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Abstract

An increasing number of distributed applications are
currently being constructed as sets of connected compo-
nents and dynamically deployed in wide area networks
using frameworks such as CORBA, .NET, and Web Ser-
vices. Such dynamic deployments enable applications to
flexibly adapt to changes in client QoS requirements and
network properties, but introduce a consistency problem
because of replicated components. Ideally, the frame-
works deploying the applications should ensure that the
application consistency requirements are satisfied, even
though the requirements can range from weak to strong
and dynamically change at run-time. Thus, a key chal-
lenge is to design a flexible cache coherence protocol
that uses application-specific information while still be-
ing application-neutral.

This paper describes Flecc, an application-neutral
cache coherence protocol used by a component-based
framework (Partitionable Services Framework) to sat-
isfy the consistency requirements of deployed applica-
tions. Flecc allows applications to specify appropri-
ate consistency and granularity levels and define com-
plex synchronization decisions as simple functions. We
demonstrate the benefits of our cache coherence proto-
col by analyzing the behavior of a component-based ap-
plication modeling an airline reservation system.

1. Introduction

Increasingly, distributed applications are being de-
scribed using various component-based models and de-

ployed in wide-area networks as sets of connected
components. Component-based frameworks such as
CORBA [19], Globus [6], DCOM [24], the Web Ser-
vices infrastructure [8], or DCE [13] allow applications
to leverage a common substrate that provides essential
functionality – e.g. discovery, security, resource man-
agement.

Traditionally, such frameworks have relied on static
connections between components. However, more re-
cent projects (Active Frames [15], Ninja [21], Active
Streams [2], CANS [7], Partitionable Services Frame-
work [9], Conductor [26], and even a more recent ver-
sion of Globus [6]) have started to advocate the use of
dynamically configured component linkages. In such
systems, the components are linked at run-time, based
on the state of the environment, the client’s QoS require-
ments, and the properties of the application. This dy-
namic model allows applications to flexibly and dynam-
ically adapt to changes in client’s QoS requirements and
environment state, possibly by deploying multiple repli-
cas of the same component in the network.

In situations where several replicas sharing data are
running in the network, the component-based frame-
works should ensure that the application consistency re-
quirements are satisfied. Ideally, applications should
provide only the specific functionality and not address
additional concerns, e.g. security and data consistency.
What makes the cache coherence problem interesting in
this context is that it poses different challenges when
compared to the same problem in distributed databases,
distributed file-systems, or distributed-shared memory
systems. In these latter systems, the cache coher-
ence protocols improve their efficiency by making as-
sumptions about the behavior of all applications. In
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distributed databases and file systems, clients execute
read/write operations at the level of database records, re-
spectively files. In such cases, the caching protocol can
take advantage of the data locality and structure (e.g.
file systems are organized as trees of files). Similarly,
in distributed shared memory systems, the caching pro-
tocol uses knowledge about the application implemen-
tation (e.g. use patterns for variables) to improve its ef-
ficiency. Component-based frameworks deploy general
applications and cannot make similar assumptions about
either the read/write patterns or data structures that are
valid across all applications. In addition, applications
deployed in component-based frameworks dynamically
adapt to environment and client QoS changes, thus po-
tentially modifying the application consistency require-
ments. For example, an airline reservation system might
allow users to browse flights, buy tickets, and switch be-
tween the two modes of operation. In general, users ac-
cept stale data during browsing (weak consistency), but
require most current data when buying tickets (strong
consistency).

Our goal is to design a cache coherence protocol able
to work with a wide range of applications. Since it is
well known that a caching protocol is more efficient if it
uses application-specific knowledge, the main challenge
is to permit the use of application-specific information
while still being flexible and application neutral. This
paper describes the problems found and the solutions
developed when designing such an application-neutral
cache coherence protocol (Flecc), as part of the Parti-
tionable Services Framework (PSF).

