extend AuthMonitors) can enforce a range
of security policies, as appropriate for a particular appli-
cation. A trivial ContainerSecurityAuthorizer can mimic a
conventional Java security policy by returning a static set
of permissions based on the authorization relationship be-
tween the host and the code provider, thereby deferring ac-
cess control decisions to standard Java security enforcement
mechanisms. More aggressive implementations can evalu-
ate each request for privileged access in the context of a dy-

class Locator {
Object serviceName;
InetAddress serviceAdministrator;
InetAddress publishingServer;
PublicKey publishingServerID;
Credentials publishingServerCreds;
Signature sig;

}
class ServiceDescriptor {

Object serviceName;
InetAddress serviceAdministrator;

}

Figure 3. Locator and ServiceDescriptor in-
terfaces

namic trust management system.
Thread security policy is managed byUserSecurity-

Monitors . The same underlying mechanism is used to es-
tablish thread-level security for local and remote users: a
login control object authorized to construct thread security
contexts associates a new thread group with a UserSecuri-
tyMonitor. We refer to this process as “user context acti-
vation.” Secure component deployment to remote hosts is
implemented using Switchboard connections to “activation
agents” that establish authorized user contexts.

4.5. Locality-Aware Discovery
In order to minimize communication latency, it is of-

ten preferable to obtain network services from nearby
providers. Disco’s discovery subsystem provides a mech-
anism for components to locate nearby providers of
needed services. Distinct services are identified with a
ServiceDescriptor .

Providers publishing services register signed and cre-
dentialedLocators referencing themselves as authorized
servers for an enclosed ServiceDescriptor. Locators are self-
certified using dRBAC authorizers in order to limit the prop-
agation of rogue locators.

Clients interested in connecting with a particular ser-
vice generate a discovery query specifying a specific ser-
vice descriptor. To provide reliable fail-over in cases where
the discovery mechanism does not locate a local authorized
provider, ServiceDescriptors also identify a default “service
home.” The locator interfaces are presented in Figure 3.

The Service Advertisementinterface controls ac-
tive broadcast of Locators, describing the service to be
advertised. TheService Publishinginterface allows a ser-
vice to tell the local Discovery module to passively wait
for and respond to requests that match the ServiceDescrip-
tor elements of a provided Locator. Finally, theService
Discoveryinterface sends out a request for Locators that of-
fer the service specified in a ServiceDescriptor. Thefind

method takes an Authorizer that can evaluate the creden-

tials provided by any returned Locators.

5. Sample DisCo Applications
We have constructed several applications to evalu-

ate DisCo’s usefulness as an infrastructure for secure de-
ployment of decomposable applications in dynamic
partly-trusted network environments. These include a se-
cure video distribution service, a multi-player game, an
Internet-access provider for transient wireless users, a se-
cure multi-resolution imagery distribution system, and
a secure mail distribution system. The last two are de-
scribed below. Our secure multi-resolution imagery distri-
bution system directly utilizes DisCo subsystems to deploy
components and enforce security constraints. Our se-
cure mail application leverages an optimizing automated
deployment planner [13].

Both of these applications utilized dRBAC, Switchboard
communication channels, and DisCo activation of com-
ponent installation. As was anticipated, application “code
bloat” for both applications due to the inclusion of secu-
rity constraints was dominated by the definition of trust re-
lationships rather than their enforcement.

5.1. Secure Multi-Resolution Image Distribution
This application distributes imagery to users with vary-

ing levels of permission. Users with high “security clear-
ance” are permitted to access finely detailed imagery, users
with lower clearance are only provided correspondingly
lower levels of detail. Our master image server provides im-
age data to authorized clients and proxies at a variety of
resolution levels. Caching image proxies are automatically
“activated” on hosts near to clients; during the activation
process, the master server constructs a customized proxy
instance with permission to access and provide imagery at
resolutions appropriate to the activation host. Clients simi-
larly install image viewers into execution containers on their
hosts from “viewer provider” services. These viewers pre-
fer to obtain imagery from nearby proxies when available,
and default to the master when no nearby proxy has suffi-
cient authorization to provide data at a needed resolution.