PSF is a component-based framework that deploys
dynamic component-based applications in resource con-
strained environments by flexibly composing the appli-
cation components. In order to satisfy the consistency
requirements of general component-based applications,
PSF and Flecc allow applications to specify and dy-
namically modify the appropriate consistency levels, the
granularity levels, and complex synchronization deci-
sions. The application-specific information consists of
(i) data properties, (ii) quality triggers, and (iii) ex-
tract/merge methods. The properties characterize the
data that needs to be kept consistent between replicas.
Based on data properties, Flecc decides which replicas
share the same data and need to receive updates. The
quality triggers indicate when updates should be pushed
or pulled between replicas. The extract/merge methods
solve the conflict detection and resolution problems by
allowing merging and extracting of updates from/into
replicas. Even though it uses application-specific infor-

mation, Flecc is application-neutral because it does not
attach semantics to the provided information (e.g. Flecc
evaluates the triggers without understanding the seman-
tics associated with the variables).

The rest of the paper is organized as follows. Sec-
tions 2 and 3 discuss related work and briefly describe
the Partitionable Services Framework. Section 4 gives
a detailed description of the cache coherence protocol.
Section 5 evaluates the ease of use and the efficiency of
our coherence protocol by analyzing the behavior of an
application modeling an airline reservation system. We
conclude in Section 6.

2. Related Work

The cache coherence problem has been extensively
researched in distributed databases, distributed file sys-
tems (DFS), and distributed shared memory systems
(DSM) for both symmetric multi-processors (SMP) and
wide-area environments. The next paragraphs highlight
the ways these systems use application-specific infor-
mation to efficiently satisfy application consistency re-
quirements.

Distributed shared memory - SMPs and cluster envi-
ronments. Munin [3] and View Caching [12] are ex-
amples of software DSM systems that parse application-
specific information to choose the appropriate level of
consistency at the granularity of pages and objects, re-
spectively. Munin [3] annotates variables with their ex-
pected access pattern. The View Caching [12] system
defines a view as the data used by a user-defined method
and uses view-specific knowledge (data access patterns)
to choose the appropriate coherence protocol.

Distributed shared memory - Wide area environ-
ments. The problem in DSM systems deployed in
WANs is to ensure data consistency between replicas
spread across a long latency network, while minimiz-
ing the synchronization traffic. In InterWeave [4], ap-
plications define the consistency unit as a data segment
formed by data blocks and views as subsets of blocks.
Views reduce the synchronization traffic, because shar-
ers of the same segment can have different views. Ob-
ject Views [14] uses a combined run-time and compiler
solution to decide which object parts need to be updated
for correct execution.

Distributed databases . The consistency problem in
distributed databases is to maintain data correctness
(e.g. mutual consistency) and availability when multi-
ple read/write operations are simultaneously executed
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on several replicas. The provided consistency guaran-
tees range from one-copy serializability [1] to weak con-
sistency [5] and continuously weak consistency [27]). In
most systems, the information used to improve the con-
sistency protocol efficiency consists of data structures
and access patterns [27].

Distributed file systems. Similar to distributed
databases, distributed file systems spread information
across wide-area networks. Their goal is to allow
users to transparently access both their local and
remote files [20]. DFSs reduce the synchronization
traffic by using information implicit in the hierarchical
file system structures when choosing the appropri-
ate granularity levels (pages [25, 18], files [22, 17],
volumes [16, 11, 23]).

The common theme across all of these systems is that
the underlying cache coherence protocols are able to
make assumptions valid across their target application
domains and efficiently use this information to design
appropriate consistency protocols and define granular-
ity levels.

3. Cache Coherence Problem in PSF

3.1. Partitionable Services Framework (PSF)

Partitionable Services Framework [9, 10] is a dy-
namic component-based framework which enables con-
struction and deployment of applications as a set of
components. PSF allows applications to flexibly adapt
to any changes in the client QoS requirements or the net-
work state. The adaptation process consists of assem-
bling and deploying application components into the
network, depending on the environment conditions. For
example, the security requirements of security-sensitive
e-mail application can be satisfied by placing encryp-
tion/decryption components around insecure links. Sim-
ilarly, a cache component placed close to a client can
offset high latency of slow links.

PSF relies on four elements: (i) a declarative spec-
ification of the application and the environment, (ii) a
monitoring module to follow any changes in the state
of the network, (iii) a planning module to assemble the
components, and (iv) a deployment infrastructure to in-
ject the component functionality into the network.

Similar to the CORBA Component Model [19], PSF
models components as entities that implement and re-
quire interfaces, where each interface can be associated

with properties. The implemented interfaces describe
the functionality of the component. The required in-
terfaces indicate what other services are necessary for
correct execution of the component. The environment
is defined as a set of nodes and links associated with
their own properties. The monitoring module is respon-
sible for tracking any changes in the state of the environ-
ment (e.g. client, network) and trigger adaptation. The
planning module uses the information provided by the
monitoring module to find a valid component deploy-
ment that satisfies both the application conditions and
the client QoS requirements. Once such a composition
is found, the deployment module securely installs and
connects the components in the network.

3.2. Consistency problem in PSF

One of the goals of PSF is to enable flexible access
control to the functionality provided by components.
Depending on their credentials, users should be allowed
to remotely access the components, run components on
their local machine, or access the components as a com-
bination of both remote and local execution. In order
to solve this problem, PSF defines the notion of PSF
views [10]. Informally, a view can be (1) a proxy that
facilitates the remote access to an original component,
(2) a customization of the original component that can
be safely executed on the user’s local machine, or (3) a
new component that allows users to locally execute parts
of component and remotely access other parts.

Let’s assume that � is the set of components belong-
ing to an application, and a component � � � imple-
ments a set of methods �� and uses a set of variables
��. A new component � � � is a view of an origi-
nal component � if the view has at least one of the fol-
lowing two properties: (i) the functionality of the view
is derived from the functionality of the component, i.e.
�� ��� �� �, and (ii) the data used by the view is a sub-
set of the data used by the component, i.e. �� ��� �� �.

The cache coherence problem arises when PSF de-
ploys several views of the same component, as illus-
trated in Figure 1. In such cases, the views and the
original component might require that the shared data
be synchronized (e.g. the original component can be re-
garded as a centralized database, while the data views
are replicas of that database). Ideally, PSF should be
responsible for ensuring that the application data con-
sistency requirements are satisfied.

There are several challenges in providing consistency
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Figure 1. View deployment in PSF. There are three domains connected to Internet. Each domain
provides service to its clients through the original component or its views. View 1 and View 2
provide the same service as the original component. Their working data is a subset of the data
defined by the original component.

for such component-based applications. First, the cache
coherence protocol must work with general component-
based applications, without any knowledge on the ap-
plication internals. Thus, the cache coherence proto-
col cannot make any assumptions (e.g. read/write pat-
terns or the data structure) that are valid across all ap-
plications. The only application-specific information
used by the protocol is the one exposed by the applica-
tion through its interfaces, properties, and requirements.
Second, different component-based applications require
different consistency levels and the protocol should be
able to accommodate all applications. Third, the cache
coherence protocol should be able to dynamically adapt
to any dynamic changes in the application consistency
requirements.

4. Flecc - Cache Coherence Protocol

This paper described Flecc, a cache coherence pro-
tocol that satisfies the consistency requirements of
any component-based application (application-neutral)
deployed in any configuration (flexible), while using
application-specific information.

The flexibility of Flecc stems from two factors. First,
Flecc acknowledges that different applications have dif-
ferent consistency requirements. Thus, it supports two
modes of operation – strong and weak. The former en-
sures that there is only active view running in the sys-

tem, providing essentially one-copy serializability se-
mantics. The latter allows multiple active views to si-
multaneously work on the shared data and specify more
relaxed consistency levels. Second, Flecc allows views
to either modify at run-time their weak consistency lev-
els or switch between the strong and weak modes of op-
eration.

To the best of our knowledge, the Partitionable Ser-
vices Framework is the first component-based frame-
work that provides cache coherence guarantees, which
have typically been left to the application. The next two
sections describe in detail what type of information is
expected from the application, and how the cache co-
herence protocol uses this information to improve its
performance.

4.1. Application-specific information

As explained in Section 3, PSF has no knowledge of
the application internals, except what is exposed by the
application through its interfaces. In addition, PSF can-
not make any assumptions (e.g. data structure or usage)
that are valid across all applications. Without additional
application-specific information about the shared data,
the cache coherence protocol can only execute based on
worst-case assumptions, such as that all views conflict
and the updates should be sent to all views.