RPC-over-switchboard was used to implement image
delivery. Interactive response latency was largely due to
the online computation required to generate foveated tiles
for transmission, communication latency, and the algorithm
used to render images as opposed to features of the DisCo
infrastructure.

5.2. Secure Mail
The “secure mail” application provides a component-

based realization of a mail service that is automatically de-
ployed in a dynamic network spanning multiple trust do-
mains. This secure mail service is part of a related research
effort (see [26]) that is examining strategies for deployment
planning, which satisfy both security and performance con-

straints. DisCo is used to implement and enforce security
constraints between components deployed by this system.

The hosts and network resources available for this ap-
plication provide varied levels of performance and security
that may vary over time. The component-based structure of
the mail service enables component deployments that are
customized to the properties of the network. In particular,
the application consists of server, cache, and client compo-
nents, each customized before delivery. Additional cipher
components help realize a security model where each user
and mail message has an associated security level. The lat-
ter indicates a need for encryption when a message is being
transferred through or stored in insecure components.

Unlike the application described above that deploys
components in a greedy manner, this mail service re-
lies on aplanning subsystem to compute optimized de-
ployment configurations. DisCo’s trust management, com-
munication, and activation facilities are well matched to
this automated deployment application, allowing the devel-
oper to avoid writing security-enforcement code.

5.3. How DisCo Helps

“Code bloat” due to security considerations can be parti-
tioned into the unavoidable definition of security constraints
and code that enforces them. Security-conscious systems
will frequently contain substantial amounts of code in both
categories. As was anticipated, this bloat, for all the DisCo
applications we constructed, was dominated by the defini-
tion of former, with only a negligible amount of code ded-
icated to the latter. In most cases, the only direct exposure
of communication authorization mechanisms was as argu-
ments to the constructors for Switchboard communication
interfaces. In addition, because it is difficult to determine
the correctness of security code, it is beneficial for com-
monly used idioms to be provided in standard libraries.

6. DisCo Status and Performance
DisCo is being implemented as a set of Java li-

braries, building upon functionality contained in Sun
Microsystems’ JDK 1.4. The latest snapshots of the
DisCo code can be downloaded from our web site:
http://www.cs.nyu.edu/pdsg/ (follow the Software tab).

The DisCo middleware continues to be a work in
progress, but has been under development now for over
two years. The design of some of the underlying abstrac-
tions have been described in detail elsewhere [7, 8], but not
as part of a larger system.

Prototype implementations exist of all major DisCo sub-
systems and they have been exercised through our construc-
tion of well-behaved security-aware distributed demonstra-
tion applications. We are examining our code for weak-
nesses against components that maliciously attempt to cir-
cumvent our security infrastructure.

Size Transports
Switchboard-Obj Socket

null Blowfish null TLS
1KB 1.2(0.9)ms 2.5(2.2)ms 0.1ms 0.8ms
8KB 1.9(1.3)ms 5.9(4.8)ms 0.6ms 5ms
32KB 4.5(2.0)ms 16.3(13.8)ms 2.2ms failed

Table 1. Switchboard communication latency

6.1. Performance Implications
The computation performed at the time an authorized

relationship is established is setup cost that is (1) depen-
dent on the authorization mechanism used and (2) amor-
tized over the life of the authorized relationship. In this
section, we examine the non-amortized “ongoing” cost of
DisCo’s continuous authorization and security mechanisms,
and its RPC and object-transfer APIs.

6.1.1. Switchboard Switchboard has a modular internal
design inspired by Cactus [27] that permits the construc-
tion of communication channels with security and inter-
face characteristics appropriate for a range of applications.
The authorization monitor model enables low-cost dynamic
authorization of communication channels by decoupling
the (re-)evaluation of credentials from communication. All
measurements presented in this section were made using a
1.2GHz Athlon running Sun Java 1.4 under Linux.

Table 1 presents a comparison between the communica-
tion latency of Switchboard’s object delivery transport and
Java sockets. In these experiments, we used the TLS im-
plementation provided in Sun’s Java 1.4 distribution, which
was unable to transfer 32k payloads. The payloads for the
switchboard object transport are byte arrays, that are serial-
ized using Java RMI MarshalledObjects.

To minimize effects outside of our implementation, data
was transferred via a loopback (localhost) device. Parenthe-
sized values are normalized by serialization time to account
for the differences between stream and object APIs. Switch-
board latency with a null cipher is generally 1-2ms slower
than sockets for small payloads and is approximately equal
for larger payloads, indicating its relative efficiency.

The Switchboard cipher presently relies on Bouncycas-
tle’s pure Java implementations of Blowfish and RSA and
therefore remains a performance bottleneck. Substantial
speedup can be achieved through replacement of these com-
ponents with native code linked using the JNI interface.

Table 2 presents RPC latency for a variety of payload
sizes and security parameters. Authorization and liveness
monitoring contributes 1 and 2ms respectively.

Switchboard’s implementation of RPC uses Java’s in-
trospection, which is notoriously slow, resulting in a la-
tency twice that of Sun Java’s RMI. Bytecode engineering
techniques, which have been employed by other projects to

Payload - cipher cipher cipher
Size auth auth

live
1KB 5ms 7.2ms 8ms 11ms
8KB 5.5ms 10ms 10.7ms 13.3ms
10KB 5.7ms 10.9ms 11.6ms 14.5ms
32KB 7.8ms 20.4ms 21ms 23.8ms

Table 2. Switchboard RPC latency.

achieve significantly higher performance, are directly appli-
cable to Switchboard’s implementation of RPC.

Switchboard provides continuous mutual authorization
semantics not available from other systems, with accept-
able performance for inter-host component communication.
However the latency of a switchboard RPC is two hundred
times the latency of a direct method call, and therefore im-
poses a large penalty for intra-host communication. Our ini-
tial experiments indicate that alternative techniques that au-
tomatically generate customized outcall “proxies” and in-
call “skeletons” indicate that these techniques will reduce
the latency of this indirection by more than an order of mag-
nitude.

6.1.2. Containers and Secure Class LoadingDisCo’s
two-tiered security enforcement mechanism, which con-
sults both class and user privileges, is inherently more ex-
pensive than the class-only approach intended by the Java
design. DisCo’s approach first evaluates class security pol-
icy and then defers to user security policy when required.

Since authorization relationships typically change in-
frequently, the cost of inserting a dynamic trust manage-
ment system into object access control mechanisms is nor-
mally small. Our approach is to define new code-source and
user permissions only at the time the authorizing trust rela-
tionship is established (such as when users log in or code
sources are first referenced) and at times that the underly-
ing authorization system detects a change in access rights,
(such as when credentials are revoked). Following the Java
security model, these permission objects are only checked
when a restricted operation is requested.

Initial experimental results, which measure the time re-
quired to repeatedly execute a privileged operation (open-
ing a file) do not detect a significant timing difference be-
tween DisCo’s and Java’s default security policy.

7. Related Work
DisCo is an integrated framework for constructing dis-

tributed security-aware applications on systems adminis-
tered by multiple administrative authorities. This frame-
work is built as several subsystems implementing authoriza-
tion, secure communication, dynamic deployment, sandbox
configuration, and locality-aware discovery. In this section,

we place our work in context by discussing other systems
that address similar challenges.

7.1. Component Deployment Systems
The Java Enterprise Edition (J2EE)[25] provides a

component-based application model that deploys com-
ponents expressed as “beans” into containers. The J2EE
model is designed for server farms within a single trust do-
main, where a bean deployment specification is manu-
ally generated at the time the application is configured.
All code is unconditionally trusted and inter-bean com-
munication is provided using unchecked (trusted) RMI.
While J2EE does provide a level of protection between
well-behaved program elements, authorization is only per-
formed at the start of a user transaction. Thus, the
J2EE framework as currently implemented does not ap-
pear to provide appropriate inter-component guarantees
required for systems spanning multiple administrative do-
mains with asymmetric trust relationships.