To permit more efficient implementations, Flecc al-
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lows applications to provide additional information,
which extends the standard interface descriptions. This
application-specific information consists of (i) data
properties to characterize the shared data and indicate
which views need to be synchronized, (ii) quality trig-
gers to indicate when updates need to be pushed or
pulled between views, and (iii) merge/extract methods
that define what information should be synchronized.

Data properties. Both the original component and the
views use properties to inform the underlying infrastruc-
ture of the characteristics of the shared data. A property
� is defined as a tuple ������� ���, where ����� is a
unique name and �� represents the property values. ��

can be an interval�� � ������ ����� or a set of discrete
values �� � ���� ��� ���� ���.

Flecc uses data properties to determine which views
share the same data, whenever such sharing relation-
ships cannot be statically described. Static relationships
are specified into a static map. The map is created once,
when Flecc is initialized. The map contains a symmet-
ric matrix, where the number of rows and columns equal
the number of views. If two views 	� and 	� share data,
than the elements �
� �� and ��� 
� in the matrix are set to
�. Otherwise, the elements are set to �.

Sometimes, it is difficult to statically specify the re-
lationship between two views because they can dynam-
ically change the sets of shared data, i.e. change their
data properties at run-time. The static matrix indicates
such a possibility by setting the cell entry to ��. In such
cases, Flecc uses the dynamic set of data properties(see
Definition 1) to search for views that share data. Flecc
considers that two views 	� and 	� share data if the two
views are defined by two property sets � and  and the
sets have a non-empty intersection. This method is very
flexible and can reduce the coherence traffic by not trig-
gering false conflicts.

�������� � � � � � ��� ��

���������	�� 	�� �

�
� , if � � � �
� , if � � �� �

(1)

� � � �� � 	�� 
 � ��� 	�� 
  ���� �� � �� � ��
(2)

The intersection of two property sets � � ���� ��� ����
and  � ���� ��� ���� is defined as the set of intersec-
tions between any two properties of � and  (see Defi-
nition 2). We make the assumption that a set of proper-
ties does not contain two properties with the same name
(e.g. ����� �� ������
� �). The intersection between
two properties � � ������� ��� and � � ������ � ���

is not empty if the properties have the same name and
the intersection of the value sets is not empty (see Defi-
nition 3).

� � � �

�
� if ����� �� �����
������� �� ���� if ����� � �����

(3)

Quality triggers. Often, applications are responsible
for deciding when updates should be either pushed or
pulled. One of the goals of Flecc is to simplify applica-
tions by taking such decisions on behalf of the applica-
tion. In addition to making explicit calls to push/pull
data, PSF allows views to delegate to the system the
right to make the synchronization decisions by defin-
ing push/pull/validity triggers. Push triggers send the
current value of data from the view to the original com-
ponent. Pull triggers indicate when the view needs to
update the shared data with the value held by the origi-
nal component. Validity triggers are executed whenever
the view pulls data and they indicate if the data currently
held by the original component is “good enough”. If it
is not “good”, Flecc is responsible for getting the most
recent data from the other active views and send it to the
requesting view.

If � is a discrete representation of time, a quality trig-
ger for a view 	 specifies the synchronization moments
as a boolean expression of time (� 
 � ) and view vari-
ables ���� ��� ����, where �� 
 ����
.

����� ��� ��� ���� � � � ��
� � ������ ������ (4)

There are two ways for the cache manager to evaluate
the current values of the object variables: (i) the object
provides the necessary methods to access the variables,
and (ii) the cache manager uses reflection to examine
the variables (when the components are defined in lan-
guages that support this feature). The current prototype
of PSF is working with Java-based applications, so we
use the latter mechanism in our design.

Merge/Extract methods. In order to synchronize the
state of all active entities (e.g. views and original com-
ponent), Flecc needs to propagate the updates from
views to the original component and vice-versa. The
questions are (i) what information to propagate, and (ii)
how to detect and resolve conflicts?

Current systems propagate either logs of modifica-
tions to be replayed by replicas or modified data to be
merged into replicas. The first solution does not work
in PSF, because views represent different layouts of the
same component and might not implement the same
methods. Thus, a log defined by one view might not
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be executable on a different view. Flecc implements
the second solution. The challenge in this case is how
to extract and merge the data from/into views and the
original component if Flecc has no knowledge about
the data structure and semantics. The solution is to use
application-specific functions to extract and merge data.
As in Coda [23] and Bayou [5], Flecc uses these func-
tions to detect and resolve possible conflicts.