More general are frameworks such as .NET [21] and
the emerging Web Services effort, which are develop-
ing standards to orchestrate interactions among static
components resident across multiple administrative do-
mains. However, web services security-related standards
such as WS-Security [20] only provide mechanisms for en-
coding security credentials without explicitly specify-
ing policies for enforcing various guarantees. Additionally,
these frameworks have not explored how long-lived con-
nections between components should respond to changes
in authorization or connectivity.

Dynamic component deployment onto secure contain-
ers is being explored in some research projects such as
Ninja [10] and Ajanta [14]. DisCo shares several of its ob-
jectives with such systems. In particular, DisCo’s se-
cure code loading facilities provide an alternative to
Ajanta’s mechanism for authenticated, encrypted commu-
nication with the code base.

DisCo differs from the above systems in two impor-
tant ways. First, it supports dynamic deployment in envi-
ronments where all entities do not trust a single authority.
Second, it provides mechanisms to continuously monitor
the authorization of credentials and connection character-
istics, while making it convenient for applications to adapt
as necessary. Thus DisCo’s mechanisms are complementary
to what is offered by the above systems.

7.2. Secure and Quality-Assured Transports
DisCo utilizes Switchboard as its principal inter-

container and inter-host communication abstraction.
Switchboard, which builds upon JDK 1.4’s crypto-
graphic interfaces, provides novel security attributes
including continuous monitoring of connectivity and au-
thorization. These attributes are either not available in cur-
rent transport-layer alternatives or are implemented in a
non-modular fashion.

SSH [28] and TLS [5] are the most widely available
alternatives to Switchboard. The authorization model they
provide is not modular, but instead is tied closely to ACLs
and X.509 certificates, respectively. TrustBuilder [19] ex-
tends the TLS model to use Winsboro and Li’s more expres-
sive role-based authorization modelRT . OO-DTE [4] uti-
lizes DTE-based authorization. None of these systems pro-
vides mechanisms to monitor connectivity.

IPSEC [15] provides a mechanism to securely construct
a secure network among sites connected via the public In-
ternet. While IPSEC does not provide liveness guarantees,
its security guarantees permit TCP to reliably detect the fail-
ure of a connection. As a network-level mechanism, IPSEC
is unaware of the protection domain of components, which
originate packets or listen to ports and therefore is inappro-
priate for the security needs of containers on the same host
that require insulation from each other.

Modular research systems such as Cactus [27] and
JXTA [22] provide alternate mechanisms that can be uti-
lized to implement or further generalize the abstrac-
tions provided by Switchboard. However suitable toolkits
for these systems were not available at the time our imple-
mentation of Switchboard was developed.

7.3. Authorization and Access Control
DisCo provides a mechanism for a trust management

subsystem to continuously monitor a coalition partner’s au-
thorization. In addition, DisCo relies on authorization sub-
systems to set access level parameters. Both of these mecha-
nisms are realized using dRBAC, a decentralized role-based
access-control system [7].

X.509 and several role-based access-control infras-
tructures such as SPKI/SDSI [24], PolicyMaker[2], OA-
SIS [11], and theRTn systems of Li and Winsboro [17, 16]
are similar to dRBAC in providing trust management mech-
anisms that allow access privileges to be chained or dele-
gated among multiple trust domains. Also related, but sig-
nificantly less expressive, is Project JXTA’s Poblano [3]
trust-management system which provides a PGP-like
web-of-trustmodel. DisCo’s generic authorization model
can be easily extended to support any of these alterna-
tives.

DisCo’s dRBAC differs from the above systems in two
respects. First, it provides valued attributes, permitting con-
venient and flexible modulation of access classes instead of
requiring explicit enumeration of all combinations of access
parameter values as different roles. (RT1, which was devel-
oped at around the same time as dRBAC, has a somewhat
related feature as well).