All of this information (data properties, quality trig-
gers, merge/extract methods) may be specified by the
application for each view and original component. This
fact influenced our decision to choose a centralized pro-
tocol instead of a decentralized one. The latter regards
all entities (i.e. original component and its views) as
peers and requires application-specific information on
how updates are merged and extracted for every pair
of peers (�����). The former takes advantage of the
pre-established relationship between the involved enti-
ties, i.e. all views are logical representations of the
same original component. In this configuration, the
original component is regarded as a sink (primary-copy)
where all updates are propagated. Thus, the applica-
tion needs to provide only information on how updates
are merged/extracted between the views and the origi-
nal component (����). The downside of the centralized
protocol is its assumption that the original component is
always running in the system. Fail-safe mechanisms can
be implemented; however, they are not the focus of this
paper.

In the next section we describe how the cache co-
herence protocol uses the data properties, triggers, and
merge/extract methods to guarantee the required consis-
tency between views.

4.2. Flecc runtime components

Flecc associates a directory manager with the orig-
inal component and a cache manager with each view.
The responsibility of the directory manager is to keep
track of which views are running in the system and con-
trol which views are allowed to be active (i.e. working
on the shared data). The role of the cache managers is
to forward to the directory manager any requests made
by the views, and execute the commands sent back by
the directory manager. Initially, only the directory man-
ager is assumed to be running in the system. Whenever
a view is deployed into the system, the cache manager
associated with the view is also created and connected
to the directory manager. As part of the creation pro-
cess, the view provides all the necessary information to

the cache manager, as discussed in Section 4.1, which
forwards it to the directory manager.

Our cache coherence protocol is similar to classic
DSM protocols and consists of two finite state machines
executed by the directory manager and the cache man-
ager. The novel feature of Flecc is how it improve
the efficiency by using application-specific information
(i.e. data properties, quality triggers, and merge/extract
methods).

Figure 2 is a simple example that illustrates the in-
teractions between the directory manager and the cache
managers associated with two views running in the
strong mode. Let us assume that the only active enti-
ties in the system are the original component � and its
views �� and ��. Let us further assume that the property
defined by all entities is � . The values associated to �

by the three entities are different: ��� �� for ��, ��� ��
for ��, and ��� �� �� for the original component.

When the view �� is deployed, the view creates a
cache manager (step 1) that registers with the direc-
tory manager (step 2) and asks for the current data
(steps 3,4). The directory manager looks for other views
sharing data with the requesting view. Currently, there
is none and the directory manager extracts the data from
the original component and sends it to the view (step 5).
The difference is when view �� asks for the current data.
In this case, the directory manager finds that �� is active
and conflicts with ��. The directory manager sends an
invalidation request to ��, stops �� from working, and
gives the control to �� (steps 12,13,14). This ensures
that there is only one active view in the system. In or-
der to prevent the cache manager to merge or extract
updates while working on it, the view needs to mark
the code that processes the data as mutually exclusive
(steps 6,7). At the end, the view announces to the cache
manager and thus the directory manager about its inten-
tion to stop using the data (steps 20,21).

5. Case study

5.1. Airplane reservation system

We use a component-based application modeling an
airline reservation system as an example to illustrate the
cache coherence protocol and highlight its benefits. The
main components are reservation clients of different ca-
pabilities (viewers and buyers), a main flight database
that contains all information about existing flights, and
travel agents that can be replicated as necessary to as-
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CM_1 DM CM_2

2. registerCM (V1,(P,{x,y}))1. new CM (V1,(P,{x,y}))

4. getImage

5. sendImageCM

9. registerCM (V2,(P,{x,z}))

11. getImage

12. invalidateImage

18. sendImageDM

19. unregisterImage
20. killImage 21. unregisterCM

13. sendImageDM 14. sendImageCM

8. new CM (V2,(P,{x,z}))

10. initImage

15. startUseImage

16. endUseImage

17. killImage

6. startUseImage

7. endUseImage

V1 (P,{x,y}) V2 (P,{x,z})

3. initImage

C (P,{x,y,z})

Figure 2. Flecc - Cache coherence protocol

sist the reservation clients when browsing the database
or buying tickets.