More importantly, dRBAC provides facilities to continu-
ously monitor an entity’s authorization. With the notable ex-
ception of the OASIS [11] system, the above trust manage-
ment systems have not addressed this challenge at any level.
Moreover, OASIS’ abstractions and implementation are in-

tended for management within a single trust domain and
are inappropriate for systems involving multiple domains.
The X.509 specification [12] notes a need for continuous
monitoring for credential expiration and revocation, how-
ever mechanisms to achieve this are not provided in stan-
dard implementations.

7.4. Discovery

DisCo’s locality-aware discovery service is a hybrid be-
tween a centralized approach and local flooding. Flood-
ing is also used in other discovery systems such as Jini[1]
and Gnutella[23]. Like, Ninja’s SDS[10], DisCo’s discov-
ery service annotates referral credentials with public-key
signatures, allowing others to authenticate their integrity. In
order to permit authorized parties to issue their own discov-
ery credentials, DisCo’s discovery credentials also include
the issuer’s credentials which indicate the issuer’s right to
provide the discovered object.

The P2P community has recently begun exploring mech-
anisms for incorporating locality-awareness in distributed
hash tables (for example [18]). While these locality-aware
hashing techniques are presently immature, they are likely
to be more efficient than flooding and therefore more effec-
tive for our purposes.

8. Conclusion
The DisCo framework facilitates the construction of de-

composable applications that can be deployed into an en-
vironment characterized by dynamic network connectivity
properties and unstable trust relationships that span multi-
ple administrative domains.

Multiple mechanisms are currently available that provide
partial solutions to the challenge of security in such dis-
tributed systems and generally do not inter-operate well. In
contrast, the DisCo framework provides a composable and
extensible set of primitives that express access rights, facil-
itate secure inter-component communication, enable com-
ponent deployment, and provide locality-aware service dis-
covery. In addition, mechanisms are provided to detect and
respond to loss of authorization and connectivity.

DisCo permits application components to discover, se-
curely acquire the code for, and install service components
over the network with only minimal a priori knowledge of
their locations. Once installed, these components can se-
curely interoperate and respond to changes of authorization
and connectivity between hosts, users, and software agents.

In addition to the construction of an extensible frame-
work, DisCo’s contributions include a novel univer-
sal abstraction for continuous authorization and secure
inter-component communication used throughout the sys-
tem. This research effort has also resulted in the devel-
opment of a novel distributed trust management system
which provides mechanisms for discovering and express-

ing authorizing relationships that modulate multiple access
control attributes.

Acknowledgments
We thank Christian Almazon, Hesham Hassan, Sean

Holohan, Edward Keenan, Oliver Kennedy, Tracy Pesin,
Larry Port, Robert Schatz, Nick West and Kenji Yoshihira
for their assistance implementing and integrating DisCo’s
components.

This research was sponsored by DARPA agree-
ments N66001-00-1-8920, and N66001-01-1-8929; by
NSF grants CAREER:CCR-9876128 and CCR-9988176;
a DARPA seedling grant for “Stable Trust Manage-
ment”. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwith-
standing any copyright annotation thereon. The views
and conclusions contained herein are those of the au-
thors and should not be interpreted as representing the
official policies or endorsements, either expressed or im-
plied, of DARPA, SPAWAR SYSCEN, or the U.S. Govern-
ment.

References
[1] K. Arnold, A. Wollrath, B. O’Sullivan, R. Scheifler, and

J. Waldo. The Jini specification. Addison-Wesley, Read-
ing, MA, USA, 1999.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. InProc. CCS. ACM, 1996.

[3] R. Chen and W. Yeager. Poblano: A Distributed Trust Model
for Peer-to-Peer Networks. Available athttp://www.
jxta.org/project/www/docs/trust.pdf , 2001.

[4] D. Sterne, G. Tally, C. McDonell, D. Sherman, D. Sames,
P. Pasturel, and E. Sebes. Scalable Access Control for Dis-
tributed Object Systems. InProc. of USENIX Security Sym-
posium, 1999.

[5] T. Dierks and C. Allen. The TLS Protocol, Version 1.0. IETF
RFC 2246, 1999.

[6] E. Gamma, R. Helm, R.Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[7] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karam-
cheti. dRBAC: Distributed Role-Based Access Control for
Dynamic Coalition Environments. InProc. ICDCS, 2002.

[8] E. Freudenthal, L. Port, E. Keenan, T. Pesin, and V. Karam-
cheti. Credentialed Secure Communication Switchboards. In
Proc. of IEEE Wkshp. on Resource Sharing in Massively Dis-
tributed Systems, 2002.

[9] S. Garfinkel and G. Spafford.Practical UNIX and Internet
Security. O’Reilly and Associates, Inc., 1996.

[10] S. D. Gribble and et al. The Ninja Architecture for Robust
Internet-Scale Systems and Services.Special Issue of IEEE
Computer Networks on Pervasive Computing, 2000.

[11] J. H. Hine, W. Yao, J. Bacon, and K. Moody. An architecture
for distributed OASIS services. InMiddleware, pages 104–
120. ACM/IFIP/USENIX, 2000.

[12] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509
Public Key Infrastructure Certificate and CRL Profile. IETF
RFC 2459, 1999.

[13] A.-A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Par-
titionable Services: A Framework for Seamlessly Adapting
Distributed Applications to Heterogenous Environments. In
Proc. HPDC. IEEE, 2002.

[14] N. M. Karnik and A. R. Tripathi. Security in the Ajanta mo-
bile agent system.Software — Practice and Experience,
31(4):301–329, 2001.

[15] S. Kent and R. Atkinson. Security Architecture for the Inter-
net Protocol. IETF RFC 2401, 1998.

[16] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of
a role-based trust management framework. InProc. 2002
IEEE Symposium on Security and Privacy, pages 114–130.
IEEE Computer Society Press, May 2002.

[17] N. Li, W. Winsborough, and J. Mitchell. Distributed cre-
dential chain discovery in trust management. InProc. CCS.
ACM, 2001.

[18] M. Freedman, Eric Freudenthal, and David Mazieres. De-
mocratizing Content Delivery with Coral. InProc. NSDI.
USENIX, 2004.

[19] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R.
Jarvis, B. Smith, and L. Yu. Negotiating trust on the web.
IEEE Internet Computing, 6(6):30–37, 2002.

[20] Microsoft. Web Services Security (WS-Security) Version
1.0. Technical report, Microsoft Corporation, April 2002.

[21] Microsoft Corporation. Microsoft .NET Framework SDK
Beta 2. Available athttp://www.microsoft.com/
net , 2001.

[22] Project JXTA. JXTA Version 1.0 Protocols Specification.
Available athttp://spec.jxta.org , 2001.

[23] M. Ripeanu and I. Foster. Mapping the gnutella network:
Macroscopic properties of large-scale peer-to-peer systems.
IEEE Computing Journal, 6(1), 2002.

[24] R. L. Rivest and B. Lampson. SDSI – A simple distributed
security infrastructure. InProc. of CRYPTO’96, 1996.

[25] Sun Microsystems, Inc. JavaTM 2 Platform, Enterprise
Edition Specification, Version 1.3. Available athttp:
//java.sun.com/j2ee/docs.html , July 2001.

[26] T. Kichkaylo, A. Ivan, V. Karamcheti. Constrained Compo-
nent Deployment in Wide-Area Networks Using AI Planning
Techniques. InProc. IPDPS. IEEE, 2003.

[27] G. T. Wong, M. A. Hiltunen, and R. D. Schlichting. A con-
figurable and extensible transport protocol. InINFOCOM.
IEEE, 2001.

[28] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehti-
nen. SSH Protocol Architecture. Available athttp://
www.ssh.com/tech , 2001.