The airline reservation system provides several lev-
els of QoS for clients, where each level is defined by the
transaction privacy, the maximum latency for accessing
the database, and the type of operations to be performed
(e.g. browsing the database or buying the tickets). The
privacy of a transaction is ensured by deploying encryp-
tor/decryptor pairs around insecure links. The latency
of accessing the database can be decreased by placing
travel agent components closer to the clients.

From a caching point of view, the airline reservation
system has varied consistency requirements. A viewer
does not require the most up-to-date information on
flight seat availability. However, a buyer needs fresh in-
formation in order to make an educated decision. Thus,
the travel agent assisting a view can have more relaxed
consistency requirements than a travel agent assisting a
buyer. In addition, a viewer can become at any point a
buyer and the travel agent component should be able to
provide the requested information in a timely manner.

5.2. Evaluation of the cache coherence protocol

We evaluate the benefits of our cache coherence pro-
tocol by observing its behavior when PSF deploys the
airline reservation application explained in the previous
section. We characterize Flecc with respect to whether
or not it is easy to use (it reduces the number and the
complexity of the APIs between the views and the cache

managers), efficient (it reduces the number of messages
sent between cache managers and the directory man-
ager), adaptable (it switches between various consis-
tency levels), and flexible (allows the application to con-
trol the consistency levels by defining quality triggers).

Ease-of-use. As described in Section 4, the API’s ex-
posed by the cache manager to the view are natural and
convenient to use. Figure 3 illustrates the behavior of the
travel agent used throughout our evaluation. The flow of
operations is as follows: (1) create cache manager (lines
9-16), (2) initialize data (line 17), (3) work with data
(lines 18-29), (4) kill cache manager (line 30). Besides
the actual code, the travel agent is also responsible for
implementing the extract/merge methods (lines 34-44).
Note that this information just communicates what state
is extracted/merged and is not concerned with when ex-
actly this functionality is invoked at run-time by the co-
herence system.

Efficiency. In order to illustrate the efficiency of our
cache coherence protocol, we measured the number of
messages generated by Flecc and compared it to the
number of messages generated by a time-sharing pro-
tocol and a multicast-based protocol. The time-sharing
protocol allows travel agents to execute one after an-
other. In this way, the number of control messages be-
tween the directory manager and the cache managers is
kept to a minimum. The multicast-based protocol does
not discriminate between cache managers and asks all
of them to send updates. Thus, the number of messages
between the directory manager and the cache manager
reflects the maximum one might see in an application-
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1 public class TravelAgent
2 implements ViewInterface,
3 AirlineReservationInterface �

4 AirlineReservationSystem ars = null;
5 CacheManagerImpl RMI cm = null;

6 public void run() �
7 ars = new AirlineReservationSystem();
8 cm = new CacheManagerImpl RMI(
9 arguments,
10 "air.TravelAgent",
11 this,
12 createPropertyList(),
13 mode operation,
14 "( t > 1500 )",
15 "( t > 1500 )",
16 "( t > 1500 )" );
17 cm.initImage();

18 for( int i = 0; i < 10; i ++ ) �
19 cm.pullImage();
20 cm.startUseImage();
21 ars.confirmTickets( 1, flightNumber );
22 cm.endUseImage();
23 �

24 for( int i = 0; i < 10; i ++ ) �
25 cm.pullImage();
26 cm.startUseImage();
27 ars.confirmTickets( 1, flightNumber );
28 cm.endUseImage();
29 �
30 cm.killImage();
31 �

32 /*******************************************/
33 /** IMPLEMENT VIEW INTERFACE **/
34 public static void mergeIntoObject(
35 Object obj,
36 ObjectImage image,
37 ViewProp-
ertyList vpl ) ��

38 public static ObjectImage extractFromObject(
39 Object obj,
40 ViewProp-
ertyList vpl ) ��

41 public void mergeIntoView( ObjectIm-
age image,
42 ViewProp-
ertyList vpl ) ��

43 public ObjectImage extractFromView(
44 ViewPropertyList vpl ) ��
45 �

Figure 3. Pseudo-code for a travel agent
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Figure 4. Flecc - Number of messages sent
between the cache manager and the direc-
tory manager.

oblivious protocol.

The experiment executes 100 travel agent compo-
nents deployed into a LAN and connected to a main
database running in the same LAN. All travel agents ex-
ecute the same sequence of operations: (1) create the
cache manager, (2) set the mode of operation to weak,
(3) initialize the data, (4) reserve tickets for a flight,
(5) kill the cache manager. Each travel agent defines a
property (“Flights”) that contains a list of all the served
flights. The number of travel agents that serve similar
flights is initially 10, and increases in increments of 10
up to 100. The consistency requirements of every travel
agent is to always execute on the most current data.
Figure 4 shows how Flecc reduces the number of con-
trol messages by computing the conflicting travel agents
based on their properties. Our cache coherence proto-
col reduces the number of messages sent between the
directory manager and the cache managers, by sending
messages only to interested parties.

Adaptability. In order to measure the run-time adapt-
ability of our cache coherence protocol, we use an ex-
periment that deploys ten conflicting travel agents con-
nected to the main database, all running in the same
LAN. Initially, they start in weak mode and execute in
a loop the “reserve tickets” operation. After that, the
travel agents switch to strong mode, and execute the
same set of operations. In the last phase, the travel
agents switch back to weak and execute the same op-
erations. For this experiment, we measure the time to
execute a method and the quality of the data used dur-
ing the execution. The quality of the data is computed
as the number of remote unseen updates to the shared
data. Figure 5 shows the trade-off between the time to
execute a method and the quality of the data used dur-
ing the execution. On the Y axis, the graph is split into
two parts. The lower part represents the time to exe-
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cute the methods, while the upper part shows the quality
of the data. On the X axis, the graph shows the travel
agent execution time line: WEAK, STRONG, WEAK.
We observe that the execution time is small when the
travel agent is willing to execute on stale data (WEAK
mode of operation, where the data quality decreases in
time) and increases if the data needs to be most recent
(STRONG mode of execution, where the data quality is
always the best). More importantly, this trade-off is sim-
ply communicated by the application to the underlying
system as consistency requirements.
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Figure 5. Flecc - Time to execute a method
vs. that quality of the used data, when
the cache manager switches from WEAK
mode to STRONG mode, and back.

Flexibility. We evaluate the impact of the quality trig-
gers on the number of messages and the quality of the
data by running ten conflicting travel agents in weak
mode, with and without triggers. We measure the qual-
ity of the data and the number of messages generated be-
tween the cache managers and the directory managers.
Figure 6 shows how the quality of data is improved
when the travel agents define triggers compared with
the case when the travel agent does not specify trig-
gers. The X axis shows the execution time line and
marks the moments when the travel agent receives up-
dates. The Y axis shows the measured data quality for
every method call. The upper graph represents a travel
agent which explicitly pulls the current data before exe-
cuting four methods. The lower plot represents the same
travel agent that uses a time-based pull trigger in addi-
tion to explicit calls. However, the cost of the improved
data quality is an increased number of messages (116 –
no triggers versus 182 – with triggers).
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Figure 6. Flecc - Number of remote up-
dates not seen by a cache manager run-
ning in WEAK mode. The difference
is whether the cache manager defined
pull/push trigger or not.

6. Conclusions and Future Work

This paper describes a flexible and application-
neutral cache coherence protocol, Flecc, that satisfies
the consistency requirements of component-based ap-
plication deployed in the Partitionable Services Frame-
work. Our cache coherence protocol is capable of adapt-
ing at run-time to changes in the consistency require-
ments. In addition, Flecc achieves efficiency by al-
lowing the application to specify in a natural way with
whom, when, and what to synchronize by specifying
data properties, pull/push triggers, and extract/merge
functions.

There are at least two directions we intend to pursue
for improving our cache coherence protocol. First, the
cache coherence protocol does not currently use any in-
formation about the nature of the methods executed on
the shared data. We believe that the number of control
messages can be further reduced by attaching read/write
semantics to the shared data. Second, the protocol main-
tains consistency only for the data shared by a single
instance of the original component and its views. Flecc
could be extended on two levels. The high level protocol
would maintain consistency between various instances
in a decentralized fashion (e.g. no primary-copy), while
the low level protocol would be current version of Flecc
and would ensure consistency between components and
their views.
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